These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Evaluating Iron Content and Tissue Microstructure with Off-Resonance Saturation MRI  

NASA Astrophysics Data System (ADS)

We present three magnetic resonance imaging (MRI) studies, each focused on applying off-resonance saturation (ORS) imaging to a different context or application. Particularly, we are interested in using ORS to evaluate the uptake of superparamagnetic MRI contrast agents in biological tissue, and to evaluate endogenous iron content. This relies on ORS being applied at low off-resonance frequency offsets where most of the negative contrast is due to signal loss from direct saturation of the water content of the sample. Additionally, we wish to combine this information with magnetization transfer contrast, which is obtained by applying ORS at offsets that are far from the resonance frequency, where magnetization transfer (MT) becomes the dominant effect rather than direct saturation (DS). In the first study, we observed the uptake of ultra-small superparamagnetic iron oxide (USPIO) nanoparticles in a simple model system by imaging the uptake in healthy murine liver in vivo, and by testing different metrics to quantify the uptake. Through this process, we discovered an approach that provides high sensitivity and specificity in low-signal scenarios. In the second study, we evaluated image contrast between brain regions in healthy human adults, and related these to the expected iron content in different regions based on age. Images were evaluated based on different MRI contrast mechanisms including quantitative transverse relaxation rates, as well as parameters obtained from ORS imaging. We also performed a field inhomogeneity adjustment on low-offset ORS data using the information obtained from the coarsely sampled ORS spectrum, and this was sufficient to correct for the inhomogeneities. In the third study, we used transverse relaxation, DS - which is strongly dependent on iron content, and MT contrast, in order to classify ex vivo brain samples having Alzheimer's disease pathology and normal controls, and were able to find strong classifiers. The three studies helped elucidate how the parameters of the ORS technique influence contrast based on tissue type, endogenous iron content, or USPIO uptake. They also helped directly inform future research directions in order to tune the approach for the different applications.

Fahmy, Sherif R.

2

Iron in spleen tissues  

NASA Astrophysics Data System (ADS)

This contribution aims in characterization of structural positions of iron in human and horse spleen. 57Fe Mössbauer spectroscopy was employed as a principal method of investigation in addition to X-ray diffraction and transmission electron microscopy (TEM). At room temperature, ferritin nanoparticles exhibit superparamagnetic behavior due to their small dimensions. Corresponding Mössbauer spectra show doublet-like patterns. Experiments performed at low temperatures unveiled presence of magnetically split components and enabled to determine the blocking temperature. Dimensions of Fe-containing species were established from detailed analyses of TEM images.

Miglierini, M.; Dekan, J.; Kopani, M.; Lancok, A.; Kohout, J.; Cieslar, M.

2012-10-01

3

Gas and iron content of galaxy clusters  

Microsoft Academic Search

Up to now, many theoretical studies aimed at reproducing the total amount of iron and gas in the intra-cluster medium meet the embarrassing situation, in which if the iron content is reproduced, the gas is not. More precisely, at given iron mass, too little gas and too high Fe abundance in turn are obtained as compared to the observational data.

C. Chiosi

2000-01-01

4

Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron  

PubMed Central

Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops. PMID:23918965

Tuli, Rakesh

2013-01-01

5

Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron.  

PubMed

Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops. PMID:23918965

Singh, Sudhir P; Vogel-Mikuš, Katarina; Ar?on, Iztok; Vavpeti?, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

2013-08-01

6

Ferritins and Iron Accumulation in Plant Tissues  

Microsoft Academic Search

Ferritins and Iron Accumulation in Plant Tissues\\u000a \\u000a Jean-François Briat3 , Françoise Cellier3 and Frederic Gaymard3\\u000a \\u000a \\u000a \\u000a (3) \\u000a Institut National de la Recherche Agronomique, Université Montpellier 2, École Nationale Supérieure d'Agronomie, 2 Place Viala, F-34060, Montpellier cedex, France\\u000a \\u000a \\u000a \\u000a \\u000a Without Abstract\\u000a \\u000a \\u000a \\u000a \\u000a \\u000a \\u000a Jean-François BriatEmail: briat@ensam.inra.fr

Jean-François Briat; Françoise Cellier; Frederic Gaymard

7

Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain  

Microsoft Academic Search

Summary Significant differences in the content of iron (III) and total iron were found in post mortem substantia nigra of Parkinson's disease. There was an increase of 176% in the levels of total iron and 255% of iron (III) in the substantia nigra of the parkinsonian patients compared to age matched controls. In the cortex (Brodmann area 21), hippocampus, putamen,

E. Sofic; P. Riederer; H. Heinsen; H. Beckmann; G. P. Reynolds; G. Hebenstreit; M. B. H. Youdim

1988-01-01

8

Methods for noninvasive measurement of tissue iron in Cooley's anemia.  

PubMed

To examine the relationship between myocardial storage iron and body iron burden, as assessed by hepatic storage iron measurements, we studied 22 patients with transfusion-dependent thalassemia syndromes, all being treated with subcutaneous deferoxamine, and 6 healthy subjects. Study participants were examined with a Philips 1.5-T Intera scanner using three multiecho spin echo sequences with electrocardiographic triggering and respiratory navigator gating. Myocardial and hepatic storage iron concentrations were determined using a new magnetic resonance method that estimates total tissue iron stores by separately measuring the two principal forms of storage iron, ferritin and hemosiderin. In a subset of 10 patients with beta-thalassemia major, the hepatic storage iron concentration had been monitored repeatedly for 12-14 years by chemical analysis of tissue obtained by liver biopsy and by magnetic susceptometry. In this subset, we examine the relationship between hepatic iron concentration over time and our current magnetic resonance estimates of myocardial iron stores. No significant relationship was found between simultaneous estimates of myocardial and hepatic storage iron concentrations. By contrast, in the subset of 10 patients with beta-thalassemia major, the correlation between the 5-year average of hepatic iron concentration and the current myocardial storage iron was significant (R = .67, P = .03). In these patients, myocardial storage iron concentrations seem to reflect the control of body iron over a period of years. Magnetic resonance methods promise to provide more effective monitoring of iron deposition in vulnerable tissues, including the liver, heart, and endocrine organs, and could contribute to the development of iron-chelating regimens that more effectively prevent iron toxicity. PMID:16339684

Sheth, Sujit; Tang, Haiying; Jensen, Jens H; Altmann, Karen; Prakash, Ashwin; Printz, Beth F; Hordof, Alan J; Tosti, Christina L; Azabagic, Andjela; Swaminathan, Srirama; Brown, Truman R; Olivieri, Nancy F; Brittenham, Gary M

2005-01-01

9

Tissue iron loading and histopathological changes in hypotransferrinaemic mice.  

PubMed

Tissue iron loading in hypotransferrinaemic (hpx/hpx) mice was investigated as a model for genetic (primary) haemochromatosis. Iron loading of liver preceded that in the pancreas and heart. One-year-old hpx/hpx mice showed iron staining in exocrine pancreas, liver parenchymal cells, and cardiac and intestinal smooth muscle cells. Iron-loaded macrophages were observed in all these tissues. Islets of Langerhans, biliary epithelial cells, and spleen were iron-free. The pancreas was fibrotic with massive macrophage infiltration and loss of secretory epithelium. Liver showed evidence of chronic inflammatory infiltration with increased collagen fibres in the parenchymal region but no cirrhosis. Serum aspartate aminotransferase activity and plasma glucose were increased in hpx/hpx compared with wild-type mice. Heavy iron loading with haemosiderin deposition in the liver could be demonstrated in hpx/hpx mice from 6 weeks of age. Heterozygous hypotransferrinaemic mice showed minor increases in liver iron stores at 6-12 weeks, but not at 1 year of age. Serum ferritin levels in heterozygous mice were also increased at 6-8 weeks of age. It was concluded that 1-year-old hpx/hpx mice showed evidence of liver and pancreatic damage secondary to tissue iron overload. The iron loading pattern and tissue damage showed some features which were distinct from those observed in haemochromatosis. PMID:8277372

Simpson, R J; Konijn, A M; Lombard, M; Raja, K B; Salisbury, J R; Peters, T J

1993-11-01

10

Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats.  

PubMed

Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively) for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl) and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b) and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2) and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2) relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging. PMID:23593390

Arruda, Lorena Fernandes; Arruda, Sandra Fernandes; Campos, Natália Aboudib; de Valencia, Fernando Fortes; Siqueira, Egle Machado de Almeida

2013-01-01

11

Dietary Iron Concentration May Influence Aging Process by Altering Oxidative Stress in Tissues of Adult Rats  

PubMed Central

Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively) for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl) and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b) and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2) and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2) relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging. PMID:23593390

Arruda, Lorena Fernandes; Arruda, Sandra Fernandes; Campos, Natalia Aboudib; de Valencia, Fernando Fortes; Siqueira, Egle Machado de Almeida

2013-01-01

12

The ubiquinone content of animal tissues  

PubMed Central

1. A method was developed for the analysis of ubiquinone in animal tissues and the recovery of added ubiquinone tested in liver of the rat, Crocodylus porosus and Squalus acanthias. 2. The ubiquinone content of heart, liver and gut (or breast muscle in birds) was measured in 67 different animal species, selected to be representative of all the vertebrate classes. 3. The suggestion is advanced that the possession of appreciable amounts of endogenous tissue ubiquinone is usually characteristic of evolutionarily advanced vertebrates, and the biological and biochemical significance of the results is discussed. PMID:6058111

Diplock, A. T.; Haslewood, G. A. D.

1967-01-01

13

Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats.  

PubMed

Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000ft above the sea level). Iron supplementation (2mg elemental iron/kg, once daily for 15days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1?, IL-6, and TNF-?), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25mg/kg, once daily for the last 7days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. PMID:24215938

Salama, Samir A; Omar, Hany A; Maghrabi, Ibrahim A; AlSaeed, Mohammed S; EL-Tarras, Adel E

2014-01-01

14

Toxin content, phallotoxin and amatoxin composition of Amanita phalloides tissues.  

PubMed

The toxin content and composition of Amanita phalloides tissues were determined in three specimens at two carpophore development stages. The carpophore was subdivided into six parts, namely, the cap, gills, ring, stipe, volva and bulb. To our knowledge, this is the first report of such an investigation on the ring and the bulb. Substantial differences in the tissue toxin content were revealed. The ring displayed a very high amount of toxins, whereas the bulb had the lowest toxin content. Compositional differences in relation to the nature of the tissue were also noted. The highest amatoxin content was found in the ring, gills and cap, whereas the bulb and volva were the richest in phallotoxins. Furthermore, variability in the toxin composition was observed. The differences in the distribution of individual toxins in the tissues might be related to the carpophore developmental stage. PMID:8342178

Enjalbert, F; Gallion, C; Jehl, F; Monteil, H

1993-06-01

15

Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation  

NASA Astrophysics Data System (ADS)

Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.

2010-05-01

16

Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.  

PubMed

Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value. PMID:20418865

Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

2010-05-01

17

Duodenal nonheme iron content correlates with iron stores in mice, but the relationship is altered by Hfe gene knock-out.  

PubMed

Hereditary hemochromatosis is a common iron-loading disorder found in populations of European descent. It has been proposed that mutations causing loss of function of HFE gene result in reduced iron incorporation into immature duodenal crypt cells. These cells then overexpress genes for iron absorption, leading to inappropriate cellular iron balance, a persistent iron deficiency of the duodenal mucosa, and increased iron absorption. The objective was to measure duodenal iron content in Hfe knock-out mice to test whether the mutation causes a persistent decrease in enterocyte iron concentration. In both normal and Hfe knock-out mice, duodenal nonheme iron content was found to correlate with liver iron stores (P <.001, r = 0.643 and 0.551, respectively), and this effect did not depend on dietary iron levels. However, duodenal iron content was reduced in Hfe knock-out mice for any given content of liver iron stores (P <.001). PMID:12468424

Simpson, Robert J; Debnam, Edward S; Laftah, Abas H; Solanky, Nita; Beaumont, Nick; Bahram, Seiamak; Schümann, Klaus; Srai, S Kaila S

2003-04-15

18

Nondestructive evaluation of cementite content in steel and white cast iron using inductive Barkhausen noise  

Microsoft Academic Search

A nondestructive testing method for the determination of the cementite content in iron-carbon steel and white cast iron is presented. The method is based on micromagnetic measuring parameters derived from inductive Barkhausen noise measurements taken under room temperature and with temperatures above the Curie temperature. The influence of different cementite contents and cementite modifications on the micromagnetic measuring quantities for

I. Altpeter

1996-01-01

19

Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy  

SciTech Connect

This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J. (Keele); (Florida); (IRM)

2008-06-16

20

Age-dependent and gender-specific changes in mouse tissue iron by strain.  

PubMed

Iron is necessary for life but also a potent pro-oxidant implicated in the pathogenesis of age-related diseases. We sought to determine if iron levels change with age and by sex in various tissues from several commonly studied mouse strains. Brain, liver, heart, retina, and retinal pigment epithelium (RPE)/choroid were dissected from male and female mice of young adult (2-6 month old) and aged (16-19 month old) C57BL/6, DBA/2J, and BALB/c mice. Iron was quantified through a chromagen-based spectrophotometric method or through atomic absorption spectrophotometry for increased sensitivity. Brain, liver, and heart iron increased by 30-70% in aged vs. young adult groups of all strains, while retina and RPE/choroid iron had variable age-related changes. Significant gender differences were observed in BALB/c and DBA/2J strains. Males had as much as 2- to 3-fold more brain, RPE/choroid, and retinal iron, while females had as much as 2- to 3-fold more liver iron. There was no significant gender difference observed in heart iron. The different profiles of change between gender and among strains suggest that hormones and genetics influence iron regulation with aging. Future manipulation of iron levels in mice will test the role of iron in aging and disease, and the data reported herein will be essential in directing such manipulations. PMID:19563877

Hahn, Paul; Song, Ying; Ying, Gui-shuang; He, Xining; Beard, John; Dunaief, Joshua L

2009-09-01

21

Effects of Iron Status on Transpulmonary Transport and Tissue Distribution of Mn and Fe  

PubMed Central

Manganese transport into the blood can result from inhaling metal-containing particles. Intestinal manganese and iron absorption is mediated by divalent metal transporter 1 (DMT1) and is upregulated in iron deficiency. Since iron status alters absorption of Fe and Mn in the gut, we tested the hypothesis that iron status may alter pulmonary transport of these metals. DMT1 expression in the lungs was evaluated to explore its role in metal transport. The pharmacokinetics of intratracheally instilled 54Mn or 59Fe in repeatedly bled or iron oxide–exposed rats were compared with controls. Iron oxide exposure caused a reduction in pulmonary transport of 54Mn and 59Fe, and decreased uptake in other major organs. Low iron status from repeated bleeding also reduced pulmonary transport of iron but not of manganese. However, uptake of manganese in the brain and of iron in the spleen increased in bled rats. DMT1 transcripts were detected in airway epithelium, alveolar macrophages, and bronchial-associated lymphoid tissue in all rats. Focal increases were seen in particle-containing macrophages and adjacent epithelial cells, but no change was observed in bled rats. Although lung DMT1 expression did not correlate with iron status, differences in pharmacokinetics of instilled metals suggest that their potential toxicity can be modified by iron status. PMID:16340001

Brain, Joseph D.; Heilig, Elizabeth; Donaghey, Thomas C.; Knutson, Mitchell D.; Wessling-Resnick, Marianne; Molina, Ramon M.

2006-01-01

22

Verification of Steelmaking Slags Iron Content Final Technical Progress Report  

SciTech Connect

The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and can be utilized for acid mine drainage treatment. Economic analysis from this research demonstrates that the results are favorable. The strong demand and the increase of price of the DRI and pig iron in recent years are particularly beneficial to the economics. The favorable economics has brought commercial interests. ICAN Global has obtained license agreement on the technology from Michigan Tech. This right was later transferred to the Westwood Land, Inc. A demonstration pilot plant is under construction to evaluate the technology. Steel industry will benefit from the new supply of the iron units once the commercial plants are constructed. Environmental benefits to the public and the steel industry will be tremendous. Not only the old piles of the slag will be removed, but also the federal responsible abandoned mines from the old mining activities can be remediated with the favorable product generated from the process. Cost can be reduced and there will be no lime required, which can avoid the release of carbon dioxide from lime production process.

J.Y. Hwang

2006-10-04

23

Iron content in water of river Godavari at Nanded and its impact on river ecology.  

PubMed

Natural waters can be very heterogeneous vertically, horizontally and with time. This is not only applicable to man-made pollution, but also can be caused by natural phenomena such as erosion, currents, thermocline and precipitation washout of dust. The total iron content of the river Godavari was investigated thrice in a month during the entire year July-2005 to June-2006. The overall study showed the fluctuations in the iron content more than the permissible limit prescribed by Indian Council of Medical Research (ICMR). The iron was estimated by spectrophotometric method using thiocyanate method. PMID:21117418

Bhosle, Arjun B; Wavde, Prabhakar N

2009-10-01

24

Age-dependent and gender-specific changes in mouse tissue iron by strain  

Microsoft Academic Search

Iron is necessary for life but also a potent pro-oxidant implicated in the pathogenesis of age-related diseases. We sought to determine if iron levels change with age and by sex in various tissues from several commonly studied mouse strains. Brain, liver, heart, retina, and retinal pigment epithelium (RPE)\\/choroid were dissected from male and female mice of young adult (2–6month old)

Paul Hahn; Ying Song; Gui-shuang Ying; Xining He; John Beard; Joshua L. Dunaief

2009-01-01

25

Cardiovascular magnetic resonance T2* for tissue iron assessment in the heart  

PubMed Central

Until recently, even in Europe and the US, iron induced cardiomyopathy was the most common cause of death for patients with thalassemia major (TM). In order to prevent deaths from this potentially reversible condition, accurate measurement of myocardial iron is needed to detect iron early and guide chelation therapy. Cardiovascular magnetic resonance (CMR) T2* is the method of choice for the assessment of cardiac iron and in the UK, where it was first introduced clinically, 60% reductions in overall mortality for TM have been observed. The history of T2* development is described in this article. T2* image acquisition and post processing techniques are reviewed. Remaining challenges and emerging techniques to potentially improve characterization of tissue iron are also discussed.

2014-01-01

26

Desferrithiocin analogue iron chelators: iron clearing efficiency, tissue distribution, and renal toxicity  

Microsoft Academic Search

The current solution to iron-mediated damage in transfusional iron overload disorders is decorporation of excess unmanaged\\u000a metal, chelation therapy. The clinical development of the tridentate chelator deferitrin (1, Table 1) was halted due to nephrotoxicity. It was then shown by replacing the 4?-(HO) of 1 with a 3,6,9-trioxadecyloxy group, the nephrotoxicity could be ameliorated. Further structure–activity relationship studies\\u000a have established that

Raymond J. Bergeron; Jan Wiegand; Neelam Bharti; James S. McManis; Shailendra Singh

2011-01-01

27

Boron, zinc, iron, and manganese content in four grassland species  

SciTech Connect

A post experiment was carried out to test the response of the B, Zn, Fe, and Mn concentration in four wild herbaceous species exposed to three landfill leachate treatments of increasing concentration of contaminants. The species tested were clustered clover (Trifolium glomeratum L.), cotton clover (T. tomentosum L.) wall barley (Hordeum murinum L.), and soft brome (Bromus hordaceus L.). The legume species accumulated more Fe and B than the grasses. The least contaminated leachate (leachate A) significantly increased the Fe and Ma content in T glomeratum. Leachate B significantly increased the Zn content in both clover species and Fe content in T. glomeratum and H. murinum, while it significantly decreased the B content in T. glomeratum. The most contaminated leachate (leachate C) significantly increased the Zn content in T. glomeratum, while it significantly decreased the B and Fe content. In the four species the content of B, Fe, and Mn in the plants under the leachate treatments was in a normal values range, while in T. glomeratum and H. murinum the Zn content had in some cases a toxic level. The dry weight of the four species tested diminished significantly under the most contaminated leachate. The ANOVA confirmed a major significant influence of the species factor on the response of the plant to leachate supply, but the treatment factor also had significant F-values in some cases. The species tested have a potential revegetation value for some areas degraded by landfill leachates.

Adarve, M.J.; Hernandez, A.J. [Univ. de Alcala de Henares, Madrid (Spain); Gil, A.; Pastor, J. [CSIC, Madrid (Spain). Environmental Sciences Research Center

1998-11-01

28

The effect of in utero insulin exposure on tissue iron status in fetal rats.  

PubMed

Newborn infants of diabetic mothers have serum biochemical signs of iron deficiency in cord blood directly related to elevations of cord erythropoietin and Hb concentrations. In sheep, chronic fetal hyperinsulinemia results in fetal hypoxemia, expansion of the red cell mass, and decreased iron concentrations, most likely due to increased iron utilization for Hb synthesis. To determine whether fetal insulin exposure also results in reduced tissue iron concentrations, we measured liver, skeletal muscle, small intestine, heart, and brain iron concentrations in newborn rat pups after s.c. fetal injection of insulin or diluent alone on d 19 of gestation. The fetuses of 11 pregnant rats were exteriorized, injected with 2 U neutral protamine Hagedorn insulin or diluent, replaced in utero, and delivered on d 22. To determine dose dependency, the fetuses of six pregnant rats were injected with 3 U of longer-acting protamine zinc insulin and delivered on d 21. At delivery, the insulin-treated groups had higher birth weights than the placebo-treated group, although plasma insulin concentrations were not different. The 2 U neutral protamine Hagedorn insulin-treated fetuses had significantly lower mean +/- SEM liver iron concentrations than the control fetuses (910 +/- 34 versus 1014 +/- 43 micrograms/g dry tissue weight; p less than 0.05), but had similar skeletal muscle iron concentrations. The 3 U protamine zinc insulin-treated fetuses had significantly lower liver and skeletal muscle iron concentrations compared to control and to 2 U neutral protamine Hagedorn insulin-treated fetuses (p less than 0.05). No differences in small intestine, heart, or brain iron concentrations were seen among groups.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1594333

Georgieff, M K; Kassner, R J; Radmer, W J; Berard, D J; Doshi, S R; Stonestreet, B S

1992-01-01

29

ANALYSIS OF IRON CONTENTS IN CARBONATE BEDROCK BY SPECTRORADIOMETRIC DETECTION BASED ON EXPERIMENTALLY DESIGNED SUBSTRATES  

Microsoft Academic Search

In this study continuous spectral reflectance of experimentally designed substrates, simulating the typical sedimentary fabric of marls and carbonates was measured by an ASD FieldSpec in the range 0.4-2.5 µm. Based on these data direct relationships between reflection features and iron content (total Fe) were calculated. Statistical analysis was done by standard procedures using characteristic primary parameters of iron absorption

Thomas Jarmer; Brigitta Schütt

30

Magnetic poly(?-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering  

PubMed Central

In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(?-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218

Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Banobre-Lopez, M.; Pineiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdorfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.

2013-01-01

31

Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation  

Microsoft Academic Search

Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe\\/Zn compounds (specific surface area

Florentine M. Hilty; Myrtha Arnold; Monika Hilbe; Alexandra Teleki; Jesper T. N. Knijnenburg; Felix Ehrensperger; Richard F. Hurrell; Sotiris E. Pratsinis; Wolfgang Langhans; Michael B. Zimmermann

2010-01-01

32

A Mssbauer spectrometry study of iron in hepatic and splenic tissues. Preliminary results  

E-print Network

spectrometry studies have been carried out on ferritin molecules extracted from horse spleen. They demonstrate, the liver and spleen usually rank highest in iron content, mainly as ferritin and hemosiderin. In the present work, Mössbauer spectra of lyophylized samples of liver and spleen from horse, beef and calf have

Boyer, Edmond

33

Impact of modifying tea–biscuit composition on phytate levels and iron content and availability  

Microsoft Academic Search

The effect of modifying the standard recipe of wheat flour based tea–biscuit on phytate levels, iron content and in vitro availability was investigated. Standard recipe was enriched by addition of dietary fibers and integral raw materials. The average phytic acid content of investigated biscuits ranged from 0.138 to 1.084g\\/100g dry matter of biscuit, depending on biscuit composition. Phytic acid levels

D. Vitali; I. Vedrina Dragojevi?; B. Šebe?i?; L. Vuji?

2007-01-01

34

Concentration of iron and distribution of iron and transferrin after experimental iron overload in rat tissues in vivo: study of the liver, the spleen, the central nervous system and other organs.  

PubMed

The purpose of this study was to estimate the iron concentration in the liver, spleen and brain of control rats and rats overloaded with iron and to determine the distribution of iron and of transferrin (TF). Iron was administered to Wistar rats by food supplemented with 3% carbonyl iron for 3 months, or intraperitoneally, or intraveneously as iron polymaltose for 4 months (total administered dose: 300 or 350 mg/rat, respectively). Iron concentration was estimated by atomic absorption spectrophotometry and iron- and TF-distribution histochemically and immunohistochemically, respectively. In control rats the organ with the highest iron content was the spleen, followed by the liver and brain. After iron loading the increase of iron in the liver was greater than that of the spleen; iron concentration in the brain did not change significantly. Distribution of iron in the liver was in Kupffer cells throughout the lobule and in hepatocytes at its periphery. No difference in the number of positive cells or staining intensity for TF was observed between control rats and iron overloaded animals in the liver or central nervous system (CNS); the spleen was negative for TF. Distribution of TF in the liver showed a centrilobular localisation in hepatocytes. TF reaction in the brain occurred in oligodendrocytes, vessel walls, choroid plexus epithelial cells and some neurons. In conclusion, experimental iron overload in rats leads to iron uptake mainly by reticuloendothelial (RE) cells and hepatocytes, indicating that hepatocytes are of particular importance for iron metabolism. Iron uptake by the brain was not significant, probably because the brain is protected against iron overload. Iron overload did not influence location and quantity of TF in the liver and CNS, whereas the visualisation of iron and TF did not coincide. This indicates that TF may have other functions beyond iron transport. PMID:10674272

Papanastasiou, D A; Vayenas, D V; Vassilopoulos, A; Repanti, M

2000-01-01

35

EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY  

EPA Science Inventory

The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...

36

Influence of vegetative cycle of asparagus ( Asparagus officinalis L.) on copper, iron, zinc and manganese content  

Microsoft Academic Search

The essential elements copper (Cu), iron (Fe), zinc (Zn) and manganese (Mn) were analyzed in fresh asparagus to determine the effects of the vegetative cycle of the plant on the micronutrient content. Asparagus samples were classified in two groups by diameter (14 mm). Asparagus from a sample group with the same diameter were divided into two portions (apical and basal)

M. A. Amaro-Lopez; G. Zurera-Cosano; R. Moreno-Rojas; R. M. Garcia-Gimeno

1995-01-01

37

Red cell ferritin content: a re-evaluation of indices for iron deficiency in the anaemia of rheumatoid arthritis  

Microsoft Academic Search

In iron deficiency anaemia basic red cell content of ferritin is appreciably reduced. This variable was determined in 62 patients with rheumatoid arthritis to evaluate conventional laboratory indices for iron deficiency in the anaemia of rheumatoid arthritis. For 23 patients with rheumatoid arthritis and normocytic anaemia irrespective of plasma ferritin concentration, red cell ferritin content did not differ significantly from

A Davidson; M B Van der Weyden; H Fong; M J Breidahl; P F Ryan

1984-01-01

38

Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents  

NASA Astrophysics Data System (ADS)

The Al-Cu 206 cast alloys with varying alloy compositions ( i.e., different levels of Fe, Mn, and Si) were investigated to evaluate the effect of the iron-rich intermetallics on the tensile properties. It is found that the tensile strength decreases with increasing iron content, but its overall loss is less than 10 pct over the range of 0.15 to 0.5 pct Fe at 0.3 pct Mn and 0.3 pct Si. At similar iron contents, the tensile properties of the alloys with dominant Chinese script iron-rich intermetallics are generally higher than those with the dominant platelet phase. In the solution and artificial overaging condition (T7), the tensile strength of the 206 cast alloys with more than 0.15 pct Fe is satisfactory, but the elongation does not sufficiently meet the minimum requirement of ductility (>7 pct) for critical automotive applications. However, it was found that both the required ductility and tensile strength can be reached at high Fe levels of 0.3 to 0.5 pct for the alloys with well-controlled alloy chemistry and microstructure in the solution and natural aging condition (T4), reinforcing the motivation for developing recyclable high-iron Al-Cu 206 cast alloys.

Liu, K.; Cao, X.; Chen, X.-G.

2014-05-01

39

Serum Lipids and Tissue DNA Content in Egyptian Female Breast Cancer Patients  

Microsoft Academic Search

Background: Several clinical studies suggest the prognostic significance of serum lipid levels and tissue DNA content in breast cancer. In the course of investigating the biological features of this disease among Egyptian female patients, we examined the serum lipid levels and tissue DNA content of premenopausal and postmenopausal breast cancer patients. Methods: Levels of total lipid, total cholesterol, and triglycerides

Farid Ahmed Abu-Bedair; Basiouny Ahmed El-Gamal; Nagi Ali Ibrahim; Abdelbaset Anwer El-Aaser

40

Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals  

USGS Publications Warehouse

Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

Huang, X.; Li, W.; Attfield, M. D.; Nadas, A.; Frenkel, K.; Finkelman, R. B.

2005-01-01

41

Content of non-mercury-associated selenium in human tissues  

Microsoft Academic Search

Recent studies have shown that at a higher mercury (Hg) burden, the molar ratio of selenium (Se) and Hg in tissues tends to\\u000a approximate 1:1 by the formation of biologically largely inert adducts. From the toxicological standpoint, this trapping of\\u000a free Hg is welcome. However, this binding of Se to Hg reduces the portion of Se in tissues, which is

G. Drasch; S. Mailänder; C. Schlosser; G. Roider

2000-01-01

42

Comparison of Histological Techniques to Visualize Iron in Paraffin-embedded Brain Tissue of Patients with Alzheimer's Disease  

PubMed Central

Better knowledge of the distribution of iron in the brains of Alzheimer’s disease (AD) patients may facilitate the development of an in vivo magnetic resonance (MR) marker for AD and may cast light on the role of this potentially toxic molecule in the pathogenesis of AD. Several histological iron staining techniques have been used in the past but they have not been systematically tested for sensitivity and specificity. This article compares three histochemical techniques and ferritin immunohistochemistry to visualize iron in paraffin-embedded human AD brain tissue. The specificity of the histochemical techniques was tested by staining sections after iron extraction. Iron was demonstrated in the white matter, in layers IV/V of the frontal neocortex, in iron containing plaques, and in microglia. In our hands, these structures were best visualized using the Meguro iron stain, a method that has not been described for iron staining in human brain or AD in particular. Ferritin immunohistochemistry stained microglia and iron containing plaques similar to the Meguro method but was less intense in myelin-associated iron. The Meguro method is most suitable for identifying iron-positive structures in paraffin-embedded human AD brain tissue. PMID:23887894

Nabuurs, Rob J.A.; van Duinen, Sjoerd G.; Natte, Remco

2013-01-01

43

ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders  

PubMed Central

The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic mice. In conclusion, ZRT/IRT-like protein 14 protein levels are up-regulated in iron-loaded rat liver and pancreas and in hypotransferrinemic mouse liver. Divalent metal-ion transporter-1 protein levels are down-regulated in iron-loaded rat liver, and up-regulated in iron-deficient liver and heart. Our results provide insight into the potential contributions of these transporters to tissue iron uptake during iron deficiency and overload. PMID:23349308

Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.

2013-01-01

44

The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy  

PubMed Central

Asbestos is a potent carcinogen associated with malignant mesothelioma and lung cancer but its carcinogenic mechanisms are still poorly understood. Asbestos toxicity is ascribed to its particular physico-chemical characteristics, and one of them is the presence of and ability to adsorb iron, which may cause an alteration of iron homeostasis in the tissue. This observational study reports a combination of advanced synchrotron-based X-ray imaging and micro-spectroscopic methods that provide correlative morphological and chemical information for shedding light on iron mobilization features during asbestos permanence in lung tissue. The results show that the processes responsible for the unusual distribution of iron at different stages of interaction with the fibres also involve calcium, phosphorus and magnesium. It has been confirmed that the dominant iron form present in asbestos bodies is ferritin, while the concurrent presence of haematite suggests alteration of iron chemistry during asbestos body permanence. PMID:23350030

Pascolo, Lorella; Gianoncelli, Alessandra; Schneider, Giulia; Salome, Murielle; Schneider, Manuela; Calligaro, Carla; Kiskinova, Maya; Melato, Mauro; Rizzardi, Clara

2013-01-01

45

The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy.  

PubMed

Asbestos is a potent carcinogen associated with malignant mesothelioma and lung cancer but its carcinogenic mechanisms are still poorly understood. Asbestos toxicity is ascribed to its particular physico-chemical characteristics, and one of them is the presence of and ability to adsorb iron, which may cause an alteration of iron homeostasis in the tissue. This observational study reports a combination of advanced synchrotron-based X-ray imaging and micro-spectroscopic methods that provide correlative morphological and chemical information for shedding light on iron mobilization features during asbestos permanence in lung tissue. The results show that the processes responsible for the unusual distribution of iron at different stages of interaction with the fibres also involve calcium, phosphorus and magnesium. It has been confirmed that the dominant iron form present in asbestos bodies is ferritin, while the concurrent presence of haematite suggests alteration of iron chemistry during asbestos body permanence. PMID:23350030

Pascolo, Lorella; Gianoncelli, Alessandra; Schneider, Giulia; Salomé, Murielle; Schneider, Manuela; Calligaro, Carla; Kiskinova, Maya; Melato, Mauro; Rizzardi, Clara

2013-01-01

46

Iron Overload Favors the Elimination of Leishmania infantum from Mouse Tissues through Interaction with Reactive Oxygen and Nitrogen Species  

PubMed Central

Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host's iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host's oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs. PMID:23459556

Vale-Costa, Silvia; Gomes-Pereira, Sandra; Teixeira, Carlos Miguel; Rosa, Gustavo; Rodrigues, Pedro Nuno; Tomas, Ana; Appelberg, Rui; Gomes, Maria Salome

2013-01-01

47

IL-6 Is Not Necessary for the Regulation of Adipose Tissue Mitochondrial Content  

PubMed Central

Background Adipose tissue mitochondria have been implicated as key mediators of systemic metabolism. We have shown that IL-6 activates AMPK, a mediator of mitochondrial biogenesis, in adipose tissue; however, IL-6?/? mice fed a high fat diet have been reported to develop insulin resistance. These findings suggest that IL-6 may control adipose tissue mitochondrial content in vivo, and that reductions in adipose tissue mitochondria may be causally linked to the development of insulin resistance in IL-6?/? mice fed a high fat diet. On the other hand, IL-6 has been implicated as a negative regulator of insulin action. Given these discrepancies the purpose of the present investigation was to further evaluate the relationship between IL-6, adipose tissue mitochondrial content and whole body insulin action. Methodology and Principal Findings In cultured epididymal mouse adipose tissue IL-6 (75 ng/ml) induced the expression of the transcriptional co-activators PGC-1? and PRC, reputed mediators of mitochondrial biogenesis. Similarly, IL-6 increased the expression of COXIV and CPT-1. These effects were absent in cultured subcutaneous adipose tissue and were associated with lower levels of GP130 and IL-6 receptor alpha protein content. Markers of mitochondrial content were intact in adipose tissue from chow fed IL-6?/? mice. When fed a high fat diet IL-6?/? mice were more glucose and insulin intolerant than controls fed the same diet; however this was not explained by decreases in adipose tissue mitochondrial content or respiration. Conclusions and Significance Our findings demonstrate depot-specific differences in the ability of IL-6 to induce PGC-1? and mitochondrial enzymes and demonstrate that IL-6 is not necessary for the maintenance of adipose tissue mitochondrial content in vivo. Moreover, reductions in adipose tissue mitochondria do not explain the greater insulin resistance in IL-6?/? mice fed a high fat diet. These results question the role of adipose tissue mitochondrial dysfunction in the etiology of insulin resistance. PMID:23240005

Wan, Zhongxiao; Perry, Christopher G. R.; Macdonald, Tara; Chan, Catherine B.; Holloway, Graham P.; Wright, David C.

2012-01-01

48

Structure and phase composition of iron-nickel cast alloys with an overequilibrium nitrogen content  

NASA Astrophysics Data System (ADS)

Microingots (2 g in mass and 3 mm in diameter) of iron-based alloys with various contents of nickel (4.5-34.0 %) and nitrogen (0.020-0.268%) were produced by melting with induction heating in the gaseous nitrogen medium under pressure. The structure, phase composition, and microhardness of the alloys are studied. The nitrogen alloying of the Fe-Ni alloys is shown to bring about an increase in the austenite content and microhardness of the alloys. The nonequilibrium phase diagram of the Fe-Ni-N cast alloys was constructed.

Blinov, V. M.; Andreev, Ch.; Nenova, L.; Kostina, M. V.; Blinov, E. V.

2009-08-01

49

Nitrite induces the extravasation of iron oxide nanoparticles in hypoxic tumor tissue.  

PubMed

Nitrite undergoes reconversion to nitric oxide under conditions characteristic of the tumor microenvironment, such as hypoxia and low pH. This selective conversion of nitrite into nitric oxide in tumor tissue has led to the possibility of using nitrite to enhance drug delivery and the radiation response. In this work, we propose to serially characterize the vascular response of brain tumor-bearing rats to nitrite using contrast-enhanced R2 * mapping. Imaging is performed using a multi-echo gradient echo sequence at baseline, post iron oxide nanoparticle injection and post-nitrite injection, whilst the animal is breathing air. The results indicate that nitrite sufficiently increases the vascular permeability in C6 gliomas, such that the iron oxide nanoparticles accumulate within the tumor tissue. When animals breathed 100% oxygen, the contrast agent remained within the vasculature, indicating that the conversion of nitrite to nitric oxide occurs in the presence of hypoxia within the tumor. The hypoxia-dependent, nitrite-induced extravasation of iron oxide nanoparticles observed herein has implications for the enhancement of conventional and nanotherapeutic drug delivery. PMID:24470164

Mistry, Nilesh; Stokes, Ashley M; Gambrell, James Van; Quarles, Christopher Chad

2014-04-01

50

Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores.  

PubMed

The degree to which MRI magnet field strength affects measured transverse relaxation rates (R2) defines a measure termed the field dependent R2 increase (FDRI). We report here the results of in vivo and in vitro experiments that were conducted to evaluate whether FDRI is a potentially useful measure of tissue iron stores. T2 relaxation times were obtained using two clinical MRI instruments operating at 0.5 and 1.5 Tesla, and relaxation rates (R2) were calculated as the reciprocal of T2. The in vivo experiment measured R2 in human brain frontal white matter, caudate nucleus, putamen, and globus pallidus. The FDRI was very highly correlated with published brain iron levels for the four regions examined. The in vitro experiment measured R2 in agarose gel-based phantoms containing physiologic forms and amounts proteins involved in iron storage and transport (ferritin, apoferritin, transferrin, and apotransferrin). Significant field dependence was observed only for the ferritin phantoms. The differences in the R2 values obtained at the two field strengths were striking, and were proportional to the ferritin levels of the phantoms. These studies suggest that FDRI may be a specific measure of tissue ferritin. The quantitative significance of the results to imaging and possible applications to the clinical investigation of pathologic states are discussed. PMID:8464361

Bartzokis, G; Aravagiri, M; Oldendorf, W H; Mintz, J; Marder, S R

1993-04-01

51

Iron  

MedlinePLUS

... shows that giving iron intravenously can improve some symptoms of heart failure. It is not yet known if taking an iron supplement by mouth would help.Attention deficit-hyperactivity disorder (ADHD). Developing research shows that taking iron sulfate ( ...

52

Contents and profile distribution of three forms of free iron oxides in three ultisois and an alfisol in Nigeria  

Microsoft Academic Search

The contents and pedogenetic distribution of pyrophosphate, oxalate, and dithionite extractable iron oxides were examined in three Ultisois and an Alfisol developed on older granites. The soils represented a bio?climatic sequence in Nigeria, the Sudan, Northern Guinea, and Southern Guinea savannas and the Rainforest zones. Pyrophosphate extractable iron (Fe) in the soils rangfid from 0.14 to 0.69%, oxalate extractable iron

M. E. Mosugu; V. O. Chude; I. E. Esu; T. Kparmwang; W. B. Malgwi

1999-01-01

53

Tracking Injectable Microspheres in Dynamic Tissues With Encapsulated Superparamagnetic Iron Oxide Nanoparticlesa  

PubMed Central

Trackable spheres of similar size to those typically used for sustained protein delivery are prepared by incorporating superparamagnetic iron oxide (SPIO) nanoparticles into the core of poly(lactide-co-glycolide) microspheres. The visibility of injections in static and temporally in dynamic tissue systems is demonstrated. This method improves upon other, less sensitive imaging modalities in their ability to track injectable delivery systems. The results obtained confirm the localization of microspheres to the injected target area and highlight the novelty of tracking delivery vehicles for other applications. PMID:23124987

Franklin-Ford, Travelle; Shah, Nehal; Leiferman, Ellen; Chamberlain, Connie S.; Raval, Amish; Vanderby, Ray

2013-01-01

54

Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.).  

PubMed

Common bean (Phaseolus vulgaris L.), the staple crop of Nicaragua, provides protein and nonhaem iron, but inhibitors such as phytate may prevent absorption of iron and zinc by the consumer. Warehouses in Nicaragua do not have controlled atmospheres, so beans are exposed to high temperatures and humidities that may accelerate quality loss. To evaluate the impact of 6months of storage on quality, four national accessions of common bean were submitted to two treatments, a conventional warehouse with uncontrolled temperature and humidity, and accelerated ageing at 40°C and 75% RH. Iron content was 61-81mg/kg of which 3-4% was bioavailable, and zinc content was 21-25mg/kg, of which 10-12% was bioavailable. Bioavailability generally increased in storage, significantly so in year-old INTA Linea 628 in accelerated ageing. The concentration of phytate was 8.6-9.6mg/g and it contained 54-63% of the total phosphorus. Improvement in bioavailability of divalent cations is needed. PMID:23017396

Martinez Meyer, M R; Rojas, Aldo; Santanen, Arja; Stoddard, F L

2013-01-01

55

The FRD3 Citrate Effluxer Promotes Iron Nutrition between Symplastically Disconnected Tissues throughout Arabidopsis Development[C][W  

PubMed Central

We present data supporting a general role for FERRIC REDICTASE DEFECTIVE3 (FRD3), an efflux transporter of the efficient iron chelator citrate, in maintaining iron homeostasis throughout plant development. In addition to its well-known expression in root, we show that FRD3 is strongly expressed in Arabidopsis thaliana seed and flower. Consistently, frd3 loss-of-function mutants are defective in early germination and are almost completely sterile, both defects being rescued by iron and/or citrate supply. The frd3 fertility defect is caused by pollen abortion and is associated with the male gametophytic expression of FRD3. Iron imaging shows the presence of important deposits of iron on the surface of aborted pollen grains. This points to a role for FRD3 and citrate in proper iron nutrition of embryo and pollen. Based on the findings that iron acquisition in embryo, leaf, and pollen depends on FRD3, we propose that FRD3 mediated-citrate release in the apoplastic space represents an important process by which efficient iron nutrition is achieved between adjacent tissues lacking symplastic connections. These results reveal a physiological role for citrate in the apoplastic transport of iron throughout development, and provide a general model for multicellular organisms in the cell-to-cell transport of iron involving extracellular circulation. PMID:21742986

Roschzttardtz, Hannetz; Seguela-Arnaud, Mathilde; Briat, Jean-Francois; Vert, Gregory; Curie, Catherine

2011-01-01

56

Near-infrared excited state dynamics of melanins: the effects of iron content, photo-damage, chemical oxidation, and aggregate size.  

PubMed

Ultrafast pump-probe measurements can discriminate the two forms of melanin found in biological tissue (eumelanin and pheomelanin), which may be useful for diagnosing and grading melanoma. However, recent work has shown that bound iron content changes eumelanin's pump-probe response, making it more similar to that of pheomelanin. Here we record the pump-probe response of these melanins at a wider range of wavelengths than previous work and show that with shorter pump wavelengths the response crosses over from being dominated by ground-state bleaching to being dominated by excited-state absorption. The crossover wavelength is different for each type of melanin. In our analysis, we found that the mechanism by which iron modifies eumelanin's pump-probe response cannot be attributed to Raman resonances or differences in melanin aggregation and is more likely caused by iron acting to broaden the unit spectra of individual chromophores in the heterogeneous melanin aggregate. We analyze the dependence on optical intensity, finding that iron-loaded eumelanin undergoes irreversible changes to the pump-probe response after intense laser exposure. Simultaneously acquired fluorescence data suggest that the previously reported "activation" of eumelanin fluorescence may be caused in part by the dissociation of metal ions or the selective degradation of iron-containing melanin. PMID:24446774

Simpson, Mary Jane; Wilson, Jesse W; Robles, Francisco E; Dall, Christopher P; Glass, Keely; Simon, John D; Warren, Warren S

2014-02-13

57

A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time.  

PubMed

The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-?FeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem 'tissue fixation' by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB - O2 > -O2 > +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues. PMID:24285202

Schweitzer, Mary H; Zheng, Wenxia; Cleland, Timothy P; Goodwin, Mark B; Boatman, Elizabeth; Theil, Elizabeth; Marcus, Matthew A; Fakra, Sirine C

2014-01-22

58

Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis.  

PubMed

Accumulation of non-heme iron in the brain has been proposed as a biomarker of the progressive neuroanatomical and cognitive declines in healthy adult aging. Postmortem studies indicate that iron content and lifespan differences therein are regionally specific, with a predilection for the basal ganglia. However, the reported in vivo estimates of adult age differences in iron content within subcortical nuclei are highly variable. We present a meta-analysis of 20 in vivo magnetic resonance imaging (MRI) studies that estimated iron content in the caudate nucleus, globus pallidus, putamen, red nucleus, and substantia nigra. The results of the analyses support a robust association between advanced age and high iron content in the substantia nigra and striatum, with a smaller effect noted in the globus pallidus. The magnitude of age differences in estimated iron content of the caudate nucleus and putamen partially depended on the method of estimation, but not on the type of design (continuous age vs. extreme age groups). PMID:23277110

Daugherty, Ana; Raz, Naftali

2013-04-15

59

Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age.  

