Sample records for toxic microcystis aeruginosa

  1. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium.

    PubMed

    Frangeul, Lionel; Quillardet, Philippe; Castets, Anne-Marie; Humbert, Jean-François; Matthijs, Hans C P; Cortez, Diego; Tolonen, Andrew; Zhang, Cheng-Cai; Gribaldo, Simonetta; Kehr, Jan-Christoph; Zilliges, Yvonne; Ziemert, Nadine; Becker, Sven; Talla, Emmanuel; Latifi, Amel; Billault, Alain; Lepelletier, Anthony; Dittmann, Elke; Bouchier, Christiane; de Marsac, Nicole Tandeau

    2008-06-05

    The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.

  2. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa.

    PubMed

    Song, Hao; Lavoie, Michel; Fan, Xiaoji; Tan, Hana; Liu, Guangfu; Xu, Pengfei; Fu, Zhengwei; Paerl, Hans W; Qian, Haifeng

    2017-08-01

    The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors.

  3. Microcystis aeruginosa strengthens the advantage of Daphnia similoides in competition with Moina micrura.

    PubMed

    Tang, Hengxing; Hou, Xinying; Xue, Xiaofeng; Chen, Rui; Zhu, Xuexia; Huang, Yuan; Chen, Yafen

    2017-08-31

    Microcystis blooms are generally associated with zooplankton shifts by disturbing interspecific relationships. The influence of Microcystis on competitive dominance by different sized zooplanktons showed species-specific dependence. We evaluated the competitive responses of small Moina micrura and large Daphnia similoides to the presence of Microcystis using mixed diets comprising 0%, 20%, and 35% of toxic M. aeruginosa, and the rest of green alga Chlorella pyrenoidosa. No competitive exclusion occurred for the two species under the tested diet combinations. In the absence of M. aeruginosa, the biomasses of the two cladocerans were decreased by the competition between them. However, the Daphnia was less inhibited with the higher biomass, suggesting the competitive dominance of Daphnia. M. aeruginosa treatment suppressed the population growths of the two cladocerans, with the reduced carrying capacities. Nonetheless, the population inhibition of Daphnia by competition was alleviated by the increased Microcystis proportion in diet. As a result, the competitive advantage of Daphnia became more pronounced, as indicated by the higher Daphnia: Moina biomass ratio with increased Microcystis proportions. These results suggested that M. aeruginosa strengthens the advantage of D. similoides in competition with M. micrura, which contributes to the diversified zooplankton shifts observed in fields during cyanobacteria blooms.

  4. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa

    PubMed Central

    Song, Hao; Lavoie, Michel; Fan, Xiaoji; Tan, Hana; Liu, Guangfu; Xu, Pengfei; Fu, Zhengwei; Paerl, Hans W; Qian, Haifeng

    2017-01-01

    The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors. PMID:28398349

  5. Combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the physiological responses of triangle sail mussel Hyriopsis cumingii.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Liu, Qigen; Wang, Youji

    2016-04-05

    The single and combined effects of toxic cyanobacteria Microcystis aeruginosa and hypoxia on the energy budget of triangle sail mussel Hyriopsis cumingii were determined in terms of scope for growth (SfG). Mussels were exposed to different combinations of toxic M. aeruginosa (0%, 50%, and 100% of total dietary dry weight) and dissolved oxygen concentrations (1, 3, and 6.0mg O2l(-1)) with a 3×3 factorial design for 14 days, followed by a recovery period with normal conditions for 7 days. Microcystin contents in mussel tissues increased with the increase in the exposed M. aeruginosa concentration at each sampling time. Adverse physiological responses of H. cumingii under toxic M. aeruginosa and hypoxic exposure were found in terms of clearance rate, absorption efficiency, respiration rate, excretion rate, and SfG. Results emphasized the importance of combined effects of hypoxia and toxic cyanobacteria on H. cumingii bioenergetic parameters, highlighted the interactive effects of toxic algae and hypoxia, and implied that the two stressors affected H. cumingii during the exposure period and showed carryover effects later. Thus, if H. cumingii is used as a bioremediation tool to eliminate M. aeruginosa, the waters should be oxygenated. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Carbon-Neutral Photosynthetic Microbial Fuel Cell Powered by Microcystis aeruginosa.

    PubMed

    Ma, Meirong; Cao, Limin; Chen, Li; Ying, Xiaofang; Deng, Zongwu

    2015-07-01

    A photosynthetic microbial fuel cell (m-PMFC) is developed for generating electricity by harnessing solar energy using Microcystis aeruginosa. In this m-PMFC, commensal bacteria can consume the nutrients that Microcystis aeruginosa produces to generate electricity so that no net CO₂production occurs. A b-MFC is constructed to confirm the role of commensal bacteria in electric generation. An s-PMFC is constructed to confirm the contribution of Microcystis aeruginosa as substrates. The power outputs of m-PMFCs exhibit no significant difference in terms of different inoculation amount of Microcystis aeruginosa or light/dark cycles. The power density of m-PMFC exhibits similar response to bubbling of N₂and O₂as that of b-MFC, as confirmed by cyclic voltammetry analysis of m-PMFC and b-MFC. Scanning electron microscope images demonstrate that the biofilm of m-PMFC consists mainly of commensal bacteria. These results suggest that commensal bacteria act as the main biocatalysts and Microcystis aeruginosa as the anode substrates in the m-PMFC.

  7. γ-Lindane Increases Microcystin Synthesis in Microcystis aeruginosa PCC7806

    PubMed Central

    Ceballos-Laita, Laura; Calvo-Begueria, Laura; Lahoz, Jessica; Bes, María-Teresa; Fillat, María F.; Peleato, María-Luisa

    2015-01-01

    HCH factories, and the waste dumpsites associated to its production, have become a global environmental concern, and their runoff could pollute ground and surface waters with high levels of the pollutant. In this study, the influence of lindane (γ-HCH) on microcystin production has been investigated in Microcystis aeruginosa PCC7806. This toxic cyanobacterium is highly tolerant to γ-lindane (20 mg/L), and produces more toxin (microcystin) in the presence of the pollutant. Microcystis degrades γ-lindane and presence of γ-lindane induces genes involved in its own degradation (nirA). RT-PCRsq has been used to monitor changes in levels of transcripts encoded by the mcy operon (mcyD, mcyH and mcyJ), responsible for the microcystin synthesis machinery, as well as other genes involved in its transcriptional regulation, such as ntcA and fur family members. The presence of lindane in the culture media induces mcyD expression, as well as ntcA gene transcription, while other genes, such as mcyH, (putative ABC transporter), are downregulated. The amount of microcystin found in the cells and the culture media is higher when M. aeruginosa is treated with γ-lindane than in control cells. The results suggest that in a lindane polluted environment, Microcystis toxic strains may enhance their microcystin synthesis. PMID:26404326

  8. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong

    2017-03-01

    Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield ( F v/ F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

  9. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses.

    PubMed

    Qian, Haifeng; Zhu, Kun; Lu, Haiping; Lavoie, Michel; Chen, Si; Zhou, Zhongjing; Deng, Zhiping; Chen, Jun; Fu, Zhengwei

    2016-12-01

    Several studies have shown that AgNPs can be toxic to phytoplankton, but the underlying cellular mechanisms still remain largely unknown. Here we studied the toxicity and detoxification of AgNPs (and ionic silver released by the AgNPs) in a prokaryotic (Microcystis aeruginosa) and a eukaryotic (Chlorella vulgaris) freshwater phytoplankton species using a combination of proteomic, gene transcription, and physiological analyses. We show that AgNPs were more toxic to the growth, photosynthesis, antioxidant systems, and carbohydrate metabolism of M. aeruginosa than of C. vulgaris. C. vulgaris could detoxify efficiently AgNPs-induced ROS species via induction of antioxidant enzymes (superoxide dismutase or SOD, peroxidase or POD, catalase or CAT, and glutamine synthetase), allowing photosynthesis to continue unabated at growth-inhibitory AgNPs concentration. By contrast, the transcription and expression of SOD and POD in M. aeruginosa was inhibited by the same AgNPs exposure. The present study shed new lights on the AgNPs toxicity mechanisms and detoxification strategies in two freshwater algae of contrasting AgNPs sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843

    PubMed Central

    Kaneko, Takakazu; Nakajima, Nobuyoshi; Okamoto, Shinobu; Suzuki, Iwane; Tanabe, Yuuhiko; Tamaoki, Masanori; Nakamura, Yasukazu; Kasai, Fumie; Watanabe, Akiko; Kawashima, Kumiko; Kishida, Yoshie; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Watanabe, Makoto M.

    2007-01-01

    Abstract The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome. PMID:18192279

  11. The blooms of a cyanobacterium, Microcystis cf. aeruginosa in a severely polluted estuary, the Golden Horn, Turkey

    NASA Astrophysics Data System (ADS)

    Taş, Seyfettin; Okuş, Erdoğan; Aslan-Yılmaz, Aslı

    2006-07-01

    The distribution of toxic cyanobacterium Microcystis cf. aeruginosa in the severely polluted Golden Horn Estuary was studied from 1998 to 2000. Microcystis persisted at the upper estuary where the water circulation was poor and values ranged between 2.9 × 10 4 and 2.7 × 10 6 cells ml -1 throughout the study. Simultaneously measured physical (salinity, temperature, rainfall and secchi disc) and chemical parameters (nutrients and dissolved oxygen) were evaluated together with Microcystis data. Although the Microcystis blooms generally occur in summer due to the increase in temperature, the blooms were recorded in winter in the present study. The abundance of Microcystis depended on the variations in salinity and both blooms were recorded below S = 2. A moderate partial correlation between Microcystis abundance and salinity was detected in the presence of temperature, dissolved oxygen and precipitation data ( r = -0.561, p = 0.002). The M. cf. aeruginosa abundance was low in the summer when the salinity was higher than winter. A remarkable increase in the eukaryotic phytoplankton abundance following the improvements in the water quality of the estuary occurred, whilst the Microcystis abundance remained below bloom level.

  12. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Liang; Qiu, Zhihao; Zhou, Ya; Du, Yuping; Liu, Chaonan; Ye, Jing; Hu, Xiaojun

    2016-09-01

    Glyphosate has been used extensively for weed control in agriculture in many countries. However, glyphosate can be transported into the aquatic environment and might cause adverse effects on aquatic life. This study investigated the physiological characteristics of cyanobacteria Microcystis aeruginosa (M. aeruginosa) after exposure to glyphosate, and the results showed that changes in cell density production, chlorophyll a and protein content are consistent. In M. aeruginosa, oxidative stress caused by glyphosate indicated that 48h of exposure increased the concentration of malondialdehyde (MDA) and enhanced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). To further investigate the toxicity of glyphosate on M. aeruginosa, the viability of treated cells was monitored and the toxin release was determined. The results indicated that glyphosate induced apoptosis of and triggered toxin release in M. aeruginosa. These results are helpful for understanding the toxic effects of glyphosate on cyanobacteria, which is important for environmental assessment and protection. These results are also useful for guidance on the application of this type of herbicide in agricultural settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Growth and Photosynthetic Characteristics of Toxic and Non-Toxic Strains of the Cyanobacteria Microcystis aeruginosa and Anabaena circinalis in Relation to Light

    PubMed Central

    Islam, M. Ashraful; Beardall, John

    2017-01-01

    Cyanobacteria are major bloom-forming organisms in freshwater ecosystems and many strains are known to produce toxins. Toxin production requires an investment in energy and resources. As light is one of the most important factors for cyanobacterial growth, any changes in light climate might affect cyanobacterial toxin production as well as their growth and physiology. To evaluate the effects of light on the growth and physiological parameters of both toxic and non-toxic strains of Microcystis aeruginosa and Anabaena circinalis, cultures were grown at a range of light intensities (10, 25, 50, 100, 150 and 200 µmol m−2 s−1). The study revealed that the toxic strains of both species (CS558 for M. aeruginosa and CS537 and CS541 for A. circinalis) showed growth (µ) saturation at a higher light intensity compared to the non-toxic strains (CS338 for M. aeruginosa and CS534 for A. circinalis). Both species showed differences in chlorophyll a, carotenoid, allophycocyanin (APC) and phycoerythrin (PE) content between strains. There were also differences in dark respiration (Rd), light saturated oxygen evolution rates (Pmax) and efficiency of light harvesting (α) between strains. All other physiological parameters showed no statistically significant differences between strains. This study suggest that the different strains respond differently to different light habitats. Thus, changes in light availability may affect bloom intensity of toxic and nontoxic strains of cyanobacteria by changing the dominance and succession patterns. PMID:28777340

  14. Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers.

    PubMed

    Abdel-Latif, H M R; Khashaba, A M Abou

    2017-08-01

    Toxic cyanobacterial blooms ( Microcystis aeruginosa contains microcystins [MCs]) have been reported to induce clinicopathological alterations as well as different oxidative stress in aquatic biota. Three-week subchronic exposure experiment was carried out on Nile tilapia, to determine their effects on fish behavior, tissues, liver functions, antioxidant enzymes, and lipid peroxidation. Fish were exposed to four main treatments; orally fed diet plus toxic cells of M. aeruginosa (containing 3500 µg/g MC-LR), immersion in 500 µg MC-LR/L, intraperitoneal injection of M. aeruginosa MC-LR with a dose of 0.1 ml of extracted toxin at a dose of 200 μg/kg bwt, and the fourth one served as a control group, then the fish were sacrificed at the end of 3 rd week of exposure. The results revealed no recorded mortality with obvious behavioral changes and an enlarged liver with the congested gall bladder. Histopathology demonstrated fragmentation, hyalinization, and necrosis of the subcutaneous musculature marked fatty degeneration, and vacuolation of hepatopancreatic cells with adhesion of the secondary gill lamellae associated with severe leukocytic infiltration. Furthermore, liver functions enzymes (aspartate aminotransferase and alanine aminotransferase, and the activities of glutathione peroxidase, glutathione reductase, lipid peroxidase, and catalase enzymes) were significantly increased in all treatments starting from the 2 nd week as compared to the control levels. In this context, the study addresses the possible toxicological impacts of toxic M. aeruginosa contain MC-LR to Nile tilapia, and the results investigated that MC-LR is toxic to Nile tilapia in different routes of exposure as well as different doses.

  15. Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers

    PubMed Central

    Abdel-Latif, H. M. R.; Khashaba, A. M. Abou

    2017-01-01

    Background: Toxic cyanobacterial blooms (Microcystis aeruginosa contains microcystins [MCs]) have been reported to induce clinicopathological alterations as well as different oxidative stress in aquatic biota. Aim: Three-week subchronic exposure experiment was carried out on Nile tilapia, to determine their effects on fish behavior, tissues, liver functions, antioxidant enzymes, and lipid peroxidation. Materials and Methods: Fish were exposed to four main treatments; orally fed diet plus toxic cells of M. aeruginosa (containing 3500 µg/g MC-LR), immersion in 500 µg MC-LR/L, intraperitoneal injection of M. aeruginosa MC-LR with a dose of 0.1 ml of extracted toxin at a dose of 200 μg/kg bwt, and the fourth one served as a control group, then the fish were sacrificed at the end of 3rd week of exposure. Results: The results revealed no recorded mortality with obvious behavioral changes and an enlarged liver with the congested gall bladder. Histopathology demonstrated fragmentation, hyalinization, and necrosis of the subcutaneous musculature marked fatty degeneration, and vacuolation of hepatopancreatic cells with adhesion of the secondary gill lamellae associated with severe leukocytic infiltration. Furthermore, liver functions enzymes (aspartate aminotransferase and alanine aminotransferase, and the activities of glutathione peroxidase, glutathione reductase, lipid peroxidase, and catalase enzymes) were significantly increased in all treatments starting from the 2nd week as compared to the control levels. Conclusion: In this context, the study addresses the possible toxicological impacts of toxic M. aeruginosa contain MC-LR to Nile tilapia, and the results investigated that MC-LR is toxic to Nile tilapia in different routes of exposure as well as different doses. PMID:28919690

  16. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa.

    PubMed

    Phankhajon, Kanchariya; Somdee, Anchana; Somdee, Theerasak

    2016-09-01

    An actinomycete strain (KKU-A3) with algicidal activity against Microcystis aeruginosa was isolated from soil in Khon Kaen Province, Thailand. Based on its phenotypic characteristics and 16S rDNA sequence, strain KKU-A3 was identified as Streptomyces rameus. Strain KKU-A3 also exhibited algicidal activity against the cyanobacteria Synechococcus elongatus, Cylindrospermum sp. and Oscillatoria sp. A mathematical and statistical technique was used to optimize the culture conditions and maximize its anti-Microcystis activity. The single factor experiments indicated that glucose and casein were the most effective carbon and nitrogen sources, respectively, and produced the highest anti-Microcystis activity. Response surface methodology indicated that the optimum culture conditions were 19.81 g/L glucose and 2.0 g/L casein at an initial pH of 7.8 and an incubation temperature of 30 °C. The anti-Microcystis activity increased from 82% to 95% under optimum conditions. In an internal airlift loop bioreactor, the removal of M. aeruginosa KKU-13 by the bacterium was investigated in batch and continuous flow experiments. In the batch experiment, KKU-A3 displayed maximum anti-Microcystis activity of 95% at day 7, whereas in the continuous flow experiment, KKU-A3 displayed maximum anti-Microcystis activity of 95% at day 10.

  17. Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp.

    PubMed

    Chen, Wen Ming; Sheu, Fu Sian; Sheu, Shih Yi

    2011-09-10

    A brownish yellow pigmented bacterial strain, designated antisso-27, was recently isolated from a water area of saltpan in Southern Taiwan. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain antisso-27 belongs the genus Aquimarina in the family Flavobacteriacea and its only closest neighbor is Aquimarina spongiae (96.6%). Based on screening for algicidal activity, strain antisso-27 exhibits potent activity against the toxic cyanobacterium Microcystis aeruginosa. Both the strain antisso-27 bacterial culture and its culture filtrate show algicidal activity against the toxic cyanobacterium, indicating that an algicidal substance is released from strain antisso-27. The algicidal activity of strain antisso-27 occurs during the late stationary phase of bacterial growth. Strain antisso-27 can synthesize an algicidal protein with a molecular mass of 190 kDa, and its isoelectric point is approximately 9.4. This study explores the nature of this algicidal protein such as L-amino acid oxidase with broad substrate specificity. The enzyme is most active with L-leucine, L-isoleucine, L-methionine and L-valine and the hydrogen peroxide generated by its catalysis mediates algicidal activity. This is the first report on an Aquimarina strain algicidal to the toxic M. aeruginosa and the algicidal activity is generated through its enzymatic activity of L-amino acid oxidase. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. LexA Binds to Transcription Regulatory Site of Cell Division Gene ftsZ in Toxic Cyanobacterium Microcystis aeruginosa.

    PubMed

    Honda, Takashi; Morimoto, Daichi; Sako, Yoshihiko; Yoshida, Takashi

    2018-05-17

    Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN 3 GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.

  19. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    PubMed

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa . Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies ( P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly ( P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L -1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  20. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation

    PubMed Central

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies (P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly (P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L−1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies. PMID:27777956

  1. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa.

    PubMed

    Zhou, Su; Yin, Hua; Tang, Shaoyu; Peng, Hui; Yin, Donggao; Yang, Yixuan; Liu, Zehua; Dang, Zhi

    2016-05-01

    Proliferation of cyanobacteria in aquatic ecosystems has caused water security problems throughout the world. Our preliminary study has showed that Pseudomonas aeruginosa can inhibit the growth of cyanobacterium, Microcystis aeruginosa. In order to explore the inhibitory mechanism of P. aeruginosa on the cell growth and synthesis of intracellular substances of M. aeruginosa, concentrations of Chlorophyll-a, intracellular protein, carbohydrate, enzyme activities and ion metabolism of M. aeruginosa, were investigated. The results indicated that 83.84% algicidal efficiency of P. aeruginosa was achieved after treatment for 7 days. The strain inhibited the reproduction of M. aeruginosa by impeding the synthesis of intracellular protein and carbohydrate of cyanobacterium, and only a very small part of intracellular protein and carbohydrate was detected after exposure to P. aeruginosa for 5 days. P. aeruginosa caused the alteration of intracellular antioxidant enzyme activity of M. aeruginosa, such as catalase, peroxidase. The accumulation of malondialdehyde aggravated membrane injury after treatment for 3 days. P. aeruginosa also affected the ion metabolism of cyanobacteria. The release of Na(+) and Cl(-) was significantly enhanced while the uptake of K(+), Ca(2+), Mg(2+), NO3(-) and SO4(2)(-) decreased. Surface morphology and intracellular structure of cyanobacteria and bacterial cells changed dramatically over time as evidenced by electron microscope (SEM) and transmission electron microscope (TEM) analysis. These results revealed that the algicidal activity of P. aeruginosa was primarily due to the fermentation liquid of P. aeruginosa that impeded the synthesis of intracellular protein and carbohydrate, and damaged the cell membrane through membrane lipid peroxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI-TOF MS and Polygenetic Analysis.

    PubMed

    Sun, Li-Wei; Jiang, Wen-Jing; Sato, Hiroaki; Kawachi, Masanobu; Lu, Xi-Wu

    2016-01-01

    Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI-TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI-TOF MS.

  3. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa.

    PubMed

    Yang, Ke; Chen, Qiuliang; Zhang, Danyang; Zhang, Huajun; Lei, Xueqian; Chen, Zhangran; Li, Yi; Hong, Yaling; Ma, Xiaohong; Zheng, Wei; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-08-10

    In recent years, Microcystis aeruginosa blooms have occurred throughout the world, causing huge economic losses and destroying aquatic ecosystems. It is necessary to develop effective and ecofriendly methods to control M. aeruginosa blooms. Here, we report a high algicidal activity of prodigiosin (PG) against M. aeruginosa as well as the algicidal mechanism. PG showed high algicidal activity against M. aeruginosa, with a 50% lethal dose (LD 50 ) of 5.87 μg/mL in 72 h. A combination of methods, including propidium iodide and Annexin V-fluorescein staining assays and light and electron microscopy indicated the existence of two modes of cell death with features similar to those in eukaryotic programmed cell death: necrotic-like and apoptotic-like. Biochemical and physiological analyses showed that PG generates reactive oxygen species (ROS), which induce lipid peroxidation, damage the membrane system and destroy the function of the photosystem. A proteomics analysis revealed that many proteins were differentially expressed in response to PG stress and that most of these proteins were involved in important metabolic processes, which may trigger necrotic-like or apoptotic-like cell death. The present study sheds light on the multiple toxicity mechanisms of PG on M. aeruginosa and its potential for controlling the occurrence of M. aeruginosa blooms in lakes.

  4. Research on fluorescence detection method of Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiong

    2017-07-01

    The paper studied the viability determination of Microcystis aeruginosa by FDA and PI staining. The staining results were measured by fluorescence microscopy. The results indicated that viable and dead cells were stained as bright green and red fluorescent respectively by FDA and PI. Through PI-FDA dual color fluorescence staining, the color of green and red distinct obviously by fluorescence microscope. The staining rate has relation with the cell density. If the cell density of M. aeruginosa was 1.0×107-1.0×109 cell·mL-1, the staining rate would be 100.0% or 98.0% by PI and of FDA respectively.

  5. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins.

    PubMed

    Pham, Thanh-Luu; Shimizu, Kazuya; Dao, Thanh-Son; Hong-Do, Lan-Chi; Utsumi, Motoo

    2015-01-01

    We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana . Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin)-LR eq  L -1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs) by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). Clam accumulated MCs (up to 12.7 ± 2.5 μg g -1 dry weight (DW) of free MC and 4.2 ± 0.6 μg g -1 DW of covalently bound MC). Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO) provisional tolerable daily intake (0.04 μg kg -1  day -1 ), suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.

  6. Effects of garlic and diallyl trisulfide on the growth, photosynthesis, and alkaline phosphatase activity of the toxic cyanobacterium Microcystis aeruginosa.

