Sample records for tolerant turbine runner

  1. Development of a pump-turbine runner based on multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.

    2014-03-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.

  2. Multi-objective shape optimization of runner blade for Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  3. Design optimization of a high specific speed Francis turbine runner

    NASA Astrophysics Data System (ADS)

    Enomoto, Y.; Kurosawa, S.; Kawajiri, H.

    2012-11-01

    Francis turbine is used in many hydroelectric power stations. This paper presents the development of hydraulic performance in a high specific speed Francis turbine runner. In order to achieve the improvements of turbine efficiency throughout a wide operating range, a new runner design method which combines the latest Computational Fluid Dynamics (CFD) and a multi objective optimization method with an existing design system was applied in this study. The validity of the new design system was evaluated by model performance tests. As the results, it was confirmed that the optimized runner presented higher efficiency compared with an originally designed runner. Besides optimization of runner, instability vibration which occurred at high part load operating condition was investigated by model test and gas-liquid two-phase flow analysis. As the results, it was confirmed that the instability vibration was caused by oval cross section whirl which was caused by recirculation flow near runner cone wall.

  4. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  5. Unsteady load on an oscillating Kaplan turbine runner

    NASA Astrophysics Data System (ADS)

    Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.

    2013-02-01

    A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.

  6. Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Davidson, L.

    2003-03-01

    This work compares CFD results with experimental results of the flow in two different kinds of water turbine runners. The runners studied are the GAMM Francis runner and the Hölleforsen Kaplan runner. The GAMM Francis runner was used as a test case in the 1989 GAMM Workshop on 3D Computation of Incompressible Internal Flows where the geometry and detailed best efficiency measurements were made available. In addition to the best efficiency measurements, four off-design operating condition measurements are used for the comparisons in this work. The Hölleforsen Kaplan runner was used at the 1999 Turbine 99 and 2001 Turbine 99 - II workshops on draft tube flow, where detailed measurements made after the runner were used as inlet boundary conditions for the draft tube computations. The measurements are used here to validate computations of the flow in the runner.The computations are made in a single runner blade passage where the inlet boundary conditions are obtained from an extrapolation of detailed measurements (GAMM) or from separate guide vane computations (Hölleforsen). The steady flow in a rotating co-ordinate system is computed. The effects of turbulence are modelled by a low-Reynolds number k- turbulence model, which removes some of the assumptions of the commonly used wall function approach and brings the computations one step further.

  7. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    NASA Astrophysics Data System (ADS)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  8. Study on the effect of the runner design parameters on 50 MW Francis hydro turbine model performance

    NASA Astrophysics Data System (ADS)

    Shrestha, Ujjwal; Chen, Zhenmu; Choi, Young-Do

    2018-06-01

    Francis hydro turbine is the dominant turbine in the hydropower generation. Francis turbine has been installed at most 60% of the hydropower in the world at present. Although the basic design for the Francis turbine has various method regarding the specific speed. The runner meridional shape varies with different specific speed. Despite having, the basic design but there is still some room for the optimization. In this study 50 MW, Francis hydro turbine with specific speed 323 m-kW was designed and considered for the optimization. The various parameter as runner meridional shape (curve profile of hub, shroud, leading edge and trailing edge), blade angle and its distribution, blade thickness, runner inlet width that has been considered for the optimization of the runner for enhancement of the performance.

  9. A method to combine hydrodynamics and constructive design in the optimization of the runner blades of Kaplan turbines

    NASA Astrophysics Data System (ADS)

    Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.

    2012-11-01

    This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.

  10. Runner hub construction for propeller type turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyster, P.J.; Yanek, E.J.

    1976-08-10

    A runner hub is described for a propeller type hydraulic turbine wherein the hub is constructed of at least a pair of arcuate segments. When the arcuate segments are assembled together, they form a hollow hub. Turnbuckles are provided within the hub attached to opposite hub segments and are adjustable to forcibly hold the hub segments in the assembled position.

  11. Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD

    NASA Astrophysics Data System (ADS)

    Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël

    2016-11-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.

  12. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  13. Mechanism study on pressure fluctuation of pump-turbine runner with large blade lean angle

    NASA Astrophysics Data System (ADS)

    Yulin, Fan; Xuhe, Wang; Baoshan, Zhu; Dongyue, Zhou; Xijun, Zhou

    2016-11-01

    Excessive pressure fluctuations in the vaneless space can cause mechanical vibration and even mechanical failures in pump-turbine operation. Mechanism studies on the pressure fluctuations and optimization design of blade geometry to reduce the pressure fluctuations have important significance in industrial production. In the present paper, two pump-turbine runners with big positive and negative blade lean angle were designed by using a multiobjective design strategy. Model test showed that the runner with negative blade lean angle not only had better power performance, but also had lower pressure fluctuation than the runner with positive blade lean angle. In order to figure out the mechanism of pressure fluctuation reduction in the vaneless;jik8space, full passage model for both runners were built and transient CFD computations were conducted to simulate the flow states inside the channel. Detailed flow field analyses indicated that the difference of low-pressure area in the trailing edge of blade pressure side were the main causes of pressure fluctuation reduction in the vaneless space.

  14. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  15. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  16. Modelling of a Francis Turbine Runner Fatigue Failure Process Caused by Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Lyutov, A.; Kryukov, A.; Cherny, S.; Chirkov, D.; Salienko, A.; Skorospelov, V.; Turuk, P.

    2016-11-01

    In the present paper considered is the problem of the numerical simulation of Francis turbine runner fatigue failure caused by fluid-structure interaction. The unsteady 3D flow is modeled simultaneously in the spiral chamber, each wicket gate and runner channels and in the draft tube using the Euler equations. Based on the unsteady runner loadings at each time step stresses in the whole runner are calculated using the elastic equilibrium equations solved with boundary element method. Set of static stress-strain states provides quasi-dynamics of runner cyclic loading. It is assumed that equivalent stresses in the runner are below the critical value after which irreversible plastic processes happen in the runner material. Therefore runner is subjected to the fatigue damage caused by high-cycle fatigue, in which the loads are generally low compared with the limit stress of the material. As a consequence, the stress state around the crack front can be fully characterized by linear elastic fracture mechanics. The place of runner cracking is determined as a point with maximal amplitude of stress oscillations. Stress pulsations amplitude is used to estimate the number of cycles until the moment of fatigue failure, number of loading cycles and oscillation frequency are used to calculate runner service time. Example of the real Francis runner which has encountered premature fatigue failure as a result of incorrect durability estimation is used to verify the developed numerical model.

  17. Application test of a Detection Method for the Enclosed Turbine Runner Chamber

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Shen, Dingjie; Xie, Yi; Yang, Xiangwei; Long, Yi; Li, Wenbo

    2017-06-01

    At present, for the existing problems of the testing methods for the key hidden metal components of the turbine runner chamber, such as the poor reliability, the inaccurate locating and the larger detection blind spots of the detection device, under the downtime without opening the cover of the hydropower turbine runner chamber, an automatic detection method based on real-time image acquisition and simulation comparison techniques was proposed. By using the permanent magnet wheel, the magnetic crawler which carry the real-time image acquisition device, could complete the crawling work on the inner surface of the enclosed chamber. Then the image acquisition device completed the real-time collection of the scene image of the enclosed chamber. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  18. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    NASA Astrophysics Data System (ADS)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  19. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.

    2014-03-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.

  20. Evaluation of runner cone extension to dampen pressure pulsations in a Francis model turbine

    NASA Astrophysics Data System (ADS)

    Gogstad, Peter Joachim; Dahlhaug, Ole Gunnar

    2016-11-01

    Today's energy market has a high demand of flexibility due to introduction of other intermittent renewables as wind and solar. To ensure a steady power supply, hydro turbines are often forced to operate more at part load conditions. Originally, turbines were built for steady operation around the best efficiency point. The demand of flexibility, combined with old designs has showed an increase in turbines having problems with hydrodynamic instabilities such as pressure pulsations. Different methods have been investigated to mitigate pressure pulsations. Air injection shows a significant reduction of pressure pulsation amplitudes. However, installation of air injection requires extra piping and a compressor. Investigation of other methods such as shaft extension shows promising results for some operational points, but may significantly reduce the efficiency of the turbine at other operational points. The installation of an extension of the runner cone has been investigated at NTNU by Vekve in 2004. This has resulted in a cylindrical extension at Litjfossen Power Plant in Norway, where the bolt suffered mechanical failure. This indicates high amplitude pressure pulsations in the draft tube centre. The high pressure pulsation amplitudes are believed to be related to high tangential velocity in the draft tube. The mentioned runner cone extension has further been developed to a freely rotating extension. The objective is to reduce the tangential velocity in the draft tube and thereby the pressure pulsation amplitudes.

  1. Analysis of a pico tubular-type hydro turbine performance by runner blade shape using CFD

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Lee, N. J.; Wata, J. V.; Hwang, Y. C.; Kim, Y. T.; Lee, Y. H.

    2012-11-01

    There has been a considerable interest recently in the topic of renewable energy. This is primarily due to concerns about environmental impacts of fossil fuels. Moreover, fluctuating and rising oil prices, increase in demand, supply uncertainties and other factors have led to increased calls for alternative energy sources. Small hydropower, among other renewable energy sources, has been evaluated to have adequate development value because it is a clean, renewable and abundant energy resource. In addition, small hydropower has the advantage of low cost development by using rivers, agricultural reservoirs, sewage treatment plants, waterworks and water resources. The main concept of the tubular-type hydro turbine is based on the difference in water pressure levels in pipe lines, where the energy which was initially wasted by using a reducing valve at the pipeline of waterworks, is collected by turbine in the hydro power generator. In this study, in order to acquire the performance data of a pico tubular-type hydro turbine, the output power, head and efficiency characteristics by different runner blade shapes are examined. The pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  2. Unsteady CFD simulation for bucket design optimization of Pelton turbine runner

    NASA Astrophysics Data System (ADS)

    KUMASHIRO, Takashi; FUKUHARA, Haruki; TANI, Kiyohito

    2016-11-01

    To investigate flow patterns on the bucket of Pelton turbine runners is one of the important issues to improve the turbine performance. By studying the mechanism of loss generation on the flow around the bucket, it becomes possible to optimize the design of inner and outer bucket shape. For making it into study, computational fluid dynamics (CFD) is quite an effective method. It is normally used to simulate the flow in turbines and to expect the turbine performances in the development for many kind of water turbine including Pelton type. Especially in the bucket development, the numerical investigations are more useful than observations and measurements obtained in the model test to understand the transient flow patterns. In this paper, a numerical study on two different design buckets is introduced. The simplified analysis domain with consideration for reduction of computational load is also introduced. Furthermore the model tests of two buckets are also performed by using the same test equipment. As the results of the model test, a difference of turbine efficiency is clearly confirmed. The trend of calculated efficiencies on both buckets agrees with the experiment. To investigate the causes of that, the difference of unsteady flow patterns between two buckets is discussed based on the results of numerical analysis.

  3. Experimental Pressure Measurements on Hydropower Turbine Runners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Samuel F.; Richmond, Marshall C.

    The range of hydrodynamic operating conditions to which the turbine is exposed results in significant pressure fluctuations on both the pressure and suction sides of the blades. Understanding these dynamic pressures has a range of applications. Structurally, the resulting dynamic loads are significant in understanding the design life and maintenance schedule of the bearing, shafts and runner components. The pulsing pressures have also been seen to have a detrimental effect on the surface condition of the blades. Biologically, the pressure gradients and pressure extremes are the primary driver of barotrauma for fish passing through hydroturbines. Improvements in computational fluid dynamicsmore » (CFD) can be used to simulate such unsteady pressures in the regions of concern. High frequency model scale and prototype measurements of pressures at the blade are important in the validation of these models. Experimental characterization of pressure fields over hydroturbine blades has been demonstrated by a number of studies which using multiple pressure transducers to map the pressure contours on the runner blades. These have been performed at both model and prototype scales, often to validate computational models of the pressure and flow fields over the blades. This report provides a review of existing studies in which the blade pressure was measured in situ. The report assesses the technology for both model and prototype scale testing. The details of the primary studies in this field are reported and used to inform the types of hardware required for similar experiments based on the Ice Harbor Dam owned by the US Corps of Engineers on the Snake River, WA, USA. Such a study would be used to validate the CFD performed for the BioPA.« less

  4. Study on an undershot cross-flow water turbine

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  5. The swirl turbine

    NASA Astrophysics Data System (ADS)

    Haluza, M.; Pochylý, F.; Rudolf, P.

    2012-11-01

    In the article is introduced the new type of the turbine - swirl turbine. This turbine is based on opposite principle than Kaplan turbine. Euler equation is satisfied in the form gHηh = -u2vu2. From this equation is seen, that inflow of liquid into the runner is without rotation and on the outflow is a rotation of liquid opposite of rotation of runner. This turbine is suitable for small head and large discharge. Some constructional variants of this turbine are introduced in the article and theoretical aspects regarding losses in the draft tube. The theory is followed by computational simulations in Fluent and experiments using laser Doppler anemometry.

  6. Part 1 - Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    NASA Astrophysics Data System (ADS)

    Houde, S.; Fraser, R.; Ciocan, G. D.; Deschênes, C.

    2012-11-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the

  7. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device

    DOE PAGES

    Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.; ...

    2016-08-19

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help

  8. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help

  9. Numerical investigation on performance and sediment erosion of Francis runner with different guide vane profiles

    NASA Astrophysics Data System (ADS)

    Lama, R.; Dahal, D. R.; Gautam, S.; Acharya, N.; Neopane, H.; Thapa, B. S.

    2018-06-01

    Francis turbine are ideal turbines for Himalayan and Andes region where both low and high-altitude mountains are located. Turbines operating in such regions face operational and maintenance problems due to the sediment erosion. In order to reduce the erosion effects on these components the design of components for higher sediment handling is essence. This paper presents performance analysis of Francis runner and prediction of sediment erosion on the runner blades for different operating conditions with different guide vane profiles. The simulations were carried out for 11 guide vane opening angles using Tabakoff erosion model. At full load and best efficiency point the erosion was localized at pressure side of runner blades outlet due to higher relative velocity. On the other hand, at part load condition, erosion was observed at suction side of the blades. Application of asymmetric guide vane profile NACA 4412 showed higher efficiency for all operating conditions with minimum erosion on runner blades in compare to symmetric guide vane profile NACA 0012.

  10. Damage tolerance and structural monitoring for wind turbine blades

    PubMed Central

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  11. Numerical Simulation of the Francis Turbine and CAD used to Optimized the Runner Design (2nd).

    NASA Astrophysics Data System (ADS)

    Sutikno, Priyono

    2010-06-01

    Hydro Power is the most important renewable energy source on earth. The water is free of charge and with the generation of electric energy in a Hydroelectric Power station the production of green house gases (mainly CO2) is negligible. Hydro Power Generation Stations are long term installations and can be used for 50 years and more, care must be taken to guarantee a smooth and safe operation over the years. Maintenance is necessary and critical parts of the machines have to be replaced if necessary. Within modern engineering the numerical flow simulation plays an important role in order to optimize the hydraulic turbine in conjunction with connected components of the plant. Especially for rehabilitation and upgrading existing Power Plants important point of concern are to predict the power output of turbine, to achieve maximum hydraulic efficiency, to avoid or to minimize cavitations, to avoid or to minimized vibrations in whole range operation. Flow simulation can help to solve operational problems and to optimize the turbo machinery for hydro electric generating stations or their component through, intuitive optimization, mathematical optimization, parametric design, the reduction of cavitations through design, prediction of draft tube vortex, trouble shooting by using the simulation. The classic design through graphic-analytical method is cumbersome and can't give in evidence the positive or negative aspects of the designing options. So it was obvious to have imposed as necessity the classical design methods to an adequate design method using the CAD software. There are many option chose during design calculus in a specific step of designing may be verified in ensemble and detail form a point of view. The final graphic post processing would be realized only for the optimal solution, through a 3 D representation of the runner as a whole for the final approval geometric shape. In this article it was investigated the redesign of the hydraulic turbine's runner

  12. Development of low head Kaplan turbine for power station rehabilitation project

    NASA Astrophysics Data System (ADS)

    Lim, S. M.; Ohtake, N.; Kurosawa, S.; Suzuki, T.; Yamasaki, T.; Nishi, H.

    2012-11-01

    This paper presents the latest Kaplan turbine rehabilitation project for Funagira Power Station in Japan completed by J-POWER Group in collaboration with Toshiba Corporation. Area of rehabilitation was restricted to guide vane and runner. The main goal of the rehabilitation project was to expand the operating range of the existing turbine in terms of discharge and power with high operational stability, low noise as well as high cavitation performance. Computational Fluids Dynamics and model test were used to optimize the shape of guide vane and runner in development stage. Finally, field tests and runner inspection were carried out to confirm the performance of the new turbine. It was found that the new turbine has excellent performance in efficiency, power output, operational stability compared with existing turbine. Moreover, no sign of cavitation on the runner blade surface was observed after 5078 hours of operation near 100% load.

  13. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    PubMed

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  14. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges

    PubMed Central

    Presas, Alexandre; Bossio, Matias; Egusquiza, Eduard; Valero, Carme

    2018-01-01

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions. PMID:29320422

  15. A case study of the fluid structure interaction of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Müller, C.; Staubli, T.; Baumann, R.; Casartelli, E.

    2014-03-01

    The Francis turbine runners of the Grimsel 2 pump storage power plant showed repeatedly cracks during the last decade. It is assumed that these cracks were caused by flow induced forces acting on blades and eventual resonant runner vibrations lead to high stresses in the blade root areas. The eigenfrequencies of the runner were simulated in water using acoustic elements and compared to experimental data. Unsteady blades pressure distribution determined by a transient CFD simulation of the turbine were coupled to a FEM simulation. The FEM simulation enabled analyzing the stresses in the runner and the eigenmodes of the runner vibrations. For a part-load operating point, transient CFD simulations of the entire turbine, including the spiral case, the runner and the draft tube were carried out. The most significant loads on the turbine runner resulted from the centrifugal forces and the fluid forces. Such forces effect temporally invariant runner blades loads, in contrast rotor stator interaction or draft tube instabilities induce pressure fluctuations which cause the temporally variable forces. The blades pressure distribution resulting from the flow simulation was coupled by unidirectional-harmonic FEM simulation. The dominant transient blade pressure distribution of the CFD simulation were Fourier transformed, and the static and harmonic portion assigned to the blade surfaces in the FEM model. The evaluation of the FEM simulation showed that the simulated part load operating point do not cause critical stress peaks in the crack zones. The pressure amplitudes and frequencies are very small and interact only locally with the runner blades. As the frequencies are far below the modal frequencies of the turbine runner, resonant vibrations obviously are not excited.

  16. Influence of the rotor-stator interaction on the dynamic stresses of Francis runners

    NASA Astrophysics Data System (ADS)

    Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.

    2012-11-01

    Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its

  17. Experimental optimization of a free vortex propeller runner for micro hydro application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2009-09-15

    The turbine technology for low head application in the micro hydro range has been vastly neglected despite niche available in scattered regions of valley flows as well as in wastewater canals and other energy recovery schemes, where the available head does not exceed 2 meters. The goal of this study is to develop hydraulically optimized propeller turbines for the micro hydro range with a particular focus on ease of manufacture. This paper presents a wide range of geometrical optimization steps carried out on a propeller runner, whose blades have been designed using the free vortex theory, and operating with amore » gross head from 1.5 to 2 m and discharge of approximately 75 l/s. It further illustrates 3 stages of geometrical modifications carried out on the runner with an objective of optimizing the runner performance. These modifications comprised of changes to the tip angles (both at the runner inlet and exit) as well as the hub angles (at the runner inlet) of the runner blades. The paper also presents an interesting theoretical methodology to analyze the effects of each optimization stage. This method looks at the relative changes to shaft power and discharge at constant head and speed and gives wonderful insight as to how the internal parameters like Euler shaft work and runner hydraulic losses are behaving with respect to each optimization stage. It was found that the performance of the runner was very sensitive to changes to exit tip angle. At two levels of modification, the discharge increased in the range of 15-30%, while shaft power increased in the range of 12-45%, thus influencing the efficiency characteristics. The results of the runner inlet tip modification were very interesting in that a very significant rise of turbine efficiency was recorded from 55% to 74% at the best efficiency point, which was caused by a reduced discharge consumption as well as a higher power generation. It was also found that the optimization study on a propeller runner has

  18. Damage tolerance and structural monitoring for wind turbine blades.

    PubMed

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Case Study and Numerical Analysis of Vibration and Runner Cracks for the Lipno I Hydroelectric Project

    NASA Astrophysics Data System (ADS)

    Zouhar, J.; Obrovsky, J.; Feilhauer, M.; Skotak, A.

    2016-11-01

    The refurbishment of the Lipno I TG2 Francis turbine, situated on River Vltava, with maximum net head of 165 m and required operational range from 0 to 67MW of turbine power was performed in 2014. The new hydraulic design of the spiral case, distributor and runner was developed for this project. After about 1000 hours of operation the site inspection was performed and the cracks were found on 8 runner blades of 17 blades altogether. The all cracks were found near runner hub beginning from the trailing edge. The dimensions of the cracks were different with maximum length of 123 mm and minimum length of 3 mm. The runner was repaired and the intensive investigation was started to define the main cause of the cracks creation and to determine the measures for their elimination. This paper presents the program of this investigation which consists of static and dynamic blade strain measurement, CFD and FEM analysis, discusses the crack causes and overview the solution how to return the turbine successfully to operation.

  20. Influence of the boundary conditions on the natural frequencies of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Valentín, David; Ramos, David; Bossio, Matías; Presas, Alexandre; Egusquiza, Eduard; Valero, Carme

    2016-11-01

    Natural frequencies estimation of Francis turbines is of paramount importance in the stage of design in order to avoid vibration and resonance problems especially during transient events. Francis turbine runners are submerged in water and confined with small axial and radial gaps which considerably decrease their natural frequencies in comparison to the same structure in the air. Acoustic-structural FSI simulations have been used to evaluate the influence of these gaps. This model considers an entire prototype of a Francis turbine, including generator, shaft, runner and surrounding water. The radial gap between the runner and the static parts has been changed from the real configuration (about 0.04% the runner diameter) to 1% of the runner diameter to evaluate its influence on the machine natural frequencies. Mode-shapes and natural frequencies of the whole machine are discussed for all the boundary conditions tested.

  1. Efficient runner safety assessment during early design phase and root cause analysis

    NASA Astrophysics Data System (ADS)

    Liang, Q. W.; Lais, S.; Gentner, C.; Braun, O.

    2012-11-01

    Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics. Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for

  2. Water turbine technology for small power stations

    NASA Astrophysics Data System (ADS)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  3. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1999-01-01

    This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.

  4. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    NASA Astrophysics Data System (ADS)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  5. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    NASA Astrophysics Data System (ADS)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  6. Numerical Investigation of Cavitation Improvement for a Francis Turbine

    NASA Astrophysics Data System (ADS)

    Yao, Zhifeng; Xiao, Ruofu; Wang, Fujun; Yang, Wei

    2015-12-01

    Cavitation in hydraulic machine is undesired due to its negative effects on performances. To improve cavitation performance of a Francis turbine without the change of the best efficiency point, a model runner geometry optimization was carried out. Firstly, the runner outlet diameter was appropriately increased to reduce the flow velocity at runner outlet region. Then, to avoid the change of the flow rate at the best efficiency point, the blade shapes were carefully adjusted by decreasing the blade outlet angles and increasing the blade wrap angles. A large number of the modified runners were tested by computational fluid dynamic (CFD) method. Finally the most appropriate one was selected, which has the runner outlet diameter 10% larger, the blade outlet angles 3 degrees smaller and the blade wrap angles 5 degrees larger. The results showed that the critical cavitation coefficient of the model runner decreased at every unit rotational speed after the optimization, and the effect was much remarkable at relative high flow rate. Besides, by analysing the internal flow field, it was found that the zone of the low pressure on pressure surface of the optimized turbine blades was reduced, the backflow and vortex rope in draft tube were reduced, and the cavitation zone was reduced obviously.

  7. Investigation of distributor vane jets to decrease the unsteady load on hydro turbine runner blades

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.

    2012-11-01

    As the runner blades of a Francis hydroturbine pass though the wakes created from the wicket gates, they experience a significant change in absolute velocity, flow angle, and pressure. The concept of adding jets to the trailing edge of the wicket gates is proposed as a method for reducing the dynamic load on the hydroturbine runner blades. Computational experiments show a decrease in velocity variation experienced by the runner blade with the addition of the jets. The decrease in velocity variation resulted in a 43% decrease in global torque variation at the runner passing frequency. However, an increased variation was observed at the wicket gate passing frequency. Also, a 5.7% increase in average global torque was observed with the addition of blowing from the trailing-edge of the wicket gates.

  8. Tolerance of Lower Body Negative Pressure (LBNP) in endurance runners, weightlifters, swimmers and nonathletes

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Thirteen endurance runners (R), 12 weightlifters (WL), 12 swimmers (SW) and 10 nonathletes (NA) were tested for their tolerance of lower body negative pressure (LBNP) in consecutive 5 minute stages at -20, -30, -40, -50 and -60 torr. Each subject also performed an exercise test on a bicycle ergometer with progressive workloads to exhaustion to determined aerobic capacity. The R had a much higher aerobic capacity than any of the other groups, but a significantly lower LBNP tolerance. While responses in heart rate and pulse pressure were quite similar in all 4 groups, the rate of increase in leg volume relative to LBNP stress (leg compliance, LC) was considerably greater in R than in the other athletes and NA. The greater LC in R could be attributed not only to a more rapid shift of blood to the lower extremities but also to a greater tendency for edema formation, both contributing to a more rapid loss in effective central blood volume for a given LBNP stress. These results substantiate earlier observations which led to the conclusion that endurance running is not advisable as a training regimen for astronauts.

  9. Cost of enlarged operating zone for an existing Francis runner

    NASA Astrophysics Data System (ADS)

    Monette, Christine; Marmont, Hugues; Chamberland-Lauzon, Joël; Skagerstrand, Anders; Coutu, André; Carlevi, Jens

    2016-11-01

    Traditionally, hydro power plants have been operated close to best efficiency point, the more stable operating condition for which they have been designed. However, because of changes in the electricity market, many hydro power plants operators wish to operate their machines differently to fulfil those new market needs. New operating conditions can include whole range operation, many start/stops, extensive low load operation, synchronous condenser mode and power/frequency regulation. Many of these new operating conditions may impose more severe fatigue damage than the traditional base load operation close to best efficiency point. Under these conditions, the fatigue life of the runner may be significantly reduced and reparation or replacement cost might occur sooner than expected. In order to design reliable Francis runners for those new challenging operating scenarios, Andritz Hydro has developed various proprietary tools and design rules. These are used within Andritz Hydro to design mechanically robust Francis runners for the operating scenarios fulfilling customer's specifications. To estimate residual life under different operating scenarios of an existing runner designed years ago for best efficiency base load operation, Andritz Hydro's design rules and tools would necessarily lead to conservative results. While the geometry of a new runner can be modified to fulfil all conservative mechanical design rules, the predicted fatigue life of an existing runner under off-design operating conditions may appear rather short because of the conservative safety factor included in the calculations. The most precise and reliable way to calculate residual life of an existing runner under different operating scenarios is to perform a strain gauge measurement campaign on the runner. This paper presents the runner strain gage measurement campaign of a mid-head Francis turbine over all the operating conditions available during the test, the analysis of the measurement signals

  10. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, J.; Hecker, G.; Li, S.

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), themore » design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within

  11. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    NASA Astrophysics Data System (ADS)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  12. Simplified Structure of Ducted Darrieus-Type Hydro Turbine with Narrow Intake for Extra-low Head Hydropower Utilization

    NASA Astrophysics Data System (ADS)

    Matsushita, Daisuke; Okuma, Kusuo; Watanabe, Satoshi; Furukawa, Akinori

    A ducted Darrieus-type hydro turbine has been proposed for extra-low head hydropower utilization of total head less than 2m, where development is almost not done in the commercial base. Though the efficiency of Darrieus-type turbine, which is cross flow type, is not so high as conventional type, the Darrieus-type has a cost-advantage due to the simple structure. By installing a narrow intake at upstream of the runner, the efficiency becomes higher than normal intake that a width of which is the same as one of runner section. In the case of normal intake, the casing clearance between the runner pitch circle and the side-wall at the runner section becomes the influential factor which deteriorates the efficiency. On the other hand, in the case of narrow intake, it is possible to keep efficiency high, based on the fact that the distorting flow to the clearance is prevented. In the present paper, the effects of narrow intake and draft tube on turbine performance are experimentally examined and the design guideline of simplified structure for ducted Darrieus-type turbine with narrow intake is proposed.

  13. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1999-01-01

    A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behaviour level where primitive variables with their respective scatters are used to describe the behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster, products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.

  14. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1998-01-01

    A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behavior level where primitive variables with their respective scatters are used to describe that behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.

  15. Analysis of the Kaplan turbine draft tube effect

    NASA Astrophysics Data System (ADS)

    Motycak, L.; Skotak, A.; Obrovsky, J.

    2010-08-01

    The aim of this paper is to present information about possible problems and errors which can appear during numerical analyses of low head Kaplan turbines with a view to the runner - draft tube interaction. The setting of numerical model, grid size, used boundary conditions are the interface definition between runner and draft tube are discussed. There are available data from physical model tests which gives a great opportunity to compare CFD and experiment results and on the basis of this comparison to determine the approach to the CFD flow modeling. The main purpose for the Kaplan turbine model measurement was to gather the information about real flow field. The model tests were carried out in new hydraulic laboratory of CKD Blansko Engineering. The model tests were focused on the detailed velocity measurements downstream of the runner by differential pressure probe and on the velocity measurement downstream of the draft tube elbow by Particle Image Velocimetry method (PIV). The data from CFD simulation were compared to the velocity measurement results. In the paper also the design of the original draft tube modification due to flow improvement is discussed in the case of the Kaplan turbine uprating project. The results of the draft tube modification were confirmed by model tests in the hydraulic laboratory as well.

  16. Mathematical, numerical and experimental analysis of the swirling flow at a Kaplan runner outlet

    NASA Astrophysics Data System (ADS)

    Muntean, S.; Ciocan, T.; Susan-Resiga, R. F.; Cervantes, M.; Nilsson, H.

    2012-11-01

    The paper presents a novel mathematical model for a-priori computation of the swirling flow at Kaplan runners outlet. The model is an extension of the initial version developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial velocity and of the variable rothalpy. Simple analytical expressions are derived for these additional data from three-dimensional numerical simulations of the Kaplan turbine. The final results, i.e. velocity components profiles, are validated against experimental data at two operating points, with the same Kaplan runner blades opening, but variable discharge.

  17. Mechanical impact of dynamic phenomena in Francis turbines at off design conditions

    NASA Astrophysics Data System (ADS)

    Duparchy, F.; Brammer, J.; Thibaud, M.; Favrel, A.; Lowys, P. Y.; Avellan, F.

    2017-04-01

    At partial load and overload conditions, Francis turbines are subjected to hydraulic instabilities that can potentially result in high dynamic solicitations of the turbine components and significantly reduce their lifetime. This study presents both experimental data and numerical simulations that were used as complementary approaches to study these dynamic solicitations. Measurements performed on a reduced scale physical model, including a special runner instrumented with on-board strain gauges and pressure sensors, were used to investigate the dynamic phenomena experienced by the runner. They were also taken as reference to validate the numerical simulation results. After validation, advantage was taken from the numerical simulations to highlight the mechanical response of the structure to the unsteady hydraulic phenomena, as well as their impact on the fatigue damage of the runner.

  18. Overview of SPH-ALE applications for hydraulic turbines in ANDRITZ Hydro

    NASA Astrophysics Data System (ADS)

    Rentschler, M.; Marongiu, J. C.; Neuhauser, M.; Parkinson, E.

    2018-02-01

    Over the past 13 years, ANDRITZ Hydro has developed an in-house tool based on the SPH-ALE method for applications in flow simulations in hydraulic turbines. The initial motivation is related to the challenging simulation of free surface flows in Pelton turbines, where highly dynamic water jets interact with rotating buckets, creating thin water jets traveling inside the housing and possibly causing disturbances on the runner. The present paper proposes an overview of industrial applications allowed by the developed tool, including design evaluation of Pelton runners and casings, transient operation of Pelton units and free surface flows in hydraulic structures.

  19. Swirling Flow Computation at the Trailing Edge of Radial-Axial Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo; Muntean, Sebastian; Popescu, Constantin

    2016-11-01

    Modern hydraulic turbines require optimized runners within a range of operating points with respect to minimum weighted average draft tube losses and/or flow instabilities. Tractable optimization methodologies must include realistic estimations of the swirling flow exiting the runner and further ingested by the draft tube, prior to runner design. The paper presents a new mathematical model and the associated numerical algorithm for computing the swirling flow at the trailing edge of Francis turbine runner, operated at arbitrary discharge. The general turbomachinery throughflow theory is particularized for an arbitrary hub-to-shroud line in the meridian half-plane and the resulting boundary value problem is solved with the finite element method. The results obtained with the present model are validated against full 3D runner flow computations within a range of discharge value. The mathematical model incorporates the full information for the relative flow direction, as well as the curvatures of the hub-to-shroud line and meridian streamlines, respectively. It is shown that the flow direction can be frozen within a range of operating points in the neighborhood of the best efficiency regime.

  20. Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine

    NASA Astrophysics Data System (ADS)

    Junginger, Bernd; Riedelbauch, Stefan

    2016-11-01

    The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.

  1. Analyzing hydro abrasive erosion in Kaplan turbine: A case study from India

    NASA Astrophysics Data System (ADS)

    Rai, Anant Kr.; Kumar, Arun

    2016-10-01

    Sediment flow through hydro turbine causes erosion of hydraulic components resulting in drop of turbine efficiency, particularly in hydropower plants of the Himalayan region. The measurement of erosion and monitoring of sediment flow in turbine are major concerns in erosion study. Attempts have been made to study erosion mainly in Pelton and Francis turbines. In this study, a simple and effective method has been presented to measure erosion in a Kaplan turbine of a run-of-river scheme Chilla hydropower plant in foothills of Himalaya. Recent techniques were used to measure sediment parameters like concentration, size, shape and mineral content. A standard erosion model is applied to estimate the erosion in Kaplan turbine blade, runner chamber and draft tube cone. A calibration factor has been proposed to apply the erosion model for site specific conditions. It has been found that the outer trailing edges of the turbine blade and upper runner chamber are most erosion prone zones. Sediment analysis revealed that effective operation can reduce erosion in turbine components. The estimated erosion values from model are found to be consistent with measured values. Finally, suggestions for design improvements and effective operation of erosion affected hydropower plants are given.

  2. Engineering & Performance of DuoTurbo: Microturbine with Counter-Rotating Runners

    NASA Astrophysics Data System (ADS)

    Biner, D.; Hasmatuchi, V.; Violante, D.; Richard, S.; Chevailler, S.; Andolfatto, L.; Avellan, F.; Münch, C.

    2016-11-01

    Considering the nuclear phase-out strategy of several European countries and the future tendency to promote renewable energies, the exploitation of small hydropower sites (<10 MW) becomes increasingly important. In this framework DuoTurbo Turbine, a new DuoTurbo-microturbine prototype for drinking water networks has been jointly developed by the HES-SO Valais//Wallis, the EPFL-Laboratory for Hydraulic Machines and industrial partners. The modular in-line “plug & play” technology requires low investment, reaching economic feasibility with an available power between 5 kW and 25 kW. One stage of the microturbine consists of two axial counter-rotating runners that form a compact independent unit. Each runner of the turbine holds its own rim generator, the DuoTurbo-configuration involving that each hydraulic runner is integral with each electrical rotor. The possibility of stacking several stages in series enables covering quite a wide range of hydraulic power and, thus, recovering a maximum of energy dissipated in release valves of water supply systems. The present work introduces the global concept of the implemented prototype of the DuoTurbo-microturbine, to target a maximal injected power of 5 kW for a discharge of 9 l/s and a head of 24.5 m per stage. The main features of the hydraulic, the mechanical, the electrical and the electronic design are presented. The hydraulic performance is, then, assessed using CFD simulations for the expected operating range. Finally, the performance measurements of the single-stage prototype installed in the hydraulic test rig of the HES-SO Valais//Wallis are presented.

  3. Understanding casing flow in Pelton turbines by numerical simulation

    NASA Astrophysics Data System (ADS)

    Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.

    2016-11-01

    For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.

  4. Performance Comparison of Optimized Designs of Francis Turbines Exposed to Sediment Erosion in various Operating Conditions

    NASA Astrophysics Data System (ADS)

    Shrestha, K. P.; Chitrakar, S.; Thapa, B.; Dahlhaug, O. G.

    2018-06-01

    Erosion on hydro turbine mostly depends on impingement velocity, angle of impact, concentration, shape, size and distribution of erodent particle and substrate material. In the case of Francis turbines, the sediment particles tend to erode more in the off-designed conditions than at the best efficiency point. Previous studies focused on the optimized runner blade design to reduce erosion at the designed flow. However, the effect of the change in the design on other operating conditions was not studied. This paper demonstrates the performance of optimized Francis turbine exposed to sediment erosion in various operating conditions. Comparative study has been carryout among the five different shapes of runner, different set of guide vane and stay vane angles. The effect of erosion is studied in terms of average erosion density rate on optimized design Francis runner with Lagrangian particle tracking method in CFD analysis. The numerical sensitivity of the results are investigated by comparing two turbulence models. Numerical results are validated from the velocity measurements carried out in the actual turbine. Results show that runner blades are susceptible to more erosion at part load conditions compared to BEP, whereas for the case of guide vanes, more erosion occurs at full load conditions. Out of the five shapes compared, Shape 5 provides an optimum combination of efficiency and erosion on the studied operating conditions.

  5. Fatigue analyses of the prototype Francis runners based on site measurements and simulations

    NASA Astrophysics Data System (ADS)

    Huang, X.; Chamberland-Lauzon, J.; Oram, C.; Klopfer, A.; Ruchonnet, N.

    2014-03-01

    With the increasing development of solar power and wind power which give an unstable output to the electrical grid, hydropower is required to give a rapid and flexible compensation, and the hydraulic turbines have to operate at off-design conditions frequently. Prototype Francis runners suffer from strong vibrations induced by high pressure pulsations at part load, low part load, speed-no-load and during start-stops and load rejections. Fatigue and damage may be caused by the alternating stress on the runner blades. Therefore, it becomes increasingly important to carry out fatigue analysis and life time assessment of the prototype Francis runners, especially at off-design conditions. This paper presents the fatigue analyses of the prototype Francis runners based on the strain gauge site measurements and numerical simulations. In the case of low part load, speed-no-load and transient events, since the Francis runners are subjected to complex hydraulic loading, which shows a stochastic characteristic, the rainflow counting method is used to obtain the number of cycles for various dynamic amplitude ranges. From middle load to full load, pressure pulsations caused by Rotor-stator- Interaction become the dominant hydraulic excitation of the runners. Forced response analysis is performed to calculate the maximum dynamic stress. The agreement between numerical and experimental stresses is evaluated using linear regression method. Taking into account the effect of the static stress on the S-N curve, the Miner's rule, a linear cumulative fatigue damage theory, is employed to calculate the damage factors of the prototype Francis runners at various operating conditions. The relative damage factors of the runners at different operating points are compared and discussed in detail.

  6. Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi

    2017-10-01

    Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.

  7. Valve exploiting the principle of a side channel turbine

    NASA Astrophysics Data System (ADS)

    Jandourek, Pavel; Habán, Vladimír; Pochylý, František; Fic, Miloslav

    The article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Reducing valves are a source of hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the valve and the turbine. The basis for the design is the loss characteristics of the valve. Thereby creating a kind of turbine valve with speed-controlled flow in dependence of runner revolution.

  8. Bulb turbine operating at medium head: XIA JIANG case study

    NASA Astrophysics Data System (ADS)

    Loiseau, F.; Desrats, C.; Petit, P.; Liu, J.

    2012-11-01

    With lots of references for 4-blade bulb turbines, such as these of Wu Jin Xia (4 units - 36.1 MW per unit - 9.2 m rated head), Chang Zhou (15 units - 46.7 MW per unit - 9.5 m rated head) and Tong Wan (4 units - 46.2 MW per unit - 11 m rated head), ALSTOM Power Hydro is one of the major suppliers of bulb turbines operating under medium head for the Chinese market. ALSTOM Power Hydro has been awarded in November 2010 a contract by Jiang Xi Province Xia Jiang Water Control Project Headquarters to equip Xia Jiang's new hydropower plant. The power dam is located on the Gan Jiang river, at about 160 km away from Nan Chang town in South Eastern China. The supply will consist in 5 bulb units including the furniture of both the turbine and its generator, for a total capacity of 200 MW, under a rated net head of 8.6 m. The prototype turbine is a 7.8 m diameter runner, rotating at 71.4 rpm speed. For this project, ALSTOM has proposed a fully new design of 4-blade bulb runner. This paper outlines the main steps of the hydraulic development. First of all, a fine tuning of the blade geometry was performed to enhance the runner behaviour at high loads and low heads, so that to fulfill the demanding requirements of efficiencies and maximum output. The challenge was also to keep an excellent cavitation behaviour, especially at the outer blade diameter in order to avoid cavitation erosion on the prototype. The shape of the blade was optimized by using the latest tools in computational fluid dynamics. Steady state simulations of the distributor and the runner were performed, in order to simulate more accurately the pressure fields on the blade and the velocity distribution at the outlet of the runner. Moreover, draft tube computations have been performed close to the design point and at higher loads. Then, a model fully homologous with the prototype was manufactured and tested at ALSTOM's laboratory in Grenoble (France). The model test results confirmed the predicted ones: the

  9. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    NASA Astrophysics Data System (ADS)

    Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L.

    2010-08-01

    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  10. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Thapa, B. S.; Dahlhaug, O. G.; Thapa, B.

    2016-11-01

    In Francis turbine, a small clearance gap between the guide vanes and the cover plates is usually required to pivot guide vanes as a part of governing system. Deflection of cover plates and erosion of mating surfaces causes this gap to increase from its design value. The clearance gap induces the secondary flow in the distributor system. This effects the main flow at the runner inlet, which causes losses in efficiency and instability. A guide vane cascade of a low specific speed Francis turbine has been developed for experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. The setup is designed for particle image velocimetry (PIV) measurements from the position of stay vane outlet to the position of runner inlet. In this study, velocity and pressure measurements are conducted with 2 mm clearance gap on one side of guide vane. Leakage flow is observed and measured together with pressure measurements. It is concluded that the leakage flow behaves as a jet and mixes with the main flow in cross-wise direction and forms a vortex filament. This causes non-uniform inlet flow conditions at runner blades.

  11. Effect of inner guide on performances of cross flow turbine

    NASA Astrophysics Data System (ADS)

    Kokubu, K.; Yamasaki, K.; Honda, H.; Kanemoto, T.

    2012-11-01

    To get the sustainable society, the hydropower with not only the large but also the mini/micro capacity has been paid attention to the power generation. The cross-flow turbines can work efficiently at the comparatively low head and/or low discharge in the onshore and the offshore, and the runner and the casing profiles have been optimizing. In this paper, the turbine composed of the optimal profiles has prepared to provide for the mini/micro hydropower, and the performances have been investigated at the low head. The hydraulic efficiency is maximal at the normal guide vane opening and deteriorates at the lower and the higher discharge than the normal discharge. Such deteriorations are brought from the unacceptable flow conditions crossing in the runner, that is, the flow direction does not meet the setting angle of the blade at the inner radius. To improve dramatically the performances, the inner guide, which guards the shaft from the water jet and adjusts the flow direction, was installed in the runner.

  12. Experiences with the hydraulic design of the high specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  13. Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD

    NASA Astrophysics Data System (ADS)

    Lee, N. J.; Choi, J. W.; Hwang, Y. H.; Kim, Y. T.; Lee, Y. H.

    2012-11-01

    Micro hydraulic turbines have a growing interest because of its small and simple structure, as well as a high possibility of using in micro and small hydropower applications. The differential pressure existing in city water pipelines can be used efficiently to generate electricity in a way similar to that of energy being generated through gravitational potential energy in dams. The pressure energy in the city pipelines is often wasted by using pressure reducing valves at the inlet of water cleaning centers. Instead of using the pressure reducing valves, a micro counter-rotating hydraulic turbine can be used to make use of the pressure energy. In the present paper, a counter-rotating tubular type micro-turbine is studied, with the front runner connected to the generator stator and the rear runner connected to the generator rotor. The performance of the turbine is investigated experimentally and numerically. A commercial ANSYS CFD code was used for numerical analysis.

  14. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  15. Kaplan turbine tip vortex cavitation - analysis and prevention

    NASA Astrophysics Data System (ADS)

    Motycak, L.; Skotak, A.; Kupcik, R.

    2012-11-01

    The work is focused on one type of Kaplan turbine runner cavitation - a tip vortex cavitation. For detailed description of the tip vortex, the CFD analysis is used. On the basis of this analysis it is possible to estimate the intensity of cavitating vortex core, danger of possible blade surface and runner chamber cavitation pitting. In the paper, the ways how to avoid the pitting effect of the tip vortex are described. In order to prevent the blade surface against pitting, the following possibilities as the change of geometry of the runner blade, dimension of tip clearance and finally the installation of the anti-cavitation lips are discussed. The knowledge of the shape and intensity of the tip vortex helps to design the anti-cavitation lips more sophistically. After all, the results of the model tests of the Kaplan runner with or without anti-cavitation lips and the results of the CFD analysis are compared.

  16. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    NASA Astrophysics Data System (ADS)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  17. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    NASA Astrophysics Data System (ADS)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  18. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    NASA Astrophysics Data System (ADS)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  19. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  20. 63. Photocopied August 1978. TESTING TURBINES AT HOLYOKE. INSTALLING A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Photocopied August 1978. TESTING TURBINES AT HOLYOKE. INSTALLING A PAIR OF THE JOLLY-McCORMICK RUNNERS AND CONTROL GATES IN THE TEST PIT. (343) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  1. Transient CFD simulation of a Francis turbine startup

    NASA Astrophysics Data System (ADS)

    Nicolle, J.; Morissette, J. F.; Giroux, A. M.

    2012-11-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  2. Numerical study of vortex rope during load rejection of a prototype pump-turbine

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.

    2012-11-01

    A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.

  3. Aerodynamic Measurements of an Incidence Tolerant Blade in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    McVetta, Ashlie B.; Giel, Paul W.

    2012-01-01

    An overview of the recent facility modifications to NASA s Transonic Turbine Blade Cascade Facility and aerodynamic measurements on the VSPT incidence-tolerant blade are presented. This work supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 or more variations in VSPT blade incidence angles. The Transonic Turbine Blade Cascade Facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Details of the modifications are described. An incidence-tolerant blade was developed under an RTPAS study contract and tested in the cascade to look at the effects of large incidence angle and Reynolds number variations. Recent test results are presented which include midspan exit total pressure and flow angle measurements obtained at three inlet angles representing the cruise, take-off, and maximum incidence flight mission points. For each inlet angle, data were obtained at five flow conditions with exit Reynolds numbers varying from 2.12 106 to 2.12 105 and two isentropic exit Mach numbers of 0.72 and 0.35. Three-dimensional flowfield measurements were also acquired at the cruise and take-off points. The flowfield measurements were acquired using a five-hole and three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  4. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  5. Pressure Pulsation in a High Head Francis Turbine Operating at Variable Speed

    NASA Astrophysics Data System (ADS)

    Sannes, D. B.; Iliev, I.; Agnalt, E.; Dahlhaug, O. G.

    2018-06-01

    This paper presents the preliminary work of the master thesis of the author, written at the Norwegian University of Science and Technology. Today, many Francis turbines experience formations of cracks in the runner due to pressure pulsations. This can eventually cause failure. One way to reduce this effect is to change the operation point of the turbine, by utilizing variable speed technology. This work presents the results from measurements of the Francis turbine at the Waterpower Laboratory at NTNU. Measurements of pressure pulsations and efficiency were done for the whole operating range of a high head Francis model turbine. The results will be presented in a similar diagram as the Hill Chart, but instead of constant efficiency curves there will be curves of constant peak-peak values. This way, it is possible to find an optimal operation point for the same power production, were the pressure pulsations are at its lowest. Six points were chosen for further analysis to instigate the effect of changing the speed by ±50 rpm. The analysis shows best results for operation below BEP when the speed was reduced. The change in speed also introduced the possibility to have other frequencies in the system. It is therefore important avoid runner speeds that can cause resonance in the system.

  6. Dynamic stresses in a Francis model turbine at deep part load

    NASA Astrophysics Data System (ADS)

    Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri

    2017-04-01

    A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.

  7. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood ofmore » fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.« less

  8. Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumeri, Galib; Abdi, Frank

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed

  9. RUNNING INJURY DEVELOPMENT: THE ATTITUDES OF MIDDLE- AND LONG-DISTANCE RUNNERS AND THEIR COACHES.

    PubMed

    Johansen, Karen Krogh; Hulme, Adam; Damsted, Camma; Ramskov, Daniel; Nielsen, Rasmus Oestergaard

    2017-08-01

    Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. To investigate the attitudes of middle- and long-distance runners able to compete in national championships and their coaches about factors associated with running injury development. A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: "Which factors do you believe influence the risk of running injuries?". In response to this question, the athletes and coaches had to click "Yes" or "No" to 19 predefined factors. In addition, they had the possibility to submit a free-text response. A total of 68 athletes and 19 coaches were included in the study. A majority of the athletes (76% [95%CI: 66%; 86%]) and coaches (79% [95%CI: 61%; 97%]) reported "Ignoring pain" as a risk factor for running injury. A majority of the coaches reported "Reduced muscle strength" (79% [95%CI: 61%; 97%]) and "high running distance" (74% [95%CI: 54%; 94%]) to be associated with injury, while half of the runners found "insufficient recovery between running sessions" (53% [95%CI: 47%; 71%]) important. Runners and their coaches emphasize ignoring pain as a factor associated with injury development. The question remains how much running, if any at all, runners having slight symptoms or mild pain, are able to tolerate before these symptoms develop into a running-related injury. 3b.

  10. Steady state operation simulation of the Francis-99 turbine by means of advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Gavrilov, A.; Dekterev, A.; Minakov, A.; Platonov, D.; Sentyabov, A.

    2017-01-01

    The paper presents numerical simulation of the flow in hydraulic turbine based on the experimental data of the II Francis-99 workshop. The calculation domain includes the wicket gate, runner and draft tube with rotating reference frame for the runner zone. Different turbulence models such as k-ω SST, ζ-f and RSM were considered. The calculations were performed by means of in-house CFD code SigmaFlow. The numerical simulation for part load, high load and best efficiency operation points were performed.

  11. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    NASA Astrophysics Data System (ADS)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  12. Tinea pedis in European marathon runners.

    PubMed

    Lacroix, C; Baspeyras, M; de La Salmonière, P; Benderdouche, M; Couprie, B; Accoceberry, I; Weill, F X; Derouin, F; Feuilhade de Chauvin, M

    2002-03-01

    Epidemiological studies suggest that 15% of the population in industrial countries suffer from tinea pedis (athlete's foot) and that persons who do sports are a high-risk population. To investigate the responsibility of dermatophytes in interdigital lesions of the feet in European marathon runners and to identify associated risk factors. Runners of the 14th Médoc Marathon (n = 147) were interviewed on risk factors for tinea pedis and underwent physical and mycological examinations. Interdigital lesions of the feet were found in 66 runners (45%). A dermatophyte was isolated in 45 runners (31%), 12 of whom were asymptomatic. Trichophyton interdigitale and T. rubrum accounted for 49% and 35.5%, respectively, of the cases of tinea pedis. Thirty-three (22%) of the 102 runners free of dermatophyte infection had lesions resembling those of tinea pedis. Increasing age and use of communal bathing facilities were predictive of T. rubrum culture. Marathon runners are at high risk for tinea pedis, but dermatophytes are responsible for only half of the foot lesions found in runners. The existence of asymptomatic carriers calls for prophylactic measures.

  13. Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners.

    PubMed

    Laye, M J; Nielsen, M B; Hansen, L S; Knudsen, T; Pedersen, B K

    2015-01-01

    High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior in runners versus sedentary controls despite similar VO2max. Furthermore, performance (velocity at VO2max, running economy), improved exercise metabolism (lactate threshold), and skeletal muscle levels of mitochondrial proteins were superior in runners versus sedentary controls with similar VO2max. In conclusion subjects with a high amount of PA have more positive metabolic health parameters independent of CRF. PA is thus a good marker against metabolic diseases.

  14. Physical Activity Enhances Metabolic Fitness Independently of Cardiorespiratory Fitness in Marathon Runners

    PubMed Central

    Laye, M. J.; Nielsen, M. B.; Hansen, L. S.; Knudsen, T.; Pedersen, B. K.

    2015-01-01

    High levels of cardiovascular fitness (CRF) and physical activity (PA) are associated with decreased mortality and risk to develop metabolic diseases. The independent contributions of CRF and PA to metabolic disease risk factors are unknown. We tested the hypothesis that runners who run consistently >50 km/wk and/or >2 marathons/yr for the last 5 years have superior metabolic fitness compared to matched sedentary subjects (CRF, age, gender, and BMI). Case-control recruitment of 31 pairs of runner-sedentary subjects identified 10 matched pairs with similar VO2max (mL/min/kg) (similar-VO2max). The similar-VO2max group was compared with a group of age, gender, and BMI matched pairs who had the largest difference in VO2max (different-VO2max). Primary outcomes that defined metabolic fitness including insulin response to an oral glucose tolerance test, fasting lipids, and fasting insulin were superior in runners versus sedentary controls despite similar VO2max. Furthermore, performance (velocity at VO2max, running economy), improved exercise metabolism (lactate threshold), and skeletal muscle levels of mitochondrial proteins were superior in runners versus sedentary controls with similar VO2max. In conclusion subjects with a high amount of PA have more positive metabolic health parameters independent of CRF. PA is thus a good marker against metabolic diseases. PMID:25821340

  15. Analysis of the pump-turbine S characteristics using the detached eddy simulation method

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao

    2015-01-01

    Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.