PubMed

Chronic blood transfusions start at a very young age in subjects with transfusion-dependent anemias, the majority of whom have hereditary anemias. To understand how rapidly iron overload develops, we retrospectively reviewed 308 MRIs for evaluation of liver, pancreatic, or cardiac iron in 125 subjects less than 10 years old. Median age at first MRI evaluation was 6.0 years. Median liver iron concentrations in patients less than 3.5 years old were 14 and 13 mg/g dry weight in thalassemia major (TM) and Diamond-Blackfan anemia (DBA) patients, respectively. At time of first MRI, pancreatic iron was markedly elevated (> 100 Hz) in DBA patients, and cardiac iron ( R?* >50 Hz) was present in 5/112 subjects (4.5%), including a 2.5 years old subject with DBA. Five of 14 patients (38%) with congenital dyserythropoietic anemia (CDA) developed excess cardiac iron before their 10th birthday. Thus, clinically significant hepatic and cardiac iron accumulation occurs at an early age in patients on chronic transfusions, particularly in those with ineffective or absent erythropoiesis, such as DBA, CDA, and TM, who are at higher risk for iron cardiomyopathy. Performing MRI for iron evaluation in the liver, heart, and pancreas as early as feasible, particularly in those conditions in which there is suppressed bone marrow activity is very important in the management of iron loaded children in order to prescribe appropriate chelation to prevent long-term sequelae. . PMID:23861216

Berdoukas, Vasilios; Nord, Anne; Carson, Susan; Puliyel, Mammen; Hofstra, Thomas; Wood, John; Coates, Thomas D

2013-11-01

60

Iron  

MedlinePLUS

... several factors [ 1 , 3 , 8 , 11-15 ]. Storage levels of iron have the greatest influence on iron ... RDA), Adequate Intakes (AI), and Tolerable Upper Intake Levels (UL). The RDA recommends the average daily intake ...

61

Normalized Homologous Temperature of Olivine: Implications for the Effect of Iron Content on Mantle Deforamtio  

NASA Astrophysics Data System (ADS)

The flow laws and fabric transition of olivine under different thermal-mechanical conditions are generally obtained from HP-HT experiments on San Carlos olivine (Fo90), which hampers our understanding of the effect of iron content on the mantle flow and deforamtion. Because the melting temperature is related with the strength of the bonds binding a crystalline material together, the normalized homologous temperature T/Tm(P), is defined by the ratio between the absolute temperature of olivine and its melting point Tm at certain pressure P. Using the forsterite-fayalite melting loop at room pressure, the generalized mean is adopted to predict the dependence of Tm on pressure and iron content of olivine up to 7.5 GPa. Using T/Tm(P), we can evaluate the integreted effect of temperature and pressure on the deformation mechanisms of olivine. A new olivine fabric diagram is set up as a function T/Tm(P) and water content. The result indicates that the A-type olivine fabric becomes dominant at T/Tm(P) > 0.72, while the B- and C-type olivine fabrics are favorable at T/Tm(P) < 0.7, no matter their water content. Partial melting will produce resudies with higher Fo number in olivine, and consequently, a more rigid mantle with higher Tm. The relatively smaller T/Tm(P) of olivine beneath cratons can explain the long-term stability of the continental roots. In addition, a 2D profile of olivine T/Tm(P) for the oceanic lithosphere shows good correlation between T/Tm(P) and the distribution of earthquakes. Therefore T/Tm(P) of olivine can be used as a parameter to model the rheology of the upper manlte, especailly when taking into account of the compostional change in different tectonic processes.

Wang, Q.

2012-12-01

62

[Effect of parenteral nutrition on the nucleic acid content in normal rat tissues and in thyrotoxicosis].  

PubMed

The content of nucleic acids in tissues of healthy animals and those suffering from thyrotoxicosis was studied as affected by parenteral administration of amino acid mixture of moriamine S-2 and casein hydrolysate. The content of RNA in the skeletal muscles, heart and liver is established to change considerably under the effect of nitrogenous media. With administration of moriamine S-2 or caseine hydrolysate the higher level of RNA in tissues with thyrotoxicosis, is normalized, especially in the skeletal muscles. The character of changes depends essentially on properties and composition of the administered preparations. PMID:411201

Hlanz, R M; Skovrons'ka, E V; Vovk, H P

1977-01-01

63

Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content.  

PubMed

Bovine pericardium is a collagenous tissue commonly used as a natural biomaterial in the fabrication of cardiovascular devices. For tissue engineering purposes, this xenogeneic biomaterial must be decellularized to remove cellular antigens. With this in mind, three decellularization protocols were compared in terms of their effectiveness to extract cellular materials, their effect on glycosaminoglycan (GAG) content and, finally, their effect on tensile biomechanical behavior. The tissue decellularization was achieved by treatment with t-octyl phenoxy polyethoxy ethanol (Triton X-100), tridecyl polyethoxy ethanol (ATE) and alkaline treatment and subsequent treatment with nucleases (DNase/RNase). The quantified residual DNA content (3.0±0.4%, 4.4±0.6% and 5.6±0.7% for Triton X-100, ATE and alkaline treatment, respectively) and the absence of nuclear structures (hematoxylin and eosin staining) were indicators of effective cell removal. In the same way, it was found that the native tissue GAG content decreased to 61.6±0.6%, 62.7±1.1% and 88.6±0.2% for Triton X-100, ATE and alkaline treatment, respectively. In addition, an alteration in the tissue stress relaxation characteristics was observed after alkaline treatment. We can conclude that the three decellularization agents preserved the collagen structural network, anisotropy and the tensile modulus, tensile strength and maximum strain at failure of native tissue. PMID:21094703

Mendoza-Novelo, Birzabith; Avila, Eva E; Cauich-Rodríguez, Juan V; Jorge-Herrero, Eduardo; Rojo, Francisco J; Guinea, Gustavo V; Mata-Mata, José L

2011-03-01

64

Siderite (FeCO?) and magnetite (Fe?O?) overload-dependent pulmonary toxicity is determined by the poorly soluble particle not the iron content.  

PubMed

The two poorly soluble iron containing solid aerosols of siderite (FeCO?) and magnetite (Fe?O?) were compared in a 4-week inhalation study on rats at similar particle mass concentrations of approximately 30 or 100?mg/m³. The particle size distributions were essentially identical (MMAD ?1.4 ?m). The iron-based concentrations were 12 or 38 and 22 or 66?mg Fe/m³ for FeCO? and Fe?O?, respectively. Modeled and empirically determined iron lung burdens were compared with endpoints suggestive of pulmonary inflammation by determinations in bronchoalveolar lavage (BAL) and oxidative stress in lung tissue during a postexposure period of 3 months. The objective of study was to identify the most germane exposure metrics, that are the concentration of elemental iron (mg Fe/m³), total particle mass (mg PM/m³) or particle volume (?l PM/m³) and their associations with the effects observed. From this analysis it was apparent that the intensity of pulmonary inflammation was clearly dependent on the concentration of particle-mass or -volume and not of iron. Despite its lower iron content, the exposure to FeCO? caused a more pronounced and sustained inflammation as compared to Fe?O?. Similarly, borderline evidence of increased oxidative stress and inflammation occurred especially following exposure to FeCO? at moderate lung overload levels. The in situ analysis of 8-oxoguanine in epithelial cells of alveolar and bronchiolar regions supports the conclusion that both FeCO? and Fe?O? particles are effectively endocytosed by macrophages as opposed to epithelial cells. Evidence of intracellular or nuclear sources of redox-active iron did not exist. In summary, this mechanistic study supports previous conclusions, namely that the repeated inhalation exposure of rats to highly respirable pigment-type iron oxides cause nonspecific pulmonary inflammation which shows a clear dependence on the particle volume-dependent lung overload rather than any increased dissolution and/or bioavailability of redox-active iron. PMID:22035119

Pauluhn, Jürgen; Wiemann, Martin

2011-11-01

65

Content of lipids in blood and tissues of animals during hypodynamia  

NASA Technical Reports Server (NTRS)

Experiments on 97 rats and 50 rabbits were undertaken to study the influence of hypodynamia on the lipid content in the blood, liver, heart, and in the aorta. Reduction of muscular activity contributed to the increase of cholesterol and beta lipoprotein levels in the blood and to accumulation of cholesterol in the liver and the heart. The total lipid content in these tissues decreased. In the aorta the total lipid content increased, while lecithin and cephalin figures went down. The character of biochemical changes in hypodynamia resembles in many ways the lipid metabolism changes in atherosclerosis.

Federov, I. V.; Rylnikov, Y. P.; Lobova, T. M.

1980-01-01

66

Blood flow distribution and tissue solute content of the isolated-perfused kidney  

Microsoft Academic Search

Isolated renal perfusion experiments were performed in the dog kidney to evaluate solute composition of cortex, medulla, and papilla and intrarenal blood flow distribution after 1 to 4 h of normothermic blood perfusion. Tissue slices were assayed for sodium, potassium, urea and water content and external monitoring of133Xe washout and radionuclide-labelled microphere distribution were utilized to determine intrarenal blood flow

John A. Gagnon; Dudley W. Grove; Walter Flamenbaum

1974-01-01

67

Effect of Cancer Cachexia and Amiloride Treatment on the Intracellular Sodium Content in Tissue Cells1  

Microsoft Academic Search

This study was designed to investigate the effects of a growing Ho hepatoma on the intracellular element content in three distinctly different tissue cell populations of the mouse host (hepatocytes, fibroblasts, and cryptai enterocytes). X-ray microanalysis measurements of the intranuclear concentra tions of several elements (sodium, magnesium, phosphorus, sulfur, chlorine, and potassium) were made. Briefly, the tumor presence significantly increased

Ivan L. Cameron; Keithley E. Hunter

68

TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT  

EPA Science Inventory

TISSUE REMODELING IN THE HUMAN LUNG IN RELATION TO PARTICLE CONCENTRATION AND METAL CONTENT. J Gallagher1, J Inmon1, S Schlaegle2, A Levine2, T Rogers3, J Scott1, F Green4, M Schenker5, K Pinkerton5 1NHEERL, US-EPA, RTP, NC, USA; 2RJ Lee Group Inc, Monroeville, Pa, USA; ...

69

The effect of water and iron content on electrical conductivity of upper mantle rocks.  

NASA Astrophysics Data System (ADS)

Geophysical observations (MT and GDS) show the conductivity anomaly which may be related to the presence of water and melting. Recently, several researchers have estimated the water content in the transition zone (Huang et al. 2005; Yoshino et al. 2008) and the upper mantle (Wang et al.2006; Yoshino et al. 2006) by electrical conductivity methods. They may underestimate the water content, especially, Yoshino et al did too much underestimate. However, other coexisting phases such as pyroxene and its high-pressure polymorphs may also contribute to the bulk conductivity of the mantle. To test this hypothesis, we measured the electrical conductivity of upper mantle rocks- dunite, pyroxenite and lherzolite at ~ 2-3 GPa and ~1273-1573 K using impedance spectra within a frequency range of 0.1~1000000 Hz. The oxygen fugacity was controlled by a Mo-MoO2 solid buffer. The results show that the electrical conductivity of lherzolite and pyroxenite are ~ half and one order of magnitude higher than that of dunite. These differences were interpreted through a preliminary model involving water and iron content effects on the electrical conductivity. We extrapolated our results and compared the results with some of geophysical observations of the upper mantle. Our results indicate the maximum water content in oceanic upper mantle is as high as ~ 0.09wt % and suggest that pyroxenes dominate the bulk conductivity of upper mantle in hydrous conditions. These results indicated that our model with various water contents could explain the conductivity anomaly in the oceanic upper mantle without involving the presence of partial melt at these depths. This work was supported by national natural science foundation of china (40774036); the special grant from the president of Chinese Academy of Sciences and Graduate University of Chinese Academy Sciences.

Wang, D.; Yi, L.

2008-12-01

70

Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain.  

PubMed

Although hemochromatosis and pathological situations due to chronic iron overload have been extensively described, there is little information about the influence of iron on other trace elements in the cell. The aim of this study was to investigate changes in the concentration of zinc, manganese, and copper in the liver, spleen, and brain of rats after iron overload. Iron overload in Wistar rats was achieved by iron-supplemented diet or by intraperitoneal or intravenous injection of polymaltose iron. Iron, zinc, manganese, and copper were determined by atomic absorption spectrophotometry. Iron overload in rats, regardless of the route of its application, resulted in an increase not only of iron but also of zinc and manganese in the liver and the spleen, whereas the content of these metals in the brain did not change. The copper content of the liver, spleen, and brain remained the same after iron overload. The increase of zinc and manganese in the liver and spleen following iron overload was probably a result not only of increased intestinal absorption but also of increased uptake from the cell. This is also supported by the fact that no increase in the zinc and manganese concentrations occurred in the brain since, despite iron overload, the iron content remained constant. PMID:9801930

Vayenas, D V; Repanti, M; Vassilopoulos, A; Papanastasiou, D A

1998-01-01

71

Effect of Water and Iron Content on the Rheological Behavior of Olivine  

NASA Astrophysics Data System (ADS)

We have undertaken an experimental investigation of the effect of water and iron content on the viscosity of aggregates of Fe-Mg olivine in order to provide a basis for conparing convection models for the mantle of Earth with those for the more iron-rich mantle of Mars. Our study builds on three experimental observations: (i) At a given temperature, the viscosity of single crystals of San Carlos olivine [Fo90 = (Fe0.1Mg0.9)2SiO4] is signficantly higher than that of crystals of fayalite, Fo0, (ii) the viscosity of San Carlos olivine decreases with increasing water concentration, and (iii) the solubility of water in olivine increases with increasing iron concentration. To extend deformation experiments to polycrystalline samples of olivine of higher Fe content, powders of Fo50 and Fo70 were fabricated from mixtures of natural olivine, Fo90, and synthetic fayalite, Fo0. The resulting materials were ground into fine (<10 ? m) powders, cold-pressed into Ni capsules, and then hot-pressed at 300 MPa and 1533 K for 2 to 12 h. For experiments under hydrous conditions, two drops of water, each ˜0.03 ml, were added before sealing a sample within telescoping Ni cans for deformation. The average grain size of the resultant hot-pressed samples were between 20 and 57 ? m . In the samples deformed under hydrous conditions, water bubbles were present both within olivine grains and along grain boundaries, demonstrating that the samples were water-saturated. High-temperature, high-pressure compressive creep experiments in both the diffusion and the dislocation creep regimes were carried out using a gas-medium apparatus at temperatures of 1223 to 1473 K and a confining pressure of 300 MPa. Under both anhydrous and hydrous conditions, the viscosity of samples of Fo50 is a factor of >10 lower than the viscosity of samples of Fo70, which is a factor of >10 lower than the viscosity of samples of Fo90. The viscosity of a sample of a specific Fe:Mg ratio deformed under hydrous conditions is a factor of ˜10 lower than its counterpart deformed under anhydrous conditions. Therefore, at the same thermodynamic conditions (e.g., P, T, water fugacity), the viscosity of the more Fe-rich mantle ( ˜18 wt % FeO) of Mars will be a factor of ˜3 lower than the mantle ( ˜8 wt % FeO) of Earth.

Zimmerman, M. E.; Zhao, Y.; Kohlstedt, D. L.

2004-12-01

72

The role of nickel content and the magnetic remanence in iron-nickel alloys of lunar composition  

NASA Technical Reports Server (NTRS)

Lunar samples are magnetic primarily due to the body centered cubic (BCC) iron and iron-nickel alloys they contain. Presented for the first time are results which demonstrate that the magnitude of the martensitic thermal remanence (MTRM) induced on quenching iron-nickel alloy in the geomagnetic field depends on the nickel content of the alloy. High magnetic stability is due to the increasing dislocation density and increasingly complex microstructures associated with increasing nickel content in the alloys. The results agree with the mechanical and structural properties of the alloys. The characteristic quench martensite microstructure observed on metallographic examination provides a recognition criterion for the MTRM mechanism. These results are important for lunar and meteoritic research intending to ascertain the paleofield responsible for the observed remanent magnetization.-

Wasilewski, P.

1974-01-01

73

Mammalian Tissue Oxygen Levels Modulate Iron-Regulatory Protein Activities in Vivo  

Microsoft Academic Search

The iron-regulatory proteins (IRPs) posttranscriptionally regulate expression of transferrin receptor, ferritin, and other iron metabolism proteins. Although both IRPs can regulate expression of the same target genes, IRP2-\\/- mice significantly misregulate iron metabolism and develop neurodegeneration, whereas IRP1-\\/- mice are spared. We found that IRP2-\\/- cells misregulated iron metabolism when cultured in 3 to 6% oxygen, which is comparable to

Esther G. Meyron-Holtz; Manik C. Ghosh; Tracey A. Rouault

2004-01-01

74

Facilitated Monocyte-Macrophage Uptake and Tissue Distribution of Superparmagnetic Iron-Oxide Nanoparticles  

PubMed Central

Background We posit that the same mononuclear phagocytes (MP) that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP) and tissue delivery. Methods Monocytes and monocyte-derived macrophages (MDM) were used as vehicles of superparamagnetic iron oxide (SPIO) NP and immunoglobulin (IgG) or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T2 measures using magnetic resonance imaging (MRI) were used to monitor tissue distribution in animals. Results Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab')2 fragments and for Alexa Fluor® 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab')2, and/or Alexa Fluor® 488 SPIO demonstrated ?50% coupling yield. IgG-SPIO was found stable at 4°C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated SPIO, intravenous injection of IgG-SPIO afforded enhanced and sustained lymphoid tissue distribution over 24 hours as demonstrated by MRI. Conclusions Facilitated uptake of coated SPIO in monocytes and MDM was achieved. Uptake was linked to particle size and was time and concentration dependent. The ability of SPIO to be rapidly taken up and distributed into lymphoid tissues also demonstrates feasibility of macrophage-targeted nanoformulations for diagnostic and drug therapy. PMID:19183814

Beduneau, Arnaud; Ma, Zhiya; Grotepas, Cassi B.; Kabanov, Alexander; Rabinow, Barrett E.; Gong, Nan; Mosley, R. Lee; Dou, Huanyu; Boska, Michael D.; Gendelman, Howard E.

2009-01-01

75

Study of Fe: Al2O3 ion beam sputtered thin films with various iron contents  

Microsoft Academic Search

Iron and Al2O3 were simultaneously ion beam sputtered on polycrystalline alumina substrate at room temperature. The atomic iron concentration was varied in the range 5-60 at.%. Thicknesses of the films (~450 nm) and iron concentrations were controlled using Rutherford backscattering spectrometry (RBS). Iron charge states and phases were deduced from conversion electron Mössbauer spectroscopy (CEMS) and grazing-angle X-ray diffraction (GXRD)

F. Thimon; G. Marest; N. Moncoffre; S. Joshi; S. B. Ogale

1993-01-01

76

Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major  

PubMed Central

Background: Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard non-invasive diagnostic test. Methods: A total of 100 TM patients with the mean age of 19±7 years and 100 healthy controls 18.8±7 years were evaluated. Conventional echocardiography, TDI, and cardiac MRI T2* were performed in all subjects. TDI measures included myocardial systolic (Sm), early (Em) and late (Am) diastolic velocities at basal and middle segments of septal and lateral LV wall. The TM patients were also subgrouped according to those with iron load (T2* ? 20 ms) and those without (T2* > 20 ms), and also severe (T2* ? 10 ms) versus the non-severe (T2* ? 10 ms). Results: Using T2* cardiovascular MR, abnormal myocardial iron load (T2* ? 20 ms) was detected in 84% of the patients and among these, 50% (42/84) had severe (T2* ? 10 ms) iron load. The mean T2* was 11.6±8.6 ms (5–36.7). A negative linear correlation existed between transfusion period of patients and T2* levels (r = -0.53, p=0.02). The following TDI measures were lower in patients than in controls: basal septal Am (p<0.05), mid-septal Em and Am (p<0.05), basal lateral Am (p<0.05), mid-lateral LV wall Sm (p<0.05) and Am (p<0.05). Conclusion: Tissue doppler imaging is helpful in predicting the presence of myocardial iron load in Thalassemia patients. Therefore, it can be used for screening of thalassemia major patients. PMID:24009962

Saravi, Mehrdad; Tamadoni, Ahmad; Jalalian, Rozita; Mahmoodi - Nesheli, Hassan; Hojati, Mosatafa; Ramezani, Saeed

2013-01-01

77

Histamine content, diamine oxidase activity and histamine methyltransferase activity in human tissues: fact or fictions?  

PubMed

To understand the role of histamine in the aetiology and pathogenesis of human diseases reliable data are urgently needed for the histamine content and for the activities of histamine-forming and -inactivating enzymes in human tissues. In order to make a substantial progress toward this aim a tissue-sampling programme during surgical interventions was carefully conceived and conducted. From March 1982 until January 1983 106 tissue specimens were taken from 56 patients who underwent surgery. Only healthy tissues, not injured or oedematous, and without adherent structures were taken by only one surgeon who was interested in this research and experienced in tissue preparation procedures in biochemistry. The times of 'warm' ischaemia during the operative procedures were visually estimated, the times between resection of the organs or specimens and deep-freezing of the tissues were precisely recorded. Compared to previous work in the literature and especially to our own work using the same assays for determination higher histamine contents were found in this study in most of the tissues, in particular in the gastrointestinal tract. Also the diamine oxidase activities were considerably higher in many organs, e.g. 3-4 times higher in the gastrointestinal tract when compared with those in publications of our group who used always the same analytical test. However, the histamine methyltransferase activities in this study were not at variance to those determined in previous investigations. Many of them were reported in this communication for the first time. Since the methods for histamine determination and those for measuring enzymic activities were not different in this study and in previous communications of our group we are convinced that the optimized tissue-sampling and -preparation techniques were responsible for the higher values in this communication. But the problem of the 'warm' ischaemia period could not be solved by sample-taking procedures of this type during operations. There are good reasons to prefer biopsy specimens for the analysis of histamine storage and metabolism in human tissues in health and disease, but - unfortunately - they are not always available. PMID:6428188

Hesterberg, R; Sattler, J; Lorenz, W; Stahlknecht, C D; Barth, H; Crombach, M; Weber, D

1984-04-01

78

Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart.  

PubMed

Thermal acclimation can alter cardiac function and morphology in a number of fish species, but little is known about the regulation of these changes. The purpose of the present study was to determine how cold acclimation affects zebrafish (Danio rerio) cardiac morphology, collagen composition and connective tissue regulation. Heart volume, the thickness of the compact myocardium, collagen content and collagen fiber composition were compared between control (27°C) and cold-acclimated (20°C) zebrafish using serially sectioned hearts stained with Picrosirius Red. Collagen content and fiber composition of the pericardial membrane were also examined. Cold acclimation did not affect the volume of the contracted heart; however, there was a significant decrease in the thickness of the compact myocardium. There was also a decrease in the collagen content of the compact myocardium and in the amount of thick collagen fibers throughout the heart. Cold-acclimated zebrafish also increased expression of the gene transcript for matrix metalloproteinase 2, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 2 and collagen Type I ?1. We propose that the reduction in the thickness of the compact myocardium as well as the change in collagen content may help to maintain the compliance of the ventricle as temperatures decrease. Together, these results clearly demonstrate that the zebrafish heart undergoes significant remodeling in response to cold acclimation. PMID:24577447

Johnson, Amy C; Turko, Andy J; Klaiman, Jordan M; Johnston, Elizabeth F; Gillis, Todd E

2014-06-01

79

The Effects of Changing Water Content, Relaxation Times, and Tissue Contrast on Tissue Segmentation and Measures of Cortical Anatomy in MR Images  

PubMed Central

Water content is the dominant chemical compound in the brain and it is the primary determinant of tissue contrast in magnetic resonance (MR) images. Water content varies greatly between individuals, and it changes dramatically over time from birth through senescence of the human life span. We hypothesize that the effects that individual- and age-related variations in water content have on contrast of the brain in MR images also has important, systematic effects on in vivo, MRI-based measures of regional brain volumes. We also hypothesize that changes in water content and tissue contrast across time may account for age-related changes in regional volumes, and that differences in water content or tissue contrast across differing neuropsychiatric diagnoses may account for differences in regional volumes across diagnostic groups. We demonstrate in several complementary ways that subtle variations in water content across age and tissue compartments alter tissue contrast, and that changing tissue contrast in turn alters measures of the thickness and volume of the cortical mantle: (1) We derive analytic relations describing how age-related changes in tissue relaxation times produce age-related changes in tissue gray-scale intensity values and tissue contrast; (2) We vary tissue contrast in computer-generated images to assess its effects on tissue segmentation and volumes of gray matter and white matter; and (3) We use real-world imaging data from adults with either Schizophrenia or Bipolar Disorder and age- and sex-matched healthy adults to assess the ways in which variations in tissue contrast across diagnoses affects group differences in tissue segmentation and associated volumes. We conclude that in vivo MRI-based morphological measures of the brain, including regional volumes and measures of cortical thickness, are a product of, or at least are confounded by, differences in tissue contrast across individuals, ages, and diagnostic groups, and that differences in tissue contrast in turn likely derive from corresponding differences in water content of the brain across individuals, ages, and diagnostic groups. PMID:24055410

Bansal, Ravi; Hao, Xuejun; Liu, Feng; Xu, Dongrong; Liu, Jun; Peterson, Bradley S.

2013-01-01

80

Versatile and Biomass Synthesis of Iron-based Nanoparticles Supported on Carbon Matrix with High Iron Content and Tunable Reactivity  

SciTech Connect

Iron-based nanoparticles supported on carbon (FeNPs{at}C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP{at}C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe{sub 3}O{sub 4} nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP{at}C synthesized at a pyrolysis temperature of 500 C (FeNP{at}C-500) reacts violently (pyrophoric) when exposed to air, while FeNP{at}C prepared at 800 C (FeNP{at}C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP{at}C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5-15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs{at}C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

Zhang, Dongmao [ORNL; Shi, Sheldon Q [ORNL; Jiang, Dongping [Mississippi State University (MSU); Che, Wen [Mississippi State University (MSU); Gai, Zheng [ORNL; Howe, Jane Y [ORNL; More, Karren Leslie [ORNL; Arockiasamy, Antonyraj [Mississippi State University (MSU)

2012-01-01

81

Functional properties and connective tissue content of pediatric human detrusor muscle.  

PubMed

The functional properties of human pediatric detrusor smooth muscle are poorly described, in contrast to those of adult tissue. Characterization is necessary for more informed management options of bladder dysfunction in children. We therefore compared the histological, contractile, intracellular Ca(2+) concentration responses and biomechanical properties of detrusor biopsy samples from pediatric (3-48 mo) and adults (40-60 yr) patients who had functionally normal bladders and were undergoing open surgery. The smooth muscle fraction of biopsies was isolated to measure proportions of smooth muscle and connective tissue (van Gieson stain); in muscle strips, isometric tension to contractile agonists or electrical field stimulation and their passive biomechanical properties; in isolated myocytes, intracellular Ca(2+) concentration responses to agonists. Pediatric detrusor tissue compared with adult tissue showed several differences: a smaller smooth muscle-to-connective tissue ratio, similar contractures to carbachol or ?,?-methylene ATP when corrected for smooth muscle content, and similar intracellular Ca(2+) transients to carbachol, ?,?-methylene ATP, raised K(+) concentration or caffeine, but smaller nerve-mediated contractions and greater passive stiffness with slower stress relaxation. In particular, there were significant atropine-resistant nerve-mediated contractions in pediatric samples. Detrusor smooth muscle from functionally normal pediatric human bladders is less contractile than that from adult bladders and exhibits greater passive stiffness. Reduced bladder contractile function is not due to reduced smooth muscle contractility but to greater connective tissue deposition and to functional denervation. Significant atropine resistance in pediatric detrusor, unlike in adult tissue, demonstrates a different profile of functional neurotransmitter activation. These data have implications for the management of pediatric bladder function by therapeutic approaches. PMID:25209864

Johal, Navroop; Wood, Dan N; Wagg, Adrian S; Cuckow, Peter; Fry, Christopher H

2014-11-01

82

Increased Myocyte Content and Mechanical Function Within a Tissue-Engineered Myocardial Patch Following Implantation  

PubMed Central

During the past few years, studies involving the implantation of stem cells, chemical factors, and scaffolds have demonstrated the ability to augment the mammalian heart's native regenerative capacity. Scaffolds comprised of extracellular matrix (ECM) have been used to repair myocardial defects. These scaffolds become populated with myocytes and provide regional contractile function, but quantification of the myocyte population has not yet been conducted. The purpose of this study was to quantitate the myocyte content within the ECM bioscaffold and to correlate this cell population with the regional mechanical function over time. Xenogenic ECM scaffolds derived from porcine urinary bladder were implanted into a full-thickness, surgically induced, right ventricular-free wall defect in a dog model. Zero, 2, and 8 weeks following implantation, regional function and myocyte content were determined in each patch region. Regional function did not significantly increase from 0 to 2 weeks. At 8 weeks, however, regional stroke work increased to 3.7?±?0.7% and systolic contraction increased to 4.4?±?1.2%. The myocyte content also significantly increased during that period generating a linear relationship between regional function and myocyte content. In conclusion, ECM used as a myocardial patch increases both the regional function and the myocyte content over time. The mechanical function generated in the patch region is correlated with the quantity of local tissue myocytes. PMID:19231971

Kelly, Damon J.; Rosen, Amy B.; Schuldt, Adam J.T.; Kochupura, Paul V.; Doronin, Sergey V.; Potapova, Irina A.; Azeloglu, Evren U.; Badylak, Stephen F.; Brink, Peter R.; Cohen, Ira S.

2009-01-01

83

BLOOD PRESSURE, CHOLESTEROL CONTENT OF SERUM AND TISSUES, AND ATHEROGENESIS IN THE RAT  

PubMed Central

Rats on a stock diet with added cholesterol, cholic acid, and thiouracil developed increased concentrations of cholesterol, total lipide, and beta lipoprotein in the serum, and an increased content of cholesterol in the liver and carcass, despite the fact that the diet produced a cessation of endogenous cholesterol synthesis. Rats with high serum lipide concentrations developed intimal lesions similar to those of human atherosclerosis. The induction of hypertension by desoxycorticosterone and salt accelerated the development of hypercholesterolemia, hyperlipemia, increase in tissue cholesterol content, and atherosclerotic changes in the intima. Hypertension induced by renal artery constriction also intensified the hypercholesterolemia and hyperlipemia. On the other hand, rats receiving desoxycorticosterone acetate without salt or salt without desoxycorticosterone acetate did not show any intensification of hypercholesterolemia or hyperlipemia. The extent of the atherosclerotic lesions was correlated with the concentration of cholesterol in the serum. There was also a positive correlation between blood pressure and the degree of hypercholesterolemia. It remained uncertain whether the increase in atherosclerosis in the hypertensive animals was dependent on the increased lipide content of serum and tissues or on a local effect of the elevated blood pressure. PMID:13513919

Deming, Q. B.; Mosbach, E. H.; Bevans, M.; Daly, M. M.; Abell, L. L.; Martin, E.; Brun, L. M.; Halpern, E.; Kaplan, R.

1958-01-01

84

Collagen fibril diameters and glycosaminoglycan content of skins--indices of tissue maturity and function.  

PubMed

Samples of anatomically and functionally distinct regions of the skin of a variety of altricial and precocial animals were taken at various stages of development from birth to beyond maturity. The glycosaminoglycan (GAG) content and composition of the tissues were determined by chemical analysis and the collagen fibril diameters measured by transmission electron microscopy. The fibril diameters of the skins of two fish and a bird were also assessed for comparison. Analysis and comparison of the data collected show that there was a significant correlation between collagen fibril diameter distribution, GAG type and amount, and functional load-bearing of the various skins, and that the variations in the biochemical and physical composition of the tissues at different stages of development could be related to both their post-conceptual maturity and their prospective functional loading. PMID:6242397

Flint, M H; Craig, A S; Reilly, H C; Gillard, G C; Parry, D A

1984-01-01

85

Content and Binding Forms of Heavy Metals, Aluminium and Phosphorus in Bog Iron Ores from Poland  

Microsoft Academic Search

Bog iron ores are widespread in Polish wetland soils used as meadows or pastures. Th ey are suspected to contain high concentrations of heavy metals, which are precipitated together with Fe along a redox gradient. Th erefore, soils with bog iron ore might be important sources for a heavy metal transfer from meadow plants into the food chain. However, this

Danuta Kaczorek; Gerhard W. Brümmer; Michael Sommer

2009-01-01

86

QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population.  

PubMed

Iron and zinc deficiencies are human health problems found throughout the world and biofortification is a plant breeding-based strategy to improve the staple crops that could address these dietary constraints. Common bean is an important legume crop with two major genepools that has been the focus of genetic improvement for seed micronutrient levels. The objective of this study was to evaluate the inheritance of seed iron and zinc concentrations and contents in an intra-genepool Mesoamerican × Mesoamerican recombinant inbred line population grown over three sites in Colombia and to identify quantitative trait loci (QTL) for each mineral. The population had 110 lines and was derived from a high-seed iron and zinc climbing bean genotype (G14519) crossed with a low-mineral Carioca-type, prostrate bush bean genotype (G4825). The genetic map for QTL analysis was created from SSR and RAPD markers covering all 11 chromosomes of the common bean genome. A set of across-site, overlapping iron and zinc QTL was discovered on linkage group b06 suggesting a possibly pleiotropic locus and common physiology for mineral uptake or loading. Other QTL for mineral concentration or content were found on linkage groups b02, b03, b04, b07, b08 and b11 and together with the b06 cluster were mostly novel compared to loci found in previous studies of the Andean genepool or inter-genepool crosses. The discovery of an important new locus for seed iron and zinc concentrations may facilitate crop improvement and biofortification using the high-mineral genotype especially within the Mesoamerican genepool. PMID:20532862

Blair, Matthew W; Medina, Juliana I; Astudillo, Carolina; Rengifo, Judith; Beebe, Steve E; Machado, Gloria; Graham, Robin

2010-10-01

87

3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment  

NASA Astrophysics Data System (ADS)

X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

2014-06-01

88

The structure of tissue on cell culture-extracted thyroglobulin is independent of its iodine content.  

PubMed

The major protein synthesized in vitro by the ovine thyroid cell line OVNIS 6H is the prothyroid hormone thyroglobulin. Purified from serum-free cell culture media using sucrose gradient centrifugation, the thyroglobulin dimer was analysed for iodine content and observed by electron microscopy. In their usual medium, the OVNIS 6H cells produce a very poorly iodinated thyroglobulin containing 0.05 I atom per molecule. When cultured with methimazole or propylthiouracil, two inhibitors of iodide organification, less than 0.007 I atom/molecules was found. These molecules purified from cell cultures were compared to those purified from ovine thyroid tissue containing 26 I atoms/mol. Despite large differences in iodine content, the three preparations all consist of 19 S thyroglobulin dimers with the classical ovoidal shape. The variability in size measurements remains in a 2% range for all thyroglobulin types. Consequently, no real significant variation can be found between the highly iodinated thyroglobulin isolated from tissue, and the poorly or non-iodinated thyroglobulins isolated from cells cultured with or without methimazole or propylthiouracil. PMID:3556752

Delain, E; Aouani, A; Vignal, A; Couture-Tosi, E; Hovsépian, S; Fayet, G

1987-02-01

89

Thiamine and fatty acid content of walleye tissue from three southern U.S. reservoirs.  

PubMed

We determined the thiamine concentration in egg, muscle, and liver tissues of walleyes Sander vitreus and the fatty acid content of walleye eggs from three southern U.S. reservoirs. In two Tennessee reservoirs (Dale Hollow and Center Hill), in which there were alewives Alosa pseudoharengus in the forage base, natural recruitment of walleyes was not occurring; by contrast in Lake James Reservoir, North Carolina, where there were no alewives, the walleye population was sustained via natural recruitment. Female walleye tissues were collected and assayed for thiamine (vitamin B1) and fatty acid content. Thiamine pyrophosphate was found to be the predominant form of thiamine in walleye eggs. In 2000, mean total egg thiamine concentrations were similar among Center Hill, Dale Hollow, and Lake James reservoirs (2.13, 3.14, and 2.77 nmol thiamine/g, respectively). Egg thiamine concentration increased as maternal muscle (r2 = 0.73) and liver (r2 = 0.68) thiamine concentration increased. Walleye egg thiamine does not appear to be connected to poor natural reproduction in Tennessee walleyes. Threadfin shad Dorosoma petenense, which are found in all three reservoirs, had higher thiaminase activity than alewives. Six fatty acids differed among the walleye eggs for the three reservoirs. Two were physiologically important fatty acids, arachidonic acid (20:4[n-6]) and docosahexaenoic acid (22:6[n-3]), which are important eicosanoid precursors involved in the regulation of biological functions, such as immune response and reproduction. PMID:18201048

Honeyfield, Dale C; Vandergoot, Christopher S; Bettoli, Phillip W; Hinterkopf, Joy P; Zajicek, James L

2007-06-01

90

The influence of combined magnesium and vanadate administration on the level of some elements in selected rat organs: V-Mg interactions and the role of iron-essential protein (DMT-1) in the mechanism underlying altered tissues iron level.  

PubMed

The effect of 12 week co-administration of sodium metavanadate (SMV) and magnesium sulfate (MS) on the levels of some elements in selected rats' organs and an attempt to elucidate a role of divalent metal transporter 1 (DMT-1) in the mechanism(s) of the SMV-induced disorders in some tissue Fe homeostasis were studied. SMV taken up separately or in combination with MS may pose a risk of the rise and shortage of the total hepatic and splenic Fe and Cu contents, respectively, cerebral Fe deficiency, splenic Ca deposition, and the hepatic, renal, and cerebral DMT-1 down-regulation. When administered alone, SMV may also cause the decrease in the total renal Fe and Cu contents. A visible protective effect of Mg against the renal and cerebral V accumulation and the decrease in the renal Fe and Cu contents during the SMV-MS co-administration together with our previous findings suggest a beneficial role of Mg at SMV exposure. Further, the SMV-induced fall in total iron binding capacity (TIBC), reported previously, and its correlations with the hepatic, splenic, and cerebral Fe levels allow us to suggest that diminished TIBC could be partly involved in the mechanism(s) responsible for the dramatic redistribution of Fe in those tissues. Finally, DMT-1, which potentially could participate in the hepatic non-transferrin Fe-bound uptake, does not play a significant role in this process indicating the need for studying other Fe transporters to more precisely elucidate molecular mechanism(s) underlying the hepatic Fe loading in our experimental conditions. PMID:24549458

Scibior, Agnieszka; Adamczyk, Agnieszka; Go??biowska, Dorota; Nied?wiecka, Irmina; Fornal, Emilia

2014-04-01

91

Effect of T. foenumgraecum on glycogen content of tissues and the key enzymes of carbohydrate metabolism.  

PubMed

The Indian traditional system of medicine prescribed plant therapies for diseases including diabetes mellitus called madhumeh in Sanskrit. One such plant mentioned in Ayurveda is Trigonella foenumgraecum (FG). In the present study, FG (1g/kg PO) was assessed for its effect on glycogen levels of insulin dependent (skeletal muscle and liver), insulin independent tissues (kidneys and brain) and enzymes such as glucokinase (GK), hexokinase (HK), and phosphofructokinase (PFK). Administration of FG led to decrease in blood glucose levels by 14.4 and 46.64% on 15th and 30th day of the experiment. Liver and 2-kidney weight expressed as percentage of body weight was significantly increased in diabetics (P<0.0005) versus normal controls and this alteration in the renal weight (P<0.0005) but not liver weight was normalized by feeding of FG. Renal glycogen content increased by over 10 folds while hepatic and skeletal muscle glycogen content decreased by 75 and 68% in diabetic controls versus controls and these alteration in glycogen content was partly prevented by FG. Activity of HK, GK and PFK in diabetic controls was 35, 50 and 60% of the controls and FG partially corrected this alteration in PFK, HK and GK. PMID:12639747

Vats, V; Yadav, S P; Grover, J K

2003-04-01

92

Carbon content in the Earth's inner core from the elasticity of iron carbide at high pressure  

NASA Astrophysics Data System (ADS)

Discrepancy between sound wave velocity of Fe-Ni alloys and seismological models indicate that Earth’s core is likely to contain lighter elements such as H, C, O, Si and S. Carbon is a plausible candidate because of its cosmic abundance and chemical affinity to iron at low pressures. Earlier it was thought that carbon, being volatile might have been lost during the accretionary stages of the planet. However, it is now known, that core formation likely took place from the deep magma ocean surrounded by solar-nebula type proto-atmosphere enriched in volatiles thus enabling incorporation of volatiles in to the molten core. Experimental studies conducted to study the phase diagram of Fe-C system revealed that volatility of carbon is only significant at pressures lower than 10-5 GPa. (Wood, 1993, EPSL, 117, 593) suggested that solid inner core might be composed of Fe3C. Recent experimental studies have extended the Fe-C phase diagram to considerably higher pressures (~70 GPa) and have found that Fe7C3 is the likely phase at the inner core conditions (Lord et al., 2009, EPSL, 284, 157). In this study we determine the elasticity of Fe7C3 using first principle methods. Results of compression for the ferromagnetic Fe7C3 is well represented by a third order Birch Murnaghan finite strain expression with K0~ 275 GPa, K?~2.5 and V0~ 182 Å3. Under compression magnetic moment gradually decreases and at ~69 GPa magnetic moment is instantaneously lost. Similar behavior has been reported for Fe3C at 60 GPa (Vocadlo et al., 2002, EPSL, 203, 567). The high-pressure non-magnetic phase has distinct elastic parameters with K0~ 228 GPa, K?~4.9 and V0~ 181 Å3. Calculated elastic constants also exhibit softening associated with the loss of magnetization. Similar anomalous behavior in thermoelastic parameter owing to loss of magnetization has been observed for Fe3C (Fiquet et al. 2009, PEPI, 172, 125) at 68 GPa. We will present full elastic tensor and sound wave velocity results for ferromagnetic and non-magnetic phase and infer about the carbon content of the inner core.

Steinle-Neumann, G.; Mookherjee, M.

2009-12-01

93

Further characterisation of forms of haemosiderin in iron-overloaded tissues.  

PubMed

The biochemical and biophysical properties of isolated haemosiderins have been compared to that of another iron-containing protein, termed prehaemosiderin, which sediments through chaotropic potassium iodide only after 20 h of ultracentrifugation, in contrast to that of haemosiderin which is recovered after 2 h of ultracentrifugation. The iron/protein ratio and iron/phosphate ratio were less that that of the corresponding haemosiderin, while the elemental composition was also reduced in many of the prehaemosiderin samples. Mossbauer spectroscopy and electron diffraction identified the predominant presence of ferrihydrite in prehaemosiderin species even though the secondary haemochromatosis haemosiderin iron cores were essentially goethite-like. The majority of the prehaemosiderins isolated showed the presence of an additional peptide band at 17 kDa in addition to that at 21 kDa. Further Mossbauer studies of haemosiderin isolated from untreated secondary haemochromatosis patients showed that goethite was the predominant form of iron present, thereby indicating that the presence of this form of ferrihydrite was not wholly attributable to chelation therapy. PMID:7925437

Ward, R J; Ramsey, M; Dickson, D P; Hunt, C; Douglas, T; Mann, S; Aquad, F; Peters, T J; Crichton, R R

1994-10-01

94

Effect of olive oil- and corn oil-enriched diets on the tissue mineral content in mice  

Microsoft Academic Search

The mineral content (zinc, iron, magnesium, and calcium) in the liver, spleen, and thymus of male Balb\\/C mice was analyzed.\\u000a Animals were fed, over 21 d, diets enriched with corn oil (FCO diet) or olive oil (FOO diet) (5% addition to standard pellet,\\u000a w\\/w). Olive oil with predominant oleic acid (C18:1, n-9) had a quite different composition than corn oil,

?edomila Milin; Robert Domitrovi?; Marin Tota; Jasminka Giacometti; Mira ?uk; Biserka Radoševi?-Staši?; Zlatko Ciganj

2001-01-01

95

Cadmium effects in rats on tissue iron, selenium, and blood pressure; blood and hair cadmium in some oregon residents.  

PubMed

Exposure of rats to cadmium causes a marked depletion of iron in liver and kidney. Selenium neither counteracts or intensifies the influence of cadmium on tissue iron levels. Selenium injections protect against cadmium-induced testicular damage but cause this element to accumulate in the testes at higher concentration than in animals exposed to cadmium without selenium. Selenium injection diverts the binding of cadmium from low molecular weight proteins to high molecular weight ones. Dosing rats with selenium and cadmium or inclusion of Se or Cd in the diet did not result in altered cadmium binding in tissues, raising some questions concerning the environmental significance of these injection experiments. Addition of selenium to a diet containing cadmium decreased the accumulation of cadmium in liver and kidney, but increased its deposition in testes. The metabolism of cadmium bound to metallothionein was markedly different as compared to the inorganic salt of this element. Dietary ascorbate, but not citrate or cysteine, decreased the deposition of cadmium in rat tissues. In some low-level exposure experiments with cadmium (1 to 1000 ppb), no differences were found in the percentage of dose absorbed or rate of cadmium accumulation when provided in food versus water. Female rats tended to absorb more cadmium than males. The binding of cadmium to cytosolic proteins was found to be different between rats fed low levels of cadmium (up to 1 ppm) as compared to those fed high levels of this element (100 ppm). Cadmium was not found to contribute to hypertension in rats, and a summary of results by various investigators is presented. Blood and hair cadmium levels in Oregon residents were found to be highest in employees of a mine, and hair cadmium was found to be respectively higher in smokers than nonsmokers and in metal workers than office workers. No relationships were observed in humans between blood or hair cadmium levels and blood pressure. PMID:488028

Whanger, P D

1979-02-01

96

The Carina Project. V. The Impact of NLTE Effects on the Iron Content  

NASA Astrophysics Data System (ADS)

We have performed accurate iron abundance measurements for 44 red giants (RGs) in the Carina dwarf spheroidal (dSph) galaxy. We used archival, high-resolution spectra (R˜38,000) collected with UVES at ESO/VLT either in slit mode (five RGs) or in fiber mode (39 RGs, FLAMES/GIRAFFE-UVES). The sample is more than a factor of 4 larger than any previous spectroscopic investigation of stars in dSphs based on high-resolution (R?38000) spectra. We did not impose the ionization equilibrium between neutral and singly ionized iron lines. The effective temperatures and the surface gravities were estimated by fitting stellar isochrones in the V,B-V color-magnitude diagram. To measure the iron abundance of individual lines we applied the LTE spectrum-synthesis fitting method using MARCS model atmospheres of appropriate metallicity. For the 27 stars for which we measured both Fe I and Fe II abundances, we found evidence of NLTE effects between neutral and singly ionized iron abundances. The difference is ˜0.1 dex, on average, but steadily increases when moving from the metal-rich to the metal-poor regime. Moreover, the two metallicity distributions differ at the 97% confidence level. Assuming that the Fe II abundances are minimally affected by NLTE effects, we corrected the Fe I stellar abundances using a linear fit between Fe I and Fe II stellar abundance determinations. We found that the Carina metallicity distribution based on the corrected Fe I abundances (44 RGs) has a weighted mean metallicity of [Fe/H] = -1.80 and a weighted standard deviation of ? = 0.24 dex. The Carina metallicity distribution based on the Fe II abundances (27 RGs) gives similar estimates ([Fe/H] = -1.72, ? = 0.24 dex). The current weighted mean metallicities are slightly more metal-poor when compared with similar estimates available in the literature. Furthermore, when we restricted our analysis to stars with the most accurate iron abundances, ˜20 Fe I and at least three Fe II measurements (15 stars), we found that the range in iron abundances covered by Carina RGs (˜1 dex) agreed quite well with similar estimates based on high-resolution spectra; however, it is a factor of 2-3 smaller than abundance estimates based on the near-infrared calcium triplet. This finding supports previous estimates based on photometric metallicity indicators.