    PubMed

    Wang, Shoubing; Wang, Yuanan; Ma, Xiaoxue; Xu, Ziran

    2016-03-01

    To identify a botanical algicide and elucidate the response of cyanobacteria to the extract from higher plants, the effects of garlic and garlic-derived diallyl trisulfide on Microcystis aeruginosa were studied. Effects were evaluated by changes in cell density, chlorophyll a, maximum effective quantum yield (Fv/Fm), effective quantum yield (YII), non-photochemical quenching (NPQ), and rapid light curves of M. aeruginosa. In addition, alkaline phosphatase activity (APA) was measured when M. aeruginosa was incubated with diallyl trisulfide. Results indicated that the inhibition by garlic and diallyl trisulfide was significant. The 120-h 50 % effective concentrations of garlic and diallyl trisulfide (EC50) were 0.75 g L(-1) and 2.84 mg L(-1), respectively. Moreover, the inhibitory rate increased with increasing concentration and the growth of M. aeruginosa was inhibited by 90.0 % at the highest concentrations. We also show that the response of M. aeruginosa to stress could involve both impairment of the photosynthetic center PSII and alteration of APA. For example, at high garlic concentration (2.0 g L(-1)), Fv/Fm significantly decreased from 0.501 to 0.084 (p < 0.05) after 120 h of exposure. Furthermore, the total APA was significantly decreased by exposure to a high diallyl trisulfide concentration after 24 h exposure. As new algal inhibitors, there are several advantages for their utilization, such as being common, cheap, non-toxic, and with high efficiency. It would be meaningful to further research on garlic as an environmentally friendly algicide.

  7. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.

  8. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa.

    PubMed

    Chen, Ho-Wen; Huang, Winn-Jung; Wu, Ting-Hsiang; Hon, Chen-Lin

    2014-01-01

    This investigation examines how extracellular polymeric substances (EPSs) and environmental factors affect the bioaccumulation and toxicity of inorganic mercury (+2 oxidation state, Hg(II)) using a culture of Microcystis aeruginosa, which dominates eutrophic reservoir populations. The identified EPSs were classified as carbohydrates and proteins. Evaluation of the bioaccumulation of Hg(II) in cells by multiple regression analysis reveals that the concentration of EPSs in filtrate, the initial concentration of Hg(II) in medium, and the culture age significantly affected the amount of Hg(II) accumulated. Composition profiles revealed that the concentrations of soluble carbohydrates were significantly higher in Hg(II)-accumulated cells than in the control ones. Preliminary results based on scanning electron microscopic (SEM) map investigations suggest that most of the Hg(II) was accumulated in the cytoplasm (intracellular). Additionally, the effective concentrations (EC50) of Hg(II) that inhibit the growth of M. aeruginosa were 38.6 μg L(-1) in the logarithmic phase and 17.5 μg L(-1) in the stationary phase. As expected, the production of more EPSs in the logarithmic phase typically implies higher EC50 values because EPSs may be regarded as a protective barrier of cells against an external Hg(II) load, enabling them to be less influenced by Hg(II).

  9. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.

    PubMed

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Li, Qiongzhen; Gu, Yedan; Wang, Youji; Liu, Qigen

    2015-11-01

    Bloom forming algae and hypoxia are considered to be two main co-occurred stressors associated with eutrophication. The aim of this study was to evaluate the interactive effects of harmful algae Microcystis aeruginosa and hypoxia on an ecologically important mussel species inhabiting lakes and reservoirs, the triangle sail mussel Hyriopsis cumingii, which is generally considered as a bio-management tool for eutrophication. A set of antioxidant enzymes involved in immune defence mechanisms and detoxification processes, i.e. glutathione-S-transferases (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), lysozyme (LZM) in mussel haemolymph were analyzed during 14days exposure along with 7days depuration duration period. GST, GSH, SOD, GPX and LZM were elevated by toxic M. aeruginosa exposure, while CAT activities were inhibited by such exposure. Hypoxia influenced the immune mechanisms through the activation of GSH and GPX, and the inhibition of SOD, CAT, and LZM activities. Meanwhile, some interactive effects of M. aeruginosa, hypoxia and time were observed. Independently of the presence or absence of hypoxia, toxic algal exposure generally increased the five tested enzyme activities of haemolymph, except CAT. Although half of microcystin could be eliminated after 7days depuration, toxic M. aeruginosa or hypoxia exposure history showed some latent effects on most parameters. These results revealed that toxic algae play an important role on haemolymph parameters alterations and its toxic effects could be affected by hypoxia. Although the microcystin depuration rate of H. cumingii is quick, toxic M. aeruginosa and/or hypoxia exposure history influenced its immunological mechanism recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    PubMed

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  11. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides

    PubMed Central

    Geh, Esmond N.; Ghosh, Debajyoti; McKell, Melanie; de la Cruz, Armah A.; Stelma, Gerard

    2015-01-01

    Background The cyanobacterium species Microcystis aeruginosa produces microcystin and an array of diverse metabolites believed responsible for their toxicity and/or immunogenicity. Previously, chronic rhinitis patients were demonstrated to elicit a specific IgE response to nontoxic strains of M. aeruginosa by skin-prick testing, indicating that cyanobacteria allergenicity resides in a non-toxin–producing component of the organism. Objectives We sought to identify and characterize M. aeruginosa peptide(s) responsible for allergic sensitization in susceptible individuals, and we investigated the functional interactions between cyanobacterial toxins and their coexpressed immunogenic peptides. Methods Sera from patients and extracts from M. aeruginosa toxic [MC(+)] and nontoxic [MC(–)] strains were used to test IgE-specific reactivity by direct and indirect ELISAs; 2D gel electrophoresis, followed by immunoblots and mass spectrometry (MS), was performed to identify the relevant sensitizing peptides. Cytotoxicity and mediator release assays were performed using the MC(+) and MC(–) lysates. Results We found specific IgE to be increased more in response to the MC(–) strain than the MC(+) strain. This response was inhibited by preincubation of MC(–) lysate with increasing concentrations of microcystin. MS revealed that phycocyanin and the core-membrane linker peptide are the responsible allergens, and MC(–) extracts containing these proteins induced β-hexosaminidase release in rat basophil leukemia cells. Conclusions Phycobiliprotein complexes in M. aeruginosa have been identified as the relevant sensitizing proteins. Our finding that allergenicity is inhibited in a dose-dependent manner by microcystin toxin suggests that further investigation is warranted to understand the interplay between immunogenicity and toxicity of cyanobacteria under diverse environmental conditions. Citation Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA. 2015

  12. Occurrence and toxicity of Microcystis aeruginosa (Cyanobacteria) in the Paraná River, downstream of the Yacyretá dam (Argentina).

    PubMed

    Forastier, Marina Elizabet; Zalocar, Yolanda; Andrinolo, Dario; Domitrovic, Hugo Alberto

    2016-03-01

    Cyanobacteria constitute the main toxin producers in inland water ecosystems and have extensive global distribution. The presence of hepatotoxins in aquatic environments is hazardous to human and animal health; even though the presence and identification of hepatotoxic microcystins in rivers and reservoirs of the world have been confirmed by several studies in the last few years. Herein, we studied the abundance and toxicity of Microcystis aeruginosa in the Argentine section of the Paraná River at the beginning of the Middle Paraná (Corrientes Hydrometer), near Corrientes city (27º28´ S - 58º51´ W) and approximately 220 km downstream of the Yacyretá dam (High Paraná). The Paraná River basin, with a drainage area of 3.1 x 10(6) km(2) and 3 965 km in length, is the second largest catchment of South America, after that of the Amazon. The Paraná River is the main source of drinking water supply for the Northeastern Argentine region. Phytoplankton samples were collected and environmental variables were measured in a monthly basis (exceptionally fortnightly), from March 2004 to June 2008. Fifty-eight samples were analyzed for phytoplankton density and biomass. Five samples were used for toxicity testing; the latter were obtained during the cyanobacteria blooms from 2005 to 2008. Phytoplankton counts were performed with an inverted microscope, and biomass was expressed as biovolume. Bioassays with mice and high-performance liquid chromatography (HPLC) analysis were performed to evaluate the presence of cyanotoxins. Phytoplankton mainly consisted of Cryptophyta, Chlorophyta and Bacillariophyta. Microcystis aeruginosa was identified during the warmer months each year (November to March). Density varied between 189 and 25 027 cells/mL (1-10 colonies/mL) and biomass from 0.34 to 44 mm(3)/L. Taking into account the number of cells, the highest abundance occurred in April 2004 (25 027 cells/mL), coinciding with the largest biovolume (44 mm(3)/L). All mice subjected to

  13. Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa.

    PubMed

    Li, Y; Liu, L; Xu, Y; Li, P; Zhang, K; Jiang, X; Zheng, T; Wang, H

    2017-01-01

    Microcystis aeruginosa is a cyanobacterial bloom-causing species and is considered a serious threat to human health and biological safety. In this study, the algicidal bacterium h10 showed high algicidal effects on M. aeruginosa 7820, and strain h10 was confirmed to belong to the genus Exiguobacterium, for which the name Exiguobacterium sp. h10 is proposed. Algicidal activity and mode analysis revealed that the supernatant, rather than the bacterial cells, was responsible for the algicidal activity, indicating that the algicidal mode of strain h10 is by indirect attack through the production of algicidal substances. Analysis of the algicidal substance characteristics showed a molecular weight of <1000 Da and that algicidal substances exhibit high thermal stability and pH instability, and the characteristic functional groups of the algicidal substance mainly included carbonyl, amino and hydroxyl groups. Under the effects of the algicidal substance, the cellular pigment content was significantly decreased, and the algal cell structure and morphology were seriously damaged. The results indicate that the algicidal bacterium Exiguobacterium sp. h10 could be a potential bio-agent for controlling cyanobacterial blooms of M. aeruginosa. In this study, the effects of algicidal substances from an algicidal bacterium Exiguobacterium sp. h10 on the toxic cyanobacterium, Microcystis aeruginosa 7820, were first investigated. The algicidal mode of action was confirmed as an indirect attack through the production of algicidal substances. The characteristics of the algicidal substance were determined, especially the functional groups analysis that confirmed the algicidal substances were glycolipid mixtures. With the stress of algicidal substances, the algal chlorophyll a synthesis, cell structure and morphology were seriously damaged. This study proved that algicidal bacteria are promising sources of potential cyanobacterial bloom-control, and provided good procedures for the

  14. The reduced bioavailability of copper by nano-TiO₂ attenuates the toxicity to Microcystis aeruginosa.

    PubMed

    Chen, Jinyuan; Qian, Yi; Li, Herong; Cheng, Yanhong; Zhao, Meirong

    2015-08-01

    Nano-TiO2 is a widely applied nanoparticle (NPs) and co-exists with other pollutants such as heavy metals in aquatic environments. However, minimal knowledge is available concerning the ecological risk of these mixtures. Our study reported that at no toxic effect concentrations of TiO2 nanoparticles (5 mg/L), the toxicity of Cu ions to the algae Microcystis aeruginosa was significantly attenuated by TiO2 nanoparticles. Specifically, the concentration of photosynthetic pigments (i.e., concentration of Chla) increased 37% when comparing only Cu ions treated and the nano-TiO2-Cu co-incubation. The levels of phycocyanin (PC), allophycocyanin (APC), phycoerythrin (PE), and phycobiliprotein (PBPs) were also recovered at levels ranging from 23 to 35% after 72 h. For oxidative indexes, the decreased activities of the superoxide dismutase (SOD), peroxidase (POD) content, and malondialdehyde (MDA) with the existence of nano-TiO2 displayed a lower level compared to Cu ions treatment only at 24 and 48 h. This toxicity attenuation can be confirmed by subcellular structures because the impairment to cellular membranes and organelles reduced with the presence of nano-TiO2. The potential mechanisms of the antagonism between the nano-TiO2 and Cu ions can be partially attributed to the sorption of copper onto TiO2 nanoparticles, which fitted the Freundlich isotherm (coefficient = 0.967). The decreased bioavailability of Cu ions protected algae cells from being attacked by free Cu ions. Given the abundance of released nanoparticles and unique physicochemical property of nanoparticles, our results elucidated the ecosafety of nanoparticles and co-substrates in aquatic systems.

  15. Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages

    PubMed Central

    Saxton, Matthew A.; Arnold, Robert J.; Bourbonniere, Richard A.; McKay, Robert Michael L.; Wilhelm, Steven W.

    2011-01-01

    Blooms of the potentially toxic cyanobacterium Microcystis are common events globally, and as a result significant resources continue to be dedicated to monitoring and controlling these events. Recent studies have shown that a significant proportion of total cell-associated phosphorus (P) in marine phytoplankton can be surface adsorbed; as a result studies completed to date do not accurately report the P demands of these organisms. In this study we measure the total cell-associated and intracellular P as well as growth rates of two toxic strains of Microcystis aeruginosa Kütz grown under a range of P concentrations. The results show that the intracellular P pool in Microcystis represents a percentage of total cell-associated P (50–90%) similar to what has been reported for actively growing algae in marine systems. Intracellular P concentrations (39–147 fg cell−1) generally increased with increasing P concentrations in the growth medium, but growth rate and the ratio of total cell-associated to intracellular P remained generally stable. Intracellular P quotas and growth rates in cells grown under the different P treatments illustrate the ability of this organism to successfully respond to changes in ambient P loads, and thus have implications for ecosystem scale productivity models employing P concentrations to predict algal bloom events. PMID:22279445

  16. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843.

    PubMed

    Shao, Jihai; He, Yaxian; Li, Fan; Zhang, Huiling; Chen, Anwei; Luo, Si; Gu, Ji-Dong

    2016-01-01

    Oleamide, a fatty acid derivative, shows inhibitory effect against the bloom-forming cyanobacterium Microcystis aeruginosa. The EC50 of oleamide on the growth of M. aeruginosa NIES-843 was 8.60 ± 1.20 mg/L. In order to elucidate the possible mechanism of toxicity of oleamide against M. aeruginosa, chlorophyll fluorescence transient, cellular ultrastructure, fatty acids composition and the transcription of the mcyB gene involved in microcystins synthesis were studied. The results of chlorophyll fluorescence transient showed that oleamide could destruct the electron accepting side of the photosystem II of M. aeruginosa NIES-843. Cellular ultrastructure examination indicated that the destruction of fatty acid constituents, the distortion of thylakoid membrane and the loss of integrity of cell membrane were associated with oleamide treatment and concentration. The damage of cellular membrane increased the release of microcystins from intact cells into the medium. Results presented in this study provide new information on the possible mechanisms involved and potential utilization of oleamide as an algicide in cyanobacterial bloom control.

  17. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent.

    PubMed

    Marinho, Marcelo Manzi; Souza, Maria Betânia Gonçalves; Lürling, Miquel

    2013-10-01

    The hypothesis that outcomes of phosphorus and light competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa are strain dependent was tested experimentally. Critical requirements of phosphorus (P*) and of light (I*) of two strains of each species were determined through monoculture experiments, which indicated a trade-off between species and also between Microcystis strains. Competition experiments between species were performed using the weakest predicted competitors (with the highest values of P* and of I*) and with the strongest predicted competitors (with the lowest values of P* and of I*). Under light limitation, competition between the weakest competitors led C. raciborskii to dominate. Between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but both strains co-existed in equilibrium. Under phosphate limitation, competition between the weakest competitors led C. raciborskii to exclude M. aeruginosa, and between the strongest competitors, the opposite was observed, M. aeruginosa displaced C. raciborskii, but the system did not reach an equilibrium and both strains were washed out. Hence, outcomes of the competition depended on the pair of competing strains and not only on species or on type of limitation. We concluded that existence of different trade-offs among strains and between species underlie our results showing that C. raciborskii can either dominate or be displaced by M. aeruginosa when exposed to different conditions of light or phosphate limitation.

  18. [Inhibition effects of Houttuynia cordata Thunb. on Microcystis aeruginosa].

    PubMed

    Liu, Lu; Li, Cheng; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting

    2014-05-01

    To research the inhibitory effect of Houttuynia cordata Thunb. on Microcystis aeruginosa. M. aeruginosat were treated respectively by H. cordata leaching solution or H. cordata extracts. H. cordata leaching solution extracted by water and the H. cordata extracts extracted by organic solvent (acetone, ethyl acetate, petroleum ether and ethanol, respectively). The inhibition ratios were calculated according to the M. aeruginosa densities, and the allelochemicals of the extract that had the best inhibitiory effect on M. aeruginosa were identified by GC-MS analysis. It was proved that leaching solution of H. cordata and four crude extracts had good inhibitory effect on M. aeruginosa. The inhibitory effects of the four crude extracts were the fraction extracted by ethyl acetate, the fraction extracted by ethanol, the fraction extracted by acetone and the fraction extracted by petroleum ether form strong to weak in turn. Then, the allelochemicals of the fraction extracted by ethyl acetate were indentified, mainly including acetonyldimethylcarbinol, 2,2-dimethyl-3-hexanone, 6-chlorohexanoic and 4-cyanophenyl ester. H. cordata has strong inhibitory effect on water-blooming cyanobacteria and the potential to develop into an ecological M. aeruginosa inhibiting agent.

  19. Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: effects of acclimation and mixed cultures, and their removal ability.

    PubMed

    Chalifour, Annie; LeBlanc, André; Sleno, Lekha; Juneau, Philippe

    2016-12-01

    Atrazine is an herbicide frequently detected in watercourses that can affect the phytoplankton community, thus impacting the whole food chain. This study aims, firstly, to measure the sensitivity of monocultures of the green alga Scenedemus obliquus and toxic and non-toxic strains of the cyanobacteria Microcystis aeruginosa before, during and after a 30-day acclimation period to 0.1 µM of atrazine. Secondly, the sensitivity of S. obliquus and M. aeruginosa to atrazine in mixed cultures was evaluated. Finally, the ability of these strains to remove atrazine from the media was measured. We demonstrated that both strains of M. aeruginosa had higher growth rate-based EC 50 values than S. obliquus when exposed to atrazine, even though their photosynthesis-based EC 50 values were lower. After being exposed to 0.1 µM of atrazine for 1 month, only the photosynthesis-based EC 50 of S. obliquus increased significantly. In mixed cultures, the growth rate of the non-toxic strain of M. aeruginosa was higher than S. obliquus at high concentrations of atrazine, resulting in a ratio of M. aeruginosa to total cell count of 0.6. This lower sensitivity might be related to the higher growth rate of cyanobacteria at low light intensity. Finally, a negligible fraction of atrazine was removed from the culture media by S. obliquus or M. aeruginosa over 6 days. These results bring new insights on the acclimation of some phytoplankton species to atrazine and its effect on the competition between S. obliquus and M. aeruginosa in mixed cultures.

  20. Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxin elimination.

    PubMed

    Dziga, Dariusz; Maksylewicz, Anna; Maroszek, Magdalena; Marek, Sylwia

    2018-01-01

    Under some conditions the growth of toxic cyanobacteria must be controlled by treatment with algicidal compounds. Hydrogen peroxide has been proposed as an efficient and relatively safe chemical which can remove cyanobacteria from the environment selectively, without affecting other microorganisms. However, the uncontrolled release of secondary metabolites, including toxins may occur after such a treatment. Our proposal presented in this paper concerns fast biodegradation of microcystin released after cell lysis induced by hydrogen peroxide. The effectiveness of both, Sphingomonas sp. and heterologously expressed MlrA enzyme, in the removal of the toxin from Microcystis aeruginosa culture was investigated. The results indicate that neither Sphingomonas cells nor MlrA are affected by hydrogen peroxide at the concentrations which stop the growth of cyanobacteria. A several-fold reduction in microcystin levels was documented in the presence of these agents with biodegradation ability. Our results provide evidence that such a combined treatment of water reservoirs dominated by microcystin-producing cyanobacteria may be a promising alternative which allows fast elimination of both, the bloom forming species and toxins, from the environment.

  1. The Effect of Small Scale Turbulence on the Physiology of Microcystis aeruginosa cyanobacterium

    NASA Astrophysics Data System (ADS)

    Wilkinson, Anne; Hondzo, Miki; Guala, Michele

    2014-11-01

    Microcystis aeruginosa is a single-celled blue-green alga, or cyanobacterium, that is responsible for poor water quality and microcystin production, which in high concentrations can be harmful to humans and animals. These harmful effects arise during cyanobacterium blooms. Blooms occur mainly in the summer when the algae grow uncontrollably and bond together to form colonies which accumulate on the surface of freshwater ecosystems. The relationship between fluid motion generated by wind and internal waves in stratified aquatic ecosystems and Microcystis can help explain the mechanisms of such blooms. We investigated the effect of small scale fluid motion on the physiology of Microcystis in a reactor with two underwater speakers. Different turbulent intensities were achieved by systematically changing the input signal frequency (30-50 Hz) and magnitude (0.1-0.2V) to the speakers. The role of turbulence is quantified by relating energy dissipation rates with the cell number, chlorophyll amount, dissolved oxygen production/uptake, and pH. The results suggest that turbulence mediates the physiology of Microcystis. The findings could be instrumental in designing restoration strategies that can minimize Microcystis blooms. This work was supported by the NSF Graduate Research Fellowship and University of Minnesota start-up funding.

  2. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water.

    PubMed

    Su, Jun Feng; Ma, Min; Wei, Li; Ma, Fang; Lu, Jin Suo; Shao, Si Cheng

    2016-06-15

    Acinetobacter sp. J25 exhibited good denitrification and high algicidal activity against toxic Microcystis aeruginosa. Response surface methodology (RSM) experiments showed that the maximum algicidal ratio occurred under the following conditions: temperature, 30.46°C; M. aeruginosa density, 960,000cellsmL(-1); and inoculum, 23.75% (v/v). Of these, inoculum produced the maximum effect. In the eutrophic landscape water experiment, 10% bacterial culture was infected with M. aeruginosa cells in the landscape water. After 24days, the removal ratios of nitrate and chlorophyll-a were high, 100% and 87.86%, respectively. The denitrification rate was approximately 0.118mgNO3(-)-N·L(-1)·h(-1). Moreover, the high-throughput sequencing result showed that Acinetobacter sp. J25 was obviously beneficial for chlorophyll-a and nitrate removal performance in the eutrophic landscape water treatment. Therefore, strain J25 is promising for the simultaneous removal of chlorophyll-a and nitrate in the eutrophic landscape water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Assessment of the Effects of Light Availability on Growth and Competition Between Strains of Planktothrix agardhii and Microcystis aeruginosa.

    PubMed

    Torres, Camila de Araujo; Lürling, Miquel; Marinho, Marcelo Manzi

    2016-05-01

    In this study, we tested the hypothesis that Planktothrix agardhii strains isolated from a tropical water body were better competitors for light than Microcystis aeruginosa strains. These cyanobacteria are common in eutrophic systems, where light is one of the main drivers of phytoplankton, and Planktothrix is considered more shade-adapted and Microcystis more high-light tolerant. First, the effect of light intensities on growth was studied in batch cultures. Next, the minimum requirement of light (I*) and the effect of light limitation on the outcome of competition was investigated in chemostats. All strains showed similar growth at 10 μmol photons m(-2) s(-1), demonstrating the ability of the two species to grow in low light. The optimum light intensity was lower for P. agardhii, but at the highest light intensity, Microcystis strains reached higher biovolume, confirming that P. agardhii has higher sensitivity to high light. Nonetheless, P. agardhii grew in light intensities considered high (500 μmol photons m(-2) s(-1)) for this species. M. aeruginosa showed a higher carrying capacity in light-limited condition, but I* was similar between all the strains. Under light competition, Microcystis strains displaced P. agardhii and dominated. In two cases, there was competitive exclusion and in the other two P. agardhii managed to remain in the system with a low biovolume (≈15%). Our findings not only show that strains of P. agardhii can grow under higher light intensities than generally assumed but also that strains of M. aeruginosa are better competitors for light than supposed. These results help to understand the co-occurrence of these species in tropical environments and the dominance of M. aeruginosa even in low-light conditions.