  16. Valve exploiting the principle of a side channel turbine

    NASA Astrophysics Data System (ADS)

    Jandourek, Pavel; Pochylý, František; Haban, Vladimír

    2017-04-01

    The presented article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Pressure reducing valves are a source of high hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the reducing valve and the side channel turbine. The basis for the design is the loss characteristics of the pressure reducing valve. Thereby create a new kind of turbine valve with speed-controlled flow in dependence of the runner revolution. It is technical innovation and new renewable source of energy, which can be in future used in rehabilitation or projecting of pumped-storage power plants. It also increases the power of the power plant.

  17. Predicting plantar fasciitis in runners.

    PubMed

    Warren, B L; Jones, C J

    1987-02-01

    Ninety-one runners were studied to determine whether specific variables were indicative of runners who had suffered with plantar fasciitis either presently or formerly vs runners who had never suffered with plantar fasciitis. Each runner was asked to complete a running history, was subjected to several anatomical measurements, and was asked to run on a treadmill in both a barefoot and shoe condition at a speed of 3.35 mps (8 min mile pace). Factor coefficients were used in a discriminant function analysis which revealed that, when group membership was predicted, 63% of the runners could be correctly assigned to their group. Considering that 76% of the control group was correctly predicted, it was concluded that the predictor variables were able to correctly predict membership of the control group, but not able to correctly predict the presently or formerly injured sufferers of plantar fasciitis.

  18. Simplified hydrodynamic analysis on the general shape of the hill charts of Francis turbines using shroud-streamline modeling

    NASA Astrophysics Data System (ADS)

    Iliev, I.; Trivedi, C.; Dahlhaug, O. G.

    2018-06-01

    The paper presents a simplified one-dimensional calculation of the efficiency hill-chart for Francis turbines, based on the velocity triangles at the inlet and outlet of the runner’s blade. Calculation is done for one streamline, namely the shroud streamline in the meridional section, where an efficiency model is established and iteratively approximated in order to satisfy the Euler equation for turbomachines at a wide operating range around the best efficiency point (BEP). Using the presented method, hill charts are calculated for one splitter-bladed Francis turbine runner and one Reversible Pump-Turbine (RPT) runner operated in the turbine mode. Both turbines have similar and relatively low specific speeds of nsQ = 23.3 and nsQ = 27, equal inlet and outlet diameters and are designed to fit in the same turbine rig for laboratory measurements (i.e. spiral casing and draft tube are the same). Calculated hill charts are compared against performance data obtained experimentally from model tests according to IEC standards for both turbines. Good agreement between theoretical and experimental results is observed when comparing the shapes of the efficiency contours in the hill-charts. The simplified analysis identifies the design parameters that defines the general shape and inclination of the turbine’s hill charts and, with some additional improvements in the loss models used, it can be used for quick assessment of the performance at off-design conditions during the design process of hydraulic turbines.

  19. Research on Darrieus-type hydraulic turbine for extra-low head hydropower utilization

    NASA Astrophysics Data System (ADS)

    Furukawa, A.; Watanabe, S.; Okuma, K.

    2012-11-01

    A Darrieus-type turbine has been investigated for extra-low head hydropower utilization. In the present paper, authors'research on Darrieus-type hydraulic turbine is briefly reviewed. The working principle of Darrieus turbine is explained with advantage of its simple structure, at first. Then the fluid-dynamic difference between rotating and linear motions of a blade in a uniform flow is clarified with guiding principle of high performance design of Darrieus turbine. Cavitation problem is also described. Next, effects of duct-casing, consisting of an intake, runner section and draft tube, are discussed and a simplified structure of Darrieus turbine is shown by installing the inlet nozzle. Finally, in the practical use, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed when flow rate is varied temporally and seasonally.

  20. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  1. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  2. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  3. Numerical investigation for one bad-behaved flow in a Pelton turbine

    NASA Astrophysics Data System (ADS)

    Wei, X. Z.; Yang, K.; Wang, H. J.; Gong, R. Z.; Li, D. Y.

    2015-01-01

    The gas-liquid two-phase flow in pelton turbines is very complicated, there are many kinds of bad-behaved flow in pelton turbines. In this paper, CFD numerical simulation for the pelton turbine was conducted using VOF two-phase model. One kind of bad-behaved flow caused by the two jets was captured, and the bad-behaved flow was analysed by torque on buckets. It can be concluded that the angle between the two jets and the value of ratio of runner diameter and jet diameter are important parameters for the bad-behaved flow. Furthermore, the reason why the efficiency of some multi-jet type turbines is very low can be well explained by the analysis of bad-behaved flow. Finally, some suggestions for improvement were also provided in present paper.

  4. Experimental study of pressure pulsations in the flow duct of a medium-size model hydroelectric generator with Francis turbine

    NASA Astrophysics Data System (ADS)

    Platonov, D. V.; Maslennikova, A. V.; Dekterev, D. A.; Minakov, A. V.; Abramov, A. V.

    2018-01-01

    In the present study, we report on the results of an experimental study of pressure pulsations in the flow duct of a medium-scale hydrodynamic bench with Francis turbine. In various regimes, integral and pulsation characteristics of the turbine were measured. With the help of high-speed filming, the structure of the flow behind the turbine runner was analyzed, and the influence of this structure on the intensity and frequency of pressure pulsations in the flow duct was demonstrated.

  5. Erosion of Pelton buckets and changes in turbine efficiency measured in the HPP Fieschertal

    NASA Astrophysics Data System (ADS)

    Abgottspon, A.; Staubli, T.; Felix, D.

    2016-11-01

    Geometrical changes and material loss of Pelton turbine runners as well as changes in turbine efficiency were measured at HPP Fieschertal in Valais, Switzerland. The HPP is equipped with two horizontal axis Pelton units, with each 32 MW nominal power, 7.5 m3/s design discharge, 515 m head and two injectors. The injectors and the buckets are hard-coated. Hydro-abrasive erosion was quantified based on repeated measurements on two runner buckets using (i) 3d-scanning and (ii) a coating thickness gauge. Changes in efficiency were measured by applying the sliding needle procedure. In addition to these periodically performed measurements, efficiency was also continuously monitored. The highest erosion rate was measured during the first half of the sediment season 2012 including a major sediment transport event. Because the runner was not fully reconditioned at the beginning of this season, progressive damages occurred. After the event, a splitter width of 10 mm was measured, corresponding to 1.5 % of the inner bucket width. The cut-outs were eroded by up to 9 mm towards the axis. The efficiency reductions ranged from 1 % in the year with the major sediment transport event to insignificant differences in 2014, when the sediment load was small and only little hydro-abrasive erosion occurred.

  6. Biomechanical variables associated with Achilles tendinopathy in runners.

    PubMed

    Azevedo, L B; Lambert, M I; Vaughan, C L; O'Connor, C M; Schwellnus, M P

    2009-04-01

    The aim of this study was to investigate the kinetics, kinematics and muscle activity in runners with Achilles tendinopathy. Case-control study. Biomechanics laboratory. 21 runners free from injury and 21 runners with Achilles tendinopathy performed 10 running trials with standardised running shoes. Injured runners were diagnosed clinically according to established diagnostic criteria. Uninjured runners had been injury-free for at least 2 years. During each trial, kinetic and lower limb kinematic data were measured using a strain gauge force plate and six infrared cameras respectively. Electromyographic (EMG) data from six muscles (tibialis anterior (TA), peroneus longus (PE), lateral gastrocnemius (LG), rectus femoris (RF), biceps femoris (BF) and gluteus medius (GM)) were measured with a telemetric EMG system. Knee range of motion (heel strike to midstance) was significantly lower in injured runners than in uninjured runners. Similarly, preactivation (integrated EMG (IEMG) in 100 ms before heel strike) of TA was lower for injured runners than uninjured runners. RF and GM IEMG activity 100 ms after heel strike was also lower in the injured group. However, impact forces were not different between the two groups. Altered knee kinematics and reduced muscle activity are associated with Achilles tendinopathy in runners. Rehabilitation exercises or other mechanisms (e.g. footwear) that affect kinematics and muscle activity may therefore be beneficial in the treatment of runners with Achilles tendinopathy.

  7. A discussion on turbine design for safe operation

    NASA Astrophysics Data System (ADS)

    Brekke, H.

    2012-11-01

    The paper gives a brief description of the hydraulic design of Francis and Pelton runners. The dynamic behaviour at part load has been a major problem for low head and medium head Francis turbines. The main reason for this has been inter blade separation and unstable swirl flow in the draft tube. A description is given on the hydraulic design of X-BLADE runners to obtain stable operation on the whole range of operation by reducing the cross flow. A classical theoretical analysis is also given on the dynamic hydraulic load on Pelton buckets. Several CFD analyses of this non stationary flow have been presented during the last decade, but the velocity distribution in the jets have not been correct. Experimental research work is presented on the complexity of this problem.

  8. 3D fluid-structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS

    NASA Astrophysics Data System (ADS)

    Saeed, R. A.; Galybin, A. N.; Popov, V.

    2013-01-01

    This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.

  9. Numerical investigation of tip clearance cavitation in Kaplan runners

    NASA Astrophysics Data System (ADS)

    Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.

    2016-11-01

    There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.

  10. Transient Pressure Measurements in the Vaneless Space of a Francis Turbine during Load Acceptances from Minimum Load

    NASA Astrophysics Data System (ADS)

    Goyal, R.; Gandhi, B. K.; Cervantes, M. J.

    2018-06-01

    Increased penetration of solar and the wind impels the designers of the hydroelectric power generation unit to provide more flexibility in operation for the stability of the grid. The power generating unit includes turbine which needs to sustain sudden change in its operating conditions. Thus, the hydraulic turbine experiences more transients per day which result in chronic problems such as fatigue to the runner, instrument malfunctioning, vibrations, wear and tear etc. This paper describes experiments performed on a high model (1.5:1) Francis turbine for load acceptances from the minimum load. The experiments presented in the paper are the part of Francis-99 workshop which aims to determine the performance of numerical models in simulations of model Francis turbine under steady and transient operating conditions. The aim of the paper is to present the transient pressure variation in the vaneless space of a Francis turbine where high-frequency pulsations are normally expected. For this, two pressure sensors, VL1 and VL2, are mounted at the vaneless space, one near the beginning of the spiral casing and the other before the end of the spiral casing. Both are used to capture the unsteady pressure field developed in the space between guide vanes and runner inlet. The time-resolved pressure signals are analyzed and presented during the transient to observe the pressure variation and dominant frequencies of pulsations.

  11. Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load using Highly Parallel CFD Simulations

    NASA Astrophysics Data System (ADS)

    Krappel, Timo; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander; Flurl, Benedikt; Unger, Friedeman; Galpin, Paul

    2016-11-01

    The operation of Francis turbines in part load conditions causes high fluctuations and dynamic loads in the turbine and especially in the draft tube. At the hub of the runner outlet a rotating vortex rope within a low pressure zone arises and propagates into the draft tube cone. The investigated part load operating point is at about 72% discharge of best efficiency. To reduce the possible influence of boundary conditions on the solution, a flow simulation of a complete Francis turbine is conducted consisting of spiral case, stay and guide vanes, runner and draft tube. As the flow has a strong swirling component for the chosen operating point, it is very challenging to accurately predict the flow and in particular the flow losses in the diffusor. The goal of this study is to reach significantly better numerical prediction of this flow type. This is achieved by an improved resolution of small turbulent structures. Therefore, the Scale Adaptive Simulation SAS-SST turbulence model - a scale resolving turbulence model - is applied and compared to the widely used RANS-SST turbulence model. The largest mesh contains 300 million elements, which achieves LES-like resolution throughout much of the computational domain. The simulations are evaluated in terms of the hydraulic losses in the machine, evaluation of the velocity field, pressure oscillations in the draft tube and visual comparisons of turbulent flow structures. A pre-release version of ANSYS CFX 17.0 is used in this paper, as this CFD solver has a parallel performance up to several thousands of cores for this application which includes a transient rotor-stator interface to support the relative motion between the runner and the stationary portions of the water turbine.

  12. Unsteady numerical simulation of the flow in the U9 Kaplan turbine model

    NASA Astrophysics Data System (ADS)

    Javadi, Ardalan; Nilsson, Håkan

    2014-03-01

    The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.

  13. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines

    NASA Astrophysics Data System (ADS)

    Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.

    2014-03-01

    The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV

  14. Numerical investigation of hub clearance flow in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Wu, H.; Feng, J. J.; Wu, G. K.; Luo, X. Q.

    2012-11-01

    In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.

  15. Self-excitation in Francis runner during load rejection

    NASA Astrophysics Data System (ADS)

    Moisan, É.; Giacobbi, D.-B.; Gagnon, M.; Léonard, F.

    2014-03-01

    Typically, transients such as load rejection generate only a few high vibration cycles in Francis runners. However, in the cases presented in this study, a sustained vibration around a natural frequency was observed on three (3) homologous Francis runners of different sizes during such events. The first two (2) runners were equipped with strain gauges on the blades and displacement sensors positioned circumferentially in the bottom ring and head cover around the runner labyrinth seals. The third runner was monitored only with displacement sensors on non-rotating components. The data from the first two (2) runners provided a better understanding of the parameters influencing the appearance of the high amplitude vibrations and allowed the implementation of a test plan to circumvent the phenomenon during commissioning of the third runner. Based on the measured data, the distributor's closing parameters were optimized to eliminate the vibration observed during load rejection on most of the operating range and reduce it significantly at full load.

  16. Trabecular bone in the calcaneus of runners

    PubMed Central

    Holt, Brigitte; Troy, Karen; Hamill, Joseph

    2017-01-01

    Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6), rearfoot-striking runners (n = 6), and non-runners (n = 6), all males aged 20–41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (<0.80). Trabecular thickness was positively correlated with weekly running distance (r2 = 0.417, p<0.05) and years running (r2 = 0.339, p<0.05) and negatively correlated with age at onset of running (r2 = 0.515, p<0.01) Trabecular thickness, mineral density and bone volume ratio of nonrunners were highly correlated with body mass (r2 = 0.824, p<0.05) and nonrunners were significantly heavier than runners (p<0.05). Adjusting for body mass revealed significantly thicker trabeculae in the posterior calcaneus of forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the posterior

  17. Trabecular bone in the calcaneus of runners.

    PubMed

    Best, Andrew; Holt, Brigitte; Troy, Karen; Hamill, Joseph

    2017-01-01

    Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6), rearfoot-striking runners (n = 6), and non-runners (n = 6), all males aged 20-41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (<0.80). Trabecular thickness was positively correlated with weekly running distance (r2 = 0.417, p<0.05) and years running (r2 = 0.339, p<0.05) and negatively correlated with age at onset of running (r2 = 0.515, p<0.01) Trabecular thickness, mineral density and bone volume ratio of nonrunners were highly correlated with body mass (r2 = 0.824, p<0.05) and nonrunners were significantly heavier than runners (p<0.05). Adjusting for body mass revealed significantly thicker trabeculae in the posterior calcaneus of forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the posterior

  18. Fat intake and injury in female runners.

    PubMed

    Gerlach, Kristen E; Burton, Harold W; Dorn, Joan M; Leddy, John J; Horvath, Peter J

    2008-01-03

    Our purpose was to determine the relationship between energy intake, energy availability, dietary fat and lower extremity injury in adult female runners. We hypothesized that runners who develop overuse running-related injuries have lower energy intakes, lower energy availability and lower fat intake compared to non-injured runners. Eighty-six female subjects, running a minimum of 20 miles/week, completed a food frequency questionnaire and informed us about injury incidence over the next year. Injured runners had significantly lower intakes of total fat (63 +/- 20 vs. 80 +/- 50 g/d) and percentage of kilocalories from fat (27 +/- 5 vs. 30 +/- 8 %) compared with non-injured runners. A logistic regression analysis found that fat intake was the best dietary predictor, correctly identifying 64% of future injuries. Lower energy intake and lower energy availability approached, but did not reach, a significant association with overuse injury in this study. Fat intake is likely associated with injury risk in female runners. By documenting these associations, better strategies can be developed to reduce running injuries in women.

  19. Runaway transient simulation of a model Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhou, D.; Liu, D.; Wu, Y.; Nishi, M.

    2010-08-01

    The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-epsilon turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.

  20. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less

  1. A full three dimensional Navier-Stokes numerical simulation of flow field inside a power plant Kaplan turbine using some model test turbine hill chart points

    NASA Astrophysics Data System (ADS)

    Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.

    2012-06-01

    A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.

  2. Determination of the performance of the Kaplan hydraulic turbines through simplified procedure

    NASA Astrophysics Data System (ADS)

    Pădureanu, I.; Jurcu, M.; Campian, C. V.; Haţiegan, C.

    2018-01-01

    A simplified procedure has been developed, compared to the complex one recommended by IEC 60041 (i.e. index samples), for measurement of the performance of the hydraulic turbines. The simplified procedure determines the minimum and maximum powers, the efficiency at maximum power, the evolution of powers by head and flow and to determine the correct relationship between runner/impeller blade angle and guide vane opening for most efficient operation of double-regulated machines. The simplified procedure can be used for a rapid and partial estimation of the performance of hydraulic turbines for repair and maintenance work.

  3. Computational Tools to Assess Turbine Biological Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, amore » suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.« less

  4. 10. Photocopied August 1978. CLOSEUP VIEW OF TURBINE SHAFT PENETRATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopied August 1978. CLOSE-UP VIEW OF TURBINE SHAFT PENETRATING THE STEEL PLATE BULKHEAD THROUGH A STUFFING BOX AND AND ALSO SHOWING THE CONTROL GATE SHAFT. THIS PARTICULAR UNIT WAS INSTALLED IN 1916. THE ADMISSION OF WATER TO ALL FOUR RUNNERS IN A PENSTOCK UNIT COULD SIMULTANEOUSLY BE CONTROLLED BY THE CONTROL SHAFT ON THE LEFT. (899) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  5. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    NASA Astrophysics Data System (ADS)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  6. Injuries observed in minimalist runners.

    PubMed

    Salzler, Matthew J; Bluman, Eric M; Noonan, Samantha; Chiodo, Christopher P; de Asla, Richard J

    2012-04-01

    Minimalist runners have been shown to have a different gait pattern with lower impact forces than habitually shod runners. Running in minimalist footwear has been promoted as a means of reducing or eliminating running injuries by returning to a more natural gait. Ten experienced runners, age 21 to 57 (mean, 43) years, were identified with injuries within 1 year of transition from traditional to minimalist running footwear. Patients were interviewed to determine their running history, injury history, transition to minimalist footwear, and their new injury including its treatment and recovery. Ten patients who ran with traditional footwear ran an average of 25.9 (range, 6 to 45) miles/week for an average of 18.9 (range, 1 to 40) years presented with injuries 2.8 (range 1 to 10) months after switching to minimalist footwear. Their injuries included eight metatarsal stress fractures, a calcaneal stress fracture, and a plantar fascia rupture. All patients had a successful recovery and returned to their previous level of running. Injuries including stress fractures and plantar fascia rupture have been observed in minimalist runners.

  7. Feasibility Study for a Practical High Rotor Tip Clearance Turbine.

    DTIC Science & Technology

    GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.

  8. Older Runners Retain Youthful Running Economy despite Biomechanical Differences.

    PubMed

    Beck, Owen N; Kipp, Shalaya; Roby, Jaclyn M; Grabowski, Alena M; Kram, Rodger; Ortega, Justus D

    2016-04-01

    Sixty-five years of age typically marks the onset of impaired walking economy. However, running economy has not been assessed beyond the age of 65 yr. Furthermore, a critical determinant of running economy is the spring-like storage and return of elastic energy from the leg during stance, which is related to leg stiffness. Therefore, we investigated whether runners older than 65 yr retain youthful running economy and/or leg stiffness across running speeds. Fifteen young and 15 older runners ran on a force-instrumented treadmill at 2.01, 2.46, and 2.91 m·s(-1). We measured their rates of metabolic energy consumption (i.e., metabolic power), ground reaction forces, and stride kinematics. There were only small differences in running economy between young and older runners across the range of speeds. Statistically, the older runners consumed 2% to 9% less metabolic energy than the young runners across speeds (P = 0.012). Also, the leg stiffness of older runners was 10% to 20% lower than that of young runners across the range of speeds (P = 0.002), and in contrast to the younger runners, the leg stiffness of older runners decreased with speed (P < 0.001). Runners beyond 65 yr of age maintain youthful running economy despite biomechanical differences. It may be that vigorous exercise, such as running, prevents the age related deterioration of muscular efficiency and, therefore, may make everyday activities easier.

  9. Older Runners Retain Youthful Running Economy Despite Biomechanical Differences

    PubMed Central

    Beck, Owen N.; Kipp, Shalaya; Roby, Jaclyn M.; Grabowski, Alena M.; Kram, Rodger; Ortega, Justus D.

    2015-01-01

    Purpose Sixty-five years of age typically marks the onset of impaired walking economy. However, running economy has not been assessed beyond the age of 65 years. Furthermore, a critical determinant of running economy is the spring-like storage and return of elastic energy from the leg during stance, which is related to leg stiffness. Therefore, we investigated whether runners over the age of 65 years retain youthful running economy and/or leg stiffness across running speeds. Methods Fifteen young and fifteen older runners ran on a force-instrumented treadmill at 2.01, 2.46, and 2.91 m·s−1. We measured their rates of metabolic energy consumption (i.e. metabolic power), ground reaction forces, and stride kinematics. Results There were only small differences in running economy between young and older runners across the range of speeds. Statistically, the older runners consumed 2–9% less metabolic energy than the young runners across speeds (p=0.012). Also, the leg stiffness of older runners was 10–20% lower than that of young runners across the range of speeds (p=0.002) and in contrast to the younger runners, the leg stiffness of older runners decreased with speed (p<0.001). Conclusion Runners beyond 65 years of age maintain youthful running economy despite biomechanical differences. It may be that vigorous exercise, such as running, prevents the age related deterioration of muscular efficiency, and therefore may make everyday activities easier. PMID:26587844

  10. Achilles Tendon Properties of Minimalist and Traditionally Shod Runners.

    PubMed

    Histen, Katherine; Arntsen, Julia; L'Hereux, Lauren; Heeren, James; Wicki, Benjamin; Saint, Sterling; Aerni, Giselle; Denegar, Craig R; Joseph, Michael F

    2017-04-01

    Tendon adapts to load through alterations in its composition and mechanical properties. Mechanical adaptation to increased load often involves increases in cross-sectional area (CSA), stiffness, and modulus. Runners exhibit these adaptations. To determine if runners wearing minimalist shoes had larger and stiffer Achilles tendons (AT) than traditionally shod runners. Cross-sectional study of well-trained, traditionally and minimally shod runners. Laboratory assessment of trained runners. 23 men (11 traditional, 12 minimalist) and 8 women (6 traditional, 2 minimalist). Runners wearing minimalist shoes had 4.2 ± 1.6 y of training experience in minimalist shoes. The authors used diagnostic ultrasound and isokinetic dynamometry to generate a force-elongation curve and its derivatives. Minimalist runners had a greater CSA: mean difference (MD) = 9.2 mm 2 , stiffness (MD = 268.1 N/mm), and modulus (MD = 202.9 MPa). ATs of minimalist runners experienced greater stress (MD 8.6 N/mm 2 ) during maximal voluntary isometric contraction of the plantar-flexor muscles due to greater force of contraction (MD 798.9 N). The AT in minimalist runners adapts by increasing size, stiffness, and modulus, which is consistent with our understanding of mechanical adaptation of tendon to increased loading. Increased stress to the AT likely requires a slow transition to minimalist running to allow the AT to adapt without evidence of injury.

  11. Runners with Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared to Pain-Free Runners.

    PubMed

    Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M

    2018-02-27

    The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.

  12. Preliminary investigation of flow dynamics during the start-up of a bulb turbine model

    NASA Astrophysics Data System (ADS)

    Coulaud, M.; Fraser, R.; Lemay, J.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.

    2016-11-01

    Nowadays, the electricity network undergoes more perturbations due to the market demand. Additionally, an increase of the production from alternative resources such as wind or solar also induces important variations on the grid. Hydraulic power plants are used to respond quickly to these variations to stabilize the network. Hydraulic turbines have to face more frequent start-up and stop sequences that might shorten significantly their life time. In this context, an experimental analysis of start-up sequences has been conducted on the bulb turbine model of the BulbT project at the Hydraulic Machines Laboratory (LAMH) of Laval University. Maintaining a constant head, guide vanes are opened from 0 ° to 30 °. Three guide vanes opening speed have been chosen from 5 °/s to 20 °/s. Several repetitions were done for each guide vanes opening speed. During these sequences, synchronous time resolved measurements have been performed. Pressure signals were recorded at the runner inlet and outlet and along the draft tube. Also, 25 pressure measurements and strain measurements were obtained on the runner blades. Time resolved particle image velocimetry were used to evaluate flowrate during start-up for some repetitions. Torque fluctuations at shaft were also monitored. This paper presents the experimental set-up and start-up conditions chosen to simulate a prototype start-up. Transient flowrate methodology is explained and validation measurements are detailed. The preliminary results of global performances and runner pressure measurements are presented.

  13. 3D numerical simulation of transient processes in hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.

    2010-08-01

    An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.

  14. Tapering strategies in elite British endurance runners.

    PubMed

    Spilsbury, Kate L; Fudge, Barry W; Ingham, Stephen A; Faulkner, Steve H; Nimmo, Myra A

    2015-01-01

    The aim of the study was to explore pre-competition training practices of elite endurance runners. Training details from elite British middle distance (MD; 800 m and 1500 m), long distance (LD; 3000 m steeplechase to 10,000 m) and marathon (MAR) runners were collected by survey for 7 days in a regular training (RT) phase and throughout a pre-competition taper. Taper duration was [median (interquartile range)] 6 (3) days in MD, 6 (1) days in LD and 14 (8) days in MAR runners. Continuous running volume was reduced to 70 (16)%, 71 (24)% and 53 (12)% of regular levels in MD, LD and MAR runners, respectively (P < 0.05). Interval running volume was reduced compared to regular training (MD; 53 (45)%, LD; 67 (23)%, MAR; 64 (34)%, P < 0.05). During tapering, the peak interval training intensity was above race speed in LD and MAR runners (112 (27)% and 114 (3)%, respectively, P < 0.05), but not different in MD (100 (2)%). Higher weekly continuous running volume and frequency in RT were associated with greater corresponding reductions during the taper (R = -0.70 and R = -0.63, respectively, both P < 0.05). Running intensity during RT was positively associated with taper running intensity (continuous intensity; R = 0.97 and interval intensity; R = 0.81, both P < 0.05). Algorithms were generated to predict and potentially prescribe taper content based on the RT of elite runners. In conclusion, training undertaken prior to the taper in elite endurance runners is predictive of the tapering strategy implemented before competition.

  15. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    NASA Astrophysics Data System (ADS)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  16. Extrapolation of dynamic load behaviour on hydroelectric turbine blades with cyclostationary modelling

    NASA Astrophysics Data System (ADS)

    Poirier, Marc; Gagnon, Martin; Tahan, Antoine; Coutu, André; Chamberland-lauzon, Joël

    2017-01-01

    In this paper, we present the application of cyclostationary modelling for the extrapolation of short stationary load strain samples measured in situ on hydraulic turbine blades. Long periods of measurements allow for a wide range of fluctuations representative of long-term reality to be considered. However, sampling over short periods limits the dynamic strain fluctuations available for analysis. The purpose of the technique presented here is therefore to generate a representative signal containing proper long term characteristics and expected spectrum starting with a much shorter signal period. The final objective is to obtain a strain history that can be used to estimate long-term fatigue behaviour of hydroelectric turbine runners.

  17. Runner's knowledge of their foot type: do they really know?

    PubMed

    Hohmann, Erik; Reaburn, Peter; Imhoff, Andreas

    2012-09-01

    The use of correct individually selected running shoes may reduce the incidence of running injuries. However, the runner needs to be aware of their foot anatomy to ensure the "correct" footwear is chosen. The purpose of this study was to compare the individual runner's knowledge of their arch type to the arch index derived from a static footprint. We examined 92 recreational runners with a mean age of 35.4±11.4 (12-63) years. A questionnaire was used to investigate the knowledge of the runners about arch height and overpronation. A clinical examination was undertaken using defined criteria and the arch index was analysed using weight-bearing footprints. Forty-five runners (49%) identified their foot arch correctly. Eighteen of the 41 flat-arched runners (44%) identified their arch correctly. Twenty-four of the 48 normal-arched athletes (50%) identified their arch correctly. Three subjects with a high arch identified their arch correctly. Thirty-eight runners assessed themselves as overpronators; only four (11%) of these athletes were positively identified. Of the 34 athletes who did not categorize themselves as overpronators, four runners (12%) had clinical overpronation. The findings of this research suggest that runners possess poor knowledge of both their foot arch and dynamic pronation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Wicket gate trailing-edge blowing: A method for improving off-design hydroturbine performance by adjusting the runner inlet swirl angle

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.

    2014-03-01

    At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.

  19. Infectious episodes in runners before and after a roadrace.

    PubMed

    Nieman, D C; Johanssen, L M; Lee, J W

    1989-09-01

    Various researchers have implied that regular and moderate exercise training may improve the ability of the immune system to protect the host from infection. In contrast, acute, maximal, and exhaustive exercise may have negative effects of the immune system. This study compared the incidence of infectious episodes in 273 runners during a two month training period prior to a 5 K, 10 K, or half-marathon race. In addition, the effect of the race experience on infectious episodes was studied. Twenty-five percent of the runners training more than 15 miles per week reported at least one infectious episode as compared with 34.3% of runners training less than 15 miles per week (p = 0.09). Only 6.8% of the runners preparing for the half-marathon race reported becoming sick with the flu versus 17.9% of the 5 K and 10 K runners (p = 0.067). During the week following the roadrace, runners did not report an increase in infectious episodes as compared to the week prior to the race. These trends suggest that runners with a more serious commitment to regular exercise may experience less infectious episodes than recreational runners because of both direct and indirect affects on immunosurveillance. In addition, the stressful race experience does not appear to increase risk of acquiring an acute respiratory infection.

  20. Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes.

    PubMed

    Sun, Hui; Xiao, Ruofu; Liu, Weichao; Wang, Fujun

    2013-05-01

    Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pump-turbines. Misaligned guide vanes (MGVs) are widely used to control the stability in the S region. There have been experimental investigations and computational fluid dynamics (CFD) simulations of scale models with aligned guide vanes and MGVs with spectral analyses of the S curve characteristics and the pressure pulsations in the frequency and time-frequency domains at runaway conditions. The course of the S characteristic is related to the centrifugal force and the large incident angle at low flow conditions with large vortices forming between the guide vanes and the blade inlets and strong flow recirculation inside the vaneless space as the main factors that lead to the S-shaped characteristics. Preopening some of the guide vanes enables the pump-turbine to avoid the influence of the S characteristic. However, the increase of the flow during runaway destroys the flow symmetry in the runner leading to all asymmetry forces on the runner that leads to hydraulic system oscillations. The MGV technique also increases the pressure fluctuations in the draft tube and has a negative impact on stable operation of the unit.

  1. Modernization of vertical Pelton turbines with the help of CFD and model testing

    NASA Astrophysics Data System (ADS)

    Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter

    2014-03-01

    The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the

  2. Runner's Knee

    MedlinePlus

    ... you want to run over a period of time. If you're used to only running a mile or so, don't try to go out and suddenly run 5 miles. Work up to it with a series of intermediate steps. If you've had runner's ...

  3. Going Large or Going Small in Plant Design: Comparison between a P.P. with three small Kaplan turbines and a P.P. with just one Large Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Castro-Otero, C.

    2017-04-01

    Very often small turbine manufacturers are requested to produce sizeable turbines, too large in terms of physical dimensions, power or designing capacity. In these cases clever alternative solutions should be found to meet customers’ needs. For instance: in the old times twin runner Francis turbines were an option instead of one large machine, or if a too large Pelton turbine cannot be manufactured or designed, a good option is to install a medium size Francis and a small Pelton. Likewise, a similar approach needs to be taken should the manufacturer be asked for a too large Kaplan. Facing this situation a good option is to install three or more small Kaplan turbines. This particular case was studied in depth and after all the considerations had been made, the following question arouse: Is this a way out for the manufacturer or is it really the best option for the customer? The choice made as a way out for the manufacturer became the best option for the customer and a success for both parties. This paper aims to encourage developers and engineering firms to search for more options than the traditional one to find the best option in plant design.

  4. Prescribed and self-reported seasonal training of distance runners.

    PubMed

    Hewson, D J; Hopkins, W G

    1995-12-01

    A survey of 123 distance-running coaches and their best runners was undertaken to describe prescribed seasonal training and its relationship to the performance and self-reported training of the runners. The runners were 43 females and 80 males, aged 24 +/- 8 years (mean +/- S.D.), training for events from 800 m to the marathon, with seasonal best paces of 86 +/- 6% of sex- and age-group world records. The coaches and runners completed a questionnaire on typical weekly volumes of interval and strength training, and typical weekly volumes and paces of moderate and hard continuous running, for build-up, pre-competition, competition and post-competition phases of a season. Prescribed training decreased in volume and increased in intensity from the build-up through to the competition phase, and had similarities with 'long slow distance' training. Coaches of the faster runners prescribed longer build-ups, greater volumes of moderate continuous running and slower relative paces of continuous running (r = 0.19-0.36, P < 0.05), suggesting beneficial effects of not training close to competition pace. The mean training volumes and paces prescribed by the coaches were similar to those reported by the runners, but the correlations between prescribed and reported training were poor (r = 0.2-0.6). Coaches may therefore need to monitor their runners' training more closely.

  5. Prospective comparison of running injuries between shod and barefoot runners.

    PubMed

    Altman, Allison R; Davis, Irene S

    2016-04-01

    Advocates of barefoot running suggest that it is more natural and may be a way to minimise injury risk. In contrast, opponents believe shoes are needed to adequately cushion and support the foot. However, to date, there have been no prospective studies of injury patterns in barefoot and shod runners. The purpose of this study was to compare the incidence and rate of injuries between shod and barefoot runners. A prospective survey was conducted over the course of a year among 201 (107 barefoot and 94 shod) adult runners. Information regarding injuries and mileage was logged monthly using a custom, web-based database program. The number of injured runners, number of injuries per runner and injury rates were compared between habitual barefoot and habitual shod runners. Both musculoskeletal and plantar surface injuries were assessed. Statistically fewer overall, diagnosed, musculoskeletal injuries/runner were noted in the barefoot group. However, injury rates were not statistically different between groups due to significantly less mileage run in the barefoot group. As expected, barefoot runners sustained a statistically greater number of injuries to the plantar surface of the foot. The descriptive analysis suggests a greater number of calf injuries, but lower number of knee and hip injuries in the barefoot group. Additionally barefoot runners reported less plantar fasciitis than the shod group. Barefoot running is associated with fewer overall musculoskeletal injuries/runner, but similar injury rates. A larger scale cohort is needed to more accurately assess differences in individual injuries between these two groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. A reference pelton turbine - design and efficiency measurements

    NASA Astrophysics Data System (ADS)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2014-03-01

    The Pelton turbine has been subject to a varying degree of research interest since the debut of the technology over a century ago. Despite its age there are gaps in the knowledge concerning the flow mechanisms effecting the flow through the turbine. A Pelton turbine has been designed at the Waterpower Laboratory at NTNU. This has been done in connection to a Ph.D. project focusing on the flow in Pelton turbine buckets. The design of the turbine has been conducted using in-house knowledge in addition to some comments from a turbine producer. To describe the geometry multiple Bezier curves were used and the design strategy aimed to give a smooth and continuous gradient along the main flow directions in the bucket. The turbine has been designed for the operational conditions of the Pelton test rig installed at the Waterpower Laboratory which is a horizontal single jet test rig with a jet diameter(ds) of 35 mm. The diameter(D) of the runner was set to 513 mm and the width(W) of a bucket 114 mm, leading to a D/W ratio of 4.5. Manufacturing of the turbine has been carried out in aluminium and the turbine has undergone efficiency testing and visual inspection during operation at a head of 70 m. The turbine did not performed as expected and the maximum efficiency was found to be 77.75%. The low efficiency is mainly caused by a large amount of water leaving the bucket through the lip and hence transferring close to zero of its energy to the shaft. The reason for the large lip loss is discussed and two possible causes are found; the jet is located too close to the lip, and the inner surface of the bucket does not lead the water away from the lip. The turbine geometry and all data from both measurements and simulations will be available upon request in an effort to increase the amount of available data concerning Pelton turbines.

  7. Did recent world record marathon runners employ optimal pacing strategies?

    PubMed

    Angus, Simon D

    2014-01-01

    We apply statistical analysis of high frequency (1 km) split data for the most recent two world-record marathon runs: Run 1 (2:03:59, 28 September 2008) and Run 2 (2:03:38, 25 September 2011). Based on studies in the endurance cycling literature, we develop two principles to approximate 'optimal' pacing in the field marathon. By utilising GPS and weather data, we test, and then de-trend, for each athlete's field response to gradient and headwind on course, recovering standardised proxies for power-based pacing traces. The resultant traces were analysed to ascertain if either runner followed optimal pacing principles; and characterise any deviations from optimality. Whereas gradient was insignificant, headwind was a significant factor in running speed variability for both runners, with Runner 2 targeting the (optimal) parallel variation principle, whilst Runner 1 did not. After adjusting for these responses, neither runner followed the (optimal) 'even' power pacing principle, with Runner 2's macro-pacing strategy fitting a sinusoidal oscillator with exponentially expanding envelope whilst Runner 1 followed a U-shaped, quadratic form. The study suggests that: (a) better pacing strategy could provide elite marathon runners with an economical pathway to significant performance improvements at world-record level; and (b) the data and analysis herein is consistent with a complex-adaptive model of power regulation.

  8. A reference Pelton turbine - High speed visualization in the rotating frame

    NASA Astrophysics Data System (ADS)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2016-11-01

    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  9. Lifting the Runners

    NASA Image and Video Library

    2010-08-25

    Under the unflinching summer sun, workers at NASA Deep Space Network complex in Goldstone, Calif., use a crane to lift a runner segment that is part of major surgery on a giant, 70-meter-wide antenna.

  10. DIFFERENTIAL DIAGNOSIS OF DEEP GLUTEAL PAIN IN A FEMALE RUNNER WITH PELVIC INVOLVEMENT: A CASE REPORT

    PubMed Central

    Podschun, Laura; Kolber, Morey J.; Garcia, Ashley; Rothschild, Carey E.

    2013-01-01

    Background: Gluteal injuries, proximal hamstring injuries, and pelvic floor disorders have been reported in the literature among runners. Some suggest that hip, pelvis, and/or groin injuries occur in 3.3% to 11.5% of long distance runners. The purpose of this case report is to describe the differential diagnosis and treatment approach for a patient presenting with combined hip and pelvic pain. Case description: A 45-year-old female distance runner was referred to physical therapy for proximal hamstring pain that had been present for several months. This pain limited her ability to tolerate sitting and caused her to cease running. Examination of the patient's lumbar spine, pelvis, and lower extremity led to the initial differential diagnosis of hamstring syndrome and ischiogluteal bursitis. The patient's primary symptoms improved during the initial four visits, which focused on education, pain management, trunk stabilization and gluteus maximus strengthening, however pelvic pain persisted. Further examination led to a secondary diagnosis of pelvic floor hypertonic disorder. Interventions to address the pelvic floor led to resolution of symptoms and return to running. Outcomes: Pain level on the Visual Analog Scale decreased from 7/10 to 1/10 over the course of treatment. The patient was able to return to full sport activity and improved sitting tolerance to greater then two hours without significant discomfort. Discussion: This case suggests the interdependence of lumbopelvic and lower extremity kinematics in complaints of hamstring, posterior thigh and pelvic floor disorders. This case highlights the importance of a thorough examination as well as the need to consider a regional interdependence of the pelvic floor and lower quarter when treating individuals with proximal hamstring pain. Level of Evidence: Level 4 PMID:24175132

  11. Aperiodic pressure pulsation under non optimal hydraulic turbine regimes at low swirl number

    NASA Astrophysics Data System (ADS)

    Skripkin, S. G.; Tsoy, M. A.; Kuibin, P. A.; Shtork, S. I.

    2017-09-01

    Off-design operating conditions of hydraulic turbines is hindered by pressure fluctuations in the draft tube of the turbine. A precessing helical vortex rope develops, which imperils the mechanical structure and limits the operation flexibility of hydropower station. Understanding of the underlying instabilities of precessing vortex rope at low swirl number is incomplete. In this paper flow regimes with different residual swirl is analysed, particular attention is paid to the regime with a small swirl parameter. Study defines upper and low boundaries of regime where aperiodic pressure surge is observed. Flow field at the runner exit is investigated by Laser Doppler Velocimetry and high-speed visualizations, which are complemented draft tube wall pressure measurements.

  12. Research of performance prediction to energy on hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.

    2012-11-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  13. Gender differences in gait kinematics in runners with iliotibial band syndrome.

    PubMed

    Phinyomark, A; Osis, S; Hettinga, B A; Leigh, R; Ferber, R

    2015-12-01

    Atypical running gait biomechanics are considered a primary factor in the etiology of iliotibial band syndrome (ITBS). However, a general consensus on the underpinning kinematic differences between runners with and without ITBS is yet to be reached. This lack of consensus may be due in part to three issues: gender differences in gait mechanics, the preselection of discrete biomechanical variables, and/or relatively small sample sizes. Therefore, this study was designed to address two purposes: (a) examining differences in gait kinematics for male and female runners experiencing ITBS at the time of testing and (b) assessing differences in gait kinematics between healthy gender- and age-matched runners as compared with their ITBS counterparts using waveform analysis. Ninety-six runners participated in this study: 48 ITBS and 48 healthy runners. The results show that female ITBS runners exhibited significantly greater hip external rotation compared with male ITBS and female healthy runners. On the contrary, male ITBS runners exhibited significantly greater ankle internal rotation compared with healthy males. These results suggest that care should be taken to account for gender when investigating the biomechanical etiology of ITBS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

    1981-01-01

    This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner)more » has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.« less

  15. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    NASA Astrophysics Data System (ADS)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  16. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine.

    PubMed

    Silva, Paulo A S F; Oliveira, Taygoara F DE; Brasil, Antonio C P; Vaz, Jerson R P

    2016-01-01

    Over the years most studies on wake characteristics have been devoted to wind turbines, while few works are related to hydrokinetic turbines. Among studies applied to rivers, depth and width are important parameters for a suitable design. In this work, a numerical study of the wake in a horizontal-axis hydrokinetic turbine is performed, where the main objective is an investigation on the wake structure, which can be a constraining factor in rivers. The present paper uses the Reynolds Averaged Navier Stokes (RANS) flow simulation technique, in which the Shear-Stress Transport (SST) turbulent model is considered, in order to simulate a free hydrokinetic runner in a typical river flow. The NREL-PHASE VI wind turbine was used to validate the numerical approach. Simulations for a 3-bladed axial hydrokinetic turbine with 10 m diameter were carried out, depicting the expanded helical behavior of the wake. The axial velocity, in this case, is fully recovered at 12 diameters downstream in the wake. The results are compared with others available in the literature and also a study of the turbulence kinetic energy and mean axial velocity is presented so as to assess the influence of proximity of river surface from rotor in the wake geometry. Hence, even for a single turbine facility it is still necessary to consider the propagation of the wake over the spatial domain.

  17. Numerical prediction of Pelton turbine efficiency

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Mežnar, P.; Lipej, A.

    2010-08-01

    This paper presents a numerical analysis of flow in a 2 jet Pelton turbine with horizontal axis. The analysis was done for the model at several operating points in different operating regimes. The results were compared to the results of a test of the model. Analysis was performed using ANSYS CFX-12.1 computer code. A k-ω SST turbulent model was used. Free surface flow was modelled by two-phase homogeneous model. At first, a steady state analysis of flow in the distributor with two injectors was performed for several needle strokes. This provided us with data on flow energy losses in the distributor and the shape and velocity of jets. The second step was an unsteady analysis of the runner with jets. Torque on the shaft was then calculated from pressure distribution data. Averaged torque values are smaller than measured ones. Consequently, calculated turbine efficiency is also smaller than the measured values, the difference is about 4 %. The shape of the efficiency diagram conforms well to the measurements.

  18. Iron excess in recreational marathon runners.

    PubMed

    Mettler, S; Zimmermann, M B

    2010-05-01

    Iron deficiency and anemia may impair athletic performance, and iron supplements are commonly consumed by athletes. However, iron overload should be avoided because of the possible long-term adverse health effects. We investigated the iron status of 170 male and female recreational runners participating in the Zürich marathon. Iron deficiency was defined either as a plasma ferritin (PF) concentration <15 microg/l (iron depletion) or as the ratio of the concentrations of transferrin receptor (sTfR) to PF (sTfR:log(PF) index) of > or =4.5 (functional iron deficiency). After excluding subjects with elevated C-reactive protein concentrations, iron overload was defined as PF >200 microg/l. Iron depletion was found in only 2 out of 127 men (1.6% of the male study population) and in 12 out of 43 (28.0%) women. Functional iron deficiency was found in 5 (3.9%) and 11 (25.5%) male and female athletes, respectively. Body iron stores, calculated from the sTfR/PF ratio, were significantly higher (P<0.001) among male compared with female marathon runners. Median PF among males was 104 microg/l, and the upper limit of the PF distribution in males was 628 microg/l. Iron overload was found in 19 out of 127 (15.0%) men but only 2 out of 43 in women (4.7%). Gender (male sex), but not age, was a predictor of higher PF (P<0.001). Iron depletion was present in 28% of female runners but in <2% of males, whereas one in six male runners had signs of iron overload. Although iron supplements are widely used by athletes in an effort to increase performance, our findings indicate excess body iron may be common in male recreational runners and suggest supplements should only be used if tests of iron status indicate deficiency.

  19. A study of serum sodium level among Hong Kong runners.

    PubMed

    Au-Yeung, Kwan Leong; Wu, Wing Cheung; Yau, Wah Hon; Ho, Hiu Fai

    2010-11-01

    Hyponatremia and the associated life-threatening complications have emerged as an important issue among marathon runners. This study was conducted to estimate the serum sodium level among local marathon runners and to identify the associated risk factors of dysnatremia. Prospective observational cohort study. Hong Kong Marathon 2008. Subjects were approached at their convenience to participate in the study. Only full-marathon runners were recruited. They were to have had an unremarkable medical and drug history. Demographic data, training information, previous marathon experience, anticipated drinking strategy, details of fluid consumption throughout the race, weight change, finishing time, and physical complaint. Post-race serum sodium level. Of the 6488 entries to the race, 370 runners (5.7%) were recruited. Among them, 272 (73.5%) completed the race and attended for blood sampling and data collection. One runner (0.4%) had hyponatremia (133 mmol/L) and 35 runners (12.9%) had hypernatremia (>145 mmol/L), whereas 236 runners (86.7%) had normal serum sodium (135-145 mmol/L) after the race. No symptomatic dysnatremia was found. A mean weight reduction of 0.70 kg was found after the race. An average of 1.9 L of fluid was consumed during the race and 2.5 L if the fluid consumed immediately before and after the race was also included. Hypernatremia was seen in runners who were better trained before the race, those who performed better, and those who drank less water after the race. This is the largest prospective observational cohort study of dysnatremia conducted on athletes completing a standard marathon in Asia. No case of symptomatic dysnatremia was found.

  20. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  1. Differences in kinetic asymmetry between injured and noninjured novice runners: a prospective cohort study.

    PubMed

    Bredeweg, S W; Buist, I; Kluitenberg, B

    2013-09-01

    The purpose of this prospective study was to describe natural levels of asymmetry in running, compare levels of asymmetry between injured and noninjured novice runners and compare kinetic variables between the injured and noninjured lower limb within the novice runners with an injury. At baseline vertical ground reaction forces and symmetry angles (SA) were assessed with an instrumented treadmill equipped with three force measuring transducers. Female participants ran at 8 and 9 km h(-1) and male runners ran at 9 and 10 km h(-1). Participants were novice female and male recreational runners and were followed during a 9-week running program. Two hundred and ten novice runners enrolled this study, 133 (63.3%) female and 77 (36.7%) male runners. Thirty-four runners reported an RRI. At baseline SA values varied widely for all spatio-temporal and kinetic variables. The inter-individual differences in SA were also high. No significant differences in SA were found between female and male runners running at 9 km h(-1). In injured runners the SA of the impact peak was significantly lower compared to noninjured runners. Natural levels of asymmetry in running were high. The SA of impact peak in injured runners was lower compared to noninjured runners and no differences were seen between the injured and noninjured lower limbs. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Iliotibial band syndrome in runners: a systematic review.

    PubMed

    van der Worp, Maarten P; van der Horst, Nick; de Wijer, Anton; Backx, Frank J G; Nijhuis-van der Sanden, Maria W G

    2012-11-01

    The popularity of running is still growing and, as participation increases, the incidence of running-related injuries will also rise. Iliotibial band syndrome (ITBS) is the most common injury of the lateral side of the knee in runners, with an incidence estimated to be between 5% and 14%. In order to facilitate the evidence-based management of ITBS in runners, more needs to be learned about the aetiology, diagnosis and treatment of this injury. This article provides a systematic review of the literature on the aetiology, diagnosis and treatment of ITBS in runners. The Cochrane Library, MEDLINE, EMBASE, CINAHL, Web of Science, and reference lists were searched for relevant articles. Systematic reviews, clinical trials or observational studies involving adult runners (>18 years) that focused on the aetiology, diagnosis and/or treatment of ITBS were included and articles not written in English, French, German or Dutch were excluded. Two reviewers independently screened search results, assessed methodological quality and extracted data. The sum of all positive ratings divided by the maximum score was the percentage quality score (QS). Only studies with a QS higher than 60% were included in the analysis. The following data were extracted: study design; number and characteristics of participants; diagnostic criteria for ITBS; exposure/treatment characteristics; analyses/outcome variables of the study; and setting and theoretical perspective on ITBS. The studies of the aetiology of ITBS in runners provide limited or conflicting evidence and it is not clear whether hip abductor weakness has a major role in ITBS. The kinetics and kinematics of the hip, knee and/or ankle/foot appear to be considerably different in runners with ITBS to those without. The biomechanical studies involved small samples, and data seem to have been influenced by sex, height and weight of participants. Although most studies monitored the management of ITBS using clinical tests, these tests have not

  3. Metabolic, Cardiopulmonary, and Gait Profiles of Recently Injured and Noninjured Runners

    PubMed Central

    Peng, Lucinda; Seay, Amanda N.; Montero, Cindy; Barnes, Leslie L.; Vincent, Kevin R.; Conrad, Bryan P.; Chen, Cong; Vincent, Heather K.

    2017-01-01

    Objective To examine whether runners recovering from a lower body musculoskeletal injury have different metabolic, cardiopulmonary, and gait responses compared with healthy runners. Design Cross-sectional study. Setting Research laboratory at an academic institution. Methods Healthy runners (n = 50) were compared with runners who were recently injured but had returned to running (n = 50). Both groups were participating in similar cross-training modalities such as swimming, weight training, biking, and yoga. Running gait was analyzed on a treadmill using 3-dimensional motion capture, and metabolic and cardiopulmonary measures were captured simultaneously with a portable metabolic analyzer. Main Outcome Measures Rate of oxygen consumption, heart rate, ventilation, carbohydrate and fat oxidation values, gait temporospatial parameters and range of motion measures (ROM) in the sagittal plane, energy expenditure, and vertical displacement of the body’s center of gravity (COG). Results The self-selected running speed was different between the injured and healthy runners (9.7 ± 1.1 km/h and 10.6 ± 1.1 km/h, respectively; P = .038). No significant group differences were noted in any metabolic or cardiopulmonary variable while running at the self-selected or standard speed (13.6 km/h). The vertical displacement of the COG was less in the injured group (8.4 ± 1.4 cm and 8.9 ± 1.4, respectively; P = .044). ROM about the right ankle in the sagittal plane at the self-selected running speed during the gait cycle was less in the injured runners compared with the healthy runners (P < .05). Conclusions Runners with a recent lower body injury who have returned to running have similar cardiopulmonary and metabolic responses to running as healthy runners at the self-selected and standard speeds; this finding may be due in part to participation in cross-training modes that preserve cardiopulmonary and metabolic adaptations. Injured runners may conserve motion by minimizing COG

  4. Genetic aspects of athletic performance: the African runners phenomenon.

    PubMed

    Vancini, Rodrigo Luiz; Pesquero, João Bosco; Fachina, Rafael Júlio; Andrade, Marília Dos Santos; Borin, João Paulo; Montagner, Paulo César; de Lira, Claudio Andre Barbosa

    2014-01-01

    The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.

  5. Development of a hydro kinetic river turbine with simulation and operational measurement results in comparison

    NASA Astrophysics Data System (ADS)

    Ruopp, A.; Ruprecht, A.; Riedelbauch, S.; Arnaud, G.; Hamad, I.

    2014-03-01

    The development of a hydro-kinetic prototype was shown including the compound structure, guide vanes, runner blades and a draft tube section with a steeply sloping, short spoiler. The design process of the hydrodynamic layout was split into three major steps. First the compound and the draft tube section was designed and the best operating point was identified using porous media as replacement for the guide vane and runner section (step one). The best operating point and the volume flux as well as the pressure drop was identified and used for the design of the guide vane section and the runner section. Both were designed and simulated independently (step two). In step three, all parts were merged in stationary simulation runs detecting peak power and operational bandwidth. In addition, the full scale demonstrator was installed in August 2010 and measured in the St. Lawrence River in Quebec supporting the average inflow velocity using ADCP (Acoustic Doppler Current Profiler) and the generator power output over the variable rotational speed. Simulation data and measurements are in good agreement. Thus, the presented approach is a suitable way in designing a hydro kinetic turbine.

  6. Metabolic Factors Limiting Performance in Marathon Runners

    PubMed Central

    Rapoport, Benjamin I.