Fabrizio, M.; Merle, T.; Thévenin, F.; Nonino, M.; Bono, G.; Stetson, P. B.; Ferraro, I.; Iannicola, G.; Monelli, M.; Walker, A. R.; Buonanno, R.; Caputo, F.; Corsi, C. E.; Dall''Ora, M.; Degl''Innocenti, S.; François, P.; Gilmozzi, R.; Marconi, M.; Pietrinferni, A.; Prada Moroni, P. G.; Primas, F.; Pulone, L.; Ripepi, V.; Romaniello, M.

2012-06-01

97

Content of trace metals (iron, zinc, manganese, chromium, copper, nickel) in canned variegated scallops (Chlamys varia).  

PubMed

This article presents the results obtained through a study of the concentration of trace metals (iron, zinc, manganese, chromium, copper, nickel) in some conserves of variegated scallops (Chlamys varia, Bivalvia, Mollusca). A total of 300 samples of seven different commercial brands (named A, B, D, H, J, L and M) and one processing type, 'scallop sauce', were analysed. Samples were collected weekly in a large shopping centre in Santa Cruz de Tenerife during a 12-month period. Variegated scallops have considerable concentrations of zinc, cupper and manganese, so that their dietary intake constitutes an important source of these metals. However, they have low concentrations of chrome and nickel, and the levels of iron are similar to those found in other bivalve molluscs. PMID:19086337

Gutiérrez, Angel J; González-Weller, Dailos; González, Tomás; Burgos, Antonio; Lozano, Gonzalo; Hardisson, Arturo

2008-09-01

98

Enhanced extract preparation of native manganese and iron species from brain and liver tissue  

Microsoft Academic Search

To date, no reference method for the extraction of labile Mn species from biological tissues is published which provides sufficient\\u000a extraction efficiency combined with monitoring speciation. Here, an extraction method is reported using cryogenic conditions\\u000a (+N) under inert gas atmosphere. Fresh brain and liver tissues were used, then stored either 1 day (+N) or 1 month in N2liq (+N 1 m) to evaluate

J. Diederich; B. Michalke

2011-01-01

99

Low Temperature Creeps and Delay Times in Iron of Very Low Carbon Content  

Microsoft Academic Search

The creep curves of wet-hydrogen-treated polycrystalline irons were obtained in the range of temperature 350°-77°K. A rapid load testing machine, which has the same principle as Clark-Wood machine, was used for the creep tests. Delay times were observed in the range of the time 10-2--103 seconds. Observed results is analysed with the use of the strain rate equation, \\\\dot{\\\\varepsilon}{=}bnv. It

Tomoyuki Takeuchi; Shozo Ikeda

1963-01-01

100

Modification of the ferrozine technique to analyze iron contents in different foods  

Microsoft Academic Search

A methodology for the determination of iron in foods fortified with this element or in nutritional products is important and\\u000a has to be sensitive and rapid. In developing countries, an inexpensive and reliable methodology is also required. For this\\u000a purpose, the Gordon’s Ferrozine technique was slightly modified and assayed with yogurt, dry powdered milk, and cereal mixtures,\\u000a all of them

A. E. Lysionek; M. B. Zubillaga; G. P. Calmanovici; M. J. Salgueiro; M. I. Sarabia; A. D. Barrado; R. A. Caro; Ricardo Weill; J. R. Boccio

1998-01-01

101

Influence of added limestone and fertilizers upon the micro-nutrient content of forage tissue and soil  

Microsoft Academic Search

Summary  Five rates of limestone and 4 rates of fertilizers were used in a split-plot design to study their effects under field conditions\\u000a on Mo, Cu, B, Mn, and Zn levels in mixed forage tissue and soil, and on the forage yield. An increase in soil pH resulted\\u000a in an increase in Mo and Cu content of plant tissue while B,

Umesh C. Gupta; F. W. Calder; L. B. Macleod

1971-01-01

102

THE UPTAKE OF IRON IN RABBIT SYNOVIAL TISSUE FOLLOWING INTRA-ARTICULAR INJECTION OF IRON DEXTRAN: A Light and Electron Microscope Study  

Microsoft Academic Search

Iron dcxtran (molecular weight 7,000) diffuses rapidly from the joint cavity through the synovium, along lymphatics and cxtraccllular tissuc spaces; articular cartilagc is imperme- able to iron dextran. Thcre is also rapid cellular uptake by synovial lining cells, particularly of the vacuolar type; cndoplasmic reticulum-containing lining cells rarely take up iron dextran. Cellular uptake is probably effccted by pscudopodial folds

J. Ball; J. A. CHAPMAN; K. D. MUIRDEN

1964-01-01

103

Respiratory Effects of Inhaled Single-Walled Carbon Nanotubes: The Role of Particle Morphology and Iron Content  

NASA Astrophysics Data System (ADS)

Nanotechnology provides promise for significant advancements in a number of different fields including imaging, electronics, and therapeutics. With worldwide production of carbon nanotubes (CNTs) exceeding over 500 metric tons annually and industry growth expecting to double over the next 5 yr, there are concerns our understanding of the hazards of these nanomaterials may not be keeping pace with market demand. The physicochemical properties of CNTs may delineate the key features that determine either toxicity or biocompatibility and assist in evaluating the potential health risks posed in industrial and consumer product settings. We hypothesized that the iron content and morphology of inhaled single-walled carbon nanotubes (SWCNTs) influences the extent of cellular injury and alters homeostasis in the lung. To address this hypothesis, (1) an aerosol system was developed to deliver carbon-based nanomaterials in a manner of exposure that is physiologically and environmentally relevant (e.g., inhalation), (2) acute (1 d) and subacute (10 d) nose-only inhalation studies to a well-characterized aerosol of iron-containing (FeSWCNT) versus cleaned (iron removed, cSWCNTs) SWCNTs were conducted to evaluate the time-course patterns of possible injury through measurement of markers of cytotoxicity, inflammation, and cellular remodeling/homeostasis, and (3) the effects of SWCNTs were compared to other well-studied materials (e.g. non-fibrous, low-iron content ultrafine carbon black and fibrous, high-iron content, highly persistent, durable and potent carcinogen crocidolite) to offer insights into the relative toxicity of these nanomaterials as well as the possible mechanisms by which the effects occur. Rats (SD) were exposed to either aerosolized SWCNTs (raw FeSWCNT or purified cSWCNT), carbon black (CB), crocidolite, or fresh air via nose-only inhalation. Markers of inflammation and cytotoxicity in lung lavage, mucin in different airway generations, and collagen in the centriacinus were used to assess immediate and persistent effects. The oxidant and inflammatory capacity of microdissected airways of exposed animals was used to assess the ability to withstand an additional oxidant insult. Comparing the effects observed in the acute versus subacute inhalation studies, the effects of SWCNTs appeared to follow a dose-response pattern, where the effects were further pronounced and, in some cases, more persistent under more severe or prolonged exposure conditions. In addition, results showed different timing and extent of responses resulting from exposure to SWCNTs containing varied amounts of iron. Depending on the endpoint of interest, responses of SWCNTs sometimes followed that of CB while in other circumstances matched that of crocidolite. Notably, FeSWCNTs exposed animals were unable to respond to an additional oxidant challenge and cSWCNTs exposed animals had a delayed and persistent development of mucous cells in the distal airways. In conclusion, while some toxicity endpoints follow patterns comparable to CB or crocidolite, the respiratory effects of inhaled FeSWCNTs and cSWCNTs appear to be unique. Further research is needed to evaluate whether these changes are suggestive of precursor events to pathologic changes that might develop under more severe or prolonged exposure conditions. Systematic toxicity testing and intentional physicochemical modifications will provide further insights as to the mechanisms by which SWCNTs cause these unique effects. It would be of hope that nanomaterials, such as SWCNTs, can be designed in way to maximize their societal benefits through various energy, medical, and technological applications but minimize their potential human health and environmental risks.

Madl, Amy Kathleen

104

Stable iron isotope tracing reveals significant brain iron uptake in adult rats.  

PubMed

Iron deposits in the brain are a common hallmark of Alzheimer's disease and Parkinson's disease. This has spurred the hypothesis that iron may play a functional role in the pathogenesis of neurodegenerative disorders through free radical damage. Previous short-term studies using radiotracers suggested that brain iron uptake is small as compared to other tissues in adult rodents. This has led to the assumption that brain iron uptake must also be marginal in humans after brain development is complete. In this study we applied a novel approach to determine directly the fraction of iron that was transferred over time from diet to brain and other organs in adult rats. A known amount of a stable iron isotope ((57)Fe) was fed with drinking water to adult rats over 4 months. Uptake of the tracer iron and final iron content in tissues were assessed by Negative Thermal Ionization Mass Spectrometry (NTI-MS). We found that only a very small amount of dietary iron entered the brain (0.000537 ± 0.000076%). This amount, however, is considerable relative to the total brain iron content (9.19 ± 0.71%), which was lower but comparable to percentage uptake in other tissues. Whereas it remains unclear whether excessive dietary iron intake is a risk factor in neurodegenerative diseases or whether high systemic iron correlates with iron deposits in the brain, our study suggests that uptake of dietary iron is much higher than previously thought. This finding challenges current beliefs and points to a possible role of iron nutrition in the pathogenesis of neurodegenerative disorders. PMID:23340610

Chen, Jie-Hua; Shahnavas, Shahreena; Singh, Nadia; Ong, Wei-Yi; Walczyk, Thomas

2013-02-01

105

Household dietary strategies to enhance the content and bioavailability of iron, zinc and calcium of selected rice- and maize-based Philippine complementary foods.  

PubMed

Philippine complementary foods are predominantly plant-based, with a low content of readily available iron, zinc, and calcium, and a relatively high amount of phytate, a potent inhibitor of mineral absorption. Some of the phytate is water soluble, and hence can be removed by soaking. In this study we have compared the iron, zinc, and calcium content, and estimated iron and zinc bioavailability of rice- and maize-based Filipino complementary foods prepared with and without soaking and/or enrichment with chicken liver, egg yolk, small soft-boned fish, and mung bean grits. Analysis of iron, zinc, and calcium were performed by atomic absorption spectrometry, and phytate (based on hexa-(IP6) and penta-inositol phosphate (IP5) by HPLC; corresponding [Phy]/[Fe] and [Phy]/[Zn] molar ratios were calculated as predictors of iron and zinc bioavailability. Addition of chicken liver, followed by egg yolk, resulted in the greatest increases in iron and zinc content for both the rice- and maize-based complementary foods, whereas addition of small dried fish with bones had the greatest effect on calcium. The IP5 + IP6 content and [Phy]/[Zn] molar ratios were higher in the maize- than rice-based complementary foods, and were reduced by soaking, although only the maize plus mung bean grits, with and without soaking, had [Phy]/[Zn] molar ratios above 15. Enrichment with animal protein or soaking has the potential to enhance the content of absorbable iron, zinc, and probably calcium to varying degrees in rice- and maize-based Philippine complementary foods. PMID:16881908

Perlas, Leah A; Gibson, Rosalind S

2005-10-01

106

X-Ray Methods to Estimate Breast Density Content in Breast Tissue  

NASA Astrophysics Data System (ADS)

This work focuses on analyzing x-ray methods to estimate the fat and fibroglandular contents in breast biopsies and in breasts. The knowledge of fat in the biopsies could aid in their wide-angle x-ray scatter analyses. A higher mammographic density (fibrous content) in breasts is an indicator of higher cancer risk. Simulations for 5 mm thick breast biopsies composed of fibrous, cancer, and fat and for 4.2 cm thick breast fat/fibrous phantoms were done. Data from experimental studies using plastic biopsies were analyzed. The 5 mm diameter 5 mm thick plastic samples consisted of layers of polycarbonate (lexan), polymethyl methacrylate (PMMA-lucite) and polyethylene (polyet). In terms of the total linear attenuation coefficients, lexan ? fibrous, lucite ? cancer and polyet ? fat. The detectors were of two types, photon counting (CdTe) and energy integrating (CCD). For biopsies, three photon counting methods were performed to estimate the fat (polyet) using simulation and experimental data, respectively. The two basis function method that assumed the biopsies were composed of two materials, fat and a 50:50 mixture of fibrous (lexan) and cancer (lucite) appears to be the most promising method. Discrepancies were observed between the results obtained via simulation and experiment. Potential causes are the spectrum and the attenuation coefficient values used for simulations. An energy integrating method was compared to the two basis function method using experimental and simulation data. A slight advantage was observed for photon counting whereas both detectors gave similar results for the 4.2 cm thick breast phantom simulations. The percentage of fibrous within a 9 cm diameter circular phantom of fibrous/fat tissue was estimated via a fan beam geometry simulation. Both methods yielded good results. Computed tomography (CT) images of the circular phantom were obtained using both detector types. The radon transforms were estimated via four energy integrating techniques and one photon counting technique. Contrast, signal to noise ratio (SNR) and pixel values between different regions of interest were analyzed. The two basis function method and two of the energy integrating methods (calibration, beam hardening correction) gave the highest and more linear curves for contrast and SNR.

Maraghechi, Borna

107

Iron and zinc content of selected foods in the diet of schoolchildren in Kumi district, east of Uganda: a cross-sectional study  

PubMed Central

Background Iron and zinc are essential micronutrients for humans and deficiency of the two elements is widespread in the world with the highest prevalence in less developed countries. There are few data on dietary intake of iron and zinc in Uganda, and no food composition table is available. There is hardly any widely published literature that clearly documents the quality of Ugandan children's diet. Thus information of both food intake and the concentration of these trace elements in local food ingredients are needed in order to assess daily intake. Methods The present study focused on the iron and zinc content in selected foods and intake of the micronutrients iron and zinc among schoolchildren in Kumi District, Uganda. Over a period of 4 weeks single 24-hour dietary recall interviews were carried out on a convenience sample of 178 schoolchildren (9-15 years old). Data from the dietary recalls was used when selecting foods for chemical analysis. Results Results from this study showed that the iron concentrations varied, and were high in some cereals and vegetables. The zinc concentrations in foods generally corresponded with results from other African countries (Mali and Kenya). Data from the 24-hour dietary recall showed that the daily Recommended Nutrient Intake (RNI) was met for iron but not for zinc. Conclusions The schoolchildren of Kumi district had a predominantly vegetable based diet. Foods of animal origin were consumed occasionally. The iron content in the selected foods was high and variable, and higher than in similar ingredients from Kenya and Mali, while the zinc concentrations were generally in accordance with reported values. The total daily zinc (mg) intake does not meet the daily RNI. The iron intake is adequate according to RNI, but due to iron contamination and reduced bioavailability, RNI may not be met in a vegetable based diet. More studies are needed to investigate possible sources of contamination. PMID:21827701

2011-01-01

108

Effect of iron content on the electrical conductivity of perovskite and magnesiowuestite assemblages at lower mantle conditions  

NASA Technical Reports Server (NTRS)

The electrical conductivity of (Mg/0.76/Fe/0.24/)SiO3 perovskite and of an assemblage of (Mg/0.89/Fe/0.11/)SiO3 perovskite + (Mg/0.70/Fe/0.30/)O magnesiowiestite was measured at pressures of 45-80 GPa and temperatures from 295 to 3600 K. The apparent activation energy for electrical conduction is 0.24 (+ or - 0.10) eV for the perovskite and 0.20 (+ or - 0.08) eV for the perovskite + magnesiowuestite assemblage. Comparing present results with those derived previously for Fe-poor samples, it is found that the electrical conductivities of both the silicate perovskite and the perovskite + magnesiowuestite assemblage depend strongly on iron content. Thus, the electrical conductivity distribution inside the earth could provide an important constraint in modeling the composition of the lower mantle.

Li, Xiaoyuan; Jeanloz, Raymond

1991-01-01

109

The glycolate and 2-phosphoglycolate content of tissues measured by ion chromatography coupled to mass spectrometry  

PubMed Central

Glycolate and 2-phosphoglycolate (PG) are 2-carbon monocarboxylic acids with ill-defined metabolic roles. Their concentrati ons have not yet been described in tissues apart from body fluids and erythrocytes. We describe the use of ion chromatography coupled with mass spectrometry (IC-MS) to quantify levels of glycolate and PG in tissue. Sample preparation and analysis can be performed within an hour. Low concentrations of glycolate (12 – 48 nmoles/g) and PG (4 – 17 nmoles/g) were detected in all tissues. The availability of this IC-MS assay will facilitate investigations of the origin, function, and metabolism of glycolate and PG in tissues. PMID:22093610

Knight, John; Hinsdale, Mark; Holmes, Ross

2011-01-01

110

Cobalt and scandium partitioning versus iron content for crystalline phases in ultramafic nodules  

USGS Publications Warehouse

Fractionation of Co and Sc between garnets, olivines, and clino- and orthopyroxenes, separated from a suite of Salt Lake Crater ultramafic nodules that equilibrated at the same T and P, is strongly dependent on Fe contents. This observation suggests that petrogenetic equilibrium models of partial melting and crystal fractionation must take into account effects of magma composition, if they are to describe quantitatively geochemical evolutionary trends. ?? 1978.

Glassley, W.E.; Piper, D.Z.

1978-01-01

111

Application of VNIR diffuse reflectance spectroscopy to estimate soil organic carbon content, and content of different forms of iron and manganese  

NASA Astrophysics Data System (ADS)

Visible and near-infrared (VNIR) diffuse reflectance spectroscopy is a progressive method used for prediction of soil properties. Study was performed on the soils from the agricultural land from the south Moravia municipality of Brumovice. Studied area is characterized by a relatively flat upper part, a tributary valley in the middle and a colluvial fan at the bottom. Haplic Chernozem reminded at the flat upper part of the area. Regosols were formed at steep parts of the valley. Colluvial Chernozem and Colluvial soils were formed at the bottom parts of the valley and at the bottom part of the studied field. The goal of the study was to evaluate relationship between soil spectra curves and organic matter content, and different forms iron and manganese content (Mehlich III extract, ammonium oxalate extract and dithionite-citrate extract). Samples (87) were taken from the topsoil within regular grid covering studied area. The soil spectra curves (of air dry soil and sieved using 2 mm sieve) were measured in the laboratory using spectometer FieldSpec®3 (350 - 2 500 nm). The Fe and Mn contents in different extract were measured using ICP-OES (with an iCAP 6500 Radial ICP Emission spectrometer; Thermo Scientific, UK) under standard analytical conditions. Partial least squares regression (PLSR) was used for modeling of the relationship between spectra and measured soil properties. Prediction ability was evaluated using the R2, root mean square error (RMSE) and normalized root mean square deviation (NRMSD). The results showed the best prediction for Mn (R2 = 0.86, RMSE = 29, NRMSD = 0.11), Fe in ammonium oxalate extract (R2 = 0.82, RMSE = 171, NRMSD = 0.12) and organic matter content (R2 = 0.84, RMSE = 0.13, NRMSD = 0.09). The slightly worse prediction was obtained for Mn and Fe in citrate extract (R2 = 0.82, RMSE = 21, NRMSD = 0.10; R2 = 0.77, RMSE = 522, NRMSD = 0.23). Poor prediction was evaluated for Mn and Fe in Mehlich III extract (R2 = 0.43, RMSE = 13, NRMSD = 0.17; R2 = 0.39, RMSE = 13, NRMSD = 0.26). In general, the results confirmed that the measurement of soil spectral characteristics is a promising technology for a digital soil mapping and predicting studied soil properties. Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319) and the Czech Science Foundation (grant No. GA526/09/1762).

Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

2013-04-01

112

Cytokinin contents and specific characteristics of tissue strains from three sexual genotypes of Mercurialis annua : Evidence for sex-gene involvement at callus-tissue level.  

PubMed

Analyses of the endogenous cytokinin contents of established tissue strains of Mercurialis annua are reported. The strains were derived from three individuals (strong male, weak male, female), differing by one of the three genes determining sex. The data are compared with the endogenous cytokinins of male and female shoot apices. Tissue strains are characterized by the disappearance of natural cytokinin metabolites in the female; in both males, ?(2)-isopentenyl-adenosine and only trans-ribosylzeatin exist but in different quantities. Benzyladenine and ribosylbenzyladenine were identified in the three strains but the quantities also differed as a function of the genotype. The marked differences in cytokinin metabolism of tissue strains indicate that sex genes continue to function in the dedifferentiated state. Each strain also exhibited persistent morphological and histological characteristics, and a different sensitivity to the withdrawal of 2-4-dichlorophenoxyacetic acid or benzyladenine from the medium. Each had a specific and characteristic effect on the organogenesis of nodes cultivated in close proximity to callus pieces. These data complement the above results and show that sex genes act at the callus-tissue level. The possibility that these genes act at the early stages of embryogenesis of male and female individuals is also discussed. PMID:24241528

Champault, A; Guérin, B; Teller, G

1985-11-01

113

A method for detecting variability arising from errors in sample processing of paraffin-embedded tissue for DNA content analysis.  

PubMed

We present a method for controlling variability that may arise from inconsistencies in sample preparation for DNA content analysis of paraffin-embedded tissue. Human tonsil tissue obtained from routine surgical specimens was embedded in paraffin according to standard protocols. Fifty-micrometer sections were cut from the block and analyzed each day for 20 days to establish control ranges. One tonsil tissue section was processed in parallel with each run of clinical specimens. In this context, a run was defined as the simultaneous processing of 50-microns tissue sections for extraction of cell nuclei (dewaxing and rehydrating). If the tonsil G0/G1 peak coefficient of variation (CV) exceeded 2 SDs of the established mean, and optimum instrument performance and staining were verified, all samples prepared with the tonsil control were reprocessed. Instrument performance and staining were assessed by using the appropriate external controls. By using this rejection rule (12s), the frequency of sample reprocessing in our laboratory was approximately 6%. When the run was repeated and the tonsil control CV was within acceptable range, the G0/G1 peak CV of the corresponding clinical specimens improved 25% of the time. Because most investigators are willing to accept higher CVs for paraffin-embedded tissue than for fresh tissue, it is desirable to have a control to detect decreased peak resolution, resulting from errors in sample processing. PMID:8239936

Hendricks, J B; Hardt, N S; Wilkinson, E J; Pharis, P G; Braylan, R C

1993-11-01

114

EFFECT OF SALINITY ON GROWTH, PROLINE ACCUMULATION AND MALATE CONTENT OF PINEAPPLE (ANANAS COMOSUS (L.) MERILL.) UNDER TISSUE CULTURE CONDITION  

Microsoft Academic Search

An experiment was conducted with the aim at evaluating the effect of salinity on growth, proline accumulation and malate content of pineapple (Ananas comosus (L.) Merrill.)'s tissue culture. 10-12 mm pineapple shoot-tip used as the explants were cultured on MS medium treated with either 0 (control), 65, 135, 200 or 250 mM NaCl. At every two weeks in the first

SAYED M. ZAIN HASAN; NUR SURAYA ABDULLAH

2008-01-01

115

Digital holography and tissue dynamics spectroscopy: on the road to high-content drug discovery  

NASA Astrophysics Data System (ADS)

Digital holography, Fourier optics and speckle are combined to enable a new direction in drug discovery. Optical coherence imaging (OCI) is a coherence-gated imaging approach that captures dynamic speckle from inside living tissue. The speckle temporal fluctuations arise from internal motions in the biological tissue, and the changes in these motions caused by applying drugs can be captured and quantified using tissue dynamics spectroscopy (TDS). A phenotypic profile of many reference drugs provides a training set that would help classify new compounds that may be candidates as new anti-cancer drugs.

Nolte, D. D.; An, R.; Jeong, K.; Turek, J.

2011-10-01

116

Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells  

PubMed Central

Magnetic resonance imaging (MRI) using measurement of the transverse relaxation time (R2*) is to be considered as a promising approach for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. While the relationship between core composition of nanoparticles and their MRI properties is well studied, little is known about possible effects on progenitor cells. This in vitro study aims at comparing two magnetic iron oxide nanoparticle types, single vs. multi-core nanoparticles, regarding their physico-chemical characteristics, effects on cellular behavior of adipose tissue-derived stem cells (ASC) like differentiation and proliferation as well as their detection and quantification by means of MRI. Quantification of both nanoparticle types revealed a linear correlation between labeling concentration and R2* values. However, according to core composition, different levels of labeling concentrations were needed to achieve comparable R2* values. Cell viability was not altered for all labeling concentrations, whereas the proliferation rate increased with increasing labeling concentrations. Likewise, deposition of lipid droplets as well as matrix calcification revealed to be highly dose-dependent particularly regarding multi-core nanoparticle-labeled cells. Synthesis of cartilage matrix proteins and mRNA expression of collagen type II was also highly dependent on nanoparticle labeling. In general, the differentiation potential was decreased with increasing labeling concentrations. This in vitro study provides the proof of principle for further in vivo tracking experiments of progenitor cells using nanoparticles with different core compositions but also provides striking evidence that combined testing of biological and MRI properties is advisable as improved MRI properties of multi-core nanoparticles may result in altered cell functions. PMID:25244560

Kasten, Annika; Gruttner, Cordula; Kuhn, Jens-Peter; Bader, Rainer; Pasold, Juliane; Frerich, Bernhard

2014-01-01

117

The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.  

PubMed

The introduction of nanoscale zero valent iron (nZVI) into the subsurface has recently received significant attention as a potentially effective method for remediation of source zones of chlorinated solvents present as dense nonaqueous phase liquids (DNAPL). One of the challenges in the deployment of nZVI is to achieve good subsurface nZVI mobility to permit delivery of the nZVI to the target treatment zone. Stabilization of nZVI with various polymers has shown promise for enhancing nZVI subsurface mobility, but the impact of subsurface conditions on nZVI mobility has not been fully explored. In this study, the effect of humic acid and kaolinite on the transport of polymer-stabilized nZVI (carboxylmethyl cellulose-surface modified nZVI, CMC90K-RNIP) in sand was investigated using column experiments. In addition, effects of electrolytes on the stability of CMC90K-RNIP in the presence of humic acid, and the stability of humic acid-coated reactive nanoscale iron particles (HA-RNIP) at various humic acid concentrations were investigated. Humic acid enhanced the mobility of bare RNIP, whereas the transport of CMC90K-RNIP was not significantly affected by humic acid injected as a background solution, except at the highest concentration of 500mg/L. At lower pore water velocity, the effect of humic acid on the transport of CMC90K-RNIP was greater than that at high water velocity. Adding kaolinite up to 2% by weight to the sand column reduced the retention of CMC90K-RNIP, but further increases in kaolinite content (to 5%) did not significantly affect nZVI retention. The impact of kaolinite on nZVI retention was more pronounced at lower pore water velocities. PMID:25079234

Jung, Bahngmi; O'Carroll, Denis; Sleep, Brent

2014-10-15

118

Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition.  

PubMed

Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505

Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne

2013-07-01

119

Cartilage of the patella. Topographical variation of glycosaminoglycan content in normal and fibrillated tissue  

Microsoft Academic Search

The variation in the glycosaminoglycan content was studied at different sites of the patella, both where the cartilage was intact and where it showed varying degrees of fibrillation. It was found that when the cartilage surface was intact the glycosaminoglycan content was the same at the different sites of the patella. Local fibrillation always gave rise to a local lowering

C Ficat; A Maroudas

1975-01-01

120

Detection sensitivity of MRI using ultra-small super paramagnetic iron oxide nano-particles (USPIO) in biological tissues.  

PubMed

Today, by injecting iron oxide based nanoparticles (USPIO) as MRI contrast agents, it is possible to study lymphatic system and some specific tumors and their metastasis. The type of surface coating, and coating characteristics of the nanoparticles are important factors for the biological properties of nanoparticles and their destination target. On the other hand, these properties contribute to different signal intensities. This may confine application of all types of USPIO based contrast agents in routine daily experiments. In this study, the ability of detecting these particles having various sizes and coating properties was evaluated for MRI applications. Signal intensity changes after administration of these particles into tissues have been studied and their detection sensitivity was evaluated using a liver phantom and animal model (rat). IO based nanoparticles of various sizes (8-30 nm) functionalized and coated with various surface polymers such as dextran and starch, amine and hydroxide groups, and bear IO particles were used to investigate the signal changes. The optimized pulse sequences for proper demonstration of lymph nodes using these contrast agents were found (T2* FSPGR protocol with fat suppressions). A detection sensitivity of 98% was achieved in most experiments during applying a proper MR protocol. However, the type of surface coating, and coating characteristics such as thickness were shown to be essential factors for MRI signal intensity in both T1 and T2 protocols. PMID:17945909

Oghabian, M A; Guiti, M; Haddad, P; Gharehaghaji, N; Saber, R; Alam, N R; Malekpour, M; Rafie, B

2006-01-01

121

Amplitude and frequency content analysis of optoacoustic signals in laser heated ex-vivo tissues  

NASA Astrophysics Data System (ADS)

Laser thermal therapy involves heating tissue using light to temperatures between 55 °C and 95 °C for several minutes resulting in coagulation and cell death. This treatment method has been under investigation for use as a minimally invasive method for eradicating solid tumors and cancer cells. Optoacoustic imaging involves exposing optically absorbing media to nanosecond pulsed laser light causing rapid localized heating and inducing acoustic waves to be detected by wideband transducers. It has been proposed as a real-time, noninvasive method for monitoring laser thermal therapy. This thesis investigates the use of optoacoustics to discriminate between native and coagulated ex-vivo tissues (porcine tenderloin muscle, bovine liver and bovine kidney). Tissues were heated using a 1000 mum core optical fibre coupled to an 810 nm diode laser to generate lesions. Samples were scanned at 1064 nm using a prototype reverse-mode optoacoustic system consisting of a pulsed laser coupled to a bifurcated fibre bundle, and an 8 element annular array wideband ultrasound transducer with a central frequency of ˜5 MHz. Thermal coagulation effects were analyzed using optoacoustic signal amplitude-based and frequency-based analysis. Significant differences (p<0.05) in optoacoustic signals, between native and coagulated porcine muscle, were observed with both amplitude-based and frequency-based analysis methods. Inconsistencies in the amplitude-based analysis were observed in the bovine liver and bovine kidney. Significant differences between native and coagulated bovine liver tissues were observed in two of the three frequency parameters of interest (slope and midband fit, p<0.05). No significant differences between native and coagulated bovine kidney tissues using frequency-based analysis. Amplitude-based analysis methods take advantage of the optical and thermo-mechanical properties of the tissues, while the frequency-based method extracts metrics related physical parameters of the absorbers (such as size, shape and concentration). By isolating the samples from temperature influence (by acquiring OA data of native and coagulated tissues at constant temperature) we have demonstrated that optoacoustics can be used to directly detect tissue damage in two of these three tissue types. The results of this work support the evidence that optoacoustic imaging could be a tool for real-time monitoring of laser thermal heating, but warrant further investigation.

Laderoute, Annie

122

Upper mantle oxidation state: Ferric iron contents of Iherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities  

NASA Astrophysics Data System (ADS)

The ferric iron contents of spinels from 30 spinel Iherzolite xenoliths have been measured by 57Fe Mössbauer spectroscopy. The samples are widely dispersed in geographic and tectonic setting, coming from Southwest United States (San Carlos, Kilbourne Hole), Japan (Ichinomegata), Massif Central, France (Mont Briançon) and Central Asia (Tariat Depression, Vitim Plateau). The total range of Fe 3O 4 contents of the spinels is from 1.7 to 5.2 mol% with an uncertainty of 0.2 to 0.3 mol%. These data were used to calculate the oxygen fugacities recorded by the spinel Iherzolites using the oxygen thermobarometer 6 Fe 2SiO 4 + O 2 = 3 Fe 2Si 2O 6 + 2 Fe 3O 4. olivine orthopyroxene spinel The Fe(III) contents of the spinels translate to oxygen fugacities which, at 15 kb, range between 1.7 log units below and 1.2 log units above FMQ using either the Mattioli and Wood (1988) or O'neill and Wall (1987) version of Fe 3O 4 activity. There are distinct regional differences ƒO 2, the specimens from SW U.S.A. and Central Asia exhibiting values from slightly above FMQ to 1.5 log units below FMQ. At an estimated pressure of 15 kb, these values overlap with the ƒO 2- T field of MORB glasses, indicating, in agreement with trace element abundances, that many of these samples are related to the MORB source region. Samples from Ichinomegata and Mont Briançon are all above the MORB range, however, suggesting progressive oxidation related to subduction processes. All of our samples give oxygen fugacities more than 2 log units above IW, implying that C?H?O fluids in the upper mantle are dominated by CO 2 and H 2O and that CH 4 is a minor (< 10%) component. A detailed comparison of Fe(III) contents determined by Mössbauer spectroscopy and those obtained from microprobe analysis indicates that the latter are sufficiently precise (± 0.002 fXFe3O 4) but, in general, too inaccurate for oxygen thermobarometry. Use of Mössbauer-analyzed spinels as microprobe standards enables accuracy to approach precision, however, and appropriate standards are available on request.

Wood, Bernard J.; Virgo, David

1989-06-01

123

The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue.  

PubMed

Iron-sulfur proteins have iron-sulfur clusters as a prosthetic group and are responsible for various cellular processes, including general transcriptional regulation, photosynthesis and respiration. The cytosolic iron-sulfur assembly (CIA) pathway of yeast has been shown to be responsible for regulation of iron-sulfur cluster assembly in both the cytosol and the nucleus. However, little is known about the roles of this pathway in multicellular organisms. In a forward genetic screen, we identified an Arabidopsis thaliana mutant with impaired expression of the endosperm-specific gene Flowering Wageningen (FWA). To characterize this mutant, we carried out detailed phenotypic and genetic analyses during reproductive and vegetative development. The mutation affects NAR1, which encodes a homolog of a yeast CIA pathway component. Comparison of embryo development in nar1-3 and other A. thaliana mutants affected in the CIA pathway showed that the embryos aborted at a similar stage, suggesting that this pathway potentially functions in early seed development. Transcriptome analysis of homozygous viable nar1-4 seedlings showed transcriptional repression of a subset of genes involved in 'iron ion transport' and 'response to nitrate'. nar1-4 also exhibited resistance to the herbicide paraquat. Our results indicate that A. thaliana NAR1 has various functions including transcriptional regulation in gametophytes and abiotic stress responses in vegetative tissues. PMID:23734982

Nakamura, Miyuki; Buzas, Diana Mihaela; Kato, Akira; Fujita, Masahiro; Kurata, Nori; Kinoshita, Tetsu

2013-09-01

124

The effects of exercise and dietary fat on calcium, magnesium, iron, and zinc on selected tissues in rats  

E-print Network

be more prevalent among 10 athletes than non-athletes (43-45). Hemoglobin accounts for two-thirds of the body's iron stores; therefore, iron deficiency can lead to anemia, a condition of subnormal hemoglobin concentration in the blood. Vigorous... physical exercise has been linked with a transient decreased concentration of hemoglobin termed: "sports anemia" (46, 47). The clinical manifestations of iron deficiency anemia have generally been recognized as a reduction in physical performance...

Nguyen, Thuy Huong

2012-06-07

125

Postmortem tissue contents of {sup 241}Am in a person with a massive acute exposure  

SciTech Connect

{sup 241}Am was determined radiochemically in the tissues of USTUR Case 246, a 76-y-old man who died of cardiovascular disease 11 y after massive percutaneous exposure following a chemical explosion in a glove box. This worker was treated extensively with a chelation drug, DTPA, for over 4 y after exposure. The estimate {sup 241}Am deposition at the time of death was 540 kBq, of which 90% was in the skeleton, 5.1% in the liver, and 3.5% in muscle and fat. Among the soft tissues, the highest concentrations were observed in liver (22 Bq g{sup -1}), certain cartilaginous structures such as the larynx (15 Bq g{sup -1}) and the red marrow (9.7 Bq g{sup -1}), as compared with the mean soft tissue concentration of approximately 1 Bq g{sup -1}. Concentration in muscle was approximately that of the soft tissue average, while concentrations in the pancreas, a hilar lymph node and fat were less than the average. Concentrations in bone ash were inversely related to the ratio of ash weight to wet weight a surrogate for bone volume-to-surface ratio. the distribution of activity in this case is reasonable consistent with that observed in another human case, when allowance is made for chelation therapy, and also tends to support more recent models of {sup 241}Am metabolism. 26 refs., 2 figs., 4 tabs.

McInroy, J.F. [Los Alamos National Lab., NM (United States); Kathren, R.L. [Washington State Univ., Richland, WA (United States); Toohey, R.E. [Washington State Univ., Richland, WA (United States)]|[Oak Ridge Institute for Science and Education, TN (United States)] [and others

1995-09-01

126

EFFECT OF SILICA AND VOLCANIC ASH ON THE CONTENT OF LUNG ALVEOLAR AND TISSUE PHOSPHOLIPIDS  

EPA Science Inventory

Silica or volcanic ash (VA) was administered to rats via intratracheal instillation and the changes in extracellular (i.e., lavage fluid) and tissue phospholipids, as well as various biochemical parameters, were monitored over a six month period. VA produced relatively minor (up ...

127

Current and historical relationships between the tissue nitrogen content of a snowbed bryophyte and nitrogenous air pollution.  

PubMed

Snowbed vegetation is under threat from atmospheric pollution. Most of the late lying snowbeds in Britain are in the central highlands of Scotland, coinciding with an area of very high deposition of nitrogenous air pollutants. Snow is a very efficient scavenger of atmospheric pollution and, due to the dynamics of snowmelt, much of the pollution load of a snow pack is released at very high concentrations in episodes known as 'acid flushes'. This study demonstrates the existence of a positive relationship between duration of snow-lie and tissue nitrogen content of Kiaeria starkei, a bryophyte characteristic of late snowbeds. An increase in the tissue nitrogen content of this bryophyte over this century is also shown, reflecting increasing air pollution. Maximum tissue nitrogen concentration in K. starkei is up to 50% greater than that recorded in other upland bryophyte species, demonstrating the exceptional threat of pollution to snowbed bryophytes. This has implications for the critical loads approach to pollution emission controls, as it indicates that some mountain communities are receiving higher pollution loadings than previously realised and therefore current exceedence of critical loads is probably greater than recognised at present. PMID:15091420

Woolgrove, C E; Woodin, S J

1996-01-01

128

The isotopic composition and insect content of diet predict tissue isotopic values in a South American passerine assemblage.  

PubMed

We analyzed the carbon and nitrogen isotopic values of the muscle, liver, and crop contents ("diet") of 132 individuals of 16 species of Chilean birds. The nitrogen content of diet was tightly correlated with the fraction of gut contents represented by insects relative to plant material. The carbon and nitrogen isotopic values of diet, liver, and muscle were all linearly correlated, implying high temporal consistency in the isotopic value of the diet of these birds. However, ?(15)N was not significantly related with the percentage of insects in diet. These results cast doubt on the applicability of the use of (15)N enrichment to diagnose trophic level in, at least some, terrestrial ecosystems. However, the residuals of the relationship relating the isotopic value of bird tissues with those of their diet were weakly negatively correlated with insect intake. We hypothesize that this negative correlation stems from the higher quality of protein found in insects relative to that of plant materials. Finally, our data corroborated a perplexing and controversial negative relationship between tissue to diet isotopic discrimination and the isotopic value of diet. We suggest that this relationship is an example of the commonly observed regression to the mean effect that plagues many scientific studies. PMID:23014885

Sabat, Pablo; Ramirez-Otarola, Natalia; Bozinovic, Francisco; del Rio, Carlos Martínez

2013-04-01

129

Cholesterol content of longissmus and semimembranosus muscles and associated adipose tissues from beef, pork and lamb  

E-print Network

BJqwawlwas pue snwlssl5uoq ~o qua&uog ioJa~saioqg J. OVHJ. SHV steaks and chops were cooked with 0. 64 cm external fat trim and the external fat was removed before cholesterol analysis of the lean, cholesterol content did not differ (P&0. 05) from steaks... and chops cooked without external fat. For steaks and chops cooked with 0. 64 cm external fat trim (fat and lean combined before analysis), there were no differences (P&0. 05) in cholesterol content when compared to steaks and chops cooked without...

Dohmann, Sharon Sue

2012-06-07

130

Paretic Muscle Atrophy and Non-Contractile Tissue Content in Individual Muscles of the Post-Stroke Lower Extremity  

PubMed Central

Muscle atrophy is one of many factors contributing to post-stroke hemiparetic weakness. Since muscle force is a function of muscle size, the amount of muscle atrophy an individual muscle undergoes has implications for its overall force-generating capability post-stroke. In this study, post-stroke atrophy was determined bilaterally in fifteen leg muscles with volumes quantified using magnetic resonance imaging (MRI). All muscle volumes were adjusted to exclude non-contractile tissue content, and muscle atrophy was quantified by comparing the volumes between paretic and non-paretic sides. Non-contractile tissue or intramuscular fat was calculated by determining the amount of tissue excluded from the muscle volume measurement. With the exception of the gracilis, all individual paretic muscles examined had smaller volumes in the non-paretic side. The average decrease in volume for these paretic muscles was 23%. The gracilis volume, on the other hand, was approximately 11% larger on the paretic side. The amount of non-contractile tissue was higher in all paretic muscles except the gracilis, where no difference was observed between sides. To compensate for paretic plantar flexor weakness, one idea might be that use of the paretic gracilis actually causes the muscle to increase in size and not develop intramuscular fat. By eliminating non-contractile tissue from our volume calculations, we have presented volume data that more appropriately represents force-generating muscle tissue. Non-uniform muscle atrophy was observed across muscles and may provide important clues when assessing the effect of muscle atrophy on post-stroke gait. PMID:21945568

Ramsay, John W.; Barrance, Peter J.; Buchanan, Thomas S.; Higginson, Jill S.

2011-01-01

131

Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content  

NASA Astrophysics Data System (ADS)

The proteome of the marine cyanobacterium Synechococcus WH8102 was analyzed by nanospray liquid chromatography mass spectrometry (nLC-MS) with two major goals: to provide a first examination of the relative abundance of the most abundant proteins in this important microbe and to provide the necessary mass spectra for future quantification of biogeochemically significant proteins. Analyses of 37 nLC-MS runs of whole cell tryptic digestions and SDS-PAGE gel separated tryptic digestions resulted in a total of 636 proteins identified, 376 identified with two or more tryptic peptides. The identifications used the Sequest algorithm with stringent data filters on 54003 observed peptides, 3066 of which were unique, with a false positive rate of 2.2%. These measured proteins represent ~ 25.2% (14.8% with >= 2 peptides) of the open reading frames (ORFs) in the genome, similar to or higher than the percentage found in other cyanobacterial proteome studies thus far. The relative abundance of the more abundant proteins in the proteome was examined using the exponentially modified protein abundance index from a single nLC-MS run that identified 372 proteins (14.7% of the ORFs) from 7743 observed peptides (1224 unique peptides). Estimates of the relative abundance showed the photosynthesis and respiration category contributing approximately 32% of the total detected protein, hypothetical proteins contributing about 16%, and translation about 12%. Of biogeochemical interest, multiple types of nitrogen assimilation systems were observed to be simultaneously expressed as proteins, only 5 of the 21 B12 biosynthesis proteins were identified likely due to low abundance, and the metalloproteins metallothionein and nickel superoxide dismutase were relatively abundant. In contrast to previous predictions of a high photosystem I: photosystem II ratio of approximately 3 in the cyanobacteria and a resultant high cellular iron content, the ratio of the average relative abundances of all detected proteins in each photosystem was only 1.2, and the median was only 0.72 based on the median. These results contradict the earlier predication of a biochemical basis for a high cellular iron in Synechococcus and may extend to the marine cyanobacteria in general.

Saito, M. A.; Bertrand, E. M.; Bulygin, V.; Moran, D.; Waterbury, J. B.

2008-12-01

132

Dielectric properties of lung tissue as a function of air content.  