  4. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels.

    PubMed

    Che, Feifei; Du, Miaomiao; Yan, Changzhou

    2018-04-01

    The arsenate (As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen (N) and phosphorus (P) has been studied under laboratory conditions. When 15μg/L As(V) was added, N and P in the medium showed effective regulation on arsenic (As) metabolism in M. aeruginosa, resulting in significant differences in the algal growth among different N and P treatments. Under 0.2mg/L P treatment, increases in N concentration (4-20mg/L) significantly stimulated the cell growth and therefore indirectly enhanced the production of dimethylarsinic acid (DMA), the main As metabolite, accounting for 71%-79% of the total As in the medium. Meanwhile, 10-20mg/L N treatments accelerated the ability of As metabolization by M. aeruginosa, leading to higher contents of DMA per cell. However, As(V) uptake by M. aeruginosa was significantly impeded by 0.5-1.0mg/L P treatment, resulting in smaller rates of As transformation in M. aeruginosa as well as lower contents of As metabolites in the medium. Our data demonstrated that As(V) transformation by M. aeruginosa was significantly accelerated by increasing N levels, while it was inhibited by increasing P levels. Overall, both P and N play key roles in As(V) biotransformation processes. Copyright © 2017. Published by Elsevier B.V.

  5. Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment.

    PubMed

    Kaya, Kunimitsu; Liu, Yong-Ding; Shen, Yin-Wu; Xiao, Bang-Ding; Sano, Tomoharu

    2005-04-01

    Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002. The enclosures were filled with cyanobacterial (Microcystis aeruginosa) water bloom-containing lake water. Lake sediment that contained macrophytes and water chestnut seeds was spread over the entire bottom of each enclosure. Initially, 10 g/m(2) of lysine was sprayed in Enclosure B, and 10 g/m(2) each of lysine and malonic acid were sprayed together in Enclosure C. Enclosure A remained untreated and was used as a control. The concentrations of lysine, malonic acid, chlorophyll a, and microcystin as well as the cell numbers of phytoplankton such as cyanobacteria, diatom, and euglena were monitored. On day 1 of the treatment, formation of cyanobacterial blooms almost ceased in Enclosures B and C, although Microcystis cells in the control still formed blooms. On day 7 Microcystis cells in Enclosure B that had been treated with lysine started growing again, whereas growth was not observed in Microcystis cells in Enclosure C, which had been treated with lysine and malonic acid. On day 28 the surface of Enclosure B was covered with water chestnut (Trapa spp.) and the Microcystis blooms again increased. In contrast, growth of macrophytes (Myriophllum spicatum and Potamogeton crispus) was observed in Enclosure C; however, no cyanobacterial blooms were observed. Lysine and malonic acid had completely decomposed. The microcystin concentration on day 28 decreased to 25% of the initial value, and the pH shifted from the initial value of 9.2 to 7.8. We concluded that combined treatment with lysine and malonic acid selectively controlled toxic Microcystis water blooms and induced the growth of macrophytes.

  6. Survival, growth and toxicity of Microcystis aeruginosa PCC 7806 in experimental conditions mimicking some features of the human gastro-intestinal environment.

    PubMed

    Stefanelli, Mara; Vichi, Susanna; Stipa, Giuseppe; Funari, Enzo; Testai, Emanuela; Scardala, Simona; Manganelli, Maura

    2014-05-25

    Cyanotoxins (CTX) are widely produced by several cyanobacteria (CB), increasingly spreading in most water bodies and terrestrial habitats, and represent a risk for human health. CB are prokaryotes, and although mostly autotrophic, several examples of heterotrophy in symbiotic relationship with different organisms have been described. In addition to the known routes of exposure, it has been hypothesized that CB might 'colonize' human intestine with relevant implications for human health. Colonization is a complex process and requires specific features of the possible invaders. Still, a short-term persistence as living and toxin-producing organisms within the intestinal lumen of the host could represent an 'internal' source of exposure to CTX. In this work we ran microcosm experiments (4-18days), looking at Microcystis aeruginosa PCC7806 resistance and cyanotoxin-producing capabilities in darkness, 37°C, pH 2, and subsequent recovery in a rich medium, in darkness, 37°C, in the presence of enteric bacteria, mimicking few important features of the gastrointestinal environment. We measured cyanobacterial populations and growth, microcystin (MC) production and the presence of mcyB gene. M. aeruginosa could grow in the dark at 37°C up to 17days, and survive at pH 2 at a rate between 30% and 70%, depending on the age and toxicity of the starting culture. Cell lysis resulted in a substantial amounts of MC released, not degraded at gastric pH. Following the acidic passage, still in the dark at 37°C, M. aeruginosa restarted to grow within 24h for the next 3-4days, independently on the presence of intestinal bacteria, maintaining the MC cell quota and mcyB gene. Our results show new features of CB: a significant resistance of M. aeruginosa in conditions far from its optimal one, that is an environment mimicking some of the important characteristics of human gastrointestinal tract, suggesting the possibility of an internal source of exposure to CTX, with implications for

  7. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    PubMed

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  8. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms.

    PubMed

    Li, Pan; Song, Yuan; Yu, Shuili

    2014-10-01

    Algal blooms are a seasonal problem in eutrophic water bodies, and novel approaches to algal removal are required. The effect of hydrodynamic cavitation (HC) on the removal of Microcystis aeruginosa was investigated using a laboratory scale device. Samples treated by HC were subsequently grown under illuminated culture conditions. The results demonstrated that a short treatment with HC could effectively settle naturally growing M. aeruginosa without breaking cells. Algal cell density and chlorophyll-a of a sample treated for 10 min were significantly decreased by 88% andv 94%, respectively, after 3 days culture. Various HC operating parameters were investigated, showing that inhibition of M. aeruginosa growth mainly depended on treatment time and pump pressure. Electron microscopy confirmed that sedimentation of algae was attributable to the disruption of intracellular gas vesicles. Damage to the photosynthetic apparatus also contributed to the inhibition of algal growth. Free radicals produced by the cavitation process could be as an indirect indicator of the intensity of HC treatment, although they inflicted minimal damage on the algae. In conclusion, we suggest that HC represents a potentially highly effective and sustainable approach to the removal of algae from water systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139.

    PubMed

    Anas, Andrea Roxanne J; Mori, Akane; Tone, Mineka; Naruse, Chiaki; Nakajima, Anna; Asukabe, Hirohiko; Takaya, Yoshiaki; Imanishi, Susumu Y; Nishizawa, Tomoyasu; Shirai, Makoto; Harada, Ken-Ichi

    2017-08-30

    The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF) have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE) from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC 50 10.62 µM, which was more efficient than thrombin inhibition of EC 50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF) and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.

  10. Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea.

    PubMed

    Wang, Q; Su, M; Zhu, W; Li, X; Jia, Y; Guo, P; Chen, Z; Jiang, W; Tian, X

    2010-01-01

    Harmful cyanobacterial blooms cause water deterioration and threaten human health. It is necessary to remove harmful cyanobacteria with useful methods. A bio-treatment may be one of the best ways to do this. A strain of specific white-rot fungus, Lopharia spadicea, with algicidal ability was isolated. Its algicidal ability on algae under various conditions was determined using three main influence factors: initial chlorophyll-a content, initial pH, and algal cell mixture. The result showed that the chlorophyll-a content of Microcystis aeruginosa FACHB-912, Oocystis borgei FACHB-1108, and Microcystis flos-aquae FACHB-1028 decreased from 798+/-13, 756+/-40, and 773+/-24 microg/L to 0 within 39 h. L. spadicea could also remove more than 95% chlorophyll-a when initial chlorophyll-a content increased from 397+/-13 to 2,132+/-4 microg/L. Moreover, the strain has great removal ability under a broad initial pH range of 5.5 to 9.5. The chlorophyll-a content of the three algal strain mixtures decreased from about 672+/-23 microg/L to 0 within 45 h. After superoxide dismutase (SOD) and malondialdehyde (MAD) were assessed in a co-culture of L. spadicea, it was observed that an increase in MAD content was correlated with the decrease in chlorophyll-a content of M. aeruginosa FACHB-912. This result suggested that the algae was not only greatly inhibited but also severely damaged by the fungus.

  11. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    PubMed Central

    Sandrini, Giovanni; Cunsolo, Serena; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Huisman, Jef

    2015-01-01

    Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes. PMID:25999931

  12. Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa

    PubMed Central

    Zhu, Xuexia; Wang, Jun; Lu, Yichun; Chen, Qinwen; Yang, Zhou

    2015-01-01

    The green alga Scenedesmus is known for its phenotypic plasticity in response to grazing risk. However, the benefits of colony formation induced by infochemicals from zooplankton should come with costs. That is, a tradeoff in benefit-to-cost ratios is likely under complex environmental conditions. In this study, we hypothesized that the coexistence of Scenedesmus and its competitors decreases the formation of anti-grazer colonies in Scenedesmus. Results demonstrated that the presence of a competitor Microcystis aeruginosa inhibited inducible defensive colony formation of Scenedesmus obliquus, and the established defensive colonies negatively affected the competitive ability of S. obliquus. The proportion of induced defensive colonies in cultures was dependent on the relative abundance of competitors. Under low competition intensity, large amount of eight-celled colonies were formed but at the cost of decreased competitive inhibition on M. aeruginosa. By contrast, defensive colony formation of S. obliquus slacked in the presence of high competition intensity to maintain a high displacement rate (competitive ability). In conclusion, S. obliquus exhibited different responses to potential grazing pressure under different intensities of competition, i.e., Scenedesmus morphological response to grazing infochemicals was affected by competition against Microcystis. PMID:26224387

  13. Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa.

    PubMed

    Zhu, Xuexia; Wang, Jun; Lu, Yichun; Chen, Qinwen; Yang, Zhou

    2015-07-30

    The green alga Scenedesmus is known for its phenotypic plasticity in response to grazing risk. However, the benefits of colony formation induced by infochemicals from zooplankton should come with costs. That is, a tradeoff in benefit-to-cost ratios is likely under complex environmental conditions. In this study, we hypothesized that the coexistence of Scenedesmus and its competitors decreases the formation of anti-grazer colonies in Scenedesmus. Results demonstrated that the presence of a competitor Microcystis aeruginosa inhibited inducible defensive colony formation of Scenedesmus obliquus, and the established defensive colonies negatively affected the competitive ability of S. obliquus. The proportion of induced defensive colonies in cultures was dependent on the relative abundance of competitors. Under low competition intensity, large amount of eight-celled colonies were formed but at the cost of decreased competitive inhibition on M. aeruginosa. By contrast, defensive colony formation of S. obliquus slacked in the presence of high competition intensity to maintain a high displacement rate (competitive ability). In conclusion, S. obliquus exhibited different responses to potential grazing pressure under different intensities of competition, i.e., Scenedesmus morphological response to grazing infochemicals was affected by competition against Microcystis.

  14. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.

    PubMed

    Liu, Ying; Chen, Shi; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-10-30

    Microcystis aeruginosa was cultured with 0.05-5 mg L(-1) of phosphorus and exposed to 200-500 ng L(-1) of amoxicillin for seven days. Amoxicillin presented no significant effect (p>0.05) on the growth of M. aeruginosa at phosphorus levels of 0.05 and 0.2 mg L(-1), but stimulated algal growth as a hormesis effect at phosphorus levels of 1 and 5 mg L(-1). Phosphorus and amoxicillin affected the contents of chlorophyll-a, adenosine triphosphate (ATP) and malondialdehyde, the expression of psbA and rbcL, as well as the activities of adenosinetriphosphatase and glutathione S-transferase in similar manners, but regulated the production and release of microcystins and the activities of superoxide dismutase and peroxidase in different ways. Increased photosynthesis activity was related with the ATP consumption for the stress response to amoxicillin, and the stress response was enhanced as the phosphorus concentration increased. The biodegradation of amoxicillin by M. aeruginosa increased from 11.5% to 28.2% as the phosphorus concentration increased. Coexisting amoxicillin aggravated M. aeruginosa pollution by increasing cell density and concentration of microcystins, while M. aeruginosa alleviated amoxicillin pollution via biodegradation. The interactions between M. aeruginosa and amoxicillin were significantly regulated by phosphorus (p<0.05) and led to a complicated situation of combined pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905

    PubMed Central

    Peng, Guotao; Lin, Sijie; Fan, Zhengqiu; Wang, Xiangrong

    2017-01-01

    An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene (mcyB) and key photosynthesis genes (psaB, psbD and rbcL) of Microcystis aeruginosa FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of Microcystis cells. We observed an upregulation of mcyB gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of Microsystis cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in Microcystis cells. Based on these transcriptional and physiological responses of M. aeruginosa to nutrient loading, these results could provide more insight into Microcystis blooms management and toxin formation regulation. PMID:28513574

  16. Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905.

    PubMed

    Peng, Guotao; Lin, Sijie; Fan, Zhengqiu; Wang, Xiangrong

    2017-05-17

    An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene ( mcyB ) and key photosynthesis genes ( psaB , psbD and rbcL) of Microcystis aeruginosa FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of Microcystis cells. We observed an upregulation of mcyB gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of Microsystis cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in Microcystis cells. Based on these transcriptional and physiological responses of M. aeruginosa to nutrient loading, these results could provide more insight into Microcystis blooms management and toxin formation regulation.

  17. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality.

    PubMed

    Liu, Zhiquan; Cui, Fuyi; Ma, Hua; Fan, Zhenqiang; Zhao, Zhiwei; Hou, Zhenling; Liu, Dongmei; Jia, Xuebin

    2013-08-01

    The potential water quality problems caused by the interaction between nitrobezene (NB) and Microcystis aeruginosa was investigated by studying the growth inhibition, the haloacetic acids formation potential (HAAFP) and the secretion of microcystin-LR (MC-LR). The results showed that NB can inhibit the growth of M. aeruginosa, and the value of EC50 increased with the increase of initial algal density. Although NB can hardly react with chlorine to form HAAs, the presence of NB can enhance the HAAFP productivity. The secretion of the intracellular MC-LR is constant under the steady experimental conditions. However, the presence of NB can reduce the MC-LR productivity of M. aeruginosa. Overall, the increased disinfection risk caused by the interaction has more important effect on the safety of drinking water quality than the benefit of the decreased MC-LR productivity, and should be serious considered when the water contained NB and M. aeruginosa is used as drinking water source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biochemical and Ultrastructural Changes in the Hepatopancreas of Bellamya aeruginosa (Gastropoda) Fed with Toxic Cyanobacteria

    PubMed Central

    Zhu, Jinyong; Lu, Kaihong; Zhang, Chunjing; Liang, Jingjing; Hu, Zhiyong

    2011-01-01

    This study was conducted to investigate ultrastructural alterations and biochemical responses in the hepatopancreas of the freshwater snail Bellamya aeruginosa after exposure to two treatments: toxic cyanobacterium (Microcystis aeruginosa) and toxic cyanobacterial cells mixed with a non-toxic green alga (Scendesmus quadricauda) for a period of 15 days of intoxication, followed by a 15-day detoxification period. The toxic algal suspension induced a very pronounced increase of the activities of acid phosphatases, alkaline phosphatases and glutathione S-transferases (ACP, ALP and GST) in the liver at the later stage of intoxication. During the depuration, enzymatic activity tended to return to the levels close to those in the control. The activity of GST displayed the most pronounced response among different algal suspensions. Severe cytoplasmic vacuolization, condensation and deformation of nucleus, dilation and myeloid-like in mitochondria, disruption of rough endoplasmic reticulum, proliferation of lysosome, telolysosomes and apoptotic body were observed in the tissues. All cellular organelles began recovery after the snails were transferred to the S. quadricauda. The occurrence of a large amount of activated lysosomes and heterolysosomes and augment in activity of detoxification enzyme GST might be an adaptive mechanism to eliminate or lessen cell damage caused by hepatotoxicity to B. aeruginosa. PMID:22125458

  19. Life strategy and grazing intensity responses of Brachionus calyciflorus fed on different concentrations of microcystin-producing and microcystin-free Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Liang, Ye; Ouyang, Kai; Chen, Xinglan; Su, Yuqi; Yang, Jiaxin

    2017-02-01

    The occurrence of Microcystis blooms is a worldwide concern due to the numerous adverse effects on zooplankton. We therefore hypothesized that the cyanobacterium Microcystis aeruginosa is harmful to rotifer growth. Population and individual experiments were conducted with the same proportional volumes of Chlorella and Microcystis for given food densities. Life-table parameters, life-history traits, and the grazing intensity of Brachionus calyciflorus were evaluated after they had fed on microcystin-producing and microcystin-free Microcystis, both alone and combined with an edible alga (Chlorella pyrenoidosa), at concentrations of 1 × 105, 1 × 106, and 1 × 107 cells mL-1. The results showed that the interactive effects of food density and type appeared to be synergistic on generation time (T), net reproduction rate (R0), body length, swimming speed, and reproduction time. In contrast, these effects appeared to be antagonistic on intrinsic growth rate (r), finite rate of increase (λ), time to first brood, post-reproductive time and total offspring per female. The grazing rate of rotifers decreased with grazing time. Although the toxins released after grazing on M. aeruginosa had negative effects on rotifer growth and reproduction, B. calyciflorus changed its life strategy and grazing intensity in response to eutrophic conditions.

  20. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  1. Enterobacter aerogenes metabolites enhance Microcystis aeruginosa biomass recovery for sustainable bioflocculant and biohydrogen production.

    PubMed

    Xu, Liang; Zhou, Mo; Ju, Hanyu; Zhang, Zhenxing; Zhang, Jiquan; Sun, Caiyun

    2018-09-01

    We report a recycling bioresource involving harvesting of Microcystis aeruginosa using the bioflocculant (MBF-32) produced by Enterobacter aerogenes followed by the recovery of the harvested M. aeruginosa as the main substrate for the sustainable production of MBF-32 and biohydrogen. The experimental results indicate that the efficiency of bioflocculation exceeded 90% under optimal conditions. The harvested M. aeruginosa was further recycled as the main substrate for the supply of necessary elements. The highest yield (3.6±0.1g/L) of MBF-32 could be obtained from 20g/L of wet biomass of M. aeruginosa with an additional 20g/L of glucose as the extra carbon source. The highest yield of biohydrogen was 35mL of H 2 /g (dw) algal biomass, obtained from 20g/L of wet biomass of M. aeruginosa with an additional 10g/L of glycerol. Transcriptome analyses indicated that MBF-32 was mainly composed of polysaccharide and tyrosine/tryptophan proteins. Furthermore, NADH synthase and polysaccharide export-related genes were found to be up-regulated. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Using interval maxima regression (IMR) to determine environmental optima controlling Microcystis spp. growth in Lake Taihu.

    PubMed

    Li, Ming; Peng, Qiang; Xiao, Man

    2016-01-01

    Fortnightly investigations at 12 sampling sites in Meiliang Bay and Gonghu Bay of Lake Taihu (China) were carried out from June to early November 2010. The relationship between abiotic factors and cell density of different Microcystis species was analyzed using the interval maxima regression (IMR) to determine the optimum temperature and nutrient concentrations for growth of different Microcystis species. Our results showed that cell density of all the Microcystis species increased along with the increase of water temperature, but Microcystis aeruginosa adapted to a wide range of temperatures. The optimum total dissolved nitrogen concentrations for M. aeruginosa, Microcystis wesenbergii, Microcystis ichthyoblabe, and unidentified Microcystis were 3.7, 2.0, 2.4, and 1.9 mg L(-1), respectively. The optimum total dissolved phosphorus concentrations for different species were M. wesenbergii (0.27 mg L(-1)) > M. aeruginosa (0.1 mg L(-1)) > M. ichthyoblabe (0.06 mg L(-1)) ≈ unidentified Microcystis, and the iron (Fe(3+)) concentrations were M. wesenbergii (0.73 mg L(-1)) > M. aeruginosa (0.42 mg L(-1)) > M. ichthyoblabe (0.35 mg L(-1)) > unidentified Microcystis (0.09 mg L(-1)). The above results suggest that if phosphorus concentration was reduced to 0.06 mg L(-1) or/and iron concentration was reduced to 0.35 mg L(-1) in Lake Taihu, the large colonial M. wesenbergii and M. aeruginosa would be replaced by small colonial M. ichthyoblabe and unidentified Microcystis. Thereafter, the intensity and frequency of the occurrence of Microcystis blooms would be reduced by changing Microcystis species composition.

  3. [Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].

    PubMed

    Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin

    2012-12-01

    To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%.

  4. Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy.

    PubMed

    Yang, Chenghu; Liu, Yangzhi; Zhu, Yaxian; Zhang, Yong

    2016-03-15

    The autochthonous dissolved organic matter (DOM) released by Microcystis aeruginosa (M. aeruginosa-DOM) during its growth period was characterized by spectroscopy. Furthermore, the relationships between the M. aeruginosa-DOM spectroscopic descriptors and the pyrene binding coefficient (KDOC) values were explored. The results showed that the spectroscopic characteristics of the M. aeruginosa-DOM and the binding properties of pyrene were dynamically changed along with the algae growth. Pearson correlation analysis demonstrated that a higher pyrene KDOC value was observed for the M. aeruginosa-DOM that has a higher humification index (HIX) value, a lower biological index (BIX) value and a lower absorption ratio (E2/E3). The presence of protein-like and long-wavelength-excited humic-like components may impose negative and positive effects on binding of pyrene by the M. aeruginosa-DOM, respectively. Principal component analysis (PCA) further supported that the binding affinity of pyrene may be primarily influenced by the humification degree of the M. aeruginosa-DOM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effect of hydrodynamic cavitation on Microcystis aeruginosa: Physical and chemical factors.

    PubMed

    Li, Pan; Song, Yuan; Yu, Shuili; Park, Hee-Deung

    2015-10-01

    The various effects of hydrodynamic cavitation (HC) on algal growth inhibition were investigated. The gas-vacuolate species Microcystis aeruginosa responded differently to the gas-vacuole-negative alga Chlorella sp. When M. aeruginosa was subjected to HC, both its cell density and photosynthetic activity were subsequently reduced by nearly 90% after three days culture. However, the cell density of Chlorella sp. was reduced by only 63%, and its final photosynthetic activity was unaffected. Electron microscopy confirmed that HC had a minimal impact on algal cells that lack gas vacuoles. Shear stress during recirculation only modestly inhibited the growth of M. aeruginosa. The relative malondialdehyde (MDA) content, a quantitative indicator of lipid peroxidation, increased significantly during HC treatment, indicating the production of free radicals. Accordingly, the addition of H2O2 to the HC process promoted the production of free radicals, which also improved algal reduction. A comparison of the outcomes and energy efficiency of HC and ultrasonic cavitation indicated that HC gives the best performance: under 10 min cavitation treatment, the algal removal rate of HC could reach 88% while that of sonication was only 39%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Toxin composition of the 2016 Microcystis aeruginosa bloom in the St. Lucie Estuary, Florida.