    2010-01-01

    Each year in the past three decades has seen hundreds of thousands of runners register to run a major marathon. Of those who attempt to race over the marathon distance of 26 miles and 385 yards (42.195 kilometers), more than two-fifths experience severe and performance-limiting depletion of physiologic carbohydrate reserves (a phenomenon known as ‘hitting the wall’), and thousands drop out before reaching the finish lines (approximately 1–2% of those who start). Analyses of endurance physiology have often either used coarse approximations to suggest that human glycogen reserves are insufficient to fuel a marathon (making ‘hitting the wall’ seem inevitable), or implied that maximal glycogen loading is required in order to complete a marathon without ‘hitting the wall.’ The present computational study demonstrates that the energetic constraints on endurance runners are more subtle, and depend on several physiologic variables including the muscle mass distribution, liver and muscle glycogen densities, and running speed (exercise intensity as a fraction of aerobic capacity) of individual runners, in personalized but nevertheless quantifiable and predictable ways. The analytic approach presented here is used to estimate the distance at which runners will exhaust their glycogen stores as a function of running intensity. In so doing it also provides a basis for guidelines ensuring the safety and optimizing the performance of endurance runners, both by setting personally appropriate paces and by prescribing midrace fueling requirements for avoiding ‘the wall.’ The present analysis also sheds physiologically principled light on important standards in marathon running that until now have remained empirically defined: The qualifying times for the Boston Marathon. PMID:20975938

  7. Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, Elena; Favrel, Arthur; Andolfatto, Loïc; Avellan, François

    2018-06-01

    Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air-water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m = 1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.

  8. Transposition of Francis turbine cavitation compliance at partial load to different operating conditions

    NASA Astrophysics Data System (ADS)

    Gomes, J.; Favrel, A.; Landry, C.; Nicolet, C.; Avellan, F.

    2017-04-01

    Francis turbines operating in part load conditions experience a swirling flow at the runner outlet leading to the development of a precessing cavitation vortex rope in the draft tube. This cavitation vortex rope changes drastically the velocity of pressure waves traveling in the draft tube and may lead to resonance conditions in the hydraulic circuit. The wave speed being strongly related to the cavitation compliance, this research work presents a simple model to explain how it is affected by variations of operating conditions and proposes a method to transpose its values. Even though the focus of this paper is on transpositions within the same turbine scale, the methodology is also expected to be tested for the model to prototype transposition in the future. Comparisons between measurements and calculations are in good agreement.

  9. Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.

    PubMed

    Cada, Glenn; Loar, James; Garrison, Laura; Fisher, Richard; Neitzel, Duane

    2006-06-01

    Severe fluid forces are believed to be a source of injury and mortality to fish that pass through hydroelectric turbines. A process is described by which laboratory bioassays, computational fluid dynamics models, and field studies can be integrated to evaluate the significance of fluid shear stresses that occur in a turbine. Areas containing potentially lethal shear stresses were identified near the stay vanes and wicket gates, runner, and in the draft tube of a large Kaplan turbine. However, under typical operating conditions, computational models estimated that these dangerous areas comprise less than 2% of the flow path through the modeled turbine. The predicted volumes of the damaging shear stress zones did not correlate well with observed fish mortality at a field installation of this turbine, which ranged from less than 1% to nearly 12%. Possible reasons for the poor correlation are discussed. Computational modeling is necessary to develop an understanding of the role of particular fish injury mechanisms, to compare their effects with those of other sources of injury, and to minimize the trial and error previously needed to mitigate those effects. The process we describe is being used to modify the design of hydroelectric turbines to improve fish passage survival.

  10. Issues unique to the female runner.

    PubMed

    Prather, Heidi; Hunt, Deyvani

    2005-08-01

    Care and treatment of female runners will improve as further knowledge regarding the unique factors that affect them becomes available. For care and treatment to be their most effective, current and recent information needs to be disseminated among health care providers, coaches, teachers, school administrators, and parents. In young athletes, peer support and education are the most important factors in the success of detection and treatment. Individuals who have the female athlete triad are at significant risk for stress fractures and other injuries. Early detection and multidisciplinary treatment should begin after fractures are detected to reduce or prevent long-term adverse sequelae to bone. In addition, correction of menstrual dysfunction can help to prevent later fertility problems. Addressing the unique biomechanics and core strength of female runners also is essential to rehabilitate athletes past symptom resolution. A thorough understanding of the unique issues for female runners is essential for the prevention of injuries and plays an important role in the promotion of female participation in recreational and competitive running.

  11. Neutrons Image Additive Manufactured Turbine Blade in 3-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-29

    The video displays the Inconel 718 Turbine Blade made by Additive Manufacturing. First a gray scale neutron computed tomogram (CT) is displayed with transparency in order to show the internal structure. Then the neutron CT is overlapped with the engineering drawing that was used to print the part and a comparison of external and internal structures is possible. This provides a map of the accuracy of the printed turbine (printing tolerance). Internal surface roughness can also be observed. Credits: Experimental Measurements: Hassina Z. Bilheaux, Video and Printing Tolerance Analysis: Jean C. Bilheaux

  12. Menstrual patterns in ultramarathon runners.

    PubMed

    Van Gend, M A; Noakes, T D

    1987-12-05

    The menstrual status of 70 female ultramarathon runners who were neither pregnant, menopausal or on contraceptive medication was examined and compared with: (i) their menstrual status before they began running; and (ii) that of a sedentary comparison group. Compared with their pre-running menstrual status, the overall incidence of chronic menstrual dysfunction (oligo- or amenorrhoea) was unchanged (9%) and was only slightly higher than that of the comparison group (7%). Those likely to develop chronic menstrual dysfunction tended to be younger, had started running at a young age, trained over a long distance each week, had low body weight, had experienced previous menstrual irregularity and tended to be the better performers. In addition, there was frequently a past history of anorexia nervosa. Short-term menstrual irregularity (any temporary deviation from normal menstrual patterns) was experienced by 41% of the runners during periods of intensive training and competition. Menstrual patterns normalised once these stresses were removed. It is concluded that the menstrual dysfunction found in ultramarathon runners is of two kinds: (i) a short-term irregularity induced by the physical and emotional stresses of competitive ultramarathon running; and (ii) chronic menstrual dysfunction which is probably a reflection of a particular life-style, personality type, body build, and, possibly most importantly, nutritional status.

  13. Effects of foot orthoses on Achilles tendon load in recreational runners.

    PubMed

    Sinclair, J; Isherwood, J; Taylor, P J

    2014-09-01

    Achilles tendon pathology is a frequently occurring musculoskeletal disorder in runners. Foot orthoses have been shown to reduce the symptoms of pain in runners but their mechanical effects are still not well understood. This study aimed to examine differences in Achilles tendon load when running with and without orthotic intervention. Twelve male runners ran at 4.0 m·s(-1). Ankle joint moments and Achilles tendon forces were compared when running with and without orthotics. The results indicate that running with foot orthotics was associated with significant reductions in Achilles tendon load compared to without orthotics. In addition to providing insight into the mechanical effects of orthotics in runners, the current investigation suggests that via reductions in Achilles tendon load, foot orthoses may serve to reduce the incidence of chronic Achilles tendon pathologies in runners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Half-marathon and full-marathon runners' hydration practices and perceptions.

    PubMed

    O'Neal, Eric K; Wingo, Jonathan E; Richardson, Mark T; Leeper, James D; Neggers, Yasmine H; Bishop, Phil A

    2011-01-01

    The behaviors and beliefs of recreational runners with regard to hydration maintenance are not well elucidated. To examine which beverages runners choose to drink and why, negative performance and health experiences related to dehydration, and methods used to assess hydration status. Cross-sectional study. Marathon registration site. Men (n = 146) and women (n = 130) (age = 38.3 ± 11.3 years) registered for the 2010 Little Rock Half-Marathon or Full Marathon. A 23-item questionnaire was administered to runners when they picked up their race timing chips. Runners were separated into tertiles (Low, Mod, High) based on z scores derived from training volume, expected performance, and running experience. We used a 100-mm visual analog scale with anchors of 0 (never) and 100 (always). Total sample responses and comparisons between tertile groups for questionnaire items are presented. The High group (58±31) reported greater consumption of sport beverages in exercise environments than the Low (42 ± 35 mm) and Mod (39 ± 32 mm) groups (P < .05) and perceived sport beverages to be superior to water in meeting hydration needs (P < .05) and improving performance during runs greater than 1 hour (P < .05). Seventy percent of runners experienced 1 or more incidents in which they believed dehydration resulted in a major performance decrement, and 45% perceived dehydration to have resulted in adverse health effects. Twenty percent of runners reported monitoring their hydration status. Urine color was the method most often reported (7%), whereas only 2% reported measuring changes in body weight. Greater attention should be paid to informing runners of valid techniques to monitor hydration status and developing an appropriate individualized hydration strategy.

  15. River flow maintenance turbine for Milner Hydroelectric Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carson, J.L.; Holveck, W.H.; Gokhman, A.

    1995-12-31

    The Milner Hydroelectric Project on the Snake River in Idaho was commissioned in 1992. The project included renovation of an existing dam, which was built to supply irrigation water to a canal system, construction of a new spillway, and the addition of a new powerhouse. The forebay of the main powerhouse is located on a combination power and irrigation canal, approximately 3500 feet (1070 m) from the dam, with a short tailrace returning the water to the river. There are two Kaplan turbines installed in the main powerhouse, rated at 1000 cfs and 4000 cfs respectively at a net headmore » of 150 feet. The FERC license required that a target flow of 200 cfs be released from the dam to maintain a stream flow between the dam and the powerhouse. In order to utilize this flow, a small powerhouse was constructed at the toe of the dam. The site conditions favored a vertical axial flow turbine, with a net head of 56 feet. As the flow is constant and the head is fairly constant, a fixed geometry turbine was selected, to be controlled solely by the intake gate. Due to the higher head, the main powerhouse can generate more power per unit of flow than can the bypass turbine. Therefore, it is undesirable for the discharge of the bypass turbine to be any greater than required by the license. Also, the release flow is determined by a river gauge, the accuracy of which is unknown, but assumed to be within five percent. In order to meet these two requirements, the turbine was specified to have manually adjustable runner blades to obtain the required release flow of 200 cfs at any head between 55 and 58 feet.« less

  16. Foot-strike haemolysis in an ultramarathon runner.

    PubMed

    Fazal, Abid A; Whittemore, Mary S; DeGeorge, Katharine C

    2017-12-13

    This case report describes mild anaemia and intravascular haemolysis in an otherwise healthy 41-year-old ultramarathon runner. In long-distance endurance athletes, trace gastrointestinal bleeding and plasma volume expansion are recognised sources of mild anaemia, often found incidentally. However, repetitive forceful foot striking can lead to blood cell lysis in the feet, resulting in a mild macrocytic anaemia and intravascular haemolysis, as was demonstrated in the patient described herein. Mild anaemia in runners, often called 'runner's pseudoanaemia', is typically clinically insignificant and does not require intervention. However, an unexplained anaemia can cause undue worry for otherwise healthy patients and lead to costly further testing, providing an argument against routine testing with complete blood counts in healthy, asymptomatic patients. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Foot strike and injury rates in endurance runners: a retrospective study.

    PubMed

    Daoud, Adam I; Geissler, Gary J; Wang, Frank; Saretsky, Jason; Daoud, Yahya A; Lieberman, Daniel E

    2012-07-01

    This retrospective study tests if runners who habitually forefoot strike have different rates of injury than runners who habitually rearfoot strike. We measured the strike characteristics of middle- and long-distance runners from a collegiate cross-country team and quantified their history of injury, including the incidence and rate of specific injuries, the severity of each injury, and the rate of mild, moderate, and severe injuries per mile run. Of the 52 runners studied, 36 (69%) primarily used a rearfoot strike and 16 (31%) primarily used a forefoot strike. Approximately 74% of runners experienced a moderate or severe injury each year, but those who habitually rearfoot strike had approximately twice the rate of repetitive stress injuries than individuals who habitually forefoot strike. Traumatic injury rates were not significantly different between the two groups. A generalized linear model showed that strike type, sex, race distance, and average miles per week each correlate significantly (P < 0.01) with repetitive injury rates. Competitive cross-country runners on a college team incur high injury rates, but runners who habitually rearfoot strike have significantly higher rates of repetitive stress injury than those who mostly forefoot strike. This study does not test the causal bases for this general difference. One hypothesis, which requires further research, is that the absence of a marked impact peak in the ground reaction force during a forefoot strike compared with a rearfoot strike may contribute to lower rates of injuries in habitual forefoot strikers.

  18. A field test for determining the speed obtained through anaerobic glycolysis in runners.

    PubMed

    Borsetto, C; Ballarin, E; Casoni, I; Cellini, M; Vitiello, P; Conconi, F

    1989-10-01

    A field test for the evaluation of the speed generated by the anaerobic lactacid mechanism has been developed in runners. The test consists of 1200 m of continuous running: in the first 1000 m the speed corresponding to the anaerobic threshold is progressively reached; in the last 200 m an all-out sprint is performed. The speed at the anaerobic threshold is subtracted from the speed reached in the final 200-m all-out sprint. In 39 runners examined (marathon runners, n = 13; 5000-10000-m runners, n = 10; 400-800-m runners, n = 7; sprinters, n = 9), the additional speed generated above the anaerobic threshold was correlated with the venous blood lactate concentration reached 5 min after the all-out effort (r = 0.93). The anaerobic speeds measured by the test were in keeping with the characteristics of the runners under study, i.e., anaerobic speeds were highest for the sprinters, intermediate for the middle-distance runners, and lowest for the marathon runners. Since the speed generated above the anaerobic threshold by the aerobic fuel breakdown can be subtracted, the contribution of creatine phosphate is minimal, and the speed exceeding the anaerobic threshold is highly correlated with lactate accumulation, the present test should measure the speed generated by anaerobic glycolysis.

  19. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined

  20. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hydro-abrasive erosion on coated Pelton runners: Partial calibration of the IEC model based on measurements in HPP Fieschertal

    NASA Astrophysics Data System (ADS)

    Felix, D.; Abgottspon, A.; Albayrak, I.; Boes, R. M.

    2016-11-01

    At medium- and high-head hydropower plants (HPPs) on sediment-laden rivers, hydro-abrasive erosion on hydraulic turbines is a major economic issue. For optimization of such HPPs, there is an interest in equations to predict erosion depths. Such a semi-empirical equation suitable for engineering practice is proposed in the relevant guideline of the International Electrotechnical Commission (IEC 62364). However, for Pelton turbines no numerical values of the model's calibration parameters have been available yet. In the scope of a research project at the high-head HPP Fieschertal, Switzerland, the particle load and the erosion on the buckets of two hard-coated 32 MW-Pelton runners have been measured since 2012. Based on three years of field data, the numerical values of a group of calibration parameters of the IEC erosion model were determined for five application cases: (i) reduction of splitter height, (ii) increase of splitter width and (iii) increase of cut-out depth due to erosion of mainly base material, as well as erosion of coating on (iv) the splitter crests and (v) inside the buckets. Further laboratory and field investigations are recommended to quantify the effects of individual parameters as well as to improve, generalize and validate erosion models for uncoated and coated Pelton turbines.

  2. 7 CFR 319.56-54 - French beans and runner beans from Kenya.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false French beans and runner beans from Kenya. 319.56-54... § 319.56-54 French beans and runner beans from Kenya. French beans (Phaseolus vulgaris L.) and runner beans (Phaseolus coccineus L.) may be imported into the United States from Kenya only under the...

  3. 7 CFR 319.56-54 - French beans and runner beans from Kenya.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false French beans and runner beans from Kenya. 319.56-54... § 319.56-54 French beans and runner beans from Kenya. French beans (Phaseolus vulgaris L.) and runner beans (Phaseolus coccineus L.) may be imported into the United States from Kenya only under the...

  4. 7 CFR 319.56-54 - French beans and runner beans from Kenya.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false French beans and runner beans from Kenya. 319.56-54... § 319.56-54 French beans and runner beans from Kenya. French beans (Phaseolus vulgaris L.) and runner beans (Phaseolus coccineus L.) may be imported into the United States from Kenya only under the...

  5. Half-Marathon and Full-Marathon Runners' Hydration Practices and Perceptions

    PubMed Central

    O'Neal, Eric K.; Wingo, Jonathan E.; Richardson, Mark T.; Leeper, James D.; Neggers, Yasmine H.; Bishop, Phil A.

    2011-01-01

    Context: The behaviors and beliefs of recreational runners with regard to hydration maintenance are not well elucidated. Objective: To examine which beverages runners choose to drink and why, negative performance and health experiences related to dehydration, and methods used to assess hydration status. Design: Cross-sectional study. Setting: Marathon registration site. Patients or Other Participants: Men (n = 146) and women (n = 130) (age = 38.3 ± 11.3 years) registered for the 2010 Little Rock Half-Marathon or Full Marathon. Intervention(s): A 23-item questionnaire was administered to runners when they picked up their race timing chips. Main Outcome Measure(s): Runners were separated into tertiles (Low, Mod, High) based on z scores derived from training volume, expected performance, and running experience. We used a 100-mm visual analog scale with anchors of 0 (never) and 100 (always). Total sample responses and comparisons between tertile groups for questionnaire items are presented. Results: The High group (58±31) reported greater consumption of sport beverages in exercise environments than the Low (42 ± 35 mm) and Mod (39 ± 32 mm) groups (P < .05) and perceived sport beverages to be superior to water in meeting hydration needs (P < .05) and improving performance during runs greater than 1 hour (P < .05). Seventy percent of runners experienced 1 or more incidents in which they believed dehydration resulted in a major performance decrement, and 45% perceived dehydration to have resulted in adverse health effects. Twenty percent of runners reported monitoring their hydration status. Urine color was the method most often reported (7%), whereas only 2% reported measuring changes in body weight. Conclusions: Greater attention should be paid to informing runners of valid techniques to monitor hydration status and developing an appropriate individualized hydration strategy. PMID:22488182

  6. Exaggerated gonadotropin response to luteinizing hormone-releasing hormone in amenorrheic runners.

    PubMed

    Yahiro, J; Glass, A R; Fears, W B; Ferguson, E W; Vigersky, R A

    1987-03-01

    Most studies of exercise-induced amenorrhea have compared amenorrheic athletes (usually runners) with sedentary control subjects. Such comparisons will identify hormonal changes that develop as a result of exercise training but cannot determine which of these changes play a role in causing amenorrhea. To obviate this problem, we assessed reproductive hormone status in a group of five amenorrheic runners and compared them to a group of six eumenorrheic runners matched for body fatness, training intensity, and exercise performance. Compared to the eumenorrheic runners, the amenorrheic runners had lower serum estradiol concentrations, similar basal serum luteinizing hormone and follicle-stimulating hormone concentrations, and exaggerated responses of serum gonadotropins after administration of luteinizing hormone-releasing hormone (100 micrograms intravenous bolus). Serum prolactin levels, both basally and after thyrotropin-releasing hormone administration (500 micrograms intravenous bolus) or treadmill exercise, was similar in the two groups, as were serum thyroid function tests (including thyrotropin response to thyrotropin-releasing hormone). Changes in serum cortisol levels after short-term treadmill exercise were similar in both groups, and serum testosterone levels increased after exercise only in the eumenorrheic group. In neither group did such exercise change serum luteinizing hormone, follicle-stimulating hormone, or thyrotropin levels. We concluded that exercise-induced amenorrhea is not solely related to the development of increased prolactin output after exercise training. The exaggerated gonadotropin response to luteinizing hormone-releasing hormone seen in amenorrheic runners in comparison with matched eumenorrheic runners is consistent with a hypothalamic etiology for the menstrual dysfunction, analogous to that previously described in "stress-induced" or "psychogenic" amenorrhea.

  7. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Cervantes, M. J.

    2012-11-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied - the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular

  8. Running economy and body composition between competitive and recreational level distance runners.

    PubMed

    Mooses, Martin; Jürimäe, J; Mäestu, J; Mooses, K; Purge, P; Jürimäe, T

    2013-09-01

    The aim of the present study was to compare running economy between competitive and recreational level athletes at their individual ventilatory thresholds on track and to compare body composition parameters that are related to the individual running economy measured on track. We performed a cross-sectional analysis of a total 45 male runners classified as competitive runners (CR; n = 28) and recreational runners (RR; n = 17). All runners performed an incremental test on treadmill until voluntary exhaustion and at least 48 h later a 2 × 2000 m test at indoor track with intensities according to ventilatory threshold 1, ventilator threshold 2. During the running tests, athletes wore portable oxygen analyzer. Body composition was measured with Dual energy X-ray absorptiometry (DXA) method. Running economy at the first ventilatory threshold was not significantly related to any of the measured body composition values or leg mass ratios either in the competitive or in the recreational runners group. This study showed that there was no difference in the running economy between distance runners with different performance level when running on track, while there was a difference in the second ventilatory threshold speed in different groups of distance runners. Differences in running economy between competitive and recreational athletes cannot be explained by body composition and/or different leg mass ratios.

  9. Dietary supplement usage and motivation in Brazilian road runners.

    PubMed

    Salgado, José Vítor Vieira; Lollo, Pablo Christiano Barboza; Amaya-Farfan, Jaime; Chacon-Mikahil, Mara PatríciaTraina

    2014-01-01

    The consumption of dietary supplements is highest among athletes and it can represent potential a health risk for consumers. The aim of this study was to determine the prevalence of consumption of dietary supplements by road runners. We interviewed 817 volunteers from four road races in the Brazilian running calendar. The sample consisted of 671 male and 146 female runners with a mean age of 37.9 ± 12.4 years. Of the sample, 28.33% reported having used some type of dietary supplement. The main motivation for this consumption is to increase in stamina and improve performance. The probability of consuming dietary supplements increased 4.67 times when the runners were guided by coaches. The consumption of supplements was strongly correlated (r = 0.97) with weekly running distance, and also highly correlated (r = 0.86) with the number of years the sport had been practiced. The longer the runner had practiced the sport, the higher the training volume and the greater the intake of supplements. The five most frequently cited reasons for consumption were: energy enhancement (29.5%), performance improvement (17.1%), increased level of endurance (10.3%), nutrient replacement (11.1%), and avoidance of fatigue (10.3%). About 30% of the consumers declared more than one reason for taking dietary supplements. The most consumed supplements were: carbohydrates (52.17%), vitamins (28.70%), and proteins (13.48%). Supplement consumption by road runners in Brazil appeared to be guided by the energy boosting properties of the supplement, the influence of coaches, and the experience of the user. The amount of supplement intake seemed to be lower among road runners than for athletes of other sports. We recommend that coaches and nutritionists emphasise that a balanced diet can meet the needs of physically active people.

  10. Running Habits of Competitive Runners During Pregnancy and Breastfeeding

    PubMed Central

    Tenforde, Adam S.; Toth, Kierann E. S.; Langen, Elizabeth; Fredericson, Michael; Sainani, Kristin L.

    2015-01-01

    Background: Running is a popular sport that may be performed safely during pregnancy. Few studies have characterized running behavior of competitive female runners during pregnancy and breastfeeding. Hypothesis: Women modify their running behavior during pregnancy and breastfeeding. Study Design: Observational, cross-sectional study. Level of evidence: Level 2. Methods: One hundred ten female long-distance runners who ran competitively prior to pregnancy completed an online survey characterizing training attitudes and behaviors during pregnancy and postpartum. Results: Seventy percent of runners ran some time during their pregnancy (or pregnancies), but only 31% ran during their third trimester. On average, women reduced training during pregnancy, including cutting their intensity to about half of their nonpregnant running effort. Only 3.9% reported sustaining a running injury while pregnant. Fewer than one third (29.9%) selected fetal health as a reason to continue running during pregnancy. Of the women who breastfed, 84.1% reported running during breastfeeding. Most felt that running had no effect on their ability to breastfeed. Women who ran during breastfeeding were less likely to report postpartum depression than those who did not run (6.7% vs 23.5%, P = 0.051), but we did not detect the same association of running during pregnancy (6.5% vs 15.2%, P = 0.16). Conclusion: Women runners reported a reduction in total training while pregnant, and few sustained running injuries during pregnancy. The effect of running on postpartum depression was not clear from our findings. Clinical Relevance: We characterized running behaviors during pregnancy and breastfeeding in competitive runners. Most continue to run during pregnancy but reduce total training effort. Top reasons for running during pregnancy were fitness, health, and maintaining routine; the most common reason for not running was not feeling well. Most competitive runners run during breastfeeding with little

  11. Kinematic classification of iliotibial band syndrome in runners.

    PubMed

    Grau, S; Krauss, I; Maiwald, C; Axmann, D; Horstmann, T; Best, R

    2011-04-01

    Several inconsistent causative biomechanical factors are considered to be crucial in the occurrence of iliotibial band syndrome (ITBS). The focus of this study was on assessing differences in the kinematic characteristics between healthy runners [control group (CO)] and runners with ITBS in order to recommend treatment strategies to deal with this injury. Three-dimensional kinematics of barefoot running was used in the biomechanical setup. Both groups were matched with respect to gender, height and weight. After determining drop outs, the final population comprised 36 subjects (26 male and 10 female): 18 CO and 18 ITBS (13 male and five female, each). Kinematic evaluations indicate less hip adduction and frontal range of motion at the hip joint in runners with ITBS. Furthermore, maximum hip flexion velocity and maximum knee flexion velocity were lower in runners with ITBS. Lack of joint coordination, expressed as earlier hip flexion and a tendency toward earlier knee flexion, was found to be another discriminating variable in subjects with ITBS compared with CO subjects. We assume that an increase in range of motion at the hip joint, stretching of the hip abductors, as well as stretching the hamstrings, calf muscles and hip flexors will help treat ITBS. © 2009 John Wiley & Sons A/S.

  12. Shin Splints 101: Explaining Shin Splints to Young Runners

    ERIC Educational Resources Information Center

    Newlin, Dana; Smith, Darla S.

    2011-01-01

    Shin splints are a common but often confusing injury. Sources disagree on both the cause of the injury and the anatomical source of the pain. Some blame shin splints on foot pronation, footstrike pattern, or arch height. Regardless of what causes the condition, it affects many runners, beginning in some at a young age. Young runners often have…

  13. Gait-cycle characteristics and running economy in elite Eritrean and European runners.

    PubMed

    Santos-Concejero, Jordan; Oliván, Jesús; Maté-Muñoz, José L; Muniesa, Carlos; Montil, Marta; Tucker, Ross; Lucia, Alejandro

    2015-04-01

    This study aimed to determine whether biomechanical characteristics such as ground-contact time, swing time, and stride length and frequency contribute to the exceptional running economy of East African runners. Seventeen elite long-distance runners (9 Eritrean, 8 European) performed an incremental maximal running test and 3 submaximal running bouts at 17, 19, and 21 km/h. During the tests, gas-exchange parameters were measured to determine maximal oxygen uptake (VO2max) and running economy (RE). In addition, ground-contact time, swing time, stride length, and stride frequency were measured. The European runners had higher VO2max values than the Eritrean runners (77.2 ± 5.2 vs 73.5 ± 6.0 mL · kg-1 · min-1, P = .011, effect sizes [ES] = 0.65), although Eritrean runners were more economical at 19 km/h (191.4 ± 10.4 vs 205.9 ± 13.3 mL · kg-1 · min-1, P = .026, ES = 1.21). There were no differences between groups for ground-contact time, swing time, stride length, or stride frequency at any speed. Swing time was associated with running economy at 21 km/h in the Eritrean runners (r = .71, P = .033), but no other significant association was found between RE and biomechanical variables. Finally, best 10-km performance was significantly correlated with RE (r = -.57; P = .013). Eritrean runners have superior RE compared with elite European runners. This appears to offset their inferior VO2max. However, the current data suggest that their better RE does not have a biomechanical basis. Other factors, not measured in the current study, may contribute to this RE advantage.

  14. Lower limb dynamics vary in shod runners who acutely transition to barefoot running.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Powers, Christopher M; Salem, George J

    2016-01-25

    Relative to traditional shod rear-foot strike (RFS) running, habituated barefoot running is associated with a forefoot-strike (FFS) and lower loading rates. Accordingly, barefoot running has been purported to reduce lower-extremity injury risk. Investigations, however, indicate that novice barefoot runners may not innately adopt a FFS. Therefore, the purpose of this study was to examine lower-extremity dynamics of habitually shod runners who acutely transition to barefoot running. 22 recreational RFS runners were included in this investigation. This laboratory controlled study consisted of two visits one-week apart, examining habitually shod, then novice barefoot running. Foot-strike patterns and loading rates were determined using motion analysis and force plates, and joint energy absorption was calculated using inverse dynamics. Of the 22 runners, 8 maintained a RFS, 9 adopted a MFS, and 5 adopted a FFS during novice barefoot running. All runners demonstrated a reduction in knee energy absorption when running barefoot; MFS and FFS runners also demonstrated a significant increase in ankle energy absorption. Runners who maintained a RFS presented with loading rates significantly higher than traditional shoe running, whereas FFS runners demonstrated a significant reduction in loading rate. Mid-foot strikers did not demonstrate a significant change in loading rate. These results indicate that habitually shod RFS runners demonstrate a variety of foot-strike and lower-extremity dynamic responses during the acute transition to barefoot running. Accordingly, explicit instruction regarding foot-strike patterns may be necessary if transitioning to barefoot. Long-term prospective studies are required in order to determine the influence of FFS barefoot running on injury rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Barefoot-simulating footwear associated with metatarsal stress injury in 2 runners.

    PubMed

    Giuliani, Jeffrey; Masini, Brendan; Alitz, Curtis; Owens, Brett D

    2011-07-07

    Stress-related changes and fractures in the foot are frequent in runners. However, the causative factors, including anatomic and kinematic variables, are not well defined. Footwear choice has also been implicated in contributing to injury patterns with changes in force transmission and gait analyses reported in the biomechanical literature. Despite the benefits of footwear, there has been increased interest among the running community in barefoot running with proposed benefits including a decreased rate of injury. We report 2 cases of metatarsal stress fracture in experienced runners whose only regimen change was the adoption of barefoot-simulating footwear. One was a 19-year-old runner who developed a second metatarsal stress reaction along the entire diaphysis. The second case was a 35-year-old ultra-marathon runner who developed a fracture in the second metatarsal diaphysis after 6 weeks of use of the same footwear. While both stress injuries healed without long-term effects, these injuries are alarming in that they occurred in experienced male runners without any other risk factors for stress injury to bone. The suspected cause for stress injury in these 2 patients is the change to barefoot-simulating footwear. Runners using these shoes should be cautioned on the potential need for gait alterations from a heel-strike to a midfoot-striking pattern, as well as cautioned on the symptoms of stress injury. Copyright 2011, SLACK Incorporated.

  16. Perception of Health Problems Among Competitive Runners

    PubMed Central

    Jelvegård, Sara; Timpka, Toomas; Bargoria, Victor; Gauffin, Håkan; Jacobsson, Jenny

    2016-01-01

    Background: Approximately 2 of every 3 competitive runners sustain at least 1 health problem each season. Most of these problems are nontraumatic injuries with gradual onset. The main known risk indicator for sustaining a new running-related injury episode is a history of a previous injury, suggesting that behavioral habits are part of the causal mechanisms. Purpose: Identification of elements associated with purposeful interpretations of body perceptions and balanced behavioral responses may supply vital information for prevention of health problems in runners. This study set out to explore competitive runners’ cognitive appraisals of perceived symptoms on injury and illness and how these appraisals are transformed into behavior. Study Design: Cross-sectional study; Level of evidence, 3. Methods: The study population consisted of Swedish middle- and long-distance runners from the national top 15 list. Qualitative research methods were used to categorize interview data and perform a thematic analysis. The categories resulting from the analysis were used to construct an explanatory model. Results: Saturation of the thematic classification required that data from 8 male and 6 female runners (age range, 20-36 years) were collected. Symptoms interpreted to be caused by illness or injury with a sudden onset were found to lead to immediate action and changes to training and competition programs (activity pacing). In contrast, perceptions interpreted to be due to injuries with gradual onset led to varied behavioral reactions. These behavioral responses were planned with regard to short-term consequences and were characterized by indifference and neglect of long-term implications, consistent with an overactivity behavioral pattern. The latter pattern was consistent with a psychological adaptation to stimuli that is presented progressively to the athlete. Conclusion: Competitive runners appraise whether a health problem requires immediate withdrawal from training based on

  17. Validity of the Wingate anaerobic test for the evaluation of elite runners.

    PubMed

    Legaz-Arrese, Alejandro; Munguía-Izquierdo, Diego; Carranza-García, Luis E; Torres-Dávila, Celeste G

    2011-03-01

    This study aimed to determine performance differences, based on the Wingate anaerobic test (WAnT), between homogeneous groups of elite male and female runners competing at distances ranging from 100 m to the marathon. We also attempted to establish a link between running ability and performance as measured by the WAnT. In total, 116 world-class runners (86 men and 30 woman) volunteered to participate in our study. Subjects were tested for peak power (PP, 5-second output) and mean power (MP, 30-second output) using WAnT procedures. Runners were classified into groups according to their best performances times. For male runners, PP and MP outputs decreased with increasing distance (p < 0.001). This trend was also true for female runners (p < 0.005). However, for both sexes, there were no significant differences in the PP values among 100-, 400-, and 800-m runners, and there were also no differences in the MP values for subjects that ran distances of 100 m compared with the values for subjects that ran distances of 400 and 800 m. In addition, no significant differences were observed in the PP and MP values between subjects that ran distances of 800, 1,500, and 3,000 m. Performance in the WAnT was not significantly associated with running performance in any distance event. The results of this study indicate that the WAnT is not a useful tool for the evaluation of elite runners.

  18. Runner's Knee: What is it and How Effective is Conservative Management?

    ERIC Educational Resources Information Center

    Pretorius, Deirdre M.; And Others

    1986-01-01

    Forty-eight runners with runner's knee were examined, treated, and studied for 8 months to identify the causes of this injury and its response to a particular regimen of conservative management. Results are discussed. (Author/DF)

  19. Health Culture and Running: Non-Elite Runners' Understandings of Doping and Supplementation.

    PubMed

    Henning, April D

    2015-01-01

    Participants at the non-elite level of road running often take up the sport for purposes of health, as a way of taking responsibility for their own well-being. Often, these runners use dietary supplements as a way to improve health and to potentially enhance running performance. Supplements are distinct from banned performance enhancing drugs (PEDs), as they are legal and widely available, though very loosely regulated. Research demonstrates that the line between supplements and banned PEDs is increasingly blurry as cases of cross-contaminated and mislabeled supplements continue to be found. Such products may pose health risks to unsuspecting consumers. Despite anti-doping agencies' warnings to elite runners about these risks, non-elite runners are rarely told by any sport or anti-doping body to be wary of supplements. They are, however, inundated with media coverage of doping scandals usually involving only a few of the substances banned in sport. In short, these runners are often left to navigate supplement use on their own and many conflate supplement availability with safety. This article explores these routine dietary supplement practices among non-elite runners. Drawing from interviews with 28 non-elite runners in New York City, I discuss the perceptions and understandings of doping and dietary supplement use within the context of health culture. Interview data reveal that the social acceptance of dietary supplements and their widespread use among the broader public reinforce the notion among non-elite runners that such products are objectively safe and healthy. I argue that based on their assumptions of supplement safety, non-elite runners view dietary supplements as distinctly different from PEDs and that this difference encourages their use as health and performance aids.

  20. 1978 All Indian Long Distance Runner's Training Camp. General Assessment.

    ERIC Educational Resources Information Center

    Churchill, Ward

    The All-Indian Long Distance Runner's Training Camp, predicated upon the fact that the Native American community has produced an inordinate number of long distance runners due to historical/environmental/sociological factors, has as its operational philosophy that academic achievement is stressed as a correlate to athletic success; that…

  1. Design of large Francis turbine using optimal methods

    NASA Astrophysics Data System (ADS)

    Flores, E.; Bornard, L.; Tomas, L.; Liu, J.; Couston, M.

    2012-11-01

    Among a high number of Francis turbine references all over the world, covering the whole market range of heads, Alstom has especially been involved in the development and equipment of the largest power plants in the world : Three Gorges (China -32×767 MW - 61 to 113 m), Itaipu (Brazil- 20x750 MW - 98.7m to 127m) and Xiangjiaba (China - 8x812 MW - 82.5m to 113.6m - in erection). Many new projects are under study to equip new power plants with Francis turbines in order to answer an increasing demand of renewable energy. In this context, Alstom Hydro is carrying out many developments to answer those needs, especially for jumbo units such the planned 1GW type units in China. The turbine design for such units requires specific care by using the state of the art in computation methods and the latest technologies in model testing as well as the maximum feedback from operation of Jumbo plants already in operation. We present in this paper how a large Francis turbine can be designed using specific design methods, including the global and local optimization methods. The design of the spiral case, the tandem cascade profiles, the runner and the draft tube are designed with optimization loops involving a blade design tool, an automatic meshing software and a Navier-Stokes solver, piloted by a genetic algorithm. These automated optimization methods, presented in different papers over the last decade, are nowadays widely used, thanks to the growing computation capacity of the HPC clusters: the intensive use of such optimization methods at the turbine design stage allows to reach very high level of performances, while the hydraulic flow characteristics are carefully studied over the whole water passage to avoid any unexpected hydraulic phenomena.

  2. The Middle-Aged Marathon Runner

    PubMed Central

    Valentine, Anthony S.

    1982-01-01

    Middle-aged runners form an appreciable number of those engaged in marathon running. They tend to have above average intelligence, high socioeconomic status, and better levels of aerobic fitness than sedentary members of the same age group. “Too much too soon” is the commonest cause of injury. Training before a marathon should last 18 months to two years. Middle-aged runners tend to experience fewer injuries than other marathoners. However, relatively minor complaints will be disastrous to them if they have to stop running. Injuries can occur from lack of warm up exercises, environmental factors such as weather, poor street lighting, carbon monoxide from car exhausts, etc. Some contraindications to marathon running are: poorly controlled diabetes, recent acute pulmonary disease, active rheumatoid arthritis, and recent cardiac conditions. Finishing a marathon involves both agony and ecstasy. PMID:21286102

  3. Intrinsic foot muscle volume in experienced runners with and without chronic plantar fasciitis.

    PubMed

    Cheung, R T H; Sze, L K Y; Mok, N W; Ng, G Y F

    2016-09-01

    Plantar fasciitis, a common injury in runners, has been speculated to be associated with weakness of the intrinsic foot muscles. A recent study reported that atrophy of the intrinsic forefoot muscles might contribute to plantar fasciitis by destabilizing the medial longitudinal arch. However, intrinsic foot muscle volume difference between individuals with plantar fasciitis and healthy counterparts remains unknown. This study examined the relationship of intrinsic foot muscle volume and incidence of plantar fasciitis. Case-control study. 20 experienced (≥5 years) runners were recruited. Ten of them had bilateral chronic (≥2 years) plantar fasciitis while the others were healthy characteristics-matched runners. Intrinsic muscle volumes of the participants' right foot were scanned with a 1.5T magnetic resonance system and segmented using established methods. Body-mass normalized intrinsic foot muscle volumes were compared between runners with and without chronic plantar fasciitis. There was significant greater rearfoot intrinsic muscle volume in healthy runners than runners with chronic plantar fasciitis (Cohen's d=1.13; p=0.023). A similar trend was also observed in the total intrinsic foot muscle volume but it did not reach a statistical significance (Cohen's d=0.92; p=0.056). Forefoot volume was similar between runners with and without plantar fasciitis. These results suggest that atrophy of intrinsic foot muscles may be associated with symptoms of plantar fasciitis in runners. These findings may provide useful information in rehabilitation strategies of chronic plantar fasciitis. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. libRoadRunner: a high performance SBML simulation and analysis library

    PubMed Central

    Somogyi, Endre T.; Bouteiller, Jean-Marie; Glazier, James A.; König, Matthias; Medley, J. Kyle; Swat, Maciej H.; Sauro, Herbert M.

    2015-01-01

    Motivation: This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. Results: libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB (www.mathworks.com) and SciPy (http://www.scipy.org/), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. Availability and implementation: libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. Contacts: hsauro@u.washington.edu or somogyie@indiana.edu Supplementary information: Supplementary data are available

  5. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity

  6. Examining injury risk and pain perception in runners using minimalist footwear.

    PubMed

    Ryan, Michael; Elashi, Maha; Newsham-West, Richard; Taunton, Jack

    2014-08-01

    This study examines the effect of progressive increases in footwear minimalism on injury incidence and pain perception in recreational runners. One hundred and three runners with neutral or mild pronation were randomly assigned a neutral (Nike Pegasus 28), partial minimalist (Nike Free 3.0 V2) or full minimalist shoe (Vibram 5-Finger Bikila). Runners underwent baseline testing to record training and injury history, as well as selected anthropometric measurements, before starting a 12-week training programme in preparation for a 10 km event. Outcome measures included number of injury events, Foot and Ankle Disability (FADI) scores and visual analogue scale pain rating scales for regional and overall pain with running. 99 runners were included in final analysis with 23 injuries reported; the neutral shoe reporting the fewest injuries (4) and the partial minimalist shoe (12) the most. The partial minimalist shoe reported a significantly higher rate of injury incidence throughout the 12-week period. Runners in the full minimalist group reported greater shin and calf pain. Running in minimalist footwear appears to increase the likelihood of experiencing an injury, with full minimalist designs specifically increasing pain at the shin and calf. Clinicians should exercise caution when recommending minimalist footwear to runners otherwise new to this footwear category who are preparing for a 10 km event. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Foot strike patterns of recreational and sub-elite runners in a long-distance road race.

    PubMed

    Larson, Peter; Higgins, Erin; Kaminski, Justin; Decker, Tamara; Preble, Janine; Lyons, Daniela; McIntyre, Kevin; Normile, Adam

    2011-12-01

    Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.

  8. Relationship between foot strike pattern, running speed, and footwear condition in recreational distance runners.

    PubMed

    Cheung, Roy T H; Wong, Rodney Y L; Chung, Tim K W; Choi, R T; Leung, Wendy W Y; Shek, Diana H Y

    2017-06-01

    Compared to competitive runners, recreational runners appear to be more prone to injuries, which have been associated with foot strike patterns. Surprisingly, only few studies had examined the foot strike patterns outside laboratories. Therefore, this study compared the foot strike patterns in recreational runners at outdoor tracks with previously reported data. We also investigated the relationship between foot strike pattern, speed, and footwear in this cohort. Among 434 recreational runners analysed, 89.6% of them landed with rearfoot strike (RFS). Only 6.9 and 3.5% landed with midfoot and forefoot, respectively. A significant shift towards non-RFS was observed in our cohort, when compared with previously reported data. When speed increased by 1 m/s, the odds of having forefoot strike and midfoot strike relative to RFS increased by 2.3 times and 2.6 times, respectively. Runners were 9.2 times more likely to run with a forefoot strike in minimalists compared to regular running shoes, although 70% of runners in minimalists continued to use a RFS. These findings suggest that foot strike pattern may differ across running conditions and runners should consider these factors in order to mitigate potential injury.

  9. Heel Pain in Recreational Runners.

    ERIC Educational Resources Information Center

    Bazzoli, Allan S.; Pollina, Frank S.

    1989-01-01

    Provides physicians with the signs, symptoms, and management of heel/sole pain in recreational runners (usually due to plantar fasciitis, Achilles tendinitis, and calcaneal stress fractures). Remedies involve palliative treatment of symptoms, correction of underlying biomechanical problems, and flexibility exercises. (SM)

  10. On the sloshing free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, E.; Andolfatto, L.; Avellan, F.

    2017-04-01

    Hydropower plants may be required to operate in synchronous condenser mode in order to supply reactive power to the grid for compensating the fluctuations introduced by the intermittent renewable energies such wind and solar. When operating in this mode, the tail water in the Francis turbine or pump-turbine is depressed below the runner by injecting pressurized air in order to spin in air to reduce the power consumption. Many air-water interaction phenomena occur in the machine causing air losses and a consequent power consumption to recover the air lost. In this paper, the experimental investigation of the sloshing motion in the cone of a dewatered Francis turbine performed by image visualization and pressure measurements is presented. The developed image post processing method for identifying the amplitude and frequency of the oscillation of the free surface is described and the results obtained are illustrated and discussed.

  11. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whethermore » more realistic simulations of the turbine hydraulic environment -those that resolve unsteady turbulent eddies not captured in steady-state RANS computations- are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in

  12. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    NASA Astrophysics Data System (ADS)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  13. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  14. Effect of age and performance on pacing of marathon runners

    PubMed Central

    Nikolaidis, Pantelis Theodoros; Knechtle, Beat

    2017-01-01

    Pacing strategies in marathon runners have previously been examined, especially with regard to age and performance level separately. However, less information about the age × performance interaction on pacing in age-group runners exists. The aim of the present study was to examine whether runners with similar race time and at different age differ for pacing. Data (women, n=117,595; men, n=180,487) from the “New York City Marathon” between 2006 and 2016 were analyzed. A between–within subjects analysis of variance showed a large main effect of split on race speed (p<0.001, η2=0.538) with the fastest speed in the 5–10 km split and the slowest in the 35–40 km. A small sex × split interaction on race speed was found (p<0.001, η2=0.035) with men showing larger increase in speed at 5 km and women at 25 km and 40 km (end spurt). An age-group × performance group interaction on Δspeed was shown for both sexes at 5 km, 10 km, 15 km, 20 km, 25 km, 30 km, 35 km, and 40 km (p<0.001, 0.001≤η2≤0.004), where athletes in older age-groups presented a relatively more even pace compared with athletes in younger age-groups, a trend that was more remarkable in the relatively slow performance groups. So far, the present study is the first one to observe an age × performance interaction on pacing; ie, older runners pace differently (smaller changes) than younger runners with similar race time. These findings are of great practical interest for coaches working with marathon runners of different age, but similar race time. PMID:28860876

  15. Method for experimental investigation of transient operation on Laval test stand for model size turbines

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Coulaud, M.; Aeschlimann, V.; Lemay, J.; Deschenes, C.

    2016-11-01

    With the growing proportion of inconstant energy source as wind and solar, hydroelectricity becomes a first class source of peak energy in order to regularize the grid. The important increase of start - stop cycles may then cause a premature ageing of runners by both a higher number of cycles in stress fluctuations and by reaching a higher stress level in absolute. Aiming to sustain good quality development on fully homologous scale model turbines, the Hydraulic Machines Laboratory (LAMH) of Laval University has developed a methodology to operate model size turbines on transient regimes such as start-up, stop or load rejection on its test stand. This methodology allows maintaining a constant head while the wicket gates are opening or closing in a representative speed on the model scale of what is made on the prototype. This paper first presents the opening speed on model based on dimensionless numbers, the methodology itself and its application. Then both its limitation and the first results using a bulb turbine are detailed.

  16. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  17. Sloshing motion dynamics of a free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

    NASA Astrophysics Data System (ADS)

    Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François

    2016-11-01

    The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.

  18. Hip Biomechanics Are Altered in Male Runners with Achilles Tendinopathy.

    PubMed

    Creaby, Mark W; Honeywill, Conor; Franettovich Smith, Melinda M; Schache, Anthony G; Crossley, Kay M

    2017-03-01

    Achilles tendinopathy (AT) is a prevalent injury in running sports. Understanding the biomechanical factors associated with AT will assist in its management and prevention. The purpose of this study was to compare hip and ankle kinematics and kinetics in runners with and without AT. Fourteen male runners with AT and 11 healthy male runners (CTRL) ran over ground while lower-limb joint motion and ground reaction force data were synchronously captured. Hip and ankle joint angles, moments, and impulses in all three planes (sagittal, transverse, and frontal) were extracted for analysis. Independent t-tests were used to compare the differences between the AT and the CTRL groups for the biomechanical variables of interest. After Bonferroni adjustment, an alpha level of 0.0026 was set for all analyses. The AT group exhibited an increased peak hip external rotation moment (P = 0.001), hip external rotation impulse (P < 0.001), and hip adduction impulse (P < 0.001) compared with the CTRL group. No significant differences in ankle biomechanics were observed. This study presents preliminary evidence indicating that male runners with AT display altered hip biomechanics with respect to their healthy counterparts. Because of the retrospective design of the study, it is unknown whether these alterations are a predisposing factor for the disorder, a result of the condition, or a combination of both. The results of this study suggest that optimizing hip joint function should be considered in the rehabilitation of runners with AT.

  19. Increased vertebral bone mineral in response to reduced exercise in amenorrheic runners.

    PubMed

    Lindberg, J S; Powell, M R; Hunt, M M; Ducey, D E; Wade, C E

    1987-01-01

    Seven female runners found to have exercise-induced amenorrhea and decreased bone mineral were reevaluated after 15 months. During the 15-month period, four runners took supplemental calcium and reduced their weekly running distance by 43%, resulting in an average 5% increase in body weight, increased estradiol levels and eumenorrhea. Bone mineral content increased from 1.003+/-0.097 to 1.070+/-0.089 grams per cm.(2) Three runners continued to have amenorrhea, with no change in running distance or body weight. Estradiol levels remained abnormally low and there was no significant change in the bone mineral content, although all three took supplemental calcium. We found that early osteopenia associated with exercise-induced menstrual dysfunction improved when runners reduced their running distance, gained weight and became eumenorrheic.

  20. Increased Vertebral Bone Mineral in Response to Reduced Exercise in Amenorrheic Runners

    PubMed Central

    Lindberg, Jill S.; Hunt, Marjorie M.; Wade, Charles E.; Powell, Malcolm R.; Ducey, Diane E.

    1987-01-01

    Seven female runners found to have exercise-induced amenorrhea and decreased bone mineral were reevaluated after 15 months. During the 15-month period, four runners took supplemental calcium and reduced their weekly running distance by 43%, resulting in an average 5% increase in body weight, increased estradiol levels and eumenorrhea. Bone mineral content increased from 1.003±0.097 to 1.070±0.089 grams per cm.2 Three runners continued to have amenorrhea, with no change in running distance or body weight. Estradiol levels remained abnormally low and there was no significant change in the bone mineral content, although all three took supplemental calcium. We found that early osteopenia associated with exercise-induced menstrual dysfunction improved when runners reduced their running distance, gained weight and became eumenorrheic. ImagesFigure 1. PMID:3825107

  1. Design of LPV fault-tolerant controller for pitch system of wind turbine

    NASA Astrophysics Data System (ADS)

    Wu, Dinghui; Zhang, Xiaolin

    2017-07-01

    To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.

  2. Body Composition and Aerobic Requirements of Male and Female Marathon Runners.

    ERIC Educational Resources Information Center

    Wells, Christine L.; And Others

    This study investigates the physical characteristics, body composition, cardiovascular and pulmonary functions, and aerobic capabilities of male and female long distance runners. Eleven runners volunteered to take tests to determine background information, body fat, oxygen uptake, and running time and pace. Conclusions made from this study…

  3. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  4. libRoadRunner: a high performance SBML simulation and analysis library.

    PubMed

    Somogyi, Endre T; Bouteiller, Jean-Marie; Glazier, James A; König, Matthias; Medley, J Kyle; Swat, Maciej H; Sauro, Herbert M

    2015-10-15

    This article presents libRoadRunner, an extensible, high-performance, cross-platform, open-source software library for the simulation and analysis of models expressed using Systems Biology Markup Language (SBML). SBML is the most widely used standard for representing dynamic networks, especially biochemical networks. libRoadRunner is fast enough to support large-scale problems such as tissue models, studies that require large numbers of repeated runs and interactive simulations. libRoadRunner is a self-contained library, able to run both as a component inside other tools via its C++ and C bindings, and interactively through its Python interface. Its Python Application Programming Interface (API) is similar to the APIs of MATLAB ( WWWMATHWORKSCOM: ) and SciPy ( HTTP//WWWSCIPYORG/: ), making it fast and easy to learn. libRoadRunner uses a custom Just-In-Time (JIT) compiler built on the widely used LLVM JIT compiler framework. It compiles SBML-specified models directly into native machine code for a variety of processors, making it appropriate for solving extremely large models or repeated runs. libRoadRunner is flexible, supporting the bulk of the SBML specification (except for delay and non-linear algebraic equations) including several SBML extensions (composition and distributions). It offers multiple deterministic and stochastic integrators, as well as tools for steady-state analysis, stability analysis and structural analysis of the stoichiometric matrix. libRoadRunner binary distributions are available for Mac OS X, Linux and Windows. The library is licensed under Apache License Version 2.0. libRoadRunner is also available for ARM-based computers such as the Raspberry Pi. http://www.libroadrunner.org provides online documentation, full build instructions, binaries and a git source repository. hsauro@u.washington.edu or somogyie@indiana.edu Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2015. This work is written

  5. A comparative biomechanical analysis of habitually unshod and shod runners based on a foot morphological difference.

    PubMed

    Mei, Qichang; Fernandez, Justin; Fu, Weijie; Feng, Neng; Gu, Yaodong

    2015-08-01

    Running is one of the most accessible physical activities and running with and without footwear has attracted extensive attention in the past several years. In this study 18 habitually male unshod runners and 20 habitually male shod runners (all with dominant right feet) participated in a running test. A Vicon motion analysis system was used to capture the kinematics of each participant's lower limb. The in-shoe plantar pressure measurement system was employed to measure the pressure and force exerted on the pressure sensors of the insole. The function of a separate hallux in unshod runners is analyzed through the comparison of plantar pressure parameters. Owing to the different strike patterns in shod and unshod runners, peak dorsiflexion and plantarflexion angle were significantly different. Habitually shod runners exhibited a decreased foot strike angle (FSA) under unshod conditions; and the vertical average loading rate (VALR) of shod runners under unshod conditions was larger than that under shod conditions. This suggests that the foot strike pattern is more important than the shod or unshod running style and runners need to acquire the technique. It can be concluded that for habitually unshod runners the separate hallux takes part of the foot loading and reduces loading to the forefoot under shod conditions. The remaining toes of rearfoot strike (RFS) runners function similarly under unshod conditions. These morphological features of shod and unshod runners should be considered in footwear design to improve sport performance and reduce injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Primitive running: a survey analysis of runners' interest, participation, and implementation.