PubMed

Dielectric measurements were made on lung samples with different electrode systems in the frequency range 5 kHz-100 kHz. In the case of plate electrodes and spot electrodes, the effects of electrode polarization were partly corrected. An air filling factor F is defined, which is determined from the mass and volume of the sample. The results indicate that the electrical properties of lung tissue are highly dependent on the condition of the tissue. Furthermore they show that the conductivity sigma as well as the relative permittivity epsilon r decreases with increasing F. This is discussed using histological material. Using a simple theoretical model, the decrease of sigma and epsilon r is explained by the thinning of the alveolar walls as well as by the deformation of the epithelial cells and blood vessels through the expansion of the alveoli. PMID:8346281

Nopp, P; Rapp, E; Pfützner, H; Nakesch, H; Ruhsam, C

1993-06-01

133

Sensing Lanthanide Metal Content in Biological Tissues with Magnetic Resonance Spectroscopy  

PubMed Central

The development and validation of MRI contrast agents consisting of a lanthanide chelate often requires a determination of the concentration of the agent in ex vivo tissue. We have developed a protocol that uses 70% nitric acid to completely digest tissue samples that contain Gd(III), Dy(III), Tm(III), Eu(III), or Yb(III) ions, or the MRI contrast agent gadodiamide. NMR spectroscopy of coaxial tubes containing a digested sample and a separate control solution of nitric acid was used to rapidly and easily measure the bulk magnetic susceptibility (BMS) shift caused by each lanthanide ion and gadodiamide. Each BMS shift was shown to be linearly correlated with the concentration of each lanthanide ion and gadodiamide in the 70% nitric acid solution and in digested rat kidney and liver tissues. These concentration measurements had outstanding precision, and also had good accuracy for concentrations ?10 mM for Tm(III) Eu(III), and Yb(III), and ?3 mM for Gd(III), gadodiamide, and Dy(III). Improved sample handling methods are needed to improve measurement accuracy for samples with lower concentrations. PMID:24152931

Hingorani, Dina V.; Gonzalez, Sandra I.; Li, Jessica F.; Pagel, Mark D.

2013-01-01

134

Body retention and tissue distribution of59Fe and 54Mn in newborn rats fed iron-supplemented cow's milk  

E-print Network

», Nuclear Chicago, USA). S9Fe and 54Mn activities in the liver, spleen and intestinal tract were determined). The distribution of radioactive iron and manganese in the gastrointestinal tract, liver and spleen (table 2 retention in the liver as well, but to a lesser degree. Iron had no effect on 5'Mn retention in the spleen

Boyer, Edmond

135

Characterization of exogeous particale content: Of canine tissue urban vs. rural inhalation exposures  

NASA Astrophysics Data System (ADS)

Exogenous zinc (Zn) is emerging as a serious contaminant in the environment. Yearly deposition of zinc particles line heavily traveled inner city roadways and less traveled rural roadways. Particle size for zinc ranges from approximately PM10 to PM 2.5 microm or less. These fine particles contain microscopic solids or liquids that can cause serious health problems. PM10 are considered to be "thoracic" sized particles, with the mass fraction of inhaled particles penetrating beyond the larynx. Whereas, PM2.5 are considered to be "respirable" sized particles, with the mass fraction of inhaled particles penetrating to the unciliated airways. Exogenous zinc can be used as a quantifiable marker to contrast the differences in exposures in canines originating from urban and rural environments. These exposures are analyzed using a scanning electron microscope with energy dispersive X-ray spectrometry, and usage of a morphometric point counting method for a physical count and categorization of composition of inhaled retained particle content.

Kennedy, Jamell

136

Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism.  

PubMed

The Indian traditional system of medicine prescribed plant therapies for diseases including diabetes mellitus called madhumeh in Sanskrit. One such plant mentioned in Ayurveda is Pterocarpus marsupium (PM). In the present study, aqueous extract of PM (1 g/kg PO) was assessed for its effect on glycogen levels of insulin dependent (skeletal muscle and liver), insulin-independent tissues (kidneys and brain) and enzymes such as glucokinase (GK), hexokinase (HK), and phosphofructokinase (PFK). Administration of PM led to decrease in blood glucose levels by 38 and 60% on 15th and 30th day of the experiment. Liver and 2-kidney weight expressed as percentage of body-weight was significantly increased in diabetics (p < 0.0005) vs. normal controls and this alteration in the renal weight (p < 0.0005) but not liver weight was normalized by feeding of PM extract. Renal glycogen content increased by over 10-fold while hepatic and skeletal muscle glycogen content decreased by 75 and 68% in diabetic controls vs. controls and these alteration in glycogen content was partly prevented by PM. Activity of HK, GK and PFK in diabetic controls was 35,50 and 60% of the controls and PM completely corrected this alteration in PFK and only partly in HK and GK. PMID:12482025

Grover, Jagdish Kumari; Vats, Vikrant; Yadav, Satyapal

2002-12-01

137

Heavy Metal Contents in Tissues of Dominant Species of the Benthos and in Bottom Sediments of Zolotoi Rog Bay, Sea of Japan  

Microsoft Academic Search

Data on heavy metal contents in polychaetes and free-living nematodes inhabiting the bottom sediments of Zolotoi Rog Bay near the port of Vladivostok are reported. Chronically high contents of heavy metals (Fe, Cu, Zn, and Cd) were found in the bottom sediments and in the infauna. The levels of some toxic elements in tissues of the polychaete Dorvillea (Schistomeringos) japonica

I. L. Davydkova; N. P. Fadeeva; L. T. Kovekovdova; V. I. Fadeev

2005-01-01

138

The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low-carbon steel  

Microsoft Academic Search

The complex (B+C) diffusion layers have been formed on chromium- and nickel-based low-carbon steels. Gas boriding applied to these steels that have been previously carburized enables the production of wear-resistant borocarburized layers. After combined surface hardening with boron and carbon in the microstructure two zones have been observed: iron borides (FeB+Fe2B) and carburized zones. The iron borides in borocarburized layer

M. Kulka; A. Pertek

2003-01-01

139

MRI measures of corpus callosum iron and myelin in early Huntington's disease.  

PubMed

Increased iron in subcortical gray matter (GM) structures of patients with Huntington's disease (HD) has been suggested as a causal factor in neuronal degeneration. But how iron content is related to white matter (WM) changes in HD is still unknown. For example, it is not clear whether WM changes share the same physiopathology (i.e. iron accumulation) with GM or whether there is a different mechanism. The present study used MRI to examine iron content in premanifest gene carriers (PreHD, n = 25) and in early HD patients (n = 25) compared with healthy controls (n = 50). 3T MRI acquisitions included high resolution 3D T1, EPI sequences for diffusion tensor imaging (DTI) as an indirect measure of tissue integrity, and T2*-weighted gradient echo-planar imaging for MR-based relaxometry (R2*), which provides an indirect measure of ferritin/iron deposition in the brain. Myelin breakdown starts in the PreHD stage, but there is no difference in iron content values. Iron content reduction manifests later, in the early HD stage, in which we found a lower R2* parameter value in the isthmus. The WM iron reduction in HD is temporally well-defined (no iron differences in PreHD subjects and iron differences only in early HD patients). Iron level in callosal WM may be regarded as a marker of disease state, as iron does not differentiate PreHD subjects from controls but distinguishes between PreHD and HD. PMID:24895252

Di Paola, M; Phillips, O R; Sanchez-Castaneda, C; Di Pardo, A; Maglione, V; Caltagirone, C; Sabatini, U; Squitieri, F

2014-07-01

140

Ultra High Content Image Analysis and Phenotype Profiling of 3D Cultured Micro-Tissues  

PubMed Central

In many situations, 3D cell cultures mimic the natural organization of tissues more closely than 2D cultures. Conventional methods for phenotyping such 3D cultures use either single or multiple simple parameters based on morphology and fluorescence staining intensity. However, due to their simplicity many details are not taken into account which limits system-level study of phenotype characteristics. Here, we have developed a new image analysis platform to automatically profile 3D cell phenotypes with 598 parameters including morphology, topology, and texture parameters such as wavelet and image moments. As proof of concept, we analyzed mouse breast cancer cells (4T1 cells) in a 384-well plate format following exposure to a diverse set of compounds at different concentrations. The result showed concentration dependent phenotypic trajectories for different biologically active compounds that could be used to classify compounds based on their biological target. To demonstrate the wider applicability of our method, we analyzed the phenotypes of a collection of 44 human breast cancer cell lines cultured in 3D and showed that our method correctly distinguished basal-A, basal-B, luminal and ERBB2+ cell lines in a supervised nearest neighbor classification method. PMID:25289886

Di, Zi; Klop, Maarten J. D.; Rogkoti, Vasiliki-Maria; Le Devedec, Sylvia E.; van de Water, Bob; Verbeek, Fons J.; Price, Leo S.; Meerman, John H. N.

2014-01-01

141

Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice  

PubMed Central

Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes) has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS) and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains) and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA) metabolism, in comparison to their non-transgenic siblings (NTS). Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of yellow stripe like protein family, and a transporter of the NA-Fe(II) complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content. PMID:23755054

Wang, Meng; Gruissem, Wilhelm; Bhullar, Navreet K.

2013-01-01

142

Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice.  

PubMed

Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world's population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes) has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS) and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains) and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA) metabolism, in comparison to their non-transgenic siblings (NTS). Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of yellow stripe like protein family, and a transporter of the NA-Fe(II) complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content. PMID:23755054

Wang, Meng; Gruissem, Wilhelm; Bhullar, Navreet K

2013-01-01

143

Effects of Different Dietary Cadmium Levels on Growth and Tissue Cadmium Content in Juvenile Parrotfish, Oplegnathus fasciatus  

PubMed Central

This feeding trial was carried out to evaluate the effects of different dietary cadmium levels on growth and tissue cadmium content in juvenile parrotfish, Oplegnathus fasciatus, using cadmium chloride (CdCl2) as the cadmium source. Fifteen fish averaging 5.5±0.06 g (mean±SD) were randomly distributed into each of twenty one rectangular fiber tanks of 30 L capacity. Each tank was then randomly assigned to one of three replicates of seven diets containing 0.30 (C0), 21.0 (C21), 40.7 (C41), 83.5 (C83), 162 (C162), 1,387 (C1,387) and 2,743 (C2,743) mg cadmium/kg diet. At the end of sixteen weeks of feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of fish fed C21 were significantly higher than those of fish fed C83, C162, C1,387 and C2,743 (p<0.05). Weight gain, SGR and FE of fish fed C0, C21 and C41 were significantly higher than those of fish fed C162, C1,387 and C2,743. Protein efficiency ratio of fish fed C0, C21 and C41 were significantly higher than those of fish fed C1,387 and C2,743. Average survival of fish fed C0, C21, C41 and C162 were significantly higher than that of fish fed C2,743. Tissue cadmium concentrations increased with cadmium content of diets. Cadmium accumulated the most in liver, followed by gill and then muscle. Muscle, gill and liver cadmium concentrations of fish fed C0, C21, C41 and C83 were significantly lower than those of fish fed C162, C1,387 and C2,743. Based on the ANOVA results of growth performance and tissue cadmium concentrations the safe dietary cadmium level could be lower than 40.7 mg Cd/kg diet while the toxic level could be higher than 162 mg Cd/kg diet. PMID:25049927

Okorie, Okorie E.; Bae, Jun Young; Lee, Jun-Ho; Lee, Seunghyung; Park, Gun-Hyun; Mohseni, Mahmoud; Bai, Sungchul C.

2014-01-01

144

Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content  

NASA Technical Reports Server (NTRS)

Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

Miyoshi, K.; Buckley, D. H.

1979-01-01

145

Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Mössbauer spectroscopy with a high velocity resolution  

NASA Astrophysics Data System (ADS)

Application of Mössbauer spectroscopy with a high velocity resolution (4096 channels) for comparative analysis of iron cores in a human liver ferritin and its pharmaceutically important models Imferon, Maltofer® and Ferrum Lek as well as in iron storage proteins in chicken liver and spleen tissues allowed to reveal small variations in the 57Fe hyperfine parameters related to differences in the iron core structure. Moreover, it was shown that the best fit of Mössbauer spectra of these samples required different number of components. The latter may indicate that the real iron core structure is more complex than that following from a simple core-shell model. The effect of different living conditions and age on the iron core in chicken liver was also considered.

Alenkina, I. V.; Oshtrakh, M. I.; Klepova, Yu. V.; Dubiel, S. M.; Sadovnikov, N. V.; Semionkin, V. A.

146

Resistance exercise modulates lipid plasma profile and cytokine content in the adipose tissue of tumour-bearing rats.  

PubMed

Cancer cachexia is a multifactorial syndrome characterised by progressive weight loss, frequently accompanied by anorexia, sarcopenia, and chronic systemic inflammation. The white adipose tissue is markedly affected by cachexia and contributes to this syndrome throught the secretion of pro-inflammatory factors which reach the adjacent tissues and the circulation. A nonpharmacologic intervention that may attenuate cancer cachexia is chronic physical activity, but the effect of resistance training upon adipose tissue inflammation in cachexia has never been examined. For that purpose we designed a protocol in which animals were randomly assigned to a control group (CT, n=7), a Tumour bearing group (TB, n=7), a Resistance Trained group (RT, n=7) and a Resistance Trained tumour bearing group (RTTB, n=7). Trained rats climbed a vertical ladder with an extra load attached to the tail, representing 75-90% of total body mass, 3 times per week, for 8 weeks. In the 6 th week of resistance training, tumour cells (3 × 10(7) Walker 256 carcinosarcoma) were inoculated in the tumour groups. Body, adipose tissue, muscle and tumour mass was determined, as well a blood biochemical parameters, and the hormone and cytokine profile assessed. The glycogen content of the liver and muscle was measured. IL-10, IL-6 and TNF-? protein expression was evaluated in the mesenteric adipose tissue (MEAT) examined. Resistance training increased by 9% body weight gain in RTTB (final weight 310.8 ± 9.8 g), when compared with TB (final weight 288.3 ± 4.9 g). LDL-c levels were decreased in RTTB (0.28 ± 0.9 mmol/L) by 43% when compared with TB (0.57 ± 0.1 mmol/L). HDL-c levels were increased in RTTB (1.31 ± 0.12 mmol/L) by 15% in regard to CT (1.13 ± 0.7 mmol/L) and 22% as compared with TB (1.07 ± 0.07 mmol/L). RTTB testosterone levels (577 ± 131 ng/mL) were 55% higher when compared with CT (254 ± 41.3 ng/mL) and 63% higher when compared with TB (221 ± 23.1 ng/mL). Adiponectin levels were augmented in RT (23 ?g/mL) by 43% when compared with TB (11 ?g/mL). Protein expression of IL-6 was increased 38% in TB MEAT (5.95 pg/?g), as compared with CT (3.64 pg/?g) and 50% compared with RTTB (2.91 pg/?g). Similar results with respect to TNF-? TB (7.18 pg/?g) were observed: 39% and 46%, higher protein expression in comparison with CT (4.63 pg/?g) and RTTB (3.8 pg/?g), respectively. IL-10 protein expression was found to be increased in TB (4.4 pg/?g) and RTTB (3.2 pg/?g) 50% and 47%, respectively, in comparison with CT (1.2 pu/?g). The IL-10/TNF-? ratio was higher in RTTB in relation to all others experimental groups. The results show a robust effect of resistance exercise training in preventing important symptoms of cancer cachexia, thus strongly suggesting it may appear as an alternative to endurance exercise as a non-pharmacological therapy in the management of this syndrome. PMID:23178146

Donatto, F F; Neves, R X; Rosa, F O; Camargo, R G; Ribeiro, H; Matos-Neto, E M; Seelaender, M

2013-02-01

147

Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant  

PubMed Central

Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe–haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions. PMID:23682113

Sudre, Damien; Gutierrez-Carbonell, Elain; Rellan-Alvarez, Ruben; Briat, Jean-Francois

2013-01-01

148

Effect of aluminum content on environmental embrittlement in binary iron-aluminum alloys--Acoustic emission analysis  

SciTech Connect

Intermetallic iron aluminide tensile coupons with 8.5 wt% (16.1 at. %) aluminum were shown to be ductile at room temperature through the use of acoustic emission analysis combined with fractography. Room temperature brittleness of alloys with greater than 12 wt % (22 at. %) aluminum has deterred acceptance as structural materials. The cause of room temperature brittleness in iron aluminides has been determined to be a chemical reaction between the aluminum component and water vapor in the environment. All materials emit sound when stressed to the point of permanent, microscopic change. For metals and alloys this sound has frequencies in the MHz range, but is detectable by ultrasonic methods. The detected ultrasound is termed acoustic emission (AE). Terminology associated with the study of AE is idiomatic. An AE hit refers to continuous detection of ultrasound by one transducer. The amplitude, rise time, duration, ring-down count, and acoustic energy of the hit are characteristic of the microscopic, physical activity taking place, but are unique for each specimen-apparatus system. Since each specimen is unique on a microscopic level, one test constitutes a study. One- to four-thousand data points are typical for an iron aluminide specimen. The individual hit shows that a permanent change has taken place, and the cause of that change can be sought through standard micrographic methods. Tensile studies have been reported elsewhere and this work is a continuation of these studies.

Woodyard, J.R. (Bureau of Mines, Albany, OR (United States)); Sikka, V.K. (Oak Ridge National Lab., Oak Ridge, TN (United States))

1993-12-01

149

Influence of carbon on physics and chemistry of iron and experimental constraints on carbon content of Earth's core  

NASA Astrophysics Data System (ADS)

Volatile elements such as sulfur, phosphorous, silicon, and oxygen, nitrogen, carbon, and hydrogen affect the melting behavior, elasticity, and chemistry of Earth materials and therefore play crucial roles in the differentiation and evolution of the planet. Limited understanding of the Earth's budget and pathways of volatiles arises from uncertainties in the nature and abundances of light elements in the core. Recent studies suggest that iron carbide may exist as a major component of the inner core, making the central sphere potentially the largest reservoir of carbon in Earth. Presented here are experimental results revealing pressure- and temperature-induced magnetic transitions in Fe3C and Fe7C3 and associated effects on their densities and sound velocities, the melting relation of the Fe-C binary system, and the partitioning and diffusion of carbon across the inner-core boundary (ICB) and core-mantle boundary (CMB). By comparing the iron-carbon system with other iron-light-element systems, the abundance and dynamics of carbon in the Earth's interior will be assessed.

Li, J.

2012-12-01

150

HEPCIDIN AND IRON HOMEOSTASIS  

PubMed Central

Despite fluctuations in dietary iron intake and intermittent losses through bleeding, the plasma iron concentrations in humans remain stable at 10–30 ?M. While most of the iron entering blood plasma comes from recycling, appropriate amount of iron is absorbed from the diet to compensate for losses and maintain nontoxic amounts in stores. Plasma iron concentration and iron distribution are similarly regulated in laboratory rodents. The hepatic peptide hepcidin was identified as the systemic iron-regulatory hormone. In the efferent arc, hepcidin regulates intestinal iron absorption, plasma iron concentrations, and tissue iron distribution by inducing degradation of its receptor, the cellular iron exporter ferroportin. Ferroportin exports iron into plasma from absorptive enterocytes, from macrophages that recycle the iron of senescent erythrocytes, and from hepatocytes that store iron. In the more complex and less well understood afferent arc, hepatic hepcidin synthesis is transcriptionally regulated by extracellular and intracellular iron concentrations through a molecular complex of bone morphogenetic protein receptors and their iron-specific ligands, modulators and iron sensors. Through as yet undefined pathways, hepcidin is also homeostatically regulated by the iron requirements of erythroid precursors for hemoglobin synthesis. In accordance with the role of hepcidin-mediated iron redistribution in host defense, hepcidin production is regulated by inflammation as well. Increased hepcidin concentrations in plasma are pathogenic in iron-restrictive anemias including anemias associated with inflammation, chronic kidney disease and some cancers. Hepcidin deficiency causes iron overload in hereditary hemochromatosis and ineffective erythropoiesis. Hepcidin, ferroportin and their regulators represent potential targets for the diagnosis and treatment of iron disorders and anemias. PMID:22306005

Ganz, Tomas; Nemeth, Elizabeta

2014-01-01

151

Iron and Diabetes Risk  

PubMed Central

Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions—hereditary hemochromatosis and thalassemia—but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by ?-cell failure and insulin resistance. Iron is also a factor in the regulation of metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood, but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways. PMID:23473030

Simcox, Judith A.; McClain, Donald A.

2013-01-01

152

Material-Related Forensic Analysis and Special Testing: Assessment of Original Free Lime Content of Weathered Iron and Steel Slag.  

National Technical Information Service (NTIS)

The purpose of Work Order No. 96-09-21 is to conduct Thermogravimetric Analysis and either ASTMC 114 total lime content and/or the anhydrous ethylene glycol total lime content determinations. The hydration and dissolution of calcium oxide to form calcium ...

M. Boyle, E. Shkolnik

2000-01-01

153

Mechanisms of mammalian iron homeostasis  

PubMed Central

Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

2012-01-01

154

Brain Iron Detected by SWI High Pass Filtered Phase Calibrated with Synchrotron X-Ray Fluorescence  

PubMed Central

Purpose To test the ability of susceptibility weighted images (SWI) and high pass filtered phase images to localize and quantify brain iron. Materials and Methods Magnetic resonance (MR) images of human cadaver brain hemispheres were collected using a gradient echo based SWI sequence at 1.5T. For X-ray fluorescence (XRF) mapping, each brain was cut to obtain slices that reasonably matched the MR images and iron was mapped at the iron K-edge at 50 or 100 ?m resolution. Iron was quantified using XRF calibration foils. Phase and iron XRF were averaged within anatomic regions of one slice, chosen for its range of iron concentrations and nearly perfect anatomic correspondence. X-ray absorption spectroscopy (XAS) was used to determine if the chemical form of iron was different in regions with poorer correspondence between iron and phase. Results Iron XRF maps, SWI, and high pass filtered phase data in nine brain slices from five subjects were visually very similar, particularly in high iron regions. The chemical form of iron could not explain poor matches. The correlation between the concentration of iron and phase in the cadaver brain was estimated as cFe [?g/g tissue] = 850?? + 110. Conclusion The phase shift ?? was found to vary linearly with iron concentration with the best correspondence found in regions with high iron content. PMID:20512886

Hopp, Karla; Popescu, Bogdan F.Gh.; McCrea, Richard P.E.; Harder, Sheri L.; Robinson, Christopher A.; Haacke, Mark E.; Rajput, Ali H.; Rajput, Alex; Nichol, Helen

2013-01-01

155

Metal contents in liver tissues of non-fledged Goldeneye, Bucephala clangula , ducklings: A comparison between samples from acidic, circumneutral, and limed lakes in South Sweden  

Microsoft Academic Search

The risk of increased exposure to metals for a vertebrate predator foraging on aquatic insects in acidified lakes was investigated through analyses of the content of Al, As, Ca, Cd, Cu, Fe, Hg, Mn, Pb, Ru, Se, and Zn in the liver tissue of 42 non-fledged Goldeneye,Bucephala clangula, ducklings from acidic, circumneutral, and limed lakes in South Sweden. No indications

Mats O. G. Eriksson; Lennart Henrikson; Hans G. Oscarson

1989-01-01

156

Analysis of iron, zinc, selenium and cadmium in paraffin-embedded prostate tissue specimens using inductively coupled plasma mass-spectrometry  

USGS Publications Warehouse

Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a valuable and abundant resource of pathologic material for various biomedical studies. In the present study, we report the application of high-resolution inductively coupled mass-spectrometry (ICP-MS) for quantification of Fe, Zn, Se and Cd in FFPE prostate tissue. These elements have a possible role in the development of prostate diseases: while Zn and Se are needed for a healthy prostate, Cd shows multiple toxic and carcinogenic effects. Excessive accumulation of Fe induces the production of highly reactive hydroxyl radical species, which may play a role in cancer etiopathogenesis. To assess whether the levels of these metals in the FFPE prostate tissue represent their original content, we compared their levels with those in the fresh tissue (on dry weight basis) in samples obtained from 15 patients. We found that in FFPE tissue, the recoveries of Se, Fe, Cd and Zn were progressively decreased, 97??11% (r=0.88), 82??22% (r=0.86), 59??23% (r=0.69) and 24??11% (r=0.38), respectively. Thus, the use of correction factors, determined as k=0.16 for Se, k=0.20 for Fe, k=0.27 for Cd and k=0.67 for Zn, is required to estimate the retrospective levels of these elements in the parental non-processed fresh (wet) prostate tissue. The technique used in this study enables the analysis of archival FFPE prostate tissue for the concentrations of Fe, Zn, Se and Cd to study association between the levels of these metals and prostate disease. ?? 2008.

Sarafanov, A. G.; Todorov, T. I.; Kajdacsy-Balla, A.; Gray, M. A.; Macias, V.; Centeno, J. A.

2008-01-01

157

Viscosity and electrical conductivity of glass melts as a function of waste composition. [Effect of iron and aluminum content of viscosity and electrical conductivity  

Microsoft Academic Search

Radioactive waste at the Savannah River Plant contains high concentrations of nonradioactive compounds of iron and aluminum. Simulated waste compositions containing varying ratios of iron to aluminum were added to glass melts to determine the effect on the melt properties. Waste containing high-aluminum increased the melt viscosity, but waste containing high-iron reduced the melt viscosity. Aluminum and iron both reduced

M. J. Plodinec; J. R. Wiley

1979-01-01

158

Influence of chelation and oxidation state on vanadium bioavailability, and their effects on tissue concentrations of zinc, copper, and iron  

Microsoft Academic Search

Today, vanadium compounds are frequently included in nutritional supplements and are also being developed for therapeutic\\u000a use in diabetes mellitus. Previously, tissue uptake of vanadium from bis(maltolato)oxovanadium(IV) (BMOV) was shown to be\\u000a increased compared to its uptake from vanadyl sulfate (VS). Our primary objective was to test the hypothesis that complexation\\u000a increases vanadium uptake and that this effect is independent

Katherine H. Thompson; Yoko Tsukada; Zhaoming Xu; Mary Battell; John H. McNeill; Chris Orvig

2002-01-01

159

The Metal Content of Bulge Field Stars from FLAMES-GIRAFFE Spectra. I. Stellar parameters and Iron Abundances  

E-print Network

We determine the iron distribution function (IDF) for bulge field stars, in three different fields along the Galactic minor axis and at latitudes b=-4 deg, b=-6 deg, and b=-12 deg. A fourth field including NGC6553 is also included in the discussion. About 800 bulge field K giants were observed with the GIRAFFE spectrograph of FLAMES@VLT at spectral resolution R~20,000. Several of them were observed again with UVES at R~45,000 to insure the accuracy of the measurements. The LTE abundance analysis yielded stellar parameters and iron abundances that allowed us to construct an IDF for the bulge that, for the first time, is based on high-resolution spectroscopy for each individual star. The IDF derived here is centered on solar metallicity, and extends from [Fe/H]~ -1.5 to [Fe/H]~ +0.5. The distribution is asymmetric, with a sharper cutoff on the high-metallicity side, and it is narrower than previously measured. A variation in the mean metallicity along the bulge minor axis is clearly between b=-4 deg and b=-6 deg ([Fe/H] decreasing by ~ 0.6 dex per kpc). The field at b=-12 deg is consistent with the presence of a gradient, but its quantification is complicated by the higher disk/bulge fraction in this field. Our findings support a scenario in which both infall and outflow were important during the bulge formation, and then suggest the presence of a radial gradient, which poses some challenges to the scenario in which the bulge would result solely from the vertical heating of the bar.

M. Zoccali; V. Hill; A. Lecureur; B. Barbuy; A. Renzini; D. Minniti; A. Gomez; S. Ortolani

2008-05-08

160

The effect of age on the growth rate of tissues and organs and the percentage content of edible and nonedible carcass components in Pekin ducks.  

PubMed

Age has a significant effect on carcass tissue composition, which is an important consideration in slaughter animals because age-related changes are observed in both edible and nonedible carcass components. In this study, the above changes were analyzed in Pekin ducks. The weight of individual edible and nonedible components in ducks increased for different periods of time, and the growth rate of tissue components varied considerably. The percentage content of edible components in the total BW of Pekin ducks increased from 42.8% in wk 1 to 59.9% in wk 8, mostly due to a significant (13.3%) increase in the share of muscle tissue. The percentage content of skin and subcutaneous fat remained at a stable level from wk 4, whereas the share of giblets decreased from 6 wk of age. The percentage content of nonedible components in the total BW of Pekin ducks decreased from 48.6% in wk 1 to 34.6% in wk 8, mainly due to a decrease in slaughter offal content (from 39.7% in wk 1 to 27.2% in wk 8). Minor changes were noted in the proportion of bones (11.7% in wk 1 and 10.9% in wk 8). PMID:22802201

Murawska, D

2012-08-01

161

Pilot study to visualise and measure skin tissue oxygenation, erythema, total haemoglobin and melanin content using index maps in healthy controls  

NASA Astrophysics Data System (ADS)

We report on a method for analysing multispectral images of skin in vivo for the measurement and visualisation of skin characteristics. Four different indices were used to characterise skin tissue oxygenation, erythema, total haemoglobin and melanin content. Index values were calculated pixel-wise and combined to create index maps to visualise skin properties. Quantitative measurement of tissue oxygenation saturation was possible by calibrating the oxygenation index using a commercial, calibrated oximeter. Index maps were tested by arterial occlusion of the index finger with multispectral images taken before, during and after occlusion in a pilot study with 10 healthy controls.

Poxon, Ian; Wilkinson, Jack; Herrick, Ariane; Dickinson, Mark; Murray, Andrea

2014-02-01

162

Iron requirements in erythropoietin therapy.  

PubMed

When erythropoietin (epoetins or darbepoetin) is used to treat the anemias of chronic renal failure, cancer chemotherapy, inflammatory bowel diseases, HIV infection and rheumatoid arthritis, functional iron deficiency rapidly ensues unless individuals are iron-overloaded from prior transfusions. Therefore, iron therapy is essential when using erythropoietin to maximize erythropoiesis by avoiding absolute and functional iron deficiency. Body iron stores (800-1200 mg) are best maintained by providing this much iron intravenously in a year, or more if blood loss is significant (in hemodialysis patients this can be 1-3 g). There is no ideal method for monitoring iron therapy, but serum ferritin and transferrin iron saturation are the most common tests. Iron deficiency is also detected by measuring the percentage of hypochromic red blood cells, content of hemoglobin in reticulocytes, soluble transferrin receptor levels, and free erythrocyte protoporphyrin values, but iron overload is not monitored by these tests. Iron gluconate and iron sucrose are the safest intravenous medications. PMID:15737895

Eschbach, Joseph Wetherill

2005-06-01

163

Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts.  

PubMed

The objective of this study was to determine the content and the bioaccessibility of minerals (Fe, Zn, Ca and Mg) in commonly consumed food products, such as cereal groats, rice, leguminous grains and nuts purchased from the local market. The contents of Fe, Zn, Ca and Mg in foods were assayed after dry ashing of samples, while the bioaccessibility of these minerals after enzymatic in vitro digestion, was determined by flame atomic absorption spectrometry. A relatively high content of Fe was found in cashew nuts and green lentils, while cashew nuts and buckwheat groats had the highest concentration of Zn. It was found that the highest amount of macro-elements was generally in nuts, in particular: brazil nuts (Ca and Mg), cashews (Mg) and hazelnuts (Ca and Mg). Concerning the mineral bioaccessibility, the highest values for Fe were obtained in cashew nuts and green lentils (2.8 and 1.7 mg/100 g), for Zn in green lentils (2.1 mg/100 g), for Ca in brazil nuts and shelled pea (32.6 and 29.1 mg/100 g), while for Mg in shelled peas and green lentils (43.4 and 33.9 mg/100 g). Generally, the best sources of bioaccessible minerals seem to be leguminous grains and nuts. PMID:24587537

Suliburska, Joanna; Krejpcio, Zbigniew

2014-03-01

164

Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.  

PubMed

Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth. PMID:22313773

Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi

2012-01-01

165

Iron deficiency in Europe.  

PubMed

In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established. But stronger evidence is needed before rejecting the hypothesis that greater iron stores increase the incidence of CVD or cancer. At present, currently available data do not support radical changes in dietary recommendations. They include all means for increasing the content of dietary factors enhancing iron absorption or reducing the content of factors inhibiting iron absorption. Increased knowledge and increased information about factors may be important tools in the prevention of iron deficiency in Europe. PMID:11683548

Hercberg, S; Preziosi, P; Galan, P

2001-04-01

166

Nitrogen Content of Letharia vulpina Tissue from Forests of the Sierra Nevada, California: Geographic Patterns and Relationships to Ammonia Estimates and Climate  

Microsoft Academic Search

Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated\\u000a and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns.\\u000a Collections were co-located with plots where epiphytic macrolichen communities are used

Sarah Jovan; Tom Carlberg

2007-01-01

167

Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain  

Microsoft Academic Search

Although hemochromatosis and pathological situations due to chronic iron overload have been extensively described, there is\\u000a little information about the influence of iron on other trace elements in the cell. The aim of this study was to investigate\\u000a changes in the concentration of zinc, manganese, and copper in the liver, spleen, and brain of rats after iron overload. Iron\\u000a overload

D. V. Vayenas; M. Repanti; A. Vassilopoulos; D. A. Papanastasiou

1998-01-01

168

Antioxidant Capacity and Total Phenolic Content in Fruit Tissues from Accessions of Capsicum chinense Jacq. (Habanero Pepper) at Different Stages of Ripening  

PubMed Central

In the past few years, there has been a renewed interest in studying a wide variety of food products that show beneficial effects on human health. Capsicum is an important agricultural crop, not only because its economic importance, but also for the nutritional values of its pods, mainly due to the fact that they are an excellent source of antioxidant compounds, and also of specific constituents such as the pungent capsaicinoids localized in the placental tissue. This current study was designed to evaluate the antioxidant capacity and total phenolic contents from fruits tissues of two Capsicum chinense accessions, namely, Chak k'an-iik (orange) and MR8H (red), at contrasting maturation stages. Results showed that red immature placental tissue, with a Trolox equivalent antioxidant capacity (TEAC) value of 55.59??mols?TE?g?1?FW, exhibited the strongest total antioxidant capacity using both the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the CUPRAC methods. Placental tissue also had the highest total phenolic content (27?g GAE 100?g?1?FW). The antioxidant capacity of Capsicum was directly related to the total amount of phenolic compounds detected. In particular, placentas had high levels of capsaicinoids, which might be the principal responsible for their strong antioxidant activities. PMID:24683361

Tuyub-Che, Jemina; Moo-Mukul, Angel; Vazquez-Flota, Felipe A.; Miranda-Ham, Maria L.

2014-01-01

169

Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition1[C][W][OA  

PubMed Central

Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505

Dussert, Stephane; Guerin, Chloe; Andersson, Mariette; Joet, Thierry; Tranbarger, Timothy J.; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne

2013-01-01

170

Nitrogen content of Letharia vulpina tissue from forests of the Sierra Nevada, California: geographic patterns and relationships to ammonia estimates and climate.  

PubMed

Nitrogen (N) pollution is a growing concern in forests of the greater Sierra Nevada, which lie downwind of the highly populated and agricultural Central Valley. Nitrogen content of Letharia vulpina tissue was analyzed from 38 sites using total Kjeldahl analysis to provide a preliminary assessment of N deposition patterns. Collections were co-located with plots where epiphytic macrolichen communities are used for estimating ammonia (NH(3)) deposition. Tissue N ranged from 0.6% to 2.11% with the highest values occurring in the southwestern Sierra Nevada (range: 1.38 to 2.11). Tissue N at 17 plots was elevated, as defined by a threshold concentration of 1.03%. Stepwise regression was used to determine the best predictors of tissue N from among a variety of environmental variables. The best model consisted only of longitude (r(2) = 0.64), which was reflected in the geographic distribution of tissue values: the southwestern Sierra Nevada, the high Sierras near the Tahoe Basin, and the Modoc Plateau, are three apparent N hotspots arranged along the tilted north-south axis of the study area. Withholding longitude and latitude, the best regression model suggested that NH(3) estimates and annual number of wetdays interactively affect N accumulation (r(2) = 0.61; % N approximately NH(3) + wetdays + (NH(3) x wetdays)). We did not expect perfect correspondence between tissue values and NH(3) estimates since other N pollutants also accumulate in the lichen thallus. Additionally, other factors potentially affecting N content, such as growth rate and leaching, were not given full account. PMID:17057974

Jovan, Sarah; Carlberg, Tom

2007-06-01

171

Vitamin E Supplementation and Stress Affect Tissue aTocopherol Content of Beef Heifers1,2  

Microsoft Academic Search

The effect of stress on tissue a- tocopherol was investigated in 16 crossbred heifers fed a corn\\/corn silage-based diet. For 28 d, eight heifers (379 ± 10 kg BW) received a dietary supplement of 1,000 IU of dl-a-tocopheryl acetate, whereas the controls (375 ± 10 kg BW) received no supplemental vitamin E. Tissue samples of plasma, red blood cells, liver,

C. F. Nockels; K. G. Odde; A. M. Craig

2010-01-01

172

Content and Redistribution of Vitamin E in Tissues of Wistar Rats Under Oxidative Stress Induced by Hydrazine  

Microsoft Academic Search

Hydrazine toxicity is associated with generation of several kinds of free radicals and oxidative stress in cell. Experiments\\u000a in vivo have demonstrated that oxidative stress could either diminish or increase concentration of vitamin E in some tissues. Thus\\u000a in the present study we performed experiments to determine whether hydrazine-induced oxidative stress would change the tissue\\u000a levels of the vitamin. Seven

A. Matuszkiewicz; R. A. Olek; J. J. Kaczor; W. Zió?kowski; T. Wakabayashi; J. Popinigis

2002-01-01

173

Effect of sex and dietary organic zinc on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens.  

PubMed

Zinc (Zn) is an essential mineral for animal development and function. A study was carried out to evaluate the effect of sex and dietary organic zinc (OZ) on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens. A total of 240 1-day-old male and 240 female broiler chicks (Cobb × Cobb) were assigned to two dietary levels of OZ (2 × 2 factorial) with six replicates per treatment (20 birds/replicate pen). The OZ supplementation levels were 0 and 25 ppm. Results showed that OZ supplementation did not affect the growth performance of male and female broilers, but the males showed significantly better (P < 0.05) growth performance than females did. Similarly, OZ supplementation did not affect the thickness of both the back and thigh skin of male and female broilers; however, males had thicker skin than females. Dietary OZ supplementation did not affect collagen contents in the skin and meat samples. Male broilers had higher skin collagen contents than females, but no sex difference was found in meat collagen contents. OZ supplementation did not affect the shear force values of skin and meat samples. Male broilers had higher shear force values of back skin than females, but not in the meat samples. Dietary OZ supplementation increased (P < 0.05) the thigh meat Zn content in both sexes. The plasma Ca content was significantly (P < 0.05) increased by dietary OZ supplementation; however, other blood parameters were not affected by dietary OZ supplementation. Males had higher plasma glucose and cholesterol content than females. It is concluded that dietary OZ supplementation at the level of 25 ppm does not affect the growth performance and skin quality of broiler chickens but increases the Zn content in thigh meat and Ca content in plasma of broiler chickens. Male broilers had better growth performance and skin quality than females. PMID:22167309

Salim, H M; Lee, H R; Jo, C; Lee, S K; Lee, Bong Duk

2012-06-01

174

Metal contents in liver tissues of non-fledged goldeneye, Bucephala clangula, ducklings: a comparison between samples from acidic, circumneutral, and limed lakes in south Sweden.  

PubMed

The risk of increased exposure to metals for a vertebrate predator foraging on aquatic insects in acidified lakes was investigated through analyses of the content of Al, As, Ca, Cd, Cu, Fe, Hg, Mn, Pb, Ru, Se, and Zn in the liver tissue of 42 non-fledged Goldeneye, Bucephala clangula, ducklings from acidic, circumneutral, and limed lakes in South Sweden. No indications of significantly different concentrations in samples from acidic lakes in comparison with circumneutral lakes were detected for any metal, but among individual birds from acidic lakes there were high contents of Hg. Liming probably affects the exposure to some metals; lower contents of Hg were recorded from limed lakes in comparison with acidic lakes, while the reverse trend was recorded for Cd and Mn. PMID:2923494

Eriksson, M O; Henrikson, L; Oscarson, H G

1989-01-01

175

Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds  

PubMed Central

Background Iron is an important micronutrient for all living organisms. Almost 25% of the world population is affected by iron deficiency, a leading cause of anemia. In plants, iron deficiency leads to chlorosis and reduced yield. Both animals and plants may suffer from iron deficiency when their diet or environment lacks bioavailable iron. A sustainable way to reduce iron malnutrition in humans is to develop staple crops with increased content of bioavailable iron. Knowledge of where and how iron accumulates in seeds of crop plants will increase the understanding of plant iron metabolism and will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells surrounding the provascular tissue of P. vulgaris and P. coccineus seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron storage protein in legumes was only detected in the amyloplasts of the seed embryo. Using the non-destructive micro-PIXE (Particle Induced X-ray Emission) technique we show that the tissue in the proximity of the provascular bundles holds up to 500 ?g g-1 of iron, depending on the genotype. In contrast to P. vulgaris and P. coccineus, we did not observe iron accumulation in the cells surrounding the provascular tissues of P. lunatus cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean and a Mesoamerican genotype. Conclusions The presented results emphasize the importance of complementing research in model organisms with analysis in crop plants and they suggest that iron distribution criteria should be integrated into selection strategies for bean biofortification. PMID:20149228

2010-01-01

176

Distribution and accumulation of Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles in the tissues of ICR mice  

PubMed Central

Free Cy5.5 dye and Cy5.5-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) have been routinely used for in vivo optical imaging. However, there is little information about the distribution and accumulation of free Cy5.5 dye and Cy5.5-labeled TCL-SPION in the tissues of mice. Free Cy5.5 dye (0.1 mg/kg body weight) and Cy5.5-labeled TCL-SPION (15 mg/kg body weight) were intravenously injected into the tail vein of ICR mice. The biodistribution and accumulation of the TCL-SPION and Cy5.5 were observed by ex vivo optical imaging and fluorescence signal generation at various time points over 28 days. Cy5.5 dye fluorescence in various organs was rapidly eliminated from 0.5 to 24 h post-injection. Fluorescence intensity of Cy5.5 dye in the liver, lung, kidney, and stomach was fairly strong at the early time points within 1 day post-injection. Cy5.5-labeled TCL-SPION had the highest fluorescence density in the lung at 0.5 h post-injection and decreased rapidly over time. Fluorescence density in liver and spleen was maintained over 28 days. These results suggest that TCL-SPION can be useful as a carrier of therapeutic reagents to treat diseases by persisting for long periods of time in the body. PMID:24366671

Hue, Jin Joo; Lee, Hu-Jang; Jon, Sangyong; Nam, Sang Yoon; Yun, Young Won; Kim, Jong-Soo

2013-01-01

177

Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice  

PubMed Central

The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is a central regulator of hepcidin expression and systemic iron balance. However, the molecular mechanisms by which iron is sensed to regulate BMP6-SMAD signaling and hepcidin expression are unknown. Here, we examined the effects of circulating and tissue iron on Bmp6-Smad pathway activation and hepcidin expression in vivo after acute and chronic enteral iron administration in mice. We demonstrated that both transferrin saturation and liver iron content independently influence hepcidin expression. While liver iron content is independently positively correlated with hepatic Bmp6 mRNA expression and overall activation of the Smad1/5/8 signaling pathway, transferrin saturation activates the downstream Smad1/5/8 signaling cascade, but does not induce Bmp6 mRNA expression in the liver. Hepatic inhibitory Smad7 mRNA expression is increased by both acute and chronic iron administration and mirrors overall activation of the Smad1/5/8 signaling cascade. In contrast to the Smad pathway, the extracellular signal-regulated kinase 1 and 2 (Erk1/2) mitogen-activated protein kinase (Mapk) signaling pathway in the liver is not activated by acute or chronic iron administration in mice. Conclusion Our data demonstrate that the hepatic Bmp6-Smad signaling pathway is differentially activated by circulating and tissue iron to induce hepcidin expression, while the hepatic Erk1/2 signaling pathway is not activated by iron in vivo. PMID:21488083

Corradini, Elena; Meynard, Delphine; Wu, Qifang; Chen, Shan; Ventura, Paolo; Pietrangelo, Antonello; Babitt, Jodie L.

2011-01-01

178

Iron and Iron Deficiency  

MedlinePLUS

... other types of foods eaten at the same meal. Foods containing heme iron (meat, poultry, and fish) ... heme iron absorption when eaten at the same meal. Substances (such as polyphenols, phytates, or calcium) that ...

179

Iron and thrombosis  

PubMed Central

Although essential for cell physiology, an increase or depletion of body iron has harmful effects on health. Apart from iron deficiency anemia and iron overload-related organ tissue damage, there are increasing evidences that body iron status is implicated in atherosclerotic cardiovascular diseases. The hypothesis formulated in 1981 that iron depletion may protect against cardiovascular events is intriguing and has generated a significant debate in the last two decades. Indeed, to study this phenomenon, several investigators have tried to design appropriate experimental and clinical studies and to identify useful biochemical and genetic markers of iron status. The results of the literature on the effect of iron deficiency and overload on vascular health are critically reviewed in this study from a pathogenic and clinical point of view. PMID:18066546

Targher, Giovanni; Montagnana, Martina; Lippi, Giuseppe

2007-01-01

180

Arterial Oxygen Content Is Precisely Maintained by Graded Erythrocytotic Responses in Settings of High/Normal Serum Iron Levels, and Predicts Exercise Capacity: An Observational Study of Hypoxaemic Patients with Pulmonary Arteriovenous Malformations  

PubMed Central

Background Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity. Methodology 165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100. Principal Findings There was wide variation in SaO2 on air (78.5–99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up. Significance Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ?78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses. PMID:24637882

Santhirapala, Vatshalan; Williams, Louisa C.; Tighe, Hannah C.; Jackson, James E.; Shovlin, Claire L.

2014-01-01

181

The effect of postharvest calcium application in hydro-cooling water on tissue calcium content, biochemical changes, and quality attributes of sweet cherry fruit.  

PubMed

To improve storage/shipping quality of sweet cherry (Prunus avium L.), the effect of calcium chloride (CaCl2) added to hydro-cooling water on physiological and biochemical processes related to fruit and pedicel quality was investigated on two major cultivars. The fruit tissue Ca content increased up to 29-85% logarithmically for 'Sweetheart' and 39-188% linearly for 'Lapins' as CaCl2 rate increased from 0.2% to 2.0% at 0 °C for 5 min. The increase of fruit tissue Ca content was accompanied by reductions in respiration rate, ascorbic acid degradation, and membrane lipid peroxidation, which enhanced total phenolics content and total antioxidant capacity, and resulted in increases in fruit firmness and pitting resistance and decreases in titratable acidity loss and decay of both cultivars. Pedicel browning was inhibited by CaCl2 at 0.2% and 0.5%, but increased by higher rates at 1.0% and 2.0%, possibly via modifying membrane lipid peroxidation. PMID:24799204

Wang, Yan; Xie, Xingbin; Long, Lynn E

2014-10-01

182

Determination of the glycosaminoglycan and collagen contents in tissue samples by high-resolution 1H NMR spectroscopy after DCl-induced hydrolysis.  