    PubMed

    Oehrle, Stuart; Rodriguez-Matos, Marliette; Cartamil, Michael; Zavala, Cristian; Rein, Kathleen S

    2017-11-01

    A bloom of the cyanobacteria, Microcystis aeruginosa occurred in the St. Lucie Estuary during the summer of 2016, stimulated by the release of waters from Lake Okeechobee. This cyanobacterium produces the microcystins, a suite of heptapeptide hepatotoxins. The toxin composition of the bloom was analyzed and was compared to an archived bloom sample from 2005. Microcystin-LR was the most abundant toxin with lesser amounts of microcystin variants. Nodularin, cylindrospermopsin and anatoxin-a were not detected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Isolation and characterization of bacterial isolates algicidal against a harmful bloom-forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Li, Yang; Hongyi, Wei; Komatsu, Masaharu; Ishibashi, Kenichi; Jinsan, Lin; Ito, Tatsuo; Yoshikawa, Takeshi; Maeda, Hiroto

    2012-01-01

    Algicidal bacteria MaI11-2, MaI11-5 and MaI11-10, which inhibited the growth of a harmful bloom-forming cyanobacterium Microcystis aeruginosa, were isolated from a sewage treatment plant. The isolate MaI11-5 was phylogenetically affiliated into the genus Pedobacter, while MaI11-2 and MaI11-10 were closely related to Bacillus aerophilus, Bacillus altitudinis and Bacillus stratosphericus with 100% identity based on 16S ribosomal RNA sequences. Co-cultivation of M. aeruginosa with the algicidal isolates showed their high algicidal activity. MaI11-5 showed the highest inhibitory effect on the cyanobacterial growth: the inhibitory effect exceeded 50% after 2 days, and reached to 75-85% after 10 days, regardless of the bacterial cell density. The cyanobacterial cells aggregated and produced mucilaginous, glycocalyx-like compounds when attacked by the algicidal bacteria. These results suggest that the algicidal bacteria isolated in the present study are potentially useful as biocontrol agents against M. aeruginosa bloom.

  8. Impacts of potassium ferrate(VI) on the growth and organic matter accumulation, production, and structural changes in the cyanobacterium Microcystis aeruginosa.

    PubMed

    Liu, Shu-Yu; Xu, Jingling; Chen, Wen-Li; David, Berthold E; Wu, Minghong; Ma, Fang

    2017-04-01

    Cyanobacterial blooms generated by nutrient addition into aquatic systems pose serious risks to ecosystems and human health. Though there are established chemical, physical, and biological means of eradication, more efficient and environmentally friendly measures are desired. This study investigates the effect of potassium ferrate(VI) on the growth and intracellular and extracellular organic matter accumulations of the cyanobacterium Microcystis aeruginosa. Cultures were inoculated with three separate concentrations of potassium ferrate(VI) (3, 15, 30 mg L -1 ) and monitored by measuring chlorophyll-a (Chl-a) and intracellular/extracellular dissolved organic carbon. Results show that ferrate(VI) addition effectively removed the microalgae from the medium, as indicated by the reduction of Chl-a. Organic matter accumulation of the microalgae was also affected by ferrate(VI) treatment; fluorescence EEM spectra show details of changing intracellular dissolved organic matter (IDOM) and extracellular dissolved organic matter (EDOM). A new peak appeared in the EDOM indicating altered humic and proteinaceous compounds. This study demonstrates that ferrate(VI) is a potential treatment for the water contaminated with the toxic microalgae M. aeruginosa.

  9. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches.

    PubMed

    Lee, Cheonghoon; Marion, Jason W; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-09-11

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid.

  10. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches

    PubMed Central

    Lee, Cheonghoon; Marion, Jason W.; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-01-01

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid. PMID:26378564

  11. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects.

    PubMed

    Wang, Xiaoxiong; Jiang, Chenchun; Szeto, Yim-Tong; Li, Ho-Kin; Yam, Kwei-Lam; Wang, Xiaojun

    2016-05-01

    Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L(-1). A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L(-1) DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment.

  12. Comprehensive assessment of three typical antibiotics on cyanobacteria (Microcystis aeruginosa): The impact and recovery capability.

    PubMed

    Du, Yingxiang; Wang, Jing; Zhu, Fengyi; Mai, Dina; Xiang, Zhongrun; Chen, Jianqiu; Guo, Ruixin

    2018-05-21

    This innovative study provided a comprehensive evaluation of the effects of three typical antibiotics exposures (cefradine, norfloxacin and amoxicillin) on Microcystis aeruginosa in two periods (exposure and post-exposure) at a new perspective. The results indicated that the irreversible growth inhibition of M. aeruginosa attributed to the norfloxacin in the exposure and the re-exposure stages. In contrast, although the algal cell size recovered to the control level after the exposure of 20 mg/L of cefradine, the significant stimulation on glutathione (GSH) still persisted even if the contaminants were removed. On the other hand, amoxicillin inhibited the activities of superoxide dismutase (SOD), GSH contents and the algal cell size in the exposure period while malonaldehyde (MDA) contents increased significantly in two periods. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Electromagnetic Radiation Disturbed the Photosynthesis of Microcystis aeruginosa at the Proteomics Level.

    PubMed

    Tang, Chao; Yang, Chuanjun; Yu, Hui; Tian, Shen; Huang, Xiaomei; Wang, Weiyi; Cai, Peng

    2018-01-11

    Photosynthesis of Microcystis aeruginosa under Electromagnetic Radiation (1.8 GHz, 40 V/m) was studied by using the proteomics. A total of 30 differentially expressed proteins, including 15 up-regulated and 15 down-regulated proteins, were obtained in this study. The differentially expressed proteins were significantly enriched in the photosynthesis pathway, in which the protein expression levels of photosystems II cytochrome b559 α subunit, cytochrome C550, PsbY, and F-type ATP synthase (a, b) decreased. Our results indicated that electromagnetic radiation altered the photosynthesis-related protein expression levels, and aimed at the function of photosynthetic pigments, photosystems II potential activity, photosynthetic electron transport process, and photosynthetic phosphorylation process of M. aeruginosa. Based on the above evidence, that photoreaction system may be deduced as a target of electromagnetic radiation on the photosynthesis in cyanobacteria; the photoreaction system of cyanobacteria is a hypothetical "shared target effector" that responds to light and electromagnetic radiation; moreover, electromagnetic radiation does not act on the functional proteins themselves but their expression processes.

  14. Microcystin production by Microcystis aeruginosa exposed to different stages of herbivorous zooplankton.

    PubMed

    Jang, Min-Ho; Ha, Kyong; Takamura, Noriko

    2008-04-01

    Microcystin (MC) production by four monoclonal Microcystis aeruginosa strains was evaluated in response to infochemicals (indirect exposure) released from different stages of herbivorous zooplankton (neonate/juvenile and adult Daphnia magna and Moina macrocopa). The intracellular MC and extracellular MC concentrations were significantly different among the control and treatments with zooplankton culture media filtrates (p<0.05), and in most cases MC production was significantly higher (p<0.05) in strains exposed to infochemicals released from adult zooplankton rather than those of neonate/juvenile zooplankton in four strains of M. aeruginosa. Compared to intracellular MC (385.0-5598.6microg g(-1)DW), very low concentrations of extracellular MC (9.9-737.6microg ml(-1)) were released, but both showed similar temporal patterns over the course of the experiment. This result might be attributed to the fact that adult zooplankton produced more infochemical signals than equal numbers of smaller juveniles and neonates. It is the first study to provide evidence that MC production might be impacted by infochemicals released from different stages of zooplankton, mediated with physiological characteristics, body size, and feeding habits.

  15. The combined effects of Dolichospermum flos-aquae, light, and temperature on microcystin production by Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Chen, Ruoqi; Li, Fangfang; Liu, Jiadong; Zheng, Hongye; Shen, Fei; Xue, Yarong; Liu, Changhong

    2016-11-01

    The effects of light, temperature, and coculture on the intracellular microcystin-LR (MC-LR) quota of Microcystis aeruginosa were evaluated based on coculture experiments with nontoxic Dolichospermum ( Anabaena) flos-aquae. The MC-LR quota and transcription of mcyB and mcyD genes encoding MC synthetases in M. aeruginosa were evaluated on the basis of cell counts, high-performance liquid chromatography, and reverse-transcription quantitative real-time PCR. The MC-LR quotas of M. aeruginosa in coculture with a 1/1 ratio of inoculum of the two species were significantly lower relative to monocultures 6-d after inoculation. Decreased MC-LR quotas under coculture conditions were enhanced by increasing the D. flos-aquae to M. aeruginosa ratio in the inoculum and by environmental factors, such as temperature and light intensity. Moreover, the transcriptional concentrations of mcyB and mcyD genes in M. aeruginosa were significantly inhibited by D. flos-aquae competition in coculture ( P <0.01), lowered to 20% of initial concentrations within 8 days. These data suggested that coculture eff ects by D. flos-aquae not only reduced M. aeruginosa's intracellular MC-LR quota via inhibition of genes encoding MC synthetases, but also that this eff ect was regulated by environmental factors, including temperature and light intensities.

  16. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis.

    PubMed

    Lyu, Kai; Zhang, Lu; Zhu, Xuexia; Cui, Guilian; Wilson, Alan E; Yang, Zhou

    2015-03-01

    Nutrient loading derived from anthropogenic activities into lakes have increased the frequency, severity and duration of toxic cyanobacterial blooms around the world. Although herbivorous zooplankton are generally considered to be unable to control toxic cyanobacteria, populations of some zooplankton, including Daphnia, have been shown to locally adapt to toxic cyanobacteria and suppress cyanobacterial bloom formation. However, little is known about the physiology of zooplankton behind this phenomenon. One possible explanation is that some zooplankton may induce more tolerance by elevating energy production, thereby adding more energy allocation to detoxification expenditure. It is assumed that arginine kinase (AK) serves as a core in temporal and spatial adenosine triphosphate (ATP) buffering in cells with high fluctuating energy requirements. To test this hypothesis, we studied the energetic response of a single Daphnia magna clone exposed to a toxic strain of Microcystis aeruginosa, PCC7806. Arginine kinase of D. magna (Dm-AK) was successfully cloned. An ATP-gua PtransN domain which was described as a guanidine substrate specificity domain and an ATP-gua Ptrans domain which was responsible for binding ATP were both identified in the Dm-AK. Phylogenetic analysis of AKs in a range of arthropod taxa suggested that Dm-AK was as dissimilar to other crustaceans as it was to insects. Dm-AK transcript level and ATP content in the presence of M. aeruginosa were significantly lower than those in the control diet containing only the nutritious chlorophyte, Scenedesmus obliquus, whereas the two parameters in the neonates whose mothers had been previously exposed to M. aeruginosa were significantly higher than those of mothers fed with pure S. obliquus. These findings suggest that Dm-AK might play an essential role in the coupling of energy production and utilization and the tolerance of D. magna to toxic cyanobacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa.

    PubMed

    Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue

    2014-11-01

    Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability.

  18. Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa.

    PubMed

    Zhang, Quan; Zhou, Hang; Li, Zhe; Zhu, Jianqiang; Zhou, Cong; Zhao, Meirong

    2016-11-01

    The use of glyphosate, which is a well-known sterilant herbicide, has been growing rapidly because the area under the cultivation of genetically modified crops that are tolerant to this herbicide has increased. Glyphosate can enter into aquatic systems through many different ways. However, information on the potential risks of glyphosate at environmentally relevant levels to aquatic systems is still limited. In this study, we selected the cyanobacterium Microcystis aeruginosa FACHB-905 (M. aeruginosa) as a model organism to evaluate the effects of glyphosate at environmentally relevant concentrations on the former's growth and microcystin (MC) production. Our results show that low levels of glyphosate stimulate the growth of M. aeruginosa. Subsequently, there was significant increase in the total MC-LR and intracellular MC-LR, but not in extracellular MC-LR, after exposure to 0.1-2 mg/L of glyphosate. The increase in total MC-LR is mainly due to the effects of glyphosate on the cell density of M. aeruginosa. The data provided here show that low level of glyphosate in a water body is a potential environmental risk factor that stimulates the growth and enhances MC production in M. aeruginosa, which should arouse great concern.

  19. The distribution of a phage-related insertion sequence element in the cyanobacterium, Microcystis aeruginosa.

    PubMed

    Kuno, Sotaro; Yoshida, Takashi; Kamikawa, Ryoma; Hosoda, Naohiko; Sako, Yoshihiko

    2010-01-01

    The cyanophage Ma-LMM01, specifically-infecting Microcystis aeruginosa, has an insertion sequence (IS) element that we named IS607-cp showing high nucleotide similarity to a counterpart in the genome of the cyanobacterium Cyanothece sp. We tested 21 strains of M. aeruginosa for the presence of IS607-cp using PCR and detected the element in strains NIES90, NIES112, NIES604, and RM6. Thermal asymmetric interlaced PCR (TAIL-PCR) revealed each of these strains has multiple copies of IS607-cp. Some of the ISs were classified into three types based on their inserted positions; IS607-cp-1 is common in strains NIES90, NIES112 and NIES604, whereas IS607-cp-2 and IS607-cp-3 are specific to strains NIES90 and RM6, respectively. This multiplicity may reflect the replicative transposition of IS607-cp. The sequence of IS607-cp in Ma-LMM01 showed robust affinity to those found in M. aeruginosa and Cyanothece spp. in a phylogenetic tree inferred from counterparts of various bacteria. This suggests the transfer of IS607-cp between the cyanobacterium and its cyanophage. We discuss the potential role of Ma-LMM01-related phages as donors of IS elements that may mediate the transfer of IS607-cp; and thereby partially contribute to the genome plasticity of M. aeruginosa.

  20. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR.

    PubMed

    Saraf, Spencer R; Frenkel, Amy; Harke, Matthew J; Jankowiak, Jennifer G; Gobler, Christopher J; McElroy, Anne E

    2018-01-01

    Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to

  1. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa.

    PubMed

    Bai, Leilei; Xu, Huacheng; Wang, Changhui; Deng, Jiancai; Jiang, Helong

    2016-11-01

    Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Algicidal activity of Salvia miltiorrhiza Bung on Microcystis aeruginosa--towards identification of algicidal substance and determination of inhibition mechanism.

    PubMed

    Zhang, Chao; Yi, Yang-Lei; Hao, Kai; Liu, Guang-Lu; Wang, Gao-Xue

    2013-10-01

    The present study was to isolate and identify a potent algicidal compound from extract of Salvia miltiorrhiza and study the potential inhibition mechanism on Microcystis aeruginosa. Column chromatography and bioassay-guided fractionation methods were carried out to yield neo-przewaquinone A, which was identified by spectral analysis. The EC50 of neo-przewaquinone A on M. aeruginosa were 4.68 mg L(-1). In addition, neo-przewaquinone A showed relatively higher security on Chlorella pyrenoidosa and Scenedesmus obliquus, with the EC50 values of 14.78 and 10.37 mg L(-1), respectively. For the potential inhibition mechanisms, neo-przewaquinone A caused M. aeruginosa cells morphologic damage or lysis, increased malondialdehyde content and decreased the soluble protein content, total antioxidant and superoxide dismutase activity, and significantly inhibited three photosynthesis-related genes (psaB, psbD, and rbcL). The results demonstrated the algicidal effect of neo-przewaquinone A on M. aeruginosa and provided the possible inhibition mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog.

    PubMed

    van der Merwe, Deon; Sebbag, Lionel; Nietfeld, Jerome C; Aubel, Mark T; Foss, Amanda; Carney, Edward

    2012-07-01

    Microcystin poisoning was diagnosed in a dog exposed to a Microcystis aeruginosa-dominated, freshwater, harmful algal bloom at Milford Lake, Kansas, which occurred during the summer of 2011. Lake water microcystin concentrations were determined at intervals during the summer, using competitive enzyme-linked immunosorbent assays, and indicated extremely high, localized microcystin concentrations of up to 126,000 ng/ml. Multiple extraction and analysis techniques were used in the determination of free and total microcystins in vomitus and liver samples from the poisoned dog. Vomitus and liver contained microcystins, as determined by enzyme-linked immunosorbent assays, and the presence of microcystin-LR was confirmed in vomitus and liver samples using liquid chromatography coupled with tandem mass spectrometry. Major toxic effects in a dog presented for treatment on the day following exposure included fulminant liver failure and coagulopathy. The patient deteriorated rapidly despite aggressive treatment and was euthanized. Postmortem lesions included diffuse, acute, massive hepatic necrosis and hemorrhage, as well as acute necrosis of the renal tubular epithelium. A diagnosis of microcystin poisoning was based on the demonstration of M. aeruginosa and microcystin-LR in the lake water, as well as in vomitus produced early in the course of the poisoning; the presence of microcystin-LR in liver tissue; and a typical clinical course including gastroenteritis and fulminant liver failure.

  4. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-10-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.

  5. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa

    PubMed Central

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-01-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms. PMID:26423356

  6. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa.

    PubMed

    Guo, Xingliang; Liu, Xianglong; Pan, Jianliang; Yang, Hong

    2015-10-01

    A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.

  7. Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

    PubMed Central

    Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

    2012-01-01

    A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212

  8. Effects of nitrogen nutrients on the volatile organic compound emissions from Microcystis aeruginosa.

    PubMed

    Zuo, Zhaojiang; Yang, Lin; Chen, Silan; Ye, Chaolin; Han, Yujie; Wang, Sutong; Ma, Yuandan

    2018-06-06

    Cyanobacteria release abundant volatile organic compounds (VOCs), which can poison other algae and cause water odor. To uncover the effects of nitrogen (N) nutrients on the formation of cyanobacteria VOCs, the cell growth, VOC emission and the expression of genes involving in VOC formation in Microcystis aeruginosa were investigated under different N conditions. With the supplement of NaNO 3 , NaNO 2 , NH 4 Cl, urea, Serine (Ser) and Arginine (Arg) as the sole N source, NaNO 3 , urea and Arg showed the best effects on M. aeruginosa cell growth, and limited N supply inhibited the cell growth. M. aeruginosa released 26, 25, 23, 27, 23 and 25 compounds, respectively, in response to different N forms, including furans, sulfocompounds, terpenoids, benzenes, hydrocarbons, aldehydes, and esters. Low-N especially Non-N condition markedly promoted the VOC emission. Under Non-N condition, four up-regulated genes involving in VOC precursor formation were identified, including the genes of pyruvate kinase, malic enzyme and phosphotransacetylase for terpenoids, the gene of aspartate aminotransferase for benzenes and sulfocompounds. In eutrophic water, cyanobacteria release different VOC blends using various N forms, and the reduction of N amount caused by cyanobacteria massive growth can promote algal VOC emission by up-regulating the gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively.

    PubMed

    Xuan, Huanling; Dai, Xianzhu; Li, Jing; Zhang, Xiaohui; Yang, Caiyun; Luo, Feng

    2017-04-01

    Cyanobacterial harmful algal blooms (CyanoHABs) cause severe environmental problems, economic losses and threaten human health seriously. In the present study, a Bacillus sp. strain, designated as AF-1, with strong antagonistic activity against plant pathogenic fungus Fusarium graminearum was isolated from purple soil. Bacillus sp. AF-1 selectively killed Microcystis aeruginosa at low cell density (1.6×10 3 cfu/mL), and showed the strongest bactericidal activity against M. aeruginosa NIES-843 (A e =93%, t=6d). The algicidal substances originated from strain AF-1 were stable in the temperature range of 35-100°C, and pH range of 3-11. Cell-free filtrate of AF-1 culture caused excessive accumulation of intracellular reactive oxygen species (ROS), cell death and the efflux of intracellular components of M. aeruginosa NIES-843 cells. The expression of genes recA, psbA1, psbD1, rbcL and mcyB, involved in DNA repair, photosynthesis and microcystin synthesis of NIES 843, were significantly influenced by the cell-free filtrate of AF-1 culture. Bacillus sp. AF-1 has the potential to be developed as a bifunctional biocontrol agent to control CyanoHABs and F. graminearum caused plant disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of lead(II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa.

    PubMed

    Bi, Xiang-dong; Zhang, Shu-lin; Dai, Wei; Xing, Ke-zhing; Yang, Fan

    2013-01-01

    To investigate the effects of lead(II) on the production of extracellular polysaccharides (EPS), including bound extracellular polysaccharides (bEPS) and soluble extracellular polysaccharides (sEPS), and the colony formation of Microcystis aeruginosa, cultures of M. aeruginosa were exposed to four concentrations (5.0, 10.0, 20.0 and 40.0 mg/L) of lead(II) for 10 d under controlled laboratory conditions. The results showed that 5.0 and 10.0 mg/L lead(II) stimulated M. aeruginosa growth throughout the experiment while 20.0 and 40.0 mg/L lead(II) inhibited M. aeruginosa growth in the first 2 d exposure and then stimulated it. As compared to the control group, significant increases in the bEPS and sEPS production were observed in 20.0 and 40.0 mg/L lead(II) treatments (P < 0.05). Large colony formations were not observed throughout the experiment. However, four tested concentrations of lead(II) could significantly promote the formation of small and middle colonies after 10 d exposure (P < 0.05), and 40.0 mg/L lead(II) had the best stimulatory effect. Lead(II) could stimulate bEPS production, which conversely promoted colony formation, suggesting that heavy metals might be contributing to the bloom-forming of M. aeruginosa in natural conditions.

  11. Biological floating bed and bio-contact oxidation processes for landscape water treatment: simultaneous removal of Microcystis aeruginosa, TOC, nitrogen and phosphorus.

    PubMed

    Su, Jun Feng; Liang, Dong Hui; Fu, Le; Wei, Li; Ma, Min

    2018-06-13

    The aim of this study was to identify algicidal bacteria J25 against the Microcystis aeruginosa (90.14%), Chlorella (78.75%), Scenedesmus (not inhibited), and Oscillatoria (90.12%). Meanwhile, we evaluate the SOD activity and efficiency of denitrification characteristics with Acinetobacter sp. J25. A novel hybrid bioreactor combined biological floating bed with bio-contact oxidation (BFBO) was designed for treating the landscape water, and the average removal efficiencies of nitrate-N, ammonia-N, nitrite-N, TN, TP, TOC, and algal cells were 91.14, 50, 87.86, 88.83, 33.07, 53.95, and 53.43%, respectively. A 454-pyrosequencing technology was employed to investigate the microbial communities of the BFBO reactor samples. The results showed that Acinetobacter sp. J25 was the dominant contributor for effective removal of N, algal cells, and TOC in the BFBO reactor. And the relative abundance of Acinetobacter showed increase trend with the delay of reaction time. Graphical abstract Biological floating bed and bio-contact oxidation (BFBO) as a novel hybrid bioreactor designed for simultaneous removal Microcystis aeruginosa, TOC, nitrogen, and phosphorus. And high-throughput sequencing data demonstrated that Acinetobacter sp. J25 was the dominate species in the reactor and played key roles in the removal of N, TOC, and M. aeruginosa. Proposed reaction mechanism of the BFBO.

  12. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa

    PubMed Central

    Sun, Pengfei; Lin, Hui; Wang, Guan; Zhang, Ximing; Zhang, Qichun; Zhao, Yuhua

    2015-01-01

    Algicidal bacteria offer a promising option for killing cyanobacteria. Therefore, a new Alcaligenes aquatilis strain F8 was isolated to control Microcystis aeruginosa in this study. The algicidal activity of strain F8 was dependent on the cell density of M. aeruginosa, and the maximal algicidal rate of the free bacterium reached 88.45% within 72 h. With a view to its application to the control of M. aeruginosa in the natural environment, strain F8 was immobilized in sodium alginate beads, but immobilization of the strain decreased its algicidal rate compared to that of the free bacterium. However, addition of wheat bran to the sodium alginate matrix used to immobilize strain F8 not only eliminated the adverse effects of immobilization on the bacteria but also resulted in an 8.83% higher algicidal rate of the immobilized than free bacteria. Exclusion and recovery methods were used to identify key ingredients of wheat bran and gain insight into the mechanism underlying the observed enhancement of algicidal activity. This analysis indicated that certain factors in wheat bran, including vitamins B1, B2, B9, and E were responsible for promoting bacterial growth and thereby improving the algicidal rate of immobilized strain F8. Our findings indicate that wheat bran is able to improve the algicidal efficiency of A. aquatilis strain F8 for killing M. aeruginosa and is a good source of not only carbon and nitrogen but also vitamins for bacteria. PMID:26295573

  13. Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa.