    PubMed

    Rothschild, Carey E

    2012-08-01

    Running is a sport that has continued to see growth in numbers over the years. Recently, there has been a movement promoting running barefoot and in light, "minimalist" shoes. Advocates of barefoot running believe that a more primitive style of running may result in fewer running-related injuries and even possibly improve performance. To identify the current interest level and participation in barefoot or minimalist shod running, an electronic survey was developed and dispersed to 6,082 runners. The survey instrument examined demographics, motivating factors, used resources, perceived barriers, and expectations in runners who add barefoot or in minimalist shod running to their training. Seven hundred eighty-five (13%) runners completed the survey. Six hundred and thirty (75.7%) indicated they were at least somewhat interested in running barefoot or in minimalist shoes. One hundred seventy-two (21.9%) runners had previously tried barefoot running, whereas 239 (30.4%) had previously tried minimalist shoes. The primary motivating factor for those running barefoot or in minimalist shoes (n = 283) was to prevent future injury (n = 97, 34.3%). Advice from friends (n = 68, 24.5%) or books (n = 68, 24.5%) was the most commonly used resource in transitioning to barefoot or minimalist shod running. Fear of possible injury (n = 424, 54%) was the most prevalent perceived barrier in transitioning to barefoot or minimalist shod running. An overwhelming 671 (85.5%) indicated that they were at least somewhat likely to continue with or to add barefoot or minimalist shod running if provided sufficient instruction. Runners who are men, of younger age, and who consider themselves elite runners are somewhat more likely to be interested in barefoot or minimalist shod running.

  7. Melanoma markers in marathon runners: increase with sun exposure and physical strain.

    PubMed

    Richtig, Erika; Ambros-Rudolph, Christina M; Trapp, Michael; Lackner, Helmut K; Hofmann-Wellenhof, Rainer; Kerl, Helmut; Schwaberger, Guenther

    2008-01-01

    Marathon runners seem to have an increased melanoma risk. To identify potential melanoma markers. 150 marathon runners volunteered to take part in the skin cancer screening campaign. After the runners completed a questionnaire about melanoma risk factors, types of sportswear and training programs, they received a total skin examination. The number of lentigines and nevi on the left shoulder and the left buttock were counted in each participant using templates in standardized positions. The potential association of training sportswear and training parameters with the number of lentigines and nevi on the left shoulder was evaluated. The mean number of lentigines on the left shoulder was 19.6 +/- 18.2 (SD), whereas no lentigines were found on the left buttock (p = 0.000). The number of nevi also differed significantly between the 2 localizations with higher numbers on the left shoulder (p = 0.000). While lifetime sunburn history and type of sportswear correlated with the number of lentigines, training parameters had an impact on the number of nevi. Independent of their mean weekly running time, runners with higher heart rates while training, higher training velocities and higher physical strain indexes showed more nevi on the shoulder than the other runners (p = 0.029, 0.046, 0.038, respectively). Sun exposure and high physical strain lead to an increase in melanoma markers such as lentigines and nevi in marathon runners. Copyright 2008 S. Karger AG, Basel.

  8. Foot strike patterns and collision forces in habitually barefoot versus shod runners.

    PubMed

    Lieberman, Daniel E; Venkadesan, Madhusudhan; Werbel, William A; Daoud, Adam I; D'Andrea, Susan; Davis, Irene S; Mang'eni, Robert Ojiambo; Pitsiladis, Yannis

    2010-01-28

    Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.

  9. [Diseases and overuse injuries of the lower extremities in long distance runners].

    PubMed

    Tschopp, M; Brunner, F

    2017-06-01

    Running is one of the most popular sports worldwide, with running events attracting hundreds of thousands of runners of all age groups. Running is an effective way to improve health but is also associated with a high risk of injuries. Up to 50% of regular runners report having more than one injury each year. Some injuries are caused by an accident but most are caused by overuse. The most frequent diagnoses are patellofemoral pain syndrome, tibial stress syndrome (shin splint), Achilles tendinopathy, iliotibial band friction syndrome (runner's knee), plantar fasciitis and stress fractures of the metatarsals and tibia. The knee is the most frequently injured joint in runners at all distances. Hamstring injuries are typically acute resulting in a sudden, sharp pain in the posterior thigh. Hip injuries are less common but it can be more difficult to make the correct diagnosis and treatment is more complex. Clinicians confronted by runners with shin pain must distinguish between stress fractures of the tibia, tibial stress syndrome (shin splints) and chronic exertional compartment syndrome. Foot and ankle injuries are the most common injuries reported by long distance and marathon runners. Excess body weight and the number of kilometers run per week are high risk factors for injuries. The roles of other factors, such as shoes, stretching and biomechanics are less clear. A detailed anamnesis and physical examination are important for the correct diagnosis or the necessity for further diagnostic imaging and subsequent therapy.

  10. Sports drink consumption and dental erosion among amateur runners.

    PubMed

    Antunes, Leonardo S; Veiga, Lais; Nery, Victor S; Nery, Caio C; Antunes, Lívia A

    2017-01-01

    This cross-sectional study assessed the prevalence and potential risk factors for dental erosion in amateur athletes at running events. After a sample calculation, 108 runners from the state of Rio de Janeiro, Brazil, were selected and examined for dental wear by a single trained and calibrated evaluator (kappa = 1.00). To identify risk factors, the runners were interviewed by using a standardized, semi-structured questionnaire. The average (SD) age of the runners was 34.2 (11.45), and the prevalence of dental erosion was 19.4%. Gastroesophageal reflux, running frequency per week, and time expended during competition were associated with dental erosion (P < 0.05). The association between use of isotonic drinks and dental erosion was not significant (P > 0.05). In conclusion, dental erosion was not associated with use of isotonic drinks. However, frequency of exercise per week and gastroesophageal reflux were risk factors for dental erosion.

  11. Hot Runner Mold Design of Fan Diverter Parts

    NASA Astrophysics Data System (ADS)

    Juan, D. J.; Cheng, Y. L.

    2017-09-01

    In this study, we discuss the case of plastic parts for the production of fan steering gear shaft parts injection molding, and use POM plastic steel to produce plastic parts from traditional cold runners. Because of the parts have a hole, which need side slide. The runner produce more waste after plastic parts injection make the runner waste account for the cost is relatively high, the cost of stock preparation is relatively increased when the product quantity demanded is great. After the crushing treatment of the waste, the backfill will affect the quality, and in the crushing process, the volume generated will make the operator to withstand up to 130 dB of noise. The actual test results show that the production cycle reduce 6.25%, while the production yield increase by about 5% and material costs reduced by 2% . It can be recovered within a year, not to mention the increase of the quality and reduction the noise on the staff of the benefit is impossible to estimate.

  12. Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.

    PubMed

    Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P

    2018-05-29

    It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.

  13. The Runners and Injury Longitudinal Study: Injury Recovery Supplement (TRAILS_IR)

    DTIC Science & Technology

    2013-08-01

    2) develop statistical models that integrate biomechanical, behavioral, and psychological risk factors for injury, (3) determine the length of...Running Mechanics and Flexibility Between Runners in Minimalist and Traditional Footwear ”......14...annual meeting entitled “Differences in Running Mechanics and Flexibility between Runners in Minimalist and Traditional Footwear ”. The following

  14. Altered neuroendocrine regulation of gonadotropin secretion in women distance runners.

    PubMed

    Veldhuis, J D; Evans, W S; Demers, L M; Thorner, M O; Wakat, D; Rogol, A D

    1985-09-01

    We tested the hypothesis that the neuroendocrine control of gonadotropin secretion is altered in certain women distance runners with secondary amenorrhea. To this end, we quantitated the frequency and amplitude of spontaneous pulsatile LH secretion during a 24-h interval in nine such women. The ability of the pituitary gland to release LH normally was assessed by administration of graded bolus doses of GnRH during the subsequent 8 h. Compared to normally menstruating women, six of nine amenorrheic distance runners had a distinct reduction in spontaneous LH pulse frequency, with one, three, six, five, four, or two pulses per 24 h (normal, 8-15 pulses/24 h). This reduction in LH pulse frequency occurred without any significant alterations in plasma concentrations of estradiol and free testosterone or 24-h integrated serum concentrations of LH, FSH, or PRL. Moreover, in long-distance runners, the capacity of the pituitary gland to release LH was normal or accentuated in response to exogenous pulses of GnRH. In the six women athletes with diminished spontaneous LH pulsatility, acute ovarian responsiveness also was normal, since serum estradiol concentrations increased normally in response to the GnRH-induced LH pulses. Although long-distance runners had significantly lower estimated percent body fat compared to control women, specific changes in pulsatile gonadotropin release did not correlate with degree of body leanness. In summary, certain long-distance runners with secondary amenorrhea or severe oligomenorrhea have unambiguously decreased spontaneous LH pulse frequency with intact pituitary responsiveness to GnRH. This neuroendocrine disturbance may be relevant to exercise-associated amenorrhea, since pulsatile LH release is a prerequisite for cyclic ovarian function. We speculate that such alterations in pulsatile LH release in exercising women reflect an adaptive response of the hypothalamic pulse generator controlling the intermittent GnRH signal to the

  15. Echocardiographic left ventricular masses in distance runners and weight lifters

    NASA Technical Reports Server (NTRS)

    Longhurst, J. C.; Gonyea, W. J.; Mitchell, J. H.; Kelly, A. R.

    1980-01-01

    The relationships of different forms of exercise training to left ventricular mass and body mass are investigated by echocardiographic studies of weight lifters, long-distance runners, and comparatively sized untrained control subjects. Left ventricular mass determinations by the Penn convention reveal increased absolute left ventricular masses in long-distance runners and competitive weight lifters with respect to controls matched for age, body weight, and body surface area, and a significant correlation between ventricular mass and lean body mass. When normalized to lean body mass, the ventricular masses of distance runners are found to be significantly higher than those of the other groups, suggesting that dynamic training elevates left ventricular mass compared to static training and no training, while static training increases ventricular mass only to the extent that lean body mass is increased.

  16. Gastrointestinal complaints in runners are not due to small intestinal bacterial overgrowth

    PubMed Central

    2011-01-01

    Background Gastrointestinal complaints are common among long distance runners. We hypothesised that small intestinal bacterial overgrowth (SIBO) is present in long distance runners frequently afflicted with gastrointestinal complaints. Findings Seven long distance runners (5 female, mean age 29.1 years) with gastrointestinal complaints during and immediately after exercise without known gastrointestinal diseases performed Glucose hydrogen breath tests for detection of SIBO one week after a lactose hydrogen breath test checking for lactose intolerance. The most frequent symptoms were diarrhea (5/7, 71%) and flatulence (6/7, 86%). The study was conducted at a laboratory. In none of the subjects a pathological hydrogen production was observed after the intake of glucose. Only in one athlete a pathological hydrogen production was measured after the intake of lactose suggesting lactose intolerance. Conclusions Gastrointestinal disorders in the examined long distance runners were not associated with small intestinal bacterial overgrowth. PMID:21794099

  17. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.

    PubMed

    Williams, D S Blaise; Tierney, Robin N; Butler, Robert J

    2014-01-01

    Runners with high medial longitudinal arch structure demonstrate unique kinematics and kinetics that may lead to running injuries. The mobility of the midfoot as measured by the change in arch height is also suspected to play a role in lower extremity function during running. The effect of arch mobility in high-arched runners is an important factor in prescribing footwear, training, and rehabilitating the running athlete after injury. To examine the effect of medial longitudinal arch mobility on running kinematics, ground reaction forces, and loading rates in high-arched runners. Cross-sectional study. Human movement research laboratory. A total of 104 runners were screened for arch height. Runners were then identified as having high arches if the arch height index was greater than 0.5 SD above the mean. Of the runners with high arches, 11 rigid runners with the lowest arch mobility (R) were compared with 8 mobile runners with the highest arch mobility (M). Arch mobility was determined by calculating the left arch height index in all runners. Three-dimensional motion analysis of running over ground. Rearfoot and tibial angular excursions, eversion-to-tibial internal-rotation ratio, vertical ground reaction forces, and the associated loading rates. Runners with mobile arches exhibited decreased tibial internal-rotation excursion (mobile: 5.6° ± 2.3° versus rigid: 8.0° ± 3.0°), greater eversion-to-tibial internal-rotation ratio (mobile: 2.1 ± 0.8 versus rigid: 1.5 ± 0.5), decreased second peak vertical ground reaction force values (mobile: 2.3 ± 0.2 × body weight versus rigid: 2.4 ± 0.1 × body weight), and decreased vertical loading rate values (mobile: 55.7 ± 14.1 × body weight/s versus rigid: 65.9 ± 11.4 × body weight/s). Based on the results of this study, it appears that runners with high arch structure but differing arch mobility exhibited differences in select lower extremity movement patterns and forces. Future authors should investigate the

  18. Lower Extremity Biomechanics and Self-Reported Foot-Strike Patterns Among Runners in Traditional and Minimalist Shoes

    PubMed Central

    Goss, Donald L.; Lewek, Michael; Yu, Bing; Ware, William B.; Teyhen, Deydre S.; Gross, Michael T.

    2015-01-01

    Context The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior–foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear–foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior–foot-strike pattern remains unclear. Objective To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and

  19. Lower Extremity Biomechanics and Self-Reported Foot-Strike Patterns Among Runners in Traditional and Minimalist Shoes.

    PubMed

    Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T

    2015-06-01

    The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Descriptive laboratory study. Research laboratory. A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Runners often cannot report their foot-strike patterns accurately and may not automatically

  20. Kinematic, Cardiopulmonary, and Metabolic Responses of Overweight Runners While Running at Self-Selected and Standardized Speeds

    PubMed Central

    Zdziarski, Laura Ann; Chen, Cong; Horodyski, Marybeth; Vincent, Kevin R.; Vincent, Heather K.

    2017-01-01

    Objective To determine the differences in kinematic, cardiopulmonary, and metabolic responses between overweight and healthy weight runners at a self-selected and standard running speed. Design Comparative descriptive study. Setting Tertiary care institution, university-affiliated research laboratory. Participants Overweight runners (n = 21) were matched with runners of healthy weight (n = 42). Methods Participants ran at self-selected and standardized speeds (13.6 km/h). Sagittal plane joint kinematics were captured simultaneously with cardiopulmonary and metabolic measures using a motion capture system and portable gas analyzer, respectively. Main Outcome Measurements Spatiotemporal parameters (cadence, step width and length, center of gravity displacement, stance time) joint kinematics, oxygen cost, heart rate, ventilation and energy expenditure. Results At the self-selected speed, overweight individuals ran slower (8.5 ± 1.3 versus 10.0 ± 1.6 km/h) and had slower cadence (163 versus 169 steps/min; P < .05). The sagittal plane range of motion (ROM) for flexion-extension at the ankle, knee, hip, and anterior pelvic tilt were all less in overweight runners compared to healthy weight runners (all P < .05). At self-selected speed and 13.6 km/h, energy expenditure was higher in the overweight runners compared to their healthy weight counterparts (P < .05). At 13.6 km/h, only the frontal hip and pelvis ROM were higher in the overweight versus the healthy weight runners (P < .05), and energy expenditure, net energy cost, and minute ventilation were higher in the overweight runners compared to the healthy weight runners (P < .05). Conclusion At self-selected running speeds, the overweight runners demonstrated gait strategies (less joint ROM, less vertical displacement, and shorter step lengths) that resulted in cardiopulmonary and energetic responses similar to those of healthy weight individuals. PMID:26146194

  1. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners.

    PubMed

    Bex, T; Iannaccone, F; Stautemas, J; Baguet, A; De Beule, M; Verhegghe, B; Aerts, P; De Clercq, D; Derave, W

    2017-03-01

    Excellence in either sprinting or endurance running requires specific musculo-skeletal characteristics of the legs. This study aims to investigate the morphology of the leg of sprinters and endurance runners of Caucasian ethnicity. Eight male sprinters and 11 male endurance runners volunteered to participate in this cross-sectional study. They underwent magnetic resonance imaging and after data collection, digital reconstruction was done to calculate muscle volumes and bone lengths. Sprinters have a higher total upper leg volume compared to endurance runners (7340 vs 6265 cm 3 ). Specifically, the rectus femoris, vastus lateralis, and hamstrings showed significantly higher muscle volumes in the sprint group. For the lower leg, only a higher muscle volume was found in the gastrocnemius lateralis for the sprinters. No differences were found in muscle volume distribution, center of mass in the different muscles, or relative bone lengths. There was a significant positive correlation between ratio hamstrings/quadriceps volume and best running performance in the sprint group. Sprinters and endurance runners of Caucasian ethnicity showed the greatest distinctions in muscle volumes, rather than in muscle distributions or skeletal measures. Sprinters show higher volumes in mainly the proximal and lateral leg muscles than endurance runners. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    PubMed Central

    Luna, Natália Mariana Silva; Alonso, Angelica Castilho; Brech, Guilherme Carlos; Mochizuki, Luis; Nakano, Eduardo Yoshio; Greve, Júlia Maria D'Andréa

    2012-01-01

    OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and non-athletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5) years were divided into three groups: a triathlete group (n = 26), a long-distance runner group (n = 23), and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180°/s) was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60°/s) was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners. PMID:23018298

  3. Dynamic Patterns of Forces and Loading Rate in Runners with Unilateral Plantar Fasciitis: A Cross-Sectional Study

    PubMed Central

    Ribeiro, Ana Paula; João, Silvia Maria Amado; Dinato, Roberto Casanova; Tessutti, Vitor Daniel; Sacco, Isabel Camargo Neves

    2015-01-01

    Aim/Hypothesis The etiology of plantar fasciitis (PF) has been related to several risk factors, but the magnitude of the plantar load is the most commonly described factor. Although PF is the third most-common injury in runners, only two studies have investigated this factor in runners, and their results are still inconclusive regarding the injury stage. Objective Analyze and compare the plantar loads and vertical loading rate during running of runners in the acute stage of PF to those in the chronic stage of the injury in relation to healthy runners. Methods Forty-five runners with unilateral PF (30 acute and 15 chronic) and 30 healthy control runners were evaluated while running at 12 km/h for 40 meters wearing standardized running shoes and Pedar-X insoles. The contact area and time, maximum force, and force-time integral over the rearfoot, midfoot, and forefoot were recorded and the loading rate (20–80% of the first vertical peak) was calculated. Groups were compared by ANOVAs (p<0.05). Results Maximum force and force-time integral over the rearfoot and the loading rate was higher in runners with PF (acute and chronic) compared with controls (p<0.01). Runners with PF in the acute stage showed lower loading rate and maximum force over the rearfoot compared to runners in the chronic stage (p<0.01). Conclusion Runners with PF showed different dynamic patterns of plantar loads during running over the rearfoot area depending on the injury stage (acute or chronic). In the acute stage of PF, runners presented lower loading rate and forces over the rearfoot, possibly due to dynamic mechanisms related to pain protection of the calcaneal area. PMID:26375815

  4. Lower-limb dynamics and clinical outcomes for habitually shod runners who transition to barefoot running.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Sigward, Susan; Azen, Stanley P; Salem, George J

    2018-01-01

    Recent investigations have revealed lower vertical loading rates and knee energy absorption amongst experienced barefoot runners relative to those who rear-foot strike (RFS). Although this has led to an adoption of barefoot running amongst many recreational shoe runners, recent investigations indicate that the experienced barefoot pattern is not immediately realized. Therefore, the purpose this investigation was to quantify changes in lower-extremity dynamics and clinical outcomes measures for habitually shod runners who perform a transition to barefoot running. We examined lower-extremity dynamics and clinical outcomes for 26 RFS shod runners who performed an 8-10 week transition to barefoot running. Runners were evaluated at the University of Southern California's Musculoskeletal Biomechanics Research Laboratory. Foot-strike patterns, vertical load rates, and joint energetics were evaluated before and after the transition using inverse dynamics. Clinical assessments were conducted throughout the transition by two licensed clinicians. Eighteen of the 26 runners successfully completed the transition: 7 maintained a RFS, 8 adopted a mid-foot strike (MFS), and 3 adopted a forefoot strike (FFS) during novice barefoot running. Following the transition, novice MFS/FFS runners often demonstrated reversions in strike-patterns and associated reductions in ankle energetics. We report no change in loading rates and knee energy absorption across transition time points. Importantly, there were no adverse events other than transient pain and soreness. These findings indicate that runners do not innately adopt the biomechanical characteristics thought to lower injury risk in-response to an uninstructed barefoot running transition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Variable-Speed Power-Turbine for the Large Civil Tilt Rotor

    NASA Technical Reports Server (NTRS)

    Suchezky, Mark; Cruzen, G. Scott

    2012-01-01

    Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.

  6. Serum biochemistry and morbidity among runners presenting for medical care after an Australian mountain ultramarathon.

    PubMed

    Reid, Stephen A; King, M Jonathan

    2007-07-01

    To determine if exercise-associated hyponatremia (EAH) was a cause of morbidity among runners requiring medical care at an Australian mountain ultramarathon. Case series. Six Foot Track mountain ultramarathon, New South Wales, Australia, March 2006. Runners presenting to the medical facility. Serum biochemistry. No cases of exercise-associated hyponatremia were identified among 9 athletes (from 775 starters) who were treated with intravenous fluid therapy. Unwell runners had a mean serum (Na) of 143 mmol/L (range 138-147 mmol/L). All runners tested had elevated serum urea and creatinine concentrations. In this setting, EAH was not a significant cause of morbidity.

  7. On the relation between friction losses and pressure pulsations caused by Rotor Stator interaction on the Francis-99 turbine

    NASA Astrophysics Data System (ADS)

    Østby, Petter T. K.; Tore Billdal, Jan; Haugen, Bjørn; Dahlhaug, Ole Gunnar

    2017-01-01

    High head Francis runners are subject to pressure pulsations caused by rotor stator interaction. To ensure safe operation of such turbines, it is important to be able to predict these pulsations. For turbine manufacturers it is often a dilemma whether to perform very advanced and time consuming CFD calculations or to rely on simpler calculations to save development time. This paper tries to evaluate simplifications of the CFD model while still capturing the RSI phenomena and ensuring that the calculation does not underpredict the pressure amplitudes. The effects which turbulence modeling, wall friction, viscosity and mesh have on the pressure amplitudes will be investigated along with time savings with each simplification. The hypothesis is that rotor stator interaction is manly driven by inviscid flow and can therefore be modeled by the Euler equations.

  8. Low back and lower-limb muscle performance in male and female recreational runners with chronic low back pain.

    PubMed

    Cai, Congcong; Kong, Pui W

    2015-06-01

    Controlled laboratory study, cross-sectional. To compare lumbar extensor muscle fatigability, lumbar stabilizing muscle activation, and lower-limb strength between male and female runners with chronic low back pain (LBP) and healthy runners. Little is known about muscle performance in runners with chronic LBP. Eighteen recreational runners with chronic LBP (9 men, 9 women; mean age, 27.8 years) and 18 healthy recreational runners (9 men, 9 women; mean age, 24.6 years) were recruited. The median frequency slopes for bilateral iliocostalis and longissimus were calculated from electromyographic signals captured during a 2-minute Sorensen test. The thickness changes of the transversus abdominis and lumbar multifidus between resting and contraction were measured using an ultrasound scanner. Peak concentric torques of the bilateral hip extensors, hip abductors, and knee extensors were measured using an isokinetic dynamometer at 60°/s. The average values for both sides were used for statistical analysis. When averaged across sexes, peak knee extensor torque was 12.2% lower in the LBP group compared to the healthy group (mean difference, 0.29 Nm/kg; 95% confidence interval: 0.06, 0.53; P = .016). Male runners with chronic LBP exhibited smaller lumbar multifidus thickness changes compared to healthy male runners (mean difference, 0.13 cm; 95% confidence interval: 0.01, 0.25; P = .033). No other group differences were observed. Runners with chronic LBP exhibited diminished knee extensor strength compared to healthy runners. Male runners with chronic LBP demonstrated additional deficits in lumbar multifidus activation.

  9. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  10. Photo Surfing in Blade Runner

    ERIC Educational Resources Information Center

    Ohler, Jason

    2005-01-01

    This month's "Mining Movies" looks at Blade Runner, Ridley Scott's film set in the year 2019. It is a sad time for Earth, which is in the midst of environmental degradation so severe that other planets are being prepared for colonization. The main source of labor for this preparation work are "replicants," organic robots that look and behave like…

  11. The Influence of Matching Populations on Kinematic and Kinetic Variables in Runners with Iliotibial Band Syndrome

    ERIC Educational Resources Information Center

    Grau, Stefan; Maiwald, Christian; Krauss, Inga; Axmann, Detlef; Horstmann, Thomas

    2008-01-01

    The purpose of this study was to assess how participant matching influences biomechanical variables when comparing healthy runners and runners with iliotibial band syndrome (ITBS). We examined 52 healthy runners (CO) and 18 with ITBS, using three-dimensional kinematics and pressure distribution. The study population was matched in three ways and…

  12. Lower Extremity Biomechanics and Self-Reported Foot-Strike Patterns Among Runners in Traditional and Minimalist Shoes.

    PubMed

    Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T

    2015-02-19

    Context :  The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. Objective :  To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design :  Descriptive laboratory study. Setting :  Research laboratory. Patients or Other Participants :  A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) :  Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) :  Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results :  Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average

  13. Ankle plantarflexion strength in rearfoot and forefoot runners: a novel clusteranalytic approach.

    PubMed

    Liebl, Dominik; Willwacher, Steffen; Hamill, Joseph; Brüggemann, Gert-Peter

    2014-06-01

    The purpose of the present study was to test for differences in ankle plantarflexion strengths of habitually rearfoot and forefoot runners. In order to approach this issue, we revisit the problem of classifying different footfall patterns in human runners. A dataset of 119 subjects running shod and barefoot (speed 3.5m/s) was analyzed. The footfall patterns were clustered by a novel statistical approach, which is motivated by advances in the statistical literature on functional data analysis. We explain the novel statistical approach in detail and compare it to the classically used strike index of Cavanagh and Lafortune (1980). The two groups found by the new cluster approach are well interpretable as a forefoot and a rearfoot footfall groups. The subsequent comparison study of the clustered subjects reveals that runners with a forefoot footfall pattern are capable of producing significantly higher joint moments in a maximum voluntary contraction (MVC) of their ankle plantarflexor muscles tendon units; difference in means: 0.28Nm/kg. This effect remains significant after controlling for an additional gender effect and for differences in training levels. Our analysis confirms the hypothesis that forefoot runners have a higher mean MVC plantarflexion strength than rearfoot runners. Furthermore, we demonstrate that our proposed stochastic cluster analysis provides a robust and useful framework for clustering foot strikes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Aerobic fitness and orthostatic tolerance: Evidence against an association

    NASA Technical Reports Server (NTRS)

    Ebert, Thomas J.

    1994-01-01

    This presentation will focus on only one side of the debate as to whether high levels of aerobic fitness have a deleterious effect on tolerance to gravitational stress. This issue was raised in the early 1970's as a result of two research publications. The first work investigated the carotid sinus baroreflex of humans with an airtight chamber that surrounded the head and neck. The steady-state reflex changes in blood pressure that were recorded 3 minutes after application of the head and neck stimuli, were attenuated in an athletic group compared to a sedentary group of volunteers. A second report in the NASA literature indicated that five endurance-trained runners were less tolerant to LBNP than five nonrunners. These early research findings have stimulated a considerable amount of interest that has lead to a growing number of research efforts seeking an association between aerobic fitness and orthostatic tolerance in humans. I will briefly review some of the more pertinent published research information which suggests that there is no relationship between aerobic fitness and orthostatic tolerance in humans.

  15. Medial tibial stress syndrome in high school cross-country runners: incidence and risk factors.

    PubMed

    Plisky, Melody S; Rauh, Mitchell J; Heiderscheit, Bryan; Underwood, Frank B; Tank, Robert T

    2007-02-01

    Prospective cohort. To determine (1) the cumulative seasonal incidence and overall injury rate of medial tibial stress syndrome (MTSS) and (2) risk factors for MTSS with a primary focus on the relationship between navicular drop values and MTSS in high school cross-country runners. MTSS is a common injury among runners. However, few studies have reported the injury rate and risk factors for MTSS among adolescent runners. Data collected included measurement of bilateral navicular drop and foot length, and a baseline questionnaire regarding the runner's height, body mass, previous running injury, running experience, and orthotic or tape use. Runners were followed during the season to determine athletic exposures (AEs) and occurrence of MTSS. The overall injury rate for MTSS was 2.8/1000 AEs. Although not statistically different, girls had a higher rate (4.3/1000 AEs) than boys (1.7/1000 AEs) (P = .11). Logistic regression modeling indicated that only gender and body mass index (BMI) were significantly associated with the occurrence of MTSS. However, when controlled for orthotic use, only BMI was associated with risk of MTSS. No significant associations were found between MTSS and navicular drop or foot length. Our findings suggest that navicular drop may not be an appropriate measure to identify runners who may develop MTSS during a cross-country season; thus, additional studies are needed to identify appropriate preseason screening tools.

  16. Foot Kinematics Differ Between Runners With and Without a History of Navicular Stress Fractures

    PubMed Central

    Becker, James; James, Stanley; Osternig, Louis; Chou, Li-Shan

    2018-01-01

    Background: A navicular stress fracture (NSF) is a common and high-risk injury in distance runners. It is not clear whether there are differences in foot structure and function between runners who have and those who have not sustained an NSF. Purpose/Hypothesis: This study compared foot structure, range of motion, and biomechanics between runners with a history of unilateral NSFs and runners who had never sustained this injury. The hypothesis was that runners with a history of NSFs will have less dorsiflexion and subtalar range of motion in a clinical examination and greater rearfoot eversion and higher eversion velocity while running than either the noninvolved feet or healthy controls. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Seven runners who sustained an NSF were matched with 7 controls without this injury history. Participants underwent a clinical orthopaedic examination, followed by a 3-dimensional running gait analysis. Clinical examination variables, foot kinematics, and ground-reaction forces were compared between injured and noninjured feet within the NSF group and between the NSF group and control group. Results: The NSF group demonstrated less plantar flexion on the clinical examination than the control group (P = .034, effect size [ES] = 0.69). The involved feet of the NSF group demonstrated greater rearfoot eversion excursion, greater eversion velocity, and reduced forefoot abduction excursion than either the noninvolved feet of the NSF group (P = .015, ES = 1.73; P = .015, ES = 1.86; and P = .015, ES = 0.96, respectively) or the control group (P = .012, ES = 1.40; P = .016, ES = 0.49; and P = .005, ES = 1.60, respectively). Conclusion: There are differences in foot kinematics but not ground-reaction forces, foot structure, or passive range of motion between runners who have and those who have not sustained an NSF. Runners who demonstrate increased rearfoot eversion and reduced forefoot abduction during stance may be more at

  17. Do Running Kinematic Characteristics Change over a Typical HIIT for Endurance Runners?

    PubMed

    García-Pinillos, Felipe; Soto-Hermoso, Víctor M; Latorre-Román, Pedro Á

    2016-10-01

    García-Pinillos, F, Soto-Hermoso, VM, and Latorre-Román, PÁ. Do running kinematic characteristics change over a typical HIIT for endurance runners?. J Strength Cond Res 30(10): 2907-2917, 2016-The purpose of this study was to describe kinematic changes that occur during a common high-intensity intermittent training (HIIT) session for endurance runners. Twenty-eight male endurance runners participated in this study. A high-speed camera was used to measure sagittal-plane kinematics at the first and the last run during a HIIT (4 × 3 × 400 m). The dependent variables were spatial-temporal variables, joint angles during support and swing, and foot strike pattern. Physiological variables, rate of perceived exertion, and athletic performance were also recorded. No significant changes (p ≥ 0.05) in kinematic variables were found during the HIIT session. Two cluster analyses were performed, according to the average running pace-faster vs. slower, and according to exhaustion level reached-exhausted group vs. nonexhausted group (NEG). At first run, no significant differences were found between groups. As for the changes induced by the running protocol, significant differences (p ≤ 0.05) were found between faster and slower athletes at toe-off in θhip and θknee, whereas some changes were found in NEG in θhip during toe-off (+4.3°) and θknee at toe-off (-5.2°) during swing. The results show that a common HIIT session for endurance runners did not consistently or substantially perturb the running kinematics of trained male runners. Additionally, although some differences between groups have been found, neither athletic performance nor exhaustion level reached seems to be determinant in the kinematic response during a HIIT, at least for this group of moderately trained endurance runners.

  18. 77 FR 18801 - Notice of Application for Non-Capacity Amendment of License and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... new high efficiency turbine runners, replacing runner seals, replacing or modifying head covers; (2) conducting non-destructive examination and possible rehabilitation and modification of shafts; (3...

  19. WEEKLY RUNNING VOLUME AND RISK OF RUNNING‐RELATED INJURIES AMONG MARATHON RUNNERS

    PubMed Central

    Nielsen, Rasmus Oestergaard; Juul, Martin Serup; Rasmussen, Sten

    2013-01-01

    Purpose/Background: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race. Methods: The study was a retrospective cohort study on marathon finishers. Following a marathon, participants completed a web‐based questionnaire. The outcome of interest was a self‐reported running‐related injury. The injury had to be severe enough to cause a reduction in distance, speed, duration or frequency of running for at least 14 days. Primary exposure was self‐reported average weekly volume of running before the marathon categorized into below 30 km/week, 30 to 60 km/week, and above 60 km/week. Results: A total of 68 of the 662 respondents sustained an injury. When adjusting for previous injury and previous marathons, the relative risk (RR) of suffering an injury rose by 2.02 [95% CI: 1.26; 3.24], p < 0.01, among runners with an average weekly training volume below 30 km/week compared with runners with an average weekly training volume of 30‐60 km/week. No significant differences were found between runners exceeding 60 km/week and runners running 30‐60 km/week (RR=1.13 [0.5;2.8], p=0.80). Conclusions: Runners may be advised to run a minimum of 30 km/week before a marathon to reduce their risk of running‐related injury. Level of Evidence: 2b PMID:23593549

  20. Factors affecting running economy in trained distance runners.

    PubMed

    Saunders, Philo U; Pyne, David B; Telford, Richard D; Hawley, John A

    2004-01-01

    Running economy (RE) is typically defined as the energy demand for a given velocity of submaximal running, and is determined by measuring the steady-state consumption of oxygen (VO2) and the respiratory exchange ratio. Taking body mass (BM) into consideration, runners with good RE use less energy and therefore less oxygen than runners with poor RE at the same velocity. There is a strong association between RE and distance running performance, with RE being a better predictor of performance than maximal oxygen uptake (VO2max) in elite runners who have a similar VO2max). RE is traditionally measured by running on a treadmill in standard laboratory conditions, and, although this is not the same as overground running, it gives a good indication of how economical a runner is and how RE changes over time. In order to determine whether changes in RE are real or not, careful standardisation of footwear, time of test and nutritional status are required to limit typical error of measurement. Under controlled conditions, RE is a stable test capable of detecting relatively small changes elicited by training or other interventions. When tracking RE between or within groups it is important to account for BM. As VO2 during submaximal exercise does not, in general, increase linearly with BM, reporting RE with respect to the 0.75 power of BM has been recommended. A number of physiological and biomechanical factors appear to influence RE in highly trained or elite runners. These include metabolic adaptations within the muscle such as increased mitochondria and oxidative enzymes, the ability of the muscles to store and release elastic energy by increasing the stiffness of the muscles, and more efficient mechanics leading to less energy wasted on braking forces and excessive vertical oscillation. Interventions to improve RE are constantly sought after by athletes, coaches and sport scientists. Two interventions that have received recent widespread attention are strength training and

  1. Dynamics of the precessing vortex rope and its interaction with the system at Francis turbines part load operating conditions

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Gomes, J.; Yamamoto, K.; Avellan, F.

    2017-04-01

    At part load conditions, Francis turbines experience the formation of a cavitation vortex rope at the runner outlet whose precession acts as a pressure excitation source for the hydraulic circuit. This can lead to hydro-acoustic resonances characterized by high pressure pulsations, as well as torque and output power fluctuations. This study highlights the influence of the discharge factor on both the vortex parameters and the pressure excitation source by performing Particle Image Velocimetry (PIV) and pressure measurements. Moreover, it is shown that the occurrence of hydro-acoustic resonances in cavitation conditions mainly depend on the swirl degree of the flow independently of the speed factor. Empirical laws linking both natural and precession frequencies with the operating parameters of the machine are, then, derived, enabling the prediction of resonance conditions on the complete part load operating range of the turbine.

  2. Risk factors for stress fracture among young female cross-country runners.

    PubMed

    Kelsey, Jennifer L; Bachrach, Laura K; Procter-Gray, Elizabeth; Nieves, Jeri; Greendale, Gail A; Sowers, Maryfran; Brown, Byron W; Matheson, Kim A; Crawford, Sybil L; Cobb, Kristin L

    2007-09-01

    To identify risk factors for stress fracture among young female distance runners. Participants were 127 competitive female distance runners, aged 18-26, who provided at least some follow-up data in a randomized trial among 150 runners of the effects of oral contraceptives on bone health. After completing a baseline questionnaire and undergoing bone densitometry, they were followed an average of 1.85 yr. Eighteen participants had at least one stress fracture during follow-up. Baseline characteristics associated (P<0.10) in multivariate analysis with stress fracture occurrence were one or more previous stress fractures (rate ratio [RR] [95% confidence interval]=6.42 (1.80-22.87), lower whole-body bone mineral content (RR=2.70 [1.26-5.88] per 1-SD [293.2 g] decrease), younger chronologic age (RR=1.42 [1.05-1.92] per 1-yr decrease), lower dietary calcium intake (RR=1.11 [0.98-1.25] per 100-mg decrease), and younger age at menarche (RR=1.92 [1.15-3.23] per 1-yr decrease). Although not statistically significant, a history of irregular menstrual periods was also associated with increased risk (RR=3.41 [0.69-16.91]). Training-related factors did not affect risk. The results of this and other studies indicate that risk factors for stress fracture among young female runners include previous stress fractures, lower bone mass, and, although not statistically significant in this study, menstrual irregularity. More study is needed of the associations between stress fracture and age, calcium intake, and age at menarche. Given the importance of stress fractures to runners, identifying preventive measures is of high priority.

  3. Prevalence of allergy and upper respiratory tract symptoms in runners of the London marathon.

    PubMed

    Robson-Ansley, Paula; Howatson, Glyn; Tallent, Jamie; Mitcheson, Kelly; Walshe, Ian; Toms, Chris; DU Toit, George; Smith, Matt; Ansley, Les

    2012-06-01

    The prevalence of self-reported upper respiratory tract (URT) symptoms in athletes has been traditionally associated with opportunistic infection during the temporal suppression of immune function after prolonged exercise. There is little evidence for this, and a competing noninfectious hypothesis has been proposed, whereby the exercise-induced immune system modulations favor the development of atopy and allergic disease, which manifests as URT symptoms. The aim of this study was to examine the association between allergy and URT symptoms in runners after an endurance running event. Two hundred eight runners from the 2010 London Marathon completed the validated Allergy Questionnaire for Athletes (AQUA) and had serum analyzed for total and specific immunoglobulin E response to common inhalant allergens. Participants who completed the marathon and nonrunning controls who lived in the same household were asked to complete a diary on URT symptoms. Forty percent of runners had allergy as defined by both a positive AQUA and elevated specific immunoglobulin E. Forty-seven percent of runners experienced URT symptoms after the marathon. A positive AQUA was a significant predictor of postmarathon URT symptoms in runners. Only 19% of nonrunning controls reported symptoms. The prevalence of allergy in recreational marathon runners was similar to that in elite athletes and higher than that in the general population. There was a strong association between a positive AQUA and URT symptoms. The low proportion of households in which both runners and nonrunners were symptomatic suggests that the nature of symptoms may be allergic or inflammatory based rather than infectious. Allergy is a treatable condition, and its potential effect on performance and health may be avoided by accurate clinical diagnosis and management. Both athletes' and coaches' awareness of the potential implications of poorly managed allergy needs to be raised.

  4. Comparison of running and cycling economy in runners, cyclists, and triathletes.

    PubMed

    Swinnen, Wannes; Kipp, Shalaya; Kram, Rodger

    2018-07-01

    Exercise economy is one of the main physiological factors determining performance in endurance sports. Running economy (RE) can be improved with running-specific training, while the improvement of cycling economy (CE) with cycling-specific training is controversial. We investigated whether exercise economy reflects sport-specific skills/adaptations or is determined by overall physiological factors. We compared RE and CE in 10 runners, 9 cyclists and 9 triathletes for running at 12 km/h and cycling at 200 W. Gross rates of oxygen consumption and carbon dioxide production were collected and used to calculate gross metabolic rate in watts for both running and cycling. Runners had better RE than cyclists (917 ± 107 W vs. 1111 ± 159 W) (p < 0.01). Triathletes had intermediate RE values (1004 ± 98 W) not different from runners or cyclists. CE was not different (p = 0.20) between the three groups (runners: 945 ± 60 W; cyclists: 982 ± 44 W; triathletes: 979 ± 54 W). RE can be enhanced with running-specific training, but CE is independent of cycling-specific training.

  5. Training Habits and Injury Experience in Distance Runners: Age- and Sex-Related Factors.

    ERIC Educational Resources Information Center

    Walter, Stephen D.

    1988-01-01

    An 80-item questionnaire was used to study variations by age and sex in the training habits and injury experience of 688 adult distance runners. The results are analyzed according to these variables. Methodology is discussed. This is part of a longitudinal study of 1,700 runners. (Author/JL)

  6. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    NASA Technical Reports Server (NTRS)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  7. ACCURACY OF SELF-REPORTED FOOT STRIKE PATTERN IN INTERCOLLEGIATE AND RECREATIONAL RUNNERS DURING SHOD RUNNING

    PubMed Central

    Bade, Michael B.; Aaron, Katie

    2016-01-01

    ABSTRACT Background Clinicians are interested in the foot strike pattern (FSP) in runners because of the suggested relationship between the strike pattern and lower extremity injury. Purpose The purpose of this study was to assess the ability of collegiate cross-country runners and recreational runners to self-report their foot strike pattern during running. Study Design Cross-sectional Study Methods Twenty-three collegiate cross-country and 23 recreational runners voluntarily consented to participate. Inclusion criteria included running at least 18 miles per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury three months prior to the start of the study. All participants completed a pre-test survey to indicate their typical foot strike pattern during a training run (FSPSurvey). Prior to running, reflective markers were placed on the posterior midsole and the vamp of the running shoe. A high-speed camera was used to film each runner in standing and while running at his or her preferred speed on a treadmill. The angle between the vector formed by the two reflective markers and the superior surface of the treadmill was used to calculate the foot strike angle (FSA). To determine the foot strike pattern from the video data (FSPVideo), the static standing angle was subtracted from the FSA at initial contact of the shoe on the treadmill. In addition to descriptive statistics, percent agreement and Chi square analysis was used to determine distribution differences between the video analysis results and the survey. Results The results of the chi-square analysis on the distribution of the FSPSurvey in comparison to the FSPVideo were significantly different for both the XCRunners (p < .01; Chi-square = 8.77) and the REC Runners (p < .0002; Chi-square = 16.70). The cross-country and recreational runners could correctly self-identified their foot strike pattern 56.5% and 43.5% of the time

  8. Numerical and experimental evidence of the inter-blade cavitation vortex development at deep part load operation of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2016-11-01

    Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.

  9. Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners

    PubMed Central

    Arstikyte, Justina; Vaitkaitiene, Egle; Vaitkaitis, Dinas

    2017-01-01

    We aimed to evaluate changes in sublingual microcirculation induced by a marathon race. Thirteen healthy male controls and 13 male marathon runners volunteered for the study. We performed sublingual microcirculation, using a Cytocam-IDF device (Braedius Medical, Huizen, Netherlands), and systemic hemodynamic measurements four times: 24 hours prior to their participation in the Kaunas Marathon (distance: 41.2 km), directly after finishing the marathon, 24 hours after the marathon, and one week after the marathon. The marathon runners exhibited a higher functional capillary density (FCD) and total vascular density of small vessels at the first visit compared with the controls. Overall, we did not find any changes in sublingual microcirculation of the marathon runners at any of the other visits. However, in a subgroup of marathon runners with a decreased FCD compared to the subgroup with increased FCD, the subgroup with decreased FCD had shorter running time (190.37 ± 30.2 versus 221.80 ± 23.4 min, p = 0.045), ingested less fluids (907 ± 615 versus 1950 ± 488 mL, p = 0.007) during the race, and lost much more weight (−2.4 ± 1.3 versus −1.0 ± 0.8 kg, p = 0.041). Recreational marathon running is not associated with an alteration of sublingual microcirculation. However, faster running and dehydration may be crucial for further impairing microcirculation. PMID:28828386

  10. What do recreational runners think about risk factors for running injuries? A descriptive study of their beliefs and opinions.

    PubMed

    Saragiotto, Bruno Tirotti; Yamato, Tiê Parma; Lopes, Alexandre Dias

    2014-10-01

    Qualitative study based on semi-structured interviews. To describe the beliefs and opinions of runners about risk factors associated with running injuries. Despite the health benefits of running, a high prevalence of injury has been reported in runners. Preventive strategies for running injuries may be more successful with a better knowledge of runners' beliefs. A semi-structured interview of recreational runners was based on the question, "What do you think can cause injuries in runners?" Analysis of the interviews was performed in 3 steps: (1) organizing the data into thematic units, (2) reading and reorganizing the data according to frequency of citation, and (3) interpreting and summarizing the data. The runner interviews were continued until no new beliefs and opinions of runners regarding injuries were being added to the data, indicating saturation of the topic. A total of 95 recreational runners (65 men, 30 women) between the ages of 19 and 71 years were interviewed. Of those interviewed, the average running experience was 5.5 years and approximately 45% had experienced a running-related injury in the past. The factors suggested by the runners were divided into extrinsic and intrinsic factors. The most cited extrinsic factors were "not stretching," "excess of training," "not warming up," "lack of strength," and "wearing the wrong shoes." For the intrinsic factors, the main terms cited were "not respecting the body's limitations" and "foot-type changes." Recreational runners mainly attributed injury to factors related to training, running shoes, and exceeding the body's limits. Knowing the factors identified in this study may contribute to the development of better educational strategies to prevent running injuries, as some of the runners' beliefs are not supported by the research literature.

  11. Rub tolerance evaluation of two sintered NiCrAl gas path seal materials. [wear tests of gas turbine engine seals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.

  12. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    PubMed

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  13. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    PubMed

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (P<0.004). There was an increase in the longitudinal ankle joint contact force when they landed with forefoot (P=0.003). However, there was no significant difference in both peak tibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The nature and response to therapy of 196 consecutive injuries seen at a runners' clinic.

    PubMed

    Pinshaw, R; Atlas, V; Noakes, T D

    1984-02-25

    We studied a series of 196 running injuries to determine the nature of the common injuries, the type of runners with the different injuries, specific factors causing the most common injuries, and the response of these injuries to correction of the biomechanical abnormalities believed to cause them. The four commonest injuries were 'runner's knee' (peripatellar pain syndrome) (22%), 'shin splints' (posterior tibial stress syndrome) (18%), the iliotibial band friction syndrome (12%), and chronic muscle injuries (11%). Within 8 weeks of following the biomechanically based treatment regimen, between 62% and 77% of the runners with the commonest injuries were completely pain-free and running almost the same training distance as before injury. Only 13% of runners were not helped at all, but most of these had not adhered to the prescribed treatment. The response of the iliotibial band syndrome to treatment was less predictable, however, and some runners who followed the advice faithfully were not helped. These data therefore confirm the importance of biomechanical factors in running injuries and indicate that practitioners involved in the care of injured runners need to know not only how to diagnose the conditions accurately but also which running shoes are appropriate for the different running injuries, how to detect subtle lower limb structural abnormalities, in particular foot abnormalities and leg-length inequalities, and when to prescribe in-shoe orthoses.

  15. Standardized Fault-Tolerant Sensing Nodes for an Intelligent Turbine Engine Control System (Preprint)

    DTIC Science & Technology

    2013-05-01

    representation of a centralized control system on a turbine engine. All actuators and sensors are point-to-point cabled to the controller ( FADEC ) which...electronics themselves. Figure 1: Centralized Control System Each function resides within the FADEC and uses Unique Point-to-Point Analog...distributed control system on the same turbine engine. The actuators and sensors interface to Smart Nodes which, in turn communicate to the FADEC via

  16. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  17. Cardiac and renal function in a large cohort of amateur marathon runners.

    PubMed

    Hewing, Bernd; Schattke, Sebastian; Spethmann, Sebastian; Sanad, Wasiem; Schroeckh, Sabrina; Schimke, Ingolf; Halleck, Fabian; Peters, Harm; Brechtel, Lars; Lock, Jürgen; Baumann, Gert; Dreger, Henryk; Borges, Adrian C; Knebel, Fabian

    2015-03-21

    Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. A total of 167 participants of the Berlin-Marathon (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT-proBNP and cystatin C). Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function.

  18. Optimization of Gate, Runner and Sprue in Two-Plate Family Plastic Injection Mould

    NASA Astrophysics Data System (ADS)

    Amran, M. A.; Hadzley, M.; Amri, S.; Izamshah, R.; Hassan, A.; Samsi, S.; Shahir, K.

    2010-03-01

    This paper describes the optimization size of gate, runner and sprue in two-plate family plastic injection mould. An Electronic Cash Register (ECR) plastic product was used in this study, which there are three components in electronic cast register plastic product consist of top casing, bottom casing and paper holder. The objectives of this paper are to find out the optimum size of gate, runner and sprue, to locate the optimum layout of cavities and to recognize the defect problems due to the wrong size of gate, runner and sprue. Three types of software were used in this study, which Unigraphics software as CAD tool was used to design 3D modeling, Rhinoceros software as post processing tool was used to design gate, runner and sprue and Moldex software as simulation tool was used to analyze the plastic flow. As result, some modifications were made on size of feeding system and location of cavity to eliminate the short- shot, over filling and welding line problems in two-plate family plastic injection mould.

  19. Physiological and training characteristics of recreational marathon runners.

    PubMed

    Gordon, Dan; Wightman, Sarah; Basevitch, Itay; Johnstone, James; Espejo-Sanchez, Carolina; Beckford, Chelsea; Boal, Mariette; Scruton, Adrian; Ferrandino, Mike; Merzbach, Viviane

    2017-01-01

    The aim of this study was to examine the physical and training characteristics of recreational marathon runners within finish time bandings (2.5-3 h, 3-3.5 h, 3.5-4 h, 4-4.5 h and >4.5 h). A total of 97 recreational marathon runners (age 42.4 ± 9.9 years; mass 69.2 ± 11.3 kg; stature 172.8 ± 9.1 cm), with a marathon finish time of 229.1 ± 48.7 min, of whom n = 34 were female and n = 63 were male, completed an incremental treadmill test for the determination of lactate threshold (LT1), lactate turn point (LT2) and running economy (RE). Following a 7-min recovery, they completed a test to volitional exhaustion starting at LT2 for the assessment of [Formula: see text]. In addition, all participants completed a questionnaire gathering information on their current training regimes exploring weekly distances, training frequencies, types of sessions, longest run in a week, with estimations of training speed, and load and volume derived from these data. Training frequency was shown to be significantly greater for the 2.5-3 h group compared to the 3.5-4 h runners ( P < 0.001) and >4.5 h group ( P = 0.004), while distance per session (km·session -1 ) was significantly greater for the 2.5-3 h group (16.1 ± 4.2) compared to the 3.5-4 h group (15.5 ± 5.2; P = 0.01) and >4.5 h group (10.3 ± 2.6; P = 0.001). Race speed correlated with LT1 ( r = 0.791), LT2 ( r = 0.721) and distance per session ( r = 0.563). The data highlight profound differences for key components of marathon running ([Formula: see text], LT1, LT2, RE and % [Formula: see text]) within a group of recreational runners with the discriminating training variables being training frequency and the absolute training speed.

  20. Initiating running barefoot: Effects on muscle activation and impact accelerations in habitually rearfoot shod runners.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Priego Quesada, José Ignacio; Giménez, José Vicente; Aparicio, Inma; Jimenez-Perez, Irene; Pérez-Soriano, Pedro

    2016-11-01

    Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.

  1. Incidence of Running-Related Injuries Per 1000 h of running in Different Types of Runners: A Systematic Review and Meta-Analysis.

    PubMed

    Videbæk, Solvej; Bueno, Andreas Moeballe; Nielsen, Rasmus Oestergaard; Rasmussen, Sten

    2015-07-01

    No systematic review has identified the incidence of running-related injuries per 1000 h of running in different types of runners. The purpose of the present review was to systematically search the literature for the incidence of running-related injuries per 1000 h of running in different types of runners, and to include the data in meta-analyses. A search of the PubMed, Scopus, SPORTDiscus, PEDro and Web of Science databases was conducted. Titles, abstracts, and full-text articles were screened by two blinded reviewers to identify prospective cohort studies and randomized controlled trials reporting the incidence of running-related injuries in novice runners, recreational runners, ultra-marathon runners, and track and field athletes. Data were extracted from all studies and comprised for further analysis. An adapted scale was applied to assess the risk of bias. After screening 815 abstracts, 13 original articles were included in the main analysis. Running-related injuries per 1000 h of running ranged from a minimum of 2.5 in a study of long-distance track and field athletes to a maximum of 33.0 in a study of novice runners. The meta-analyses revealed a weighted injury incidence of 17.8 (95% confidence interval [CI] 16.7-19.1) in novice runners and 7.7 (95% CI 6.9-8.7) in recreational runners. Heterogeneity in definitions of injury, definition of type of runner, and outcome measures in the included full-text articles challenged comparison across studies. Novice runners seem to face a significantly greater risk of injury per 1000 h of running than recreational runners.

  2. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome.

    PubMed

    Miller, Ross H; Meardon, Stacey A; Derrick, Timothy R; Gillette, Jason C

    2008-08-01

    Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.