PubMed

The determination of the collagen and glycosaminoglycan (GAG) contents of native and particularly bioengineered tissues is of considerable interest because the collagen-to-GAG ratio determines the water content of the tissue, which is crucial regarding its mechanical properties. (1)H NMR spectroscopy subsequent to the hydrolysis of the sample by aqueous 6 M DCl at 353 K is used to determine the GAG and collagen contents simultaneously. Under these strongly acidic conditions the biopolymers of the extracellular matrix, collagen, and GAG are fragmented into their individual monomers, that is, free amino acids from collagen and monosaccharides from the polymer repeat units of GAGs. The amino acid amount can be easily determined in the presence of an internal standard by (1)H NMR spectroscopy because amino acids proved to be stable under acidic conditions. The carbohydrates are subject to charring in the presence of concentrated DCl, but glucosamine and galactosamine were found to be sufficiently stable for quantification under the chosen conditions. PMID:22713080

Riemer, Thomas; Nimptsch, Ariane; Nimptsch, Kathrin; Schiller, Jürgen

2012-07-01

183

Effects of a Diet Enriched with Polyunsaturated, Saturated, or Trans Fatty Acids on Cytokine Content in the Liver, White Adipose Tissue, and Skeletal Muscle of Adult Mice  

PubMed Central

This study analyzed the effect of diet enriched with 30% lipids on cytokines content in different tissues. Swiss male mice were distributed into four groups treated for 8 weeks with control (C, normolipidic diet); soybean oil (S); lard (L); and hydrogenated vegetable fat (H). We observed an increase in carcass fat in groups S and L, and the total amount of fatty deposits was only higher in group L compared with C group. The serum levels of free fatty acids were lower in the L group, and insulin, adiponectin, lipid profile, and glucose levels were similar among the groups. IL-10 was lower in group L in mesenteric and retroperitoneal adipose tissues. H reduced IL-10 only in retroperitoneal adipose tissue. There was an increase in IL-6 in the gastrocnemius muscle of the L group, and a positive correlation between TNF-? and IL-10 was observed in the livers of groups C, L, and H and in the muscles of all groups studied. The results suggested relationships between the quantity and quality of lipids ingested with adiposity, the concentration of free fatty acids, and cytokine production in white adipose tissue, gastrocnemius muscle, and liver. PMID:24027356

dos Santos, Bruno; Estadella, Debora; Hachul, Ana Claudia Losinskas; Okuda, Marcos Hiromu; Moreno, Mayara Franzoi; Oyama, Lila Missae; Ribeiro, Eliane Beraldi; Oller do Nascimento, Claudia Maria da Penha

2013-01-01

184

Decreased Content of Integral Membrane Calcium-Binding Protein (IMCAL) in Tissues of the Spontaneously Hypertensive Rat  

Microsoft Academic Search

Prior studies report that plasma membranes of the spontaneously hypertensive rat (Okamoto-Aoki strain) bind less calcium than do the corresponding preparations from Wistar Kyoto controls. The possibility that the differences result from a decrease in the content of integral membrane calcium-binding protein (IMCAL) was explored by the application of immunoassays with polyclonal antisera and a mouse monoclonal antibody. IMCAL binds

Szloma Kowarski; Lisa A. Cowen; David Schachter

1986-01-01

185

Ferritin: The Protein Nanocage and Iron Biomineral in Health and in Disease  

PubMed Central

At the center of iron and oxidant metabolism is the ferritin superfamily: protein cages with Fe2+ ion channels and catalytic di- Fe/O redox centers that initiate formation of caged Fe2O3 • H2O. Ferritin nanominerals, initiated within the protein cage, grow inside the cage cavity (5 or 8 nm in diameter). Ferritins contribute to normal iron flow, maintenance of iron concentrates for iron cofactor syntheses, sequestration of iron from invading pathogens, oxidant protection, oxidative stress recovery and, in diseases where iron accumulates excessively, to iron chelation strategies. In eukaryotic ferritins, biomineral order/crystallinity is influenced by nucleation channels between active sites and the mineral growth cavity. Animal ferritin cages contain, uniquely, mixtures of catalytically active (H) and inactive (L) polypeptide subunits with varied rates of Fe2+/O2 catalysis and mineral crystallinity. The relatively low mineral order in liver ferritin, for example, coincides with a high % of L subunits, and, thus, a low % of catalytic sites and nucleation channels. Low mineral order facilitates rapid iron turnover and the physiological role of liver ferritin as a general iron source for other tissues. Here, current concepts of ferritin structure/function/genetic regulation are discussed and related to possible therapeutic targets such as mini-ferritin/Dps protein active sites (selective pathogen inhibition in infection), the nanocage pores (iron chelation in therapeutic hypertransfusion), the mRNA noncoding, IRE-riboregulator (normalizing ferritin iron content after therapeutic hypertransfusion, and as protein nanovessels to deliver medicinal or sensor cargo. PMID:24102308

Theil, Elizabeth C.

2013-01-01

186

Effect of low initial envelope material moisture content on swine tissue degradation in layered livestock mortality composting systems  

Microsoft Academic Search

A 12-week laboratory study was conducted to assess the minimum initial moisture content of compost bulking (envelope) materials necessary to sustain desired heat production and completion of carcass decomposition during emergency composting of swine carcasses. During full-scale field testing of a semi-enclosed emergency composting procedure, first developed and used by the Canadian Food Inspection Agency during an avian influenza outbreak

Benjamin P. Crawford

2009-01-01

187

Bio-availability of iron from spinach ( Spanicia oleracea ) cultivated in soil fortified with graded levels of iron  

Microsoft Academic Search

In vitro availability of iron along with ascorbic acid, oxalic acid and phosphorus content of two varieties of spinach (Pusa Jyoti and Allgreen) cultivated in soil with different levels of added iron was determined. Addition of graded levels of iron to soil markedly increased the total iron and phosphorus contents and significantly decreased the bio-availability of iron, ascorbic acid and

N. Snehalatha Reddy; Vandana G. Malewar

1992-01-01

188

The effect of age on the growth rate of tissues and organs and the percentage content of edible and inedible components in Koluda White geese.  

PubMed

The parts of carcasses of slaughtered animals that are not intended for human consumption are referred to as inedible components. The total percentage of edible to inedible components in the carcasses of different poultry species is an important economic consideration. The objective of this study was to determine the effect of age on the growth rate of tissues and organs and the percentage change in edible to inedible components in geese. A flock of 240 Polish Koluda White geese was raised to 12 wk of age. The percentage content of edible components increased (P < 0.001) and the percentage content of inedible parts decreased (P < 0.001) as the birds grew older. Among edible components, the most considerable changes were noted in the growth rates of muscle tissue (10.5% increase; P < 0.001) and giblets (5.1% decrease; P < 0.001). The percentage share of muscle tissue increased to 10 wk of age. Lean meat weight increased from 175 g in wk 2 to 1,482 g in wk 12. The increase in lean meat weight varied considerably between body parts. The proportion of breast muscles in total meat weight increased substantially (by 26%), whereas the proportion of leg muscles decreased (by 34%). An increase in the weight of skin with subcutaneous fat was observed until the end of the rearing period, but the percentage content of this component remained at a similar level throughout the experiment (19.1 to 19.6%). The decrease in the percentage content of inedible components was mostly due to a decrease in the share of slaughter offal (by approximately 6.5%) because the proportion of bones remained at a stable level (approximately 11.9 to 11.5%). The weight of abdominal fat, which can be classified as edible or inedible, increased significantly with age, from 15.1 g in wk 2 to 205.1 g in wk 12, accounting for 1.6% and 4.0% total BW, respectively. PMID:23571352

Murawska, Daria

2013-05-01

189

Iron homeostasis in the liver  

PubMed Central

Iron is an essential nutrient that is tightly regulated. A principal function of the liver is the regulation of iron homeostasis. The liver senses changes in systemic iron requirements and can regulate iron concentrations in a robust and rapid manner. The last 10 years have led to the discovery of several regulatory mechanisms in the liver which control the production of iron regulatory genes, storage capacity, and iron mobilization. Dysregulation of these functions leads to an imbalance of iron, which is the primary causes of iron-related disorders. Anemia and iron overload are two of the most prevalent disorders worldwide and affect over a billion people. Several mutations in liver-derived genes have been identified, demonstrating the central role of the liver in iron homeostasis. During conditions of excess iron, the liver increases iron storage and protects other tissues, namely the heart and pancreas from iron-induced cellular damage. However, a chronic increase in liver iron stores results in excess reactive oxygen species production and liver injury. Excess liver iron is one of the major mechanisms leading to increased steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. PMID:23720289

Anderson, Erik R; Shah, Yatrik M

2014-01-01

190

Extracting phosphoric iron under laboratorial conditions smelting bog iron ores  

NASA Astrophysics Data System (ADS)

In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well.

Török, B.; Thiele, A.

2013-12-01

191

Toxicity of cadmium and lead in Gallus gallus domesticus assessment of body weight and metal content in tissues after metal dietary supplements.  

PubMed

The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments. PMID:24511699

Abduljaleel, Salwa A; Shuhaimi-Othman, M

2013-11-15

192

Immunological Characterization of the Teleost Adipose Tissue and Its Modulation in Response to Viral Infection and Fat-Content in the Diet  

PubMed Central

The immune response of the adipose tissue (AT) has been neglected in most animal models until recently, when the observations made in human and mice linking obesity to chronic inflammation and diabetes highlighted an important immune component of this tissue. In the current study, we have immunologically characterized the AT for the first time in teleosts. We have analyzed the capacity of rainbow trout (Oncorhynchus mykiss) AT to produce different immune mediators and we have identified the presence of local populations of B lymphocytes expressing IgM, IgD or IgT, CD8?+ cells and cells expressing major histocompatibility complex II (MHC-II). Because trout AT retained antigens from the peritoneal cavity, we analyzed the effects of intraperitoneal infection with viral hemorrhagic septicemia virus (VHSV) on AT functionality. A wide range of secreted immune factors were modulated within the AT in response to VHSV. Furthermore, the viral infection provoked a significant decrease in the number of IgM+ cells which, along with an increased secretion of IgM in the tissue, suggested a differentiation of B cells into plasmablasts. The virus also increased the number of CD8?+ cells in the AT. Finally, when a fat-enriched diet was fed to the fish, a significant modulation of immune gene expression in the AT was also observed. Thus, we have demonstrated for the first time in teleost that the AT functions as a relevant immune tissue; responsive to peritoneal viral infections and that this immune response can be modulated by the fat-content in the diet. PMID:25333488

Pignatelli, Jaime; Castro, Rosario; Gonzalez Granja, Aitor; Abos, Beatriz; Gonzalez, Lucia; Jensen, Linda B.; Tafalla, Carolina

2014-01-01

193

Iron deficiency and iron deficiency anemia in women.  

PubMed

Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection. PMID:25083899

Coad, Jane; Pedley, Kevin

2014-01-01

194

Iron Absorption in Drosophila melanogaster  

PubMed Central

The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

2013-01-01

195

Regulation of cellular iron metabolism  

PubMed Central

Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance. PMID:21348856

Wang, Jian; Pantopoulos, Kostas

2011-01-01

196

Mimicking liver iron overload using liposomal ferritin preparations.  

PubMed

Close monitoring of liver iron content is necessary to prevent iron overload in transfusion-dependent anemias. Liver biopsy remains the gold standard; however, MRI potentially offers a noninvasive alternative. Iron metabolism and storage is complicated and tissue/disease-specific. This report demonstrates that iron distribution may be more important than iron speciation with respect to MRI signal changes. Simple synthetic analogs of hepatic lysosomes were constructed from noncovalent attachment of horse-spleen ferritin to 0.4 microm diameter phospholipid liposomes suspended in agarose. Graded iron loading was achieved by varying ferritin burden per liposome as well as liposomal volume fraction. T1 and T2 relaxation times were measured on a 60 MHz NMR spectrometer and compared to simple ferritin-gel combinations. Liposomal-ferritin had 6-fold stronger T2 relaxivity than unaggregated ferritin but identical T1 relaxivity. Liposomal-ferritin T2 relaxivity also more closely matched published results from hemosiderotic marmoset liver, suggesting a potential role as an iron-calibration phantom. PMID:15004804

Wood, John C; Fassler, Joe D; Meade, Tom

2004-03-01

197

Using the accumulation of CBD-extractable iron and clay content to estimate soil age on stable surfaces and nearby slopes, Front Range, Colorado  

NASA Astrophysics Data System (ADS)

In many transport-limited environments, morphology, pedogenic iron and clay content provide a basis for estimating the exposure age of soils and associated landforms. We measured citrate-buffered dithionite (CBD)-extractable Fe (Fed) and clay concentration in fresh rock, saprolite, morainal and colluvial materials, and soil horizons from stable surfaces and hillslopes in the Colorado Front Range. Fresh igneous and high-grade metamorphic rocks contain < 1% Fed and 1 to 5% clay. As bedrock and surficial deposits age, Fed and clay accumulate from weathering and dustfall. Late Holocene regolith at warm, dry sites contains small amounts of Fed and clay, but relatively moist soils developed on early Holocene cirque deposits contain as much as 1.5% Fed and 8% clay. Concentrations and total profile accumulation of Fed and clay increase with age in soils developed on stable surfaces of glacial deposits as old as ~ 130 kyr. On stable sites, Fed and clay accumulation from weathering and dust is ~ 0.02 g cm- 2 kyr- 1 and ~ 0.2 g cm- 2 kyr- 1, respectively. We used the Fed and clay inventory in soil profiles at dated, stable Front Range surfaces to calculate accumulation functions, which allowed us to estimate soil age at hillslope sites. Heterogeneous parent material, particularly on hillslopes, and climate-related effects add to variability in measured relations. Mobile regolith in Gordon Gulch, one of the Boulder Creek Critical Zone Observatory (CZO) catchments, yields profile ages from about 0.5 to 5 × 104 yr, comparable to values measured using other techniques. Calculated profile ages are older on a north- vs. south-facing slope and increase from the drainage divide to the footslope. Ages calculated for stabilized colluvium and well-developed buried profiles at nearby hillslope sites (Lefthand, Ward and Rollinsville) suggest that these soils have stabilized over periods > 105 yr. In the absence of radiometric ages, the accumulation of Fed and clay in soils on stable sites and hillslopes provides a useful, local chronofunction for 103 to ~ 3 × 105 yr. Local footslope thickening of mobile regolith, buried soils, and areas of Fed- and clay-rich stabilized colluvium suggest that steady-state models of hillslope regolith must be modified to account for observed soil properties.

Dethier, David P.; Birkeland, Peter W.; McCarthy, James A.

2012-11-01

198

Iron studies in hemophilia  

SciTech Connect

Although iron deficiency is not recognized as a usual complication of hemophilia, we questioned whether intermittent occult loss of blood in urine or stool might predispose hemophiliacs to chronic iron deficiency. Seven men with factor VII and one with factor IX deficiency were studied. Blood studied, bone marrow aspirates, urine and stool samples, and ferrokinetics with total-body counting up to five months were examined. These data showed no excessive loss of blood during the study period; however, marrow iron stores were decidedly decreased, being absent in four subjects. We suggest that in some hemophiliacs, iron deposits in tissues such as synovial membranes may form a high proportion of the body's total iron stores.

Lottenberg, R.; Kitchens, C.S.; Roessler, G.S.; Noyes, W.D.

1981-12-01

199

Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine BMD and blood biomarkers in women with type 2 diabetes mellitus?  

PubMed Central

Purpose To compare vertebral bone marrow fat content quantified with proton MR spectroscopy (1H-MRS) with the volume of abdominal adipose tissue, lumbar spine volumetric bone mineral density (vBMD), and blood biomarkers in postmenopausal women with and without type 2 diabetes mellitus (T2DM). Materials and Methods Thirteen postmenopausal women with T2DM and 13 age- and BMI-matched healthy controls were included in this study. All subjects underwent 1H-MRS of L1–L3 to quantify vertebral bone marrow fat content (FC) and unsaturated lipid fraction (ULF). QCT was performed to assess vBMD of L1–L3. The volumes of abdominal subcutaneous/visceral/total adipose tissue were determined from the QCT images and adjusted for abdominal body volume (SATadj/VATadj/TATadj). Fasting blood tests included plasma glucose and HbA1c. Results Mean FC showed an inverse correlation with vBMD (r=?0.452; p<0.05) in the whole study population. While mean FC was similar in the diabetic women and healthy controls (69.3 ± 7.5% vs. 67.5 ± 6.1%; p>0.05), mean ULF was significantly lower in the diabetic group (6.7 ± 1.0% vs. 7.9 ± 1.6%; p<0.05). SATadj and TATadj correlated significantly with mean FC in the whole study population (r=0.538 and r=0.466; p<0.05). In contrast to the control group, significant correlations of mean FC with VATadj and HbA1c were observed in the diabetic group (r=0.642 and r=0.825; p<0.05). Conclusion This study demonstrated that vertebral bone marrow fat content correlates significantly with SATadj, TATadj, and lumbar spine vBMD in postmenopausal women with and without T2DM, but with VATadj and HbA1c only in women with T2DM. PMID:22190287

Baum, Thomas; Yap, Samuel P.; Karampinos, Dimitrios C.; Nardo, Lorenzo; Kuo, Daniel; Burghardt, Andrew J.; Masharani, Umesh B.; Schwartz, Ann V.; Li, Xiaojuan; Link, Thomas M.

2011-01-01

200

Unraveling Mechanisms Regulating Systemic Iron Homeostasis  

PubMed Central

Systemic iron balance must be tightly regulated to prevent the deleterious effects of iron deficiency and iron overload. Hepcidin, a circulating hormone that is synthesized by the liver, has emerged as a key regulator of systemic iron homeostasis. Hepcidin inhibits the absorption of dietary iron from the intestine as well as the release of iron derived from red blood cells from macrophages; thus, variation in hepcidin levels modifies the total amount of iron stored in the body as well as the availability of iron for erythropoiesis. The production of hepcidin by the liver is modulated by multiple physiological stimuli, including iron loading, inflammation, and erythropoietic activity. Investigation of the functions of the gene products mutated in inherited iron disorders using tissue culture systems and animal models has provided valuable insights into the mechanisms by which these hepcidin responses are mediated. This review focuses on recent advances in our understanding of the molecular mechanisms underlying the regulation of systemic iron homeostasis. PMID:22160085

Finberg, Karin E.

2013-01-01

201

Hemochromatosis and pregnancy: iron stores in the Hfe-/- mouse are not reduced by multiple pregnancies.  

PubMed

Hereditary hemochromatosis (HH), a widespread hereditary iron metabolism disorder, is characterized by an excessive absorption of dietary iron, resulting in increased body iron stores. Some studies indicate a sex difference in disease expression, with women showing a slower disease progression and a less severe clinical profile. This is usually attributed to iron loss during menstruation and pregnancy. However, this link has not been clearly demonstrated. The Hfe-/- mouse model recapitulates key aspects of HH, including an iron overload phenotype similar to that observed in human patients. In this study, we use it to test the impact of multiple pregnancies in the iron stores. One-year-old nulliparous and pluriparous (averaging 29 weaned pups per female) C57BL/6 (B6) and Hfe-/- mice were euthanized, and blood and tissues were collected. Several serological and erythroid parameters were evaluated, as well as tissue nonheme iron content and serum ferritin. Hepcidin 1, hepcidin 2, and bone morphogenetic protein 6 (BMP6) expressions in the liver were determined by real-time PCR. No significant differences were observed for many serological and erythroid parameters although differences occurred in transferrin saturation and mean corpuscular volume in Hfe-/- mice and total iron-binding capacity in B6 mice. Hepatic iron concentration was similar for nulliparous and pluriparous mice of both genotypes, but total iron per organ (liver, spleen, heart, and pancreas) was higher overall in pluriparous females than nulliparous. Hepcidin 1 and 2 and BMP6 expressions were significantly decreased in pluriparous females, when compared with nulliparous, in both genotypes. In conclusion, multiple pregnancies do not reduce body iron stores in Hfe-/- mice. PMID:20110460

Neves, João Vilares; Olsson, Ingrid Anna Sofia; Porto, Graça; Rodrigues, Pedro Nuno

2010-04-01

202

THE ROLE OF THE REACTIVITY AND CONTENT OF IRON OF AEROSOL DUST ON GROWTH RATES OF TWO ANTARCTIC DIATOM SPECIES1  

Microsoft Academic Search

The atmosphere is widely recognized as a major source of Fe in the form of iron-containing dust. This study provides the first experiments in which the impact of dust on the growth rates of single species of Antarctic diatoms was assessed under laboratory conditions. The dust was among others characterized by x-ray powder diffraction analysis, analysis of total and amorphous

F. Visser; L. J. A. Gerringa; S. J. Van der gaast; H. J. W. De baar; K. R. Timmermans

2003-01-01

203

Iron Deposition following Chronic Myocardial Infarction as a Substrate for Cardiac Electrical Anomalies: Initial Findings in a Canine Model  

PubMed Central

Purpose Iron deposition has been shown to occur following myocardial infarction (MI). We investigated whether such focal iron deposition within chronic MI lead to electrical anomalies. Methods Two groups of dogs (ex-vivo (n?=?12) and in-vivo (n?=?10)) were studied at 16 weeks post MI. Hearts of animals from ex-vivo group were explanted and sectioned into infarcted and non-infarcted segments. Impedance spectroscopy was used to derive electrical permittivity () and conductivity (). Mass spectrometry was used to classify and characterize tissue sections with (IRON+) and without (IRON-) iron. Animals from in-vivo group underwent cardiac magnetic resonance imaging (CMR) for estimation of scar volume (late-gadolinium enhancement, LGE) and iron deposition (T2*) relative to left-ventricular volume. 24-hour electrocardiogram recordings were obtained and used to examine Heart Rate (HR), QT interval (QT), QT corrected for HR (QTc) and QTc dispersion (QTcd). In a fraction of these animals (n?=?5), ultra-high resolution electroanatomical mapping (EAM) was performed, co-registered with LGE and T2* CMR and were used to characterize the spatial locations of isolated late potentials (ILPs). Results Compared to IRON- sections, IRON+ sections had higher, but no difference in. A linear relationship was found between iron content and (p<0.001), but not (p?=?0.34). Among two groups of animals (Iron (<1.5%) and Iron (>1.5%)) with similar scar volumes (7.28%±1.02% (Iron (<1.5%)) vs 8.35%±2.98% (Iron (>1.5%)), p?=?0.51) but markedly different iron volumes (1.12%±0.64% (Iron (<1.5%)) vs 2.47%±0.64% (Iron (>1.5%)), p?=?0.02), QT and QTc were elevated and QTcd was decreased in the group with the higher iron volume during the day, night and 24-hour period (p<0.05). EAMs co-registered with CMR images showed a greater tendency for ILPs to emerge from scar regions with iron versus without iron. Conclusion The electrical behavior of infarcted hearts with iron appears to be different from those without iron. Iron within infarcted zones may evolve as an arrhythmogenic substrate in the post MI period. PMID:24066038

Wang, Xunzhang; Yang, Hsin-Jung; Tang, Richard L. Q.; Thajudeen, Anees; Shehata, Michael; Amorn, Allen M.; Liu, Enzhao; Stewart, Brian; Bennett, Nathan; Harlev, Doron; Tsaftaris, Sotirios A.; Jackman, Warren M.; Chugh, Sumeet S.; Dharmakumar, Rohan

2013-01-01

204

Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding.  

PubMed

The iron storage protein ferritin is a potential vehicle to enhance the iron content of biofortified crops. With the aim of evaluating the potential of ferritin iron in plant breeding, we used species-specific isotope dilution mass spectrometry to quantify ferritin iron in bean varieties with a wide range of total iron content. Zinc, phytic acid, and polyphenols were also measured. Total iron concentration in 21 bean varieties ranged from 32 to 115 ppm and was positively correlated with concentrations of zinc (P = 0.001) and nonferritin bound iron (P < 0.001). Ferritin iron ranged from 13% to 35% of total iron and increased only slightly in high iron beans (P = 0.007). Concentrations of nonferritin bound iron and phytic acid were correlated (P = 0.001), although phytic acid:iron molar ratio decreased with increasing iron concentration (P = 0.003). Most iron in high iron beans was present as nonferritin bound iron, which confirms our earlier finding showing that ferritin iron in beans was lower than previously published. As the range of ferritin iron content in beans is relatively narrow, there is less opportunity for breeders to breed for high ferritin. The relevance of these findings to the extent of iron absorption depends on resolving the question of whether ferritin iron is absorbed or not to a greater extent than nonferritin bound iron. PMID:25124357

Hoppler, Matthias; Egli, Ines; Petry, Nicolai; Gille, Doreen; Zeder, Christophe; Walczyk, Thomas; Blair, Matthew W; Hurrell, Richard F

2014-09-01

205

The influence of the iron content on the reductive decomposition of A3-xFexAl2Si3O12 garnets (A = Mg, Mn; 0.47 ? x ? 2.85)  

NASA Astrophysics Data System (ADS)

Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H2 in N2). Crystallochemical formula of the studied garnet was calculated as VIII( A3-xFex2+)VI( Al , Fe3+)2Si3O12, where the amount of Fe3+ in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ? x ? 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp80Alm20). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and 57Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 ?m) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

Aparicio, Claudia; Filip, Jan; Mashlan, Miroslav; Zboril, Radek

2014-10-01

206

Comparison of changes in gene expression of transferrin receptor-1 and other iron-regulatory proteins in rat liver and brain during acute-phase response  

Microsoft Academic Search

The “acute phase” is clinically characterized by homeostatic alterations such as somnolence, adinamia, fever, muscular weakness,\\u000a and leukocytosis. Dramatic changes in iron metabolism are observed under acute-phase conditions. Rats were administered turpentine\\u000a oil (TO) intramuscularly to induce a sterile abscess and killed at various time points. Tissue iron content in the liver and\\u000a brain increased progressively after TO administration. Immunohistology

Ihtzaz Ahmed Malik; Naila Naz; Nadeem Sheikh; Sajjad Khan; Federico Moriconi; Martina Blaschke; Giuliano Ramadori

2011-01-01

207

Iron homeostasis and eye disease  

PubMed Central

Summary Iron is necessary for life, but excess iron can be toxic to tissues. Iron is thought to damage tissues primarily by generating oxygen free radicals through the Fenton reaction. We present an overview of the evidence supporting iron's potential contribution to a broad range of eye disease using an anatomical approach. Firstly, iron can be visualized in the cornea as iron lines in the normal aging cornea as well as in diseases like keratoconus and pterygium. In the lens, we present the evidence for the role of oxidative damage in cataractogenesis. Also, we review the evidence that iron may play a role in the pathogenesis of the retinal disease age-related macular degeneration. Although currently there is no direct link between excess iron and development of optic neuropathies, ferrous iron's ability to form highly reactive oxygen species may play a role in optic nerve pathology. Lastly, we discuss recent advances in prevention and therapeutics for eye disease with antioxidants and iron chelators,. PMID:19059309

Loh, Allison; Hadziahmetovic, Majda; Dunaief, Joshua L.

2009-01-01

208

Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus during floral development.  

PubMed

The relationships between heat production, alternative oxidase (AOX) pathway flux, AOX protein, and carbohydrates during floral development in Nelumbo nucifera (Gaertn.) were investigated. Three distinct physiological phases were identified: pre-thermogenic, thermogenic, and post-thermogenic. The shift to thermogenic activity was associated with a rapid, 10-fold increase in AOX protein. Similarly, a rapid decrease in AOX protein occurred post-thermogenesis. This synchronicity between AOX protein and thermogenic activity contrasts with other thermogenic plants where AOX protein increases some days prior to heating. AOX protein in thermogenic receptacles was significantly higher than in post-thermogenic and leaf tissues. Stable oxygen isotope measurements confirmed that the increased respiratory flux supporting thermogenesis was largely via the AOX, with little or no contribution from the cytochrome oxidase pathway. During the thermogenic phase, no significant relationship was found between AOX protein content and either heating or AOX flux, suggesting that regulation is likely to be post-translational. Further, no evidence of substrate limitation was found; starch accumulated during the early stages of floral development, peaking in thermogenic receptacles, before declining by 89% in post-thermogenic receptacles. Whilst coarse regulation of AOX flux occurs via protein synthesis, the ability to thermoregulate probably involves precise regulation of AOX protein, most probably by effectors such as alpha-keto acids. PMID:18252702

Grant, Nicole M; Miller, Rebecca E; Watling, Jennifer R; Robinson, Sharon A

2008-01-01

209

The Multicomponent Anthropometric Model for Assessing Body Composition in a Male Pediatric Population: A Simultaneous Prediction of Fat Mass, Bone Mineral Content, and Lean Soft Tissue  

PubMed Central

The aim of this study was to propose and cross-validate an anthropometric model for the simultaneous estimation of fat mass (FM), bone mineral content (BMC), and lean soft tissue (LST) using DXA as the reference method. A total of 408 boys (8–18 years) were included in this sample. Whole-body FM, BMC, and LST were measured by DXA and considered as dependent variables. Independent variables included thirty-two anthropometrics measurements and maturity offset determined by the Mirwald equation. From a multivariate regression model (Ymn = x(r + 1)(r + 1)n?m + ?nm), a matrix analysis was performed resulting in a multicomponent anthropometric model. The cross-validation was executed through the sum of squares of residuals (PRESS) method. Five anthropometric variables predicted simultaneously FM, BMC, and LST. Cross-validation parameters indicated that the new model is accurate with high RPRESS2 values ranging from 0.94 to 0.98 and standard error of estimate ranging from 0.01 to 0.09. The newly proposed model represents an alternative to accurately assess the body composition in male pediatric ages. PMID:23555052

Machado, Dalmo; Oikawa, Sergio; Barbanti, Valdir

2013-01-01

210

The Ins and Outs of Iron Homeostasis  

NSDL National Science Digital Library

Iron is an essential element that is toxic when it accumulates in excess. Intricate regulatory mechanisms have evolved to maintain iron homeostasis within cells and between different tissues of complex organisms. This review discusses the proteins involved in iron transport and storage and their regulation in health and disease.

Adriana Donovan (Harvard Medical School, ChildrenÃÂs Hospital Boston, Dana-Farber Cancer Institute); Cindy N. Roy (Harvard Medical School ChildrenÃÂs Hospital Boston, Dana-Farber Cancer Institute); Nancy C. Andrews (Harvard Medical School ChildrenÃÂs Hospital Boston, Dana-Farber Cancer Institute,)

2006-04-01

211

Aspects of iron nutrition in macroalgae Ulva pertusa (Chlorophyta) under iron stress  

NASA Astrophysics Data System (ADS)

Fe, Chlorophyll (Chl) and total nitrogen (TN) content in tissues were measured in Fe-deficient cultures of Ulva. pertusa over a period of 60 days. Photosynthetic carbon fixation rates were studied at the start of and 30 days after Fe-deficiency culture, when the effects of Fe-deficiency on the ultrastructure were also analyzed. The iron content in tissue decreased exponentially during Fe-deficiency (from 726.7 to 31.6 ?g/gdw) and simultaneously Chl and TN content declined to 4.35% and 59.9% of their original levels respectively. Maximum carbon fixation rate (50 250 ?mol/m2 s) under Fe-deficiency decreased significantly compared with the control (p<0.01) and was 13.6 to 0.365 ?g C/cm2 h. Photosynthesis in Fe-deficient cells became light-saturated at lower irradiance than that in control. Ultrastructural observations of Fe-deficient cells showed reductions in chloroplast number, some degeneration of lamellar organization, an increase in vacuolar area, a decrease in mitochondrial matrix density, and variation in accumulation body number and morphology. During Fe-deficiency, the algae growth rate continued to decline and after 6 weeks of iron deficiency, no further growth was detectable. These suggested that the lower growth rate of Ulva. pertusa under Fe-deficiency could be due mainly to nitrogen utilization and inhibition of photosynthesis.

Liu, Jing-Wen; Dong, Shuang-Lin; Liu, Xiao-Yun

2002-06-01

212

Ventricular Diastolic Dysfunction in Sickle Cell Anemia Is Common But Not Associated With Myocardial Iron Deposition  

PubMed Central

Background Cardiac failure from myocardial iron deposition is a severe complication in patients with transfusion-related iron overload. Progressive heart damage from iron overload can cause left ventricular systolic and diastolic dysfunction in patients with hematologic disorders. Since non-transfused patients with sickle cell anemia (SCA) have a high incidence of diastolic dysfunction, we investigated the relationships among transfusional iron burden, myocardial iron deposition, and diastolic ventricular dysfunction by T2*-MRI and tissue Doppler echocardiography in iron-overloaded children with SCA. Procedure Children (?7 years) with SCA and iron overload (serum ferritin >1000 ng/ml or ?18 lifetime transfusions) were eligible. Serum ferritin and hepatic iron content (HIC) were measured and participants underwent nonsedated T2*-MRI of the heart, echocardiogram, electrocardiogram, and multi-uptake gated acquisition (MUGA) scan. Age-matched normative echocardiographic data were used for comparison. Results Among 30 children with SCA (median age, 13 years) and iron overload, mean (±SD) HIC and serum ferritin were 10.8 mg Fe/g (±5.9 mg Fe/g) and 3089 ng/mL (±2167 ng/mL), respectively. Mean T2*-MRI was 33 msec (±7 msec, range 22-49). Echocardiography showed a high prevalence of diastolic dysfunction (77% and 45% abnormally low mean mitral annular velocity and mean tricuspid annular velocity, respectively); however, echocardiogram and MUGA scan findings were not significantly associated with HIC or T2*-MRI. Conclusions Diastolic dysfunction is not associated with transfusional iron burden or myocardial iron deposition among children with SCA. Diastolic dysfunction likely results from disease pathophysiology and severity rather than iron overload. PMID:20658621

Hankins, Jane S.; McCarville, M. Beth; Hillenbrand, Claudia M.; Loeffler, Ralf B.; Ware, Russell E.; Song, Ruitian; Smeltzer, Matthew P.; Joshi, Vijaya

2010-01-01

213

Norepinephrine turnover in iron deficiency: effect of two semi-purified diets.  

PubMed

The effects of two dietary treatments on norepinephrine turnover in iron deficiency were examined. These studies were designed to bridge the gap between previous studies of poor thermoregulation in iron deficiency which used a diet (HMW, Hubbel-Mendel-Wakeman formulation) relatively high in fat (46% of calories) and moderate in carbohydrate (46% of calories) and the more recent studies of thermogenesis in iron deficiency which use the AIN-76 recommended diet which is relatively low in fat (11% of calories) and high in carbohydrate (67% of calories). Iron deficient rats grew less well and had depressed thyroid hormone concentrations regardless of dietary treatment group. The HMW diet significantly increased norepinephrine turnover in heart in iron deficient animals relative to AIN diet but had no effect in controls. Brown adipose tissue norepinephrine turnover was threefold higher in HMW rats fed a low iron diet, and only 67 percent higher in control rats. This study demonstrates that certain modest macronutrient manipulations affect norepinephrine content and turnover more in iron deficient than controls. However, abnormalities in thyroid hormone concentrations persist in iron deficient animals regardless of these dietary treatments. PMID:2761348

Smith, S M; Beard, J L

1989-01-01

214

Iron overdose  

MedlinePLUS

Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Note: This list may not be all-inclusive.

215

Eat Iron?!!  

NSDL National Science Digital Library

To gain an understanding of mixtures and the concept of separation of mixtures, students use strong magnets to find the element of iron in iron-fortified breakfast cereal flakes. Through this activity, they see how the iron component of this heterogeneous mixture (cereal) retains its properties and can thus be separated by physical means.

NSF GK-12 and Research Experience for Teachers (RET) Programs,

216

The Potential of a Chlorophyll Content SPAD Meter to Quantify Nutrient Stress in Foliar Tissue of Sycamore (Acer pseudoplatanus), English Oak (Quercus robur), and European Beech (Fagus sylvatica)  

Microsoft Academic Search

The chlorophyll content (or SPAD meter) is a simple, portable diagnostic tool that measures the greenness or relative chlorophyll content of leaves. Compared with the traditional destructive methods of chlorophyll extraction, the use of this equipment saves time, space, and resources. The objective of this study was to establish a correlation between the leaf photo- synthetic pigment content (chlorophylls, carotenoids)

Glynn C. Percival; Ian P. Keary; Kelly Noviss

2008-01-01

217

21 CFR 862.1410 - Iron (non-heme) test system.  

Code of Federal Regulations, 2010 CFR

...serum and plasma. Iron (non-heme) measurements are used in the diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated with widespread deposit in the tissues of two iron-containing pigments,...

2010-04-01

218

Iron homoeostasis in rheumatic disease.  

PubMed

Iron is critical in nearly all cell functions and the ability of a cell, tissue and organism to procure this metal is obligatory for survival. Iron is necessary for normal immune function, and relative iron deficiency is associated with mild immunosuppression. Concentrations of this metal in excess of those required for function can present both an oxidative stress and elevate risks for infection. As a result, the human has evolved to have a complex mechanism of regulating iron and limiting its availability. This homoeostasis can be disrupted. Autoimmune diseases and gout often present with abnormal iron homoeostasis, thus supporting a participation of the metal in these injuries. We review the role of iron in normal immune function and discuss both clinical evidence of altered iron homoeostasis in autoimmune diseases and gout as well as possible implications of both depletion and supplementation of this metal in this patient population. We conclude that altered iron homoeostasis may represent a purposeful response to inflammation that could have theoretical anti-inflammatory benefits. We encourage physicians to avoid routine iron supplementation in those without depleted iron stores. PMID:19628641

Baker, Joshua F; Ghio, Andrew J

2009-11-01

219

Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: Contributions of matrix fiber orientation and elastin content  

Microsoft Academic Search

Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orie ntations, and to determine the role of elastin in regulating these deformations.

Arthur J Michalek; Mark R Buckley; Lawrence J Bonassar; Itai Cohen; James C Iatridis

2009-01-01

220

Nifedipine prevents iron accumulation and reverses iron-overload-induced dopamine neuron degeneration in the substantia nigra of rats.  

PubMed

The mechanisms of iron accumulation in substantia nigra (SN) of Parkinson's diseases remain unclear. The objective of this study was to investigate effects of nifedipine on iron-overload-induced iron accumulation and neurodegeneration in SN of rats. By high performance liquid chromatography-electrochemical detection, tyrosine hydroxylase (TH) immunohistochemistry, and iron content array, we first quantified iron content and the number of dopamine neurons in SN of experimental rats treated with iron dextran. We further assessed effects of treatment with nifedipine. Our results showed that nifedipine treatment prevents iron dextran-induced dopamine depletion in the striatum. Consistently, we found that nifedipine restores the number of TH-positive neurons reduced by iron dextran overload and prevents increase of iron content in the SN. These results suggested that nifedipine may suppress iron toxicity in dopamine neurons and prevent neurodegeneration. PMID:22259026

Ma, ZeGang; Zhou, Yu; Xie, JunXia

2012-11-01

221

Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.  

PubMed

The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a "deep gray matter parcellation map" (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established "white matter parcellation map" (WMPM) from the same subject's T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the "Everything Parcellation Map in Eve Space," also known as the "EvePM." It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting "almost perfect" agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron concentrations in gray matter structures measured by Hallgren and Sourander (1958) allowed interpolation of the average iron concentration of several deep gray matter regions delineated in the EvePM. PMID:23769915

Lim, Issel Anne L; Faria, Andreia V; Li, Xu; Hsu, Johnny T C; Airan, Raag D; Mori, Susumu; van Zijl, Peter C M

2013-11-15

222

Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures  

PubMed Central

The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a “deep gray matter parcellation map” (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established “white matter parcellation map” (WMPM) from the same subject’s T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the “Everything Parcellation Map in Eve Space,” also known as the “EvePM.” It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting “almost perfect” agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron concentrations in gray matter structures measured by Hallgren and Sourander (1958) allowed interpolation of the average iron concentration of several deep gray matter regions delineated in the EvePM. PMID:23769915

Lim, Issel Anne L.; Faria, Andreia V.; Li, Xu; Hsu, Johnny T.C.; Airan, Raag D.; Mori, Susumu; van Zijl, Peter C. M.

2013-01-01

223

Iron bioavailability and dietary reference values.  

PubMed

Iron differs from other minerals because iron balance in the human body is regulated by absorption only because there is no physiologic mechanism for excretion. On the basis of intake data and isotope studies, iron bioavailability has been estimated to be in the range of 14-18% for mixed diets and 5-12% for vegetarian diets in subjects with no iron stores, and these values have been used to generate dietary reference values for all population groups. Dietary factors that influence iron absorption, such as phytate, polyphenols, calcium, ascorbic acid, and muscle tissue, have been shown repeatedly to influence iron absorption in single-meal isotope studies, whereas in multimeal studies with a varied diet and multiple inhibitors and enhancers, the effect of single components has been, as expected, more modest. The importance of fortification iron and food additives such as erythorbic acid on iron bioavailability from a mixed diet needs clarification. The influence of vitamin A, carotenoids, and nondigestible carbohydrates on iron absorption and the nature of the "meat factor" remain unresolved. The iron status of the individual and other host factors, such as obesity, play a key role in iron bioavailability, and iron status generally has a greater effect than diet composition. It would therefore be timely to develop a range of iron bioavailability factors based not only on diet composition but also on subject characteristics, such as iron status and prevalence of obesity. PMID:20200263

Hurrell, Richard; Egli, Ines

2010-05-01

224

Retinal iron homeostasis in health and disease  

PubMed Central

Iron is essential for life, but excess iron can be toxic. As a potent free radical creator, iron generates hydroxyl radicals leading to significant oxidative stress. Since iron is not excreted from the body, it accumulates with age in tissues, including the retina, predisposing to age-related oxidative insult. Both hereditary and acquired retinal diseases are associated with increased iron levels. For example, retinal degenerations have been found in hereditary iron overload disorders, like aceruloplasminemia, Friedreich's ataxia, and pantothenate kinase-associated neurodegeneration. Similarly, mice with targeted mutation of the iron exporter ceruloplasmin and its homolog hephaestin showed age-related retinal iron accumulation and retinal degeneration with features resembling human age-related macular degeneration (AMD). Post mortem AMD eyes have increased levels of iron in retina compared to age-matched healthy donors. Iron accumulation in AMD is likely to result, in part, from inflammation, hypoxia, and oxidative stress, all of which can cause iron dysregulation. Fortunately, it has been demonstrated by in vitro and in vivo studies that iron in the retinal pigment epithelium (RPE) and retina is chelatable. Iron chelation protects photoreceptors and retinal pigment epithelial cells (RPE) in a variety of mouse models. This has therapeutic potential for diminishing iron-induced oxidative damage to prevent or treat AMD. PMID:23825457

Song, Delu; Dunaief, Joshua L.

2013-01-01

225

Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.  

PubMed Central

In this communication, we examine the fate of iron during soft rot pathogenesis caused by Erwinia chrysanthemi on its host, Saintpaulia ionantha. The spread of soft rot caused by this enterobacterium was previously shown to depend on a functional genetic locus encoding a high-affinity iron assimilation system involving the catechol-type siderophore chrysobactin. Leaf intercellular fluid from healthy plants was analyzed with regard to the iron content and its availability for bacterial growth. It was compared to the fluid from diseased plants for the presence of strong iron ligands, using a new approach based on the iron-binding property of an ion-exchange resin. Further characterization allowed the identification of chrysobactin in diseased tissues, thus providing the first evidence for the external release of a microbial siderophore during pathogenesis. Competition for nutritional iron was also studied through a plant-bacterial cell system: iron incorporated into plant ferritin appeared to be considerably reduced in bacteria-treated suspension soybean cells. The same effect was visualized during treatment of soybean cells with axenic leaf intercellular fluid from E. chrysanthemi-inoculated saintpaulia leaves or with chrysobactin. PMID:12231882

Neema, C.; Laulhere, J. P.; Expert, D.

1993-01-01

226

Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.  

PubMed

In this communication, we examine the fate of iron during soft rot pathogenesis caused by Erwinia chrysanthemi on its host, Saintpaulia ionantha. The spread of soft rot caused by this enterobacterium was previously shown to depend on a functional genetic locus encoding a high-affinity iron assimilation system involving the catechol-type siderophore chrysobactin. Leaf intercellular fluid from healthy plants was analyzed with regard to the iron content and its availability for bacterial growth. It was compared to the fluid from diseased plants for the presence of strong iron ligands, using a new approach based on the iron-binding property of an ion-exchange resin. Further characterization allowed the identification of chrysobactin in diseased tissues, thus providing the first evidence for the external release of a microbial siderophore during pathogenesis. Competition for nutritional iron was also studied through a plant-bacterial cell system: iron incorporated into plant ferritin appeared to be considerably reduced in bacteria-treated suspension soybean cells. The same effect was visualized during treatment of soybean cells with axenic leaf intercellular fluid from E. chrysanthemi-inoculated saintpaulia leaves or with chrysobactin. PMID:12231882

Neema, C.; Laulhere, J. P.; Expert, D.

1993-07-01

227

A study of some of the factors related to glycogen content and the resulting color of the lean tissue of beef  

E-print Network

demand for oxygen by the post-mortem metabolio processes, or both. There is some evidenoe in the literature to substantiate ths theory that dark cutting beef is due mostly to impermeability of the tissues to oxygen; however, the phenomenon whioh... conclu- sively established, it is logical to make observations related to oon- ditions that would alter the pH of the tissue in the post-mortem state; mainly the oarbohydrate metabolism prior to slaughter . In the early literature, Armsby, (1902...

Clark, Glenn Edward

2012-06-07

228

Mineralogical Study of GRA95209 Lodranite in Comparison with Acapulcoites and IAB Iron Meteorites  

NASA Astrophysics Data System (ADS)

High ZnO content in both GRA95209 chromite and IAB iron meteorites and heterogenous metal distribution in GRA95209 and Caddo County IAB iron meteorite might suggest the common formation process between GRA95209 and IAB iron meteorites.

Chikami, J.

2001-03-01

229

Iron refractory iron deficiency anemia  

PubMed Central

Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

2013-01-01

230

Iron, transferrin and myelinogenesis  

NASA Astrophysics Data System (ADS)

Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

2003-09-01

231

MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping.  