    PubMed

    Li, Zhenghua; Geng, Mengxin; Yang, Hong

    2015-01-01

    A freshwater algicidal bacterial strain, Lzh-5, isolated from Lake Taihu, with strong algicidal activity against Microcystis aeruginosa, was identified as Bacillus sp. based on its phenotypic characteristics and 16S ribosomal RNA (rRNA) gene sequence. The algicidal mode of Bacillus sp. Lzh-5 was indirect, attacking M. aeruginosa cells by releasing algicidal compounds. Two algicidal compounds (S-5A and S-5B) produced by Bacillus sp. Lzh-5 were purified with ethyl acetate extraction, column chromatography, and high-performance liquid chromatography and identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione based on liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses. The active algicidal compounds S-5A (hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) and S-5B (3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) displayed high levels of algicidal activity against M. aeruginosa 9110, with LD50 values of 5.7 and 19.4 μg/ml, respectively. This is the first report of 3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione as an algicidal compound. Compounds S-5A and S-5B also induced obvious morphological changes in M. aeruginosa 9110. In cocultures of M. aeruginosa 9110 and Bacillus sp. Lzh-5, the cell density of Bacillus sp. Lzh-5 and the concentrations of S-5A and S-5B correlated positively with the algicidal activity. Our results indicate that strain Lzh-5 and its two algicidal compounds are potentially useful for controlling cyanobacterial blooms in Lake Taihu.

  14. The importance of calcium in improving resistance of Daphnia to Microcystis.

    PubMed

    Akbar, Siddiq; Du, Jingjing; Jia, Yong; Tian, Xingjun

    2017-01-01

    Changing environmental calcium (Ca) and rising cyanobacterial blooms in lake habitats could strongly reduce Daphnia growth and survival. Here, we assessed the effects of maternal Ca in Daphnia on transfer of resistance to their offspring against Microcystis aeruginosa PCC7806 (M. aeruginosa). Laboratory microcosm experiments were performed to examine effects in Daphnia carinata (D. carinata) and Daphnia pulex (D. pulex), and that how Ca induce responses in their offspring. The results showed that growth and survival were increased in offspring from exposed Daphnia as compared to unexposed, when raised in high Ca and increasing M. aeruginosa concentration. Among exposed Daphnia, offspring from high Ca mothers, produced more neonates with large size and higher survival as compared to offspring from low maternal Ca. Exposed D. carinata and D. pulex offspring, when reared in Ca deficient medium and increasing M. aeruginosa concentration, time to first brood increased, size become large and total offspring decreased subsequently in three alternative broods in offspring from low maternal Ca. In contrast, growth and reproduction in offspring from high Ca exposed mothers were consistent in three alternative broods. Despite species specific responses in growth, survival and variant life history traits in two Daphnia species, our results not only show maternal induction in Daphnia but also highlight that offspring response to M. aeruginosa varies with maternal Ca. This study demonstrates that Ca have role in Daphnia maternal induction against Microcystis, and recent Ca decline and increasing Microcystis concentration in lakes may decrease Daphnia growth and survival. Our data provide insights into the interactive effect of maternal Ca and Microcystis exposure on Daphnia and their outcome on offspring life history traits and survival.

  15. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse microcystis aeruginosa.

    PubMed

    Yang, Fei; Wei, Hai Yan; Li, Xiao Qin; Li, Yun Hui; Li, Xiao Bo; Yin, Li Hong; Pu, Yue Pu

    2013-02-01

    To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905. The bacteria were identified using the Biolog automated microbial identification system and 16S rDNA sequence analysis. The algae-lysing compounds were isolated and purified by silica gel column chromatography and reverse-phase high performance liquid chromatography. Their structures were confirmed by Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FT-IR) spectroscopy. Algae-lysing activity was observed using microscopy. The algae-lysing bacterium LTH-2 isolated from Lake Taihu was identified as Serratia marcescens. Strain LTH-2 secreted a red pigment identified as prodigiosin (C20H25N3O), which showed strong lytic activity with algal strains M. aeruginosa TH1, TH2, and FACHB 905 in a concentration-dependent manner. The 50% inhibitory concentration (IC50) of prodigiosin with the algal strains was 4.8 (± 0.4)× 10⁻² μg/mL, 8.9 (± 1.1)× 10⁻² μg/mL, and 1.7 (± 0.1)× 10⁻¹ μg/mL in 24 h, respectively. The bacterium LTH-2 and its pigment had strong Microcystis-lysing activity probably related to damage of cell membranes. The bacterium LTH-2 and its red pigment are potentially useful for regulating blooms of harmful M. aeruginosa. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. Algicidal effects of four Chinese herb extracts on bloom-forming Microcystis aeruginosa and Chlorella pyrenoidosa.

    PubMed

    Ye, Liangtao; Qian, Jiazhong; Jin, Song; Zuo, Shengpeng; Mei, Hui; Ma, Suming

    2014-01-01

    Extracts from four Chinese herbs, Phellodendri chinensis cortex, Artemisia annua L., Scutellaria baicalensis G. and Citrus reticulate peel were tested for their algicidal effects on Microcystis aeruginosa and Chlorella pyrenoidosa. The results showed that M. aeruginosa was more susceptible than C. pyrenoidosa. The growth of M. aeruginosa was significantly inhibited (p < 0.05) by the four herb extracts. Among the four herbs, P. chinensis cortex and S. baicalensis had the greatest inhibitory effects on M. aeruginosa, followed by C reticulate peel and A. annua. The 50% effective concentrations (EC50) of S. baicalensis, P chinensis cortex, C. reticulate peel and A. annua were 0.87, 0.88, 5.27 and 1 1.16 gherb L-1, respectively. The growth of C. pyrenoidosa was moderately inhibited by the herb extracts individually. The EC5o concentrations for S. baicalensis, P. chinensis cortex, C. reticulate peel andA. annua were 8.67, 11.67, 12.81 and 12.44 g herb L-1', respectively. Extract from S. baicalensis displayed stronger algicidal effects on C. pyrenoidosa than the other three herbs, although no lethal effect on C. pyrenoidosa was observed during the cultivation period. Compared with corresponding individual extract at the same dosage, the binary mixtures of the four herb extracts enhanced the algicidal effects on M. aeruginosa. The maximum inhibitory rates of all binary mixtures of the four herb extracts were all above 92% during the 10-day incubation. The results demonstrate that Chinese herbs, such as P. chinensis cortex or S. baicalensis and their combinations, could offer an effective alternative for mitigating outbreaks of harmful algal blooms in water bodies.

  17. [Inhibitory effect on Microcystis aeruginosa as well as separation and identification of the allelochemicals of welsh onion].

    PubMed

    Zhou, Yang; Li, Yuan; Li, Cheng; Liu, Lu; Zhang, Tingting

    2013-11-01

    To study the inhibition of welsh onion on Microcystis aeruginosa, and separat and identify of the allelochemicals from welsh onion. METHEDS: The inhibitory effect of different concentrations of fistular onion stalk and fistular onion leaf water extracts on M. aeruginosa were studied; besides, separation and identification of the allelochemicals of welsh onion were also studied. Both fistular onion stalk and fistular onion leaf water extracts had, to different degree, inhibitory effect on the growth of M. aeruginosat. Compared with the control group, the fluorescence intensity of fistular onion stalk and fistular onion leaf were lower than the control group in the same period, and the inhibitory effect were more obvious with the increase of the water extract concentrations, to the fifth day, M. aeruginosa almost completely dead of the highest concentration(50 ml/L) of fistular onion stalk water extract treated group, the EC50 of water extract from fistular onion stalk to M. aeruginosa was 12.7 ml/L, equivalent to fresh weight 1.27 g/L. Main allelochemicals in fistular onion stalk includes allyl mercaptan, cyclopentyl mercaptan, and so on. The inhibiting assay on M. aeruginosa showed that the EC50 of allyl mercaptan and cyclopentyl mercaptan respectively were 0.03 and 0.02 g/L. The fistular onion stalk water extracts has very good algicidal effect, allelopathic algal inhibiting substances primarily are sulfocompound, which have the potential to develop into biological algicide.

  18. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors.

    PubMed

    Khan, Muhammad Imran; Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Yoon, Yang Ho; Kim, Min Yong; Choi, Jong Il; Kim, Jong Deog

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production.

  19. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    EPA Science Inventory

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  20. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    PubMed

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Response of Microcystis aeruginosa BCCUSP 232 to barley (Hordeum vulgare L.) straw degradation extract and fractions.

    PubMed

    Mecina, Gustavo Franciscatti; Dokkedal, Anne Lígia; Saldanha, Luiz Leonardo; Chia, Mathias Ahii; Cordeiro-Araújo, Micheline Kézia; do Carmo Bittencourt-Oliveira, Maria; da Silva, Regildo Márcio Gonçalves

    2017-12-01

    The eutrophication of aquatic ecosystems is a serious environmental problem that leads to increased frequency of cyanobacterial blooms and concentrations of cyanotoxins. These changes in aquatic chemistry can negatively affect animal and human health. Environment-friendly methods are needed to control bloom forming cyanobacteria. We investigated the effect of Hordeum vulgare L. (barley) straw degradation extract and its fractions on the growth, oxidative stress, antioxidant enzyme activities, and microcystins content of Microcystis aeruginosa (Kützing) Kützing BCCUSP232. Exposure to the extract significantly (p<0.05) inhibited the growth of M. aeruginosa throughout the study, whereas only the highest concentration of fractions 1 and 2 significantly (p<0.05) reduced the growth of the cyanobacterium on day 10 of the experiment. The production of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzyme activities were significantly (p<0.05) altered by the extract and fractions 1 and 2. Phytochemical profiling of the extract and its fractions revealed that the barley straw degradation process yielded predominantly phenolic acids. These results demonstrate that barley straw extract and its fractions can efficiently interfere with the growth and development of M. aeruginosa under laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Hui, Cai; Bai, Naling; Yang, Shengmao; Wan, Li; Zhang, Qichun; Zhao, Yuhua

    2015-12-01

    In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.

  3. Bromine- and chlorine-containing aeruginosins from Microcystis aeruginosa bloom material collected in Kibbutz Geva, Israel.

    PubMed

    Elkobi-Peer, Shira; Faigenbaum, Raya; Carmeli, Shmuel

    2012-12-28

    Five new natural products, aeruginosins GE686 (1), GE766 (2), GE730 (3), GE810 (4), and GE642 (5), were isolated along with four known aeruginosins, 98C, 101, KY642, and DA688, from bloom material of the cyanobacterium Microcystis aeruginosa collected from a fish pond in Kibbutz Geva, Israel, in August 2007. Their structures were elucidated by a combination of various spectroscopic techniques, primarily NMR and MS, while the absolute configurations of the stereogenic centers were determined by Marfey's and chiral-phase HPLC methods. Two of the new aeruginosins, aeruginosins GE686 (1) and GE766 (2), contain the unprecedented d-m-Br-m'-Cl-p-hydroxyphenyllactic acid derivative. The structures and biological activities of the five new metabolites are described.

  4. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

    PubMed Central

    Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Kim, Min Yong; Choi, Jong Il

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm−2s−1 intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production. PMID:27556034

  5. Identification of toxigenic Cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Belykh, O. I.; Dmitrieva, O. A.; Gladkikh, A. S.; Sorokovikova, E. G.

    2013-02-01

    In 2002-2008, seasonal (April-November) monitoring of the phytoplankton in the Russian part of the Curonian Lagoon at five fixed sites was performed. A total of 91 Cyanobacteria, 100 Bacillariophyta, 280 Chlorophyta, 21 Cryptophyta, and 24 Dinophyta species were found. Six potentially toxic species of cyanobacteria: Aphanizomenon flos-aquae, Anabaena sp., Microcystis aeruginosa, M. viridis, M. wesenbergii, and Planktothrix agardhii dominated the phytoplankton biomass and caused water blooms. The seasonal average phytoplankton biomass ranged from 30 to 137 g/m3. The cyanobacteria's biomass varied from 10 to 113 g/m3 forming 30-82% of the total with a mean of 50%. With the aid of genetic markers (microcystin ( mcy) and nodularin synthetases), six variants of the microcystin-producing gene mcyE from the genus Microcystis were identified. Due to the intensive and lengthy blooms of potentially toxic and toxigenic cyanobacteria, the environmental conditions in the Curonian Lagoon appear unfavorable. The water should be monitored for cyanotoxins with analytical methods in order to determine if the area is safe for recreational use.

  6. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms.

    PubMed

    Parker, D L; Kumar, H D; Rai, L C; Singh, J B

    1997-06-01

    Ten metals were assayed in 21 Indian ponds which comprised three groups: (i) eutrophic alkaline ponds containing <2.5 mM potassium and thick growths of Microcystis aeruginosa or Microcystis flos-aquae during most of the year, (ii) equally eutrophic alkaline ponds containing >2.8 mM potassium and no detectable Microcystis growth, and (iii) oligo- or mesotrophic ponds with various potassium and hydrogen ion concentrations and no persistent Microcystis blooms. The effects of potassium on Microcystis growth were examined in filter-sterilized pond water and in defined culture media. A 50% reduction in the 10-day yield of cultured M. aeruginosa was observed in DP medium and pond water supplemented with 1 and 3 mM KCl, respectively. In contrast, the addition of 2 to 30 mM NaCl did not suppress the growth of M. aeruginosa in either DP medium or pond water. Both 5 mM KCl and 20 mM KHCO(inf3) in J medium strongly inhibited the growth of M. flos-aquae C3-9, whereas 5 to 30 mM NaCl had no effect and 20 mM NaHCO(inf3) was stimulatory. For pond water cultured with a mixture of M. aeruginosa and the duckweed Wolffia arrhiza, M. aeruginosa dominated in unsupplemented water and W. arrhiza dominated in water supplemented with 4.8 mM KCl. Implications for the ecology and control of Microcystis blooms are discussed.

  7. Potassium Salts Inhibit Growth of the Cyanobacteria Microcystis spp. in Pond Water and Defined Media: Implications for Control of Microcystin-Producing Aquatic Blooms

    PubMed Central

    Parker, D. L.; Kumar, H. D.; Rai, L. C.; Singh, J. B.

    1997-01-01

    Ten metals were assayed in 21 Indian ponds which comprised three groups: (i) eutrophic alkaline ponds containing <2.5 mM potassium and thick growths of Microcystis aeruginosa or Microcystis flos-aquae during most of the year, (ii) equally eutrophic alkaline ponds containing >2.8 mM potassium and no detectable Microcystis growth, and (iii) oligo- or mesotrophic ponds with various potassium and hydrogen ion concentrations and no persistent Microcystis blooms. The effects of potassium on Microcystis growth were examined in filter-sterilized pond water and in defined culture media. A 50% reduction in the 10-day yield of cultured M. aeruginosa was observed in DP medium and pond water supplemented with 1 and 3 mM KCl, respectively. In contrast, the addition of 2 to 30 mM NaCl did not suppress the growth of M. aeruginosa in either DP medium or pond water. Both 5 mM KCl and 20 mM KHCO(inf3) in J medium strongly inhibited the growth of M. flos-aquae C3-9, whereas 5 to 30 mM NaCl had no effect and 20 mM NaHCO(inf3) was stimulatory. For pond water cultured with a mixture of M. aeruginosa and the duckweed Wolffia arrhiza, M. aeruginosa dominated in unsupplemented water and W. arrhiza dominated in water supplemented with 4.8 mM KCl. Implications for the ecology and control of Microcystis blooms are discussed. PMID:16535629

  8. Nano-fumed silica as a novel pollutant that inhibits the algicidal effect of p-hydroxybenzoic acid on Microcystis aeruginosa.

    PubMed

    Jiang, Xiaofeng; Zuo, Shengpeng; Ye, Liangtao; Hong, Wenxiu

    2017-11-21

    Nanomaterials and/or contaminants are becoming more common in the developing world, but their effects on interspecific interactions are rarely reported, particularly in aquatic ecosystems. Thus, the present study determined the effects of the novel pollutant nano-fumed silica (NFS) on algal control by a macrophyte via the allelochemical p-hydroxybenzoic acid in a microcosm test. The allelochemical p-hydroxybenzoic acid caused significant decreases in chlorophyll a, but increased the amount of superoxide anion radicals ([Formula: see text]) and the electric conductivity in Microcystis aeruginosa. The 50% inhibitory concentration (IC 50 ) for p-hydroxybenzoic acid was 0.919 mmol/L in microalga during the exponential phase. Interestingly, NFS at 100-1600 mg/L had clear stimulatory effects on M. aeruginosa. When NFS at 800 mg/L was combined with different concentrations of p-hydroxybenzoic acid, the IC 50 for p-hydroxybenzoic acid was 1.045 mmol/L. Thus, NFS significantly reduced the algicidal effect exhibited by p-hydroxybenzoic acid on M. aeruginosa. Furthermore, NFS might act as a silicon nutrient and enhance allelopathic resistance in M. aeruginosa to inhibit the algicidal effects of macrophytes via allelopathy. These findings suggest that before algal control is considered using macrophyte allelopathy, it is essential to remove the pollutant NFS from polluted lakes.

  9. Persistence of Only a Minute Viable Population in Chlorotic Microcystis aeruginosa PCC 7806 Cultures Obtained by Nutrient Limitation.

    PubMed

    Meireles, Diogo de Abreu; Schripsema, Jan; Arnholdt, Andrea Cristina Vetö; Dagnino, Denise

    2015-01-01

    Cultures from the cyanobacterial strain Microcystis aeruginosa PCC 7806 submitted to nutrient limitation become chlorotic. When returned to nutrient rich conditions these cultures regain their green colour. The aim of this study was to verify whether the cells in these cultures could be considered resting stages allowing the survival of periods of nutrient starvation as has been reported for Synechococcus PCC 7942. The experiments with Microcystis were carried out in parallel with Synechococcus cultures to rule out the possibility that any results obtained with Microcystis were due to our particular experimental conditions. The results of the experiments with Synechococcus PCC 7942 cultures were comparable to the reported in the literature. For Microcystis PCC 7806 a different response was observed. Analysis of chlorotic Microcystis cultures by flow cytometry showed that the phenotype of the cells in the population was not homogenous: the amount of nucleic acids was about the same in all cells but only around one percent of the population emitted red autofluorescence indicating the presence of chlorophyll. Monitoring of the reversion of chlorosis by flow cytometry showed that the re-greening was most likely the result of the division of the small population of red autofluorescent cells originally present in the chlorotic cultures. This assumption was confirmed by analysing the integrity of the DNA and the membrane permeability of the cells of chlorotic cultures. Most of the DNA of these cultures was degraded and only the autofluorescent population of the chlorotic cultures showed membrane integrity. Thus, contrary to what has been reported for other cyanobacterial genera, most of the cells in chlorotic Microcystis cultures are not resting stages but dead. It is interesting to note that the red autofluorescent cells of green and chlorotic cultures obtained in double strength ASM-1 medium differ with respect to metabolism: levels of emission of red autofluorescence

  10. Persistence of Only a Minute Viable Population in Chlorotic Microcystis aeruginosa PCC 7806 Cultures Obtained by Nutrient Limitation

    PubMed Central

    de Abreu Meireles, Diogo; Schripsema, Jan; Vetö Arnholdt, Andrea Cristina; Dagnino, Denise

    2015-01-01

    Cultures from the cyanobacterial strain Microcystis aeruginosa PCC 7806 submitted to nutrient limitation become chlorotic. When returned to nutrient rich conditions these cultures regain their green colour. The aim of this study was to verify whether the cells in these cultures could be considered resting stages allowing the survival of periods of nutrient starvation as has been reported for Synechococcus PCC 7942. The experiments with Microcystis were carried out in parallel with Synechococcus cultures to rule out the possibility that any results obtained with Microcystis were due to our particular experimental conditions. The results of the experiments with Synechococcus PCC 7942 cultures were comparable to the reported in the literature. For Microcystis PCC 7806 a different response was observed. Analysis of chlorotic Microcystis cultures by flow cytometry showed that the phenotype of the cells in the population was not homogenous: the amount of nucleic acids was about the same in all cells but only around one percent of the population emitted red autofluorescence indicating the presence of chlorophyll. Monitoring of the reversion of chlorosis by flow cytometry showed that the re-greening was most likely the result of the division of the small population of red autofluorescent cells originally present in the chlorotic cultures. This assumption was confirmed by analysing the integrity of the DNA and the membrane permeability of the cells of chlorotic cultures. Most of the DNA of these cultures was degraded and only the autofluorescent population of the chlorotic cultures showed membrane integrity. Thus, contrary to what has been reported for other cyanobacterial genera, most of the cells in chlorotic Microcystis cultures are not resting stages but dead. It is interesting to note that the red autofluorescent cells of green and chlorotic cultures obtained in double strength ASM-1 medium differ with respect to metabolism: levels of emission of red autofluorescence

  11. Negative effects of Microcystis blooms on the crustacean plankton in an enclosure experiment in the subtropical China.

    PubMed

    Chen, Fei-zhou; Xie, Ping; Tang, Hui-juan; Liu, Hong

    2005-01-01

    Effects of Microcystis blooms on the crustacean plankton were studied using enclosure experiments during July-September, 2000. Eight enclosures were set in the hypereutrophic Donghu Lake. Different nutrient concentrations through additional nutrient and sediment in enclosures were expected to result in different abundance of Microcystis. From July to early August, the phytoplankton community was dominated by Chlorophyta, Cryptophyta, Bacillariophyta and Cyanophyta other than Microcystis aeruginosa. M. aeruginosa showed a rapid increase during early August in all enclosures and predominated. Crustacean plankton was dominated by the herbivorous Moina micrura, Diaphanosoma brachyurum and Ceriodaphnia cornuta, and the predaceous Mesocyclops sp. and Thermocyclops taihokuensis. During the pre-bloom period, the dynamics of M. micrura population appeared to be mainly affected by the predaceous cyclopoids. With the development of Microcystis blooms, such interaction between M. micrura and cyclopoids seemed weakened, especially when the Microcystis biomass was high. But there was no apparent influence on the interaction between Leptodora kindti and its zooplanktonic prey. The density of two cyclopoids decreased with the enhancement of Microcystis. The density decline of M. micrura was caused by both predation and inhibition by Microcystis. The low food availability of other edible phytoplankton during the blooms led to low densities of both C. cornuta and D. brachyurum by late August. It appears that dense Microcystis blooms exert strong negative effects on the herbivorous cladocerans and the predaceous cyclopoids.

  12. Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Huo, Mingxin; Sun, Caiyun; Cui, Xiaochun; Zhou, Dandan; Crittenden, John C.; Yang, Wu

    2017-03-01

    Bioflocculation, being environmental-friendly and highly efficient, is considered to be a promising method to harvest microalgae. However, one limitation of this technology is high expense on substrates for bioflocculant bacteria cultivation. In this regard, we developed an innovative method for the inner-recycling of biomass that could harvest the typical microalgae, Microcystis aeruginosa, using a bioflocculant produced by Citrobacter sp. AzoR-1. In turn, the flocculated algal biomass could be reutilized as a substrate for Citrobacter sp. AzoR-1 cultivation and bioflocculant production. The experimental results showed that 3.4 ± 0.1 g of bioflocculant (hereafter called MBF-12) was produced by 10 g/L of wet biomass of M. aeruginosa (high-pressure steam sterilized) with an additional 10 g/L of glucose as an extra carbon source. The efficiency of MBF-12 for M. aeruginosa harvesting could reach ~95% under the optimized condition. Further analysis showed that MBF-12, dominated by ~270 kDa biopolymers, contributed the bioflocculation mechanisms of interparticle bridging and biosorption process. Bioflocculant synthesis by Citrobacter sp. AzoR-1 using microalga as a substrate, including the polyketide sugar unit, lipopolysaccharide, peptidoglycan and terpenoid backbone pathways. Our research provides the first evidence that harvested algae can be reutilized as a substrate to grow a bioflocculant using Citrobacter sp. AzoR-1.

  13. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    PubMed

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  14. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    PubMed

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs.