  3. Is the rearfoot pattern the most frequently foot strike pattern among recreational shod distance runners?

    PubMed

    de Almeida, Matheus Oliveira; Saragiotto, Bruno Tirotti; Yamato, Tiê Parma; Lopes, Alexandre Dias

    2015-02-01

    To determine the distribution of the foot strike patterns among recreational shod runners and to compare the personal and training characteristics between runners with different foot strike patterns. Cross-sectional study. Areas of running practice in São Paulo, Brazil. 514 recreational shod runners older than 18 years and free of injury. Foot strike patterns were evaluated with a high-speed camera (250 Hz) and photocells to assess the running speed of participants. Personal and training characteristics were collected through a questionnaire. The inter-rater reliability of the visual foot strike pattern classification method was 96.7% and intra-rater reliability was 98.9%. 95.1% (n = 489) of the participants were rearfoot strikers, 4.1% (n = 21) were midfoot strikers, and four runners (0.8%) were forefoot strikers. There were no significant differences between strike patterns for personal and training characteristics. This is the first study to demonstrate that almost all recreational shod runners were rearfoot strikers. The visual method of evaluation seems to be a reliable and feasible option to classify foot strike pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ceramic Parts for Turbines

    NASA Technical Reports Server (NTRS)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  5. Excessive exercise habits of runners as new signs of hypertension and arrhythmia.

    PubMed

    Kim, Young-Joo; Kim, Chul-Hyun; Park, Kyoung-Min

    2016-08-15

    Excessive exercise may induce arrhythmia, and this risk is higher in middle-aged people. The study aim was to compare the exercise characteristics of middle-aged runners participating in excessive endurance exercise. The subjects of this study were 552 runners (mean age; 49.0±7.4years) without structural heart disease who performed exercise at least twice per week, had consistently exercised for at least three years, and had finished at least five marathons. The arrhythmia runner group (ARG, n=14) and normal runner group (NRG, n=538) were compared with regard to hemodynamic response, cardiorespiratory fitness level, training history, number of finished races, finishing times, and exercise habits. The mean resting systolic (134.0±15.8mmHg) and diastolic (85.8±10.9mmHg) blood pressure values indicated pre-hypertension, while the mean maximal SBP (213.7±27.4mmHg) values indicated exercise-induced hypertension. The VO2max was significantly higher and the maximal DBP was significantly lower in the ARG than in the NRG (p<0.05). Training history was significantly longer in the ARG than in the NRG (p<0.05), while the number of finished marathons, the finishing times in marathons and the exercise frequency per week didn't differ significantly between the two groups. Exercise intensity was significantly higher in the ARG than in the NRG (p<0.01). Middle-aged long-distance runners showed pre-hypertension and exercise-induced hypertension, and the ARG had higher VO2max values, greater exercise intensities, and longer training histories than the NRG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  7. Dissociation between running economy and running performance in elite Kenyan distance runners.

    PubMed

    Mooses, Martin; Mooses, Kerli; Haile, Diresibachew Wondimu; Durussel, Jérôme; Kaasik, Priit; Pitsiladis, Yannis Paul

    2015-01-01

    The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml∙kg(-1)∙min(-1)) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r(2) = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (t(max)) were not associated with running performance (r = -0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.

  8. Serum lipid levels and steroidal hormones in women runners with irregular menses.

    PubMed

    Thompson, D L; Snead, D B; Seip, R L; Weltman, J Y; Rogol, A D; Weltman, A

    1997-02-01

    This study compared the lipid profile of women runners with menstrual cycle irregularities with their normally menstruating counterparts. Relationships among selected steroid hormones and serum lipid levels in 10 eumenorrheic (EU) and 8 oligo-/amenorrheic (O/A) women runners and 6 eumenorrheic controls (CON) were examined. Serum 17 beta-estradiol (E2), progesterone (Prog), and dehydroepiandrosterone-sulfate (DHEAS) concentrations were determined in daily blood samples for 21 days, and integrated concentrations were calculated. Fasting blood samples were analyzed for total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), HDL2, HDL3, triglycerides (Trig), and apolipoproteins A-1, A-II, and B. The O/A group had significantly lower E2 and Prog than EU or CON groups. Women in the CON group had lower HDL-C and HDL3 than the runners. With all women grouped together, E2 was not significantly correlated with any measured blood lipid parameters. On the other hand, DHEAS was significantly correlated with HDL-C, HDL2, and apolipoprotein A-I. These data demonstrate that women runners, regardless of menstrual cycle status, exhibit higher HDL-C concentrations than CON and supports previous research reporting a positive association between DHEAS and HDL-C.

  9. Predisposing Risk Factors and Stress Fractures in Division I Cross Country Runners.

    PubMed

    Giffin, Kaci L; Knight, Kathy B; Bass, Martha A; Valliant, Melinda W

    2017-11-11

    The purpose of this study was to explore factors associated with increased stress fractures in collegiate cross country runners. Participants in this study were 42 male and female cross country runners at a Division I university. Each athlete completed a questionnaire regarding smoking status, vitamin/mineral intake, previous stress fracture history, birth control usage, menstrual status, and demographic information. Nutritional assessment via a 3-day food record and measurements of whole body, lumbar spine, and hip bone mineral densities (BMD) were also conducted on each athlete. Results indicated that 40% of the female and 35% of the male runners reported a history of stress fracture, and that all of these did not meet the recommended daily energy intake or adequate intakes for calcium or Vitamin D required for their amount of training. Two-tailed t-test found statistically higher incidences of lumbar spine BMD in males and females whose daily calcium and Vitamin D intakes were below minimum requirements as well as for women whose caloric intake was below the required level. When data on the lumbar spine was evaluated, 31% of participants (31.8% of the male and 30% of the female runners) were identified as having osteopenia and 4.8% with osteoporosis. Results warrant a need for future longitudinal studies.

  10. Foot strike patterns of runners at the 15-km point during an elite-level half marathon.

    PubMed

    Hasegawa, Hiroshi; Yamauchi, Takeshi; Kraemer, William J

    2007-08-01

    There are various recommendations by many coaches regarding foot landing techniques in distance running that are meant to improve running performance and prevent injuries. Several studies have investigated the kinematic and kinetic differences between rearfoot strike (RFS), midfoot strike (MFS), and forefoot strike (FFS) patterns at foot landing and their effects on running efficiency on a treadmill and over ground conditions. However, little is known about the actual condition of the foot strike pattern during an actual road race at the elite level of competition. The purpose of the present study was to document actual foot strike patterns during a half marathon in which elite international level runners, including Olympians, compete. Four hundred fifteen runners were filmed by 2 120-Hz video cameras in the height of 0.15 m placed at the 15.0-km point and obtained sagittal foot landing and taking off images for 283 runners. Rearfoot strike was observed in 74.9% of all analyzed runners, MFS in 23.7%, and FFS in 1.4%. The percentage of MFS was higher in the faster runners group, when all runners were ranked and divided into 50 runner groups at the 15.0-km point of the competition. In the top 50, which included up to the 69th place runner in actual order who passed the 15-km point at 45 minutes, 53 second (this speed represents 5.45 m x s(-1), or 15 minutes, 17 seconds per 5 km), RFS, MFS, and FFS were 62.0, 36.0, and 2.0%, respectively. Contact time (CT) clearly increased for the slower runners, or the placement order increased (r = 0.71, p < or = 0.05). The CT for RFS + FFS for every 50 runners group significantly increased with increase of the placement order. The CT for RFS was significantly longer than MFS + FFS (200.0 +/- 21.3 vs. 183.0 +/- 16 millisecond). Apparent inversion (INV) of the foot at the foot strike was observed in 42% of all runners. The percentage of INV for MFS was higher than for RFS and FFS (62.5, 32.0, and 50%, respectively). The CT with INV

  11. Body Mass, Training, Menses, and Bone in Adolescent Runners: A 3-y Follow-Up

    USDA-ARS?s Scientific Manuscript database

    Abstract: Endurance runners with low bone mass during adolescence may be at risk of developing a low peak bone mineral density (BMD) as a young adult. However, it is possible that they mature late and undergo delayed bone mass accumulation. PURPOSE: We evaluated 40 adolescent runners (age 15.9 ± 0....

  12. Underlying Chronic Disease, Medication Use, History of Running Injuries and Being a More Experienced Runner Are Independent Factors Associated With Exercise-Associated Muscle Cramping: A Cross-Sectional Study in 15778 Distance Runners.

    PubMed

    Schwellnus, Martin P; Swanevelder, Sonja; Jordaan, Esme; Derman, Wayne; Van Rensburg, Dina C Janse

    2018-05-01

    Exercise-associated muscle cramping (EAMC) is a significant medical complication in distance runners, yet factors associated with EAMC are poorly documented. To document risk factors associated with EAMC in runners. Cross-sectional study. Two ocean races (21.1 km, and 56 km). Fifteen thousand seven hundred seventy-eight race entrants. Participants completed a prerace medical history screening tool including: training, cardiovascular disease (CVD), risk factors for, and symptoms of CVD, history of diseases affecting major organ systems, cancer, allergies, medication use, and running injury. Runners were grouped as having a history of EAMC (hEAMC group = 2997) and a control group (Control = 12 781). Independent factors associated with a higher prevalence ratio (PR) of hEAMC were any risk factor for CVD (PR = 1.16; P = 0.0002), symptoms of CVD (PR = 2.38; P < 0.0001), respiratory disease (PR = 1.33; P < 0.0001), gastrointestinal disease (PR = 1.86; P < 0.0001), nervous system or psychiatric disease (PR = 1.51; P < 0.0001), kidney or bladder disease, (PR = 1.60; P < 0.0001), haematological or immune disease (PR = 1.54; P = 0.0048), cancer (PR = 1.34; P = 0.0031), allergies (PR = 1.37; P < 0.0001), regular medication use (PR = 1.80; P < 0.0001), statin use (PR = 1.26; P = 0.0127), medication use during racing (PR = 1.88; P < 0.0001), running injury (PR = 1.66; P < 0.0001), muscle injury (PR = 1.82; P < 0.0001), tendon injury (PR = 1.62; P < 0.0001), and runners in the experienced category (PR = 1.22; P < 0.0001). Novel risk factors associated with EAMC in distance runners were underlying chronic disease, medication use, a history of running injuries, and experienced runners. These factors must be identified as possible associations, and therefore be considered in the diagnosis and treatment of EAMC.

  13. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel J.

    can occur more abruptly in the model than the prototype, due to lack of Froude similitude between the two. When severe cavitation occurs, clear differences are observed in vapor content between the scales. A stage-by-stage performance decomposition is conducted to analyze the losses within individual components of each scale of the machine. As cavitation becomes more severe, the losses in the draft tube account for an increasing amount of the total losses in the machine. More losses occur in the model draft tube as cavitation formation in the prototype draft tube is prevented by the larger hydrostatic pressure gradient across the machine. Additionally, unsteady Detached Eddy Simulations of the fully-coupled cavitating hydroturbine are performed for both scales. Both mesh and temporal convergence studies are provided. The temporal and spectral content of fluctuations in torque and pressure are monitored and compared between single-phase, cavitating, model, and prototype cases. A shallow draft tube induced runner imbalance results in an asymmetric vapor distribution about the runner, leading to more extensive growth and collapse of vapor on any individual blade as it undergoes a revolution. Unique frequency components manifest and persist through the entire machine only when cavitation is present in the hub vortex. Large maximum pressure spikes, which result from vapor collapse, are observed on the blade surfaces in the multiphase simulations, and these may be a potential source of cavitation damage and erosion. Multiphase CFD is shown to be an accurate and effective technique for simulating and analyzing cavitating flow in Francis-class hydraulic turbines. It is recommended that it be used as an industrial tool to supplement model cavitation experiments for all types of hydraulic turbines. Moreover, multiphase CFD can be equally effective as a research tool, to investigate mechanisms of cavitating hydraulic turbines that are not understood, and to uncover unique new

  14. Transient myocardial tissue and function changes during a marathon in less fit marathon runners.

    PubMed

    Gaudreault, Valerie; Tizon-Marcos, Helena; Poirier, Paul; Pibarot, Philippe; Gilbert, Philippe; Amyot, Marc; Rodés-Cabau, Josep; Després, Jean-Pierre; Bertrand, Olivier; Larose, Eric

    2013-10-01

    Although regular physical activity improves health, strenuous exercise might transiently increase cardiac risk. Training and fitness might provide protection. We prospectively studied 20 recreational marathon runners without known cardiovascular disease or symptoms: at peak training before, immediately after, and 3 months after a 42.2-km marathon. Changes in global/segmental myocardial function, edema, resting perfusion, and fibrosis were measured. At peak training, runners exercised 8.1 ± 2.3 hours and 62 ± 18 km per week with mean maximal oxygen consumption (VO2max) of 53.2 ± 8.3 mL/kg/min. In response to the marathon, global left ventricular and right ventricular ejection fraction decreased in half of the runners; these runners had poorer peak training distance, training time, and fitness level. Change in global left ventricular ejection fraction was associated with VO2max. Overall, 36% of segments developed edema, 53% decreased function, and 59% decreased perfusion. Significant agreement was observed between segment decreasing function, decreasing perfusion, and developing edema. Myocardial changes were reversible at 3 months. Completing a marathon leads to localized myocardial edema, diminished perfusion, and decreased function occurring more extensively in less trained and fit runners. Although reversible, these changes might contribute to the transient increase in cardiac risk reported during sustained vigorous exercise. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  15. Relationship between Achilles tendon properties and foot strike patterns in long-distance runners.

    PubMed

    Kubo, Keitaro; Miyazaki, Daisuke; Tanaka, Shigeharu; Shimoju, Shozo; Tsunoda, Naoya

    2015-01-01

    The purpose of this study was to investigate the relationship between Achilles tendon properties and foot strike patterns in long-distance runners. Forty-one highly trained male long-distance runners participated in this study. Elongation of the Achilles tendon and aponeurosis of the medial gastrocnemius muscle were measured using ultrasonography, while the participants performed ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force and tendon elongation during the ascending phase was fit to a linear regression, the slope of which was defined as stiffness. In addition, the cross-sectional area of the Achilles tendon was measured using ultrasonography. Foot strike patterns (forefoot, midfoot and rearfoot) during running were determined at submaximal velocity (18 km · h(-1)) on a treadmill. The number of each foot strike runner was 12 for the forefoot (29.3%), 12 for the midfoot (29.3%) and 17 for the rearfoot (41.5%). No significant differences were observed in the variables measured for the Achilles tendon among the three groups. These results suggested that the foot strike pattern during running did not affect the morphological or mechanical properties of the Achilles tendon in long-distance runners.

  16. Mind the gap - tip leakage vortex in axial turbines

    NASA Astrophysics Data System (ADS)

    Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.

    2014-03-01

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.

  17. Shorter Ground Contact Time and Better Running Economy: Evidence From Female Kenyan Runners.

    PubMed

    Mooses, Martin; Haile, Diresibachew W; Ojiambo, Robert; Sang, Meshack; Mooses, Kerli; Lane, Amy R; Hackney, Anthony C

    2018-06-25

    Mooses, M, Haile, DW, Ojiambo, R, Sang, M, Mooses, K, Lane, AR, and Hackney, AC. Shorter ground contact time and better running economy: evidence from female Kenyan runners. J Strength Cond Res XX(X): 000-000, 2018-Previously, it has been concluded that the improvement in running economy (RE) might be considered as a key to the continued improvement in performance when no further increase in V[Combining Dot Above]O2max is observed. To date, RE has been extensively studied among male East African distance runners. By contrast, there is a paucity of data on the RE of female East African runners. A total of 10 female Kenyan runners performed 3 × 1,600-m steady-state run trials on a flat outdoor clay track (400-m lap) at the intensities that corresponded to their everyday training intensities for easy, moderate, and fast running. Running economy together with gait characteristics was determined. Participants showed moderate to very good RE at the first (202 ± 26 ml·kg·km) and second (188 ± 12 ml·kg·km) run trials, respectively. Correlation analysis revealed significant relationship between ground contact time (GCT) and RE at the second run (r = 0.782; p = 0.022), which represented the intensity of anaerobic threshold. This study is the first to report the RE and gait characteristics of East African female athletes measured under everyday training settings. We provided the evidence that GCT is associated with the superior RE of the female Kenyan runners.

  18. Neuromotor control of gluteal muscles in runners with achilles tendinopathy.

    PubMed

    Franettovich Smith, Melinda M; Honeywill, Conor; Wyndow, Narelle; Crossley, Kay M; Creaby, Mark W

    2014-03-01

    The purpose of this study was to compare the neuromotor control of the gluteus medius (GMED) and gluteus maximus (GMAX) muscles in runners with Achilles tendinopathy to that of healthy controls. Fourteen male runners with Achilles tendinopathy and 19 healthy male runners (control) ran overground while EMG of GMED and GMAX was recorded. Three temporal variables were identified via visual inspection of EMG data: (i) onset of muscle activity (onset), (ii) offset of muscle activity (offset), and (iii) duration of muscle activity (duration). A multivariate analysis of covariance with between-subject factor of group (Achilles tendinopathy, control) and variables of onset, offset, and duration was performed for each muscle. Age, weight, and height were included as covariates, and α level was set at 0.05. The Achilles tendinopathy group demonstrated a delay in the activation of the GMED relative to heel strike (P < 0.001) and a shorter duration of activation (P < 0.001) compared to that of the control group. GMED offset time relative to heel strike was not different between the groups (P = 0.063). For GMAX, the Achilles tendinopathy group demonstrated a delay in its onset (P = 0.008), a shorter duration of activation (P = 0.002), and earlier offset (P < 0.001) compared to the control group. This study provides preliminary evidence of altered neuromotor control of the GMED and GMAX muscles in male runners with Achilles tendinopathy. Although further prospective studies are required to discern the causal nature of this relationship, this study highlights the importance of considering neuromotor control of the gluteal muscles in the assessment and management of patients with Achilles tendinopathy.

  19. On the upper part load vortex rope in Francis turbine: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and

  20. Runners in their forties dominate ultra-marathons from 50 to 3,100 miles

    PubMed Central

    Zingg, Matthias Alexander; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald; Knechtle, Beat

    2014-01-01

    OBJECTIVES: This study investigated performance trends and the age of peak running speed in ultra-marathons from 50 to 3,100 miles. METHODS: The running speed and age of the fastest competitors in 50-, 100-, 200-, 1,000- and 3,100-mile events held worldwide from 1971 to 2012 were analyzed using single- and multi-level regression analyses. RESULTS: The number of events and competitors increased exponentially in 50- and 100-mile events. For the annual fastest runners, women improved in 50-mile events, but not men. In 100-mile events, both women and men improved their performance. In 1,000-mile events, men became slower. For the annual top ten runners, women improved in 50- and 100-mile events, whereas the performance of men remained unchanged in 50- and 3,100-mile events but improved in 100-mile events. The age of the annual fastest runners was approximately 35 years for both women and men in 50-mile events and approximately 35 years for women in 100-mile events. For men, the age of the annual fastest runners in 100-mile events was higher at 38 years. For the annual fastest runners of 1,000-mile events, the women were approximately 43 years of age, whereas for men, the age increased to 48 years of age. For the annual fastest runners of 3,100-mile events, the age in women decreased to 35 years and was approximately 39 years in men. CONCLUSION: The running speed of the fastest competitors increased for both women and men in 100-mile events but only for women in 50-mile events. The age of peak running speed increased in men with increasing race distance to approximately 45 years in 1,000-mile events, whereas it decreased to approximately 39 years in 3,100-mile events. In women, the upper age of peak running speed increased to approximately 51 years in 3,100-mile events. PMID:24626948

  1. 75 FR 57745 - FPL Energy Maine Hydro LLC; Notice of Application for Amendment of License and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Unit 3 of the project by rewinding the generator and replacing the turbine runner with a more efficient runner. The proposed upgrade would increase the installed and hydraulic capacities of the project by 5.7...

  2. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environmentmore » by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is

  3. Prevalence in running events and running performance of endurance runners following a vegetarian or vegan diet compared to non-vegetarian endurance runners: the NURMI Study.

    PubMed

    Wirnitzer, Katharina; Seyfart, Tom; Leitzmann, Claus; Keller, Markus; Wirnitzer, Gerold; Lechleitner, Christoph; Rüst, Christoph Alexander; Rosemann, Thomas; Knechtle, Beat

    2016-01-01

    Beneficial and detrimental effects of various vegetarian and vegan diets on the health status are well known. Considering the growing background numbers of vegetarians and vegans, the number of vegetarian and vegan runners is likely to rise, too. Therefore, the Nutrition and Running High Mileage (NURMI) Study was designed as a comparative study to investigate the prevalence of omnivores, vegetarians, and vegans in running events and to detect potential differences in running performance comparing these three subgroups. The NURMI Study will be conducted in three steps following a cross-sectional design. Step 1 will determine epidemiological aspects of endurance runners (any distance) using a short standardized questionnaire. Step 2 will investigate dietary habits and running history from eligible participants (capable of running a half-marathon at least) using an extended standardized questionnaire. Step 3 will collect data after a running event on finishing time and final ranking as well as a post-race rating of perceived exertion, mood status, nutrient and fluid intake during the race. Our study will provide a major contribution to overcome the lack of data on the prevalence and running performance of vegetarian and vegan runners in endurance running events. We estimate the prevalence of vegetarians and vegans participating in a running event to be less compared to the respective proportion of vegetarians and vegans to the general population. Furthermore we will validate the subject's self-assessment of their respective diet. This comparative study may identify possible effects of dietary behavior on running performance und may detect possible differences between the respective subgroups: omnivorous, vegetarian and vegan runners. Trial registration Current controlled trials, ISRCTN73074080.

  4. VO2 kinetics determined by PRBS techniques differentiate elite endurance runners from elite sprinters.

    PubMed

    Edwards, A M; Challis, N V; Chapman, J H; Claxton, D B; Fysh, M L

    1999-01-01

    The aim of the study was to examine whether a measure of oxygen uptake (VO2) kinetics could differentiate between 12 elite male endurance (3000-10,000 m) runners and 12 elite male sprint (100-400 m) runners using a pseudo random binary sequence (PRBS) exercise protocol. All exercise tests were performed on an electrically braked cycle ergometer at a constant pedal frequency of 1 Hz. The PRBS exercise intensities alternated between 25 W and 85 W for three consecutive PRBS cycles of 300 s. VO2 was measured breath-by-breath and results were analysed by Fourier techniques in the frequency domain. Blood lactate concentrations taken pre and post testing were below 2 mM. Significantly greater amplitude components were observed in the endurance runners than sprinters at frequencies 6.7 mHz (6.71 +/- 1.09 and 5.47 +/- 0.95 ml x min(-1) x W(-1), respectively) P<0.05 and 10 mHz (4.97 +/- 0.98 and 3.56 +/- 0.69 ml x min(-1) x W(-1) respectively) P<0.01. Phase shift components were significantly shorter in the endurance runners compared to the sprinters at frequency 3.3 mHz (-35.45 +/- 4.31 and -41.26 +/- 5.82 degrees respectively) P<0.05. The results of this study show that VO2 kinetics are differentially faster in elite endurance runners than in elite sprinters. This supports the development of the PRBS technique as a test of sports performance.

  5. Physiological and training characteristics of recreational marathon runners

    PubMed Central

    Gordon, Dan; Wightman, Sarah; Basevitch, Itay; Johnstone, James; Espejo-Sanchez, Carolina; Beckford, Chelsea; Boal, Mariette; Scruton, Adrian; Ferrandino, Mike; Merzbach, Viviane

    2017-01-01

    Purpose The aim of this study was to examine the physical and training characteristics of recreational marathon runners within finish time bandings (2.5–3 h, 3–3.5 h, 3.5–4 h, 4–4.5 h and >4.5 h). Materials and methods A total of 97 recreational marathon runners (age 42.4 ± 9.9 years; mass 69.2 ± 11.3 kg; stature 172.8 ± 9.1 cm), with a marathon finish time of 229.1 ± 48.7 min, of whom n = 34 were female and n = 63 were male, completed an incremental treadmill test for the determination of lactate threshold (LT1), lactate turn point (LT2) and running economy (RE). Following a 7-min recovery, they completed a test to volitional exhaustion starting at LT2 for the assessment of V˙O2max. In addition, all participants completed a questionnaire gathering information on their current training regimes exploring weekly distances, training frequencies, types of sessions, longest run in a week, with estimations of training speed, and load and volume derived from these data. Results Training frequency was shown to be significantly greater for the 2.5–3 h group compared to the 3.5–4 h runners (P < 0.001) and >4.5 h group (P = 0.004), while distance per session (km·session−1) was significantly greater for the 2.5–3 h group (16.1 ± 4.2) compared to the 3.5–4 h group (15.5 ± 5.2; P = 0.01) and >4.5 h group (10.3 ± 2.6; P = 0.001). Race speed correlated with LT1 (r = 0.791), LT2 (r = 0.721) and distance per session (r = 0.563). Conclusion The data highlight profound differences for key components of marathon running (V˙O2max, LT1, LT2, RE and % V˙O2max) within a group of recreational runners with the discriminating training variables being training frequency and the absolute training speed. PMID:29200895

  6. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    NASA Astrophysics Data System (ADS)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  7. Rearfoot striking runners are more economical than midfoot strikers.

    PubMed

    Ogueta-Alday, Ana; Rodríguez-Marroyo, José Antonio; García-López, Juan

    2014-03-01

    This study aimed to analyze the influence of foot strike pattern on running economy and biomechanical characteristics in subelite runners with a similar performance level. Twenty subelite long-distance runners participated and were divided into two groups according to their foot strike pattern: rearfoot (RF, n = 10) and midfoot (MF, n = 10) strikers. Anthropometric characteristics were measured (height, body mass, body mass index, skinfolds, circumferences, and lengths); physiological (VO2max, anaerobic threshold, and running economy) and biomechanical characteristics (contact and flight times, step rate, and step length) were registered during both incremental and submaximal tests on a treadmill. There were no significant intergroup differences in anthropometrics, VO2max, or anaerobic threshold measures. RF strikers were 5.4%, 9.3%, and 5.0% more economical than MF at submaximal speeds (11, 13, and 15 km·h respectively, although the difference was not significant at 15 km·h, P = 0.07). Step rate and step length were not different between groups, but RF showed longer contact time (P < 0.01) and shorter flight time (P < 0.01) than MF at all running speeds. The present study showed that habitually rearfoot striking runners are more economical than midfoot strikers. Foot strike pattern affected both contact and flight times, which may explain the differences in running economy.

  8. Increased Circulating Anti-inflammatory Cells in Marathon-trained Runners.

    PubMed

    Rehm, K; Sunesara, I; Marshall, G D

    2015-10-01

    Exercise training can alter immune function. Marathon training has been associated with an increased susceptibility to infectious diseases and an increased activity of inflammatory-based diseases, but the precise mechanisms are unknown. The purpose of this study was to compare levels of circulating CD4+  T cell subsets in the periphery of marathon-trained runners and matched non-marathon controls. 19 recreational marathoners that were 4 weeks from running a marathon and 19 demographically-matched healthy control subjects had the percentage of CD4+ T cell subpopulations (T helper 1, T helper 2, T helper 1/T helper 2 ratio, regulatory T cells, CD4+ IL10+, and CD4+ TGFβ+ (Transforming Growth Factor-beta) measured by flow cytometry. Marathon-trained runners had significantly less T helper 1 and regulatory T cells and significantly more T helper 2, CD4+ IL10+, and TGFβ+ cells than the control subjects. The alterations in the percentage of T helper 1 and T helper 2 cells led to a significantly lower T helper 1/T helper 2 ratio in the marathon-trained runners. These data suggest that endurance-based training can increase the number of anti-inflammatory cells. This may be a potential mechanism for the increased incidence of both infectious and inflammatory diseases observed in endurance athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners.

    PubMed

    Chlíbková, Daniela; Knechtle, Beat; Rosemann, Thomas; Tomášková, Ivana; Novotný, Jan; Žákovská, Alena; Uher, Tomáš

    2015-01-01

    Exercise-associated hyponatremia (EAH), rhabdomyolysis and renal failure appear to be a unique problem in ultra-endurance racers. We investigated the combined occurrence of EAH and rhabdomyolysis in seven different ultra-endurance races and disciplines (i.e. multi-stage mountain biking, 24-h mountain biking, 24-h ultra-running and 100-km ultra-running). Two (15.4%) ultra-runners (man and woman) from hyponatremic ultra-athletes (n = 13) and four (4%) ultra-runners (four men) from the normonatremic group (n = 100) showed rhabdomyolysis following elevated blood creatine kinase (CK) levels > 10,000 U/L without the development of renal failure and the necessity of a medical treatment. Post-race creatine kinase, plasma and urine creatinine significantly increased, while plasma [Na(+)] and creatine clearance decreased in hyponatremic and normonatremic athletes, respectively. The percentage increase of CK was higher in the hyponatremic compared to the normonatremic group (P < 0.05). Post-race CK levels were higher in ultra-runners compared to mountain bikers (P < 0.01), in faster normonatremic (P < 0.05) and older and more experienced hyponatremic ultra-athletes (P < 0.05). In all finishers, pre-race plasma [K(+)] was related to post-race CK (P < 0.05). Hyponatremic ultra-athletes tended to develop exercise-induced rhabdomyolysis more frequently than normonatremic ultra-athletes. Ultra-runners tended to develop rhabdomyolysis more frequently than mountain bikers. We found no association between post-race plasma [Na(+)] and CK concentration in both hypo- and normonatremic ultra-athletes.

  10. The effects of air pollutants on nasal functions of outdoor runners.

    PubMed

    Aydın, Salih; Cingi, Cemal; San, Turhan; Ulusoy, Seçkin; Orhan, Israfil

    2014-04-01

    Nowadays road running is becoming more and more popular in our country. Road running is mostly done under improper conditions. The aim of this study was to investigate the effects of running on nasal response combined with the effects of air pollutants. Twenty road runners were enrolled in the study. All subjects were male and between 20 and 41 years of age. They ran for 60 min on the right side of an avenue in the center of the city. It is in a residential area but has heavy traffic. One week later they were invited to run for 60 min through a running course away from traffic that is located outside the city center. Nasal resistances were measured by active anterior rhinomanometry. Nasal transport time was also measured by saccharin transport method. There was a reduction in nasal resistance, which was statistically significant in city center runners but was not statistically significant in those running outside of the city center after the exercise. Although nasal transport times were statistically shorter in both groups, there were no differences between two groups. Nowadays, everyone is advised to do sports. Due to increase in the number of breaths, the depth of breathing, and the reduction in nasal resistance in outdoor runners during exercise, harmful air pollution particles can easily reach the lower respiratory tract. Exercise is important for our health, but it should be noted that the environment in which we run is as important as doing sports for our health, especially in outdoor runners.

  11. Recent acute prerace systemic illness in runners increases the risk of not finishing the race: SAFER study V.

    PubMed

    Gordon, Leigh; Schwellnus, Martin; Swanevelder, Sonja; Jordaan, Esme; Derman, Wayne

    2017-09-01

    There are limited data on the negative effects of exercise in athletes with acute infective illness. The aim of this study was to determine whether a recently diagnosed prerace acute illness in runners affects the ability to finish a race. Runners were prospectively evaluated in the 3 days before the race for acute infective illness and then received participation advice using clinical criteria based on systemic or localised symptoms/signs. We compared the did-not-start and the did-not-finish frequencies of ill runners (Ill=172: localised=58.7%; systemic=41.3%) with that of a control group of runners (Con=53 734). Runners with a systemic illness were 10.4% more likely not to start compared with controls (29.6% vs 19.2%) (p=0.0073). The risk difference of not starting the race in runners who were advised not to run the race compared with controls was 37.3% (56.5% vs 19.2%, p<0.0001). Compared with controls, runners with illness had a significantly (p<0.05) greater risk (any illness (5.2% vs 1.6%), systemic illness (8.0% vs 1.6%), illness <24 hours before the race (11.1% vs 1.6%)) and relative risk (prevalence risk ratio) (any illness=3.4, systemic illness=4.9, systemic illness <24 hours before the race=7.0) of not finishing the race. Runners with prerace acute systemic illness, and particularly those diagnosed <24 hours before race day, are less likely to finish the race, indicating a reduction in race performance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Maximal and submaximal oxygen uptakes and blood lactate levels in elite male middle- and long-distance runners.

    PubMed

    Svedenhag, J; Sjödin, B

    1984-10-01

    Physiological characteristics of elite runners from different racing events were studied. Twenty-seven middle- and long-distance runners and two 400-m runners belonging to the Swedish national team in track and field were divided, according to their distance preferences, into six groups from 400 m up to the marathon. The maximal oxygen uptake (VO2 max, ml X kg-1 X min-1) on the treadmill was higher the longer the main distance except for the marathon runners (e.g., 800-1500-m group, 72.1; 5000-10,000-m group, 78.7 ml X kg-1 X min-1). Running economy evaluated from oxygen uptake measurements at 15 km/h (VO2 15) and 20 km/h (VO2 20) did not differ significantly between the groups even though VO2 15 tended to be lower in the long-distance runners. The running velocity corresponding to a blood lactate concentration of 4 mmol/l (vHla 4.0) differed markedly between the groups with the highest value (5.61 m/s) in the 5000-10,000-m group. The oxygen uptake (VO2) at vHla 4.0 in percentage of VO2 max did not differ significantly between the groups. The blood lactate concentration after exhaustion (VO2 max test) was lower in the long-distance runners. In summary, the present study demonstrates differences in physiological characteristics of elite runners specializing in different racing events. The two single (but certainly inter-related) variables in which this was most clearly seen were the maximal oxygen uptake (ml X kg-1 X min-1) and the running velocity corresponding to a blood lactate concentration of 4 mmol/l.

  13. Vulnerability to exercise addiction, socio-demographic, behavioral and psychological characteristics of runners at risk for eating disorders.

    PubMed

    Di Lodovico, Laura; Dubertret, Caroline; Ameller, Aurely

    2018-02-01

    Excessive exercise is frequently associated with eating disorders and may degenerate into exercise addiction. We still don't know whether runners at risk for eating disorders are at risk for exercise addiction. Our aim is to assess: 1) risk for exercise addiction in runners at risk for eating disorders and 2) socio-demographic, behavioral and psychological characteristics distinguishing runners at-risk from not-at-risk for eating disorders. We assessed risk for eating disorders and exercise addiction using the SCOFF questionnaire and the Exercise Addiction Inventory personality traits with the Big-Five Inventory Test, socio-demographic data, eating and training habits in a sample of 154 healthy runners. Twenty five subjects had a score of ≥2 at the SCOFF and were included in the group "at risk for eating disorders". In this group, we found a higher percentage of subjects at risk for exercise addiction (p=0.01) and higher average scores at the Exercise Addiction Inventory (p=0.01) than runners not at risk (N=136). Runners at risk were statistically younger (p=0.03), women (p=0.001), started running to lose weight more often (p=0.03), lost more kilos since affiliation in their running club (p=0.04), and were characterized by neurotic traits using the Big-Five-Inventory Test (p=3.10 -6 ). Screening for exercise addiction and mood disorders could lead to a more accurate management of runners at risk for eating disorders. Identifying vulnerable individuals will facilitate the prevention of eating disorders and preserve the benefits of sport practice. Copyright © 2018. Published by Elsevier Inc.

  14. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  15. Risk factors for lower extremity injuries among male marathon runners.

    PubMed

    Van Middelkoop, M; Kolkman, J; Van Ochten, J; Bierma-Zeinstra, S M A; Koes, B W

    2008-12-01

    The aim of this study is to identify risk factors for lower extremity injuries in male marathon runners. A random sample of 1500 recreational male marathon runners was drawn. Possible risk factors were obtained from a baseline questionnaire 1 month before the start of the marathon. Information on injuries sustained shortly before or during the marathon was obtained using a post-race questionnaire. Of the 694 male runners who responded to the baseline and post-race questionnaire, 28% suffered a self-reported running injury on the lower extremities in the month before or during the marathon run. More than six times race participation in the previous 12 months [odds ratio (OR) 1.66; confidence interval (CI) 1.08-2.56], a history of running injuries (OR 2.62; CI 1.82-3.78), high education level (OR 0.73; CI 0.51-1.04) and daily smoking (OR 0.23; CI 0.05-1.01) were associated with the occurrence of lower extremity injuries. Among the modifiable risk factor studies, a training distance <40 km a week is a strong protective factor of future calf injuries, and regular interval training is a strong protective factor for knee injuries. Other training characteristics appear to have little or no effect on future injuries.

  16. Rearfoot alignment and medial longitudinal arch configurations of runners with symptoms and histories of plantar fasciitis

    PubMed Central

    Ribeiro, Ana Paula; Trombini-Souza, Francis; Tessutti, Vitor; Lima, Fernanda Rodrigues; de Camargo Neves Sacco, Isabel; João, Sílvia Maria Amado

    2011-01-01

    OBJECTIVE: To evaluate and compare rearfoot alignment and medial longitudinal arch index during static postures in runners, with and without symptoms and histories of plantar fasciitis (PF). INTRODUCTION: PF is the third most common injury in runners but, so far, its etiology remains unclear. In the literature, rearfoot misalignment and conformations of the longitudinal plantar arch have been described as risk factors for the development of PF. However, in most of the investigated literature, the results are still controversial, mainly regarding athletic individuals and the effects of pain associated with these injuries. METHODS: Forty-five runners with plantar fasciitis (30 symptomatic and 15 with previous histories of injuries) and 60 controls were evaluated. Pain was assessed by a visual analogue scale. The assessment of rearfoot alignment and the calculations of the arch index were performed by digital photographic images. RESULTS: There were observed similarities between the three groups regarding the misalignments of the rearfoot valgus. The medial longitudinal arches were more elevated in the group with symptoms and histories of PF, compared to the control runners. CONCLUSIONS: Runners with symptoms or histories of PF did not differ in rearfoot valgus misalignments, but showed increases in the longitudinal plantar arch during bipedal static stance, regardless of the presence of pain symptoms. PMID:21808870

  17. Previous injuries and some training characteristics predict running-related injuries in recreational runners: a prospective cohort study.

    PubMed

    Hespanhol Junior, Luiz Carlos; Pena Costa, Leonardo Oliveira; Lopes, Alexandre Dias

    2013-12-01

    What is the incidence of running-related injuries (RRIs) in recreational runners? Which personal and training characteristics predict RRIs in recreational runners? Prospective cohort study. A total of 200 recreational runners answered a fortnightly online survey containing questions about their running routine, races, and presence of RRI. These runners were followed-up for a period of 12 weeks. The primary outcome of this study was running-related injury. The incidence of injuries was calculated taking into account the exposure to running and was expressed by RRI/1000 hours. The association between potential predictive factors and RRIs was estimated using generalised estimating equation models. A total of 84 RRIs were registered in 60 (31%) of the 191 recreational runners who completed all follow-up surveys. Of the injured runners 30% (n=18/60) developed two or more RRIs, with 5/18 (28%) being recurrences. The incidence of RRI was 10 RRI/1000 hours of running exposure. The main type of RRI observed was muscle injuries (30%, n=25/84). The knee was the most commonly affected anatomical region (19%, n=16/84). The variables associated with RRI were: previous RRI (OR 1.88, 95% CI 1.01 to 3.51), duration of training although the effect was very small (OR 1.01, 95% CI 1.00 to 1.02), speed training (OR 1.46, 95% CI 1.02 to 2.10), and interval training (OR 0.61, 95% CI 0.43 to 0.88). Physiotherapists should be aware and advise runners that past RRI and speed training are associated with increased risk of further RRI, while interval training is associated with lower risk, although these associations may not be causative. Copyright © 2013 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  18. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  19. Are mechanics different between male and female runners with patellofemoral pain?

    PubMed Central

    Willy, Richard W.; Manal, Kurt T.; Witvrouw, Erik E.; Davis, Irene S.

    2012-01-01

    Introduction Patellofemoral pain (PFP) has often been attributed to abnormal hip and knee mechanics in females. To date, there have been few investigations of the hip and knee mechanics of males with PFP. The purpose of this study was to compare the lower extremity mechanics and alignment of male runners with PFP with healthy male runners and female runners with PFP. We hypothesized that males with PFP would move with greater varus knee mechanics compared with male controls and compared with females with PFP. Further, it was hypothesized that males with PFP would demonstrate greater varus alignment. Methods A gait and single leg squat analysis was conducted on each group (18 runners per group). Measurement of each runner’s tibial mechanical axis was also recorded. Motion data were processed using Visual 3D (CMotion, Bethesda, Md., USA). Analyses of Variance were used to analyze the data. Results Males with PFP ran and squatted in greater peak knee adduction and demonstrated greater peak knee external adduction moment compared with healthy male controls. In addition, males with PFP ran and squatted with less peak hip adduction and greater peak knee adduction compared with females with PFP. The static measure of mechanical axis of the tibial was not different between groups. However, a post-hoc analysis revealed that males with PFP ran with greater peak tibial segmental adduction. Conclusion Males with PFP demonstrated different mechanics during running and during a single leg squat compared with females with PFP and with healthy males. Based upon the results of this study, therapies for PFP may need to be sex-specific. PMID:22843103

  20. Emotions and trait emotional intelligence among ultra-endurance runners.

    PubMed

    Lane, Andrew M; Wilson, Mathew

    2011-07-01

    The aim of this study was to investigate relationships between trait emotional intelligence and emotional state changes over the course of an ultra-endurance foot race covering a route of approximately 175 miles (282 km) and held in set stages over six days. A repeated measures field design that sought to maintain ecological validity was used. Trait emotional intelligence was defined as a relatively stable concept that should predict adaptive emotional states experienced over the duration of the race and therefore associate with pleasant emotions during a 6-stage endurance event. Thirty-four runners completed a self-report measure of trait emotional intelligence before the event started. Participants reported emotional states before and after each of the six races. Repeated measures ANOVA results showed significant variations in emotions over time and a main effect for trait emotional intelligence. Runners high in self-report trait emotional intelligence also reported higher pleasant and lower unpleasant emotions than runners low in trait emotional intelligence. Findings lend support to the notion that trait emotional intelligence associates with adaptive psychological states, suggesting that it may be a key individual difference that explains why some athletes respond to repeated bouts of hard exercise better than others. Future research should test the effectiveness of interventions designed to enhance trait emotional intelligence and examine the attendant impact on emotional responses to intense exercise during multi-stage events. Copyright © 2011. Published by Elsevier Ltd.

  1. Some physiological demands of a half-marathon race on recreational runners.

    PubMed

    Williams, C; Nute, M L

    1983-09-01

    The purpose of this study was to assess the physiological demands of a half-marathon race on a group of ten recreational runners (8 men and 2 women). The average running speed was 223.1 +/- 22.7 m.min-1 (mean +/- SD) for the group and this represented 79 +/- 5% VO2 max for these runners. There was a good correlation between VO2 max and performance time for the race (4 = -0.81; p less than 0.01) and an even better correlation between running speed equivalent to a blood lactate concentration of 4 mmol.l-1 and performance times (r = -0.877; p less than 0.01). The blood lactate concentration os 4 of the runners at the end of the race was 5.65 +/- 1.42 mmol.l-1 (mean +/- SD) and the estimated energy expenditure for the group was 6.22 M.J. While there was only a poor correlation between total energy expenditure and performance time for the race, the correlation coefficient was improved when the energy expenditure of each individual was expressed in KJ.kg-1 min-1 (r = 0.938; p less than 0.01).

  2. Comparison of Site-Specific Bone Mineral Densities between Endurance Runners and Sprinters in Adolescent Women

    PubMed Central

    Ikedo, Aoi; Ishibashi, Aya; Matsumiya, Saori; Kaizaki, Aya; Ebi, Kumiko; Fujita, Satoshi

    2016-01-01

    We aimed to compare site-specific bone mineral densities (BMDs) between adolescent endurance runners and sprinters and examine the relationship of fat-free mass (FFM) and nutrient intake on BMD. In this cross-sectional study, 37 adolescent female endurance runners and sprinters (16.1 ± 0.8 years) were recruited. BMD and FFM were assessed by dual-energy X-ray absorptiometry. Nutrient intake and menstrual state were evaluated by questionnaires. After adjusting for covariates, spine and total bone less head (TBLH) BMDs were significantly higher in sprinters than endurance runners (TBLH, 1.02 ± 0.05 vs. 0.98 ± 0.06 g/cm2; spine, 0.99 ± 0.06 vs. 0.94 ± 0.06 g/cm2; p < 0.05). There was no significant difference between groups in other sites. The rate of menstrual abnormality was higher in endurance runners compared with sprinters (56.3% vs. 23.8%; p < 0.05). FFM was a significant covariate for BMD on all sites except the spine (p < 0.05). Dietary intake of vitamin D was identified as a significant covariate only for pelvic BMD (p < 0.05). The BMDs of different sites among endurance runners and sprinters were strongly related to FFM. However, the association of FFM with spine BMD cannot be explained by FFM alone. Other factors, including nutrition and/or mechanical loading, may affect the spine BMD. PMID:27916891

  3. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  4. Health effects related to wind turbine noise exposure: a systematic review.

    PubMed

    Schmidt, Jesper Hvass; Klokker, Mads

    2014-01-01

    Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found. Future studies should focus on investigations aimed at objectively demonstrating whether or not

  5. RUNNER BOX MAINTENANCE. FRANK FEHER USES A COMPRESSED AIRPOWERED CHISEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RUNNER BOX MAINTENANCE. FRANK FEHER USES A COMPRESSED AIR-POWERED CHISEL TO CHIP OUT CONGEALED METAL IN PREPARATION FOR ANOTHER HEAT. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  6. 7 CFR 51.2710 - U.S. No. 1 Runner.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... of shelled Runner type peanut kernels of similar varietal characteristics which are whole and free...

  7. 7 CFR 51.2712 - U.S. No. 2 Runner.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... of shelled Runner type peanut kernels of similar varietal characteristics which may be split or...

  8. Body Mass and Weekly Training Distance Influence the Pain and Injuries Experienced by Runners Using Minimalist Shoes: A Randomized Controlled Trial.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Buckley, Jonathan D; Brown, Nicholas A T; Hamill, Joseph; Tsiros, Margarita D

    2017-04-01

    Minimalist shoes have been popularized as a safe alternative to conventional running shoes. However, a paucity of research is available investigating the longer-term safety of minimalist shoes. To compare running-related pain and injury between minimalist and conventional shoes in trained runners and to investigate interactions between shoe type, body mass, and weekly training distance. Randomized clinical trial; Level of evidence, 2. Sixty-one trained, habitual rearfoot footfall runners (mean ± SD: body mass, 74.6 ± 9.3 kg; weekly training distance, 25 ± 14 km) were randomly allocated to either minimalist or conventional shoes. Runners gradually increased the time spent running in their allocated shoes over 26 weeks. Running-related pain intensity was measured weekly by use of 100-mm visual analog scales. Time to first running-related injury was also assessed. Interactions were found between shoe type and weekly training distance for weekly running-related pain; greater pain was experienced with minimalist shoes ( P < .05), and clinically meaningful increases (>10 mm) were noted when the weekly training distance was more than 35 km/wk. Eleven of 30 runners sustained an injury in conventional shoes compared with 16 of 31 runners in minimalist shoes (hazard ratio, 1.64; 95% confidence interval, 0.63-4.27; P = .31). A shoe × body mass interaction was found for time to first running-related injury ( P = .01). For runners using minimalist shoes, relative to runners using conventional shoes, the risk of sustaining an injury became more likely with increasing body mass above 71.4 kg, and the risk was moderately increased (hazard ratio, 2.00; 95% confidence interval, 1.10-3.66; P = .02) for runners using minimalist shoes who had a body mass of 85.7 kg. Runners should limit weekly training distance in minimalist shoes to avoid running-related pain. Heavier runners are at greater risk of injury when running in minimalist shoes. Registration: Australian New Zealand

  9. Effects of resistance training on performance in previously trained endurance runners: A systematic review.

    PubMed

    Alcaraz-Ibañez, Manuel; Rodríguez-Pérez, Manuel

    2018-03-01

    The aim of this work was to identify, synthesize and evaluate the results of randomized controlled trials examining the effects of resistance training on performance indicators in previously trained endurance runners. A database search was carried out in PubMed, Science Direct, OvidSPMedLine, Wiley, Web of Science, ProQuest and Google Scholar. In accordance with the PRISMA checklist, 18 published articles dated prior to May 2016 involving 321 endurance runners were reviewed using the PEDro scale. Resistance training led to general improvements in muscular strength, running economy, muscle power factors, and direct performance in distances between 1,500 and 10,000 m. Such improvements were not accompanied by a significant increase in body mass or signs of overtraining. However, improvements did not occur in all cases, suggesting that they might depend on the specific characteristics of the resistance training applied. Although current evidence supports the effectiveness of resistance training to improve performance in already trained endurance runners, the methodological inconsistencies identified suggest that the results should be interpreted with caution. Future studies ought to investigate the benefits of resistance training in endurance runners while considering the existence of possible differentiated effects based on the specific characteristics of the resistance training carried out.

  10. Immediate and short-term biomechanical adaptation of habitual barefoot runners who start shod running.

    PubMed

    Au, Ivan P H; Lau, Fannie O Y; An, Winko W; Zhang, Janet H; Chen, Tony L; Cheung, Roy T H

    2018-02-01

    This study investigated the immediate and short-term effects of minimalist shoes (MS) and traditional running shoes (TRS) on vertical loading rates, foot strike pattern and lower limb kinematics in a group of habitual barefoot runners. Twelve habitual barefoot runners were randomly given a pair of MS or TRS and were asked to run with the prescribed shoes for 1 month. Outcome variables were obtained before, immediate after and 1 month after shoe prescription. Average and instantaneous vertical loading rates at the 1-month follow-up were significantly higher than that at the pre-shod session (P < 0.034, η 2 p > 0.474). Foot strike angle in the TRS group was significantly lower than that in the MS group (P = 0.045, η 2 p  = 0.585). However, there was no significant time nor shoe effect on overstride, knee and ankle excursion (P > 0.061). Habitual barefoot runners appeared to land with a greater impact during shod running and they tended to have a more rearfoot strike pattern while wearing TRS. Lower limb kinematics were comparable before and after shoe prescription. Longer period of follow-up is suggested to further investigate the footwear effect on the running biomechanics in habitual barefoot runners.

  11. INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS

    PubMed Central

    Klusendorf, Anna; Kernozek, Thomas

    2016-01-01

    ABSTRACT Background Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. Hypothesis/Purpose The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Design Case-control study Methods Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). Results No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when

  12. INFLUENCE OF INJURY ON DYNAMIC POSTURAL CONTROL IN RUNNERS.

    PubMed

    Meardon, Stacey; Klusendorf, Anna; Kernozek, Thomas

    2016-06-01

    Injury has been linked with altered postural control in active populations. The association between running injury and dynamic postural control has not been examined. The purpose of this study was to examine dynamic postural control in injured and uninjured runners using the Star Excursion Balance Test (SEBT), Time to Stabilization (TTS) of ground reaction forces following a single-leg landing, and postural stability indices reflecting the fluctuations in GRFs during single-leg landing and stabilization tasks (forward and lateral hop). It was hypothesized that dynamic postural control differences would exist between runners with a history of injury that interrupted training for ≥7 days (INJ) when compared to runners without injury (CON). Case-control study. Twenty-two INJ (14 F, 8 M; 23.7 ± 2.1 y; 22.3 ± 2.8 kg/m2; 29.5 ± 16.3 mi/wk) currently running > 50% pre-injury mileage without pain were compared with twenty-two matched CON (14F, 8M; 22.7 ± 1.2 y; 22.7 ± 2.7 kg/m2; 31.2 ± 19.6 mi/wk). INJ group was stratified by site of injury into two groups (Hip/Thigh/Knee and Lower Leg/Ankle/Foot) for secondary analysis. Leg length-normalized anterior, posterolateral, and posteromedial reach distances on the SEBT, medial/lateral and anterior/posterior ground reaction force TTS, directional postural stability indices, and a composite dynamic postural stability index (DPSI), were assessed using mixed model ANOVA (α=0.05) and effect sizes (d). No group X direction interaction or group differences were observed for the SEBT (p=0.51, 0.71) or TTS (p=0.83, 0.72) measures. A group X direction interaction was found for postural stability indices during the forward landing task (p<0.01). Both Hip/Thigh/Knee and Lower leg/Ankle/Foot INJ groups demonstrated a greater vertical postural stability index (VPSI) (p=0.01 for both, d=0.80, 0.95) and DPSI (p=0.01, 0.02, d=0.75, 0.93) when compared to CON suggesting impaired balance control. A group

  13. Renal and cardiovascular responses to water immersion in trained runners and swimmers

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Tatro, D. L.; Rogan, R. B.

    1993-01-01

    The purpose of this study was to determine if fluid-electrolyte, renal, hormonal, and cardiovascular responses during and after multi-hour water immersion were associated with aerobic training. Additionally, we compared these responses in those who trained in a hypogravic versus a 1-g environment. Seventeen men comprised three similarly aged groups: six long-distance runners, five competitive swimmers, and six untrained control subjects. Each subject underwent 5 h of immersion in water [mean (SE)] 36.0 (0.5) degrees C to the neck. Immediately before and at each hour of immersion, blood and urine samples were collected and analyzed for sodium (Na), potassium, osmolality, and creatinine (Cr). Plasma antidiuretic hormone and aldosterone were also measured. Hematocrits were used to calculate relative changes in plasma volume (% delta Vpl). Heart rate response to submaximal cycle ergometer exercise (35% peak oxygen uptake) was measured before and after water immersion. Water immersion induced significant increases in urine flow, Na clearance (CNa), and a 3-5% decrease in Vpl. Urine flow during immersion was greater (P < 0.05) in runners [2.4 (0.4) ml.min-1] compared to controls [1.3 (0.1) ml.min-1]. However, % delta Vpl, CCr, CNa and CH2O during immersion were not different (P > 0.05) between runners, swimmers, and controls. After 5 h of immersion, there was an increase (P < 0.05) in submaximal exercise heart rate of 9 (3) and 10 (3) beats.min-1 in both runners and controls, respectively, but no change (P > 0.05) was observed in swimmers.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. An empirical study of race times in recreational endurance runners.

    PubMed

    Vickers, Andrew J; Vertosick, Emily A

    2016-01-01

    Studies of endurance running have typically involved elite athletes, small sample sizes and measures that require special expertise or equipment. We examined factors associated with race performance and explored methods for race time prediction using information routinely available to a recreational runner. An Internet survey was used to collect data from recreational endurance runners (N = 2303). The cohort was split 2:1 into a training set and validation set to create models to predict race time. Sex, age, BMI and race training were associated with mean race velocity for all race distances. The difference in velocity between males and females decreased with increasing distance. Tempo runs were more strongly associated with velocity for shorter distances, while typical weekly training mileage and interval training had similar associations with velocity for all race distances. The commonly used Riegel formula for race time prediction was well-calibrated for races up to a half-marathon, but dramatically underestimated marathon time, giving times at least 10 min too fast for half of runners. We built two models to predict marathon time. The mean squared error for Riegel was 381 compared to 228 (model based on one prior race) and 208 (model based on two prior races). Our findings can be used to inform race training and to provide more accurate race time predictions for better pacing.