PubMed

Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ?1 and ?2 norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5 T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5 T and 3.0 T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, ?1-regularized QSM versus FDRI and ?2-regularized QSM versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation requiring two field strengths. PMID:21925274

Bilgic, Berkin; Pfefferbaum, Adolf; Rohlfing, Torsten; Sullivan, Edith V; Adalsteinsson, Elfar

2012-02-01

232

THE IMPORTANCE OF OBTAINING INFORMATION ON THE SPECIFIC CONTENT OF TISSUE ENZYMES METABOLIZING ORGANOPHOSPHORUS PESTICIDES, PRIOR TO DETERMINE VMAX, KM VALUES FOR USE IN PBPK MODELS  

EPA Science Inventory

Physiological pharmacokinetic/pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...

233

THE IMPORTANCE OF OBTAINING INFORMATION ON THE SPECIFIC CONTENT OF TISSUE ENZYMES METABOLIZING ORGANOPHOSPHORUS PESTICIDES, PRIOR TO DETERMINING VMAX, KM VALUES FOR USE IN PBPK MODELS  

EPA Science Inventory

Physiological pharmacokinetic\\pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...

234

Modulation of matrix Ca 2+ content by the ADP\\/ATP carrier in brown adipose tissue mitochondria. Influence of membrane lipid composition  

Microsoft Academic Search

The role of the adenine nucleotide translocase on Ca2+ homeostasis in mitochondria from brown adipose tissue was examined. It was found that in mitochondria incubated with 50 ?M Ca2+, ADP was not needed to retain the cation, but it was required for strengthening the inhibitory effect of cyclosporin on membrane permeability transition as induced by menadione. In addition, carboxyatractyloside was

Edmundo Chfivez; Rafael Moreno-Sánchez; Maria Eugenia Torres-Marquez; Cecilia Zazueta; Concepción Bravo; Sara Rodríquez-Enríquez; Cecilia García; José S. Rodriguez; Federico Martinez

1996-01-01

235

/ http://www.sciencemag.org/content/early/recent / 28 August 2014 / Page 1 / 10.1126/science.1257530 Effector memory T cells circulate throughout the peripheral tissues and  

E-print Network

.1126/science.1257530 Effector memory T cells circulate throughout the peripheral tissues and while infection more efficiently than circulating CD8 T cells (7� 10) and recruit circulating T cells to the sites. Unlike CD8 T cells, memory CD4 T cells readily traffic through circulation to provide protection

Napp, Nils

236

Developing an indicator of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of the opportunistic alga, Enteromorpha intestinalis (L. Link)  

Microsoft Academic Search

We explored the use of an opportunistic green alga, Enteromorpha intestinalis (L. Link), as an indicator of N enrichment in a southern California salt marsh. In conjunction with N additions to cordgrass (Spartina foliosa, Trin) in April, June and August 1995, mesh bags containing N-starved algal tissue were placed within cordgrass patches, at their edges along islands, and in adjacent

Peggy Fong; Katharyn E. Boyer; Joy B. Zedler

1998-01-01

237

Double stable isotope ultra performance liquid chromatographic tandem mass spectrometric quantification of tissue content and activity of phenylethanolamine N-methyltransferase, the crucial enzyme responsible for synthesis of epinephrine  

PubMed Central

Here we describe a novel method utilizing double stable isotope ultra performance liquid chromatography-tandem mass spectrometry to measure tissue contents and activity of phenylethanolamine N-methyltransferase (PNMT), the enzyme responsible for synthesis of the stress hormone, epinephrine. The method is based on measurement of deuterium-labeled epinephrine produced from reaction of norepinephrine with deuterium-labeled S-adenosyl-L-methionine as the methyl donor. In addition to enzyme activity the method allows for determination of tissue contents of PNMT using human recombinant enzyme for calibration. The calibration curve for epinephrine was linear over the range of 0.1 to 5000 pM, with 0.5 pM epinephrine representing the lower limit of quantification. The calibration curve relating PNMT to production of deuterium-labeled epinephrine was also linear from 0.01 ng to 100 ng PNMT. Intra- and inter-assay coefficients of variation were respectively 12.8% (n=10) and 10.9% to 13.6% (n=10). We established utility of the method by showing induction of the enzyme by dexamethasone in mouse pheochromocytoma cells and strong relationships to PNMT gene expression and tissue epinephrine levels in human pheochromocytomas. Development of this assay provides new possibilities for investigations focusing on regulation of PNMT, the crucial final enzyme responsible for synthesis of epinephrine, the primary fight-or-flight stress hormone. PMID:23224622

Qin, Nan; Peitzsch, Mirko; Menschikowski, Mario; Siegert, Gabriele; Pacak, Karel; Eisenhofer, Graeme

2013-01-01

238

Double stable isotope ultra performance liquid chromatographic-tandem mass spectrometric quantification of tissue content and activity of phenylethanolamine N-methyltransferase, the crucial enzyme responsible for synthesis of epinephrine.  

PubMed

Here, we describe a novel method utilizing double stable isotope ultra performance liquid chromatography-tandem mass spectrometry to measure tissue contents and activity of phenylethanolamine N-methyltransferase (PNMT), the enzyme responsible for synthesis of the stress hormone, epinephrine. The method is based on measurement of deuterium-labeled epinephrine produced from the reaction of norepinephrine with deuterium-labeled S-adenosyl-L-methionine as the methyl donor. In addition to enzyme activity, the method allows for determination of tissue contents of PNMT using human recombinant enzyme for calibration. The calibration curve for epinephrine was linear over the range of 0.1 to 5,000 pM, with 0.5 pM epinephrine representing the lower limit of quantification. The calibration curve relating PNMT to production of deuterium-labeled epinephrine was also linear from 0.01 to 100 ng PNMT. Intra- and inter-assay coefficients of variation were respectively 12.8 % (n = 10) and 10.9 to 13.6 % (n = 10). We established utility of the method by showing induction of the enzyme by dexamethasone in mouse pheochromocytoma cells and strong relationships to PNMT gene expression and tissue epinephrine levels in human pheochromocytomas. Development of this assay provides new possibilities for investigations focusing on regulation of PNMT, the crucial final enzyme responsible for synthesis of epinephrine, the primary fight-or-flight stress hormone. PMID:23224622

Qin, Nan; Peitzsch, Mirko; Menschikowski, Mario; Siegert, Gabriele; Pacak, Karel; Eisenhofer, Graeme

2013-02-01

239

Toxic (Pb, Cd, Hg) and essential (Fe, Cu, Zn, Mn) metal content of liver tissue of some domestic and bush animals in Ghana.  

PubMed

Accumulation of toxic metals in liver, a rich natural source of essential elements, can present health risks to regular consumers of liver. A total of 35 fresh liver samples of cow, sheep, goat, pig, grass-cutter (Thryonomys swinderianus), gaint rat (Cricetomys gambianus), red deer (Cervus elaphus), chicken and antelope (Antilocapra americana) were obtained from three different markets in Accra and Kumasi, Ghana. Samples were analyzed using atomic absorption spectrometry and an automatic mercury analyzer. Levels of iron in the grass-cutter and pig of 500.5-645.4 mg kg(-1) were the highest in the animal livers examined. Mn concentrations were highest in grass-cutter and rat liver, ranging 16.5-30.2 mg kg(-1). The safe Cu and Zn permissible limits of 20 and 50 mg kg(-1) were exceeded in 70 and 75% of the liver samples, respectively. Generally, for each animal group studied, at least 50% of the sample livers exceeded the Cd permissible limit of 0.5 mg kg(-1). The levels of Pb, which ranged 1.3-13.8 mg kg(-1), exceeded the proposed European Commission (EC) limit of 0.5 mg kg(-1). Care must be taken by regular consumers of the iron-rich animal livers of grass-cutter, pig and rat because they also had the highest levels of Pb (in grass-cutter and pig) and Cd (in grass-cutter, rat and pig). The liver samples analyzed for Hg had values far below the permissible limit of 0.5 mg kg(-1). PMID:24784805

Adei, Evans; Forson-Adaboh, Kwadwo

2008-01-01

240

Olfactory ferric and ferrous iron absorption in iron-deficient rats  

PubMed Central

The absorption of metals from the nasal cavity to the blood and the brain initiates an important route of occupational exposures leading to health risks. Divalent metal transporter-1 (DMT1) plays a significant role in the absorption of intranasally instilled manganese, but whether iron uptake would be mediated by the same pathway is unknown. In iron-deficient rats, blood 59Fe levels after intranasal administration of the radioisotope in the ferrous form were significantly higher than those observed for iron-sufficient control rats. Similar results were obtained when ferric iron was instilled intranasally, and blood levels of 59Fe were even greater in the iron-deficient rats compared with the amount of ferrous iron absorbed. Experiments with Belgrade (b/b) rats showed that DMT1 deficiency limited ferric iron uptake from the nasal cavity to the blood compared with +/b controls matched for iron deficiency. These results indicate that olfactory uptake of ferric iron by iron-deficient rats involves DMT1. Western blot experiments confirmed that DMT1 levels are significantly higher in iron-deficient rats compared with iron-sufficient controls in olfactory tissue. Thus the molecular mechanism of olfactory iron absorption is regulated by body iron status and involves DMT1. PMID:22492739

Ruvin Kumara, V. M.

2012-01-01

241

Environmental impacts of iron ore tailings—The case of Tolo Harbour, Hong Kong  

NASA Astrophysics Data System (ADS)

Disposal of iron ore tailings along the shore of Tolo Harbour, Hong Kong has altered the adjacent environment. Due to the ever-expanding population, the vast development of various industries, and the lack of sanitary control, the existing pollution problem of Tolo Harbour is serious. The iron ore tailings consist of a moderate amount of various heavy metals, e.g., copper, iron, manganese, lead, zinc, and a lower level of macronutrients. A few living organisms have been found colonizing this manmade habitat. Higher metal contents were also found in the tissue of Paphia sp. (clam); Scopimera intermedia (crab); Chaetomorpha brychagona (green alga); Enteromorpha crinita (green alga); and Neyraudia reynaudiana (grass). The area can be reclaimed by surface amelioration using inert materials, soils, or organic substrates, and by direct seeding, using nontolerant and tolerant plant materials. Reclamation of the tailings would improve the amenity of the adjacent environment and also mitigate pollution escaping to the sea.

Wong, M. H.

1981-03-01

242

Molecular mechanisms of Staphylococcus aureus iron acquisition  

PubMed Central

The unique redox potential of iron is ideal for use as a cofactor in diverse biochemical reactions. Iron is therefore vital for the growth and proliferation of nearly all organisms, including pathogenic bacteria. Vertebrates sequester excess iron within proteins in order to alleviate toxicity and restrict the amount of free iron available for invading pathogens. Restricting the growth of infectious microorganisms by sequestering essential nutrients is referred to as nutritional immunity. In order to circumvent nutritional immunity bacterial pathogens have evolved elegant systems that allow for the acquisition of iron during infection. The Gram-positive extracellular pathogen Staphylococcus aureus is a commensal organism that can cause severe disease when it gains access to underlying tissues. Iron acquisition is required for S. aureus colonization and subsequent pathogenesis. Herein we review the strategies S. aureus employs to obtain iron through the production of siderophores and the consumption of host heme. PMID:21639791

Hammer, Neal D.; Skaar, Eric P.

2013-01-01

243

Sex differences in iron status and hepcidin expression in rats.  

PubMed

Studies have shown that men and women exhibit significant differences regarding iron status. However, the effects of sex on iron accumulation and distribution are not well established. In this study, female and male Sprague-Dawley rats were killed at 4 months of age. Blood samples were analyzed to determine the red blood cell (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct), and mean red blood cell volume (MCV). The serum samples were analyzed to determine the concentrations of serum iron (SI), transferrin saturation (TS), ferritin, soluble transferrin receptor (sTfR), and erythropoietin (EPO). The tissue nonheme iron concentrations were measured in the liver, spleen, bone marrow, kidney, heart, gastrocnemius, duodenal epithelium, lung, pallium, cerebellum, hippocampus, and striatum. Hepatic hepcidin expression was detected by real-time PCR analysis. The synthesis of ferroportin 1 (FPN1) in the liver, spleen, kidney, and bone marrow was determined by Western blot analysis. The synthesis of duodenal cytochrome B561 (DcytB), divalent metal transporter 1 (DMT1), FPN1, hephaestin (HP) in the duodenal epithelium was also measured by Western blot analysis. The results showed that the RBC, Hb, and Hct in male rats were higher than those in female rats. The SI and plasma TS levels were lower in male rats than in female rats. The levels of serum ferritin and sTfR were higher in male rats than in female rats. The EPO levels in male rats were lower than that in female rats. The nonheme iron contents in the liver, spleen, bone marrow, and kidney in male rats were also lower (56.7, 73.2, 60.6, and 61.4 % of female rats, respectively). Nonheme iron concentrations in the heart, gastrocnemius, duodenal epithelium, lung, and brain were similar in rats of both sexes. A moderate decrease in hepatic hepcidin mRNA content was also observed in male rats (to 56.0 % of female rats). The levels of FPN1 protein in the liver, spleen, and kidney were higher in male rats than in female rats. There was no significant change in FPN1 expression in bone marrow. Significant difference was also not found in DcytB, DMT1, FPN1, and HP protein levels in the duodenal epithelium between male and female rats. These data suggest that iron is distributed differently in male and female rats. This difference in iron distribution may be associated with the difference in the hepcidin level. PMID:24962641

Kong, Wei-Na; Niu, Qiao-Man; Ge, Lan; Zhang, Nan; Yan, Shao-Feng; Chen, Wei-Bin; Chang, Yan-Zhong; Zhao, Shu-E

2014-08-01

244

Divergent selection for residual food intake in Rhode Island Red egg?laying lines: Gross carcase composition, carcase adiposity and lipid contents of tissues  

Microsoft Academic Search

1. A sample of 48 hens and cockerels from generation 17 of a divergent selection experiment on residual food intake was examined to determine whether the large food intake differences between those lines were associated with differences of body composition.2. Adiposity and lipid contents of various parts of the carcase were higher in the low residual food intake line than

A. Bordas; G. Gandemer; F. Minvielle

1995-01-01

245

In Vitro Exposure of Precision-Cut Lung Slices to 2-(4-Amino-3-Methylphenyl)-5-Fluorobenzothiazole Lysylamide Dihydrochloride (NSC 710305, Phortress) Increases Inflammatory Cytokine Content and Tissue Damage  

PubMed Central

The anticancer drug (2-[4-amino-3-methylphenyl]-5-fluorobenzothiazole lysylamide dihydrochloride) (NSC 710305, Phortress) is a metabolically activated prodrug that causes DNA adduct formation and subsequent toxicity. Preclinically, it was found that hepatic, bone marrow, and pulmonary toxicity presented challenges to developing this drug. An ex vivo precision-cut lung slice (PCLS) model was used to search for concentration dependent effects of NSC 710305 (10, 25, 50, and 100µM) on cytokine content, protein content, and immuno/histological endpoints. Preparation and culture of PCLS caused an initial spike in proinflammatory cytokine expression and therefore treatment with NSC 710305 was delayed until 48h after initiating the slice cultures to avoid confounding the response to slicing with any drug response. PCLSs were evaluated after 24, 48, and 72h exposures to NSC 710305. Reversibility of toxicity due to the 72-h treatment was evaluated after a 24-h recovery period. NSC 710305 caused a concentration-dependent cytokine response, and only the toxicity caused by a 72-h exposure to 25µM reversed during the 24-h recovery period. Immuno/histological examination and quantitation of tissue protein levels indicated that tissue destruction, ED-1 (activated macrophage) staining, and protein levels were associated with the levels of proinflammatory cytokines in the tissue. In conclusion, the concentration- and time-dependent inflammatory response of PCLS to NSC 710305 preceded relevant tissue damage by a few days. The no-observable adverse effect level (NOAEL) for 24, 48, and 72h exposures was established as 10µM NSC 710305. PMID:23143926

Behrsing, Holger P.

2013-01-01

246

Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis  

SciTech Connect

It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

Yang, Yunfeng [ORNL; Harris, Daniel P [ORNL; Luo, Feng [Clemson University; Joachimiak, Marcin [Clemson University; Wu, Liyou [University of Oklahoma; Dehal, Paramvir [Lawrence Berkeley National Laboratory (LBNL); Jacobsen, Janet [Lawrence Berkeley National Laboratory (LBNL); Yang, Zamin Koo [ORNL; Gao, Haichun [University of Oklahoma; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma

2009-01-01

247

Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases  

PubMed Central

Mitochondrial ferritin (FtMt) is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its increased expression has been observed in Alzheimer’s disease, restless legs syndrome and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease, FtMt overexpression attenuated the ?-amyloid induced neurotoxicity, which on the other hand increased significantly when FtMt expression was knocked down. It is also found that, by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt regarding its functions in regulation of brain iron homeostasis and its protective role in pathogenesis of neurodegenerative diseases are summarized and reviewed. PMID:24596558

Gao, Guofen; Chang, Yan-Zhong

2014-01-01

248

Iron deficiency  

Microsoft Academic Search

Iron deficiency remains one of the world’s greatest public health problems. Globally it is the greatest contributor to anaemia, affecting 47% of pre-school age children and 25% of school age children worldwide, and is a major contributor to both physical and neuro-developmental morbidity.Iron deficiency results from inadequate intake, excess turnover or excessive loss. Whilst inadequate intake is the commonest cause

Katrina Pettit; Jennifer Rowley; Nick Brown

2011-01-01

249

Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei  

PubMed Central

Calcanei of mature mule deer have the largest mineral content (percent ash) difference between their dorsal ‘compression’ and plantar ‘tension’ cortices of any bone that has been studied. The opposing trabecular tracts, which are contiguous with the cortices, might also show important mineral content differences and microscopic mineralization heterogeneity (reflecting increased hemi-osteonal renewal) that optimize mechanical behaviors in tension vs. compression. Support for these hypotheses could reveal a largely unrecognized capacity for phenotypic plasticity – the adaptability of trabecular bone material as a means for differentially enhancing mechanical properties for local strain environments produced by habitual bending. Fifteen skeletally mature and 15 immature deer calcanei were cut transversely into two segments (40% and 50% shaft length), and cores were removed to determine mineral (ash) content from ‘tension’ and ‘compression’ trabecular tracts and their adjacent cortices. Seven bones/group were analyzed for differences between tracts in: first, microscopic trabecular bone packets and mineralization heterogeneity (backscattered electron imaging, BSE); and second, trabecular architecture (micro-computed tomography). Among the eight architectural characteristics evaluated [including bone volume fraction (BVF) and structural model index (SMI)]: first, only the ‘tension’ tract of immature bones showed significantly greater BVF and more negative SMI (i.e. increased honeycomb morphology) than the ‘compression’ tract of immature bones; and second, the ‘compression’ tracts of both groups showed significantly greater structural order/alignment than the corresponding ‘tension’ tracts. Although mineralization heterogeneity differed between the tracts in only the immature group, in both groups the mineral content derived from BSE images was significantly greater (P < 0.01), and bulk mineral (ash) content tended to be greater in the ‘compression’ tracts (immature 3.6%, P = 0.03; mature 3.1%, P = 0.09). These differences are much less than the approximately 8% greater mineral content of their ‘compression’ cortices (P < 0.001). Published data, suggesting that these small mineralization differences are not mechanically important in the context of conventional tests, support the probability that architectural modifications primarily adapt the tracts for local demands. However, greater hemi-osteonal packets in the tension trabecular tract of only the mature bones (P = 0.006) might have an important role, and possible synergism with mineralization and/or microarchitecture, in differential toughening at the trabeculum level for tension vs. compression strains. PMID:22220639

Skedros, John G; Knight, Alex N; Farnsworth, Ryan W; Bloebaum, Roy D

2012-01-01

250

Iron metabolism in the pathogenesis of iron-induced kidney injury.  

PubMed

In the past 8 years, there has been renewed interest in the role of iron in both acute kidney injury (AKI) and chronic kidney disease (CKD). In patients with kidney diseases, renal tubules are exposed to a high concentration of iron owing to increased glomerular filtration of iron and iron-containing proteins, including haemoglobin, transferrin and neutrophil gelatinase-associated lipocalin (NGAL). Levels of intracellular catalytic iron may increase when glomerular and renal tubular cells are injured. Reducing the excessive luminal or intracellular levels of iron in the kidney could be a promising approach to treat AKI and CKD. Understanding the role of iron in kidney injury and as a therapeutic target requires insight into the mechanisms of iron metabolism in the kidney, the role of endogenous proteins involved in iron chelation and transport, including hepcidin, NGAL, the NGAL receptor and divalent metal transporter 1, and iron-induced toxic effects. This Review summarizes emerging knowledge, which suggests that complex mechanisms of iron metabolism exist in the kidney, modulated directly or indirectly by cellular iron content, inflammation, ischaemia and oxidative stress. The potential exists for prevention and treatment of iron-induced kidney injury by customized iron removal or relocation, aided by detailed insight into the underlying pathological mechanisms. PMID:23670084

Martines, A M F; Masereeuw, R; Tjalsma, H; Hoenderop, J G; Wetzels, J F M; Swinkels, D W

2013-07-01

251

Storage iron exchange in the rat as affected by deferoxamine  

SciTech Connect

The initial tissue localization and redistribution of radioactive iron injected intravenously into the rat as ferritin, chondroitin sulfate, and nonviable red cells was determined. Ferritin iron, initially localized in the hepatocyte, showed minimal redistribution over 24 hours in the normal animal. This may be compared with the active release of iron from the reticuloendothelial cell after the intravenous injection of nonviable red cells and chondroitin sulfate iron. All forms of iron were actively mobilized in iron-deficient animals. The effect of chelation of iron by deferoxamine (DFO) on the redistribution pattern over 4 to 6 hours was determined in iron-deficient, normal, iron-loaded, and phenylhydrazine-treated rats to evaluate the effect of iron stores and erythropoiesis. Use of DFO resulted in extensive chelation of radioactive iron within the hepatocyte and greatly reduced the amount of hepatocyte iron available for erythropoiesis. Very little chelation of reticuloendothelial cell-processed iron occurred, and there was little decrease in its utilization for red cell production. Total urinary chelate iron was independent of erythropoiesis but varied in parallel with the iron load of the animal. These studies suggest that DFO does not act on the reticuloendothelial cell but does have at least two sites of action, both of which relate to total storage iron. One involves hepatocyte stores with excretion into the intestinal tract. The other, possibly located at the hepatocyte membrane, results in urinary iron excretion.

Kim, B.K.; Huebers, H.; Pippard, M.J.; Finch, C.A.

1985-04-01

252

Status of Ascorbic Acid in Iron Deficiency Anaemia and Thalassaemia  

Microsoft Academic Search

The status of ascorbic acid was studied at the levels of platelet and leucocyte in 32 cases of iron deficiency anaemia, 35 cases of thalassaemia and 18 normal subjects. It was found that in iron deficiency anaemia, platelet ascorbic acid was significantly higher than normal values indicating tissue excess and came down sharply after treatment with iron. In thalassaemia, associated

Bharati Chatterjea; Arati Maitra; D. K. Banerjee; A. K. Basu

1980-01-01

253

Iron Overload - A Growing Nutritional Disorder from Dietary Excess  

Microsoft Academic Search

overload is alarming and the implications of iron overload in a number of equine diseases are growing. Iron is an essential element in most biological systems, the most well known being hemoglobin and myoglobin. Iron is the basis of the heme component of the red blood cell that binds oxygen and allows it to be carried to the tissues. (Jackson,

Amberlee Ficociello

254

Mechanistic and regulatory aspects of intestinal iron absorption.  

PubMed

Iron is an essential trace mineral that plays a number of important physiological roles in humans, including oxygen transport, energy metabolism, and neurotransmitter synthesis. Iron absorption by the proximal small bowel is a critical checkpoint in the maintenance of whole-body iron levels since, unlike most other essential nutrients, no regulated excretory systems exist for iron in humans. Maintaining proper iron levels is critical to avoid the adverse physiological consequences of either low or high tissue iron concentrations, as commonly occurs in iron-deficiency anemia and hereditary hemochromatosis, respectively. Exquisite regulatory mechanisms have thus evolved to modulate how much iron is acquired from the diet. Systemic sensing of iron levels is accomplished by a network of molecules that regulate transcription of the HAMP gene in hepatocytes, thus modulating levels of the serum-borne, iron-regulatory hormone hepcidin. Hepcidin decreases intestinal iron absorption by binding to the iron exporter ferroportin 1 on the basolateral surface of duodenal enterocytes, causing its internalization and degradation. Mucosal regulation of iron transport also occurs during low-iron states, via transcriptional (by hypoxia-inducible factor 2?) and posttranscriptional (by the iron-sensing iron-regulatory protein/iron-responsive element system) mechanisms. Recent studies demonstrated that these regulatory loops function in tandem to control expression or activity of key modulators of iron homeostasis. In health, body iron levels are maintained at appropriate levels; however, in several inherited disorders and in other pathophysiological states, iron sensing is perturbed and intestinal iron absorption is dysregulated. The iron-related phenotypes of these diseases exemplify the necessity of precisely regulating iron absorption to meet body demands. PMID:24994858

Gulec, Sukru; Anderson, Gregory J; Collins, James F

2014-08-15

255

Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review  

PubMed Central

Background Linoleic acid, with a DRI of 12-17 g/d, is the most highly consumed polyunsaturated fatty acid in the Western diet and is found in virtually all commonly consumed foods. The concern with dietary linoleic acid, being the metabolic precursor of arachidonic acid, is its consumption may enrich tissues with arachidonic acid and contribute to chronic and overproduction of bioactive eicosanoids. However, no systematic review of human trials regarding linoleic acid consumption and subsequent changes in tissue levels of arachidonic acid has been undertaken. Objective In this study, we reviewed the human literature that reported changes in dietary linoleic acid and its subsequent impact on changing tissue arachidonic acid in erythrocytes and plasma/serum phospholipids. Design We identified, reviewed, and evaluated all peer-reviewed published literature presenting data outlining changes in dietary linoleic acid in adult human clinical trials that reported changes in phospholipid fatty acid composition (specifically arachidonic acid) in plasma/serum and erythrocytes within the parameters of our inclusion/exclusion criteria. Results Decreasing dietary linoleic acid by up to 90% was not significantly correlated with changes in arachidonic acid levels in the phospholipid pool of plasma/serum (p = 0.39). Similarly, when dietary linoleic acid levels were increased up to six fold, no significant correlations with arachidonic acid levels were observed (p = 0.72). However, there was a positive relationship between dietary gamma-linolenic acid and dietary arachidonic acid on changes in arachidonic levels in plasma/serum phospholipids. Conclusions Our results do not support the concept that modifying current intakes of dietary linoleic acid has an effect on changing levels of arachidonic acid in plasma/serum or erythrocytes in adults consuming Western-type diets. PMID:21663641

2011-01-01

256

Iron, lactoferrin and iron regulatory protein activity in the synovium; relative importance of iron loading and the inflammatory response  

PubMed Central

OBJECTIVES—To determine the ability of lactoferrin in rheumatoid arthritis (RA) synovial fluid to bind "free" iron, and to study the regulatory mechanisms therein that control iron homeostasis.?METHODS—"Free" iron was determined by the bleomycin assay and lactoferrin concentrations by enzyme linked immunosorbent assay. The activities of iron regulatory protein (IRP) and NF-?B in synovial fluid cells were assayed by mobility shift assay.?RESULTS—30% of synovial fluids contained "free" iron and in these, lactoferrin concentrations were significantly lower than in those with no "free" iron (p<0.01). Addition of exogenous lactoferrin consistently reduced the amount of "free" iron in positive synovial fluids. IRP activity in synovial cells did not correlate with synovial fluid iron concentrations but did correlate with NF-?B activation and with serum C reactive protein.?CONCLUSION—Lactoferrin may prevent iron mediated tissue damage in RA by reducing "free" synovial iron concentration when inflammatory stimuli have disregulated IRP mediated iron homeostasis.?? Keywords: lactoferrin; rheumatoid arthritis; inflammation PMID:9741316

Guillen, C; McInnes, I; Kruger, H; Brock, J

1998-01-01

257

Systemic iron supplementation replenishes iron stores without enhancing colon carcinogenesis in murine models of ulcerative colitis: comparison with iron-enriched diet.  

PubMed

Ulcerative colitis (UC) patients frequently require iron supplementation to remedy anemia. The impact of systemic iron supplementation (intraperitoneal injection) on UC-associated carcinogenesis was assessed in mice subjected to cyclic dextran sulfate sodium (DSS) treatment and compared with dietary iron enrichment. Systemic iron supplementation, but not a twofold iron diet, remedied iron deficiency as indicated by the histochemical detection of splenic iron stores. A twofold iron diet, but not systemic iron, increased iron accumulation in colonic luminal contents, at the colonic mucosal surface, and in superficial epithelial cells. Colitis-associated colorectal tumor incidence after 15 DSS cycles was not affected by systemic iron (2/28; 7.1%) compared to nonsupplemented controls (4/28; 14.1%) but was significantly increased by the twofold iron diet (24/33; 72.7%) (P < 0.001). Mechanistic study revealed that systemic iron had no effect on DSS-induced inflammation, or colonic iNOS and COX-2 protein levels, compared to controls. Systemic iron supplementation for 16 weeks replenished splenic iron in a spontaneous colitis model (interleukin-2-deficient mice) and significantly reduced colonic inflammation compared to interleukin-2 (-/-) controls without increasing hyperplastic lesions. These results suggest that iron supplemented systemically could be used to remedy anemia in UC patients without exacerbating inflammation or enhancing colon cancer risk. These findings need to be verified in clinical studies. PMID:15844705

Seril, Darren N; Liao, Jie; Yang, Chung S; Yang, Guang-Yu

2005-04-01

258

Inhibited PTHLH downstream leukocyte adhesion-mediated protein amino acid N-linked glycosylation coupling Notch and JAK-STAT cascade to iron-sulfur cluster assembly-induced aging network in no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) by systems-theoretical analysis.  

PubMed

We analyzed the different biological processes and occurrence numbers between low expression inhibited PTHLH downstream-mediated aging gene ontology (GO) network of no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection) and the corresponding high expression (fold change ?2) inhibited GO network of human hepatocellular carcinoma (HCC). Inhibited PTHLH downstream-mediated aging network consisted of aging, branched chain family amino acid biosynthesis, cellular metabolism, cholesterol biosynthesis, coupled to cyclic nucleotide second messenger, cytolysis, 'de novo' GDP-l-fucose biosynthesis, detection of mechanical stimulus, glucose homeostasis, G-protein signaling, leukocyte adhesion, iron-sulfur cluster assembly, JAK-STAT cascade, Notch signaling pathway, nucleotide-sugar metabolism, peptidyl-tyrosine sulfation, protein amino acid N-linked glycosylation, protein amino acid phosphorylation, response to drug, rRNA processing, translational initiation, ubiquitin-dependent protein catabolism, homophilic cell adhesion in no-tumor hepatitis/cirrhotic tissues. We proposed inhibited PTHLH downstream leukocyte adhesion-mediated protein amino acid N-linked glycosylation coupling Notch and JAK-STAT cascade to iron-sulfur cluster assembly-induced aging network. Our hypothesis was verified by the same inhibited PTHLH downstream-mediated aging GO network in no-tumor hepatitis/cirrhotic tissues with the corresponding activated GO network of HCC, or the different with the corresponding activated GO network of no-tumor hepatitis/cirrhotic tissues. Inhibited PTHLH downstream leukocyte adhesion-mediated protein amino acid N-linked glycosylation coupling Notch and JAK-STAT cascade to iron-sulfur cluster assembly-induced aging network included TSTA3, ALK, CIAO1, NOTCH3 in no-tumor hepatitis/cirrhotic tissues from the GEO data set using gene regulatory network inference method and our programming. PMID:22955522

Wang, Lin; Huang, Juxiang; Jiang, Minghu; Lin, Hong; Qi, Lianxiu; Diao, Haizhen

2012-10-01

259

[Changes of fatty-acid structure of common lipids and contents of peroxidation products in tissues of embryos depending on the level of vitamins A, D3 and E in a diet of geese during the reproductive period].  

PubMed

Results concerning the contents of retinol in the liver, residual yoke of 25-day embryos and yoke of eggs depending on the level of vitamins A, D3 and E in the diet of geese by grey Obroshin breeds in reproductive period are presented in the paper. It is established, that vitamin D3 reduces the level of retinol deposition in the tissues of embryos and yoke of eggs of geese, and addition of vitamins A and E to a diet of geese raises the level of retinol both in the liver and residual yoke of embryos, and in yokes of geese eggs. Besides the data about changes of fatty-acid spectrum of common lipids and contents of lipid peroxidations products in tissues of the liver and pectoral muscles of 25-day embryos are presented in the paper depending on the level of vitamins A, D3 and E in geese diet during their reproductive period. Introduction of vitamin A--in quantity of 10000 IU, vitamin D3--in quantity of 3000 IU, in the composition of mixed fodder of geese during the reproductive period and vitamin E in quantity 35 IU on 1 kg to mixed fodder optimizes fatty-acid structure of the common lipids and the level of peroxidations lipids products in the liver and pectoral muscles of embryos. PMID:21516725

Moravs'ka, O V; Vovk, S O

2010-01-01

260

Oxidative stress induced by iron in Hydrilla verticillata (l.f.) Royle: response of antioxidants.  

PubMed

The effect of iron (FeCl3) on chlorophyll content, lipid peroxidation product, potassium ion leakage (a measure of damage to the permeability barrier), and antioxidants was studied in Hydrilla verticillata. The effect of iron-induced damage to the plant was compared with those of N-ethyl maleimide (NEM), a sulfhydryl reagent, and cumene hydroperoxide (CHP), an organic peroxide known to induce lipid peroxidation by free radical formation. The level of lipid peroxidation product was increased in the plants treated with Fe, CHP, and CHP + NEM but not with NEM alone. A significant increase in potassium ion leakage to the external solution was observed by the addition of Fe, CHP, and CHP + NEM, while this did not increase significantly in NEM-treated plants. When NEM and CHP were added simultaneously, the results were the same as those obtained with high iron concentrations, suggesting a combined effect of thiol depletion and lipid peroxidation by Fe ions. In addition, the results indicated loss of glutathione (GSH) and increased oxidized glutathione (GSSG) under Fe stress, indicative of oxidative stress. The oxidative stress may increase the production of free radicals and subsequently resulted in peroxidation of lipids. Further, addition of iron increased the activity of superoxide dismutase (SOD) which may be due to enhanced production of oxygen free radical and related tissue damage. The results suggest that iron-induced damage in plants can be ascribed to a direct metal action on thiols and by toxic oxygen species. An increase in lipid peroxidation product and K+ leakage are the primary responses of iron toxicity on membrane damage. However, the decrease in chlorophyll content is part of the overall expression of iron toxicity. PMID:9469882

Sinha, S; Gupta, M; Chandra, P

1997-12-01

261

A trace metal (zinc and iron) study on low dose x-radiation response in rat skin.  

PubMed

There is no reliable bio-dosimeter regarding low dose radiation effects in mammalian systems. In this study, chronic low dose (< 1 cGy) whole body x-irradiated rat skin have shown altered trace metal (zinc and iron) content which clearly indicated the redistribution of these metals in the integumentary system. The decreased zinc to iron ratios suggested enhanced oxidative stress of the tissue. Changes in trace metal content in irradiated rat skin, as a biological response to low dose radiation, were non-linear. Moreover, the lowered zinc content of E2, E3, E4 and E5 dose groups suggested a different steady state, compared to the control. The Zn: Fe ratio decreased with increasing radiation dose. PMID:9228171

Chatterjee, J; Chaudhuri, K; Das, A K; Basu, S K; De, K; Majumdar, S

1997-08-01

262

Iron status of women is associated with the iron concentration of potable groundwater in rural Bangladesh.  

PubMed

Women of reproductive age are at a high risk of iron deficiency, often as a result of diets low in bioavailable iron. In some settings, the iron content of domestic groundwater sources is high, yet its contribution to iron intake and status has not been examined. In a rural Bangladeshi population of women deficient in dietary iron, we evaluated the association between groundwater iron intake and iron status. In 2008, participants (n = 209 with complete data) were visited to collect data on 7-d food frequency, 7-d morbidity history, 24-h drinking water intake, and rice preparation, and to measure the groundwater iron concentration. Blood was collected to assess iron and infection status. Plasma ferritin (?g/L) and body iron (mg/kg) concentrations were [median (IQR)] 67 (46, 99) and 10.4 ± 2.6, respectively, and the prevalence of iron deficiency (ferritin < 12 ?g/L) was 0%. Daily iron intake from water [42 mg (18, 71)] was positively correlated with plasma ferritin (r = 0.36) and total body iron (r = 0.35) (P < 0.001 for both). In adjusted linear regression analyses, plasma ferritin increased by 6.1% (95% CI: 3.8, 8.4%) and body iron by 0.3 mg/kg (0.2, 0.4) for every 10-mg increase in iron intake from water (P < 0.001). In this rural area of northern Bangladesh, women of reproductive age had no iron deficiency likely attributable to iron consumed from drinking groundwater, which contributed substantially to dietary intake. These findings suggest that iron intake from water should be included in dietary assessments in such settings. PMID:21451130

Merrill, Rebecca D; Shamim, Abu Ahmed; Ali, Hasmot; Jahan, Nusrat; Labrique, Alain B; Schulze, Kerry; Christian, Parul; West, Keith P

2011-05-01

263

Regulation of Tissue LC-PUFA Contents, ?6 Fatty Acyl Desaturase (FADS2) Gene Expression and the Methylation of the Putative FADS2 Gene Promoter by Different Dietary Fatty Acid Profiles in Japanese Seabass (Lateolabrax japonicus)  

PubMed Central

The present study was conducted to evaluate the influences of different dietary fatty acid profiles on the tissue content and biosynthesis of LC-PUFA in a euryhaline species Japanese seabass reared in seawater. Six diets were prepared, each with a characteristic fatty acid: Diet PA: Palmitic acid (C16:0); Diet SA: Stearic acid (C18:0); Diet OA: Oleic acid (C18:1n-9); Diet LNA: ?-linolenic acid (C18:3n-3); Diet N-3 LC-PUFA: n-3 LC-PUFA (DHA+EPA); Diet FO: the fish oil control. A 10-week feeding trial was conducted using juvenile fish (29.53±0.86 g). The results showed that Japanese seabass had limited capacity to synthesize LC-PUFA and fish fed PA, SA, OA and LNA showed significantly lower tissue n-3 LC-PUFA contents compared to fish fed N-3 LC-PUFA and FO. The putative gene promoter and full-length cDNA of FADS2 was cloned and characterized. The protein sequence was confirmed to be homologous to FADS2s of marine teleosts and possessed all the characteristic features of microsomal fatty acid desaturases. The FADS2 transcript levels in liver of fish fed N-3 LC-PUFA and FO were significantly lower than those in fish fed other diets except LNA while Diet PA significantly up-regulated the FADS2 gene expression compared to Diet LNA, N-3 LC-PUFA and FO. Inversely, fish fed N-3 LC-PUFA and FO showed significantly higher promoter methylation rates of FADS2 gene compared to fish fed the LC-PUFA deficient diets. These results suggested that Japanese seabass had low LC-PUFA synthesis capacity and LC-PUFA deficient diets caused significantly reduced tissue n-3 LC-PUFA contents. The liver gene expression of FADS2 was up-regulated in groups enriched in C16:0, C18:0 and C18:1n-9 respectively but not in the group enriched in C18:3n-3 compared to groups with high n-3 LC-PUFA contents. The FADS2 gene expression regulated by dietary fatty acids was significantly negatively correlated with the methylation rate of putative FADS2 gene promoter. PMID:24498178

Ai, Qinghui; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Zuo, Rantao

2014-01-01

264

Absence of a Causal Relationship between Auxin-Induced Growth and Changes in the Content of Ascorbic and Dehydroascorbic Acids in Excised Plant Tissues 12  

PubMed Central

The data reported indicate that the oxidation-reduction balance of the ascorbic acid system is not causally related to the auxin-regulation of cell elongation. There was no shift in the ascorbic acid (AA) to dehydroascorbic acid (DHA) ratio with growth-promoting concentration of auxin in several plant tissues. The AA to DHA ratio was experimentally increased without altering the growth rate. Inhibition of growth by supra-optimal auxin was associated with a decrease in the AA to DHA ratio. Since the AA to DHA ratio was lowered by EDTA treatment without altering growth, it seems unlikely that the decrease in the AA to DHA ratio related to the inhibition of growth by high levels of auxin. PMID:16656564

Lin, C. Y.; Key, Joe L.

1967-01-01

265

Determination of heavy metal contents in water, sediments, and fish tissues of Shizothorax plagiostomus in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan.  

PubMed

The present study was conducted to investigate the contamination of water, sediments, and fish tissues with heavy metals in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Water, sediments, and fish (Shizothorax plagiostomus) samples were collected from September 2012 to January 2013 at three different sites (upstream site at Sharigut, sewage site at Timergara, and downstream site at Sadoo) of river Panjkora. The concentrations of heavy metals in water were in the order Zn?>?Cu???Pb?>?Ni???Cd with mean values of 0.30, 0.01, 0.01, 0.0 and 0.0 mg/l, respectively, which were below the maximum permissible limits of WHO for drinking water. In sediments, heavy metals were found in the order Cu?>?Zn?>?Ni?>?Pb?>?Cd with mean concentrations of 50.6, 38.7, 9.3, 8, and 0.4 mg/kg, respectively. Ni and Cd were not found in any fish tissues, but Zn, Cu, and Pb were detected with the mean concentration ranges of 0.04-1.19, 0.03-0.12, and 0.01-0.09 ?g/g, respectively. The present study demonstrates that disposal of waste effluents causes a slight increase in the concentration of heavy metals in river Panjkora as revealed by variation in metal concentrations from upstream to downstream site. Sewage disposal was also found to change physicochemical characteristics of Panjkora water. At present, water and fish of river Panjkora are safe for human consumption, but the continuous sewage disposal may create problems in the future. PMID:25017990

Ahmad, Kabir; Azizullah, Azizullah; Shama, Shama; Khattak, Muhammad Nasir Khan

2014-11-01

266

Taking iron supplements  

MedlinePLUS

... levels. You may also need to take iron supplements as well to rebuild iron stores in your ... ABOUT IRON SUPPLEMENTS Iron supplements may be taken as capsules, tablets, chewable tablets, and liquids. The most common tablet size is ...

267

IRON INCREASES EXPRESSION OF IRON-EXPORT PROTEIN MTP1 IN LUNG CELLS  

EPA Science Inventory

Accumulation of reactive iron in acute and chronic lung disease suggests that iron-driven free radical formation could contribute to tissue injury. Safe transport and sequestration of this metal is likely to be of importance in lung defense. We provide evidence for the expression...

268

Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues.  

PubMed

The sialic acid-specific cytotoxic lectin viscumin and its recombinant equivalent rViscumin specifically bind to CD75s-gangliosides with terminal Neu5Ac?6Gal?4GlcNAc sequence. We, therefore, comparatively analyzed the content of CD75s-gangliosides and closely related iso-CD75s-gangliosides (terminated by Neu5Ac?3Gal?4GlcNAc sequence) and the gene expression of associated ?-galactoside ?-2,6-sialyltransferase 1 (ST6GAL1) and ?-galactoside ?-2,3-sialyltransferase 6 (ST3GAL6), respectively, in 35 hepatocellular carcinoma (HCC) patients. Ganglioside structures were identified in lipid extracts of matched pairs of malignant and nonmalignant liver tissues by thin-layer chromatography immunodetection coupled with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. CD75s- and iso-CD75s-gangliosides were found to be deregulated in tumor tissues and showed an elevated occurrence in 35 and 41% of HCCs, respectively, compared with nontumoral liver tissues. Statistical analysis revealed a correlation between enhanced iso-CD75s-ganglioside amount and a poor histopathological differentiation (? = 0.317, P = 0.045) and a significant association of CD75s- and iso-CD75s-ganglioside levels in nontumorous (? = 0.392, P = 0.003) and in tumorous tissues (? = 0.650, P < 0.001). Quantitative real-time polymerase chain reaction gene expression analysis of sialyltransferases exhibited no difference in ST6GAL1 expression in cancerous and adjacent noncancerous tissues. Interestingly, the ST3GAL6 expression was significantly diminished in HCCs (P = 0.003). The results indicate that the occurrence of CD75s- and iso-CD75s-gangliosides in tumor tissues is largely independent of the transcriptional expression of ST6GAL1 and ST3GAL6, respectively. Thus, further experiments are required to explore the rationale behind the differential ganglioside level and to validate the applicability of CD75s- and iso-CD75s-gangliosides as targets for individual HCC therapies. PMID:21147760

Souady, Jamal; Hülsewig, Marcel; Distler, Ute; Haier, Jörg; Denz, Axel; Pilarsky, Christian; Senninger, Norbert; Dreisewerd, Klaus; Peter-Katalinic, Jasna; Müthing, Johannes

2011-05-01

269

Iron and infection  

Microsoft Academic Search

Iron and infection. Intravenous iron therapy maintains iron stores and decreases erythropoietin demand in patients undergoing regular dialysis therapy. Microbiology studies show a close relationship between the availability of iron and bacterial virulence. Iron is also an essential requirement of bacteria for multiplication in the host. Therefore, clinical conditions associated with iron excess in the host may increase the risk

SANDA I. PATRUTA; WALTER H. HORL

1999-01-01

270

Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications  

PubMed Central

Summary Iron is important for brain oxygen transport, electron transfer, neurotransmitter synthesis, and myelin production. Though iron deposition has been observed in the brain with normal aging, increased iron has also been shown in many chronic neurologic disorders including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In vitro studies have demonstrated that excessive iron can lead to free radical production, which can promote neurotoxicity. However, the link between observed iron deposition and pathologic processes underlying various diseases of the brain is not well understood. It is not known whether excessive in vivo iron directly contributes to tissue damage or is solely an epiphenomenon. In this article we focus on the imaging of brain iron and the underlying physiology and metabolism relating to iron deposition. We conclude with a discussion of the potential implications of iron-related toxicity to neurotherapeutic development. PMID:17599703

Stankiewicz, James; Panter, Scott S; Neema, Mohit; Arora, Ashish; Batt, Courtney; Bakshi, Rohit

2007-01-01

271

Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0. 45% dehydroisoandrosterone (DHA)  

SciTech Connect

A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous (1-/sup 14/C)arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1..cap alpha.. were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet.