    PubMed

    Song, Yang; Zhang, Ling-Lei; Li, Jia; Chen, Min; Zhang, Yao-Wen

    2018-04-26

    Hydrodynamic conditions play a key role in algal blooms, which have become an increasing threat to aquatic environments, especially reservoirs. Microcystis aeruginosa is a dominant species in algal blooms in reservoirs and releases large amounts of algal toxins during algal bloom events. The algal growth characteristics and the corresponding mechanism of the influence of hydrodynamic conditions were explored using custom hydraulic rotating devices. The long-term experimental results were as follows: (1) a moderate flow velocity increased the algal growth rate and prolonged algal lifetime relative to static water; (2) moderate water turbulence promoted energy metabolism and nutrient absorbance in algal cells; (3) moderate shear stress reduced oxidation levels in algal cells and improved algal cell morphology; (4) under hydrodynamic treatment, algal cell deformation was confirmed by scanning electron microscopy (SEM), and a high shear stress of 0.0104 Pa induced by a flow of 0.5 m/s may have destroyed cell morphology and disturbed reactive oxygen species (ROS) metabolism; (5) algal cell morphology evaluation (including circle ratio, eccentricity, diameter increasing rate, and deformation rate) was established; (6) based on algal growth status and specific effects, five independent intervals (including 'positive-promotion', 'middle-promotion', 'negative-promotion', 'transition', and 'inhibition') and the hydrodynamic threshold system (including flow velocity, turbulent dissipation, and shear stress) were established; and (7) for M. aeruginosa, the optimum flow velocity was 0.24 m/s, and the static-equivalent flow velocity was 0.47 m/s. These results provide a basic summary of the hydrodynamic effects on algal growth and a useful reference for the control of M. aeruginosa blooms in reservoirs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Dynamics of Microcystis Genotypes and Microcystin Production and Associations with Environmental Factors during Blooms in Lake Chaohu, China

    PubMed Central

    Yu, Li; Kong, Fanxiang; Zhang, Min; Yang, Zhen; Shi, Xiaoli; Du, Mingyong

    2014-01-01

    Lake Chaohu, which is a large, shallow, hypertrophic freshwater lake in southeastern China, has been experiencing lake-wide toxic Microcystis blooms in recent decades. To illuminate the relationships between microcystin (MC) production, the genotypic composition of the Microcystis community and environmental factors, water samples and associated environmental data were collected from June to October 2012 within Lake Chaohu. The Microcystis genotypes and MC concentrations were quantified using quantitative real-time PCR (qPCR) and HPLC, respectively. The results showed that the abundances of Microcystis genotypes and MC concentrations varied on spatial and temporal scales. Microcystis exists as a mixed population of toxic and non-toxic genotypes, and the proportion of toxic Microcystis genotypes ranged from 9.43% to 87.98%. Both Pearson correlation and stepwise multiple regressions demonstrated that throughout the entire lake, the abundances of total and toxic Microcystis and MC concentrations showed significant positive correlation with the total phosphorus and water temperature, suggesting that increases in temperature together with the phosphorus concentrations may promote more frequent toxic Microcystis blooms and higher concentrations of MC. Whereas, dissolved inorganic carbon (DIC) was negatively correlated with the abundances of total and toxic Microcystis and MC concentrations, indicating that rising DIC concentrations may suppress toxic Microcystis abundance and reduce the MC concentrations in the future. Therefore, our results highlight the fact that future eutrophication and global climate change can affect the dynamics of toxic Microcystis blooms and hence change the MC levels in freshwater. PMID:25474494

  17. Comparison of Microcystis aeruginosa (PCC7820 and PCC7806) growth and intracellular microcystins content determined by liquid chromatography-mass spectrometry, enzyme-linked immunosorbent assay anti-Adda and phosphatase bioassay.

    PubMed

    Ríos, V; Moreno, I; Prieto, A I; Soria-Díaz, M E; Frías, J E; Cameán, A M

    2014-03-01

    Cyanobacteria are able to produce several metabolites that have toxic effects on humans and animals. Among these cyanotoxins, the hepatotoxic microcystins (MC) occur frequently. The intracellular MC content produced by two strains of Microcystis aeruginosa, PCC7806 and PCC7820, and its production kinetics during the culture time were studied in order to elucidate the conditions that favour the growth and proliferation of these toxic strains. Intracellular MC concentrations measured by liquid chromatography (LC) coupled to electrospray ionization mass spectrometer (MS) were compared with those obtained by enzyme-linked immunosorbent assay (ELISA) anti-Adda and protein phosphatase 2A (PP2A) inhibition assays. It has been demonstrated there are discrepancies in the quantification of MC content when comparing ELISA and LC-MS results. However, a good correlation has been obtained between PP2A inhibition assay and LC-MS. Three MC were identified using LC-MS in the PCC7806 strain: MC-LR, demethylated MC-LR and a new variant detected for the first time in this strain, [L-MeSer(7)] MC-LR. In PCC7820, MC-LR, D-Asp(3)-MCLR, Dglu(OCH3)-MCLR, MC-LY, MC-LW and MC-LF were identificated. The major one was MC-LR in both strains, representing 81 and 79% of total MC, respectively. The total MC content in M. aeruginosa PCC7820 was almost three-fold higher than in PCC7806 extracts.

  18. Flow cytometry microscopy and hyperspectral imaging of microcystis, cyanobacteria and algae

    EPA Science Inventory

    The detection of algae and cyanobacteria is an important step in assessing water quality. Studies were initiated using microscopy, flow cytometry and hyperspectral imaging with two fresh water species that could be grown in the laboratory: Microcystis Aeruginosa (cyanobacteria),...

  19. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa).

    PubMed

    Prieto, Ana; Campos, Alexandre; Cameán, Ana; Vasconcelos, Vitor

    2011-10-01

    Toxic cyanobacteria are considered emerging world threats, being responsible for the degradation of the aquatic ecosystems. Aphanizomenon ovalisporum produces the toxin Cylindrospermopsin (CYN) being a concern in fresh water habitats. This work aims to increase our knowledge on the effects of this toxic cyanobacterium in plants by studying the alterations in growth parameters and oxidative stress status of rice (Oriza sativa) exposed to the cyanobacteria cell extracts containing CYN. Significant increases in glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities were detected in the different experiments performed. The roots showed to be more sensitive than leaves regarding the enzyme activities. A reduction in the leaf tissue fresh weight was observed after 9 days of plant treatment suggesting a major physiological stress. The exposure of rice plants to a mixture of A. ovalisporum and Microcystis aeruginosa cell extracts containing CYN and microcystins including microcystin-LR, resulted in a significant increase in the GST and GPx activities, suggesting a synergistic effect of both extracts. Together these results point out the negative effects of cyanotoxins on plant growth and oxidative status, induced by A. ovalisporum cell extracts, raising also concerns in the accumulation of CYN. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Isolation and Identification of Algicidal Compound from Streptomyces and Algicidal Mechanism to Microcystis aeruginosa

    PubMed Central

    Luo, Jianfei; Wang, Yuan; Tang, Shuishui; Liang, Jianwen; Lin, Weitie; Luo, Lixin

    2013-01-01

    The biological control of cyanobacterial harmful algal blooms (cyanoHABs) is important to promote human health, environmental protection, and economic growth. Active algicidal compounds and algicidal mechanisms should be identified and investigated to control cyanoHABs. In this study, the algicidal actinobacterium Streptomyces sp. L74 was isolated from the soil of a nearby pond which located in the center lake of Guanghzou Higher Education Mega Center. Results showed that the algicidal activities of cyanoHABs are mainly achieved via an indirect attack by producing algicidal compounds. All active algicidal compounds are hydrophilic substances that are heat and pH stable. In the present study, an active compound (B3) was isolated and purified by high-performance liquid chromatography and identified as a type of triterpenoid saponin (2-hydroxy-12-oleanene-3, 28-O-D-glucopyranosyl) with a molecular formula of C42H70O13 as determined by infrared spectrometry, electrospray ionization mass spectrometry, and nuclear magnetic resonance. Active algicidal compounds from Streptomyces sp. L74 were shown to disrupt the antioxidant systems of Microcystis aeruginosa cells. PMID:24098501

  1. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa.

    PubMed

    Luo, Jianfei; Wang, Yuan; Tang, Shuishui; Liang, Jianwen; Lin, Weitie; Luo, Lixin

    2013-01-01

    The biological control of cyanobacterial harmful algal blooms (cyanoHABs) is important to promote human health, environmental protection, and economic growth. Active algicidal compounds and algicidal mechanisms should be identified and investigated to control cyanoHABs. In this study, the algicidal actinobacterium Streptomyces sp. L74 was isolated from the soil of a nearby pond which located in the center lake of Guanghzou Higher Education Mega Center. Results showed that the algicidal activities of cyanoHABs are mainly achieved via an indirect attack by producing algicidal compounds. All active algicidal compounds are hydrophilic substances that are heat and pH stable. In the present study, an active compound (B3) was isolated and purified by high-performance liquid chromatography and identified as a type of triterpenoid saponin (2-hydroxy-12-oleanene-3, 28-O-D-glucopyranosyl) with a molecular formula of C42H70O13 as determined by infrared spectrometry, electrospray ionization mass spectrometry, and nuclear magnetic resonance. Active algicidal compounds from Streptomyces sp. L74 were shown to disrupt the antioxidant systems of Microcystis aeruginosa cells.

  2. Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa.

    PubMed

    Lin, Li; Feng, Cong; Li, Qingyun; Wu, Min; Zhao, Liangyuan

    2015-10-01

    Effects of electrolysis by low-amperage electric current on the chlorophyll fluorescence characteristics of Microcystis aeruginosa were investigated in order to reveal the mechanisms of electrolytic inhibition of algae. Threshold of current density was found under a certain initial no. of algae cell. When current density was equal to or higher than the threshold (fixed electrolysis time), growth of algae was inhibited completely and the algae lost the ability to survive. Effect of algal solution volume on algal inhibition was insignificant. Thresholds of current density were 8, 10, 14, 20, and 22 mA cm(-2) at 2.5 × 10(7), 5 × 10(7), 1 × 10(8), 2.5 × 10(8), and 5 × 10(8) cells mL(-1) initial no. of algae cell, respectively. Correlativity between threshold of current and initial no. of algae cells was established for scale-up and determining operating conditions. Changes of chlorophyll fluorescence parameters demonstrated that photosystem (PS) II of algae was damaged by electrolysis but still maintained relatively high activity when algal solution was treated by current densities lower than the threshold. The activity of algae recovered completely after 6 days of cultivation. On the contrary, when current density was higher than the threshold, connection of phycobilisome (PBS) and PS II core complexes was destroyed, PS II system of algae was damaged irreversibly, and algae could not survive thoroughly. The inactivation of M. aeruginosa by electrolysis can be attributed to irreversible separation of PBS from PS II core complexes and the damage of PS II of M. aeruginosa.

  3. Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu.

    PubMed

    Yang, Fei; Li, Xiaoqin; Li, Yunhui; Wei, Haiyan; Yu, Guang; Yin, Lihong; Liang, Geyu; Pu, Yuepu

    2013-01-01

    This study aimed to isolate and characterize an indigenous algicidal bacterium named LTH-1 and its algae-lysing compounds active against three Microcystis aeruginosa strains (toxic TH1, nontoxic TH2 and standard FACHB 905). The LTH-1 isolated from Lake Taihu, near Wuxi City in China, was identified as Aeromonas sp. based on its morphological characteristic features and phylogenetic analysis by sequencing of 16S rDNA. Extracellular compounds produced by LTH-1 showed strong algaelysing activity, and they were water-soluble and heat-tolerant, with a molecular mass lower than 2 kDa. Two algae-lysing compounds were isolated and purified from extracellular filtrate using silica gel column chromatography. One of these was identified as phenylalanine (C9H11NO2, m/z 166.0862) and the other (C8H16N2O3, m/z 189.1232) was unidentified by hybrid ion trap/time-of-flight mass spectrometry coupled with a high-performance liquid chromatography (LC/MS-IT-TOF) system. The half maximal effective concentration (EC50) of phenylalanine produced by LTH-1 against FACHB 905 was 68.2 +/- 8.2 microg mL(-1) in 48h. These results suggest that the algicidal Aeromonas sp. LTH-1 could play a role in controlling Microcystis blooms, and its extracellular compounds are also potentially useful for regulating blooms of the harmful M. aeruginosa.

  4. Potential of extracellular enzymes from Trametes versicolor F21a in Microcystis spp. degradation.

    PubMed

    Du, Jingjing; Pu, Gaozhong; Shao, Chen; Cheng, Shujun; Cai, Ji; Zhou, Liang; Jia, Yong; Tian, Xingjun

    2015-03-01

    Studies have shown that microorganisms may be used to eliminate cyanobacteria in aquatic environments. The present study showed that the white-rot fungus Trametes versicolor F21a could degrade Microcystis aeruginosa. After T. versicolor F21a and Microcystis spp. were co-incubated for 60h, >96% of Microcystis spp. cells were degraded by T. versicolor F21a. The activities of extracellular enzymes showed that cellulase, β-glucosidase, protease, and laccase were vital to Microcystis spp. degradation in the early stage (0h to 24h), while β-glucosidase, protease, laccase, and manganese peroxidase in the late stage (24h to 60h). The positive and significant correlation of the degradation rate with these enzyme activities indicated that these enzymes were involved in the degradation rate of Microcystis spp. cells at different phases. It suggested that the extracellular enzymes released by T. versicolor F21a might be vital to Microcystis spp. degradation. The results of this study may be used to develop alternative microbial control agents for cyanobacterial control. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    PubMed

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  6. Intricate Interactions between the Bloom-Forming Cyanobacterium Microcystis aeruginosa and Foreign Genetic Elements, Revealed by Diversified Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Signatures

    PubMed Central

    Kuno, Sotaro; Kaneko, Takakazu; Sako, Yoshihiko

    2012-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids. PMID:22636003

  7. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts.

    PubMed

    Gonzalez-Torres, A; Putnam, J; Jefferson, B; Stuetz, R M; Henderson, R K

    2014-09-01

    Coagulation-flocculation (C-F) is a key barrier to cyanobacterial and algal cell infiltration in water treatment plants during seasonal blooms. However, the resultant cell floc properties, in terms of size, strength and density, which dominate under different coagulation conditions and govern cell removal, are not well understood. This paper investigated the floc properties produced during C-F of the cyanobacterium, Microcystis aeruginosa, under low and high doses of aluminium sulphate and ferric chloride coagulants and at different pH values, so as to promote charge neutralisation (CN) and sweep flocculation (SF) dominant conditions (or a combination of these). It was demonstrated that application of ferric chloride produced larger flocs that resulted in higher cell removal during jar testing. These flocs were also larger than those observed for natural organic matter (NOM) and kaolin, suggesting a role of algogenic organic matter (AOM) as an inherent bioflocculant. Under SF conditions, stronger flocs were produced; however, these had lower capacity for size recovery after exposure to high shear. Analysis of particle size distribution demonstrated that large scale fragmentation followed by erosion dominated for CN while erosion dominated under SF conditions. Overall, marked differences were observed dependent on the coagulation regime imposed that have implications for improving robustness of cell removal by downstream separation processes. While the cyanobacterium, M. aeruginosa, appeared to share general floc characteristics commonly observed for NOM and kaolin flocs, there were distinct differences in terms of size and strength, which may be attributed to AOM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Variation of dissolved organic nitrogen concentration during the ultrasonic pretreatment to Microcystis aeruginosa.

    PubMed

    Liu, Cheng; Wang, Jie; Cao, Zhen; Chen, Wei; Bi, Hongkai

    2016-03-01

    Algae cells were the main sources of dissolved organic nitrogen (DON) in raw water with plenty of algae, and ultrasonic pretreatment was one of the algae-controlling methods through the damage of algae cells. However, the variation of DON concentration during the ultrasonic treatment process was not confirmed. Variation of DON concentration during the processes of low frequency ultrasound treatment of Microcystis aeruginosa was investigated. In addition, the effect of sonication on the metabolite concentration, algae cellar activity and the subsequent coagulation performance were discussed. The results showed that after a long duration of ultrasonic (60 s), nearly 90% of the algal cells were damaged and the maximum concentration of DON attained more than 3 mg/L. In order to control the leakage extent of DON, the sonication time should be less than 30 s with power intensity of more than 1.0 W/cm(3). In the mean time, ultrasonic treatment could inhibit the reactivation and the proliferation of algal, keep the algae cell wall integrity and enhance coagulation effectively under the same condition. However, ultrasound frequency had little effect on DON at the frequency range used in this study (20-150 kHz). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Long-term bioconcentration kinetics of hydrophobic chemicals in Selenastrum capricornutum and Microcystis aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koelmans, A.A.; Woude, H. van der; Hattink, J.

    1999-06-01

    The bioconcentration of two chlorobenzenes (CBs) and of seven polychlorobiphenyls (PCBs) to Selenastrum capricornutum and Microcystis aeruginosa was studied with accumulation experiments followed by gas purge elimination experiments. Henry's law constants at 10 C were needed to interpret the gas purge results and were measured in control experiments. For the M. aerogunisa culture, steady-state uptake was reached within days, whereas uptake by S. capricornutum took several weeks. The relationships between the log bioconcentration factors (BCF) and log octanol-water partition coefficients (K[sub OW]) were nonlinear, with relatively low values for the more hydrophobic PCBs. Rate constants for the elimination of CBsmore » and PCBs from the algal cells were shown to be larger than 1 per day when calculated with a one-compartment model. With such large rate constants, it is unlikely that the curvature observed for these species is caused by slow kinetics or that algal growth affects BCF by dilution of CB or PCB concentrations. The log BCF-log K[sub OW] relationships could be described by a simple three-phase model that accounted for the binding of CBs and PCBs to dissolved organic carbon (DOC). Modeling bioconcentration of hydrophobic chemicals in phytoplankton should account for the binding to DOC.« less

  11. New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge

    PubMed Central

    Li, Lamei; Zhang, Hong; Huang, Qing

    2015-01-01

    We report the new insight into the dielectric barrier discharge (DBD) induced inactivation of Microcystis aeruginosa, the dominant algae which caused harmful cyanobacterial blooms in many developing countries. In contrast with the previous work, we employed flow cytometry to examine the algal cells, so that we could assess the dead and living cells with more accuracy, and distinguish an intermediate state of algal cells which were verified as apoptotic. Our results showed that the numbers of both dead and apoptotic cells increased with DBD treatment delay time, and hydrogen peroxide produced by DBD was the main reason for the time-delayed inactivation effect. However, apart from the influence of hydrogen peroxide, the DBD-induced initial injures on the algal cells during the discharge period also played a considerable role in the inactivation of the DBD treated cells, as indicated by the measurement of intracellular reactive oxygen species (ROS) inside the algal cells. We therefore propose an effective approach to utilization of non-thermal plasma technique that makes good use of the residual inactivation effect to optimize the experimental conditions in terms of discharge time and delay time, so that more efficient treatment of cyanobacterial blooms can be achieved. PMID:26347270

  12. Seasonal Dynamics of Microcystis spp. and Their Toxigenicity as Assessed by qPCR in a Temperate Reservoir

    PubMed Central

    Martins, António; Moreira, Cristiana; Vale, Micaela; Freitas, Marisa; Regueiras, Ana; Antunes, Agostinho; Vasconcelos, Vitor

    2011-01-01

    Blooms of toxic cyanobacteria are becoming increasingly frequent, mainly due to water quality degradation. This work applied qPCR as a tool for early warning of microcystin(MC)-producer cyanobacteria and risk assessment of water supplies. Specific marker genes for cyanobacteria, Microcystis and MC-producing Microcystis, were quantified to determine the genotypic composition of the natural Microcystis population. Correlations between limnological parameters, pH, water temperature, dissolved oxygen and conductivity and MC concentrations as well as Microcystis abundance were assessed. A negative significant correlation was observed between toxic (with mcy genes) to non-toxic (without mcy genes) genotypes ratio and the overall Microcystis density. The highest proportions of toxic Microcystis genotypes were found 4–6 weeks before and 8–10 weeks after the peak of the bloom, with the lowest being observed at its peak. These results suggest positive selection of non-toxic genotypes under favorable environmental growth conditions. Significant positive correlations could be found between quantity of toxic genotypes and MC concentration, suggesting that the method applied can be useful to predict potential MC toxicity risk. No significant correlation was found between the limnological parameters measured and MC concentrations or toxic genotypes proportions indicating that other abiotic and biotic factors should be governing MC production and toxic genotypes dynamics. The qPCR method here applied is useful to rapidly estimate the potential toxicity of environmental samples and so, it may contribute to the more efficient management of water use in eutrophic systems. PMID:22072994

  13. To increase size or decrease density? Different Microcystis species has different choice to form blooms

    PubMed Central

    Li, Ming; Zhu, Wei; Guo, Lili; Hu, Jing; Chen, Huaimin; Xiao, Man

    2016-01-01

    The buoyancy of Microcystis colonies is a principal factor determining blooms occurrence but the knowledge of seasonal variation in buoyancy is quite poor because of challenge in analysis method. In this study, a method based on the Stokes’ Law after researching on the effects of shapes on settling velocity of Microcystis colonies, whose gas vesicles were collapsed, to accurately measure density was established. The method was used in Lake Taihu. From January to May, mean density of Microcystis colonies decreased from 995 kg m−3 to 978 kg m−3 and then increased to 992 kg m−3 in December. The density of colonies in different Microcystis species was in the order M. wesenbergii > M. aeruginosa > M. ichthyoblabe. For all the Microcystis species, the density of colonies with gas vasicles increased significantly along with the increase of colony size. Our results suggested that the main driving factor of Microcystis blooms formation in Lake Taihu was low density for M. ichthyoblabe from May to July but was large colony size for M. wesenbergii and M. aeruginosa from August to October. PMID:27841329

  14. To increase size or decrease density? Different Microcystis species has different choice to form blooms.

    PubMed

    Li, Ming; Zhu, Wei; Guo, Lili; Hu, Jing; Chen, Huaimin; Xiao, Man

    2016-11-14

    The buoyancy of Microcystis colonies is a principal factor determining blooms occurrence but the knowledge of seasonal variation in buoyancy is quite poor because of challenge in analysis method. In this study, a method based on the Stokes' Law after researching on the effects of shapes on settling velocity of Microcystis colonies, whose gas vesicles were collapsed, to accurately measure density was established. The method was used in Lake Taihu. From January to May, mean density of Microcystis colonies decreased from 995 kg m -3 to 978 kg m -3 and then increased to 992 kg m -3 in December. The density of colonies in different Microcystis species was in the order M. wesenbergii > M. aeruginosa > M. ichthyoblabe. For all the Microcystis species, the density of colonies with gas vasicles increased significantly along with the increase of colony size. Our results suggested that the main driving factor of Microcystis blooms formation in Lake Taihu was low density for M. ichthyoblabe from May to July but was large colony size for M. wesenbergii and M. aeruginosa from August to October.

  15. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean.

    PubMed

    Kruk, Carla; Segura, Angel M; Nogueira, Lucía; Alcántara, Ignacio; Calliari, Danilo; Martínez de la Escalera, Gabriela; Carballo, Carmela; Cabrera, Carolina; Sarthou, Florencia; Scavone, Paola; Piccini, Claudia

    2017-12-01

    The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.e. a trait-based approach) were analyzed. MAC responses from the intracellular (e.g. respiratory activity) to the ecosystem level (e.g. blooms) were evaluated in wide environmental gradients. Experimental results on buoyancy and respiratory activity in response to increased salinity (0-35) and a literature review of maximum growth rates under different temperatures and salinities were combined with field sampling from headwaters (800km upstream) to the marine end of the Rio de la Plata estuary (Uruguay-South America). Salinity and temperature were the major variables affecting MAC responses. Experimentally, freshwater MAC cells remained active for 24h in brackish waters (salinity=15) while colonies increased their flotation velocity. At the population level, maximum growth rate decreased with salinity and presented a unimodal exponential response with temperature, showing an optimum at 27.5°C and a rapid decrease thereafter. At the community and ecosystem levels, MAC occurred from fresh to marine waters (salinity 30) with a sustained relative increase of large mucilaginous colonies biovolume with respect to individual cells. Similarly, total biomass and, specific and morphological richness decreased with salinity while blooms were only detected in freshwater both at high (33°C) and low (11°C) temperatures. In brackish waters, large mucilaginous colonies presented advantages under osmotic restrictive conditions. These traits values have also been associated with higher toxicity potential. This suggest salinity or low temperatures would not represent effective barriers for the survival and transport of potentially toxic MAC under

  16. Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals.