  15. Lower limb joint angles and ground reaction forces in forefoot strike and rearfoot strike runners during overground downhill and uphill running.

    PubMed

    Kowalski, Erik; Li, Jing Xian

    2016-11-01

    This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.

  16. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  17. Predictor Variables for Marathon Race Time in Recreational Female Runners

    PubMed Central

    Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Purpose We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Methods Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. Results The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=− 0.38), number of running training sessions per week (r=− 0.46) and the speed of the training sessions (r= − 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r 2=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) –11.9 x (speed in running during training, km/h) for recreational female marathoners. Conclusions Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners. PMID:22942994

  18. Predictor variables for marathon race time in recreational female runners.

    PubMed

    Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-06-01

    We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=- 0.38), number of running training sessions per week (r=- 0.46) and the speed of the training sessions (r= - 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r(2)=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) -11.9 x (speed in running during training, km/h) for recreational female marathoners. Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners.

  19. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energymore » device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the

  20. A Computer Model of Drafting Effects on Collective Behavior in Elite 10,000-m Runners.

    PubMed

    Trenchard, Hugh; Renfree, Andrew; Peters, Derek M

    2017-03-01

    Drafting in cycling influences collective behavior of pelotons. Although evidence for collective behavior in competitive running events exists, it is not clear if this results from energetic savings conferred by drafting. This study modeled the effects of drafting on behavior in elite 10,000-m runners. Using performance data from a men's elite 10,000-m track running event, computer simulations were constructed using Netlogo 5.1 to test the effects of 3 different drafting quantities on collective behavior: no drafting, drafting to 3 m behind with up to ~8% energy savings (a realistic running draft), and drafting up to 3 m behind with up to 38% energy savings (a realistic cycling draft). Three measures of collective behavior were analyzed in each condition: mean speed, mean group stretch (distance between first- and last-placed runner), and runner-convergence ratio (RCR), which represents the degree of drafting benefit obtained by the follower in a pair of coupled runners. Mean speeds were 6.32 ± 0.28, 5.57 ± 0.18, and 5.51 ± 0.13 m/s in the cycling-draft, runner-draft, and no-draft conditions, respectively (all P < .001). RCR was lower in the cycling-draft condition but did not differ between the other 2. Mean stretch did not differ between conditions. Collective behaviors observed in running events cannot be fully explained through energetic savings conferred by realistic drafting benefits. They may therefore result from other, possibly psychological, processes. The benefits or otherwise of engaging in such behavior are as yet unclear.

  1. Hip abductor strength and lower extremity running related injury in distance runners: A systematic review.

    PubMed

    Mucha, Matthew D; Caldwell, Wade; Schlueter, Emily L; Walters, Carly; Hassen, Amy

    2017-04-01

    Determine the association between hip abduction strength and lower extremity running related injury in distance runners. Systematic review. Prospective longitudinal and cross sectional studies that quantified hip abduction strength and provided diagnosis of running related injury in distance runners were included and assessed for quality. Effect size was calculated for between group differences in hip abduction strength. Of the 1841 articles returned in the initial search, 11 studies matched all inclusion criteria. Studies were grouped according to injury: iliotibial band syndrome, patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture, and Achilles tendinopathy, and examined for strength differences between injured and non-injured groups. Meaningful differences were found in the studies examining iliotibial band syndrome. Three of five iliotibial band syndrome articles found weakness in runners with iliotibial band syndrome; two were of strong methodological rigor and both of those found a relationship between weakness and injury. Other results did not form associative or predictive relationships between weakness and injury in distance runners. Hip abduction weakness evaluated by hand held dynamometer may be associated with iliotibial band syndrome in distance runners as suggested by several cross sectional studies but is unclear as a significant factor for the development of patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture or Achilles tendinopathy according to the current literature. Future studies are needed with consistent methodology and inclusion of all distance running populations to determine the significance of hip abduction strength in relationship to lower extremity injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Identifying sex-specific risk factors for low bone mineral density in adolescent runners.

    PubMed

    Tenforde, Adam Sebastian; Fredericson, Michael; Sayres, Lauren Carter; Cutti, Phil; Sainani, Kristin Lynn

    2015-06-01

    Adolescent runners may be at risk for low bone mineral density (BMD) associated with sports participation. Few prior investigations have evaluated bone health in young runners, particularly males. To characterize sex-specific risk factors for low BMD in adolescent runners. Cross-sectional study; Level of evidence, 3. Training characteristics, fracture history, eating behaviors and attitudes, and menstrual history were measured using online questionnaires. A food frequency questionnaire was used to identify dietary patterns and measure calcium intake. Runners (female: n = 94, male: n = 42) completed dual-energy x-ray absorptiometry (DXA) to measure lumbar spine (LS) and total body less head (TBLH) BMD and body composition values, including android-to-gynoid (A:G) fat mass ratio. The BMD was standardized to Z-scores using age, sex, and race/ethnicity reference values. Questionnaire values were combined with DXA values to determine risk factors associated with differences in BMD Z-scores in LS and TBLH and low bone mass (defined as BMD Z-score ≤-1). In multivariable analyses, risk factors for lower LS BMD Z-scores in girls included lower A:G ratio, being shorter, and the combination of (interaction between) current menstrual irregularity and a history of fracture (all P < .01). Later age of menarche, lower A:G ratio, lower lean mass, and drinking less milk were associated with lower TBLH BMD Z-scores (P < .01). In boys, lower body mass index (BMI) Z-scores and the belief that being thinner improves performance were associated with lower LS and TBLH BMD Z-scores (all P < .05); lower A:G ratio was additionally associated with lower TBLH Z-scores (P < .01). Thirteen girls (14%) and 9 boys (21%) had low bone mass. Girls with a BMI ≤17.5 kg/m(2) or both menstrual irregularity and a history of fracture were significantly more likely to have low bone mass. Boys with a BMI ≤17.5 kg/m(2) and belief that thinness improves performance were significantly more likely to have

  3. Solar Ultraviolet Radiation Exposure of South African Marathon Runners During Competition Marathon Runs and Training Sessions: A Feasibility Study.

    PubMed

    Nurse, Victoria; Wright, Caradee Y; Allen, Martin; McKenzie, Richard L

    2015-01-01

    Marathon runners spend considerable time in outdoor training for and participating in marathons. Outdoor runners may experience high solar ultraviolet radiation (UVR) exposure. South Africa, where running is popular, experiences high ambient solar UVR levels that may be associated with adverse health effects. This feasibility study explores the use of personal dosimeters to determine solar UVR exposure patterns and possible related acute health risks of four marathon runners during marathons and training sessions in Cape Town and Pretoria. Runners running marathons that started early in the day, and that did not exceed 4 hours, yielded low total solar UVR exposure doses (mean 0.093 SED per exposure period run, median 0.088 SED, range 0.062-0.136 SED; average of 16.54% of ambient solar UVR). Training sessions run during early morning and late afternoon presented similar results. Several challenges hindered analysis including accounting for anatomical position of personal dosimeter and natural shade. To assess health risks, hazard quotients (HQs) were calculated using a hypothetical runner's schedule. Cumulative, annual solar UVR exposure-calculated acute health risks were low (HQ = 0.024) for training sessions and moderate (HQ = 4.922) for marathon runs. While these data and calculations are based on 18 person-days, one can measure marathon runners' personal solar UVR exposure although several challenges must be overcome. © 2015 The American Society of Photobiology.

  4. Athletic identity, compulsive exercise and eating psychopathology in long-distance runners.

    PubMed

    Turton, Robert; Goodwin, Huw; Meyer, Caroline

    2017-08-01

    Having a high athletic identity is thought to increase vulnerability for compulsive exercise and Eating Disorder (ED) psychopathology. This study examined whether there is an association between athletic identity and levels of compulsive exercise and ED psychopathology in long-distance runners. A sample of 501 long-distance runners completed the Athletic Identity Measurement Scale (AIMS), Compulsive Exercise Test (CET) and Eating Disorders Examination Questionnaire (EDEQ). There was a significant positive association between participants' AIMS and total CET scores (moderate effect size; r=0.34 for males and 0.33 for females). BMI did not influence the relationship between AIMS and CET scores in males. However, for females, AIMS scores were positively associated with levels of Weight Control Exercise when covarying for BMI (small to moderate effect size, r=0.22). No significant associations with EDEQ scores were found (negligible to small effect sizes; r=0.06 for males and r=0.14 for females). Following replication, coaches might need to be vigilant to the welfare of endurance runners that have a strong athletic identity, since this could be linked to them exercising compulsively. Future work should examine whether having a strong athletic identity predicts ED psychopathology when this identity is challenged (e.g., due to injury). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Differences in Knee and Hip Adduction and Hip Muscle Activation in Runners With and Without Iliotibial Band Syndrome.

    PubMed

    Baker, Robert L; Souza, Richard B; Rauh, Mitchell J; Fredericson, Michael; Rosenthal, Michael D

    2018-04-26

    Iliotibial band syndrome has been associated with altered hip and knee kinematics in runners. Previous studies have recommended further research on neuromuscular factors at the hip. The frontal plane hip muscles have been a strong focus in strength comparison but not for electromyography investigation. To compare hip surface electromyography, and frontal plane hip and knee kinematics, in runners with and without iliotibial band syndrome. Observational cross-sectional study. Thirty participants were tested for motion capture at the hip and knee and muscle activation in the lateral and posterior hip. Biomechanics research laboratory within a university. Thirty subjects were recruited consisting of 15 injured runners with iliotibial band syndrome and 15 gender-, age-, and body mass index-matched controls. In each group, 8 were male runners and 7 were female runners. Inclusion criteria for the injured group were pain within 2 months related to iliotibial band syndrome and a positive Noble compression test. Participants were excluded if they reported other lower extremity diagnoses within the last year or active lower extremity or low back pain not related to iliotibial band syndrome. Controls were excluded if they reported a history of iliotibial band syndrome. Convenience sampling was used based on referrals from local running clinics and orthopedic clinics. Three-dimensional motion capture was performed with 10 high-speed cameras synchronized with wireless surface electromyography during a 30-minute run. The first data point was at 3 minutes, using a constant speed of 2.74 meters per second. A second data point was at 30 minutes, using a self-selected pace by the participant to allow for a challenging run until completion at 30 minutes. Motion capture was reported as peak kinematic values from heel strike to peak knee flexion for hip adduction and knee adduction. Surface electromyography was reported as a percentage of maximal voluntary contraction for the gluteus

  6. DEVELOPMENT OF THE PRIEST RAPIDS TURBINE UPGRADE PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBolt, Donald; Richmond, Marshall C.; Donelson, Richard K.

    The Priest Rapids Dam is located on the Columbia River and is operated by Public Utility District No. 2 of Grant County, WA (GCPUD). In operation since 1959, GCPUD decided that a major upgrade was necessary. As with other hydroelectric facilities on the Columbia River, improving fish passage at Priest Rapids Dam is of great importance for salmon and steelhead populations in the Pacific Northwest. Consequently, GCPUD established the Priest Rapids Turbine Upgrade Project to extend the life of the units, increase efficiency and power production, and improve fish-passage. The Priest Rapids powerhouse is equipped with 10 vertical Kaplan turbinesmore » with runner diameters of 7.21 m operating under net heads varying from 18 m to 27 m. The scope of the project included a design competition involving three turbine manufacturers providing up to two designs for evaluation. Selection of the replacement design was determined by the lowest evaluated price based on model test results conducted at an independent laboratory (Ecole Polytechnique Federale de Lausanne in Lausanne Switzerland) and a biological performance score determined by a newly developed Biological Performance Assessment (BioPA) performed by Pacific Northwest National Laboratory in Richland, WA. In the paper, the hydraulic design challenges are reviewed, in addition to comparisons of designs evaluated during the competitive model test program and biological assessment. The paper also provides a description of the process followed by GCPUD, and how the evaluation criteria influenced the development and the finally selected solution.« less

  7. Short-Term Absenteeism and Health Care Utilization Due to Lower Extremity Injuries Among Novice Runners: A Prospective Cohort Study.

    PubMed

    Smits, Dirk-Wouter; Huisstede, Bionka; Verhagen, Evert; van der Worp, Henk; Kluitenberg, Bas; van Middelkoop, Marienke; Hartgens, Fred; Backx, Frank

    2016-11-01

    To describe absenteeism and health care utilization (HCU) within 6 weeks after occurrence of running-related injuries (RRIs) among novice runners and to explore differences relating to injury and personal characteristics. Prospective cohort study. Primary care. One thousand six hundred ninety-six novice runners (18-65 years) participating in a 6-week running program ("Start-to-Run"). Injury characteristics were assessed by weekly training logs and personal characteristics by a baseline questionnaire. Data on absenteeism and HCU were collected using questionnaires at 2 and 6 weeks after the RRI occurred. A total of 185 novice runners (11%) reported an RRI during the 6-week program. Of these injured novice runners, 78% reported absence from sports, whereas only 4% reported absence from work. Fifty-one percent of the injured novice runners visited a health care professional, mostly physical therapists (PTs) rather than physicians. Absenteeism was more common among women than men and was also more common with acute RRIs than gradual-onset RRIs. As regards HCU, both the variety of professionals visited and the number of PT visits were higher among runners with muscle-tendon injuries in the ankle/foot region than among those with other RRIs. Among novice runners sustaining an RRI during a 6-week running program, over three quarters reported short-term absence from sports, whereas absence from work was very limited, and over half used professional health care. Both absence and HCU are associated with injury characteristics. In future running promotion programs (eg in Start-to-Run programs), specific attention should be paid to acute injuries and to muscle-tendon injuries in the ankle/foot region.

  8. Numerical model validation using experimental data: Application of the area metric on a Francis runner

    NASA Astrophysics Data System (ADS)

    Chatenet, Q.; Tahan, A.; Gagnon, M.; Chamberland-Lauzon, J.

    2016-11-01

    Nowadays, engineers are able to solve complex equations thanks to the increase of computing capacity. Thus, finite elements software is widely used, especially in the field of mechanics to predict part behavior such as strain, stress and natural frequency. However, it can be difficult to determine how a model might be right or wrong, or whether a model is better than another one. Nevertheless, during the design phase, it is very important to estimate how the hydroelectric turbine blades will behave according to the stress to which it is subjected. Indeed, the static and dynamic stress levels will influence the blade's fatigue resistance and thus its lifetime, which is a significant feature. In the industry, engineers generally use either graphic representation, hypothesis tests such as the Student test, or linear regressions in order to compare experimental to estimated data from the numerical model. Due to the variability in personal interpretation (reproducibility), graphical validation is not considered objective. For an objective assessment, it is essential to use a robust validation metric to measure the conformity of predictions against data. We propose to use the area metric in the case of a turbine blade that meets the key points of the ASME Standards and produces a quantitative measure of agreement between simulations and empirical data. This validation metric excludes any belief and criterion of accepting a model which increases robustness. The present work is aimed at applying a validation method, according to ASME V&V 10 recommendations. Firstly, the area metric is applied on the case of a real Francis runner whose geometry and boundaries conditions are complex. Secondly, the area metric will be compared to classical regression methods to evaluate the performance of the method. Finally, we will discuss the use of the area metric as a tool to correct simulations.

  9. Loading rate increases during barefoot running in habitually shod runners: Individual responses to an unfamiliar condition.

    PubMed

    Tam, Nicholas; Astephen Wilson, Janie L; Coetzee, Devon R; van Pletsen, Leanri; Tucker, Ross

    2016-05-01

    The purpose of this study was to examine the effect of barefoot running on initial loading rate (LR), lower extremity joint kinematics and kinetics, and neuromuscular control in habitually shod runners with an emphasis on the individual response to this unfamiliar condition. Kinematics and ground reaction force data were collected from 51 habitually shod runners during overground running in a barefoot and shod condition. Joint kinetics and stiffness were calculated with inverse dynamics. Inter-individual initial LR variability was explored by separating individuals by a barefoot/shod ratio to determine acute responders/non-responders. Mean initial LR was 54.1% greater in the barefoot when compared to the shod condition. Differences between acute responders/non-responders were found at peak and initial contact sagittal ankle angle and at initial ground contact. Correlations were found between barefoot sagittal ankle angle at initial ground contact and barefoot initial LR. A large variability in biomechanical responses to an acute exposure to barefoot running was found. A large intra-individual variability was found in initial LR but not ankle plantar-dorsiflexion between footwear conditions. A majority of habitually shod runners do not exhibit previously reported benefits in terms of reduced initial LRs when barefoot. Lastly, runners who increased LR when barefoot reduced LRs when wearing shoes to levels similar seen in habitually barefoot runners who do adopt a forefoot-landing pattern, despite increased dorsiflexion. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Normal results of post-race thallium-201 myocardial perfusion imaging in marathon runners with elevated serum MB creatine kinase levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, A.J.; Silverman, L.M.; Holman, B.L.

    1985-10-01

    Elevated cardiac enzyme values in asymptomatic marathon runners after competition can arise from skeletal muscle through exertional rhabdomyolysis, silent injury to the myocardium, or a combined tissue source. Peak post-race levels of the MB isoenzyme of creatine kinase are similar to values in patients with acute myocardial infarction. Previously reported normal results of infarct-avid myocardial scintigraphy with technetium 99m pyrophosphate in runners after competition suggest a non-cardiac source but cannot exclude silent injury to the myocardium. Therefore, thallium 201 myocardial perfusion imaging was performed in runners immediately after competition together with determination of sequential cardiac enzyme levels. Among 15 runnersmore » tested, the average peak in serum MB creatine kinase 24 hours after the race was 128 IU/liter with a cumulative MB creatine kinase release of 117 IU/liter; these values are comparable to those in patients with acute transmural myocardial infarction. Thallium 201 myocardial scintigraphic results were normal in five runners randomly selected from those who volunteered for determination of sequential blood levels. It is concluded that elevations of serum MB creatine kinase in marathon runners arise from a skeletal muscle source and that thallium 201 myocardial scintigraphy is useful to assess runners for myocardial injury when clinical questions arise.« less

  11. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  12. Seasonal Strength Performance and Its Relationship with Training Load on Elite Runners

    PubMed Central

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M.; del Campo-Vecino, Juan

    2015-01-01

    The aim of this study was to analyze the time-course of force production of elite middle and long-distance runners throughout an entire season and at the end of the off-season, as well as its relationships with training load and hormonal responses. Training load was recorded daily throughout an entire season by measuring and evaluating the session distance (km), training zone and session-RPE in a group of 15 elite middle and long-distance runners (12 men, 3 women; age = 26.3 ± 5.1yrs, BMI = 19.7 ± 1.1). Also, basal salivary-free cortisol levels were measured weekly, and 50-metre sprints, mean propulsive velocity (MPV), mean propulsive power (MPP), repetition maximum (RM) and peak rate of force development (RFD) of half-squats were measured 4 times during the season, and once more after the off-season break. There were no significant variations in force production during the season or after the off-season break, except for the RFD (-30.2%, p = 0.005) values, which changed significantly from the beginning to the end of the season. Significant correlations were found between session-RPE and MPV (r = -0.650, p = 0.004), MPP (r = -0.602, p = 0.009), RM (r = -0.650, p = 0.004), and the 50-metre sprint (r = 0.560, p = 0.015). Meanwhile, salivary-free cortisol correlated significantly with the 50-metre sprint (r = 0.737, p < 0.001) and the RM ( r = -0.514, p = 0.025). Finally, the training zone correlated with the 50-metre sprint (r = -0.463, p = 0.041). Session-RPE, training zone and salivary-free cortisol levels are related to force production in elite middle and long-distance runners. Monitoring these variables could be a useful tool in controlling the training programs of elite athletes. Key points Session-RPE, training zone and salivary free cortisol levels correlate significantly with strength-related variables in middle and long-distance elite runners. A month of active rest during the off-season break is enough to prevent decreases in force production of such

  13. Footwear characteristics are related to running mechanics in runners with patellofemoral pain.

    PubMed

    Esculier, Jean-Francois; Dubois, Blaise; Bouyer, Laurent J; McFadyen, Bradford J; Roy, Jean-Sébastien

    2017-05-01

    Running footwear is known to influence step rate, foot inclination at foot strike, average vertical loading rate (VLR) and peak patellofemoral joint (PFJ) force. However, the association between the level of minimalism of running shoes and running mechanics, especially with regards to these relevant variables for runners with patellofemoral pain (PFP), has yet to be investigated. The objective of this study was to explore the relationship between the level of minimalism of running shoes and habitual running kinematics and kinetics in runners with PFP. Running shoes of 69 runners with PFP (46 females, 23 males, 30.7±6.4years) were evaluated using the Minimalist Index (MI). Kinematic and kinetic data were collected during running on an instrumented treadmill. Principal component and correlation analyses were performed between the MI and its subscales and step rate, foot inclination at foot strike, average VLR, peak PFJ force and peak Achilles tendon force. Higher MI scores were moderately correlated with lower foot inclination (r=-0.410, P<0.001) and lower peak PFJ force (r=-0.412, P<0.001). Moderate correlations also showed that lower shoe mass is indicative of greater step rate (ρ=0.531, P<0.001) and lower peak PFJ force (ρ=-0.481, P<0.001). Greater shoe flexibility was moderately associated with lower foot inclination (ρ=-0.447, P<0.001). Results suggest that greater levels of minimalism are associated with lower inclination angle and lower peak PFJ force in runners with PFP. Thus, this population may potentially benefit from changes in running mechanics associated with the use of shoes with a higher level of minimalism. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  15. The Feasibility and Usability of RunningCoach: A Remote Coaching System for Long-Distance Runners

    PubMed Central

    Bajcsy, Ruzena

    2018-01-01

    Studies have shown that about half of the injuries sustained during long-distance running involve the knee. Cadence (steps per minute) has been identified as a factor that is strongly associated with these running-related injuries, making it a worthwhile candidate for further study. As such, it is critical for long-distance runners to minimize their risk of injury by running at an appropriate running cadence. In this paper, we present the results of a study on the feasibility and usability of RunningCoach, a mobile health (mHealth) system that remotely monitors running cadence levels of runners in a continuous fashion, among other variables, and provides immediate feedback to runners in an effort to help them optimize their running cadence. PMID:29320436

  16. Recreational runners with patellofemoral pain exhibit elevated patella water content.

    PubMed

    Ho, Kai-Yu; Hu, Houchun H; Colletti, Patrick M; Powers, Christopher M

    2014-09-01

    Increased bone water content resulting from repetitive patellofemoral joint overloading has been suggested to be a possible mechanism underlying patellofemoral pain (PFP). To date, it remains unknown whether persons with PFP exhibit elevated bone water content. The purpose of this study was to determine whether recreational runners with PFP exhibit elevated patella water content when compared to pain-free controls. Ten female recreational runners with a diagnosis of PFP (22 to 39years of age) and 10 gender, age, weight, height, and activity matched controls underwent chemical-shift-encoded water-fat magnetic resonance imaging (MRI) to quantify patella water content (i.e., water-signal fraction). Differences in bone water content of the total patella, lateral aspect of the patella, and medial aspect of the patella were compared between groups using independent t tests. Compared with the control group, the PFP group demonstrated significantly greater total patella bone water content (15.4±3.5% vs. 10.3±2.1%; P=0.001), lateral patella water content (17.2±4.2% vs. 11.5±2.5%; P=0.002), and medial patella water content (13.2±2.7% vs. 8.4±2.3%; P<0.001). The higher patella water content observed in female runners with PFP is suggestive of venous engorgement and elevated extracellular fluid. In turn, this may lead to an increase in intraosseous pressure and pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Optimization design of hydroturbine rotors according to the efficiency-strength criteria

    NASA Astrophysics Data System (ADS)

    Bannikov, D. V.; Yesipov, D. V.; Cherny, S. G.; Chirkov, D. V.

    2010-12-01

    The hydroturbine runner designing [1] is optimized by efficient methods for calculation of head loss in entire flow-through part of the turbine and deformation state of the blade. Energy losses are found at modelling of the spatial turbulent flow and engineering semi-empirical formulae. State of deformation is determined from the solution of the linear problem of elasticity for the isolated blade at hydrodynamic pressure with the method of boundary elements. With the use of the proposed system, the problem of the turbine runner design with the capacity of 640 MW providing the preset dependence of efficiency on the turbine work mode (efficiency criterion) is solved. The arising stresses do not exceed the critical value (strength criterion).

  18. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners.

    PubMed

    Vesterinen, V; Häkkinen, K; Hynynen, E; Mikkola, J; Hokka, L; Nummela, A

    2013-03-01

    The aim of this study was to investigate whether nocturnal heart rate variability (HRV) can be used to predict changes in endurance performance during 28 weeks of endurance training. The training was divided into 14 weeks of basic training (BTP) and 14 weeks of intensive training periods (ITP). Endurance performance characteristics, nocturnal HRV, and serum hormone concentrations were measured before and after both training periods in 28 recreational endurance runners. During the study peak treadmill running speed (Vpeak ) improved by 7.5 ± 4.5%. No changes were observed in HRV indices after BTP, but after ITP, these indices increased significantly (HFP: 1.9%, P=0.026; TP: 1.7%, P=0.007). Significant correlations were observed between the change of Vpeak and HRV indices (TP: r=0.75, P<0.001; HFP: r=0.71, P<0.001; LFP: r=0.69, P=0.01) at baseline during ITP. In order to lead to significant changes in HRV among recreational endurance runners, it seems that moderate- and high-intensity training are needed. This study showed that recreational endurance runners with a high HRV at baseline improved their endurance running performance after ITP more than runners with low baseline HRV. © 2011 John Wiley & Sons A/S.

  19. The effect of acute exercise on pulsatile release of luteinizing hormone in women runners.

    PubMed

    Cumming, D C; Vickovic, M M; Wall, S R; Fluker, M R; Belcastro, A N

    1985-11-01

    Endurance exercise has been associated with reproductive dysfunction. We have previously suggested that pulsatile release of luteinizing hormone is impaired at rest in normal menstruating runners compared with sedentary women. To determine whether acute exercise had any effect on pulsatile release of luteinizing hormone we investigated serum luteinizing hormone levels in six normal menstruating runners at rest and after 60 minutes of running exercise. Exercise induced an increment in circulating luteinizing hormone levels greater than the change in hematocrit. The luteinizing hormone pulse frequency, calculated as the number of luteinizing hormone pulses per 6 hours, was reduced after exercise compared with values obtained at rest. There was no significant difference in pulse amplitude or area under the 6-hour curve between resting and postexercise situations. These data suggest that acute exercise has an inhibitory effect on luteinizing hormone pulsatile release at the hypothalamic level in eumenorrheic runners that is in addition to the previously described effect of training.

  20. Physiological Profiles of High School Female Cross Country Runners.

    ERIC Educational Resources Information Center

    Butts, Nancy Kay

    1982-01-01

    Percentage of body fat, ratings of perceived exertion, and maximal oxygen consumption were obtained during a continuous running treadmill test on 127 high school female cross country runners. The relatively low relationships between the variables tested and running performance indicated that other factors may be more important determinants of…

  1. Health Effects Related to Wind Turbine Noise Exposure: A Systematic Review

    PubMed Central

    Schmidt, Jesper Hvass; Klokker, Mads

    2014-01-01

    Background Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. Objective This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. Data Sources A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. Study Eligibility Criteria All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. Results Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. Limitations Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. Conclusions Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found

  2. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  3. Comparison of Varying Heel to Toe Differences and Cushion to Barefoot Running in Novice Minimalist Runners

    PubMed Central

    MOODY, DANNY; HUNTER, IAIN; RIDGE, SARAH; MYRER, J. WILLIAM

    2018-01-01

    There are many different types of footwear available for runners in today’s market. Many of these shoes claim to help runners run more efficiently by altering an individual’s stride mechanics. Minimalist footwear claims to aid runners run more on their forefeet whereas more traditional footwear provides more cushioning specifically for a heel first landing. The purpose of this paper was to determine if runners, who were accustomed to running in traditional footwear would alter their running mechanics while running acutely in various types of minimalist footwear. Twelve subjects, accustomed to running in traditional 12 mm heel/toe differential footwear, ran in five footwear conditions on a treadmill at a controlled pace for two minutes after warming up in each condition for 5 minutes. While running in 12 mm heel/toe differential footwear compared to barefoot, subjects ran with a significantly longer ground time, a lower stride rate and greater vertical oscillation. There were not any differences in variables when running in the shod conditions despite the varying heel/toe differentials. Running barefoot proved to be different than running in traditional 12 mm drop cushioned footwear. PMID:29795721

  4. Comparison of Varying Heel to Toe Differences and Cushion to Barefoot Running in Novice Minimalist Runners.

    PubMed

    Moody, Danny; Hunter, Iain; Ridge, Sarah; Myrer, J William

    2018-01-01

    There are many different types of footwear available for runners in today's market. Many of these shoes claim to help runners run more efficiently by altering an individual's stride mechanics. Minimalist footwear claims to aid runners run more on their forefeet whereas more traditional footwear provides more cushioning specifically for a heel first landing. The purpose of this paper was to determine if runners, who were accustomed to running in traditional footwear would alter their running mechanics while running acutely in various types of minimalist footwear. Twelve subjects, accustomed to running in traditional 12 mm heel/toe differential footwear, ran in five footwear conditions on a treadmill at a controlled pace for two minutes after warming up in each condition for 5 minutes. While running in 12 mm heel/toe differential footwear compared to barefoot, subjects ran with a significantly longer ground time, a lower stride rate and greater vertical oscillation. There were not any differences in variables when running in the shod conditions despite the varying heel/toe differentials. Running barefoot proved to be different than running in traditional 12 mm drop cushioned footwear.

  5. Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®

    PubMed Central

    McNeill, David K.P.; Kline, John R.; de Heer, Hendrick D.; Coast, J. Richard

    2015-01-01

    Lower body positive pressure (LBPP), or ‘anti-gravity’ treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile−1 pace (3.35, 3.84, 4.47 and 5.36 m·s−1), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key points With

  6. Oxygen consumption of elite distance runners on an anti-gravity treadmill®.

    PubMed

    McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard

    2015-06-01

    Lower body positive pressure (LBPP), or 'anti-gravity' treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile(-1) pace (3.35, 3.84, 4.47 and 5.36 m·s(-1)), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key pointsWith increasing

  7. Differences in MCT1 A1470T polymorphism prevalence between runners and swimmers.

    PubMed

    Ben-Zaken, S; Eliakim, A; Nemet, D; Rabinovich, M; Kassem, E; Meckel, Y

    2015-06-01

    Skeletal muscle is the major producer and user of lactate in the body. Therefore, transport of lactate across cells' membrane is of considerable importance. Lactate transport is mediated by proton-linked monocarboxylate transporter (MCT1). The A1470T polymorphism (rs1049434) in MCT1 gene influences lactate transport, with T allele associated with reduction of lactate transport rate and elevation in blood lactate levels. The aim of the current study was to compare allelic and genotype frequencies of MCT1 A1470T polymorphism among Israeli track-and-field athletes, swimmers, and non-athletes. Genomic DNA was extracted from 173 track-and-field athletes (age 17-50), 80 swimmers (age 16-49), and 128 non-athletes (age 19-29). Track-and-field athletes were assigned to three subgroups: long-distance runners, middle-distance runners, and power event athletes. Swimmers were assigned to two subgroups: long-distance swimmers and short-distance swimmers. Genotyping was performed using polymerase chain reaction. T-allele frequency was significantly higher among long-distance swimmers (45%) compared with long- and middle-distance runners (27% and 30%, respectively; P < 0.01). In addition, T-allele frequency was significantly higher among short-distance swimmers (40%) compared with power event athletes (25%, P < 0.01). Overall, T-allele frequency was significantly higher among swimmers (42%) compared with runners (27%, P < 0.001). More research is needed to clarify whether this polymorphism displays advantage for swimming performance. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Preparticipation evaluation of novice, middle-age, long-distance runners.

    PubMed

    Aagaard, Philip; Sahlén, Anders; Bergfeldt, Lennart; Braunschweig, Frieder

    2013-01-01

    The purpose of this study was to assess the cardiovascular health and risk profile in middle-age men making an entry to participate for their first time in a long-distance race. Male first-time participants, 45 yr and older, in the world's largest cross-country running race, the Lidingöloppet, were evaluated with a medical history and physical examination, European systematic coronary risk evaluation (SCORE), 12-lead ECG, echocardiography, and blood tests. Further diagnostic workup was performed when clinically indicated. Of 265 eligible runners, 153 (58%, age 51 ± 5 yr) completed the study. Although the 10-yr fatal cardiovascular event risk was low (SCORE, 1%; interquartile range, 0%-1%), mild abnormalities were common, for example, elevated blood pressure (19%), left ventricular hypertrophy (6%), and elevated LDL cholesterol (5%). ECG changes compatible with the "athlete's heart" were present in 82%, for example, sinus bradycardia (61%) and/or early repolarization (32%). ECG changes considered training unrelated were found in 24%, for example, prolonged QTc-interval (13%), left axis deviation (5.3%), and left atrial enlargement (4%). In 14 runners (9%), additional diagnostic workup was clinically motivated, and 4 runners (2%) were ultimately discouraged from vigorous exercise because of QTc intervals >500 ms (n = 2), symptomatic atrioventricular block (n = 1), and cardiac tumor (n = 1). The physician examination and the ECG identified 12 of the 14 participants requiring further evaluation. Cardiovascular evaluation of middle-age men, including a physician examination and a 12-lead ECG, appears useful to identify individuals requiring further testing before vigorous exercise. The additional yield of routine echocardiography was small.

  9. CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?

    PubMed

    Cornwall, Mark W; McPoil, Thomas G

    2017-08-01

    For those runners who utilize footwear and have a rearfoot strike pattern, the durability of the midsole heel region has been shown to deteriorate as shoe mileage increases. The purpose of this study was threefold: 1) to determine if the runner can self-report changes in heel cushioning properties of the midsole after an extended period of distance running, 2) to determine if force and plantar pressures measured in the heel region of the midsole using a capacitance sensor insole change after running 640 km, and 3) to determine if a durometer could be used clinically to objectively measure changes in the hardness of the material in the heel region of the midsole. Cross-sectional Study. Fifteen recreational runners voluntarily consented to participate and were provided with a new pair of running shoes. Each participant's running style was observed and classified as having a rearfoot strike pattern. Inclusion criteria included running at least 24 km per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury six months prior to the start of the study. The ability of each participant to self-perceive changes in shoe cushioning, comfort and fit was assessed using the Footwear Comfort Assessment Tool (FCAT). In-shoe plantar pressures and vertical forces were assessed using a capacitance sensor insole while runners ran over a 42-meter indoor runway. A Shore A durometer was used to measure the hardness of the midsole in the heel region. All measures were completed at baseline (zero km) and after running 160, 320, 480, and 640 km. In addition to descriptive statistics, a repeated measures analysis of variance was used to determine if the FCAT, pressures, forces, or midsole hardness changed because of increased running mileage. While plantar pressures and vertical forces were significantly reduced in the midsole heel region, none of the runners self-reported a significant reduction in heel cushioning based on

  10. CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?

    PubMed Central

    Cornwall, Mark W.

    2017-01-01

    Background For those runners who utilize footwear and have a rearfoot strike pattern, the durability of the midsole heel region has been shown to deteriorate as shoe mileage increases. Purpose The purpose of this study was threefold: 1) to determine if the runner can self-report changes in heel cushioning properties of the midsole after an extended period of distance running, 2) to determine if force and plantar pressures measured in the heel region of the midsole using a capacitance sensor insole change after running 640 km, and 3) to determine if a durometer could be used clinically to objectively measure changes in the hardness of the material in the heel region of the midsole. Study Design Cross-sectional Study Methods Fifteen recreational runners voluntarily consented to participate and were provided with a new pair of running shoes. Each participant's running style was observed and classified as having a rearfoot strike pattern. Inclusion criteria included running at least 24 km per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury six months prior to the start of the study. The ability of each participant to self-perceive changes in shoe cushioning, comfort and fit was assessed using the Footwear Comfort Assessment Tool (FCAT). In-shoe plantar pressures and vertical forces were assessed using a capacitance sensor insole while runners ran over a 42-meter indoor runway. A Shore A durometer was used to measure the hardness of the midsole in the heel region. All measures were completed at baseline (zero km) and after running 160, 320, 480, and 640 km. In addition to descriptive statistics, a repeated measures analysis of variance was used to determine if the FCAT, pressures, forces, or midsole hardness changed because of increased running mileage. Result While plantar pressures and vertical forces were significantly reduced in the midsole heel region, none of the runners self-reported a

  11. The Effect of Clinical Pilates on Functional Movement in Recreational Runners.

    PubMed

    Laws, Anna; Williams, Sean; Wilson, Cassie

    2017-09-01

    Biomechanical imbalances and inefficient functional movements are considered contributing factors to running-related injuries. Clinical Pilates uses a series of exercises focused on retraining normal movement patterns. This study investigated whether a 6-week course of Clinical Pilates improves functional movement and thereby, potentially, reduces the risk of running-related injuries associated with movement dysfunction. A modified functional movement screen was used to analyze the functional movement ability of forty runners. Forty participants completed a 6-week course of Clinical Pilates delivered by a Clinical Pilates instructor. The movement screen was carried out 3 times for each runner: 6 weeks pre-intervention (baseline), within one week pre-intervention (pre) and within one week post-intervention (post). Repeated-measures analysis of variance and post-hoc tests found significant increases in scores between baseline and post (mean±SD; 13.4±2.4 vs. 17.0±1.7, p<0.01) and pre and post (mean±SD; 13.5±2.5 vs. 17.0±1.7, p<0.01), but no significant difference between baseline and pre (p=0.3). A 6-week course of Clinical Pilates significantly improves functional movement in recreational runners, and this may lead to a reduction in the risk of running-related injuries. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running.

    PubMed

    Barnes, Kyle R; Janecke, Jessica N

    2017-11-21

    As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners' responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners. Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h -1 for men and 12.9, 14.5, and 16.1 km·h -1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS. Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p < 0.02) and flight duration (p < 0.01) and decreased stride rate (p < 0.01) and contact time (p < 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO 2 ) relative to BWS (p < 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p > 0.05), and small-large effects

  13. A Survey of Runners' Attitudes Toward and Experiences With Minimally Shod Running.

    PubMed

    Cohler, Marissa H; Casey, Ellen

    2015-08-01

    To investigate the characteristics, perceptions, motivating factors, experiences, and injury rates of runners who practice minimally shod running. Survey. web-based questionnaire. Five-hundred sixty-six members of the Chicago Area Runner's Association. A link to a 31-question online survey was e-mailed to members of Chicago Area Runner's Association. Questions covered demographic information, use of minimalist-style running shoes (MSRS), injury rates, and change in pain. Use of MSRS, occurrence or improvement of injury/pain, regions of injury/pain, reasons for or for not using MSRS. One-hundred seventy-five (31%) respondents had practiced minimally shod running, and the most common motivating factor was to decrease injuries and/or pain. Fifty-one respondents (29%) suffered an injury or pain while wearing MSRS, with the most common body part involved being the foot. Fifty-four respondents (31%) had an injury that improved after adopting minimally shod running; the most common area involved was the knee. One-hundred twenty respondents (69%) were still using MSRS. Of those who stopped using MSRS, the main reason was development of an injury or pain. The most common reason that respondents have not tried minimally shod running is a fear of developing an injury. This survey-based study demonstrated that the use of MSRS is common, largely as the result of a perception that they may reduce injuries or pain. Reductions and occurrences of injury/pain with minimally shod running were reported in approximately equal numbers. The most common site of reported injury/pain reduction was the knee, whereas the most common reported site of injury/pain occurrence was the foot. Fear of developing pain or injury is the most common reason runners are reluctant to try minimally shod running. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Predictors of running-related injuries in novice runners enrolled in a systematic training program: a prospective cohort study.

    PubMed

    Buist, Ida; Bredeweg, Steef W; Lemmink, Koen A P M; van Mechelen, Willem; Diercks, Ron L

    2010-02-01

    The popularity of running is still growing. As participation increases, running-related injuries also increase. Until now, little is known about the predictors for injuries in novice runners. Predictors for running-related injuries (RRIs) will differ between male and female novice runners. Cohort study; Level of evidence, 2. Participants were 532 novice runners (226 men, 306 women) preparing for a recreational 4-mile (6.7-km) running event. After completing a baseline questionnaire and undergoing an orthopaedic examination, they were followed during the training period of 13 weeks. An RRI was defined as any self-reported running-related musculoskeletal pain of the lower extremity or back causing a restriction of running for at least 1 week. Twenty-one percent of the novice runners had at least one RRI during follow-up. The multivariate adjusted Cox regression model for male participants showed that body mass index (BMI) (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.05-1.26), previous injury in the past year (HR, 2.7; 95% CI, 1.36-5.55), and previous participation in sports without axial load (HR, 2.05; 95% CI, 1.03-4.11) were associated with RRI. In female participants, only navicular drop (HR, 0.85; 95% CI, 0.75-0.97) remained a significant predictor for RRI in the multivariate Cox regression modeling. Type A behavior and range of motion (ROM) of the hip and ankle did not affect risk. Male and female novice runners have different risk profiles. Higher BMI, previous injury, and previous sports participation without axial loading are important predictors for RRI in male participants. Further research is needed to detect more predictors for female novice runners.

  15. Reproducibility of and sex differences in common orthopaedic ankle and foot tests in runners

    PubMed Central

    2014-01-01

    Background For future etiologic cohort studies in runners it is important to identify whether (hyper)pronation of the foot, decreased ankle joint dorsiflexion (AJD) and the degree of the extension of the first Metatarsophalangeal joint (MTP1) are risk factors for running injuries and to determine possible sex differences. These parameters are frequently determined with the navicular drop test (NDT) Stance and Single Limb-Stance, the Ankle Joint Dorsiflexion-test, and the extension MTP1-test in a healthy population. The aim of this clinimetric study was to determine the reproducibility of these three orthopaedic tests in runners, using minimal equipment in order to make them applicable in large cohort studies. Furthermore, we aimed to determine possible sex differences of these tests. Methods The three orthopaedic tests were administered by two sports physiotherapists in a group of 42 (22 male and 20 female) recreational runners. The intra-class correlation (ICC) for interrater and intrarater reliability and the standard error of measurement (SEM) were calculated. Bland and Altman plots were used to determine the 95% limits of agreements (LOAs). Furthermore, the difference between female and male runners was determined. Results The ICC’s of the NDT were in the range of 0.37 to 0.45, with a SEM in the range of 2.5 to 5 mm. The AJD-test had an ICC of 0.88 and 0.86 (SEM 2.4° and 8.7°), with a 95% LOA of -6.0° to 6.3° and -5.3° to 7.9°, and the MTP1-test had an ICC of 0.42 and 0.62 (SEM 34.4° and 9.9°), with a 95% LOA of -30.9° to 20.7° and -20° to 17.8° for the interrater and intrarater reproducibility, respectively. Females had a significantly (p < 0.05) lower navicular drop score and higher range of motion in extension of the MTP1, but no sex differences were found for ankle dorsiflexion (p ≥ 0.05). Conclusion The reproducibility for the AJD test in runners is good, whereas that of the NDT and extension MTP1 was moderate or low. We found a

  16. Comparison of three-dimensional lower extremity running kinematics of young adult and elderly runners.

    PubMed

    Fukuchi, Reginaldo K; Duarte, Marcos

    2008-11-01

    The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67-73 years) and 17 young adults (age 26-36 years) ran at 3.1 m x s(-1) on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33 degrees ; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12 degrees ; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (-5.8 vs. -1.0 degrees ; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.

  17. Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs

    DOEpatents

    Grondahl, Clayton M.; Germain, Malcolm R.

    1981-01-01

    An improved cooling system for a gas turbine is disclosed. A plurality of V-shaped notch weirs are utilized to meter a coolant liquid from a pool of coolant into a plurality of platform and airfoil coolant channels formed in the buckets of the turbine. The V-shaped notch weirs are formed in a separately machined cylindrical insert and serve to desensitize the flow of coolant into the individual platform and airfoil coolant channels to design tolerances and non-uniform flow distribution.

  18. Esophageal reflux in conditioned runners, cyclists, and weightlifters.

    PubMed

    Collings, Kimberly L; Pierce Pratt, F; Rodriguez-Stanley, Sheila; Bemben, Michael; Miner, Philip B

    2003-05-01

    Gastroesophageal reflux disease is a disorder in which gastric contents move from stomach to esophagus. Exercise is a recognized contributing factor to reflux in healthy volunteers and is reported to be proportional to exercise intensity and the type of exercise. Our aim was to explore changes in physiology occurring in conditioned runners, cyclists, and weightlifters. Ten subjects from each sport with >3-month history of exercise-induced heartburn were enrolled. Subjects underwent evaluation of fasting and fed esophageal pH, heart rate, GI symptom, and perceived exertion during standardized exercise routines at 65% (60 min) and 85% (20 min) of their maximal capabilities. Weightlifters experienced the most heartburn and reflux: 18.51 +/- 17.34% time esophageal pH Runners developed mild symptoms and moderate reflux: 4.90 +/- 3.96% time pH

  19. Rehabilitation of a marathon runner with Guillain-Barré syndrome.

    PubMed

    Fisher, Tara Beth; Stevens, Jennifer E

    2008-12-01

    Guillain-Barré syndrome (GBS) is an acute inflammatory demyelinating polyradiculoneuropathy that affects nerve roots and peripheral nerves leading to motor neuropathy and flaccid paralysis. This case report describes the physical therapy examination, intervention, and outcomes for a marathon runner with GBS. The patient was a 30-year-old male marathon runner who presented with acutely evolving motor and sensory deficits that initially stabilized and then worsened. Both GBS and chronic inflammatory demyelinating polyradiculoneuropathy were considered as diagnoses, and medical treatment included a combination of intravenous administration of immunoglobulins, plasmapheresis, and corticosteroids. During his stay in an acute inpatient rehabilitation facility, the intervention was focused on regaining functional independence and strength with care not to induce fatigue or relapse. After three weeks in an acute inpatient rehabilitation facility, the patient showed marked gains in Functional Independence Measure scores and muscle performance as measured by manual muscle testing.

  20. Psycho-Social Parameters in Young Female Long Distance Runners.

    ERIC Educational Resources Information Center

    Burke, Edmund J.; And Others

    This study was designed to determine selected psycho-social parameters associated with a group of teenage, female long distance runners. These young women, who train by running approximately 50-90 miles per week, had scores in certain physiological and anthropometric measurements which were among the most advantageous for running ever recorded in…

  1. Epidemiology of tinea pedis in marathon runners: prevalence of occult athlete's foot.

    PubMed

    Auger, P; Marquis, G; Joly, J; Attye, A

    1993-01-01

    Studies on the prevalence of tinea pedis, a frequently encountered dermatophytic infection, have been conducted mostly in swimmers although people who regularly practise other types of physical activities may also have a high rate of clinical or subclinical infection. This investigation was undertaken to establish the rate of infection in marathon runners, and to determine the incidence of occult athlete's foot disease in this population. Among samples obtained from 405 individuals, 22% were positive. The rate of infection was highest in the older age groups. The prevalence of infection was 24.2% in men and 6.1% in women. Trichophyton rubrum and Trichophyton mentagrophytes were the two species of dermatophytes most commonly isolated on culture. Occult athlete's foot disease represented 48% of cases with a positive culture. Finally, routine sampling of both feet was confirmed necessary to adequately establish the rate of infection: 26.9% of cases with a positive culture would have been missed by unilateral sampling. Other epidemiological factors were not clearly linked to the prevalence of disease in marathon runners: weight; presence of pet animals; practice of other sports; race and country of origin. In conclusion, we establish that marathon runners represent a population at risk for the occurrence of both clinical and subclinical tinea pedis infection.

  2. Anthropometrics and Body Composition in East African Runners: Potential Impact on Performance.

    PubMed

    Mooses, Martin; Hackney, Anthony C

    2017-04-01

    Maximal oxygen uptake (V̇O 2 max), fractional utilization of V̇O 2 max during running, and running economy (RE) are crucial factors for running success for all endurance athletes. Although evidence is limited, investigations of these key factors indicate that East Africans' superiority in distance running is largely due to a unique combination of these factors. East African runners appear to have a very high level of RE most likely associated, at least partly, with anthropometric characteristics rather than with any specific metabolic property of the working muscle. That is, evidence suggest that anthropometrics and body composition might have important parameters as determinants of superior performance of East African distance runners. Regrettably, this role is often overlooked and mentioned as a descriptive parameter rather than an explanatory parameter in many research studies. This brief review article provides an overview of the evidence to support the critical role anthropometrics and body composition has on the distance running success of East African athletes. The structural form and shape of these athletes also has a downside, because having very low BMI or body fat increases the risk for relative energy deficiency in sport (RED-S) conditions in both male and female runners, which can have serious health consequences.

  3. Plantar Pressures During Long Distance Running: An Investigation of 10 Marathon Runners

    PubMed Central

    Hohmann, Erik; Reaburn, Peter; Tetsworth, Kevin; Imhoff, Andreas

    2016-01-01

    The objective of this study was to record plantar pressures using an in-shoe measuring system before, during, and after a marathon run in ten experienced long-distance runners with a mean age of 37.7 ± 11.5 years. Peak and mean plantar pressures were recorded before, after, and every three km during a marathon race. There were no significant changes over time in peak and mean plantar pressures for either the dominant or non-dominant foot. There were significant between foot peak and mean plantar pressure differences for the total foot (p = 0.0001), forefoot (p = 0.0001), midfoot (p = 0.02 resp. p = 0.006), hindfoot (p = 0.0001), first ray (p = 0.01 resp. p = 0.0001) and MTP (p = 0.05 resp. p = 0.0001). Long-distance runners do not demonstrate significant changes in mean or peak plantar foot pressures over the distance of a marathon race. However, athletes consistently favoured their dominant extremity, applying significantly higher plantar pressures through their dominant foot over the entire marathon distance. Key points Fatigue does not increase foot pressures Every runner has a dominant foot where pressures are higher and that he/she favours Foot pressures do not increase over the distance of a marathon run PMID:27274662

  4. The effectiveness of a preconditioning programme on preventing running-related injuries in novice runners: a randomised controlled trial.

    PubMed

    Bredeweg, Steef W; Zijlstra, Sjouke; Bessem, Bram; Buist, Ida

    2012-09-01

    There is no consensus on the aetiology and prevention of running-related injuries in runners. Preconditioning studies among different athlete populations show positive effects on the incidence of sports injuries. A 4-week preconditioning programme in novice runners will reduce the incidence of running-related injuries. Randomised controlled clinical trial; level of evidence, 1. Novice runners (N=432) prepared for a four-mile recreational running event. Participants were allocated to the 4-week preconditioning (PRECON) group (N=211) or the control group (N=221). The PRECON group started a 4-week training programme, prior to the running programme, with walking and hopping exercises. After the 4-week period both groups started a 9-week running programme. In both groups information was registered on running exposure and running-related injuries (RRIs) using an internet-based running log. Primary outcome measure was RRIs per 100 runners. An RRI was defined as any musculoskeletal complaint of the lower extremity or lower back causing restriction of running for at least a week. The incidence of RRIs was 15.2% in the PRECON group and 16.8% in the control group. The difference in RRIs between the groups was not significant (χ(2)=0.161, df=1, p=0.69). This prospective study demonstrated that a 4-week PRECON programme with walking and hopping exercises had no influence on the incidence of RRIs in novice runners.

  5. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis.

    PubMed

    Phinyomark, Angkoon; Osis, Sean; Hettinga, Blayne A; Ferber, Reed

    2015-11-05

    Previous studies have demonstrated distinct clusters of gait patterns in both healthy and pathological groups, suggesting that different movement strategies may be represented. However, these studies have used discrete time point variables and usually focused on only one specific joint and plane of motion. Therefore, the first purpose of this study was to determine if running gait patterns for healthy subjects could be classified into homogeneous subgroups using three-dimensional kinematic data from the ankle, knee, and hip joints. The second purpose was to identify differences in joint kinematics between these groups. The third purpose was to investigate the practical implications of clustering healthy subjects by comparing these kinematics with runners experiencing patellofemoral pain (PFP). A principal component analysis (PCA) was used to reduce the dimensionality of the entire gait waveform data and then a hierarchical cluster analysis (HCA) determined group sets of similar gait patterns and homogeneous clusters. The results show two distinct running gait patterns were found with the main between-group differences occurring in frontal and sagittal plane knee angles (P<0.001), independent of age, height, weight, and running speed. When these two groups were compared to PFP runners, one cluster exhibited greater while the other exhibited reduced peak knee abduction angles (P<0.05). The variability observed in running patterns across this sample could be the result of different gait strategies. These results suggest care must be taken when selecting samples of subjects in order to investigate the pathomechanics of injured runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Discrete and continuous joint coupling relationships in uninjured recreational runners.

    PubMed

    Dierks, Tracy A; Davis, Irene

    2007-06-01

    Abnormal joint coupling is thought to be related to overuse injuries in runners. However, researchers do not yet know what constitutes normal joint coupling during running, which makes abnormal coupling difficult to define. Lower extremity kinematics were collected from 40 recreational runners during stance. Joint coupling methods were applied and, for each method, means and both within- and between-subject variability were calculated. The 95% confidence interval was used to compare differences across coupling relationships and periods of stance. Timing between rearfoot eversion, tibial internal rotation, and knee flexion were relatively synchronous while relationships involving knee internal rotation were more asynchronous. The excursion ratios showed that every 2 degrees of rearfoot eversion was coupled with 1 degrees of both tibial internal rotation and knee internal rotation. Vector coding results showed that just beyond maximum loading, all joint coupling relationships resulted in relatively equal amounts of motion, while the within-subject variability was similar throughout stance. The continuous relative phase results showed that the most out-of-phase coupling occurred in the periods around heel-strike and toe-off while the most in-phase coupling occurred in the period just beyond maximum loading of the leg. The continuous relative phase within-subject variability was greatest at the periods around heel-strike and toe-off and smallest just beyond maximum loading. With a better understanding of joint coupling in uninjured runners, these data will help to serve as a reference for future studies investigating the relationship between running injuries and abnormal joint coupling.