Matsunaga, A.; Cottam, G.L.

1987-05-01

272

Toxicity and Biodistribution of Activated and Non-activated Intravenous Iron Oxide Nanoparticles  

PubMed Central

The use of nanoparticles in medical treatment has prompted the question of their safety. In this study, the pathophysiology and biodistribution of three different concentrations of intravenously-delivered dextran-coated Fe3O4 iron oxide nanoparticles (IONP) were evaluated in mice. Some groups of mice were exposed to an AC magnetic field (AMF) at levels comparable with those proposed for cancer treatments. Iron biodistribution analysis for both AMF and non-AMF treated mice was performed for all three concentrations used (.6 mg Fe/mouse, 1.8 mg Fe/mouse, and 5.6 mg Fe/mouse). Blood urea nitrogen, alanine transaminase, alkaline phosphatase, total serum protein, and creatinine were also assessed at 4 hours, 7 days, and 14 days post-injection. Histological analysis of lung, spleen, heart, liver, and kidney tissue was conducted at 7 and 14 days post-injection. Prussian blue and H&E stains were used to histomorphometrically assess iron content in the tissues studied. Preliminary results demonstrate small temporary elevation in liver enzymes and hepatocyte vacuolization at all iron concentrations studied. Liver and spleen were the primary sites of IONP deposition. None of the animals demonstrated systemic or local toxicity or illness, with or without AMF activation. PMID:25300674

Tate, JA; Ogden, JA; Strawbridge, RR; Pierce, ZE; Hoopes, PJ

2014-01-01

273

Genetics Home Reference: Iron-refractory iron deficiency anemia  

MedlinePLUS

... Genetic disorder catalog Conditions > Iron-refractory iron deficiency anemia On this page: Description Genetic changes Inheritance Diagnosis ... July 2014 What is iron-refractory iron deficiency anemia? Iron-refractory iron deficiency anemia is one of ...

274

Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states.  

PubMed

The crystal structure of the Dps-like (Dps, DNA-protecting protein during starvation) ferritin protein DpsA from the halophile Halobacterium salinarum was determined with low endogenous iron content at 1.6-A resolution. The mechanism of iron uptake and storage was analyzed in this noncanonical ferritin by three high-resolution structures at successively increasing iron contents. In the high-iron state of the DpsA protein, up to 110 iron atoms were localized in the dodecameric protein complex. For ultimate iron storage, the archaeal ferritin shell comprises iron-binding sites for iron translocation, oxidation, and nucleation. Initial iron-protein interactions occur through acidic residues exposed along the outer surface in proximity to the iron entry pore. This narrow pore permits translocation of ions toward the ferroxidase centers via two discrete steps. Iron oxidation proceeds by transient formation of tri-iron ferroxidase centers. Iron storage by biomineralization inside the ferritin shell occurs at two iron nucleation centers. Here, a single iron atom provides a structural seed for iron-oxide cluster formation. The clusters with up to five iron atoms adopt a geometry that is different from natural biominerals like magnetite but resembles iron clusters so far known only from bioinorganic model compounds. PMID:15365182

Zeth, Kornelius; Offermann, Stefanie; Essen, Lars-Oliver; Oesterhelt, Dieter

2004-09-21

275

Iron and DHA in Relation to Early Cognitive Development  

E-print Network

as the main neurotransmitter associated with reward functions (31). The existence of individual roles of iron and DHA with dopamine is well established. When DHA brain content was decreased through an ?-linolenic acid deficient diet in a rodent study, dopamine... quotients 12 among offspring at 4 years of age (37). In Nepal, a study supplemented mothers with daily iron and folic acid, iron and zinc, or multiple micronutrients beginning early in pregnancy. The investigators found that iron and folic acid...

Park, Loran Marie

2013-05-31

276

Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria ? †  

PubMed Central

Iron oxidation at neutral pH by the phototrophic anaerobic iron-oxidizing bacterium Rhodobacter sp. strain SW2 leads to the formation of iron-rich minerals. These minerals consist mainly of nano-goethite (?-FeOOH), which precipitates exclusively outside cells, mostly on polymer fibers emerging from the cells. Scanning transmission X-ray microscopy analyses performed at the C K-edge suggest that these fibers are composed of a mixture of lipids and polysaccharides or of lipopolysaccharides. The iron and the organic carbon contents of these fibers are linearly correlated at the 25-nm scale, which in addition to their texture suggests that these fibers act as a template for mineral precipitation, followed by limited crystal growth. Moreover, we evidence a gradient of the iron oxidation state along the mineralized fibers at the submicrometer scale. Fe minerals on these fibers contain a higher proportion of Fe(III) at cell contact, and the proportion of Fe(II) increases at a distance from the cells. All together, these results demonstrate the primordial role of organic polymers in iron biomineralization and provide first evidence for the existence of a redox gradient around these nonencrusting, Fe-oxidizing bacteria. PMID:19592528

Miot, Jennyfer; Benzerara, Karim; Obst, Martin; Kappler, Andreas; Hegler, Florian; Schadler, Sebastian; Bouchez, Camille; Guyot, Francois; Morin, Guillaume

2009-01-01

277

Origin of iron-rich Mississippi Valley type deposits  

NASA Astrophysics Data System (ADS)

The abundance of iron in Mississippi Valley type lead-zinc deposits and districts varies greatly; some deposits contain large amounts and others are almost free of iron. Iron in Mississippi Valley type deposits is largely paragenetically early pyrite or marcasite that was replaced by sphalerite and galena, often in the central part of the deposit or district. Sedimentary exhalative and Irish-type base metal deposits, which also form from basinal brines, have similar variations in iron content. Calculated metal contents of brines in equilibrium with galena, sphalerite, and pyrite show that iron is significantly more abundant than lead and zinc in high-temperature (>200 °C), relatively acid brines with low sulfur contents, whereas zinc dominates under most other conditions, including brines with high temperatures and high sulfur contents. These results suggest that iron-rich Mississippi Valley type deposits form from brines expelled from the deepest, hottest parts of sedimentary basins.

St. Marie, James; Kesler, Stephen E.; Allen, Cameron R.

2001-01-01

278

Effects of External Iron Concentration upon Seedling Growth and Uptake of Fe and Phosphate by the Common Reed, Phragmites australis (Cav.) Trin ex. Steudel  

PubMed Central

The objectives of this study were to determine whether, and to what degree, the aqueous iron concentration in the growing medium affects the growth of, and Fe uptake by, Phragmites australis, and whether the presence of iron in the growing environment affects the uptake of the essential element phosphate. The wetland macrophyte P. australis was grown under laboratory conditions in nutrient solution (0·31 mg L–1 phosphate) containing a range of iron concentrations (0–50 mg L–1 Fe). A threshold of iron concentration (1 mg L–1) was found, above which growth of P. australis was significantly inhibited. No direct causal relationship between iron content in aerial tissues and growth inhibition was found, which strongly suggests that iron toxicity cannot explain these results. Phosphate concentrations in aerial tissues were consistently sufficient for growth and development (2–3 % d. wt) despite significant variation in concentration of phosphate associated with roots. External Fe concentration had a significant effect on the growth of P. australis and on both Fe and phosphate concentrations associated with roots. However, neither direct toxicity nor phosphate deficiency could explain the reduction in growth above 1 mg L–1 external Fe concentration PMID:14565939

BATTY, L. C.; YOUNGER, P. L.

2003-01-01

279

Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed, Phragmites australis (Cav.) Trin ex. Steudel.  

PubMed

The objectives of this study were to determine whether, and to what degree, the aqueous iron concentration in the growing medium affects the growth of, and Fe uptake by, Phragmites australis, and whether the presence of iron in the growing environment affects the uptake of the essential element phosphate. The wetland macrophyte P. australis was grown under laboratory conditions in nutrient solution (0.31 mg L(-1) phosphate) containing a range of iron concentrations (0-50 mg L(-1) Fe). A threshold of iron concentration (1 mg L(-1)) was found, above which growth of P. australis was significantly inhibited. No direct causal relationship between iron content in aerial tissues and growth inhibition was found, which strongly suggests that iron toxicity cannot explain these results. Phosphate concentrations in aerial tissues were consistently sufficient for growth and development (2-3 % d. wt) despite significant variation in concentration of phosphate associated with roots. External Fe concentration had a significant effect on the growth of P. australis and on both Fe and phosphate concentrations associated with roots. However, neither direct toxicity nor phosphate deficiency could explain the reduction in growth above 1 mg L(-1) external Fe concentration PMID:14565939

Batty, L C; Younger, P L

2003-12-01

280

Deadly outbreak of iron storage disease (ISD) in Italian birds of the family Turdidae.  

PubMed

A widespread deadly outbreak occurred in captive birds belonging to the family Turdidae in Italy. The present study was performed on 46 dead birds coming from 3 small decoy-bird breeders in central Italy. Only Turdus pilaris, Turdus iliacus, Turdus philomelos and Turdus merula were affected. No other species of bird held by these breeders died. A change of diet before the hunting season was reported from all breeders. Full necropsy of the animals and histological investigations of representative tissue samples were performed. Microscopical examination showed marked iron deposits in liver samples. Bacteriological investigations and molecular analysis to exclude bacterial and viral diseases were carried out. Contamination of food pellet samples by mycotoxins and analysis to detect heavy metal contaminants in food pellet samples were considered. An interesting result was the high iron content found in food pellets. It was higher than that considered suitable for birds, especially for species susceptible to development iron storage disease (ISD). Taken together, the results suggested an outbreak of ISD caused by the high iron content of food given to the birds before the hunting season. The high mortality recorded only in species belonging to the family Turdidae suggests a genetic predisposition in the affected birds. PMID:24920545

Pavone, Silvia; Salamida, Sonia; Pecorelli, Ivan; Rossi, Elisabetta; Manuali, Elisabetta

2014-09-01

281

Deadly Outbreak of Iron Storage Disease (ISD) in Italian Birds of the Family Turdidae  

PubMed Central

ABSTRACT A widespread deadly outbreak occurred in captive birds belonging to the family Turdidae in Italy. The present study was performed on 46 dead birds coming from 3 small decoy-bird breeders in central Italy. Only Turdus pilaris, Turdus iliacus, Turdus philomelos and Turdus merula were affected. No other species of bird held by these breeders died. A change of diet before the hunting season was reported from all breeders. Full necropsy of the animals and histological investigations of representative tissue samples were performed. Microscopical examination showed marked iron deposits in liver samples. Bacteriological investigations and molecular analysis to exclude bacterial and viral diseases were carried out. Contamination of food pellet samples by mycotoxins and analysis to detect heavy metal contaminants in food pellet samples were considered. An interesting result was the high iron content found in food pellets. It was higher than that considered suitable for birds, especially for species susceptible to development iron storage disease (ISD). Taken together, the results suggested an outbreak of ISD caused by the high iron content of food given to the birds before the hunting season. The high mortality recorded only in species belonging to the family Turdidae suggests a genetic predisposition in the affected birds. PMID:24920545

PAVONE, Silvia; SALAMIDA, Sonia; PECORELLI, Ivan; ROSSI, Elisabetta; MANUALI, Elisabetta

2014-01-01

282

Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide ?-amyloid (1-42)  

PubMed Central

For decades, a link between increased levels of iron and areas of Alzheimer's disease (AD) pathology has been recognized, including AD lesions comprised of the peptide ?-amyloid (A?). Despite many observations of this association, the relationship between A? and iron is poorly understood. Using X-ray microspectroscopy, X-ray absorption spectroscopy, electron microscopy and spectrophotometric iron(II) quantification techniques, we examine the interaction between A?(1–42) and synthetic iron(III), reminiscent of ferric iron stores in the brain. We report A? to be capable of accumulating iron(III) within amyloid aggregates, with this process resulting in A?-mediated reduction of iron(III) to a redox-active iron(II) phase. Additionally, we show that the presence of aluminium increases the reductive capacity of A?, enabling the redox cycling of the iron. These results demonstrate the ability of A? to accumulate iron, offering an explanation for previously observed local increases in iron concentration associated with AD lesions. Furthermore, the ability of iron to form redox-active iron phases from ferric precursors provides an origin both for the redox-active iron previously witnessed in AD tissue, and the increased levels of oxidative stress characteristic of AD. These interactions between A? and iron deliver valuable insights into the process of AD progression, which may ultimately provide targets for disease therapies. PMID:24671940

Everett, J.; Cespedes, E.; Shelford, L. R.; Exley, C.; Collingwood, J. F.; Dobson, J.; van der Laan, G.; Jenkins, C. A.; Arenholz, E.; Telling, N. D.

2014-01-01

283

Iron-refractory iron deficiency anemia (IRIDA).  

PubMed

Iron deficiency anemia is a common global problem whose etiology is typically attributed to acquired inadequate dietary intake and/or chronic blood loss. However, in several kindreds multiple family members are affected with iron deficiency anemia that is unresponsive to oral iron supplementation and only partially responsive to parenteral iron therapy. The discovery that many of these cases harbor mutations in the TMPRSS6 gene led to the recognition that they represent a single clinical entity: iron-refractory iron deficiency anemia (IRIDA). This article reviews clinical features of IRIDA, recent genetic studies, and insights this disorder provides into the regulation of systemic iron homeostasis. PMID:25064705

Heeney, Matthew M; Finberg, Karin E

2014-08-01

284

Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1  

PubMed Central

We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36?ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500?g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.

2012-01-01

285

Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1.  

PubMed

We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36?ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500?g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514

Ihemere, Uzoma E; Narayanan, Narayanan N; Sayre, Richard T

2012-01-01

286

Genetic Analysis of Iron Deficiency Effects on the Mouse Spleen  

PubMed Central

Iron homeostasis is crucial to many biological functions in nearly all organisms, with roles ranging from oxygen transport to immune function. Disruption of iron homeostasis may result in iron overload or iron deficiency. Iron deficiency may have severe consequences, including anemia or changes in immune or neurotransmitter systems. Here, we report the variability phenotypic iron tissue loss and splenomegaly as well as the associated quantitative trait loci (QTL), polymorphic areas in the mouse genome which may contain one or more genes that play a role in spleen iron concentration or spleen weight under each dietary treatment. Mice from twenty-six BXD/Ty recombinant inbred strains, including the parent C57BL/6 and DBA/2 strains, were randomly assigned to adequate iron or iron deficient diets at weaning. After 120 days, splenomegaly was measured by spleen weight, and spleen iron was assessed using a modified spectrophotometry technique. QTL analyses and gene expression comparisons were then conducted using the WebQTL GenetNetwork. We observed wide, genetic-based variability in splenomegaly and spleen iron loss in BXD/Ty recombinant inbred strains fed an iron deficient diet. Moreover, we identified several suggestive QTL. Matching our QTL with gene expression data from the spleen revealed candidate genes. Our work shows that individual differences in splenomegaly response to iron deficiency are influenced at least partly by genetic constitution. We propose mechanistic hypotheses by which splenomegaly may result from iron deficiency. PMID:21732193

Gibson, Jennifer N.; Jellen, Leslie C.; Unger, Erica L.; Morahan, Grant; Mehta, Munish; Earley, Christopher J.; Allen, Richard P.; Lu, Lu; Jones, Byron C.

2011-01-01

287

Pharmacology of Iron Transport  

PubMed Central

Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors. PMID:23020294

Byrne, Shaina L.; Krishnamurthy, Divya; Wessling-Resnick, Marianne

2013-01-01

288

Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease  

Microsoft Academic Search

Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the

A. C. Leskovjan; L. Miller; A. Kretlow; A. Lanzirotti; R. Barrea; S. Vogt

2010-01-01

289

Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease  

Microsoft Academic Search

Elevated brain iron content, which has been observed in late-stage human Alzheimer's disease, is a potential target for early diagnosis. However, the time course for iron accumulation is currently unclear. Using the PSAPP mouse model of amyloid plaque formation, we conducted a time course study of metal ion content and distribution [iron (Fe), copper (Cu), and zinc (Zn)] in the

Andreana C. Leskovjan; Ariane Kretlow; Antonio Lanzirotti; Raul Barrea; Stefan Vogt; Lisa M. Miller

2011-01-01

290

Disorders of iron metabolism. Part II: iron deficiency and iron overload  

Microsoft Academic Search

Main disorders of iron metabolismIncreased iron requirements, limited external supply, and increased blood loss may lead to iron deficiency (ID) and iron deficiency anaemia. In chronic inflammation, the excess of hepcidin decreases iron absorption and prevents iron recycling, resulting in hypoferraemia and iron restricted erythropoiesis, despite normal iron stores (functional iron deficiency), and finally anaemia of chronic disease (ACD), which

Manuel Muñoz; José Antonio García-Erce; Ángel Francisco Remacha

2010-01-01

291

Lipid peroxidation, calcium, iron, and TCDD toxicity in rats  

SciTech Connect

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been studied as a prototype of halogenated aromatic hydrocarbons. Previous studies have shown that TCDD enhances hepatic lipid peroxidation. This study on TCDD administration to rats was conducted to: measure induction of lipid peroxidation in hepatic and extrahepatic tissues; compare lipid peroxidation between sexes; determine the contributions of H/sub 2/O/sub 2/ and other reactive oxygen species and associated enzymes on hepatic lipid peroxidation: determine the role of iron in TCDD-induced lipid peroxidation; and investigate the relationship between TCDD-induced alterations in lipid peroxidation, calcium homeostasis, reduced glutathione content (GSH) and selenium-dependent glutathione peroxidase activity (GSH-Px). The results demonstrated that TCDD induces changes in microsomal lipid peroxidation in hepatic and extrahepatic tissues. The rates of microsomal lipid peroxidation in male rats were less than in microsomes from female rats. TCDD treatment produced a significant increase in lipid peroxidation which preceded an increase in whole homogenate and mitochondrial calcium content, but paralleled an increase in microsomal calcium content. TCDD treatment produced dose and time dependent decreases in hepatic GSH content and GSH-Px activity in female rats. H/sub 2/O/sub 2/ and possibly hydroxyl radical and singlet oxygen are involved in TCDD-induced hepatic microsomal lipid peroxidation. The results support the hypothesis that the toxicity of TCDD and its lack of tissue selectivity in male and female rats may be due in part to lipid peroxidation. Lipid peroxidation may alter membrane permeability to calcium and lead to sequestration of calcium.

Al-Bayati, Z.A.F.

1986-01-01

292

Iron deficiency anemia  

MedlinePLUS

... You get iron deficiency anemia when your body's iron stores run low. This can occur because: You lose ... ferrous sulfate) are needed to build up the iron stores in your body. Most of the time, your ...

293

Iron and Prochlorococcus/  

E-print Network

Iron availability and primary productivity in the oceans are intricately linked through photosynthesis. At the global scale we understand how iron addition induces phytoplankton blooms through meso-scale iron-addition ...

Thompson, Anne Williford

2009-01-01

294

Characterization of tetraethylene glycol passivated iron nanoparticles  

NASA Astrophysics Data System (ADS)

The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90-120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe3O4) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron-iron oxide were 145 emu g-1 and 131 emu g-1, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

Nunes, Eloiza da Silva; Viali, Wesley Renato; da Silva, Sebastião William; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Morais, Paulo César; Jafelicci Júnior, Miguel

2014-10-01

295

Use of carbonyl iron to induce iron loading in the mussel Mytilus edulis  

SciTech Connect

It is now recognized that in organisms such as marine mussels, the prior presence of one metal can be important in determining the ultimate toxicological response to a second challenge by a different metal species. Thus, for example, the presence of iron in the mussel Mytilus edulis profoundly affects the subsequent accumulation of zinc. To determine these synergistic (or indeed antagonistic) effects in an organism such as the mussel, it is important to be able to both load the animal rapidly, and ensure that the metal ends up in a form which is ultimately the same as that found in the animal in the natural environment. Unfortunately, considerable problems have arisen with the form in which iron has been loaded into mussels. Recently, carbonyl iron has been used to induce iron loading in rats. This form of iron is prepared by reacting elemental iron at high temperatures with carbon monoxide to form iron pentacarbonyl. This study was thus undertaken to determine whether carbonyl iron could be used for the rapid non-toxic iron loading of the mussel Mytilus edulis. Such loading could subsequently be used for the investigation of synergistic metal accumulation in mussels, a topic of considerable interest due to their use as marine pollution indicator organisms. Biochemical aspects of this tissue iron loading, including the isolation and characterization of the major metal-binding protein ferritin, have been reported previously.

Bootsma, N.; Macey, D.J.; Webb, J.; Talbot, V. (Murdoch Univ. (Australia))

1990-02-01

296

Recent studies on iron meteorites. IV The origin of meteoritic helium and the age of meteorites  

Microsoft Academic Search

The rate of generation of helium in iron, by nuclear evaporation processes initiated by cosmic radiation, is recalculated with particular reference to the problem of the helium content of iron meteorites. The absence of a significant \\

G. R. Martin

1953-01-01

297

Studies the alterations of biochemical and mineral contents in bone tissue of mus musculus due to aluminum toxicity and the protective action of desferrioxamine and deferiprone by FTIR, ICP-OES, SEM and XRD techniques  

NASA Astrophysics Data System (ADS)

The present study has attempt to analyze the changes in the biochemical and mineral contents of aluminum intoxicated bone and determine the protective action of desferrioxamine (DFO) and deferiprone (DFP) by using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), and scanning electron microscopy (SEM) techniques for four groups of animals such as control (Group I), aluminum intoxicated (Group II), Al + DFP (Group III) and Al + DFO + DFP (Group IV) treated groups respectively. The FTIR spectra of the aluminum intoxicated bone showed significant alteration in the biochemical constituents. The bands ratio at I1400/I877 significantly decreased from control to aluminum, but enhanced it by Al + DFP to Al + DFO + DFP treated bone tissue for treatments of 16 weeks. This result suggests that DFO and DFP are the carbonate inhibitor, recovered from chronic growth of bone diseases and pathologies. The alteration of proteins profile indicated by Amide I and Amide II, where peak area values decreased from control to aluminum respectively, but enhanced by treated with DFP (p.o.) and DFO + DFP (i.p.) respectively. The XRD analysis showed a decrease in crystallinity due to aluminum toxicity. Further, the Ca, Mg, and P contents of the aluminum exposed bone were less than those of the control group, and enhanced by treatments with DFO and DFP. The concentrations of trace elements were found by ICP-OES. Therefore, present study suggests that due to aluminum toxicity severe loss of bone minerals, decrease in the biochemical constituents and changes in the surface morphology.

Sivakumar, S.; Khatiwada, Chandra Prasad; Sivasubramanian, J.

298

Studies the alterations of biochemical and mineral contents in bone tissue of mus musculus due to aluminum toxicity and the protective action of desferrioxamine and deferiprone by FTIR, ICP-OES, SEM and XRD techniques.  

PubMed

The present study has attempt to analyze the changes in the biochemical and mineral contents of aluminum intoxicated bone and determine the protective action of desferrioxamine (DFO) and deferiprone (DFP) by using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), and scanning electron microscopy (SEM) techniques for four groups of animals such as control (Group I), aluminum intoxicated (Group II), Al+DFP (Group III) and Al+DFO+DFP (Group IV) treated groups respectively. The FTIR spectra of the aluminum intoxicated bone showed significant alteration in the biochemical constituents. The bands ratio at I1400/I877 significantly decreased from control to aluminum, but enhanced it by Al+DFP to Al+DFO+DFP treated bone tissue for treatments of 16 weeks. This result suggests that DFO and DFP are the carbonate inhibitor, recovered from chronic growth of bone diseases and pathologies. The alteration of proteins profile indicated by Amide I and Amide II, where peak area values decreased from control to aluminum respectively, but enhanced by treated with DFP (p.o.) and DFO+DFP (i.p.) respectively. The XRD analysis showed a decrease in crystallinity due to aluminum toxicity. Further, the Ca, Mg, and P contents of the aluminum exposed bone were less than those of the control group, and enhanced by treatments with DFO and DFP. The concentrations of trace elements were found by ICP-OES. Therefore, present study suggests that due to aluminum toxicity severe loss of bone minerals, decrease in the biochemical constituents and changes in the surface morphology. PMID:24583473

Sivakumar, S; Khatiwada, Chandra Prasad; Sivasubramanian, J

2014-05-21

299

Iron uptake and homeostasis related genes in potato cultivated in vitro under iron deficiency and overload.  

PubMed

Potato is one of the most important staple food in the world because it is a good source of vitamin C, vitamin B6 but also an interesting source of minerals including mainly potassium, but also magnesium, phosphorus, manganese, zinc and iron to a lesser extent. The lack of iron constitutes the main form of micronutrient deficiency in the world, namely iron deficiency anemia, which strongly affects pregnant women and children from developing countries. Iron biofortification of major staple food such as potato is thus a crucial issue for populations from these countries. To better understand mechanisms leading to iron accumulation in potato, we followed in an in vitro culture experiment, by qPCR, in the cultivar Désirée, the influence of media iron content on the expression of genes related to iron uptake, transport and homeostasis. As expected, plantlets grown in a low iron medium (1 mg L(-1) FeNaEDTA) displayed a decreased iron content, a strong induction of iron deficiency-related genes and a decreased expression of ferritins. Inversely, plantlets grown in a high iron medium (120 mg L(-1) FeNaEDTA) strongly accumulated iron in roots; however, no significant change in the expression of our set of genes was observed compared to control (40 mg L(-1) FeNaEDTA). PMID:22983142

Legay, Sylvain; Guignard, Cédric; Ziebel, Johanna; Evers, Danièle

2012-11-01

300

Iron and Stony-iron Meteorites  

Microsoft Academic Search

Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich sampling of the deep interiors of differentiated asteroids.Iron and stony-iron

H. Haack; T. J. McCoy

2003-01-01

301

Iron-Dependent Regulation of Hepcidin in Hjv-/- Mice: Evidence That Hemojuvelin Is Dispensable for Sensing Body Iron Levels  

PubMed Central

Hemojuvelin (Hjv) is a bone morphogenetic protein (BMP) co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv?/? mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv?/? mice developed systemic iron overload under all regimens. Transferrin (Tf) was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin. PMID:24409331

Daba, Alina; Wagner, John; Sebastiani, Giada; Pantopoulos, Kostas

2014-01-01

302

Biodistribution and imaging of fluorescently-tagged iron oxide nanoparticles in a breast cancer mouse model  

PubMed Central

Iron oxide nanoparticle (IONP) hyperthermia is an emerging treatment that shows great potential as a cancer therapy both alone and in synergy with conventional modalities. Pre-clinical studies are attempting to elucidate the mechanisms of action and distributions of IONP in various in vitro and in vivo models, however these studies would greatly benefit from real-time imaging of IONP locations both in cellular and in mammalian systems. To this end, fluorescently-tagged IONP (fIONP) have been employed for real time tracking and co-registration of IONP with iron content. Starch-coated IONP were fluorescently-tagged, purified and analyzed for fluorescent signal at various concentrations. fIONP were incubated with MTGB cells for varying times and cellular uptake analyzed using confocal microscopy, flow cytometry and inductively-coupled plasma mass spectrometry (ICP-MS). fIONP were also injected into a bilateral mouse tumor model for radiation modification of tumor tissue and enhanced fIONP deposition assessed using a Xenogen IVIS fluorescent imager. Results demonstrated that fIONP concentrations in vitro correlated with ICPMS iron readings. fIONP could be tracked in vitro as well as in tissue samples from an in vivo model. Future work will employ whole animal fluorescent imaging to track the biodistribution of fIONP over time.

Tate, Jennifer A.; Savellano, Mark D.; Hoopes, P. Jack

2014-01-01

303

Biodistribution and imaging of fluorescently-tagged iron oxide nanoparticles in a breast cancer mouse model  

NASA Astrophysics Data System (ADS)

Iron oxide nanoparticle (IONP) hyperthermia is an emerging treatment that shows great potential as a cancer therapy both alone and in synergy with conventional modalities. Pre-clinical studies are attempting to elucidate the mechanisms of action and distributions of IONP in various in vitro and in vivo models, however these studies would greatly benefit from real-time imaging of IONP locations both in cellular and in mammalian systems. To this end, fluorescently-tagged IONP (fIONP) have been employed for real time tracking and co-registration of IONP with iron content. Starch-coated IONP were fluorescently-tagged, purified and analyzed for fluorescent signal at various concentrations. fIONP were incubated with MTGB cells for varying times and cellular uptake analyzed using confocal microscopy, flow cytometry and inductively-coupled plasma mass spectrometry (ICP-MS). fIONP were also injected into a bilateral mouse tumor model for radiation modification of tumor tissue and enhanced fIONP deposition assessed using a Xenogen IVIS fluorescent imager. Results demonstrated that fIONP concentrations in vitro correlated with ICPMS iron readings. fIONP could be tracked in vitro as well as in tissue samples from an in vivo model. Future work will employ whole animal fluorescent imaging to track the biodistribution of fIONP over time.

Tate, Jennifer A.; Savellano, Mark D.; Hoopes, P. Jack

2013-02-01

304

Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload.  

PubMed

The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain. PMID:24144546

Maaroufi, Karima; Had-Aissouni, Laurence; Melon, Christophe; Sakly, Mohsen; Abdelmelek, Hafedh; Poucet, Bruno; Save, Etienne

2014-01-01

305

Plant mechanisms of siderophore-iron utilization  

SciTech Connect

Mechanisms of siderophore iron-utilization by plants were examined to determine whether plants have direct mechanisms for acquiring iron from microbially-produced hydroxamate siderophores or simply take up inorganic iron in equilibrium with the chelate (shuttle mechanism). Experiments were designed to determine whether the monocot plant species, oat (Avena sativa L. cv. Victory) could acquire iron from ferrichrome under hydroponic conditions in which iron uptake was most likely to occur by direct use of the chelating agent. Ten-day-old iron-deficient seedlings, grown in aerated Hoagland's nutrient solution (minus iron) buffered at pH 7.4 with CaCO/sub 3/, were placed in fresh nutrient solution containing 10/sup -7.4/M radioactive /sup 55/FeCl/sub 3/ (23.7 mCi/mg) with the synthetic chelate, EDDHA (10..pi../sup 5/M), ferrichrome (10/sup -5/M), or with no chelate. After 6 days, shoot content of /sup 55/Fe in shoots of plants provided with ferrichrome was 100-fold greater than that in shoots of plants provided with EDDHA. Therefore iron uptake by oat under these conditions not only indicates direct use of ferrichrome, but also suggest that oat may be better able to acquire iron from siderophores than from synthetic chelates. One possible mechanism for direct use of chelating agents, may involve siderophore binding sites on the plasmalemma of root cortical cells where iron is split from the chelate by enzymatic reduction of ferric to ferrous iron. To demonstrate hypothesized siderophore binding sites on oat roots, experiments examined possible competition for presumed siderophore binding sites by an inert analog of ferrichrome constructed by irreversible chelation with chromium.

Crowley, D.E.

1986-01-01

306

Pathways of iron absorption.  

PubMed

Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

Conrad, Marcel E; Umbreit, Jay N

2002-01-01

307

Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary  

SciTech Connect

Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 ..mu..g and 19.6 +/- 1.6 ..mu..g, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 ..mu..g to 10.5 +/- 4.8 ..mu..g) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 ..mu..g vs 1661 +/- 471 ..mu..g, respectively, when compared to the control group.

Edwards, C.H.; Adkins, J.S.; Harrison, B.

1986-03-05

308

Iron metabolism in transplantation.  

PubMed

Recipient's iron status is an important determinant of clinical outcome in transplantation medicine. This review addresses iron metabolism in solid organ transplantation, where the role of iron as a mediator of ischemia-reperfusion injury, as an immune-modulatory element, and as a determinant of organ and graft function is discussed. Although iron chelators reduce ischemia-reperfusion injury in cell and animal models, these benefits have not yet been implemented into clinical practice. Iron deficiency and iron overload are associated with reduced immune activation, whose molecular mechanisms are reviewed in detail. Furthermore, iron overload and hyperferritinemia are associated with poor prognosis in end-stage organ failure in patients awaiting kidney, or liver transplantation. This negative prognostic impact of iron overload appears to persist after transplantation, which highlights the need for optimizing iron management before and after solid organ transplantation. In contrast, iron deficiency and anemia are also associated with poor prognosis in patients with end-stage heart failure. Intravenous iron supplementation should be managed carefully because parenterally induced iron overload could persist after successful transplantation. In conclusion, current evidence shows that iron overload and iron deficiency are important risk factors before and after solid organ transplantation. Iron status should therefore be actively managed in patients on the waiting list and after transplantation. PMID:24964028

Schaefer, Benedikt; Effenberger, Maria; Zoller, Heinz

2014-11-01

309

Iron and neurodegeneration in the multiple sclerosis brain  

PubMed Central

Objective Iron may contribute to the pathogenesis and progression of multiple sclerosis (MS) due to its accumulation in the human brain with age. Our study focused on nonheme iron distribution and the expression of the iron-related proteins ferritin, hephaestin, and ceruloplasmin in relation to oxidative damage in the brain tissue of 33 MS and 30 control cases. Methods We performed (1) whole-genome microarrays including 4 MS and 3 control cases to analyze the expression of iron-related genes, (2) nonheme iron histochemistry, (3) immunohistochemistry for proteins of iron metabolism, and (4) quantitative analysis by digital densitometry and cell counting in regions representing different stages of lesion maturation. Results We found an age-related increase of iron in the white matter of controls as well as in patients with short disease duration. In chronic MS, however, there was a significant decrease of iron in the normal-appearing white matter (NAWM) corresponding with disease duration, when corrected for age. This decrease of iron in oligodendrocytes and myelin was associated with an upregulation of iron-exporting ferroxidases. In active MS lesions, iron was apparently released from dying oligodendrocytes, resulting in extracellular accumulation of iron and uptake into microglia and macrophages. Iron-containing microglia showed signs of cell degeneration. At lesion edges and within centers of lesions, iron accumulated in astrocytes and axons. Interpretation Iron decreases in the NAWM of MS patients with increasing disease duration. Cellular degeneration in MS lesions leads to waves of iron liberation, which may propagate neurodegeneration together with inflammatory oxidative burst. PMID:23868451

Hametner, Simon; Wimmer, Isabella; Haider, Lukas; Pfeifenbring, Sabine; Brück, Wolfgang; Lassmann, Hans

2013-01-01

310

Effects of different doses and duration of iron supplementation on curing iron deficiency anemia: an experimental study.  

PubMed

Many controversies persist with respect to the dosage and therapeutic duration concerning iron deficiency anemia (IDA) treatment. To identify the most suitable cure, this study evaluated the effect of iron supplementation with different doses and for different time periods in rats with iron deficiency anemia. The rats were randomly divided into five groups [normal control (NC), low- iron diet control (LC), normal doses of iron group (NI), middle dose of iron group (MI), and high dose of iron group (HI)]. Each group was subdivided into two subgroups (2 and 4 weeks). The rats were maintained on low-iron diets and treated with oral iron dextran at different dosages. Finally, we investigated red blood cell parameters, iron absorption and metabolism, oxidative stress, and the antioxidant capacity. Our study indicated that through the administration of normal dose iron by gavage to IDA rats, the levels of the red blood cell parameters can be restored in only 2 weeks. In the HI group, iron absorption and transferrin receptor expressions were markedly reduced after 2 weeks. However, the iron content, ferritin and hepcidin expressions were notably increased, and the changes were more apparent after 4 weeks. With increasing doses of iron supplementation and durations of treatment, the liver malondialdehyde (MDA) content in the LC, MI, and HI groups was markedly increased, whereas the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were obviously reduced. This study demonstrated that the dose of iron treatment for IDA should be controlled in a safe range, and a reasonable duration is also critical for IDA therapeutics. PMID:25216792

Ma, Juan; Wen, Xiaosha; Mo, Fengfeng; Wang, Xiaoli; Shen, Zhilei; Li, Min

2014-12-01

311

Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization  

Microsoft Academic Search

Hepcidin is a peptide hormone secreted by the liver in response to iron loading and inflammation. Decreased hepcidin leads to tissue iron overload, whereas hepcidin overproduction leads to hypoferremia and the anemia of inflammation. Ferroportin is an iron exporter present on the surface of absorptive enterocytes, macrophages, hepatocytes, and placental cells. Here we report that hepcidin bound to ferroportin in

Elizabeta Nemeth; Marie S. Tuttle; Julie Powelson; Michael B. Vaughn; Adriana Donovan; Diane McVey Ward; Tomas Ganz; Jerry Kaplan

2004-01-01

312

Iron regulatory protein-2 knockout increases perihematomal ferritin expression and cell viability after intracerebral hemorrhage  

Microsoft Academic Search

Iron is deposited in perihematomal tissue after an intracerebral hemorrhage (ICH), and may contribute to oxidative injury. Cell culture studies have demonstrated that enhancing ferritin expression by targeting iron regulatory protein (IRP) binding activity reduces cellular vulnerability to iron and hemoglobin. In order to assess the therapeutic potential of this approach after striatal ICH, the effect of IRP1 or IRP2

Mai Chen; Olatilewa O. Awe; Jing Chen-Roetling; Raymond F. Regan

2010-01-01

313

Effect of excess iron and copper on physiology of aquatic plant Spirodela polyrrhiza (L.) Schleid.  

PubMed

To elucidate effect of chemical reagents addition on growth of aquatic plants in restoration of aquatic ecosystem, Spirodela polyrrhiza (L.) Schleid was used to evaluate its physiological responses to excess iron (Fe(3+)) and copper (Cu(2+)) in the study. Results showed that accumulation of iron and copper both reached maximum at 100 mg L(-1) iron or copper after 24 h short-term stress, but excess iron and copper caused plants necrosis or death and colonies disintegration as well as roots abscission at excess metal concentrations except for 1 mg L(-1) iron. Significant differences in chlorophyll fluorescence (Fv/Fm) were observed at 1-100 mg L(-1) iron or copper. The synthesis of chlorophyll and protein as well as carbohydrate and the uptake of phosphate and nitrogen were inhibited seriously by excess iron and copper. Proline content decreased with increasing iron or copper concentration, however, MDA content increased with increasing iron or copper concentration. PMID:19260045

Xing, Wei; Huang, Wenmin; Liu, Guihua

2010-04-01

314

Iron uptake in quiescent and inflammation-activated astrocytes: A potentially neuroprotective control of iron burden  

PubMed Central

Astrocytes play a crucial role in proper iron handling within the central nervous system. This competence can be fundamental, particularly during neuroinflammation, and neurodegenerative processes, where an increase in iron content can favor oxidative stress, thereby worsening disease progression. Under these pathological conditions, astrocytes undergo a process of activation that confers them either a beneficial or a detrimental role on neuronal survival. Our work investigates the mechanisms of iron entry in cultures of quiescent and activated hippocampal astrocytes. Our data confirm that the main source of iron is the non-transferrin-bound iron (NTBI) and show the involvement of two different routes for its entry: the resident transient receptor potential (TRP) channels in quiescent astrocytes and the de novo expressed divalent metal transporter 1 (DMT1) in activated astrocytes, which accounts for a potentiation of iron entry. Overall, our data suggest that at rest, but even more after activation, astrocytes have the potential to buffer the excess of iron, thereby protecting neurons from iron overload. These findings further extend our understanding of the protective role of astrocytes under the conditions of iron-mediated oxidative stress observed in several neurodegenerative conditions. PMID:23583428

Pelizzoni, Ilaria; Zacchetti, Daniele; Campanella, Alessandro; Grohovaz, Fabio; Codazzi, Franca

2013-01-01

315

Mucus and iron absorption regulation in rats fed various levels of dietary iron  

SciTech Connect

We tested two hypotheses: (1) that iron binding by secreted mucus enhances iron absorption and (2) that iron binding by secreted mucus prevents excess iron absorption. Rats were fed diets containing 6, 200 or 500 mg Fe/kg diet (Fe-0, Fe-200 and Fe-500 rats, respectively) for 3 wk. Iron absorption was measured in fasted rats using 59FeCl3 in a 10-min in situ duodenal ligated-segment procedure. After draining the segment contents, the mucus layer was separated from the under-lying mucosal surface using Quarterman's agar cast technique. In comparison with that in Fe-200 rats, iron absorption in Fe-0 rats was markedly increased, but the 59Fe and the total mucus in the mucus layer were decreased. The 59Fe absorption and total mucus and total iron in the mucus layer were similar in Fe-500 rats and Fe-200 rats, but the 59Fe in the mucus layer was marginally lower in Fe-500 rats. There was no evidence that mucus enhanced iron absorption; it appeared to trap or bind iron proportionally to the amount of secreted mucus, suggesting protection against excess absorption. Mucus secretion and possibly synthesis were decreased in the Fe-0 rats.

Wien, E.M.; Van Campen, D.R. (Plant, Soil and Nutrition Laboratory, Ithaca, NY (USA))

1991-01-01

316

Genetic variation of basal iron status, ferritin and iron regulatory protein in mice: potential for modulation of oxidative stress  

Microsoft Academic Search

Toxic and carcinogenic free radical processes induced by drugs and other chemicals are probably modulated by the participation of available iron. To see whether endogenous iron was genetically variable in normal mice, the common strains C57BL\\/10ScSn, C57BL\\/6J, BALB\\/c, DBA\\/2, and SWR were examined for major differences in their hepatic non-heme iron contents. Levels in SWR mice were 3- to 5-fold

Bruce Clothier; Susan Robinson; Ruth A Akhtar; Jean E Francis; Timothy J Peters; Kishor Raja; Andrew G Smith

2000-01-01

317

EFFECT OF MELTING TECHNIQUES ON DUCTILE IRON CASTINGS PROPERTIES  

Microsoft Academic Search

The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inocula- tion on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of

S. BOCKUS; A. DOBROVOLSKIS

2006-01-01

318

Availability of Food Iron  

PubMed Central

Iron has been extracted from 25 common foods under conditions resembling those prevailing in the stomach under physiological conditions. In most cases less than half the iron in the foods is released into solution. The soluble iron is mainly in ionizable form, except in the case of meat products and black pudding. The amount of food iron released is influenced by cooking and the presence of iron-binding substances in some foods. The total dietary iron probably does not represent the amount available for absorption. PMID:5774316

Jacobs, A.; Greenman, D. A.

1969-01-01

319

Structure of as-deposited and heat-treated iron-zinc coatings from chloride bath  

SciTech Connect

The iron content, phase constitution, and microstructure of electrodeposited iron-zinc alloy (EZA) coatings, deposited from chloride baths, is described for as-deposited and heat-treated conditions of coatings containing bulk iron contents of 6, 8, 10, and 13 w/o. The observed influence of current density upon iron content, which in turn influences the phase constitution and microstructure of the coatings, is reported. The microstructure, composed of non-equilibrium phases that have nanometer grain sizes, is illustrated and described with respect to iron content, crystallography, and morphology. As-deposited {eta} phase coatings undergo transformations through a sequence of metastable phases when heated. The sequence of phase transformations varies with iron content, but the mechanisms of phase transformation from the as-deposited eta phase to the metastable G phase was found to be similar in 6, 8, and 10 w/o Fe coatings. Microstructural, compositional, and crystallographic changes associated with this phase transformation are discussed.

Drewien, C.A. [Sandia National Labs., Albuquerque, NM (United States); Goldstein, J.I.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

1993-09-01

320

Rapid methods of determining cooling rates of iron and stony iron meteorites  

USGS Publications Warehouse

Two rapid and simple methods have been developed for determining the approximate cooling rates of iron and stony-iron meteorites in which kamacite formed by diffusion-controlled growth along planar fronts. The first method requires only measurements of the mean kamacite bandwidth and the bulk nickel content. The second method requires the determination of the nickel composition near the taenite-kamacite interface with an electron microprobe.

Short, J.M.; Goldstein, J.I.

1967-01-01

321

Ocean iron cycle  

NASA Astrophysics Data System (ADS)

Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

Boyd, Philip W.

322

Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice.  

PubMed

Mammalian nonheme iron absorption requires reduction of dietary iron for uptake by the divalent metal ion transport system in the intestine. This was thought to be mediated by duodenal cytochrome b (Cybrd1), a ferric reductase enzyme resident on the luminal surface of intestinal absorptive cells. To test its importance in vivo, we inactivated the murine Cybrd1 gene and assessed tissue iron stores in Cybrd1-null mice. We found that loss of Cybrd1 had little or no impact on body iron stores, even in the setting of iron deficiency. We conclude that other mechanisms must be available for the reduction of dietary iron. PMID:15961514

Gunshin, Hiromi; Starr, Carolyn N; Direnzo, Cristina; Fleming, Mark D; Jin, Jie; Greer, Eric L; Sellers, Vera M; Galica, Stephanie M; Andrews, Nancy C

2005-10-15

323

Baicalin suppresses iron accumulation after substantia nigra injury: relationship between iron concentration and transferrin expression  

PubMed Central

Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the mechanisms of the inhibitory effect of baicalin on iron accumulation observed in Parkinson's disease rats. Iron content was detected using inductively coupled plasma-atomic emission spectroscopy. Results showed that iron content decreased 41% after blocking divalent metal transporter 1 and ferroportin 1 proteins. After treatment with ferric ammonium citrate of differing concentrations (10, 50, 100, 400?g/mL) in C6 glioma cells, cell survival rate and ferroportin 1 expression were negatively correlated with ferric ammonium citrate concentration, but divalent metal transporter 1 expression positively correlated with ferric ammonium citrate concentration. Baicalin or deferoxamine reduced divalent metal transporter 1 expression, but increased ferroportin 1 expression in the 100?g/mL ferric ammonium citrate-loaded C6 cells. These results indicate that baicalin down-regulated iron concentration, which positively regulated divalent metal transporter 1 expression and negatively regulated ferroportin 1 expression, and decreased iron accumulation in the substantia nigra. PMID:25206866

Guo, Chunyan; Chen, Xin; Xiong, Pei

2014-01-01

324

Baicalin suppresses iron accumulation after substantia nigra injury: relationship between iron concentration and transferrin expression.  