    PubMed

    Mohamed, Z A

    2001-09-01

    In this study, microcosm experiments were run in the laboratory to test the possibility of feeding of Daphnia parvula on toxic Microcystis aeruginosa in some Egyptian irrigation canal at Sohag city. The results demonstrated that Daphnia has a priority of feeding on green algae and the diatom Melosira granulata over toxic M. aeruginosa during the first 10 days. Thereafter, when the green algae and diatom were depleted from the water, Daphnia started to feed on toxic Microcystis. This presumably indicates that Daphnia feeds facultatively on toxic cyanobacteria under the conditions of depletion of edible food. Additionally, the results indicated that Daphnia accumulates the Microcystis toxins "microcystins" in its body with a level of 1.78 microg toxin/25 daphnids. No release of toxin into the water was detected during the experimental period. This emphasizes that the disappearance of toxic Microcystis was due to the feeding by Daphnia, not to death or cell lysis. Such an accumulation of cyanobacterial hepatotoxins in the primary consumers (Daphnia) should be taken into consideration when zooplankton are used in the biomanipulation of toxic phytoplankton. Copyright 2001 Academic Press.

  17. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species--Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana.

    PubMed

    Liao, Xiaobin; Liu, Jinjin; Yang, Mingli; Ma, Hongfang; Yuan, Baoling; Huang, Ching-Hua

    2015-11-01

    Microcystis aeruginosa (blue-green alga) commonly blooms in summer and Cyclotella meneghiniana (diatom) outbreaks in fall in the reservoirs that serve as drinking water sources in Southeast China. Herein, an evaluation of disinfection by-product formation potential (DBPFP) from them during chlorination should be conducted. Five DBPs including trichloromethane (TCM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), 1,1-dichloropropanone (1,1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP) were monitored. The formation potential of TCM and TCNM was enhanced with the increase of reaction time and chlorine dosage, whereas that of DCAN, 1,1-DCP and 1,1,1-TCP increased first and then fell with continuing reaction time. M. aeruginosa showed higher DBPFP than C. meneghiniana, the yield of DBPs varied with components of algal cells. The DBPFP order from components of M. aeruginosa was cell suspension (CS) ≈ intracellular organic matter (IOM) > extracellular organic matter (EOM) > cell debris (CD), which indicated that IOM was the main DBP precursors for M. aeruginosa. The yields of DBPs from components of C. meneghiniana were in the order of CS>IOM≈ CD ≈ EOM, suggesting that three components made similar contributions to the total DBP formation. The amount of IOM with higher DBPFP leaked from both algae species increased with the chlorine dosage, indicating that chlorine dosage should be considered carefully in the treatment of eutrophic water for less destroying of the cell integrity. Though fluorescence substances contained in both algae species varied significantly, the soluble microbial products (SMPs) and aromatic protein-like substances were the main cellular components that contributed to DBP formation for both algae. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California.

    PubMed

    Kurobe, Tomofumi; Lehman, Peggy W; Haque, M E; Sedda, Tiziana; Lesmeister, Sarah; Teh, Swee

    2018-01-01

    In the San Francisco Estuary, California, the largest estuary on the Pacific Coast of North America, the frequency and intensity of drought and associated cyanobacteria blooms are predicted to increase with climate change. To assess the impact of water quality conditions on estuarine fish health during successive severe drought years with Microcystis blooms, we performed fish embryo toxicity testing with Delta Smelt and Medaka. Fish embryos were exposed to filtered ambient water collected from the San Francisco Estuary during the Microcystis bloom season in 2014 and 2015, the third and fourth most severe recorded drought years in California. Medaka embryos incubated in filtered ambient waters exhibited high mortality rates (>77%), which was mainly due to bacterial growth. Medaka mortality data was negatively correlated with chloride, and positively correlated with water temperature, total and dissolved organic carbon, and ambient and net chlorophyll a concentration. Delta Smelt embryo mortality rates were lower (<42%) and no prominent seasonal or geographic trend was observed. There was no significant correlation between the Delta Smelt mortality data and water quality parameters. Aeromonas was the dominant bacteria that adversely affected Medaka. The growth of Aeromonas was suppressed when salinity was greater than or equal to 1psu and resulted in a significant reduction in mortality rate. Bacterial growth test demonstrated that the lysate of Microcystis cells enhanced the growth of Aeromonas. Toxin production by Microcystis is a major environmental concern, however, we conclude that dissolved substances released from Microcystis blooms could result in water quality deterioration by promoting growth of bacteria. Furthermore, a distinctive developmental deformity was observed in Medaka during the toxicity tests; somite formation was inhibited at the same time that cardiogenesis occurred and the functional heart was observed to be beating. The exact cause of the

  19. Evaluation of the Destruction of the Harmful Cyanobacteria, Microcystis aeruginosa, with a Cavitation and Superoxide Generating Water Treatment Reactor.

    PubMed

    Medina, Victor F; Griggs, Chris S; Thomas, Catherine

    2016-06-01

    Cyanobacterial/Harmful Algal Blooms are a major issue for lakes and reservoirs throughout the U.S.A. An effective destructive technology could be useful to protect sensitive areas, such as areas near water intakes. The study presented in this article explored the use of a reactor called the KRIA Water Treatment System. The reactor focuses on the injection of superoxide (O2 (-)), which is generated electrochemically from the atmosphere, into the water body. In addition, the injection process generates a significant amount of cavitation. The treatment process was tested in 190-L reactors spiked with water from cyanobacterial contaminated lakes. The treatment was very effective at destroying the predominant species of cyanobacteria, Microcystis aeruginosa, organic matter, and decreasing chlorophyll concentration. Microcystin toxin concentrations were also reduced. Data suggest that cavitation alone was an effective treatment, but the addition of superoxide improved performance, particularly regarding removal of cyanobacteria and reduction of microcystin concentration.

  20. Temperature Effect on Exploitation and Interference Competition among Microcystis aeruginosa, Planktothrix agardhii and, Cyclotella meneghiniana

    PubMed Central

    Gomes, Andreia Maria da Anunciação; Azevedo, Sandra Maria Feliciano de Oliveira e; Lürling, Miquel

    2015-01-01

    We studied the effect of temperature (18 and 30°C) on growth and on the exploitation and interference competition of three species: Microcystis aeruginosa (MIJAC), Planktothrix agardhii (PAT), and Cyclotella meneghiniana (CCAP). Coculturing the organisms in batch systems allowed for the examination of both competitive interactions, while the interference competition was studied in cross-cultures. The experiments were done during 10–12 days, and samples were taken for chlorophyll-a analysis, using PHYTO-PAM. The temperature did not influence exploitation competition between MIJAC and other competitors and it was the best competitor in both temperatures. PAT presented higher growth rates than CCAP in competition at 18 and 30°C. The temperature influenced the interference competition. The growth of MIJAC was favored in strains exudates at 30°C, while CCAP was favored at 18°C, revealing that the optimum growth temperature was important to establish the competitive superiority. Therefore, we can propose two hypotheses: (i) different temperatures may results in production of distinct compounds that influence the competition among phytoplankton species and (ii) the target species may have different vulnerability to these compounds depending on the temperature. At last, we suggest that both the sensitivity and the physiological status of competing species can determine their lasting coexistence. PMID:26380369

  1. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions.

    PubMed

    Chia, Mathias Ahii; Cordeiro-Araújo, Micheline Kézia; Lorenzi, Adriana Sturion; Bittencourt-Oliveira, Maria do Carmo

    2017-08-01

    Growing evidence suggests that some bioactive metabolites (e.g. cyanotoxins) produced by cyanobacteria have allelopathic potential, due to their inhibitory or stimulatory effects on competing species. Although a number of studies have shown that the cyanotoxin cylindrospermopsin (CYN) has variable effects on phytoplankton species, the impact of changing physicochemical conditions on its allelopathic potential is yet to be investigated. We investigated the physiological response of Microcystis aeruginosa (Cyanobacteria) and Acutodesmus acuminatus (Chlorophyta) to CYN under varying nitrogen and light conditions. At 24h, higher microcystins content of M. aeruginosa was recorded under limited light in the presence of CYN, while at 120h the lower levels of the toxins were observed in the presence of CYN under optimum light. Total MCs concentration was significantly (p<0.05) lowered by CYN after 120h of exposure under limited and optimum nitrogen conditions. On the other hand, there were no significant (p>0.05) changes in total MCs concentrations after exposure to CYN under high nitrogen conditions. As expected, limited light and limited nitrogen conditions resulted in lower cell density of both species, while CYN only significantly (p<0.05) inhibited the growth of M. aeruginosa. Regardless of the light or nitrogen condition, the presence of CYN increased internal H 2 O 2 content of both species, which resulted in significant (p<0.05) changes in antioxidant enzyme (catalase, peroxidase, superoxide dismutase and glutathione S-transferase) activities. The oxidative stress caused by CYN was higher under limited light and limited nitrogen. These results showed that M. aeruginosa and A. acuminatus have variable response to CYN under changing light and nitrogen conditions, and demonstrate that need to consider changes in physicochemical conditions during ecotoxicological and ecophysiological investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interlaboratory comparison of Taq Nuclease Assays for the quantification of the toxic cyanobacteria Microcystis sp

    PubMed Central

    Schober, Eva; Werndl, Michael; Laakso, Kati; Korschineck, Irina; Sivonen, Kaarina; Kurmayer, Rainer

    2011-01-01

    Summary The application of quantitative real time PCR has been proposed for the quantification of toxic genotypes of cyanobacteria. We have compared the Taq Nuclease Assay (TNA) in quantifying the toxic cyanobacteria Microcystis sp. via the intergenic spacer region of the phycocyanin operon (PC) and mcyB indicative of the production of the toxic heptapeptide microcystin between three research groups employing three instruments (ABI7300, GeneAmp5700, ABI7500). The estimates of mcyB genotypes were compared using (i) DNA of a mcyB containing strain and a non-mcyB containing strain supplied in different mixtures across a low range of variation (0-10% of mcyB) and across a high range of variation (20-100%), and (ii) DNA from field samples containing Microcystis sp. For all three instruments highly significant linear regression curves between the proportion of the mcyB containing strain and the percentage of mcyB genotypes both within the low range and within the high range of mcyB variation were obtained. The regression curves derived from the three instruments differed in slope and within the high range of mcyB variation mcyB proportions were either underestimated (0-50%) or overestimated (0-72%). For field samples cell numbers estimated via both TNAs as well as mcyB proportions showed significant linear relationships between the instruments. For all instruments a linear relationship between the cell numbers estimated as PC genotypes and the cell numbers estimated as mcyB genotypes was observed. The proportions of mcyB varied from 2-28% and did not differ between the instruments. It is concluded that the TNA is able to provide quantitative estimates on mcyB genotype numbers that are reproducible between research groups and is useful to follow variation in mcyB genotype proportion occurring within weeks to months. PMID:17258828

  3. Microcystin-LR toxicity on dominant copepods Eurytemora affinis and Pseudodiaptomus forbesi of the upper San Francisco Estuary.

    PubMed

    Ger, Kemal A; Teh, Swee J; Goldman, Charles R

    2009-08-15

    This study investigates the toxicity and post-exposure effects of dissolved microcystin (MC-LR) on the dominant copepods of the upper San Francisco Estuary (SFE), where blooms of the toxic cyanobacteria Microcystis aeruginosa coincide with record low levels in the abundance of pelagic organisms including phytoplankton, zooplankton, and fish. The potential negative impact of Microcystis on the copepods Eurytemora affinis and Pseudodiaptomus forbesi has raised concern for further depletion of high quality fish food. Response of copepods to MC-LR (MC) was determined using a 48-h standard static renewal method for acute toxicity testing. Following exposure, a life table test was performed to quantify any post-exposure impacts on survival and reproduction. The 48-h LC-50 and LC-10 values for MC were 1.55 and 0.14 mg/L for E. affinis; and 0.52 and 0.21 mg/L for P. forbesi. Copepod populations recovered once dissolved MC was removed and cultures returned to optimal conditions, suggesting no post-exposure effects of MC on copepod populations. Dissolved microcystin above 0.14 mg/L proved likely to have chronic effects on the survival of copepods in the SFE. Since such high concentrations are unlikely, toxicity from dissolved microcystin is not a direct threat to zooplankton of the SFE, and other mechanisms such as dietary exposure to Microcystis constitute a more severe risk.

  4. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa.

    PubMed

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice.

  5. Growth, extracellular alkaline phosphatase activity, and kinetic characteristic responses of the bloom-forming toxic cyanobacterium, Microcystis aeruginosa, to atmospheric particulate matter (PM2.5, PM2.5-10, and PM>10).

    PubMed

    Xu, Ziran; Wang, Shoubing; Wang, Yuanan; Zhang, Jie

    2018-03-01

    Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM 2.5 , PM 2.5-10 , and PM >10 on Microcystis aeruginosa were researched. Variabilities in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular activity, and kinetic parameters of alkaline phosphatase were evaluated by lab-cultured experiments. Results showed that the PM 2.5 had a slight stimulation impact on the growth and enhanced both of the 48- and 72-h extracellular alkaline phosphatase activity (APA), the affinity of alkaline phosphatase for substrate, and the 72-h maximum enzymatic reaction velocity (V max ). Moreover, the stimulations in extracellular APA and V max enhanced with the increasing exposure concentrations. We also found there were no obvious distinctions on the effects of growth and alkaline phosphatase in M. aeruginosa between PM 2.5-10 and PM >10 exposure groups. Obviously, inhibitory effects on growth existed in 4.0 and 8.0 mg/L PM 2.5-10 and 8.0 mg/L PM >10 at 120 h. Furthermore, PM 2.5-10 and PM >10 exerted inhibitory effects on the extracellular APA during the 72-h exposure. Simultaneously, the V max was notably inhibited and the affinity of alkaline phosphatase for substrate was more inseparable compared with control in PM 2.5-10 and PM >10 treatments. Nevertheless, the inhibitors in extracellular APA and kinetic parameters were unrelated to PM 2.5-10 and PM >10 exposure concentrations. Two-way ANOVA results revealed that there were significant interactions between exposure concentration and diameter of APM on the 120-h cell density, soluble protein content, APA, and 72 h APA of M. aeruginosa. These results in our study would be meaningful to further

  6. Monitoring toxic cyanobacteria and cyanotoxins (microcystins and cylindrospermopsins) in four recreational reservoirs (Khon Kaen, Thailand).

    PubMed

    Somdee, Theerasak; Kaewsan, Tunyaluk; Somdee, Anchana

    2013-11-01

    The toxic cyanobacterial communities of four recreational reservoirs (Bueng Kaen Nakhon, Bueng Thung Sang, Bueng Nong Khot, and Bueng See Than) in Amphur Muang, Khon Kaen Province, Thailand, were investigated. Water samples were collected via monthly sampling from June to October 2011 for the study on the diversity and density of toxic cyanobacteria and toxin quantification. The main toxic cyanobacteria present in these reservoirs were Aphanocapsa sp., Cylindrospermopsis sp., Leptolyngbya sp., Limnothrix sp., Microcystis sp., Oscillatoria sp., Planktolyngbya sp., Planktotrix sp., and Pseudanabaena sp. The dominant bloom-forming genera in the water samples from Bueng Nong Khot and Bueng See Than were Microcystis sp. and Cylindrospermopsis sp., respectively. Enzyme-linked immunosorbent assays specific for cyanotoxins were performed to detect and quantify microcystins and cylindrospermopsins, with the highest average microcystins content (0.913 μgL(-1)) being found in the sample collected from Bueng Nong Khot and the highest average cylindrospermopsins content (0.463 μgL(-1)) being found in the sample collected from Bueng See Than. The application of 16S rRNA analyses to cyanobacterial isolates BKN2, BNK1, BNK2, and BST1 indicated that these isolates are most closely related to Limnothrix planctonica (JQ004026) (98% similarity), Leptolyngbya sp. (FM177494) (99% similarity), Microcystis aeruginosa (DQ887510) (99% similarity), and Limnothrix redekei (FM177493) (99% similarity), respectively.

  7. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes.

    PubMed

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Improved biovolume estimation of Microcystis aeruginosa colonies: A statistical approach.

    PubMed

    Alcántara, I; Piccini, C; Segura, A M; Deus, S; González, C; Martínez de la Escalera, G; Kruk, C

    2018-05-27

    The Microcystis aeruginosa complex (MAC) clusters many of the most common freshwater and brackish bloom-forming cyanobacteria. In monitoring protocols, biovolume estimation is a common approach to determine MAC colonies biomass and useful for prediction purposes. Biovolume (μm 3 mL -1 ) is calculated multiplying organism abundance (orgL -1 ) by colonial volume (μm 3 org -1 ). Colonial volume is estimated based on geometric shapes and requires accurate measurements of dimensions using optical microscopy. A trade-off between easy-to-measure but low-accuracy simple shapes (e.g. sphere) and time costly but high-accuracy complex shapes (e.g. ellipsoid) volume estimation is posed. Overestimations effects in ecological studies and management decisions associated to harmful blooms are significant due to the large sizes of MAC colonies. In this work, we aimed to increase the precision of MAC biovolume estimations by developing a statistical model based on two easy-to-measure dimensions. We analyzed field data from a wide environmental gradient (800 km) spanning freshwater to estuarine and seawater. We measured length, width and depth from ca. 5700 colonies under an inverted microscope and estimated colonial volume using three different recommended geometrical shapes (sphere, prolate spheroid and ellipsoid). Because of the non-spherical shape of MAC the ellipsoid resulted in the most accurate approximation, whereas the sphere overestimated colonial volume (3-80) especially for large colonies (MLD higher than 300 μm). Ellipsoid requires measuring three dimensions and is time-consuming. Therefore, we constructed different statistical models to predict organisms depth based on length and width. Splitting the data into training (2/3) and test (1/3) sets, all models resulted in low training (1.41-1.44%) and testing average error (1.3-2.0%). The models were also evaluated using three other independent datasets. The multiple linear model was finally selected to calculate MAC

  9. Temporal and spatial distribution of Microcystis biomass and genotype in bloom areas of Lake Taihu.

    PubMed

    Guan, Dong-Xing; Wang, Xingyu; Xu, Huacheng; Chen, Li; Li, Pengfu; Ma, Lena Q

    2018-06-26

    Cyanobacterial blooms as a global environmental issue are of public health concern. In this study, we investigated the spatial (10 sites) and temporal (June, August and October) variations in: 1) their biomass based on chlorophyll-a (chl-a) concentration, 2) their toxic genotype based on gene copy ratio of mcyJ to cpcBA, and 3) their cpcBA genotype composition of Microcystis during cyanobacterial bloom in Lake Taihu. While spatial-temporal variations were found in chl-a and mcyJ/cpcBA ratio, only spatial variation was observed in cpcBA genotype composition. Samples from northwestern part had a higher chl-a, but mcyJ/cpcBA ratio didn't vary among the sites. High chl-a was observed in August, while mcyJ/cpcBA ratio and genotypic richness increased with time. The spatial variations in chl-a and mcyJ/cpcBA ratio and temporal variation in cpcBA genotype were correlated negatively with dissolved N and positively with dissolved P. Spatial distribution of Microcystis biomass was positively correlated with nitrite and P excluding October, but no correlation was found for spatial distribution of mcyJ/cpcBA ratio and cpcBA genotype. Spatial distribution of toxic and cpcBA genotypes may result from horizontal transport of Microcystis colonies, while spatial variation in Microcystis biomass was probably controlled by both nutrient-mediated growth and horizontal transport of Microcystis. The temporal variation in Microcystis biomass, toxic genotype and cpcBA genotype composition were related to nutrient levels, but cause-and-effect relationships require further study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of Light Intensity on the Relative Dominance of Toxigenic and Nontoxigenic Strains of Microcystis aeruginosa

    PubMed Central

    LeBlanc Renaud, Susan; Pick, Frances R.; Fortin, Nathalie

    2011-01-01

    In aquatic ecosystems, the factors that regulate the dominance of toxin-producing cyanobacteria over non-toxin-producing strains of the same species are largely unknown. One possible hypothesis is that limiting resources lead to the dominance of the latter because of the metabolic costs associated with toxin production. In this study, we tested the effect of light intensity on the performance of a microcystin-producing strain of Microcystis aeruginosa (UTCC 300) when grown in mixed cultures with non-microcystin-producing strains with similar intrinsic growth rates (UTCC 632 and UTCC 633). The endpoints measured included culture growth rates, microcystin concentrations and composition, and mcyD gene copy numbers determined using quantitative PCR (Q-PCR). In contrast to the predicted results, under conditions of low light intensity (20 μmol·m−2·s−1), the toxigenic strain became dominant in both of the mixed cultures based on gene copy numbers and microcystin concentrations. When grown under conditions of high light intensity (80 μmol·m−2·s−1), the toxigenic strain still appeared to dominate over nontoxigenic strain UTCC 632 but less so over strain UTCC 633. Microcystins may not be so costly to produce that toxigenic cyanobacteria are at a disadvantage in competition for limiting resources. PMID:21841026

  11. Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary.

    PubMed

    Lehman, P W; Kurobe, T; Lesmeister, S; Baxa, D; Tung, A; Teh, S J

    2017-03-01

    The increased frequency and intensity of drought with climate change may cause an increase in the magnitude and toxicity of freshwater cyanobacteria harmful algal blooms (CHABs), including Microcystis blooms, in San Francisco Estuary, California. As the fourth driest year on record in San Francisco Estuary, the 2014 drought provided an opportunity to directly test the impact of severe drought on cyanobacteria blooms in SFE. A field sampling program was conducted between July and December 2014 to sample a suite of physical, chemical, and biological variables at 10 stations in the freshwater and brackish reaches of the estuary. The 2014 Microcystis bloom had the highest biomass and toxin concentration, earliest initiation, and the longest duration, since the blooms began in 1999. Median chlorophyll a concentration increased by 9 and 12 times over previous dry and wet years, respectively. Total microcystin concentration also exceeded that in previous dry and wet years by a factor of 11 and 65, respectively. Cell abundance determined by quantitative PCR indicated the bloom contained multiple potentially toxic cyanobacteria species, toxic Microcystis and relatively high total cyanobacteria abundance. The bloom was associated with extreme nutrient concentrations, including a 20-year high in soluble reactive phosphorus concentration and low to below detection levels of ammonium. Stable isotope analysis suggested the bloom varied with both inorganic and organic nutrient concentration, and used ammonium as the primary nitrogen source. Water temperature was a primary controlling factor for the bloom and was positively correlated with the increase in both total and toxic Microcystis abundance. In addition, the early initiation and persistence of warm water temperature coincided with the increased intensity and duration of the Microcystis bloom from the usual 3 to 4 months to 8 months. Long residence time was also a primary factor controlling the magnitude and persistence of

  12. Neutral Evolution and Dispersal Limitation Produce Biogeographic Patterns in Microcystis aeruginosa Populations of Lake Systems.

    PubMed

    Shirani, Sahar; Hellweger, Ferdi L

    2017-08-01

    Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change.