  7. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture.

    PubMed

    Milner, Clare E; Hamill, Joseph; Davis, Irene S

    2010-02-01

    Cross-sectional controlled laboratory study. To investigate the kinematics of the hip, knee, and rearfoot in the frontal and transverse planes in female distance runners with a history of tibial stress fracture. Tibial stress fractures are a common overuse injury in runners, accounting for up to half of all stress fractures. Abnormal kinematics of the lower extremity may contribute to abnormal musculoskeletal load distributions, leading to an increased risk of stress fractures. Thirty female runners with a history of tibial stress fracture were compared to 30 age-matched and weekly-running-distance-matched control subjects with no previous lower extremity bony injuries. Kinematic and kinetic data were collected using a motion capture system and a force platform, respectively, as subjects ran in the laboratory. Selected variables of interest were compared between the groups using a multivariate analysis of variance (MANOVA). Peak hip adduction and peak rearfoot eversion angles were greater in the stress fracture group compared to the control group. Peak knee adduction and knee internal rotation angles and all joint angles at impact peak were similar between the groups. Runners with a previous tibial stress fracture exhibited greater peak hip adduction and rearfoot eversion angles during the stance phase of running compared to healthy controls. A consequence of these mechanics may be altered load distribution within the lower extremity, predisposing individuals to stress fracture.

  8. Joint stiffness and running economy during imposed forefoot strike before and after a long run in rearfoot strike runners.

    PubMed

    Melcher, Daniel A; Paquette, Max R; Schilling, Brian K; Bloomer, Richard J

    2017-12-01

    Research has focused on the effects of acute strike pattern modifications on lower extremity joint stiffness and running economy (RE). Strike pattern modifications on running biomechanics have mostly been studied while runners complete short running bouts. This study examined the effects of an imposed forefoot strike (FFS) on RE and ankle and knee joint stiffness before and after a long run in habitual rearfoot strike (RFS) runners. Joint kinetics and RE were collected before and after a long run. Sagittal joint kinetics were computed from kinematic and ground reaction force data that were collected during over-ground running trials in 13 male runners. RE was measured during treadmill running. Knee flexion range of motion, knee extensor moment and ankle joint stiffness were lower while plantarflexor moment and knee joint stiffness were greater during imposed FFS compared with RFS. The long run did not influence the difference in ankle and knee joint stiffness between strike patterns. Runners were more economical during RFS than imposed FFS and RE was not influenced by the long run. These findings suggest that using a FFS pattern towards the end of a long run may not be mechanically or metabolically beneficial for well-trained male RFS runners.

  9. DEGATING WORKERS REMOVING SPRUES AND RUNNERS MANUALLY WITH SLEDGEHAMMERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEGATING WORKERS REMOVING SPRUES AND RUNNERS MANUALLY WITH SLEDGEHAMMERS AND POWERED PNEUMATIC SEPARATORS FROM CASTINGS FROM ALL MOLDING MACHINES BEFORE SEPARATING PIECES INTO BINS AND TRANSPORTING THEM TO GRINDING AREAS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  10. Prospective monitoring of health problems among recreational runners preparing for a half marathon

    PubMed Central

    Baumann, Antje; Zech, Astrid; Verhagen, Evert

    2018-01-01

    Objectives While the health benefits of running are legitimately advocated, participation in running can also lead to health problems. There is a high range of reported prevalence rates especially of running-related overuse injuries in high-level athletes and during competition. Little consensus exists for acute injuries and illnesses especially in recreational runners. Therefore, the aim of this study was to record the prevalence of health problems in recreational long-distance runners preparing for an event. Methods Recreational runners aged 18–65 years who were registered 13 weeks prior to a half-marathon running event were invited to take part in this study. Participants were prospectively monitored weekly over 13 weeks by applying a standardised surveillance system for injuries and illnesses (Oslo Sports Trauma Research Center questionnaire). From this, prevalence and severity of acute and overuse injuries, as well as illnesses, were calculated. Results We received 3213 fully answered questionnaires from 327 participants (40.7% female, 40.9±11.7 years of age, 31.5±21.1 km weekly mileage, 8.3±7.8 years of running experience). At any point in time over the preparation phase, 37.3% of the participants had health problems. Overuse injuries were the major burden (18%). They were followed by illnesses (14.1%) and acute injuries (7.9%). The median weekly severity score was 56.5 (IQR 37.0–58.0). Conclusion The high prevalence of health problems in our cohort suggests that future efforts are needed to further specify the underlying mechanism and develop adequate prevention strategies for recreational runners. PMID:29387447

  11. Ankle and toe muscle strength characteristics in runners with a history of medial tibial stress syndrome.

    PubMed

    Saeki, Junya; Nakamura, Masatoshi; Nakao, Sayaka; Fujita, Kosuke; Yanase, Ko; Morishita, Katsuyuki; Ichihashi, Noriaki

    2017-01-01

    A high proportion of flexor digitorum longus attachment is found at the posteromedial border of the tibia, which is the most common location of medial tibial stress syndrome (MTSS). Therefore, plantar flexion strength of the lesser toes could be related to MTSS; however, the relationship between MTSS and muscle strength of the hallux and lesser toes is not yet evaluated due to the lack of quantitative methods. This study investigated the muscle strength characteristics in runners with a history of MTSS by using a newly developed device to measure the muscle strength of the hallux, lesser toes, and ankle. This study comprised 27 collegiate male runner participants (20.0 ± 1.6 years, 172.1 ± 5.1 cm, 57.5 ± 4.0 kg). Maximal voluntary isometric contraction (MVIC) torque of the plantar flexion, dorsiflexion, inversion, and eversion of the ankle were measured by using an electric dynamometer. MVIC torque of the 1st metatarsophalangeal joint (MTPJ) and 2nd-5th MTPJ were measured by using a custom-made torque-measuring device. MVIC torques were compared between runners with and without a history of MTSS. MVIC torque of the 1st MTPJ plantar flexion was significantly higher in runners with a history of MTSS than in those without it. In contrast, there were no significant differences in the MVIC torque values of the 2nd-5th MTPJ plantar flexion and each MVIC torque of the ankle between runners with and without a history of MTSS. A history of MTSS increased the isometric FHL strength.

  12. Turbine component, turbine blade, and turbine component fabrication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less

  13. Mechanisms for improved running economy in beginner runners.

    PubMed

    Moore, Isabel S; Jones, Andrew M; Dixon, Sharon J

    2012-09-01

    Controversy surrounds whether running mechanics make good predictors of running economy (RE) with little known about the development of an economical running gait. The aim of this study was to identify if mechanical or physiological variables changed during 10 wk of running in beginners and whether these changes could account for any change in RE. A 10-wk running program (10 wkRP) was completed by 10 female beginner runners. A bilateral three-dimensional kinematic and kinetic analysis, in addition to RE and lower body flexibility measurements, was performed before and after the 10 wkRP. The Balke-Ware graded walking exercise test was performed before and after the 10 wkRP to determine VO2max. Seven kinematic and kinetic variables significantly changed from before to after training, in addition to a significant decrease in calf flexibility (27.3° ± 6.3° vs 23.9° ± 5.6°, P < 0.05). A significant improvement was seen in RE (224 ± 24 vs 205 ± 27 mL · kg(-1) · km(-1), P < 0.05) and treadmill time to exhaustion (16.4 ± 3.2 vs 17.3 ± 2.8 min, P < 0.05); however, VO2max remained unchanged from before to after training (34.7 ± 5.1 vs 34.3 ± 5.6 mL · kg(-1) · min(-1)). Stepwise regression analysis showed three kinematic variables to explain 94.3% of the variance in change in RE. They were a less extended knee at toe off (P = 0.004), peak dorsiflexion occurring later in stance (P = 0.001), and a slower eversion velocity at touchdown (P = 0.042). The magnitude of change for each variable was 1.5%, 4.7%, and 34.1%, respectively. These results show that beginner runners naturally developed their running gait as they became more economical runners.

  14. On the performance of a high head Francis turbine at design and off-design conditions

    NASA Astrophysics Data System (ADS)

    Aakti, B.; Amstutz, O.; Casartelli, E.; Romanelli, G.; Mangani, L.

    2015-01-01

    In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component.

  15. 76 FR 7831 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... turbine runners and replacing the generator frame, stator core and windings. Each of the project's turbine... capacity would increase by 5,000 kW from 27,000 kW to 32,000 kW. The total maximum hydraulic capacity of...

  16. Comparison of plantar flexor musculotendinous stiffness, geometry, and architecture in male runners with and without a history of tibial stress fracture.

    PubMed

    Pamukoff, Derek N; Blackburn, J Troy

    2015-02-01

    Greater lower extremity joint stiffness may be related to the development of tibial stress fractures in runners. Musculotendinous stiffness is the largest contributor to joint stiffness, but it is unclear what factors contribute to musculotendinous stiffness. The purpose of this study was to compare plantar flexor musculotendinous stiffness, architecture, geometry, and Achilles tendon stiffness between male runners with and without a history of tibial stress fracture. Nineteen healthy runners (age = 21 ± 2.7 years; mass = 68.2 ± 9.3 kg; height = 177.3 ± 6.0 cm) and 19 runners with a history of tibial stress fracture (age = 21 ± 2.9 years; mass = 65.3 ± 6.0 kg; height = 177.2 ± 5.2 cm) were recruited from community running groups and the university's varsity and club cross-country teams. Plantar flexor musculotendinous stiffness was estimated from the damped frequency of oscillatory motion about the ankle follow perturbation. Ultrasound imaging was used to measure architecture and geometry of the medial gastrocnemius. Dependent variables were compared between groups via one-way ANOVAs. Previously injured runners had greater plantar flexor musculotendinous stiffness (P < .001), greater Achilles tendon stiffness (P = .004), and lesser Achilles tendon elongation (P = .003) during maximal isometric contraction compared with healthy runners. No differences were found in muscle thickness, pennation angle, or fascicle length.

  17. Participation and performance trends of East-African runners in Swiss half-marathons and marathons held between 2000 and 2010

    PubMed Central

    2013-01-01

    Background This study examined the changes in participation, performance and age of East African runners competing in half-marathons and marathons held in Switzerland between 2000 and 2010. Methods Race times, sex, age and origin of East African versus Non-African finishers of half-marathon and marathon finishers were analyzed. Results Across time, the number of Kenyan and Ethiopian finishers remained stable (P > 0.05) while the number of Non-African finishers increased for both women and men in both half-marathons and marathons (P < 0.05). In half-marathons, the top ten African women (71 ± 1.4 min) and top three (62.3 ± 0.6 min) and top ten (62.8 ± 0.4 min) African men were faster than their Non-African counterparts (P < 0.05). In marathons, however, there was no difference in race times between the top three African men (130.0 ± 0.0 min) and women (151.7 ± 2.5 min) compared to Non-African men (129.0 ± 1.0 min) and women (150.7 ± 1.2 min) (P > 0.05). In half-marathons and marathons was no difference in age between the best Non-African and the best African runners (P > 0.05). Conclusions During the last decade in Switzerland, the participation of Kenyan and Ethiopian runners in half- and full- marathons remained stable. In marathons there was no difference in age and performance between the top African and the top Non-African runners. Regarding half-marathons, the top African runners were faster but not younger than the top Non-African runners. Future insight should be gained by comparing the present results with participation, performance and age trends for East African runners competing in marathons held in larger countries. PMID:24289794

  18. Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Morgut, M.; Mežnar, P.; Nobile, E.

    2015-01-01

    The paper presents numerical simulations of flow in a model of a high head Francis turbine and comparison of results to the measurements. Numerical simulations were done by two CFD (Computational Fluid Dynamics) codes, Ansys CFX and OpenFOAM. Steady-state simulations were performed by k-epsilon and SST model, while for transient simulations the SAS SST ZLES model was used. With proper grid refinement in distributor and runner and with taking into account losses in labyrinth seals very accurate prediction of torque on the shaft, head and efficiency was obtained. Calculated axial and circumferential velocity components on two planes in the draft tube matched well with experimental results.

  19. Advanced turbine study. [airfoil coling in rocket turbines

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.

  20. PubRunner: A light-weight framework for updating text mining results.

    PubMed

    Anekalla, Kishore R; Courneya, J P; Fiorini, Nicolas; Lever, Jake; Muchow, Michael; Busby, Ben

    2017-01-01

    Biomedical text mining promises to assist biologists in quickly navigating the combined knowledge in their domain. This would allow improved understanding of the complex interactions within biological systems and faster hypothesis generation. New biomedical research articles are published daily and text mining tools are only as good as the corpus from which they work. Many text mining tools are underused because their results are static and do not reflect the constantly expanding knowledge in the field. In order for biomedical text mining to become an indispensable tool used by researchers, this problem must be addressed. To this end, we present PubRunner, a framework for regularly running text mining tools on the latest publications. PubRunner is lightweight, simple to use, and can be integrated with an existing text mining tool. The workflow involves downloading the latest abstracts from PubMed, executing a user-defined tool, pushing the resulting data to a public FTP or Zenodo dataset, and publicizing the location of these results on the public PubRunner website. We illustrate the use of this tool by re-running the commonly used word2vec tool on the latest PubMed abstracts to generate up-to-date word vector representations for the biomedical domain. This shows a proof of concept that we hope will encourage text mining developers to build tools that truly will aid biologists in exploring the latest publications.

  1. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding

    PubMed Central

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-01-01

    Background/aim This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Methods Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. Results The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). Conclusions The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. PMID:26746907

  2. Damage Tolerant Design for Cold-Section Turbine Engine Disks

    DTIC Science & Technology

    1981-06-01

    Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen

  3. Lung volumes and maximal respiratory pressures in collegiate swimmers and runners.

    PubMed

    Cordain, L; Tucker, A; Moon, D; Stager, J M

    1990-03-01

    To determine whether respiratory muscle strength is related to pulmonary volume differences in athletes and nonathletes, 11 intercollegiate female swimmers, 11 female cross-country runners, and two nonathletic control groups, matched to the athletes in height and age, were evaluated for pulmonary parameters including maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax). Swimmers exhibited larger (p less than .05) vital capacities (VC), residual lung volumes (RV), inspiratory capacities (IC), and functional residual capacities (FRC) than both the runners or the controls but no difference (p greater than .05) in either PImax or inspiratory flow (FIV 25%-75%). Timed expiratory volumes (FEV 0.5 and FEV 1.0) were significantly (p less than .05) lower in the swimmers than in the controls. These data suggest that an adaptational growth may be responsible, in part, for the augmented static lung volumes demonstrated in swimmers.

  4. Physiological Changes in Elite Male Distance Runners Training for Olympic Competition.

    ERIC Educational Resources Information Center

    Martin, D. E.; And Others

    1986-01-01

    Nine elite male distance runners were evaluated by comprehensive periodic monitoring of selected blood chemistry variables, percent body fat and lean body mass, and cardiopulmonary performance as they prepared for the 1984 Olympic Summer Games. Results are discussed. (MT)

  5. Effect of training load structure on purine metabolism in middle-distance runners.

    PubMed

    Zieliński, Jacek; Kusy, Krzysztof; Rychlewski, Tadeusz

    2011-09-01

    There are no studies analyzing the effect of training loads on purine metabolism during long training periods. The study's purpose was to evaluate the effect of training load changes and subsequent detraining on purine metabolism in middle-distance runners during a 1-yr cycle. In four characteristic points of the training cycle, loads assigned to five intensity zones, pre- and postexercise plasma hypoxanthine (Hx) and uric acid, and erythrocyte Hx-guanine phosphoribosyltransferase (HGPRT) activity were determined in 11 male middle-distance runners at the national level, practicing competitive sport for 8.1 ± 0.3 yr and with a mean age of 22.3 ± 0.7 yr, body mass of 73.0 ± 3.4 kg, and body height of 180 ± 2.2 cm. In the competition phase (CP), training loads in aerobic compensation and threshold zones decreased by 65.4% and by 20.5%, respectively. At the same time, anaerobic training loads increased by 132.5% in the VO(2max) zone and by 74.6% in the lactic acid tolerance zone. Postexercise Hx decreased significantly in CP by 6.2 μmol·L(-1). and increased in the transition phase (TP) by 17.4 μmol·L(-1). Both pre- and postexercise HGPRT activity increased significantly in CP by 9.3 nmol·mg(-1)·h(-1). and by 4.9 nmol·mg(-1)·h(-1). , respectively, and decreased significantly in TP by 10.6 nmol·mg(-1)·h(-1). and by 12.0 nmol·mg(-1)·h(-1). , respectively. A significant uric acid increase of 54 μmol·L(-1). was revealed merely in TP. The effect of anaerobic training on purine metabolism is significant despite of a very short total duration of anaerobic loads. Elevated preexercise HGPRT activity in CP suggests adaptation changes consisting in a "permanent readiness" for purine salvage. The detraining in TP leads to reverse adaptation changes. Probably, plasma Hx concentration and erythrocyte HGPRT activity may be considered as a useful measure of training status.

  6. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with threemore » turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational

  7. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility.

    PubMed

    Williams, D S Blaise; Welch, Lee M

    2015-01-01

    Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.

  8. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

    PubMed Central

    Williams III, D. S. Blaise; Welch, Lee M.

    2015-01-01

    ABSTRACT Background: Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females. Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners. Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05). Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment. Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners. PMID:26537812

  9. Adolescent runners: the effect of training shoes on running kinematics.

    PubMed

    Mullen, Scott; Toby, E Bruce

    2013-06-01

    The modern running shoe typically features a large cushioned heel intended to dissipate the energy at heel strike to the knees and hips. The purpose of this study was to evaluate the effect that shoes have upon the running biomechanics among competitive adolescent runners. We wish to answer the question of whether running style is altered in these athletes because of footwear. Twelve competitive adolescent athletes were recruited from local track teams. Each ran on a treadmill in large heel trainers, track flats, and barefoot. Four different speeds were used to test each athlete. The biomechanics were assessed with a motion capture system. Stride length, heel height during posterior swing phase, and foot/ground contact were recorded. Shoe type markedly altered the running biomechanics. The foot/ground contact point showed differences in terms of footwear (P<0.0001) and speed (P=0.000215). When wearing trainers, the athletes landed on their heels 69.79% of the time at all speeds (P<0.001). The heel was the first point of contact <35% of the time in the flat condition and <30% in the barefoot condition. Running biomechanics are significantly altered by shoe type in competitive adolescents. Heavily heeled cushioned trainers promote a heel strike pattern, whereas track flats and barefoot promote a forefoot or midfoot strike pattern. Training in heavily cushioned trainers by the competitive runner has not been clearly shown to be detrimental to performance, but it does change the gait pattern. It is not known whether the altered biomechanics of the heavily heeled cushioned trainer may be detrimental to the adolescent runner who is still developing a running style.

  10. Gait-related intrinsic risk factors for patellofemoral pain in novice recreational runners.

    PubMed

    Thijs, Y; De Clercq, D; Roosen, P; Witvrouw, E

    2008-06-01

    To determine prospectively gait-related intrinsic risk factors for patellofemoral pain (PFP) in a population of novice recreational runners. Prospective cohort study. 102 novice recreational runners (89 women) with no history of knee or lower leg complaints. The standing foot posture of the subjects was examined and plantar pressure measurements during running were collected. The subjects then participated in a 10-week "start to run" programme. During this period all sports injuries were registered by a sports medicine physician. The relationship between the standing foot posture and PFP was investigated and gait-related intrinsic risk factors for PFP were determined. The 17 runners who developed PFP exerted a significantly higher vertical peak force underneath the lateral heel and metatarsals 2 and 3. Logistic regression analysis showed that a significantly higher vertical peak force underneath the second metatarsal and shorter time to the vertical peak force underneath the lateral heel were predictors for PFP. No significant evidence was found for an association between an excessively pronated or supinated foot posture and the development of PFP. The findings suggest that an excessive impact shock during heel strike and at the propulsion phase of running may contribute to an increased risk of developing PFP. The hypothesis that persons at risk for PFP show an altered static foot posture in comparison with non-afflicted persons is not supported by the results of this study.

  11. Analysis of Limitations Imposed on One-spool Turboprop-engine Designs by Compressors and Turbines at Flight Mach Numbers of 0, 0.6, and 0.8

    NASA Technical Reports Server (NTRS)

    Cavicchi, Richard H

    1956-01-01

    Turbine centrifugal stress is a limiting factor for all flight conditions studied. This stress is more severe for sea-level operations than for subsonic flight at the tropopause. Turbines designed for a stress of 30,000 psi are capable of driving a light, compact, high-spedd compressor but only at high values of specific fuel consumption. An increase in turbine-inlet temperature is accompanied by an increase in turbine centrifugal stress. If stresses in excess of 50,000 psi can be tolerated, compressor aerodynamics may become a primary limitation.

  12. 76 FR 68057 - Importation of French Beans and Runner Beans From the Republic of Kenya Into the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    .... APHIS-2010-0101] RIN 0579-AD39 Importation of French Beans and Runner Beans From the Republic of Kenya.... SUMMARY: We are amending the fruits and vegetables regulations to allow the importation of French beans and runner beans from the Republic of Kenya into the United States. As a condition of entry, both...

  13. Lower extremity injuries in runners. Advances in prediction.

    PubMed

    Macera, C A

    1992-01-01

    Recreational and competitive running is practised by many individuals to improve cardiorespiratory function and general well-being. The major negative aspect of running is the high rate of injuries to the lower extremities. Several well-designed population-based studies have found no major differences in injury rates between men and women; no increasing effect of age on injuries; a declining injury rate with more years of running experience; no substantial effect of weight or height; an uncertain effect of psychological factors; and a strong effect of previous injury on future injuries. Among the modifiable risk factors studied, weekly distance is the strongest predictor of future injuries. Other training characteristics (speed, frequency, surface, timing) have little or no effect on future injuries after accounting for distance run. More studies are needed to address the effects of appropriate stretching practices and abrupt change in training patterns. For recreational runners who have sustained injuries, especially within the past year, a reduction in running to below 32 km per week is recommended. For those about to begin a running programme, moderation is the best advice. For competitive runners, great care should be taken to ensure that prior injuries are sufficiently healed before attempting any racing event, particularly a marathon.

  14. Heat transfer measurements on an incidence-tolerant low pressure turbine blade in a high speed linear cascade at low to moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Moualeu, Leolein Patrick Gouemeni

    Runway-independent aircraft are expected to be the future for short-haul flights by improving air transportation and reducing area congestion encountered in airports. The Vehicle Systems Program of NASA identified a Large Civil Tilt-Rotor, equipped with variable-speed power-turbine engines, as the best concept. At cruise altitude, the engine rotor-speed will be reduced by as much as the 50% of take-off speed. The large incidence variation in the low pressure turbine associated with the change in speed can be detrimental to the engine performance. Low pressure turbine blades in cruise altitude are more predisposed to develop regions of boundary layer separation. Typical phenomenon such as impinging wakes on downstream blades and mainstream turbulences enhance the complexity of the flow in low pressure turbines. It is therefore important to be able to understand the flow behavior to accurately predict the losses. Research facilities are seldom able to experimentally reproduce low Reynolds numbers at relevant engine Mach number. Having large incidence swing as an additional parameter in the investigation of the boundary layer development, on a low pressure turbine blade, makes this topic unique and as a consequence requires a unique facility to conduct the experimental research. The compressible flow wind tunnel facility at the University of North Dakota had been updated to perform steady state experiments on a modular-cascade, designed to replicate a large variation of the incidence angles. The high speed and low Reynolds number facility maintained a sealed and closed loop configuration for each incidence angle. The updated facility is capable to produce experimental Reynolds numbers as low as 45,000 and as high as 570,000 at an exit Mach number of 0.72. Pressure and surface temperature measurements were performed at these low pressure turbine conditions. The present thesis investigates the boundary layer development on the surface of an Incidence-tolerant blade. The

  15. The NLstart2run study: Incidence and risk factors of running-related injuries in novice runners.

    PubMed

    Kluitenberg, B; van Middelkoop, M; Smits, D W; Verhagen, E; Hartgens, F; Diercks, R; van der Worp, H

    2015-10-01

    Running is a popular form of physical activity, despite of the high incidence of running-related injuries (RRIs). Because of methodological issues, the etiology of RRIs remains unclear. Therefore, the purposes of the study were to assess the incidence of RRIs and to identify risk factors for RRIs in a large group of novice runners. In total, 1696 runners of a 6-week supervised "Start to Run" program were included in the NLstart2run study. All participants were aged between 18 and 65, completed a baseline questionnaire that covered potential risk factors, and completed at least one running diary. RRIs were registered during the program with a weekly running log. An RRI was defined as a musculo-skeletal complaint of the lower extremity or back attributed to running and hampering running ability for three consecutive training sessions. During the running program, 10.9% of the runners sustained an RRI. The multivariable Cox regression analysis showed that a higher age, higher BMI, previous musculo-skeletal complaints not attributed to sports and no previous running experience were related to RRI. These findings indicate that many novice runners participating in a short-term running program suffer from RRIs. Therefore, the identified risk factors should be considered for screening and prevention purposes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Injury risk in runners using standard or motion control shoes: a randomised controlled trial with participant and assessor blinding.

    PubMed

    Malisoux, Laurent; Chambon, Nicolas; Delattre, Nicolas; Gueguen, Nils; Urhausen, Axel; Theisen, Daniel

    2016-04-01

    This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology. Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method. Cox regression analyses were used to compare injury risk between the two groups, based on HRs and their 95% CIs, controlling for potential confounders. Stratified analyses were conducted to evaluate the effect of motion control system in runners with supinated, neutral and pronated feet. The overall injury risk was lower among the participants who had received motion control shoes (HR=0.55; 95% CI 0.36 to 0.85) compared to those receiving standard shoes. This positive effect was only observed in the stratum of runners with pronated feet (n=94; HR=0.34; 95% CI 0.13 to 0.84); there was no difference in runners with neutral (n=218; HR=0.78; 95% CI 0.44 to 1.37) or supinated feet (n=60; HR=0.59; 95% CI 0.20 to 1.73). Runners with pronated feet using standard shoes had a higher injury risk compared to those with neutral feet (HR=1.80; 95% CI 1.01 to 3.22). The overall injury risk was lower in participants who had received motion control shoes. Based on secondary analysis, those with pronated feet may benefit most from this shoe type. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Health and exercise-related medical issues among 1,212 ultramarathon runners: baseline findings from the Ultrarunners Longitudinal TRAcking (ULTRA) Study.

    PubMed

    Hoffman, Martin D; Krishnan, Eswar

    2014-01-01

    Regular exercise is associated with substantial health benefits; however, little is known about the health impact of extreme levels of exercise. This study examined the prevalence of chronic diseases, health-care utilization, and risk factors for exercise-related injuries among ultramarathon runners. Retrospective, self-reported enrollment data from an ongoing longitudinal observational study of 1,212 active ultramarathon runners were analyzed. The most prevalent chronic medical conditions were allergies/hay fever (25.1%) and exercise-induced asthma (13.0%), but there was a low prevalence of serious medical issues including cancers (4.5%), coronary artery disease (0.7%), seizure disorders (0.7%), diabetes (0.7%), and human immunodeficiency virus (HIV) infection (0.2%). In the year preceding enrollment, most (64.6%) reported an exercise-related injury that resulted in lost training days (median of 14 days), but little nonattendance of work or school due to illness, injury, or exercise-related medical conditions (medians of 0 days for each). The knee was the most common area of exercise-related injury. Prior year incidence of stress fractures was 5.5% with most (44.5%) involving the foot. Ultramarathon runners who sustained exercise-related injuries were younger (p<0.001) and less experienced (p<0.01) than those without injury. Stress fractures were more common (p<0.01) among women than men. We conclude that, compared with the general population, ultramarathon runners appear healthier and report fewer missed work or school days due to illness or injury. Ultramarathon runners have a higher prevalence of asthma and allergies than the general population, and the prevalence of serious medical issues was nontrivial and should be recognized by those providing medical care to these individuals. Ultramarathon runners, compared with shorter distance runners, have a similar annual incidence of exercise-related injuries but higher proportion of stress fractures involving the

  18. Health and Exercise-Related Medical Issues among 1,212 Ultramarathon Runners: Baseline Findings from the Ultrarunners Longitudinal TRAcking (ULTRA) Study

    PubMed Central

    Hoffman, Martin D.; Krishnan, Eswar

    2014-01-01

    Regular exercise is associated with substantial health benefits; however, little is known about the health impact of extreme levels of exercise. This study examined the prevalence of chronic diseases, health-care utilization, and risk factors for exercise-related injuries among ultramarathon runners. Retrospective, self-reported enrollment data from an ongoing longitudinal observational study of 1,212 active ultramarathon runners were analyzed. The most prevalent chronic medical conditions were allergies/hay fever (25.1%) and exercise-induced asthma (13.0%), but there was a low prevalence of serious medical issues including cancers (4.5%), coronary artery disease (0.7%), seizure disorders (0.7%), diabetes (0.7%), and human immunodeficiency virus (HIV) infection (0.2%). In the year preceding enrollment, most (64.6%) reported an exercise-related injury that resulted in lost training days (median of 14 days), but little nonattendance of work or school due to illness, injury, or exercise-related medical conditions (medians of 0 days for each). The knee was the most common area of exercise-related injury. Prior year incidence of stress fractures was 5.5% with most (44.5%) involving the foot. Ultramarathon runners who sustained exercise-related injuries were younger (p<0.001) and less experienced (p<0.01) than those without injury. Stress fractures were more common (p<0.01) among women than men. We conclude that, compared with the general population, ultramarathon runners appear healthier and report fewer missed work or school days due to illness or injury. Ultramarathon runners have a higher prevalence of asthma and allergies than the general population, and the prevalence of serious medical issues was nontrivial and should be recognized by those providing medical care to these individuals. Ultramarathon runners, compared with shorter distance runners, have a similar annual incidence of exercise-related injuries but higher proportion of stress fractures involving the

  19. Profiling of bioactive compounds in cultivars of Runner and Valencia peanut market-types using liquid chromatography/APCI mass spectrometry.

    PubMed

    Chukwumah, Yvonne; Walker, Lloyd; Vogler, Bernhard; Verghese, Martha

    2012-05-01

    Peanuts are classified into four market-types (Runners, Spanish, Virginia and Valencia). Studies on their phytochemical composition have focused mainly on market-types other than Valencia. The objectives of this study are to evaluate the phytochemical composition of cultivars of Valencia and Runner market-types. Extracts of 25 peanut cultivars of Runner and Valencia market-types were analysed using HPLC-DAD-MS analysis. Results showed major differences in UV profile of the market-types. A major peak with m/z 317 identified as isorhamnetin was present only in Valencia cultivars while its glycoside (isorhamnetin-3-O-rutinoside) having m/z 625 was identified in both market-types. Genistein, daidzein, rutin, quercetin and trans-resveratrol were also identified and quantified. Genistein and daidzein concentrations (0.03mg/100g) were similar in both market-types. trans-Resveratrol and rutin were significantly (p<0.05) higher in Runner cultivars while quercetin was 10-fold higher (0.60±0.04mg/100g) in Valencia cultivars making them a better source of this phytochemical. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Indoor noise annoyance due to 3-5 megawatt wind turbines-An exposure-response relationship.

    PubMed

    Hongisto, Valtteri; Oliva, David; Keränen, Jukka

    2017-10-01

    The existing exposure-response relationships describing the association between wind turbine sound level and noise annoyance concern turbine sizes of 0.15-3.0 MW. The main purpose of this study was to determine a relationship concerning turbines with nominal power of 3-5 MW. A cross-sectional survey was conducted around three wind power areas in Finland. The survey involved all households within a 2 km distance from the nearest turbine. Altogether, 429 households out of 753 participated. The households were exposed to wind turbine noise having sound levels within 26.7-44.2 dB L Aeq . Standard prediction methods were applied to determine the sound level, L Aeq , in each participant's yard. The measured sound level agreed well with the predicted sound level. The exposure-response relationship was derived between L Aeq outdoors and the indoor noise annoyance. The relationship was in rather good agreement with two previous studies involving much smaller turbines (0.15-1.5 MW) under 40 dB L Aeq . The Community Tolerance Level (CTL), CTL 20  = 50 dB, was 3 dB lower than for two previous studies. Above 40 dB, a small number of participants prevented a reliable comparison to previous studies.

  1. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  2. Kinetic Risk Factors of Running-Related Injuries in Female Recreational Runners.

    PubMed

    Napier, Christopher; MacLean, Christopher L; Maurer, Jessica; Taunton, Jack E; Hunt, Michael A

    2018-05-30

    Our objective was to prospectively investigate the association of kinetic variables with running-related injury (RRI) risk. Seventy-four healthy female recreational runners ran on an instrumented treadmill while 3D kinetic and kinematic data were collected. Kinetic outcomes were vertical impact transient, average vertical loading rate, instantaneous vertical loading rate, active peak, vertical impulse, and peak braking force (PBF). Participants followed a 15-week half-marathon training program. Exposure time (hours of running) was calculated from start of program until onset of injury, loss to follow-up, or end of program. After converting kinetic variables from continuous to ordinal variables based on tertiles, Cox proportional hazard models with competing risks were fit for each variable independently, before analysis in a forward stepwise multivariable model. Sixty-five participants were included in the final analysis, with a 33.8% injury rate. PBF was the only kinetic variable that was a significant predictor of RRI. Runners in the highest tertile (PBF <-0.27 BW) were injured at 5.08 times the rate of those in the middle tertile and 7.98 times the rate of those in the lowest tertile. When analyzed in the multivariable model, no kinetic variables made a significant contribution to predicting injury beyond what had already been accounted for by PBF alone. Findings from this study suggest PBF is associated with a significantly higher injury hazard ratio in female recreational runners and should be considered as a target for gait retraining interventions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    NASA Technical Reports Server (NTRS)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  4. Who uses running apps and sports watches? Determinants and consumer profiles of event runners' usage of running-related smartphone applications and sports watches.

    PubMed

    Janssen, Mark; Scheerder, Jeroen; Thibaut, Erik; Brombacher, Aarnout; Vos, Steven

    2017-01-01

    Individual and unorganized sports with a health-related focus, such as recreational running, have grown extensively in the last decade. Consistent with this development, there has been an exponential increase in the availability and use of electronic monitoring devices such as smartphone applications (apps) and sports watches. These electronic devices could provide support and monitoring for unorganized runners, who have no access to professional trainers and coaches. The purpose of this paper is to gain insight into the characteristics of event runners who use running-related apps and sports watches. This knowledge is useful from research, design, and marketing perspectives to adequately address unorganized runners' needs, and to support them in healthy and sustainable running through personalized technology. Data used in this study are drawn from the standardized online Eindhoven Running Survey 2014 (ERS14). In total, 2,172 participants in the Half Marathon Eindhoven 2014 completed the questionnaire (a response rate of 40.0%). Binary logistic regressions were used to analyze the impact of socio-demographic variables, running-related variables, and psychographic characteristics on the use of running-related apps and sports watches. Next, consumer profiles were identified. The results indicate that the use of monitoring devices is affected by socio-demographics as well as sports-related and psychographic variables, and this relationship depends on the type of monitoring device. Therefore, distinctive consumer profiles have been developed to provide a tool for designers and manufacturers of electronic running-related devices to better target (unorganized) runners' needs through personalized and differentiated approaches. Apps are more likely to be used by younger, less experienced and involved runners. Hence, apps have the potential to target this group of novice, less trained, and unorganized runners. In contrast, sports watches are more likely to be used by a

  5. Improving the accuracy of electronic moisture meters for runner-type peanuts

    USDA-ARS?s Scientific Manuscript database

    Runner-type peanut kernel moisture content (MC) is measured periodically during curing and post harvest processing with electronic moisture meters for marketing and quality control. MC is predicted for 250 g samples of kernels with a mathematical function from measurements of various physical prope...

  6. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    PubMed

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  7. Thermal barrier coatings issues in advanced land-based gas turbines

    NASA Technical Reports Server (NTRS)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  8. The relationship between isotonic plantar flexor endurance, navicular drop, and exercise-related leg pain in a cohort of collegiate cross-country runners.

    PubMed

    Bennett, Jason E; Reinking, Mark F; Rauh, Mitchell J

    2012-06-01

    The purpose of this study was to examine the relationships between isotonic ankle plantar flexor endurance (PFE), foot pronation as measured by navicular drop, and exercise-related leg pain (ERLP). Exercise-related leg pain is a common occurrence in competitive and recreational runners. The identification of factors contributing to the development of ERLP may help guide methods for the prevention and management of overuse injuries. Seventy-seven (44 males, 33 females) competitive runners from five collegiate cross-country (XC) teams consented to participate in the study. Isotonic ankle PFE and foot pronation were measured using the standing heel-rise and navicular drop (ND) tests, respectively. Demographic information, anthropometric measurements, and ERLP history were also recorded. Subjects were then prospectively tracked for occurrence of ERLP during the 2009 intercollegiate cross-country season. Multivariate logistic regression analysis was used to examine the relationships between isotonic ankle joint PFE and ND and the occurrence of ERLP. While no significant differences were identified for isotonic ankle PFE between groups of collegiate XC runners with and without ERLP, runners with a ND >10 mm were almost 7 times (OR=6.6, 95% CI=1.2-38.0) more likely to incur medial ERLP than runners with ND <10 mm. Runners with a history of ERLP in the month previous to the start of the XC season were 12 times (OR=12.3, 95% CI=3.1-48.9) more likely to develop an in-season occurrence of ERLP. While PFE did not appear to be a risk factor in the development of ERLP in this group of collegiate XC runners, those with a ND greater than 10 mm may be at greater odds of incurring medial ERLP. 2b.

  9. THE RELATIONSHIP BETWEEN ISOTONIC PLANTAR FLEXOR ENDURANCE, NAVICULAR DROP, AND EXERCISE-RELATED LEG PAIN IN A COHORT OF COLLEGIATE CROSS-COUNTRY RUNNERS

    PubMed Central

    Reinking, Mark F.; Rauh, Mitchell J.

    2012-01-01

    Purpose: The purpose of this study was to examine the relationships between isotonic ankle plantar flexor endurance (PFE), foot pronation as measured by navicular drop, and exercise-related leg pain (ERLP). Background: Exercise-related leg pain is a common occurrence in competitive and recreational runners. The identification of factors contributing to the development of ERLP may help guide methods for the prevention and management of overuse injuries. Methods: Seventy-seven (44 males, 33 females) competitive runners from five collegiate cross-country (XC) teams consented to participate in the study. Isotonic ankle PFE and foot pronation were measured using the standing heel-rise and navicular drop (ND) tests, respectively. Demographic information, anthropometric measurements, and ERLP history were also recorded. Subjects were then prospectively tracked for occurrence of ERLP during the 2009 intercollegiate cross-country season. Multivariate logistic regression analysis was used to examine the relationships between isotonic ankle joint PFE and ND and the occurrence of ERLP. Results: While no significant differences were identified for isotonic ankle PFE between groups of collegiate XC runners with and without ERLP, runners with a ND >10 mm were almost 7 times (OR=6.6, 95% CI=1.2–38.0) more likely to incur medial ERLP than runners with ND <10 mm. Runners with a history of ERLP in the month previous to the start of the XC season were 12 times (OR=12.3, 95% CI=3.1–48.9) more likely to develop an in-season occurrence of ERLP. Conclusion: While PFE did not appear to be a risk factor in the development of ERLP in this group of collegiate XC runners, those with a ND greater than 10 mm may be at greater odds of incurring medial ERLP. Level of Evidence: 2b. PMID:22666641

  10. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE PAGES

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    2017-08-24

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling

  11. Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew; Goupee, Andrew; Jonkman, Jason

    Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling

  12. THE EFFECT OF STEP RATE MANIPULATION ON FOOT STRIKE PATTERN OF LONG DISTANCE RUNNERS.

    PubMed

    Allen, Darrell J; Heisler, Hollie; Mooney, Jennifer; Kring, Richard

    2016-02-01

    Running gait retraining to change foot strike pattern in runners from a heel strike pattern to a non heel- strike pattern has been shown to reduce impact forces and may help to reduce running related injuries. Step rate manipulation above preferred is known to help decrease step length, foot inclination angle, and vertical mass excursion, but has not yet been evaluated as a method to change foot strike pattern. The purpose of this study was to investigate the effect of step rate manipulation on foot strike pattern in shod recreational runners who run with a heel strike pattern. A secondary purpose was to describe the effect of step rate manipulation at specific percentages above preferred on foot inclination angle at initial contact. Forty volunteer runners, who were self-reported heel strikers and had a weekly running mileage of at least 10 miles, were recruited. Runners were confirmed to be heel strikers during the warm up period on the treadmill. The subject's step rate was determined at their preferred running pace. A metronome was used to increase step rate above the preferred step rate by 5%, 10% and 15%. 2D video motion analysis was utilized to determine foot strike pattern and to measure foot inclination angle at initial contact for each step rate condition. There was a statistically significant change in foot strike pattern from a heel strike pattern to a mid-foot or forefoot strike pattern at both 10% and 15% step rates above preferred. Seven of the 40 subjects (17.5%) changed from a heel- strike pattern to a non- heel strike pattern at +10% and 12 of the 40 subjects (30%) changed to a non-heel strike pattern at +15%. Mean foot inclination angle at initial contact showed a statistically significant change (reduction) as step rate increased. Step rate manipulation of 10% or greater may be enough to change foot strike pattern from a heel strike to a mid-foot or forefoot strike pattern in a small percentage of recreational runners who run in traditional

  13. Multiple stress fractures in a young female runner.

    PubMed

    Dusek, T; Pećina, M; Loncar-Dusek, M; Bojanic, I

    2004-01-01

    The effect of exercise on female's bone metabolism has received much attention in recent years. We report on unusual case of a female runner with low body mass and amenorrhea, who suffered 4 stress fractures. Three of the stress fractures occurred during her sports career, and the fourth occurred 7 years after the cessation of sports activities. It seems that exercise-induced amenorrhea together with food restriction in the young age may cause long-term consequences on bone metabolism.

  14. Effects of Strength Training on Postpubertal Adolescent Distance Runners.

    PubMed

    Blagrove, Richard C; Howe, Louis P; Cushion, Emily J; Spence, Adam; Howatson, Glyn; Pedlar, Charles R; Hayes, Philip R

    2018-06-01

    Strength training activities have consistently been shown to improve running economy (RE) and neuromuscular characteristics, such as force-producing ability and maximal speed, in adult distance runners. However, the effects on adolescent (<18 yr) runners remains elusive. This randomized control trial aimed to examine the effect of strength training on several important physiological and neuromuscular qualities associated with distance running performance. Participants (n = 25, 13 female, 17.2 ± 1.2 yr) were paired according to their sex and RE and randomly assigned to a 10-wk strength training group (STG) or a control group who continued their regular training. The STG performed twice weekly sessions of plyometric, sprint, and resistance training in addition to their normal running. Outcome measures included body mass, maximal oxygen uptake (V˙O2max), speed at V˙O2max, RE (quantified as energy cost), speed at fixed blood lactate concentrations, 20-m sprint, and maximal voluntary contraction during an isometric quarter-squat. Eighteen participants (STG: n = 9, 16.1 ± 1.1 yr; control group: n = 9, 17.6 ± 1.2 yr) completed the study. The STG displayed small improvements (3.2%-3.7%; effect size (ES), 0.31-0.51) in RE that were inferred as "possibly beneficial" for an average of three submaximal speeds. Trivial or small changes were observed for body composition variables, V˙O2max and speed at V˙O2max; however, the training period provided likely benefits to speed at fixed blood lactate concentrations in both groups. Strength training elicited a very likely benefit and a possible benefit to sprint time (ES, 0.32) and maximal voluntary contraction (ES, 0.86), respectively. Ten weeks of strength training added to the program of a postpubertal distance runner was highly likely to improve maximal speed and enhances RE by a small extent, without deleterious effects on body composition or other aerobic parameters.

  15. Effect of Peer Influence on Exercise Behavior and Enjoyment in Recreational Runners.

    PubMed

    Carnes, Andrew J; Petersen, Jennifer L; Barkley, Jacob E

    2016-02-01

    Fitness professionals and popular media sources often recommend exercising with a partner to increase exercise motivation, adherence, intensity, and/or duration. Although competition with peers has been shown to enhance maximal athletic performance, experimental research examining the impact of peer influence on submaximal exercise behavior in adults is limited. The purpose of this study was to determine the effects of the presence of familiar and unfamiliar peers, vs. running alone, on recreational runners' voluntary running duration, distance, intensity, liking (i.e., enjoyment), and ratings of perceived exertion (RPEs). Recreational runners (n = 12 males, n = 12 females) completed 3 experimental trials, each under a different social condition, in a randomized order. Each trial consisted of self-paced running for a duration voluntarily determined by the participant. The 3 social conditions were running alone, with a sex- and fitness-matched familiar peer, or with a sex- and fitness-matched unfamiliar peer. A wrist-worn global positioning system was used to record running duration, distance, and average speed. Liking and RPE were assessed at the end of each trial. Mixed model regression analysis showed no significant effects of social condition (p ≥ 0.40) for any of the dependent variables. The presence of a familiar or unfamiliar peer did not alter recreational runners' running behavior, liking, or perceived exertion during submaximal exercise. However, exercising with others may have other benefits (e.g., reduced attrition) not examined herein.

  16. Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application

    NASA Technical Reports Server (NTRS)

    Welch, Gerand E.

    2010-01-01

    The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper

  17. Overview of Variable-Speed Power-Turbine Research

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    2011-01-01

    The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.

  18. Reasons and predictors of discontinuation of running after a running program for novice runners.

    PubMed

    Fokkema, Tryntsje; Hartgens, Fred; Kluitenberg, Bas; Verhagen, Evert; Backx, Frank J G; van der Worp, Henk; Bierma-Zeinstra, Sita M A; Koes, Bart W; van Middelkoop, Marienke

    2018-06-18

    To determine the proportion of participants of a running program for novice runners that discontinued running and investigate the main reasons to discontinue and characteristics associated with discontinuation. Prospective cohort study. The study included 774 participants of Start to Run, a 6-week running program for novice runners. Before the start of the program, participants filled-in a baseline questionnaire to collect information on demographics, physical activity and perceived health. The 26-weeks follow-up questionnaire was used to obtain information on the continuation of running (yes/no) and main reasons for discontinuation. To determine predictors for discontinuation of running, multivariable logistic regression was performed. Within 26 weeks after the start of the 6-week running program, 29.5% of the novice runners (n=225) had stopped running. The main reason for discontinuation was a running-related injury (n=108, 48%). Being female (OR 1.74; 95% CI 1.13-2.68), being unsure about the continuation of running after the program (OR 2.06; 95% CI 1.31-3.24) and (almost) no alcohol use (OR 1.62; 95%CI 1.11-2.37) were associated with a higher chance of discontinuation of running. Previous running experience less than one year previously (OR 0.46; 95% CI 0.26-0.83) and a higher score on the RAND-36 subscale physical functioning (OR 0.98; 95% CI 0.96-0.99) were associated with a lower chance of discontinuation. In this group of novice runners, almost one-third stopped running within six months. A running-related injury was the main reason to stop running. Women with a low perceived physical functioning and without running experience were prone to discontinue running. Copyright © 2018. Published by Elsevier Ltd.

  19. Does running with or without diet changes reduce fat mass in novice runners? A 1-year prospective study.

    PubMed

    Nielsen, Rasmus O; Videbaek, Solvej; Hansen, Mette; Parner, Erik T; Rasmussen, Sten; Langberg, Henning

    2016-01-01

    The aim of this study was to explore how average weekly running distance, combined with changes in diet habits and reasons to take up running, influence fat mass. Fat mass was assessed by bioelectrical impedance at baseline and after 12 months in 538 novice runners included in a 1-year observational prospective follow-up study. During follow-up, running distance for each participant was continuously measured by GPS while reasons to take up running and diet changes were assessed trough web-based questionnaires. Loss of fat mass was compared between runners covering an average of 5 km or more per week and those running shorter distances. Runners who took up running to lose weight and ran over 5 km per week in average over a one-year period combined with a diet change reduced fat mass by -5.58 kg (95% CI: -8.69; -2.46; P<0.001). Compared with subjects also running over 5 km per week but without diet changes, the mean difference in fat mass between groups was 3.81 kg (95% CI: -5.96; -1.66; P<0.001). A difference of -3.55 kg (95% CI: -5.69; -1.41; P<0.001) was found when comparing with those running less than 5 km per week and making changes to their own diet. An average running distance of more than 5 km per week in runners who took up running to lose weight combined with a targeted diet change seems effective in reducing fat mass over a one-year period among novice runners. Still, randomized controlled trials are needed to better document the effects of self-selected diet changes.

  20. Cardiac output and performance during a marathon race in middle-aged recreational runners.

    PubMed

    Billat, Véronique L; Petot, Hélène; Landrain, Morgan; Meilland, Renaud; Koralsztein, Jean Pierre; Mille-Hamard, Laurence

    2012-01-01

    Despite the increasing popularity of marathon running, there are no data on the responses of stroke volume (SV) and cardiac output (CO) to exercise in this context. We sought to establish whether marathon performance is associated with the ability to sustain high fractional use of maximal SV and CO (i.e, cardiac endurance) and/or CO, per meter (i.e., cardiac cost). We measured the SV, heart rate (HR), CO, and running speed of 14 recreational runners in an incremental, maximal laboratory test and then during a real marathon race (mean performance: 3 hr 30 min ± 45 min). Our data revealed that HR, SV and CO were all in a high but submaximal steady state during the marathon (87.0 ± 1.6%, 77.2 ± 2.6%, and 68.7 ± 2.8% of maximal values, respectively). Marathon performance was inversely correlated with an upward drift in the CO/speed ratio (mL of CO × m(-1)) (r = -0.65, P < 0.01) and positively correlated with the runner's ability to complete the race at a high percentage of the speed at maximal SV (r = 0.83, P < 0.0002). Our results showed that marathon performance is inversely correlated with cardiac cost and positively correlated with cardiac endurance. The CO response could be a benchmark for race performance in recreational marathon runners.

  1. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  2. Fatigue Reliability of Gas Turbine Engine Structures

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.

    1997-01-01

    The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.

  3. Analysis of the choice of food products and the energy value of diets of female middle- and long-distance runners depending on the self-assessment of their nutritional habits

    PubMed

    Głąbska, Dominika; Jusińska, Marta

    2018-01-01

    Properly balanced diet is especially important in the case of young athletes, as it influences not only their physical development, but also influences results obtained during trainings and competitions. The aim of the study was to assess the choice of food products and the energy value of diets of female middleand long-distance runners, depending on the self-assessment of their nutritional habits. The study was conducted in the group of 40 female middle- and long-distance runners, aged 15-25, who declared average diet (n=15, 37.5%) or outstanding diet (n=25, 62.5%). Participants conducted three-day dietary record of the consumed dishes and drunk beverages, that was based on the self-reported data. The choice of products, the energy value of diets as well as macronutrients intake were compared depending on the self-assessment of the nutritional habits. Runners declaring outstanding diet were characterized by significantly lower intake of dairy beverages, than runners declaring average diet (p=0.0459), but simultaneously, by higher intake of mushrooms (p=0.0453). No difference of energy value of diets was stated between groups of runners depending on the self-assessment of their nutritional habits. Runners declaring outstanding diet were characterized by significantly lower intake of lactose, than runners declaring average diet (p=0.0119), but simultaneously, by higher intake of cholesterol (p=0.0307). The female middle- and long-distance runners analysed in the presented study do not assess the quality of their diet reliably, so they probably do not have the sufficient nutritional knowledge. There is a need to implement nutritional education among professional runners and their coaches, in order to improve the quality of diet of professional runners and, as a results maybe also to improve their sport results.

  4. The influence of matching populations on kinematic and kinetic variables in runners with iliotibial band syndrome.

    PubMed

    Grau, Stefan; Maiwald, Christian; Krauss, Inga; Axmann, Detlef; Horstmann, Thomas

    2008-12-01

    The purpose of this study was to assess how participant matching influences biomechanical variables when comparing healthy runners and runners with iliotibial band syndrome (ITBS). We examined 52 healthy runners (CO) and 18 with ITBS, using three-dimensional kinematics and pressure distribution. The study population was matched in three ways and compared with the biomechanical findings: ITBS versus CO I (unmatched), ITBS versus CO II (matched to gender) and ITBS versus CO III (matched to gender height, and weight). The final number of participants in each group was n = 18. The kinematic variables showed a dependency on the matching process. The largest statistically significant differences (after Bonferroni adjustment) in the frontal and transverse planes were between ITBS and CO III (p = .008). Pressure measurements were also dependent on the matching process, with decreasing and nonsignificant differences (p = .006) between ITBS and CO after refining the process (ITBS vs. CO III). The results of this study and the necessity of matching seem to be plausible (lever arms, different running styles). Data matching is important for understanding overuse injuries in running.

  5. Characteristics of the Female Athlete Triad in Collegiate Cross-Country Runners

    ERIC Educational Resources Information Center

    Thompson, Sharon H.

    2007-01-01

    The Female Athlete Triad is a life-threatening syndrome defined by disordered eating, amenorrhea, and osteoporosis. Objective and Participants: The author's purpose in this study was to examine female cross-country runners' (N = 300) calcium consumption, along with the prevalence of 2 components of the triad: disordered eating and menstrual…

  6. Turbine design review text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Three-volume publication covers theoretical, design, and performance aspects of turbines. Volumes cover thermodynamic and fluid-dynamic concepts, velocity diagram design, turbine blade aerodynamic design, turbine energy losses, supersonic turbines, radial-inflow turbines, turbine cooling, and aerodynamic performance testing.