PubMed

Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the mechanisms of the inhibitory effect of baicalin on iron accumulation observed in Parkinson's disease rats. Iron content was detected using inductively coupled plasma-atomic emission spectroscopy. Results showed that iron content decreased 41% after blocking divalent metal transporter 1 and ferroportin 1 proteins. After treatment with ferric ammonium citrate of differing concentrations (10, 50, 100, 400?g/mL) in C6 glioma cells, cell survival rate and ferroportin 1 expression were negatively correlated with ferric ammonium citrate concentration, but divalent metal transporter 1 expression positively correlated with ferric ammonium citrate concentration. Baicalin or deferoxamine reduced divalent metal transporter 1 expression, but increased ferroportin 1 expression in the 100?g/mL ferric ammonium citrate-loaded C6 cells. These results indicate that baicalin down-regulated iron concentration, which positively regulated divalent metal transporter 1 expression and negatively regulated ferroportin 1 expression, and decreased iron accumulation in the substantia nigra. PMID:25206866

Guo, Chunyan; Chen, Xin; Xiong, Pei

2014-03-15

325

Molecular control of vertebrate iron homeostasis by iron regulatory proteins  

Microsoft Academic Search

Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally

Michelle L. Wallander; Elizabeth A. Leibold; Richard S. Eisenstein

2006-01-01

326

Tissue Processing  

Cancer.gov

Tissue samples, also called biospecimens, are tissue and fluid samples taken from the human body that can be used for research. Biospecimens from cancer patients are critical to cancer research because they contain an extraordinary amount of biological information, written in the language of cells. Genes and proteins in biospecimens can identify the biological characteristics of cancer cells.

327

Study of the eye and lacrimal glands in experimental iron overload in rats in vivo.  

PubMed

A variety of syndromes leading to hemosiderosis in men cause ocular lesions. The purpose of the present study was to determine the distribution of iron and of transferrin in the eyes and lacrimal glands of rats in experimental hemosiderosis, so as to achieve a better understanding of the formation of the ocular lesions observed in patients with advanced hemosiderosis. In order to achieve hemosiderosis the rats were fed 3% (w/w) carbonyl iron or received i.p. or i.v. polymaltose iron. Hemosiderin deposits were detected in macrophages lying in the interlobular connective tissue of lacrimal glands, in the interstitial connective tissue of the choroid, in the ciliary body, in the iris and extracellularly in the sclera in all animals that received iron i.v. Also, scanty hemosiderin laden macrophages were found to a lesser degree in interstitial connective tissue of the choroid and in the interlobular connective tissue of lacrimal glands in animals that received iron i.p. No iron deposits were detected in the eye and lacrimal glands of control rats and in rats that were on an iron enriched diet. No transferrin was detected in the eye and in the lacrimal glands, neither in the control rats nor in the rats that received iron. Experimental iron overload leads to increased iron deposition in tissues of the eye and lacrimal glands, whereas no transferrin could be detected in the aforementioned organs. PMID:18402083

Repanti, Maria; Gartaganis, Sotiris P; Nikolakopoulou, Nikoleta M; Ellina, Aikaterini; Papanastasiou, Dimitris A

2008-03-01

328

Iron and Your Child  

MedlinePLUS

... they lose monthly when they begin menstruating.) Young athletes who regularly engage in intense exercise tend to ... iron-containing RBCs during menstrual bleeding. Also, teen athletes lose iron through sweating and other routes during ...

329

Iron Chelation Therapy  

MedlinePLUS

... also in other organs that don't normally store iron, such as the: pancreas joints (especially in the ... Ferritin is a protein inside of cells that stores iron for later use by your body. For unknown ...

330

Hemochromatosis: Iron Storage Disease  

MedlinePLUS

... What's this? Submit Button CDC Features Hemochromatosis: Iron Storage Disease Language: English Español (Spanish) Share Compartir Excessive ... Learn more about hemochromatosis, a type of iron storage disease, and stay healthy. What Is Hemochromatosis? Hemochromatosis ...

331

Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics  

Microsoft Academic Search

We studied the silicic acid uptake kinetics of the pennate diatom Cylindrotheca fusiformis grown under a wide range of iron concentrations (from Fe-limiting to Fe-sufficient conditions) to assess the effect of iron availability on diatom cell size, silicon content, and silicic acid uptake kinetic parameters. As the iron stress increased, the growth rate slowed, cell size decreased, and silicification increased.

A. Leynaert; E. Bucciarelli; P. Claquin; R. C. Dugdale; V. Martin-Jézéquel; P. Pondaven; O. Ragueneau

2004-01-01

332

Epidemiological associations between iron and cardiovascular disease and diabetes  

PubMed Central

Disruptions in iron homeostasis are linked to a broad spectrum of chronic conditions including cardiovascular, malignant, metabolic, and neurodegenerative disease. Evidence supporting this contention derives from a variety of analytical approaches, ranging from molecular to population-based studies. This review focuses on key epidemiological studies that assess the relationship between body iron status and chronic diseases, with particular emphasis on atherosclerosis ,metabolic syndrome and diabetes. Multiple surrogates have been used to measure body iron status, including serum ferritin, transferrin saturation, serum iron, and dietary iron intake. The lack of a uniform and standardized means of assessing body iron status has limited the precision of epidemiological associations. Intervention studies using depletion of iron to alter risk have been conducted. Genetic and molecular techniques have helped to explicate the biochemistry of iron metabolism at the molecular level. Plausible explanations for how iron contributes to the pathogenesis of these chronic diseases are beginning to be elucidated. Most evidence supports the hypothesis that excess iron contributes to chronic disease by fostering excess production of free radicals. Overall, epidemiological studies, reinforced by basic science experiments, provide a strong line of evidence supporting the association between iron and elevated risk of cardiovascular disease and diabetes. In this narrative review we attempt to condense the information from existing literature on this topic. PMID:24904420

Basuli, Debargha; Stevens, Richard G.; Torti, Frank M.; Torti, Suzy V.

2014-01-01

333

Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains  

SciTech Connect

Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

Habib, Charbel A.; Zheng Weili; Mark Haacke, E. [Department Of Biomedical Engineering, Wayne State University, Detroit, MI 48202 (United States); Webb, Sam [Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Complex National Accelerator Laboratory, Menlo Park, California (United States); Nichol, Helen [Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd. Rm A302, Saskatoon, SK S7N5E5 (Canada)

2010-07-23

334

Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains  

SciTech Connect

To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

Habib, A.C.; Zheng, W.; Haacke, E.M.; Webb, S.; Nichol, H.; /SLAC

2012-07-17

335

Iron and anemia in human biology: a review of mechanisms.  

PubMed

The biology of iron in relation to anemia is best understood by a review of the iron cycle, since the majority of iron for erythropoiesis is provided by iron recovered from senescent erythrocytes. In iron-deficiency anemia, storage iron declines until iron delivery to the bone marrow is insufficient for erythropoiesis. This can be monitored with clinical indicators, beginning with low plasma ferritin, followed by decreased plasma iron and transferrin saturation, and culminating in red blood cells with low-Hb content. When adequate dietary iron is provided, these markers show return to normal, indicating a response to the dietary supplement. Anemia of inflammation (also known as anemia of chronic disease, or ACD) follows a different course, because in this form of anemia storage iron is often abundant but not available for erythropoiesis. The diagnosis of ACD is more difficult than the diagnosis of iron-deficiency anemia, and often the first identified symptom is the failure to show a response to a dietary iron supplement. Confirmation of ACD is best obtained from elevated markers of inflammation. The treatment of ACD, which typically employs erythropoietin (EPO) supplements and intravenous iron (i.v.-iron), is empirical and often falls shorts of therapeutic goals. Dialysis patients show a complex pattern of anemia, which results from inadequate EPO production by the kidney, inflammation, changes in nutrition, and blood losses during treatment. EPO and i.v.-iron are the mainstays of treatment. Patients with heart failure can be anemic, with incidence as high as 50%. The causes are multifactorial; inflammation now appears to be the primary cause of this form of anemia, with contributions from increased plasma volume, effects of drug therapy, and other complications of heart disease. Discerning the mechanisms of anemia for the heart failure patient may aid rational therapy in each case. PMID:18363095

Handelman, Garry J; Levin, Nathan W

2008-12-01

336

Iron Dextran Injection  

MedlinePLUS

... called iron replacement products. It works by replenishing iron stores so that the body can make more red blood cells. ... attacks its own joints, causing pain, swelling, and loss of function) or ... become pregnant while receiving iron dextran injection, call your doctor.

337

Iron nutrition in adolescence  

Microsoft Academic Search

Adolescence is an important period of nutritional vulnerability due to increased dietary requirements for growth and development. Iron needs are elevated as a result of intensive growth and muscular development, which implies an increase in blood volume; thus, it is extremely important for the adolescent's iron requirements to be met. Diet, therefore, must provide enough iron and, moreover, nutrients producing

MARTA MESÍAS; ISABEL SEIQUER; M. PILAR NAVARRO

2012-01-01

338

Composition and origin of the unusual Oktibbeha County iron meteorite  

NASA Technical Reports Server (NTRS)

Oktibbeha County, the most Ni-rich iron meteorite, has been analyzed for Ni, Co, Cu, Ga, Ge, As, Sb, Ir, and Au. Cu and Sb are higher than in any other iron, but other trace elements are within the ranges typically found in iron meteorites. Extrapolation of trace element trends in group IAB indicates that Oktibbeha County is a member of this group. This sheds light on the origin of groups IAB and IIICD, which are thought to be derived from impact melts on parent bodies of chondritic composition. Lafayette (iron), another sample reported in the literature to have a similarly high Ni content, is probably a pseudometeorite.

Kracher, A.; Willis, J.

1981-01-01

339

Role of iron in ischemia-induced neurodegeneration: mechanisms and insights.  

PubMed

Iron is an important micronutrient for neuronal function and survival. It plays an essential role in DNA and protein synthesis, neurotransmission and electron transport chain due to its dual redox states. On the contrary, iron also catalyses the production of free radicals and hence, causes oxidative stress. Therefore, maintenance of iron homeostasis is very crucial and it involves a number of proteins in iron metabolism and transport that maintain the balance. In ischemic conditions large amount of iron is released and this free iron catalyzes production of more free radicals and hence, causing more damage. In this review we have focused on the iron transport and maintenance of iron homeostasis at large and also the effect of imbalance in iron homeostasis on retinal and brain tissue under ischemic conditions. The understanding of the proteins involved in the homeostasis imbalance will help in developing therapeutic strategies for cerebral as well retinal ischemia. PMID:24615430

Minhas, Gillipsie; Modgil, Shweta; Anand, Akshay

2014-09-01

340

A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications.  

PubMed

The treatment of iron deficiency anemia with polynuclear iron formulations is an established therapy in patients with chronic kidney disease but also in other disease areas like gastroenterology, cardiology, oncology, pre/post operatively and obstetrics' and gynecology. Parenteral iron formulations represent colloidal systems in the lower nanometer size range which have traditionally been shown to consist of an iron core surrounded by a carbohydrate shell. In this publication, we for the first time describe the novel matrix structure of iron isomaltoside 1000 which differs from the traditional picture of an iron core surrounded by a carbohydrate. Despite some structural similarities between the different iron formulations, the products differ significantly in their physicochemical properties such as particle size, zeta potential, free and labile iron content, and release of iron in serum. This study compares the physiochemical properties of iron isomaltoside 1000 (Monofer) with the currently available intravenous iron preparations and relates them to their biopharmaceutical properties and their approved clinical applications. The investigated products encompass low molecular weight iron dextran (CosmoFer), sodium ferric gluconate (Ferrlecit), iron sucrose (Venofer), iron carboxymaltose (Ferinject/Injectafer), and ferumoxytol (Feraheme) which are compared to iron isomaltoside 1000 (Monofer). It is shown that significant and clinically relevant differences exist between sodium ferric gluconate and iron sucrose as labile iron formulations and iron dextran, iron carboxymaltose, ferumoxytol, and iron isomaltoside 1000 as stable polynuclear formulations. The differences exist in terms of their immunogenic potential, safety, and convenience of use, the latter being expressed by the opportunity for high single-dose administration and short infusion times. Monofer is a new parenteral iron product with a very low immunogenic potential and a very low content of labile and free iron. This enables Monofer, as the only IV iron formulation, to be administered as a rapid high dose infusion in doses exceeding 1000 mg without the application of a test dose. This offers considerable dose flexibility, including the possibility of providing full iron repletion in a single infusion (one-dose iron repletion). PMID:21439379

Jahn, Markus R; Andreasen, Hans B; Fütterer, Sören; Nawroth, Thomas; Schünemann, Volker; Kolb, Ute; Hofmeister, Wolfgang; Muñoz, Manuel; Bock, Klaus; Meldal, Morten; Langguth, Peter

2011-08-01

341

Iron deficiency anemia  

PubMed Central

Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

2012-01-01

342

Molecular Structure of Iron  

NSDL National Science Digital Library

Since antiquity, Iron has been known for its malleability and abundance. Iron is a soft grey metal that is very ductile and easy to work; it can be rolled, hammered, bent, and tempered. Iron makes up 5% of the earth's crust in the form of ores such as hematite, limonite, magnetite, and taconite. This makes it the second most abundant metal, following aluminum. Most iron is used to manufacture carbon steel: iron with about 1.5% carbon and traces of other elements, but it is also used for many other alloys and steels of various types. Iron melts at 1808 degrees Kelvin and boils at 3023 degrees Kelvin. Insufficient iron in the bloodstream causes anemia, a medical condition causing unusual tiredness and other symptoms resulting from underdeveloped or few red blood cells.

2003-04-16

343

Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains  

Microsoft Academic Search

Iron deficiency is the most widespread micronutrient deficiency world-wide. A major cause is the poor absorption of iron from\\u000a cereal and legume-based diets high in phytic acid. We have explored three approaches for increasing the amount of iron absorbed\\u000a from rice-based meals. We first introduced a ferritin gene from Phaseolus vulgaris into rice grains, increasing their iron content up to

P. Lucca; R. Hurrell; I. Potrykus

2001-01-01

344

Effect of iron in zinc silicate concentrate on leaching with sulphuric acid  

Microsoft Academic Search

It is shown that the iron content in zinc silicate concentrates with either high (8–11%) or low (3%) iron does not significantly affect the kinetics or overall recovery of zinc extraction in sulphuric acid. Most of the iron was present as hematite and franklinite with little iron contained in willemite. A small reduction in zinc recovery from 98.5% to 97.5%

A. D. Souza; P. S. Pina; F. M. F. Santos; C. A. da Silva; V. A. Leão

2009-01-01

345

Matriptase-2 is essential for hepcidin repression during fetal life and postnatal development in mice to maintain iron homeostasis.  

PubMed

Iron is an essential element required for development and survival of all living organisms. In fetuses, maternofetal iron transfer across the placenta is essential for growth and development. In neonates, efficient intestinal iron absorption is required to scavenge as much iron as possible from the low-iron-content milk. During these periods, efficient iron mobilization is ensured by the downregulation of the iron regulatory hormone hepcidin by as-yet uncharacterized molecular mechanisms. Here we demonstrate that the recently described hepcidin repressor-the serine protease matriptase-2 (encoded by Tmprss6)-is responsible for this repression throughout development, with its deficiency leading to increased hepcidin levels triggering iron deficiency and anemia starting in utero. This result might have implications for a better understanding of iron homeostasis during early development in iron-refractory iron deficiency anemia patients, who present with microcytic anemia caused by hyperhepcidinemia, and of questions about the role of matriptase-2 in human neonates. PMID:24904115

Willemetz, Alexandra; Lenoir, Anne; Deschemin, Jean-Christophe; Lopez-Otin, Carlos; Ramsay, Andrew J; Vaulont, Sophie; Nicolas, Gaël

2014-07-17

346

Iron chelation inhibits the development of pulmonary vascular remodeling  

PubMed Central

Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Since iron is an important regulator of ROS biology, the present study examined the effect of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

Wong, Chi-Ming; Preston, Ioana R.; Hill, Nicholas S.; Suzuki, Yuichiro J.

2012-01-01

347

Review on iron and its importance for human health.  

PubMed

It is well-known that deficiency or over exposure to various elements has noticeable effects on human health. The effect of an element is determined by several characteristics, including absorption, metabolism, and degree of interaction with physiological processes. Iron is an essential element for almost all living organisms as it participates in a wide variety of metabolic processes, including oxygen transport, deoxyribonucleic acid (DNA) synthesis, and electron transport. However, as iron can form free radicals, its concentration in body tissues must be tightly regulated because in excessive amounts, it can lead to tissue damage. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases. In this review, we discuss the latest progress in studies of iron metabolism and bioavailability, and our current understanding of human iron requirement and consequences and causes of iron deficiency. Finally, we discuss strategies for prevention of iron deficiency. PMID:24778671

Abbaspour, Nazanin; Hurrell, Richard; Kelishadi, Roya

2014-02-01

348

2,3,7,8-Tetrachlorodibenzo-p-dioxin impairs iron homeostasis by modulating iron-related proteins expression and increasing the labile iron pool in mammalian cells.  

PubMed

Cellular iron metabolism is essentially controlled by the binding of cytosolic iron regulatory proteins (IRP1 or IRP2) to iron-responsive elements (IREs) located on mRNAs coding for proteins involved in iron acquisition, utilization and storage. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent toxins of current interest that occurs as poisonous chemical in the environment. TCDD exposure has been reported to induce a broad spectrum of toxic and biological responses, including significant changes in gene expression for heme and iron metabolism associated with liver injury. Here, we have investigated the molecular effects of TCDD on the iron metabolism providing the first evidence that administration of the toxin TCDD to mammalian cells affects the maintenance of iron homeostasis. We found that exposure of Madin-Darby Bovine Kidney cell to TCDD caused a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Interestingly, we observed a concomitant IRP1 down-regulation and IRP2 up-regulation thus determining a marked enhancement of transferrin receptor 1 (TfR-1) expression and a biphasic response in ferritin content. The changed ferritin content coupled to TfR-1 induction after TCDD exposure impairs the cellular iron homeostasis, ultimately leading to significant changes in the labile iron pool (LIP) extent. Since important iron requirement changes occur during the regulation of cell growth, it is not surprising that the dioxin-dependent iron metabolism dysregulation herein described may be linked to cell-fate decision, supporting the hypothesis of a central connection among exposure to dioxins and the regulation of critical cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. PMID:21333694

Santamaria, Rita; Fiorito, Filomena; Irace, Carlo; De Martino, Luisa; Maffettone, Carmen; Granato, Giovanna Elvira; Di Pascale, Antonio; Iovane, Valentina; Pagnini, Ugo; Colonna, Alfredo

2011-05-01

349

Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigra.  

PubMed

Iron accumulation is considered to be involved in the pathogenesis of Parkinson's disease. To demonstrate the relationship between peripheral iron overload and dopaminergic neuron loss in rat substantia nigra (SN), in the present study we used fast cyclic voltammetry, tyrosine hydroxylase (TH) immunohistochemistry, Perls' iron staining, and high performance liquid chromatography-electrochemical detection to study the degeneration of dopaminergic neurons and increased iron content in the SN of iron dextran overloaded animals. The findings showed that peripheral iron dextran overload increased the iron staining positive cells and reduced the number of TH-immunoreactive neurons in the SN. As a result, dopamine release and content, as well as its metabolites contents were decreased in caudate putamen. Even more dramatic changes were found in chronic overload group. These results suggest that peripheral iron dextran can increase the iron level in the SN, where excessive iron causes the degeneration of dopaminergic neurons. The chronic iron overload may be more destructive to dopaminergic neurons than the acute iron overload. PMID:17490790

Jiang, Hong; Song, Ning; Wang, Jun; Ren, Li-Ying; Xie, Jun-Xia

2007-07-01

350

Some Parameters in Relation to Iron Nutrition Status of Peach Orchards  

Microsoft Academic Search

This study was conducted to determine DTPA extractable iron contents and some soil properties of peach (Prunus persica L.) orchards, total and 1N HCl extractable iron contents of leaves and investigate their relations with chlorosis. For this purpose, nine peach orchards, each of which included green, slightly chlorotic and severe chlorotic peach trees, were selected. Soil and leaf samples were

Hakan Çelik; A. Vahap Katkat

351

Trace elements in spinach ( Spinacia oleracea ) cultivated in soil fortified with graded levels of iron  

Microsoft Academic Search

Trace elements in two varieties of spinach cultivated in soil with different levels of added iron were determined. Addition of iron to soil decreased potassium, sodium and magnesium contents in spinach markedly (pp>0.05). Differential behaviour of spinach varieties was found in the zinc, manganese and sodium contents.

N. S. Reddy; T. N. Khan; V. G. Malewar; K. B. Dudde

1995-01-01

352

Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation  

Microsoft Academic Search

The disposal of bayer red mud tailings now seriously threats the environment safety. Reduction and recycling of red mud is now an urgent work in aluminum industry. High gradient superconducting magnetic separation (HGSMS) system was applied to separate the extreme fine RM particles (<100?m) into high iron content part and low iron content part. Two sorts of RM were fed

Yiran Li; Jun Wang; Xiaojun Wang; Baoqiang Wang; Zhaokun Luan

2011-01-01

353

Physicochemical properties and inhibition effect on iron deficiency anemia of a novel polysaccharide-iron complex (LPPC).  

PubMed

Porphyran (P) was extracted from red algae Porphyra by boiling water. A novel polysaccharide-iron complex (LPPC) was prepared under the alkaline condition by adding a ferric chloride solution to the low molecular weight porphyran (LP) solution. Physicochemical properties and inhibition effect on iron deficiency anemia of this complex were studied. The content of iron(III) in the complex is 21.57% determined with iodometry. The results indicate that LPPC was product required. The complex can increase red blood cell count (RBC), hemoglobin (Hb), Serum iron (SI), spleen index, spleen mass and mass of mice with iron deficiency anemia (IDA). Although the structure and deeper mechanisms on hemolytic anemia of LPPC should be further studied, LPPC is hoped to be developed as a late-model iron supplement which has a synergism on anemia. PMID:22153938

Zhang, Zhong-Shan; Wang, Xiao-Mei; Han, Zhi-Ping; Yin, Li; Zhao, Ming-Xing; Yu, Shu-Chi

2012-01-01

354

Dietary strategies to improve the iron and zinc nutriture of young women following a vegetarian diet  

Microsoft Academic Search

Dietary strategies to enhance the content and bioavailability of iron and zinc in vegetarian diets were compiled. Strategies\\u000a included increasing promoters and decreasing antagonists of iron and zinc absorption, adopting food preparation and processing\\u000a methods which hydrolyze the phytate content of cereals and legumes, and using iron cookware. These strategies were used to\\u000a devise two vegetarian menus based on food

R. S. Gibson; U. M. Donovan; A. L. M. Heath

1997-01-01

355

Nutritional iron deprivation attenuates kainate-induced neurotoxicity in rats: implications for involvement of iron in neurodegeneration.  

PubMed

There is evidence suggesting that oxidative stress contributes to kainate neurotoxicity. Since iron promotes oxidative stress, the present study explores how change in nutritional iron content modulates kainate-induced neurotoxicity. Rats received an iron-deficient diet (ID) from 22 days of age for 4 weeks. One control group received the same diet supplemented with iron and another control group received standard rodent diet. Cellular damage after subcutaneous kainate (10 mg/kg) was assessed by silver impregnation and gliosis by staining microglia. ID reduced cellular damage in piriform and entorhinal cortex, in thalamus, and in hippocampal layers CA1-3. ID also attenuated gliosis, except in the hippocampal CA1 layer. Given involvement of zinc in hippocampal neurotransmission and in oxidative stress, we tested for a possible interaction of nutritional iron with nutritional zinc. Rats were made iron-deficient and then assigned to supplementation with iron, zinc, or iron + zinc. Controls were continued on ID diet. After 2 weeks, rats were treated with kainate. Iron supplementation abolished the protective effect of ID in piriform and entorhinal cortex. In hippocampal CA1 and dorsal thalamus, neither iron nor zinc supplementation alone abolished the protective effect of ID against cellular damage. Iron + zinc supplementation abolished ID protection in dorsal thalamus, but not in reuniens nucleus. Kainate-induced gliosis in CA1 remained unaffected by nutritional treatments. Thus, in piriform and entorhinal cortex, nutritional iron has a major impact on cellular damage and gliosis. In hippocampal CA1, gliosis may associate with synaptic plasticity not modulated by nutritional iron, while cellular damage is sensitive to nutritional iron and zinc. PMID:15105258

Shoham, S; Youdim, M B H

2004-03-01

356

Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.  

PubMed

Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. PMID:24846416

Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

2014-10-17

357

Chelators in the Treatment of Iron Accumulation in Parkinson's Disease  

PubMed Central

Iron is an essential element in the metabolism of all cells. Elevated levels of the metal have been found in the brains of patients of numerous neurodegenerative disorders, including Parkinson's disease (PD). The pathogenesis of PD is largely unknown, although it is thought through studies with experimental models that oxidative stress and dysfunction of brain iron homeostasis, usually a tightly regulated process, play significant roles in the death of dopaminergic neurons. Accumulation of iron is present at affected neurons and associated microglia in the substantia nigra of PD patients. This additional free-iron has the capacity to generate reactive oxygen species, promote the aggregation of ?-synuclein protein, and exacerbate or even cause neurodegeneration. There are various treatments aimed at reversing this pathologic increase in iron content, comprising both synthetic and natural iron chelators. These include established drugs, which have been used to treat other disorders related to iron accumulation. This paper will discuss how iron dysregulation occurs and the link between increased iron and oxidative stress in PD, including the mechanism by which these processes lead to cell death, before assessing the current pharmacotherapies aimed at restoring normal iron redox and new chelation strategies undergoing research. PMID:22754573

Mounsey, Ross B.; Teismann, Peter

2012-01-01

358

Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator  

PubMed Central

Curcumin is a natural product currently in human clinical trials for a variety of neoplastic, preneoplastic, and inflammatory conditions. We previously observed that, in cultured cells, curcumin exhibits properties of an iron chelator. To test whether the chelator activity of curcumin is sufficient to induce iron deficiency in vivo, mice were placed on diets containing graded concentrations of both iron and curcumin for 26 weeks. Mice receiving the lowest level of dietary iron exhibited borderline iron deficiency, with reductions in spleen and liver iron, but little effect on hemoglobin, hematocrit, transferrin saturation, or plasma iron. Against this backdrop of subclinical iron deficiency, curcumin exerted profound 2 effects on systemic iron, inducing a dose-dependent decline in hematocrit, hemoglobin, serum iron, and transferrin saturation, the appearance of microcytic anisocytotic red blood cells, and decreases in spleen and liver iron content. Curcumin repressed synthesis of hepcidin, a peptide that plays a central role in regulation of systemic iron balance. These results demonstrate that curcumin has the potential to affect systemic iron metabolism, particularly in a setting of subclinical iron deficiency. This may affect the use of curcumin in patients with marginal iron stores or those exhibiting the anemia of cancer and chronic disease. PMID:18815282

Jiao, Yan; Wilkinson, John; Di, Xiumin; Wang, Wei; Hatcher, Heather; Kock, Nancy D.; D'Agostino, Ralph; Knovich, Mary Ann; Torti, Frank M.

2009-01-01

359

PHOTON SCIENCE SEMINAR Diamonds, Iron and XDiamonds, Iron and XDiamonds, Iron and XDiamonds, Iron and X----rays:rays:rays:rays  

E-print Network

PHOTON SCIENCE SEMINAR Diamonds, Iron and XDiamonds, Iron and XDiamonds, Iron and XDiamonds, Iron Scientist at the Advanced Photon Source and Postdoctoral Fellow at the Geophysical Laboratory, Carnegie

Jackson, Jennifer M.

360

Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring  

NASA Technical Reports Server (NTRS)

At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

1999-01-01

361

Innovative Method for Separating Phosphorus and Iron from High-Phosphorus Oolitic Hematite by Iron Nugget Process  

NASA Astrophysics Data System (ADS)

This study puts forward a new method to separate phosphorus and iron from high-phosphorus oolitic hematite through iron nuggets process. Firstly, the physical, chemical, and microscopic characteristics of high-phosphorus oolitic hematite are investigated. Then, the reaction mechanisms of high-phosphorus hematite together with feasibility to separating phosphorus and iron by iron nugget process are discussed. Meanwhile, the experiments of high-phosphorus hematite used in rotary hearth furnace iron nugget processes are studied as well. The results indicate that the iron nugget process is a feasible and efficient method for iron and phosphorus separation of high-phosphorus oolitic hematite. The phosphorus content in iron nuggets is relatively low. Through the optimization of process parameters, the lowest of phosphorus in iron nuggets is 0.22 pct, the dephosphorization rate is above 86 pct, and the recovery of Fe is above 85 pct by the iron nugget process. This study aims to provide a theoretical and technical basis for economical and rational use of high-phosphorus oolitic hematite.

Han, Hongliang; Duan, Dongping; Wang, Xing; Chen, Siming

2014-10-01

362

Effect of dietary vitamin E level on growth, tissue lipid peroxidation, and erythrocyte fragility of transgenic coho salmon, Oncorhynchus kisutch.  

PubMed

This study was conducted to investigate the effect of dietary vitamin E concentration on growth performance, iron-catalyzed lipid peroxidation in liver and muscle tissue, and erythrocyte fragility of transgenic growth hormone coho salmon (Oncorhynchus kisutch). Fish were fed one of four isoenergetic and isonitrogenous experimental diets that contained either 11, 29, 50, or 105 IU of vitamin E/kg. Following the 10-week feeding trial, no significant (P>0.05) diet-related differences were detected in growth, whole body proximate composition or erythrocyte fragility. The vitamin E contents of liver and muscle, however, were affected by the dietary treatment. Fish fed diets containing > or =50 IU of vitamin E/kg had significantly increased vitamin E concentrations in their tissues. Iron-catalyzed lipid peroxidation of liver and muscle tissue of fish fed elevated dietary vitamin E (> or =50 IU vitamin E/kg diet) was significantly lower (P<0.05) than that noted for fish fed the diet containing no supplemental vitamin E. The results indicated that changes in tissue lipid peroxidation measurements precede clinical signs of sub-optimal vitamin E intake. PMID:15528168

Huang, Chen-Huei; Higgs, David A; Balfry, Shannon K; Devlin, Robert H

2004-10-01

363

Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis  

PubMed Central

The deficiency of hepcidin, the hormone that controls iron absorption and its tissue distribution, is the cause of iron overload in nearly all forms of hereditary hemochromatosis and in untransfused iron-loading anemias. In a recent study, we reported the development of minihepcidins, small drug-like hepcidin agonists. Here we explore the feasibility of using minihepcidins for the prevention and treatment of iron overload in hepcidin-deficient mice. An optimized minihepcidin (PR65) was developed that had superior potency and duration of action compared with natural hepcidin or other minihepcidins, and favorable cost of synthesis. PR65 was administered by subcutaneous injection daily for 2 weeks to iron-depleted or iron-loaded hepcidin knockout mice. PR65 administration to iron-depleted mice prevented liver iron loading, decreased heart iron levels, and caused the expected iron retention in the spleen and duodenum. At high doses, PR65 treatment also caused anemia because of profound iron restriction. PR65 administration to hepcidin knockout mice with pre-existing iron overload had a more moderate effect and caused partial redistribution of iron from the liver to the spleen. Our study demonstrates that minihepcidins could be beneficial in iron overload disorders either used alone for prevention or possibly as adjunctive therapy with phlebotomy or chelation. PMID:22990014

Ramos, Emilio; Ruchala, Piotr; Goodnough, Julia B.; Kautz, Leon; Preza, Gloria C.; Nemeth, Elizabeta

2012-01-01

364

Iron regulation by hepcidin  

PubMed Central

Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as ?-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload. PMID:23722909

Zhao, Ningning; Zhang, An-Sheng; Enns, Caroline A.

2013-01-01

365

Iron and transfusion medicine.  

PubMed

Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been published on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only performed just before or even during blood donation, but the determination of iron stores is largely ignored. The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type 2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably regarding their possible genetic profiles that eventually will discriminate "good" iron absorbers from "bad" iron responders. PMID:24148756

Waldvogel-Abramovski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

2013-11-01

366

IRON IN MULTIPLE MYELOMA  

PubMed Central

Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

2013-01-01

367

Iron sensors and signals in response to iron deficiency.  

PubMed

The transcription of genes involved in iron acquisition in plants is induced under iron deficiency, but our understanding of iron sensors and signals remains limited. Iron Deficiency-responsive Element-binding Factor 1 (IDEF1) and Hemerythrin motif-containing Really Interesting New Gene- and Zinc-finger proteins (HRZs)/BRUTUS (BTS) have recently emerged as candidate iron sensors because of their functions as potent regulators of iron deficiency responses and their iron-binding properties. IDEF1 is a central transcriptional regulator of graminaceous genes involved in iron uptake and utilization, predominantly during the early stages of iron deficiency. HRZs/BTS are E3 ubiquitin ligases and negative regulators of iron deficiency responses in both graminaceous and non-graminaceous plants. Rice OsHRZ1 and OsHRZ2 are also potent regulators of iron accumulation. Characterizing these putative iron sensors also provides clues to understanding the nature of iron signals, which may involve ionized iron itself, other metals, oxygen, redox status, heme and iron-sulfur clusters, in addition to metabolites affected by iron deficiency. Systemic iron responses may also be regulated by phloem-mobile iron and its chelators such as nicotianamine. Iron sensors and signals will be identified by demonstration of signal transmission by IDEF1, HRZs/BTS, or unknown factors. PMID:24908504

Kobayashi, Takanori; Nishizawa, Naoko K

2014-07-01

368

Reactivity of Iron  

NSDL National Science Digital Library

In this laboratory excercise, students will be introduced to the oxidation / corrosion of iron from two different sources (flame and water). From the examination of corrosion from multiple sources, students will be able to compare and contrast the effects each has on the iron samples. Students will also be able to observe the effect of various material processing techniques has on the corrosive properties of iron.

Stoebe, Thomas G.

2008-10-28

369

The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice  

PubMed Central

Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role of hephaestin in iron homeostasis, we used the Cre-lox system to generate knockout mouse models with whole body or intestine-specific (Villin promoter) ablation of hephaestin. Both types of mice were viable, indicating that hephaestin is not essential and that other mechanisms, multicopper ferroxidase-dependent or not, must compensate for hephaestin deficiency. The knockout strains, however, both developed a microcytic, hypochromic anemia, suggesting severe iron deficiency and confirming that hephaestin plays an important role in body iron acquisition. Consistent with this, the knockout mice accumulated iron in duodenal enterocytes and had reduced intestinal iron absorption. In addition, the similarities of the phenotypes of the whole body and intestine-specific hephaestin knockout mice clarify the important role of hephaestin specifically in intestinal enterocytes in maintaining whole body iron homeostasis. These mouse models will serve as valuable tools to study the role of hephaestin and associated proteins in iron transport in the small intestine and other tissues. PMID:24896847

Fuqua, Brie K.; Lu, Yan; Darshan, Deepak; Frazer, David M.; Wilkins, Sarah J.; Wolkow, Natalie; Bell, Austin G.; Hsu, JoAnn; Yu, Catherine C.; Chen, Huijun; Dunaief, Joshua L.; Anderson, Gregory J.; Vulpe, Chris D.

2014-01-01

370

An analysis of induction hardening of ferritic ductile iron  

NASA Astrophysics Data System (ADS)

Achievements of the induction hardening of ferritic ductile iron were investigated. Ductile iron is not advisable for use in induction hardening because of the small carbon content in the metal matrix of ferritic ductile iron. The carbon content in the metal matrix of ductile iron can be increased by additional preparation of metal matrix before final induction heat hardening. Wear resistance of the induction hardened ferritic ductile iron can increase as result of increased carbon content of the metal matrix and higher hardness after induction hardening. Some heat pretreatments for metal matrix preparation were applied before the induction hardening of ferritic ductile iron. The process parameters of the induction hardening heat pretreatment were analyzed and optimized. According to recommended elemental composition of ferritic ductile iron and required mechanical properties, the process parameters of the investigated induction heat pretreatment were optimized. The efficiency of pretreatment processes of induction hardening was analyzed. Applicability and manufacture ability of engineering components by proposed heat pretreatments were investigated. The limitations of the investigated heat pretreatment applications were estimated by the comparison of mechanical properties of heat-treated specimens.

Smoljan, Božo; Cajner, Franjo; Landek, Darko

2002-06-01

371

The release of iron during coal combustion. Milestone report  

SciTech Connect

Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1995-06-01

372

35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

373

Iron, Meat and Health  

PubMed Central

This article is a summary of the publication “Iron and Health” by the Scientific Advisory Committee on Nutrition (SACN) to the U.K. Government (2010), which reviews the dietary intake of iron and the impact of different dietary patterns on the nutritional and health status of the U.K. population. It concludes that several uncertainties make it difficult to determine dose-response relationships or to confidently characterize the risks associated with iron deficiency or excess. The publication makes several recommendations concerning iron intakes from food, including meat, and from supplements, as well as recommendations for further research. PMID:22254098

Geissler, Catherine; Singh, Mamta

2011-01-01

374

Plea for Iron Astrochemistry  

SciTech Connect

Iron is a key element and compound in living bodies. It is the most abundant refractory element and has the most stable nucleus in the Universe. Also, elemental Iron has a relevant abundance in the interstellar medium and dense clouds, it can be in gas phase or included in dust particles. During this talk, I shall explain why this special interest in Iron and shall give a brief explanation about its origin and the interstellar nucleosynthesis. After this I'll detail the rich chemistry that Iron can be involved in the interstellar medium, dense clouds with several species.

Mostefaoui, T. A.; Benmerad, B.; Kerkar, M. [Faculte des Sciences Exactes, Targa ou Zemmour, Universite de A. Mira, 6000 Bejaiea (Algeria)

2010-10-31

375

Iron storage in bacteria.  

PubMed

Iron is an essential nutrient for nearly all organisms but presents problems of toxicity, poor solubility and low availability. These problems are alleviated through the use of iron-storage proteins. Bacteria possess two types of iron-storage protein, the haem-containing bacterioferritins and the haem-free ferritins. These proteins are widespread in bacteria, with at least 39 examples known so far in eubacteria and archaebacteria. The bacterioferritins and ferritins are distantly related but retain similar structural and functional properties. Both are composed of 24 identical or similar subunits (approximately 19 kDa) that form a roughly spherical protein (approximately 450 kDa, approximately 120 A diameter) containing a large hollow centre (approximately 80 A diameter). The hollow centre acts as an iron-storage cavity with the capacity to accommodate at least 2000 iron atoms in the form of a ferric-hydroxyphosphate core. Each subunit contains a four-helix bundle which carries the active site or ferroxidase centre of the protein. The ferroxidase centres endow ferrous-iron-oxidizing activity and are able to form a di-iron species that is an intermediate in the iron uptake, oxidation and core formation process. Bacterioferritins contain up to 12 protoporphyrin IX haem groups located at the two-fold interfaces between pairs of two-fold related subunits. The role of the haem is unknown, although it may be involved in mediating iron-core reduction and iron release. Some bacterioferritins are composed of two subunit types, one conferring haem-binding ability (alpha) and the other (beta) bestowing ferroxidase activity. Bacterioferritin genes are often adjacent to genes encoding a small [2Fe-2S]-ferredoxin (bacterioferritin-associated ferredoxin or Bfd). Bfd may directly interact with bacterioferritin and could be involved in releasing iron from (or delivering iron to) bacterioferritin or other iron complexes. Some bacteria contain two bacterioferritin subunits, or two ferritin subunits, that in most cases co-assemble. Others possess both a bacterioferritin and a ferritin, while some appear to lack any type of iron-storage protein. The reason for these differences is not understood. Studies on ferritin mutants have shown that ferritin enhances growth during iron starvation and is also involved in iron accumulation in the stationary phase of growth. The ferritin of Campylobacter jejuni is involved in redox stress resistance, although this does not appear to be the case for Escherichia coli ferritin (FtnA). No phenotype has been determined for E. coli bacterioferritin mutants and the precise role of bacterioferritin in E. coli remains uncertain. PMID:9889981

Andrews, S C

1998-01-01

376

Physiology of iron metabolism.  

PubMed

A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

2014-06-01

377

Low brain iron effects and reversibility on striatal dopamine dynamics.  

PubMed

Iron deficiency (ID) in rodents leads to decreased ventral midbrain (VMB) iron concentrations and to changes in the dopamine (DA) system that mimic many of the dopaminergic changes seen in RLS patient where low substantia nigra iron is a known pathology of the disease. The ID-rodent model, therefore, has been used to explore the effects that low VMB iron can have on striatal DA dynamics with the hopes of better understanding the nature of iron-dopamine interaction in Restless Legs Syndrome (RLS). Using a post-weaning, diet-induced, ID condition in rats, the No-Net-Flux microdialysis technique was used to examine the effect of ID on striatal DA dynamics and it reversibility with acute infusion of physiological concentrations of iron into the VMB. This study replicated prior findings by showing that the ID condition is associated with increased extracellular striatal DA, reduced striatal DA uptake, and blunted DA-2-receptor-agonist feedback enhancement of striatal DA uptake. Despite the increase in extracellular striatal DA, intracellular striatal DA, as determined in tissue homogenates, was decrease in the ID rat. The study's key finding was that an infusion of physiological concentrations of iron into the VMB reversed the ID-induced increase in extracellular striatal DA and the ID-induced decrease in intracellular striatal DA but had no effect on the ID-induced changes in DA uptake or on the blunted DA-uptake response to quinpirole. In summary, the ID-rodent model provides highly reproducible changes in striatal DA dynamics that remarkably parallel dopaminergic changes seen in RLS patients. Some but not all of these ID-induced changes in striatal DA dynamics were reversible with physiological increases in VMB iron. The small changes in VMB iron induced by iron infusion likely represent biologically relevant changes in the non-transferrin-bound labile iron pool and may mimic circadian-dependent changes that have been found in VBM extracellular iron. PMID:24999026

Unger, Erica L; Bianco, Laura E; Jones, Byron C; Allen, Richard P; Earley, Christopher J

2014-11-01

378

Personalised iron supply for prophylaxis and treatment of pregnant women as a way to ensure normal iron levels in their breast milk  

PubMed Central

Rationale: Because the characteristics of all body fluids depends on patient’s health status, is it possible that disadvantaged and socially vulnerable mothers may have lower amounts of iron in their breast milk, and that their babies receive lower content of the mineral for their normal growth and development. Assuring a preventive treatment of the mother might solve this problem. Objective: to demonstrate breast milk iron content from disadvantaged mothers and impact of personalized iron supplementation program. Materials and Methods: cross-sectional study. Breast milk samples were obtained for ferritin analysis. Health’s services usually provides free folic acid and iron treatment however, treatment compliance is low. Patients were random in two groups: “A: Controls” that had free iron tablets available from Health Centre; and “B: Intervention” group where patients accepted to be periodically contacted at home by health’s team for personalized iron dispensation. Results: 360 patients were included. Profilaxis and treatment compliance were 100% and 97,6% for B group while for “Control” one was 63% and 34%(p0.0001). Higher breast milk iron levels were detected in Intervention’s mothers compared with control’s patients (p0.007). Conclusion: Personalized iron prophylaxis and treatment increased breast milk iron levels. Public health policy must ensure iron dispensation for each underserved mother in order to reduce children problems associate to iron deficiency during the first year of their life. PMID:22574084

Marin, GH; Mestorino, N; Errecalde, J; Huber, B; Uriarte, A; Orchuela, J

2012-01-01

379

Iron status is inversely associated with dietary iron intakes in patients with inactive or mildly active inflammatory bowel disease  

E-print Network

. Gastroenterology 1989, 96:804–810.Submit your next manuscript to BioMed Central and take full advantage of: • Convenient online submission • Thorough peer review • No space constraints or color figure charges • Immediate publication on acceptance • Inclusion... only those commonly found in the Western diet that contain iron (or zinc a), or a diet- ary component that modifies iron absorption such as vitamin C, animal tissue (i.e. red meat, fish or poultry), phytate, calcium, alcohol, tea and coffee. Thus...

Powell, Jonathan J; Cook, William B; Chatfield, Mark; Hutchinson, Carol; Pereira, Dora IA; Lomer, Miranda CE

2013-02-01

380

Iron chelating strategies in systemic metal overload, neurodegeneration and cancer.  

PubMed

Iron is a trace element required for normal performance of cellular processes. Because both the deficiency and excess of this metal are dangerous, its absorption, distribution and accumulation must be tightly regulated. Disturbances of iron homeostasis and an increase in its level may lead to overload and neurodegenerative diseases. Phlebotomy was for a long time the only way of removing excess iron. But since there are many possible disadvantages of this method, chelation therapy seems to be a logical approach to remove toxic levels of iron. In clinical use, there are three drugs: desferrioxamine, deferiprone and deferasirox. FBS0701, a novel oral iron chelator, is under clinical trials with very promising results. Developing novel iron-binding chelators is an urgent matter, not only for systemic iron overload, but also for neurodegenerative disorders, such as Parkinson's disease. Deferiprone is also used in clinical trials in Parkinson's disease. In neurodegenerative disorders the main goal is not only to remove iron from brain tissues, but also its redistribution in system. Few chelators are tested for their potential use in neurodegeneration, such as nonhalogeneted derivatives of clioquinol. Such compounds gave promising results in animal models of neurodegenerative diseases. Drugs of possible use in neurodegeneration must meet certain criteria. Their development includes the improvement in blood brain barrier permeability, low toxicity and the ability to prevent lipid peroxidation. One of the compounds satisfying these requirements is VK28. In rat models it was able to protect neurons in very low doses without significantly changing the iron level in liver or serum. Also iron chelators able to regulate activity of monoamine oxidase were tested. Polyphenols and flavonoids are able to prevent lipid peroxidation and demonstrate neuroprotective activity. While cancer does not involve true iron overload, neoplastic cells have a higher iron requirement and are especially prone to its depletion. It was shown, that desferrioxamine and deferasirox are antiproliferative agents active in several types of cancer. Very potent compounds with possible use as anticancer drugs are thiosemicarbazones. They are able to inhibit ribonucleotide reductase, an enzyme involved in DNA synthesis. Because the relationship between the development of overload / neurodegenerative disorders, or cancer, and iron are very complex, comprehension of the mechanisms involved in the regulation of iron homeostasis is a crucial factor in the development of new pharmacological strategies based on iron chelation. In view of various factors closely involved in pathogenesis of such diseases, designing multifunctional metal-chelators seems to be