  7. Predictive Variables of Half-Marathon Performance for Male Runners.

    PubMed

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christoper; Rodríguez-Marroyo, José A; García-López, Juan

    2017-06-01

    The aims of this study were to establish and validate various predictive equations of half-marathon performance. Seventy-eight half-marathon male runners participated in two different phases. Phase 1 (n = 48) was used to establish the equations for estimating half-marathon performance, and Phase 2 (n = 30) to validate these equations. Apart from half-marathon performance, training-related and anthropometric variables were recorded, and an incremental test on a treadmill was performed, in which physiological (VO 2max , speed at the anaerobic threshold, peak speed) and biomechanical variables (contact and flight times, step length and step rate) were registered. In Phase 1, half-marathon performance could be predicted to 90.3% by variables related to training and anthropometry (Equation 1), 94.9% by physiological variables (Equation 2), 93.7% by biomechanical parameters (Equation 3) and 96.2% by a general equation (Equation 4). Using these equations, in Phase 2 the predicted time was significantly correlated with performance (r = 0.78, 0.92, 0.90 and 0.95, respectively). The proposed equations and their validation showed a high prediction of half-marathon performance in long distance male runners, considered from different approaches. Furthermore, they improved the prediction performance of previous studies, which makes them a highly practical application in the field of training and performance.

  8. BRASS FOUNDRY ROOM SHOWING GATE CUTTERS USED TO REMOVE RUNNERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRASS FOUNDRY ROOM SHOWING GATE CUTTERS USED TO REMOVE RUNNERS AND SPRUES FROM BRONZE CASTINGS TOO SOFT TO BE CLEANED IN TUMBLING MILLS. ALSO SHOWN ARE MOLD MACHINES AND THE SAND DELIVERY SYSTEM USED TO CREATE GREEN SAND MOLDS, POURED AT THE OTHER END OF THE GRAVITY CONVEYORS. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  9. Modeling of Longitudinal Changes in Left Ventricular Dimensions among Female Adolescent Runners

    PubMed Central

    2015-01-01

    Purpose Left ventricular (LV) enlargement has been linked to sudden cardiac death among young athletes. This study aimed to model the effect of long-term incessant endurance training on LV dimensions in female adolescent runners. Methods Japanese female adolescent competitive distance runners (n = 36, age: 15 years, height: 158.1 ± 4.6 cm, weight: 44.7 ± 6.1 kg, percent body fat: 17.0 ± 5.2%) underwent echocardiography and underwater weighing every 6 months for 3 years. Since the measurement occasions varied across subjects, multilevel analysis was used for curvilinear modeling of changes in running performance (velocities in 1500 m and 3000 m track race), maximal oxygen uptake (VO2max), body composition, and LV dimensions. Results Initially, LV end-diastolic dimension (LVEDd) and LV mass were 47.0 ± 3.0 mm and 122.6 ± 15.7 g, respectively. Running performance and VO2max improved along with the training duration. The trends of changes in fat-free mass (FFM) and LVEDd were similarly best described by quadratic polynomials. LVEDd did not change over time in the model including FFM as a covariate. Increases in LV wall thicknesses were minimal and independent of FFM. LV mass increased according to a quadratic polynomial trend even after adjusting for FFM. Conclusions FFM was an important factor determining changes in LVEDd and LV mass. Although running performance and VO2max were improved by continued endurance training, further LV cavity enlargement hardly occurred beyond FFM gain in these adolescent female runners, who already demonstrated a large LVEDd. PMID:26469336

  10. Similarities and differences among half-marathon runners according to their performance level

    PubMed Central

    Morante, Juan Carlos; Gómez-Molina, Josué; García-López, Juan

    2018-01-01

    This study aimed to identify the similarities and differences among half-marathon runners in relation to their performance level. Forty-eight male runners were classified into 4 groups according to their performance level in a half-marathon (min): Group 1 (n = 11, < 70 min), Group 2 (n = 13, < 80 min), Group 3 (n = 13, < 90 min), Group 4 (n = 11, < 105 min). In two separate sessions, training-related, anthropometric, physiological, foot strike pattern and spatio-temporal variables were recorded. Significant differences (p<0.05) between groups (ES = 0.55–3.16) and correlations with performance were obtained (r = 0.34–0.92) in training-related (experience and running distance per week), anthropometric (mass, body mass index and sum of 6 skinfolds), physiological (VO2max, RCT and running economy), foot strike pattern and spatio-temporal variables (contact time, step rate and length). At standardized submaximal speeds (11, 13 and 15 km·h-1), no significant differences between groups were observed in step rate and length, neither in contact time when foot strike pattern was taken into account. In conclusion, apart from training-related, anthropometric and physiological variables, foot strike pattern and step length were the only biomechanical variables sensitive to half-marathon performance, which are essential to achieve high running speeds. However, when foot strike pattern and running speeds were controlled (submaximal test), the spatio-temporal variables were similar. This indicates that foot strike pattern and running speed are responsible for spatio-temporal differences among runners of different performance level. PMID:29364940

  11. Rotating housing turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouche, Erez; Jaganathan, Arun P.

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  12. Higher Precision of Heart Rate Compared with VO2 to Predict Exercise Intensity in Endurance-Trained Runners.

    PubMed

    Reis, Victor M; den Tillaar, Roland Van; Marques, Mario C

    2011-01-01

    The aim of the present study was to assess the precision of oxygen uptake with heart rate regression during track running in highly-trained runners. Twelve national and international level male long-distance road runners (age 30.7 ± 5.5 yrs, height 1.71 ± 0.04 m and mass 61.2 ± 5.8 kg) with a personal best on the half marathon of 62 min 37 s ± 1 min 22 s participated in the study. Each participant performed, in an all-weather synthetic track five, six min bouts at constant velocity with each bout at an increased running velocity. The starting velocity was 3.33 m·s(-1) with a 0.56 m·s(-1) increase on each subsequent bout. VO2 and heart rate were measured during the runs and blood lactate was assessed immediately after each run. Mean peak VO2 and mean peak heart rate were, respectively, 76.2 ± 9.7 mL·kg(-1)·min(-1) and 181 ± 13 beats·min(-1). The linearity of the regressions between heart rate, running velocity and VO2 were all very high (r > 0.99) with small standard errors of regression (i.e. Sy.x < 5% at the velocity associated with the 2 and 4 mmol·L(-1) lactate thresholds). The strong relationships between heart rate, running velocity and VO2 found in this study show that, in highly trained runners, it is possible to have heart rate as an accurate indicator of energy demand and of the running speed. Therefore, in this subject cohort it may be unnecessary to use VO2 to track changes in the subjects' running economy during training periods. Key pointsHeart rate is used in the control of exercise intensity in endurance sports.However, few studies have quantified the precision of its relationship with oxygen uptake in highly trained runners.We evaluated twelve elite half-marathon runners during track running at various intensities and established three regressions: oxygen uptake / heart rate; heart rate / running velocity and oxygen uptake / running velocity.The three regressions presented, respectively, imprecision of 4,2%, 2,75% and 4,5% at the

  13. Pressure pulsations and hydraulic efficiency at Smeland power plant

    NASA Astrophysics Data System (ADS)

    Ulvan, V. S.; Kverno, J. O.; Dahlhaug, O. G.

    2018-06-01

    Smeland power plant in Norway is experiencing pressure pulsations in their Francis turbine when running above best efficiency point. By measuring both the pressure pulsations and runner efficiency, the cause and effect of the pulsations are to be investigated thoroughly, which is this works main purpose. To find the Francis runners efficiency the thermodynamic method has been used, which builds on the principle that all of the hydraulic losses turns into heat in the flow itself. By measuring the change of temperature before and after the turbine one can, with little other data, calculate the hydraulic efficiency. To identify the pressure pulsations, pressure transducers were placed on the inlet to the spiral casing, draft tube, and upper labyrinth. While doing measurements, air-injection through the runner was tested on full load, which nearly eradicated the pressure pulsations. This might be due to an increase of volume in a pulsating full load vortex that changed its eigenfrequency, and therefore stopped resonating.

  14. Cardiac Output and Performance during a Marathon Race in Middle-Aged Recreational Runners

    PubMed Central

    Billat, Véronique L.; Petot, Hélène; Landrain, Morgan; Meilland, Renaud; Koralsztein, Jean Pierre; Mille-Hamard, Laurence

    2012-01-01

    Purpose. Despite the increasing popularity of marathon running, there are no data on the responses of stroke volume (SV) and cardiac output (CO) to exercise in this context. We sought to establish whether marathon performance is associated with the ability to sustain high fractional use of maximal SV and CO (i.e, cardiac endurance) and/or CO, per meter (i.e., cardiac cost). Methods. We measured the SV, heart rate (HR), CO, and running speed of 14 recreational runners in an incremental, maximal laboratory test and then during a real marathon race (mean performance: 3 hr 30 min ± 45 min). Results. Our data revealed that HR, SV and CO were all in a high but submaximal steady state during the marathon (87.0 ± 1.6%, 77.2 ± 2.6%, and 68.7 ± 2.8% of maximal values, respectively). Marathon performance was inversely correlated with an upward drift in the CO/speed ratio (mL of CO × m−1) (r = −0.65, P < 0.01) and positively correlated with the runner's ability to complete the race at a high percentage of the speed at maximal SV (r = 0.83, P < 0.0002). Conclusion. Our results showed that marathon performance is inversely correlated with cardiac cost and positively correlated with cardiac endurance. The CO response could be a benchmark for race performance in recreational marathon runners. PMID:22645458

  15. The Relationship between Running Economy and Biomechanical Variables in Distance Runners

    ERIC Educational Resources Information Center

    Tartaruga, Marcus Peikriszwili; Brisswalter, Jeanick; Peyre-Tartaruga, Leonardo Alexandre; Avila, Aluisio Otavio Vargas; Alberton, Cristine Lima; Coertjens, Marcelo; Cadore, Eduardo Lusa; Tiggemann, Carlos Leandro; Silva, Eduardo Marczwski; Kruel, Luiz Fernando Martins

    2012-01-01

    In this study, we analyzed the relationship between running economy (RE) and biomechanical parameters in a group running at the same relative intensity and same absolute velocity. Sixteen homogeneous male long-distance runners performed a test to determine RE at 4.4 m.s[superscript -1], corresponding to 11.1% below velocity at the ventilatory…

  16. A 2-Year Prospective Cohort Study of Overuse Running Injuries: The Runners and Injury Longitudinal Study (TRAILS).

    PubMed

    Messier, Stephen P; Martin, David F; Mihalko, Shannon L; Ip, Edward; DeVita, Paul; Cannon, D Wayne; Love, Monica; Beringer, Danielle; Saldana, Santiago; Fellin, Rebecca E; Seay, Joseph F

    2018-05-01

    The National Center for Injury Prevention and Control, noting flaws in previous running injury research, called for more rigorous prospective designs and comprehensive analyses to define the origin of running injuries. To determine the risk factors that differentiate recreational runners who remain uninjured from those diagnosed with an overuse running injury during a 2-year observational period. Cohort study; Level of evidence, 2. Inclusion criteria were running a minimum of 5 miles per week and being injury free for at least the past 6 months. Data were collected at baseline on training, medical and injury histories, demographics, anthropometrics, strength, gait biomechanics, and psychosocial variables. Injuries occurring over the 2-year observation period were diagnosed by an orthopaedic surgeon on the basis of predetermined definitions. Of the 300 runners who entered the study, 199 (66%) sustained at least 1 injury, including 73% of women and 62% of men. Of the injured runners, 111 (56%) sustained injuries more than once. In bivariate analyses, significant ( P ≤ .05) factors at baseline that predicted injury were as follows: Short Form Health Survey-12 mental component score (lower mental health-related quality of life), Positive and Negative Affect Scale negative affect score (more negative emotions), sex (higher percentage of women were injured), and knee stiffness (greater stiffness was associated with injury); subsequently, knee stiffness was the lone significant predictor of injury (odds ratio = 1.18) in a multivariable analysis. Flexibility, quadriceps angle, arch height, rearfoot motion, strength, footwear, and previous injury were not significant risk factors for injury. The results of this study indicate the following: (1) among recreational runners, women sustain injuries at a higher rate than men; (2) greater knee stiffness, more common in runners with higher body weights (≥80 kg), significantly increases the odds of sustaining an overuse running

  17. Running injuries in novice runners enrolled in different training interventions: a pilot randomized controlled trial.

    PubMed

    Baltich, J; Emery, C A; Whittaker, J L; Nigg, B M

    2017-11-01

    The purpose of this trial was to evaluate injury risk in novice runners participating in different strength training interventions. This was a pilot randomized controlled trial. Novice runners (n = 129, 18-60 years old, <2 years recent running experience) were block randomized to one of three groups: a "resistance" strength training group, a "functional" strength training group, or a stretching "control" group. The primary outcome was running related injury. The number of participants with complaints and the injury rate (IR = no. injuries/1000 running hours) were quantified for each intervention group. For the first 8 weeks, participants were instructed to complete their training intervention three to five times a week. The remaining 4 months was a maintenance period. NCT01900262. A total of 52 of the 129 (40%) novice runners experienced at least one running related injury: 21 in the functional strength training program, 16 in the resistance strength training program and 15 in the control stretching program. Injury rates did not differ between study groups [IR = 32.9 (95% CI 20.8, 49.3) in the functional group, IR = 31.6 (95% CI 18.4, 50.5) in the resistance group, and IR = 26.7 (95% CI 15.2, 43.2)] in the control group. Although this was a pilot assessment, home-based strength training did not appear to alter injury rates compared to stretching. Future studies should consider methods to minimize participant drop out to allow for the assessment of injury risk. Injury risk in novice runners based on this pilot study will inform the development of future larger studies investigating the impact of injury prevention interventions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Concentration of Ca in blood of amateur runners using NAA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacs, L.; Zamboni, C. B.; Metairon, S.

    2013-05-06

    In this study the Ca levels were determined in amateur runners blood at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil), using Neutron Activation Analyses (NAA) technique. The range established at rest (162 - 410 mgL{sup -1}) when compared with control group (51 - 439 mgL{sup -1}) suggests that there is a dependency of these limits in the function of the adopted physical training.

  19. Effects of Strength Training on Running Economy in Highly Trained Runners: A Systematic Review With Meta-Analysis of Controlled Trials.

    PubMed

    Balsalobre-Fernández, Carlos; Santos-Concejero, Jordan; Grivas, Gerasimos V

    2016-08-01

    Balsalobre-Fernández, C, Santos-Concejero, J, and Grivas, GV. Effects of strength training on running economy in highly trained runners: a systematic review with meta-analysis of controlled trials. J Strength Cond Res 30(8): 2361-2368, 2016-The purpose of this study was to perform a systematic review and meta-analysis of controlled trials to determine the effect of strength training programs on the running economy (RE) of high-level middle- and long-distance runners. Four electronic databases were searched in September 2015 (PubMed, SPORTDiscus, MEDLINE, and CINAHL) for original research articles. After analyzing 699 resultant original articles, studies were included if the following criteria were met: (a) participants were competitive middle- or long-distance runners; (b) participants had a V[Combining Dot Above]O2max >60 ml·kg·min; (c) studies were controlled trials published in peer-reviewed journals; (d) studies analyzed the effects of strength training programs with a duration greater than 4 weeks; and (e) RE was measured before and after the strength training intervention. Five studies met the inclusion criteria, resulting in a total sample size of 93 competitive, high-level middle- and long-distance runners. Four of the 5 included studies used low to moderate training intensities (40-70% one repetition maximum), and all of them used low to moderate training volume (2-4 resistance lower-body exercises plus up to 200 jumps and 5-10 short sprints) 2-3 times per week for 8-12 weeks. The meta-analyzed effect of strength training programs on RE in high-level middle- and long-distance runners showed a large, beneficial effect (standardized mean difference [95% confidence interval] = -1.42 [-2.23 to -0.60]). In conclusion, a strength training program including low to high intensity resistance exercises and plyometric exercises performed 2-3 times per week for 8-12 weeks is an appropriate strategy to improve RE in highly trained middle- and long-distance runners.

  20. Plan Turbines 3 & 4, Side View Turbines ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plan - Turbines 3 & 4, Side View - Turbines 3 & 4, Section A-A - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  1. Performance and age of African and non-African runners in half- and full marathons held in Switzerland, 2000–2010

    PubMed Central

    Aschmann, André; Knechtle, Beat; Cribari, Marco; Rüst, Christoph Alexander; Onywera, Vincent; Rosemann, Thomas; Lepers, Romuald

    2013-01-01

    Background Endurance running performance of African (AF) and non-African (NAF) athletes is investigated, with better performances seen for Africans. To date, no study has compared the age of peak performance between AF and NAF runners. The present research is an analysis of the age and running performance of top AF and NAF athletes, using the hypothesis that AF athletes were younger and faster than NAF athletes. Methods Age and performance of male and female AF and NAF athletes in half-marathons and marathons held in Switzerland in 2000–2010 were investigated using single and multilevel hierarchical regression analyses. Results For half-marathons, male NAF runners were older than male AF runners (P = 0.02; NAF, 31.1 years ± 6.4 years versus AF, 26.2 years ± 4.9 years), and their running time was longer (P = 0.02; NAF, 65.3 minutes ± 1.7 minutes versus AF, 64.1 minutes ± 0.9 minutes). In marathons, differences between NAF and AF male runners in age (NAF, 33.0 years ± 4.8 years versus AF, 28.6 years ± 3.8 years; P < 0.01) and running time (NAF, 139.5 minutes ± 5.6 minutes versus AF, 133.3 minutes ± 2.7 minutes; P < 0.01) were more pronounced. There was no difference in age (NAF, 31.0 years ± 7.0 years versus AF, 26.7 years ± 6.0 years; P > 0.05) or running time (NAF, 75.0 minutes ± 3.7 minutes versus AF, 75.6 minutes ± 5.3 minutes; P > 0.05) between NAF and AF female half-marathoners. For marathoners, NAF women were older than AF female runners (P = 0.03; NAF, 31.6 years ± 4.8 years versus AF, 27.8 years ± 5.3 years), but their running times were similar (NAF, 162.4 minutes ± 7.2 minutes versus AF, 163.0 minutes ± 7.0 minutes; P > 0.05). Conclusion In Switzerland, the best AF male half-marathoners and marathoners were younger and faster than the NAF counterpart runners. In contrast to the results seen in men, AF and NAF female runners had similar performances. Future studies need to investigate performance and age of AF and NAF marathoners in the

  2. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  3. Sex differences in performance-matched marathon runners.

    PubMed

    Helgerud, J; Ingjer, F; Strømme, S B

    1990-01-01

    Six male and six female runners were chosen on the basis of age (20-30 years) and their performance over the marathon distance (mean time = 199.4, SEM 2.3 min for men and 201.8, SEM 1.8 min for women). The purpose was to find possible sex differences in maximal aerobic power (VO2max), anaerobic threshold, running economy, degree and utilization of VO2max (when running a marathon) and amount of training. The results showed that performance-matched male and female marathon runners had approximately the same VO2max (about 60 ml.kg-1.min-1). For both sexes the anaerobic threshold was reached at an exercise intensity of about 83% of VO2max, or 88%-90% of maximal heart rate. The females' running economy was poorer, i.e. their oxygen uptake during running at a standard submaximal speed was higher (P less than 0.05). The heart rate, respiratory exchange ratio and blood lactate concentration also confirmed that a given running speed resulted in higher physiological strain for the females. The percentage utilization of VO2max at the average marathon running speed was somewhat higher for the females, but the difference was not significant. For both sexes the oxygen uptake at average speed was 93%-94% of the oxygen uptake corresponding to the anaerobic threshold. Answers to a questionnaire showed that the females' training programme over the last 2 months prior to running the actual marathon comprised almost twice as many kilometers of running per week compared to the males (60 and 33 km, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The Effect of a 20 km Run on Appetite Regulation in Long Distance Runners

    PubMed Central

    Kojima, Chihiro; Ishibashi, Aya; Ebi, Kumiko; Goto, Kazushige

    2016-01-01

    The purpose of the present study was to investigate appetite-related hormonal responses and energy intake after a 20 km run in trained long distance runners. Twenty-three male long-distance runners completed two trials: either an exercise trial consisting of a 20 km outdoor run (EX) or a control trial with an identical period of rest (CON). Blood samples were collected to determine plasma acylated ghrelin, peptide YY3-36 (PYY3-36) and other hormonal and metabolite concentrations. Energy intake during a buffet test meal was also measured 30 min after the exercise or rest periods. Although plasma acylated ghrelin concentrations were significantly decreased after the 20 km run (p < 0.05), plasma PYY3-36 did not change significantly following exercise. Absolute energy intake during the buffet test meal in EX (1325 ± 55 kcal) was significantly lower than that in CON (1529 ± 55 kcal), and there was a relatively large degree of individual variability for exercise-induced changes in energy intake (−40.2% to 12.8%). However, exercise-induced changes in energy intake were not associated with plasma acylated ghrelin or PYY3-36 responses. The results demonstrated that a 20 km run significantly decreased plasma acylated ghrelin concentrations and absolute energy intake among well-trained long distance runners. PMID:27792164

  5. Runners do not push off the ground but fall forwards via a gravitational torque.

    PubMed

    Romanov, Nicholas; Fletcher, Graham

    2007-09-01

    The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.

  6. Control of impact loading during distracted running before and after gait retraining in runners.

    PubMed

    Cheung, Roy T H; An, Winko W; Au, Ivan P H; Zhang, Janet H; Chan, Zoe Y S; MacPhail, Aislinn J

    2018-07-01

    Gait retraining using visual biofeedback has been reported to reduce impact loading in runners. However, most of the previous studies did not adequately examine the level of motor learning after training, as the modified gait pattern was not tested in a dual-task condition. Hence, this study sought to compare the landing peak positive acceleration (PPA) and vertical loading rates during distracted running before and after gait retraining. Sixteen recreational runners underwent a two-week visual biofeedback gait retraining program for impact loading reduction, with feedback on the PPA measured at heel. In the evaluation of PPA and vertical loading rates before and after the retraining, the participants performed a cognitive and verbal counting task while running. Repeated measures ANOVA indicated a significant interaction between feedback and training on PPA (F = 4.642; P = 0.048) but not vertical loading rates (F > 1.953; P > 0.067). Pairwise comparisons indicated a significantly lower PPA and vertical loading rates after gait retraining (P < 0.007; Cohen's d > 0.68). Visual feedback after gait retraining reduced PPA and vertical loading rates during distracted running (P < 0.033; Cohen's d > 0.36). Gait retraining is effective in lowering impact loading even when the runners are distracted. In dual-task situation, visual biofeedback provided beneficial influence on kinetics control after gait retraining.

  7. Turbine system and adapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotormore » wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.« less

  8. 30. VICTOR WATER TURBINE, STILWELLBIERCE CO., DAYTON, OHIO. SIMILAR TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VICTOR WATER TURBINE, STILWELL-BIERCE CO., DAYTON, OHIO. SIMILAR TURBINE TO LEFT (DOUBLE TURBINE SYSTEM), PHOTO TAKEN FROM PENSTOCK. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  9. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    PubMed

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important

  10. Effect of steam sterilization inside the turbine chambers of dental turbines.

    PubMed

    Andersen, H K; Fiehn, N E; Larsen, T

    1999-02-01

    It has been demonstrated that contamination of the insides of high-speed dental turbines occurs and that bacteria as well as viruses may remain infectious when expelled from such turbines during subsequent use. Consequently, it has been widely recommended that a high-speed turbine be sterilized after each patient. The purpose of this study was to evaluate the effect of steam autoclaving on a high-speed dental turbine with a contaminated turbine chamber. Streptococcus salivarius and endospores of Bacillus stearothermophilus were used as test organisms to determine the effectiveness of 4 different small non-vacuum autoclaves and one vacuum autoclave. The study demonstrated different efficiencies among the small non-vacuum autoclaves, the best showing close to a 6 log reduction of the test organisms inside the turbine chamber. When cleaning and lubrication of the high-speed dental turbine was carried out before autoclaving, this level of reduction was observed for all the examined non-vacuum autoclaves. It is concluded that cleaning before sterilization is essential for safe use of high-speed dental turbines and that small non-vacuum autoclaves should be carefully evaluated before being used for the reprocessing of hollow instruments such as high-speed turbines.

  11. Turbine system

    DOEpatents

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  12. Kinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners.

    PubMed

    Thompson, M A; Lee, S S; Seegmiller, J; McGowan, C P

    2015-05-01

    Barefoot running has been associated with decreased stride length and switching from a rearfoot strike (RFS) pattern to a mid/forefoot strike (M/FFS) pattern. However, some individuals naturally contact the ground on their mid/forefoot, even when wearing cushioned running shoes. The purpose of this study was to determine if the mechanics of barefoot running by natural shod RFS runners differed from natural shod M/FFS runners. Twenty habitually shod runners (ten natural M/FFS and ten natural RFS) participated in this study. Three-dimensional motion analysis and ground reaction force data were captured as subjects ran at their preferred running speed in both barefoot and shod conditions. M/FFS experienced only a decrease in stride length when switching from shod to barefoot running. Whereas, when switching from shod to barefoot running, RFS individuals experienced a decrease in stride length, switched to a plantarflexed position at ground contact and saw reduced impact peak magnitudes. These results suggest that when barefoot, the RFS group ran similar to the M/FFS group running barefoot or shod. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Do heads of government age more quickly? Observational study comparing mortality between elected leaders and runners-up in national elections of 17 countries

    PubMed Central

    Olenski, Andrew R; Abola, Matthew V

    2015-01-01

    Objectives To determine whether being elected to head of government is associated with accelerated mortality by studying survival differences between people elected to office and unelected runner-up candidates who never served. Design Observational study. Setting Historical survival data on elected and runner-up candidates in parliamentary or presidential elections in Australia, Austria, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, New Zealand, Norway, Poland, Spain, Sweden, United Kingdom, and United States, from 1722 to 2015. Participants Elected and runner-up political candidates. Main outcome measure Observed number of years alive after each candidate’s last election, relative to what would be expected for an average person of the same age and sex as the candidate during the year of the election, based on historical French and British life tables. Observed post-election life years were compared between elected candidates and runners-up, adjusting for life expectancy at time of election. A Cox proportional hazards model (adjusted for candidate’s life expectancy at the time of election) considered years until death (or years until end of study period for those not yet deceased by 9 September 2015) for elected candidates versus runners-up. Results The sample included 540 candidates: 279 winners and 261 runners-up who never served. A total of 380 candidates were deceased by 9 September 2015. Candidates who served as a head of government lived 4.4 (95% confidence interval 2.1 to 6.6) fewer years after their last election than did candidates who never served (17.8 v 13.4 years after last election; adjusted difference 2.7 (0.6 to 4.8) years). In Cox proportional hazards analysis, which considered all candidates (alive or deceased), the mortality hazard for elected candidates relative to runners-up was 1.23 (1.00 to 1.52). Conclusions Election to head of government is associated with a substantial increase in mortality risk compared

  14. Do heads of government age more quickly? Observational study comparing mortality between elected leaders and runners-up in national elections of 17 countries.

    PubMed

    Olenski, Andrew R; Abola, Matthew V; Jena, Anupam B

    2015-12-14

    To determine whether being elected to head of government is associated with accelerated mortality by studying survival differences between people elected to office and unelected runner-up candidates who never served. Observational study. Historical survival data on elected and runner-up candidates in parliamentary or presidential elections in Australia, Austria, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, New Zealand, Norway, Poland, Spain, Sweden, United Kingdom, and United States, from 1722 to 2015. Elected and runner-up political candidates. Observed number of years alive after each candidate's last election, relative to what would be expected for an average person of the same age and sex as the candidate during the year of the election, based on historical French and British life tables. Observed post-election life years were compared between elected candidates and runners-up, adjusting for life expectancy at time of election. A Cox proportional hazards model (adjusted for candidate's life expectancy at the time of election) considered years until death (or years until end of study period for those not yet deceased by 9 September 2015) for elected candidates versus runners-up. The sample included 540 candidates: 279 winners and 261 runners-up who never served. A total of 380 candidates were deceased by 9 September 2015. Candidates who served as a head of government lived 4.4 (95% confidence interval 2.1 to 6.6) fewer years after their last election than did candidates who never served (17.8 v 13.4 years after last election; adjusted difference 2.7 (0.6 to 4.8) years). In Cox proportional hazards analysis, which considered all candidates (alive or deceased), the mortality hazard for elected candidates relative to runners-up was 1.23 (1.00 to 1.52). Election to head of government is associated with a substantial increase in mortality risk compared with candidates in national elections who never served. Published by the BMJ Publishing Group

  15. Male and female Ethiopian and Kenyan runners are the fastest and the youngest in both half and full marathon.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T; Onywera, Vincent O; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A

    2016-01-01

    In major marathon races such as the 'World Marathon Majors', female and male East African runners particularly from Ethiopia and Kenya are the fastest. However, whether this trend appears for female and male Ethiopians and Kenyans at recreational level runners (i.e. races at national level) and in shorter road races (e.g. in half-marathon races) has not been studied yet. Thus, the aim of the present study was to examine differences in the performance and the age of female and male runners from East Africa (i.e. Ethiopians and Kenyans) between half- and full marathons. Data from 508,108 athletes (125,894 female and 328,430 male half-marathoners and 10,205 female and 43,489 male marathoners) originating from 126 countries and competing between 1999 and 2014 in all road-based half-marathons and marathons held in one country (Switzerland) were analysed using Chi square (χ(2)) tests, mixed-effects regression analyses and one-way analyses of variance. In half-marathons, 48 women (0.038 %) and 63 men (0.019 %) were from Ethiopia and 80 women (0.063 %) and 134 men (0.040 %) from Kenya. In marathons, three women (0.029 %) and 15 men (0.034 %) were from Ethiopia and two women (0.019 %) and 33 men (0.075 %) from Kenya. There was no statistically significant association between the nationality of East Africans and the format of a race. In both women and men, the fastest race times in half-marathons and marathons were achieved by East African runners (p < 0.001). Ethiopian and Kenyan runners were the youngest in both sexes and formats of race (p < 0.001). In summary, women and men from Ethiopia and Kenya, despite they accounted for <0.1 % in half-marathons and marathons, achieved the fastest race times and were the youngest in both half-marathons and marathons. These findings confirmed in the case of half-marathon the trend previously observed in marathon races for a better performance and a younger age in East African runners from Ethiopia and Kenya.

  16. Summer training factors and risk of musculoskeletal injury among high school cross-country runners.

    PubMed

    Rauh, Mitchell J

    2014-10-01

    Prospective cohort. To examine the relationship between summer training practices and risk of injury during the first month of a high school interscholastic cross-country season. Several prospective studies have reported a high incidence of injury in adolescent cross-country runners. However, limited reports exist on the role of summer training practices and risk of injury among these runners. Four hundred twenty-one athletes (186 girls, 235 boys) who competed in interscholastic cross-country were followed during a cross-country season. At the start of the season, all participants completed a questionnaire regarding summer training routines. Time-loss, running-related injuries were tracked during the subsequent season. Logistic regression analysis was used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of initial injury during the first month of the season associated with summer training variables. Sixty-seven runners (15.9%) had a confirmed injury during the first month of the season, with a higher percent among girls (19.4%) than boys (13.2%) (P = .06). Overall, 60.1% of the participants ran during the summer prior to the season, with a significantly higher percent among girls (71.5%) than boys (51.1%) (P<.0001). Overall, no significant association (OR = 0.9; 95% CI: 0.5, 1.5; P = .90) was found between not running sometime during the preceding summer and increased risk of initial injury during the first month of the season. Among only the runners who ran during the summer, after adjusting for sex and prior injury, first-month injuries were more common among those who did not frequently alternate short and long mileage on different days (OR = 3.0; 95% CI: 1.4, 6.4; P = .005), and/or who ran 8 weeks or fewer (OR = 2.7; 95% CI: 1.2, 5.8; P = .01) during their summer training. Running 8 weeks or fewer (P = .03), not frequently alternating mileage on different days (P = .01), and running a higher percentage of time on predominantly

  17. Are gait characteristics and ground reaction forces related to energy cost of running in elite Kenyan runners?

    PubMed

    Santos-Concejero, J; Tam, N; Coetzee, D R; Oliván, J; Noakes, T D; Tucker, R

    2017-03-01

    The aim of this study was to determine whether gait cycle characteristics are associated with running economy in elite Kenyan runners. Fifteen elite Kenyan male runners completed two constant-speed running sets on a treadmill (12 km ·h -1 and 20 km ·h -1 ). VO 2 and respiratory exchange ratio values were measured to calculate steady-state oxygen and energy cost of running. Gait cycle characteristics and ground contact forces were measured at each speed. Oxygen cost of running at different velocities was 192.2 ± 14.7 ml· kg -1 · km -1 at 12 km· h -1 and 184.8 ± 9.9 ml· kg -1 · km -1 at 20 km· h -1 , which corresponded to a caloric cost of running of 0.94 ± 0.07 kcal ·kg -1 ·km -1 and 0.93 ± 0.07 kcal· kg -1 · km -1 . We found no significant correlations between oxygen and energy cost of running and biomechanical variables and ground reaction forces at either 12 or 20 km· h -1 . However, ground contact times were ~10.0% shorter (very large effect) than in previously published literature in elite runners at similar speeds, alongside an 8.9% lower oxygen cost (very large effect). These results provide evidence to hypothesise that the short ground contact times may contribute to the exceptional running economy of Kenyan runners.

  18. Skeletal muscle plasticity with marathon training in novice runners.

    PubMed

    Luden, N; Hayes, E; Minchev, K; Louis, E; Raue, U; Conley, T; Trappe, S

    2012-10-01

    The purpose of this study was to investigate leg muscle adaptation in runners preparing for their first marathon. Soleus and vastus lateralis (VL) biopsies were obtained from six recreational runners (23 ± 1 years, 61 ± 3 kg) before (T1), after 13 weeks of run training (T2), and after 3 weeks of taper and marathon (T3). Single muscle fiber size, contractile function (strength, speed, and power) and oxidative enzyme activity [citrate synthase (CS)] were measured at all three time points, and fiber type distribution was determined before and after the 16-week intervention. Training increased VO(2max) ∼9% (P<0.05). All soleus parameters were unchanged. VL MHC I fiber diameter increased (+8%; P<0.05) from T1 to T2. VL MHC I V(o) (-12%), MHC I power (-22%) and MHC IIa power (-29%) were reduced from T1 to T2 (P<0.05). No changes in VL single fiber contractile properties were observed from T2 to T3. No change was observed in soleus CS activity, whereas VL CS activity increased 66% (P<0.05). Our observations indicate that modest marathon training elicits very specific skeletal muscle adaptations that likely support the ability to perform 42.2 km of continuous running - further strengthening the existing body of evidence for skeletal muscle specificity. © 2011 John Wiley & Sons A/S.

  19. Graduated Compression Stockings for Runners: Friend, Foe, or Fake?

    PubMed Central

    Bovenschen, H. Jorn; te Booij, Mariëlle; van der Vleuten, Carine J. M.

    2013-01-01

    Objective: To assess the effect of graduated compression stockings (GCS) on lower leg volume and leg complaints in runners during and after exercise. Design: Cross-sectional study. Setting: Radboud University Nijmegen Medical Centre and an outdoor running track in Nijmegen, The Netherlands. Patients or Other Participants: Thirteen Dutch trained recreational runners. Intervention(s): Participants used a GCS on 1 leg during running. Main Outcome Measures: (1) Lower leg volume of both legs was measured at baseline, directly after running, and at 5 minutes and 30 minutes after running using a validated perometer. (2) Leg complaints were reported on questionnaires at set intervals. Results: (1) In both experiments, the legs with GCS showed a reduction in mean (± SEM) leg volume directly after running, as compared with the leg without GCS: −14.1 ± 7.6 mL (P = .04) for the 10-km running track and −53.5 ± 17.8 mL (P = .03) for the maximum exercise test. This effect was not observed at 5 and 30 minutes after running. (2) No differences in leg complaints were reported in either experiment. Conclusions: The GCS prevented an increase in leg volume just after the running exercise. However, this result was not accompanied by a reduction in subjective questionnaire-reported leg complaints. The practical consequences of the present findings need further study. PMID:23672387

  20. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    NASA Astrophysics Data System (ADS)

    Novac, D.; Pantelimon, D.; Popescu, E.

    2010-08-01

    The Index Tests have been used for many years to obtain the optimized cam corellation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole "guaranteed operating range" for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the proppeler curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This coresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  1. Acute Physiological and Thermoregulatory Responses to Extended Interval Training in Endurance Runners: Influence of Athletic Performance and Age

    PubMed Central

    García-Pinillos, Felipe; Soto-Hermoso, Víctor Manuel; Latorre-Román, Pedro Ángel

    2015-01-01

    This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity. PMID:26839621

  2. Contextualizing Parasympathetic Hyperactivity in Functionally Overreached Athletes With Perceptions of Training Tolerance.

    PubMed

    Bellenger, Clint R; Karavirta, Laura; Thomson, Rebecca L; Robertson, Eileen Y; Davison, Kade; Buckley, Jonathan D

    2016-07-01

    Heart-rate variability (HRV) as a measure of autonomic function may increase in response to training interventions leading to increases or decreases in performance, making HRV interpretation difficult in isolation. This study aimed to contextualize changes in HRV with subjective measures of training tolerance. Supine and standing measures of vagally mediated HRV (root-mean-square difference of successive normal RR intervals [RMSSD]) and measures of training tolerance (Daily Analysis of Life Demands for Athletes questionnaire, perception of energy levels, fatigue, and muscle soreness) were recorded daily during 1 wk of light training (LT), 2 wk of heavy training (HT), and 10 d of tapering (T) in 15 male runners/ triathletes. HRV and training tolerance were analyzed as rolling 7-d averages at LT, HT, and T. Performance was assessed after LT, HT, and T with a 5-km treadmill time trial (5TTT). Time to complete the 5TTT likely increased after HT (effect size [ES] ± 90% confidence interval = 0.16 ± 0.06) and then almost certainly decreased after T (ES = -0.34 ± 0.08). Training tolerance worsened after HT (ES ≥ 1.30 ± 0.41) and improved after T (ES ≥ 1.27 ± 0.49). Standing RMSSD very likely increased after HT (ES = 0.62 ± 0.26) and likely remained higher than LT at the completion of T (ES = 0.38 ± 0.21). Changes in supine RMSSD were possible or likely trivial. Vagally mediated HRV during standing increased in response to functional overreaching (indicating potential parasympathetic hyperactivity) and also to improvements in performance. Thus, additional measures such as training tolerance are required to interpret changes in vagally mediated HRV.

  3. Interrelated Dimensional Chains in Predicting Accuracy of Turbine Wheel Assembly Parameters

    NASA Astrophysics Data System (ADS)

    Yanyukina, M. V.; Bolotov, M. A.; Ruzanov, N. V.

    2018-03-01

    The working capacity of any device primarily depends on the assembly accuracy which, in its turn, is determined by the quality of each part manufactured, i.e., the degree of conformity between final geometrical parameters and the set ones. However, the assembly accuracy depends not only on a qualitative manufacturing process but also on the assembly process correctness. In this connection, there were preliminary calculations of assembly stages in terms of conformity to real geometrical parameters with their permissible values. This task is performed by means of the calculation of dimensional chains. The calculation of interrelated dimensional chains in the aircraft industry requires particular attention. The article considers the issues of dimensional chain calculation modelling by the example of the turbine wheel assembly process. The authors described the solution algorithm in terms of mathematical statistics implemented in Matlab. The paper demonstrated the results of a dimensional chain calculation for a turbine wheel in relation to the draw of turbine blades to the shroud ring diameter. Besides, the article provides the information on the influence of a geometrical parameter tolerance for the dimensional chain link elements on a closing one.

  4. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  5. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable tomore » larger-scale conventional turbines.« less

  6. Metabolic and hormonal changes during aerobic exercise in distance runners.

    PubMed

    Fernández-Pastor, V J; Ruiz, M; Diego-Acosta, A M; Avila, C; García, J C; Pérez, F; Guirado, F; Noguer, N

    1999-03-01

    A group of long-distance runners is studied in order to clarify aspects concerning neuroendocrine mechanisms regulating organic adaptation to maximum effort, with special interest in the function of the growth hormone in fat metabolism and the possible use of ketone bodies as an alternative source of energy. A test is designed on a treadmill with a gradient of 3% and progressive increases in speed of 2 Km/h every 10 min, starting at 6 Km/h, and continuing until exhaustion. Masks are worn to enable the breath by breath measurement of expired gases and the subjects are monitored electrocardiographically using V5. For blood sample collection an antecubital vein is catheterized with a system enabling the replacement of the blood volume extracted by means of perfusion with physiological saline solution, and the increasing concentration of hormones in the blood is evaluated. The results obtained, indicate that epinephrine as well as GH hormones increase significatively from 20 min of exercise in runners promoting changes from carbohydrates to lipids as fuels to carry out exercise. The concomitant variations in energy substrates support the former hypothesis of work. Moreover, the muscle could employ acetylCoA originating from acetoacetate as an alternative metabolic source of fuel during maximum effort.

  7. Airship-floated wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether linemore » system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.« less

  8. Turbine inner shroud and turbine assembly containing such inner shroud

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2001-01-01

    A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

  9. Steam Turbines

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  10. 77 FR 5502 - Stuyvesant Falls Hydroelectric Project; Notice of Application Ready for Environmental Analysis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Kinderhook Creek; (2) an existing 46-acre impoundment with a normal water surface elevation of 174.3 feet...) minimum flow turbine located adjacent to the intake structure; (5) two existing 7.5-foot-diameter, 2,860..., approximately 144 feet long, 84 feet wide, and 60 feet high; (7) two single-runner Francis turbines, each with a...

  11. [Behavioral risk factors and readiness in amateur marathon runners 18-64 years of age in Bogotá, Colombia, 2014].

    PubMed

    Ramírez-Góngora, María Del Pilar; Prieto-Alvarado, Franklyn Edwin

    2016-01-01

    Participation in amateur street marathons has become increasingly popular and requires prior individual health risk assessment. The objective was to identify risk factors and readiness in registered runners. This was a cross-sectional study in a random sample (n = 510) of registered amateur runners 18-64 years of age, using a digital survey with IPAQ, Par-Q+, and STEPwise, with an expected physical inactivity rate of 35% (±5%). The study explored physical activity, (binge) alcohol consumption, fruit, vegetable, and salt intake, smoking, and readiness. Self-reported rates were: 97.4% recommended level of physical activity, 2.4% optimal fruit and vegetable intake, 3.7% smoking, and 44.1% binge drinking. 19.8% were Par-Q+ positive and 5.7% practiced supervised exercise. The analysis showed differences by age, sex, and socioeconomic status. Recreational runners followed the recommended levels of physical activity but did not score well on other risk factors. Prior evaluation of lifestyle-related risk factors and readiness provides a safer athletic strategy.

  12. Validation of a German version of the Sport Motivation Scale (SMS28) and motivation analysis in competitive mountain runners.

    PubMed

    Burtscher, Johannes; Furtner, Marco; Sachse, Pierre; Burtscher, Martin

    2011-06-01

    This study validated a German version of the Sport Motivation Scale (SMS28) and investigated the sex-specific and age-related differences in motivation of competitive mountain runners. Translation and cross-cultural adaptation of the SMS28 was based on translation and back-translation methodology. Acceptable validity of the German version of the SMS28 was indicated by the high correlations (.81 to .98) of scores on the seven subscales for the English and German versions completed by 15 subjects. Motivation analysis was performed with 127 competitive male and female mountain runners. The seven subscales of the German version showed good internal consistency (Cronbach's coefficient alphas .70 to .85). Findings on motivation of competitive mountain runners were a decline across age groups of Intrinsic motivation toward accomplishment for both sexes and an age-related decline of External regulation only for females. These motivational changes might well be associated with the observed diminishing numbers of older participants in mountain running competitions.

  13. The influence of training and mental skills preparation on injury incidence and performance in marathon runners.

    PubMed

    Hamstra-Wright, Karrie L; Coumbe-Lilley, John E; Kim, Hajwa; McFarland, Jose A; Huxel Bliven, Kellie C

    2013-10-01

    There has been a considerable increase in the number of participants running marathons over the past several years. The 26.2-mile race requires physical and mental stamina to successfully complete it. However, studies have not investigated how running and mental skills preparation influence injury and performance. The purpose of our study was to describe the training and mental skills preparation of a typical group of runners as they began a marathon training program, assess the influence of training and mental skills preparation on injury incidence, and examine how training and mental skills preparation influence marathon performance. Healthy adults (N = 1,957) participating in an 18-week training program for a fall 2011 marathon were recruited for the study. One hundred twenty-five runners enrolled and received 4 surveys: pretraining, 6 weeks, 12 weeks, posttraining. The pretraining survey asked training and mental skills preparation questions. The 6- and 12-week surveys asked about injury incidence. The posttraining survey asked about injury incidence and marathon performance. Tempo runs during training preparation had a significant positive relationship to injury incidence in the 6-week survey (ρ[93] = 0.26, p = 0.01). The runners who reported incorporating tempo and interval runs, running more miles per week, and running more days per week in their training preparation ran significantly faster than did those reporting less tempo and interval runs, miles per week, and days per week (p ≤ 0.05). Mental skills preparation did not influence injury incidence or marathon performance. To prevent injury, and maximize performance, while marathon training, it is important that coaches and runners ensure that a solid foundation of running fitness and experience exists, followed by gradually building volume, and then strategically incorporating runs of various speeds and distances.

  14. Prevalence, Severity and Potential Nutritional Causes of Gastrointestinal Symptoms during a Marathon in Recreational Runners.

    PubMed

    Pugh, Jamie N; Kirk, Ben; Fearn, Robert; Morton, James P; Close, Graeme L

    2018-06-24

    The purpose of the present study was to investigate the prevalence of gastrointestinal symptoms (GIS) amongst recreational runners during a marathon race, and potential nutritional factors that may contribute. Recreational runners of the 2017 Liverpool ( n = 66) and Dublin ( n = 30) marathons were recruited. GIS were reported post-marathon and we considered GIS in the 7 days prior to the marathon and during the marathon using the Gastrointestinal Symptom Rating Scale (GSRS). Nutritional intake was recorded using food diaries for the day before the race, morning of the race, and during the race; 43% of participants reported moderate (≥4) GIS in the 7 days prior to the marathon and 27% reported moderate symptoms during the marathon with most common symptoms being flatulence (16%) during training, and nausea (8%) during the marathon race. Correlations between all nutritional intake and GIS were not statistically significant ( p > 0.05). There were significant correlations between total GIS score ( r = 0.510, p < 0.001), upper GIS score ( r = 0.346, p = 0.001) and lower GIS score ( r = 0.483, p < 0.001) in training and during the marathon. There appears to be a modest prevalence of GIS in recreational runners, in the week prior to a marathon and during marathon running, although there was no association with nutritional intake before or during the race.

  15. Controlled exercise effects on chromium excretion of trained and untrained runners consuming a constant diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.A.; Bryden, N.A.; Polansky, M.M.

    1986-03-05

    To determine if degree of training effects urinary Cr losses, Cr excretion of 8 adult trained and 5 untrained runners was determined on rest days and following exercise at 90% of maximal oxygen uptake on a treadmill to exhaustion with 30 second exercise and 30 second rest periods. Subjects were fed a constant daily diet containing 9 ..mu..g of Cr per 1000 calories to minimize changes due to diet. Maximal oxygen consumption of the trained runners was in the good or above range based upon their age and that of the untrained runners was average or below. While consuming themore » control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 ..mu..g/day (mean +/- SEM), respectively. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% of maximal oxygen consumption compared to nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 ..mu..g/day, respectively. Urinary Cr excretion of 5 untrained subjects was not altered following controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to maximal oxygen consumption and therefore degree of fitness.« less

  16. Power break off in a bulb turbine: wall pressure sensor investigation

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Aeschlimann, V.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    A measurement campaign using unsteady wall pressure sensors on a bulb turbine draft tube was performed over the power and efficiency break off range of a N11 curve. This study is part of the BulbT project, undertaken by the Consortium on hydraulic machines and the LAMH (Hydraulic Machine Laboratory of Laval University). The chosen operating points include the best efficiency point for a high runner blade angle and a high N11. Three other points, with the same N11, have been selected in the break off zone of the efficiency curve. Flow conditions have been set using the guide vanes while the runner blade angle remained constant. The pressure sensors were developed from small piezoresistive chips with high frequency response. The calibration gave an instrumental error lower than 0.3% of the measurement range. The unsteady wall pressure was measured simultaneously at 13 locations inside the first part of the draft tube, which is conical, and at 16 locations in the circular to rectangular transition part just downstream. It was also measured at 11 locations along a streamwise line path at the bottom left part of the draft tube, where flow separation occurs, covering the whole streamwise extent of the draft tube. For seven radial-azimuthal planes, four sensors were distributed azimuthally. As confirmed by tuft visualizations, the break off phenomenon is correlated to the presence of flow separation inside the diffuser at the wall. The break off is linked to the appearance of a large recirculation in the draft tube. The efficiency drop increases with the size of the separated region. Analysis of the draft tube pressure coefficients confirms that the break off is related to diffuser losses. The streamwise evolution of the mean pressure coefficient is analyzed for the different operating conditions. An azimuthal dissymmetry of the mean pressure produced by the separation is detected. The pressure signals have been analyzed and used to track the separation zone depending on

  17. Mirror gait retraining for the treatment of patellofemoral pain in female runners

    PubMed Central

    Willy, Richard W.; Scholz, John P.; Davis, Irene S.

    2012-01-01

    Background Abnormal hip mechanics are often implicated in female runners with patellofemoral pain. We sought to evaluate a simple gait retraining technique, using a full-length mirror, in female runners with patellofemoral pain and abnormal hip mechanics. Transfer of the new motor skill to the untrained tasks of single leg squat and step descent was also evaluated. Methods Ten female runners with patellofemoral pain completed 8 sessions of mirror and verbal feedback on their lower extremity alignment during treadmill running. During the last 4 sessions, mirror and verbal feedback were progressively removed. Hip mechanics were assessed during running gait, a single leg squat and a step descent, both pre- and post-retraining. Subjects returned to their normal running routines and analyses were repeated at 1-month and 3-month post-retraining. Data were analyzed via repeated measures analysis of variance. Findings Subjects reduced peaks of hip adduction, contralateral pelvic drop, and hip abduction moment during running (P<0.05, effect size=0.69–2.91). Skill transfer to single leg squatting and step descent was noted (P<0.05, effect size=0.91–1.35). At 1 and 3 months post retraining, most mechanics were maintained in the absence of continued feedback. Subjects reported improvements in pain and function (P<0.05, effect size=3.81–7.61) and maintained through 3 months post retraining. Interpretation Mirror gait retraining was effective in improving mechanics and measures of pain and function. Skill transfer to the untrained tasks of squatting and step descent indicated that a higher level of motor learning had occurred. Extended follow-up is needed to determine the long term efficacy of this treatment. PMID:22917625

  18. Does the sex difference in competitiveness decrease in selective sub-populations? A test with intercollegiate distance runners.

    PubMed

    Deaner, Robert O; Lowen, Aaron; Rogers, William; Saksa, Eric

    2015-01-01

    Sex differences in some preferences and motivations are well established, but it is unclear whether they persist in selective sub-populations, such as expert financial decision makers, top scientists, or elite athletes. We addressed this issue by studying competitiveness in 1,147 varsity intercollegiate distance runners. As expected, across all runners, men reported greater competitiveness with two previously validated instruments, greater competitiveness on a new elite competitiveness scale, and greater training volume, a known correlate of competitiveness. Among faster runners, the sex difference decreased for one measure of competitiveness but did not decrease for the two other competitiveness measures or either measure of training volume. Across NCAA athletic divisions (DI, DII, DIII), the sex difference did not decrease for any competitiveness or training measure. Further analyses showed that these sex differences could not be attributed to women suffering more injuries or facing greater childcare responsibilities. However, women did report greater commitment than men to their academic studies, suggesting a sex difference in priorities. Therefore, policies aiming to provide men and women with equal opportunities to flourish should acknowledge that sex differences in some kinds of preferences and motivation may persist even in selective sub-populations.

  19. Does the sex difference in competitiveness decrease in selective sub-populations? A test with intercollegiate distance runners

    PubMed Central

    Lowen, Aaron; Rogers, William; Saksa, Eric

    2015-01-01

    Sex differences in some preferences and motivations are well established, but it is unclear whether they persist in selective sub-populations, such as expert financial decision makers, top scientists, or elite athletes. We addressed this issue by studying competitiveness in 1,147 varsity intercollegiate distance runners. As expected, across all runners, men reported greater competitiveness with two previously validated instruments, greater competitiveness on a new elite competitiveness scale, and greater training volume, a known correlate of competitiveness. Among faster runners, the sex difference decreased for one measure of competitiveness but did not decrease for the two other competitiveness measures or either measure of training volume. Across NCAA athletic divisions (DI, DII, DIII), the sex difference did not decrease for any competitiveness or training measure. Further analyses showed that these sex differences could not be attributed to women suffering more injuries or facing greater childcare responsibilities. However, women did report greater commitment than men to their academic studies, suggesting a sex difference in priorities. Therefore, policies aiming to provide men and women with equal opportunities to flourish should acknowledge that sex differences in some kinds of preferences and motivation may persist even in selective sub-populations. PMID:25922790

  20. Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types.

    PubMed

    Anbarian, Mehrdad; Esmaeili, Hamed

    2016-07-01

    This study aimed to assess the effects of running-induced fatigue on plantar pressure parameters in novice runners with low and high medial longitudinal arch. Plantar pressure data from 42 novice runners (21 with high, and 21 with low arch) were collected before and after running-induced fatigue protocol during running at 3.3m/s along the Footscan(®) platform. Peak plantar pressure, peak force and force-time integral (impulse) were measured in ten anatomical zones. Relative time for foot roll-over phases and medio-lateral force ratio were calculated before and after the fatigue protocol. After the fatigue protocol, increases in the peak pressure under the first-third metatarsal zones and reduction under the fourth-fifth metatarsal regions were observed in the low arch individuals. In the high arch group, increases in peak pressure under the fourth-fifth metatarsal zones after the running-induced fatigue was observed. It could be concluded that running-induced fatigue had different effects on plantar pressure distribution pattern among novice runners with low and high medial longitudinal foot arch. These findings could provide some information related to several running injuries among individuals with different foot types. Copyright © 2016 Elsevier B.V. All rights reserved.