  13. Effects of linear alkylbenzene sulfonate (LAS) on the interspecific competition between Microcystis and Scenedesmus.

    PubMed

    Zhu, Wei; Chen, Huaimin; Guo, Lili; Li, Ming

    2016-08-01

    The widespread use of detergents increases the concentration of surfactant in lakes and reservoirs. High surfactant loads produces toxicity to algae; however, the influence of the increasing surfactant on the competition between algae is not clear. In this paper, different amounts of linear alkylbenzene sulfonate (LAS) were added to test the effects of LAS on the competition between Microcystis aeruginosa and Scenedesmus obliquus under eutrophic condition. In single culture, the growth of S. obliquus was promoted under lower LAS concentrations (1 and 20 mg L(-1)), but cell density of S. obliquus reduced when treated with higher LAS concentration (100 mg L(-1)). The growth of M. aeruginosa was inhibited markedly with 20 and 100 mg L(-1) LAS. Compared with single culture, the result was opposite in co-cultures and the cell density of S. obliquus increased significantly when treated with LAS of 1, 20, and 100 mg L(-1). The specific growth rates of S. obliquus and M. aeruginosa in both cultures were 0.4-0.5 day(-1) and 0.6-0.7 day(-1), respectively, except that the specific growth rate of M. aeruginosa in both cultures treated with 100 mg L(-1) LAS was about 0.2 day(-1). M. aeruginosa dominated over S. obliquus in the co-culture without LAS, while the competition was completely opposite with the addition of 20 mg L(-1) LAS. The growth of S. obliquus treated with 20 mg L(-1) LAS was not affected significantly in single culture but was promoted by 75 % in co-culture. Moreover, the growth of S. obliquus in co-culture treated with 100 mg L(-1) LAS was promoted by more than 97 %. These results suggested that the increasing LAS would overturn the competition of algae in freshwater ecosystems.

  14. [Inhibition effect on Microcystis aeruginosa PCC7806 as well as separation and identification of algicidal substances isolated from Salvinia natans (L.) All].

    PubMed

    Zhang, Shengjuan; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting

    2016-05-01

    To study the inhibition effect of Salvinia natans ( L. ) All. on harmful algae. With Microcystis aeruginosa as the subjects, deionized water, ethanol, acetone, ethyl acetate as solvent, four kinds of crude extracts from Salvinia natans (L.) All. were prepared, and their alga-inhibiting actions were verified, respectively. The crude extracts of Salvinia natans (L.) All. with better inhibition effect were selected. The components of algal inhibiting material through macroporous resin purification were obtained, and determined by gas chromatography-mass spectrometry (GC-MS). The algicidal effect as follows: ethyl acetate extract > acetone crude extract > ethanol crude extract > water crude extract. Meanwhile, the inhibitory substances of Salvinia natans (L.) All. may be: diacetone alcohol, methyl isobutenyl ketone, 5-methyl-2-(1-methylethyl)-1-hexanol, pentadecanal, 14-heptadecenal, cumene, butyl acetate, ascorbyl dipalmitate, 1, 2-benzenedicarboxylic acid, mono (2- ethylhexyl) ester, dibutyl phthalate and phthalic acid, butyl undecane ester. The algal inhibiting effect research of Salvinia natans (L.) All., as well as its separation and identification of allelochemicals supplys theoretical basis and practical evidence not only for algae control, but also exploitation of algal inhibiting agent.

  15. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon: effect of surface charge and interactions.

    PubMed

    Hnatukova, Petra; Kopecka, Ivana; Pivokonsky, Martin

    2011-05-01

    In this research, the adsorption of two herbicides, alachlor (ALA) and terbuthylazine (TBA), on granular activated carbon (GAC) in the presence of well-characterized peptide fraction of cellular organic matter (COM) produced by cyanobacterium Microcystis aeruginosa was studied. Two commercially available GACs were characterized using nitrogen gas adsorption and surface charge titrations. The COM peptides of molecular weight (MW) < 10 kDa were isolated and characterized using MW fractionation technique and high-performance size exclusion chromatography (HPSEC). The effect of surface charge on the adsorption of COM peptides was studied by means of equilibrium adsorption experiments at pH 5 and pH 8.5. Electrostatic interactions and hydrogen bonding proved to be important mechanisms of COM peptides adsorption. The adsorption of ALA and TBA on granular activated carbon preloaded with COM peptides was influenced by solution pH. The reduction in adsorption was significantly greater at pH 5 compared to pH 8.5, which corresponded to the increased adsorption of COM peptides at pH 5. The majority of the competition between COM peptides and both herbicides was attributed to low molecular weight COM peptides with MW of 700, 900, 1300 and 1700 Da. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effects of Microcystis on Hypothalamic-Pituitary-Gonadal-Liver Axis in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Chen, Jiazhang; Meng, Shunlong; Xu, Hai; Zhang, Zhen; Wu, Xiangyang

    2017-04-01

    In the present study, Nile tilapia (Oreochromis niloticus) were used to assess the endocrine disruption potential of Microcytis aeruginosa. Male Nile tilapia were exposed to lyophilized M. aeruginosa or purified microcystin-LR (8.3 μg/L) for 28 days. The levels of serum hormones (17β-estradiol and testosterone) and transcripts of selected genes in the hypothalamus-pituitary-gonadal-liver axis were analyzed. The results showed that serum hormones were significantly up-regulated, and transcripts of 13 genes (GHRH, PACAP, GH, GHR1, GHR2, IGF1, IGF2, CYP19a, CYP19b, 3β-HSD1, 20β-HSD, 17β-HSD1 and 17β-HSD8) were significantly altered after Microcytis exposure. These results indicate that fish reproduction can be altered in a Microcystis bloom-contaminated aquatic environment.

  17. AN "ENVIRO-INFORMATIC" ASSESSMENT OF SAGINAW BAY (LAKE HURON, USA) PHYTOPLANKTON: DATA-DRIVEN CHARACTERIZATION AND MODELING OF MICROCYSTIS (CYANOPHYTA)(1).

    PubMed

    Millie, David F; Fahnenstiel, Gary L; Weckman, Gary R; Klarer, David M; Dyble, Julianne; Vanderploeg, Henry A; Fishman, Daniel B

    2011-08-01

    Phytoplankton and Microcystis aeruginosa (Kütz.) Kütz. biovolumes were characterized and modeled, respectively, with regard to hydrological and meteorological variables during zebra mussel invasion in Saginaw Bay (1990-1996). Total phytoplankton and Microcystis biomass within the inner bay were one and one-half and six times greater, respectively, than those of the outer bay. Following mussel invasion, mean total biomass in the inner bay decreased 84% but then returned to its approximate initial value. Microcystis was not present in the bay during 1990 and 1991 and thereafter occurred at/in 52% of sample sites/dates with the greatest biomass occurring in 1994-1996 and within months having water temperatures >19°C. With an overall relative biomass of 0.03 ± 0.01 (mean + SE), Microcystis had, at best, a marginal impact upon holistic compositional dynamics. Dynamics of the centric diatom Cyclotella ocellata Pant. and large pennate diatoms dominated compositional dissimilarities both inter- and intra-annually. The environmental variables that corresponded with phytoplankton distributions were similar for the inner and outer bays, and together identified physical forcing and biotic utilization of nutrients as determinants of system-level biomass patterns. Nonparametric models explained 70%-85% of the variability in Microcystis biovolumes and identified maximal biomass to occur at total phosphorus (TP) concentrations ranging from 40 to 45 μg · L(-1) . From isometric projections depicting modeled Microcystis/environmental interactions, a TP concentration of <30 μg · L(-1) was identified as a desirable contemporary "target" for management efforts to ameliorate bloom potentials throughout mussel-impacted bay waters. © 2011 Phycological Society of America.

  18. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions

    PubMed Central

    Briand, Enora; Bormans, Myriam; Gugger, Muriel; Dorrestein, Pieter C.; Gerwick, William H.

    2016-01-01

    Summary The cyanobacteria Microcystis proliferate in freshwater ecosystems and produce bioactive compounds including the harmful toxins microcystins (MC). These secondary metabolites play an important role in shaping community composition through biotic interactions although their role and mode of regulation are poorly understood. As natural cyanobacterial populations include producing and non-producing strains, we tested if the production of a range of peptides by coexisting cells could be regulated through intraspecific interactions. With an innovative co-culturing chamber together with advanced mass spectrometry (MS) techniques, we monitored the growth and compared the metabolic profiles of a MC-producing as well as two non-MC-producing Microcystis strains under mono- and co-culture conditions. In monocultures, these strains grew comparably; however, the non-MC-producing mutant produced higher concentrations of cyanopeptolins, aerucyclamides and aeruginosins than the wild type. Physiological responses to co-culturing were reflected in a quantitative change in the production of the major peptides. Using a MS/MS-based molecular networking approach, we identified new analogues of known classes of peptides as well as new compounds. This work provides new insights into the factors that regulate the production of MC and other secondary metabolites in cyanobacteria, and suggests interchangeable or complementary functions allowing bloom-forming cyanobacteria to efficiently colonize and dominate in fluctuating aquatic environments. PMID:25980449

  19. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation.

    PubMed

    Hernando, Marcelo; Minaglia, Melina Celeste Crettaz; Malanga, Gabriela; Houghton, Christian; Andrinolo, Darío; Sedan, Daniela; Rosso, Lorena; Giannuzzi, Leda

    2018-01-17

    The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m -2 . For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m -2 , oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m -2 ), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.

  20. Pseudomonas aeruginosa-Candida albicans Interactions: Localization and Fungal Toxicity of a Phenazine Derivative▿

    PubMed Central

    Gibson, Jane; Sood, Arpana; Hogan, Deborah A.

    2009-01-01

    Phenazines are redox-active small molecules that play significant roles in the interactions between pseudomonads and diverse eukaryotes, including fungi. When Pseudomonas aeruginosa and Candida albicans were cocultured on solid medium, a red pigmentation developed that was dependent on P. aeruginosa phenazine biosynthetic genes. Through a genetic screen in combination with biochemical experiments, it was found that a P. aeruginosa-produced precursor to pyocyanin, proposed to be 5-methyl-phenazinium-1-carboxylate (5MPCA), was necessary for the formation of the red pigmentation. The 5MPCA-derived pigment was found to accumulate exclusively within fungal cells, where it retained the ability to be reversibly oxidized and reduced, and its detection correlated with decreased fungal viability. Pyocyanin was not required for pigment formation or fungal killing. Spectral analyses showed that the partially purified pigment from within the fungus differed from aeruginosins A and B, two red phenazine derivatives formed late in P. aeruginosa cultures. The red pigment isolated from C. albicans that had been cocultured with P. aeruginosa was heterogeneous and difficult to release from fungal cells, suggesting its modification within the fungus. These findings suggest that intracellular targeting of some phenazines may contribute to their toxicity and that this strategy could be useful in developing new antifungals. PMID:19011064

  1. An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity.

    PubMed

    Qiao, Qin; Le Manach, Séverine; Huet, Hélène; Duvernois-Berthet, Evelyne; Chaouch, Soraya; Duval, Charlotte; Sotton, Benoit; Ponger, Loïc; Marie, Arul; Mathéron, Lucrèce; Lennon, Sarah; Bolbach, Gérard; Djediat, Chakib; Bernard, Cécile; Edery, Marc; Marie, Benjamin

    2016-12-01

    Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 μg L -1 microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 μg L -1 of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models. Indeed, both MC and Microcystis extract adversely affect reproductive parameters including fecundity and egg hatchability. The liver of toxin treated female fish present glycogen storage loss and cellular damages. The quantitative proteomics analysis revealed that the quantities of 225 hepatic proteins are dysregulated. In particular, a notable decrease in protein quantities of vitellogenin and choriogenin was observed, which could explain the decrease in reproductive output. Liver transcriptome analysis through Illumina RNA-seq reveals that over 100-400 genes are differentially expressed under 5 μg L -1  MC-LR and Microcystis extract treatments, respectively. Ingenuity pathway analysis of the omic data attests that various metabolic pathways, such as energy production, protein biosynthesis and lipid metabolism, are disturbed by both MC-LR and the Microcystis extract, which could provoke the observed reproductive impairment. The transcriptomics analysis also constitutes the first report of the impairment of circadian rhythm-related gene induced by MCs. This study contributes to a better understanding of the potential consequences of chronic exposure of fish to environmental concentrations of cyanotoxins, suggesting that Microcystis extract could impact a

  2. Impact of Growth Conditions and Suspension Time on Toxin Release from M. aeruginosa Upon Exposure to Potassium Permanganate

    EPA Science Inventory

    The objective of this work was to assess the effects of KMnO4 on pure cultures of cyanobacteria (Microcystis aeruginosa) in a jar test. Of particular interest was the impact this oxidant has on the release of intracellular toxin from cells as a function of growth conditions in cu...

  3. LACK OF TERATOGENICITY OF MICROCYSTIN-LR IN THE MOUSE AND TOAD

    EPA Science Inventory

    Abstract. Microcystin-LR (MC-LR) is a cyanobacterial toxin generated by the organism, Microcystis aeruginosa. Although the hepatotoxicity of this chemical has been characterized, the potential developmental toxicity in vertebrates has not been well studied. The purpose of this...

  4. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    PubMed

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. [Effects of algae and kaolinite particles on the survival of bacteriophage MS2].

    PubMed

    He, Qiang; Wu, Qing-Qing; Ma, Hong-Fang; Zhou, Zhen-Ming; Yuan, Bao-Ling

    2014-08-01

    In this study, Bacteriophage MS2, Kaolinite and Microcystis aeruginosa were selected as model materials for human enteric viruses, inorganic and organic particles, respectively. The influence of the inorganic (Kaolinite) or organic (Microcystis aeruginosa) particles on the survival of MS2 at different conditions, such as particles concentration, pH, ion concentration and natural organic matter (NOM) were studied. The results showed that Kaolinite had no effect on the survival of phage MS2 except that apparent survival of MS2 increased 1 logarithm in higher hardness water. Microcystis aeruginosa addition reduced 1 logarithm of MS2 survival. However, when the pH value was greater than 4.0 or the concentration of Microcystis aeruginosa was less than 1.0 x 10(6) cells x L(-1), Microcystis aeruginosa addition had no influence on the survival of MS2. In higher hardness water, Microcystis aeruginosa protected MS2 viruses and then increased the survival of MS2. In drinking water, resource containing higher concentration of particles, the survival ability of virus would be enhanced with the increase of the hardness and then elevated the risks of drinking water safety.

  6. Growth of nutrient-replete Microcystis PCC 7806 cultures is inhibited by an extracellular signal produced by chlorotic cultures.

    PubMed

    Dagnino, Denise; de Abreu Meireles, Diogo; de Aquino Almeida, João Carlos

    2006-01-01

    The frequency of cyanobacterial blooms has been increasing all over the world. These blooms are often toxic and have become a serious health problem. The aim of this work was to search for population density control mechanisms that could inhibit the proliferation of the toxic bloom-forming genus Microcystis. Microcystis PCC 7806 cultured for long periods in liquid ASM-1 medium loses its characteristic green colour. When a medium of chlorotic cultures is added to a nutrient-replete culture, cell density increase is drastically reduced when compared with controls. Inhibition of cell proliferation occurs in Microcystis cultures from any growth stage and was not strain-specific, but other genera tested showed no response. Investigations on the mechanism of growth inhibition showed that cultures treated with the conditioned medium acquired a pale colour, with pigment concentration similar to that found in chlorotic cultures. Ultrastructural examination showed that the conditioned medium induced thylakoid membrane disorganization, typical of chlorotic cells, in nutrient-replete cultures. An active extract was obtained and investigations showed that activity was retained after heating and after addition of an apolar solvent. This indicates that activity of the conditioned medium from chlorotic cells results from non-protein, apolar compound(s).

  7. Recognition of an important water quality issue at zoos: prevalence and potential threat of toxic cyanobacteria.

    PubMed

    Doster, Enrique; Chislock, Michael F; Roberts, John F; Kottwitz, Jack J; Wilson, Alan E

    2014-03-01

    Zoo animals may be particularly vulnerable to water sources contaminated with cyanobacterial toxins given their nonvoluntary close association with this resource. However, the prevalence and potential threat of toxic cyanobacteria in this setting are unknown. Several otherwise unexplained yellow-bellied slider (Trachemys scripta scripta) deaths were documented in a zoo moat with recurring blooms of toxic Microcystis aeruginosa. Furthermore, an extremely high and potentially lethal concentration of the hepatotoxin microcystin (166 ng/g) was found in the liver of a necropsied turtle that died in this moat. A subsequent monthly survey of water quality revealed detectable concentrations of microcystin in all moats (0.0001 to 7.5 microg/L), with moats higher than 1 microg/L being significantly higher than the threshold for safe drinking water recommended by the World Health Organization. These results demonstrate that cyanobacterial blooms are an important water quality issue in zoos, and future research is necessary to identify potential associations among water quality, zoo animal health, and moat management strategies.

  8. NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa.

    PubMed

    Wu, Lishuang; Guo, Xingliang; Liu, Xianglong; Yang, Hong

    2017-01-01

    Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa , was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms.

  9. NprR-NprX Quorum-Sensing System Regulates the Algicidal Activity of Bacillus sp. Strain S51107 against Bloom-Forming Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Wu, Lishuang; Guo, Xingliang; Liu, Xianglong; Yang, Hong

    2017-01-01

    Harmful cyanobacterial blooms have severely impaired freshwater quality and threatened human health worldwide. Here, a Gram-positive bacterium, Bacillus sp. strain S51107, which exhibits strong algicidal activity against Microcystis aeruginosa, was isolated from Lake Taihu. We found that the algicidal activity of strain S51107 was regulated primarily by NprR-NprX quorum sensing (QS), in which the mature form of the signaling peptide NprX was identified as the SKPDIVG heptapeptide. Disruption of the nprR-nprX cassette markedly decreased the algicidal activity, and complemented strains showed significantly recovered algicidal activity. Strain S51107 produced low-molecular-weight algicidal compounds [indole-3-carboxaldehyde and cyclo(Pro-Phe)] and high-molecular-weight algicidal substance(s) (>3 kDa). Moreover, the production of high-molecular-weight algicidal substance(s) was regulated by NprR-NprX QS, but the production of low-molecular-weight algicidal compounds was not. High-molecular-weight algicidal substance(s) played a more important role than low-molecular-weight algicidal compounds in the algicidal activity of strain S51107. The results of this study could increase our knowledge about algicidal characteristics of a potential algicidal bacterium, Bacillus sp. strain S51107, and provide the first evidence that the algicidal activity of Gram-positive algicidal bacteria is regulated by QS, which will greatly enhance our understanding of the interactions between algae and indigenous algicidal bacteria, thereby providing aid in the design and optimization of strategies to control harmful algae blooms. PMID:29075240

  10. The Role of Nitrogen Fixation in Cyanobacterial Bloom Toxicity in a Temperate, Eutrophic Lake

    PubMed Central

    Beversdorf, Lucas J.; Miller, Todd R.; McMahon, Katherine D.

    2013-01-01

    Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N) speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA), possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS) region to determine population dynamics. In parallel, we measured microcystin concentrations, N2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN) concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N2 fixation rates were observed. Then, following large early summer N2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N2 fixation rates and Aphanizomenon abundance increased before the lake mixed in

  11. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy.

    PubMed

    Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart

    2017-11-15

    In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Investigation of algae pollution in Xiliu Lake and identification of toxic cyanobacteria by whole-cell PCR].

    PubMed

    Ban, Hai-qun; Zhuang, Dong-gang; Zhu, Jing-yuan; Ba, Yue

    2006-03-01

    To investigate the contaminative condition of the floating algae (especially toxic cyanobacteria) in Xiliu Lake, and establish a whole-cell PCR method for identifying the toxic cyanobacteria. The surface water of Xiliu Lake was sampled by plastic sampler from March, 2004, and the number of algae was counted by using blood cell counter. The phycocyanin intergenic spacer region (PC-IGS) and microcystin synthetase gene B (mcyB) were identified by whole-cell PCR in water samples, and the amplified product of mcyB was inserted into T vector and sequenced. Cyanobacteria, Chlorophyta, Bacillariophyta and Euglenophyta were main algae, and cyanobacteria was the dominant algae in summer and autumn. From July 7 to September 27,2 004, PC-IGS was detected positively in 11 samples, and from July 29 to September 27, mcyB was-detieted positively in 9 samples. Compared with the reported mcyB of Microcystis aeruginosa in Genbank, the homology of gene sequence was more than 97 t he homology of amino acid sequence was more than 94%. In summer and autumn toxic cyanobacteria could be detected in Xiliu Lake. Toxic cyanobacteria could be identified successfully by whole-cell PCR.

  13. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.

    PubMed

    Duan, Zhipeng; Tan, Xiao; Li, Niegui

    2017-10-01

    Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged Q A , a tightly bound one-electron acceptor, and blocked electron flow at Q B , a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm 3 ). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RC si s), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RC si occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.

  14. The algicidal activity of Aeromonas sp. strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing.

    PubMed

    Guo, Xingliang; Liu, Xianglong; Wu, Lishuang; Pan, Jianliang; Yang, Hong

    2016-11-01

    Cyanobacterial blooms have disrupted the efficient utilization of freshwater worldwide. A new freshwater bacterial strain with strong algicidal activity, GLY-2107, was isolated from Lake Taihu and identified as Aeromonas sp. It produced two algicidal compounds: 2107-A (3-benzyl-piperazine-2,5-dione) and 2107-B (3-methylindole). Both compounds exhibited potent algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. The EC 50 values (concentration for 50% maximal effect) of 3-benzyl-piperazine-2,5-dione and 3-methylindole were 4.72 and 1.10 μg ml -1 respectively. Based on a thin-layer chromatography biosensor assay and ultra-performance liquid chromatography-coupled high resolution-tandem mass spectrometry (UPLC-HRMS/MS), the N-acyl homoserine lactone (AHL) profile of strain GLY-2107 was identified as two short side-chain AHLs: N-butyryl-homoserine lactone (C4-HSL) and N-hexanoyl-homoserine lactone (C6-HSL). The production of the two algicidal compounds was controlled by AHL-mediated quorum sensing (QS), and C4-HSL was the key QS signal for the algicidal activity of the strain GLY-2107. Moreover, 3-methylindole was found to be positively regulated by C4-HSL-mediated QS, whereas 3-benzyl-piperazine-2,5-dione might be negatively controlled by C4-HSL-mediated QS. This study suggests that a QS-regulated algicidal system may have potential use for the development of a novel control strategy for harmful cyanobacterial blooms. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Co-occurrence of non-toxic (cyanopeptolin) and toxic (microcystin) peptides in a bloom of Microcystis sp. from a Chilean lake.

    PubMed

    Neumann, U; Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Weckesser, J; Erhard, M

    2000-06-01

    A cyanobacterial bloom occurring in 1998 in lake Tres Pascualas (Concepción/Chile) was found to be dominated by Microcystis sp. The bloom contained both non-toxic (cyanopeptolin-type) and hepatotoxic (microcystin-type) peptides. Cyanopeptolin structure of the non-toxic peptides (called cyanopeptolin VW-1 and VW-2, respectively) was revealed by matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) of whole cells, showing dominant molecular ions at m/z = 975 and m/z 995, respectively. On post source decay (PSD), both cyanopeptolins showed fragments deriving from Ahp-Phe-MTyr (3-amino-6-hydroxy-2-piperidone), the characteristic partial structure of cyanopeptolins. The amounts of each of the two cyanopeptolins could only roughly be estimated to be >0.1% of bloom material dry weight. In addition the blooms contained microcystins (20 microg/g bloom dry weight as determined by RP-HPLC, 13 microg/g according to ELISA determination). MALDI-TOF-MS revealed several structural variants of microcystin: MCYST-RR (microcystin with Arg and Arg, indicated by m/z 1,038 and confirmed by PSD revealing a m/z = 135 fragment deriving from the Adda side chain, MCYST-FR (microcystin with Phe and Arg, indicated by m/z = 1,015). The presence of [Asp(3)]-MCYST-LR (microcystin with Leu and Arg, Asp non-methylated, indicated by m/z 981), and [Asp(3)]-MCYST-YR (microcystin with Tyr and Arg, Asp non-methylated, indicated by m/z 1,031) were likely. The relative amounts of the peptides varied between February, April, and May. Whole cell extracts from the bloom material revealed specific enzyme inhibitory activities. The serin-proteases trypsin, plasmin, elastase were inhibited, assumable due to the cyanopeptolins found. Elastase and the cysteine-protease papain were not inhibited, inhibitions of protein kinase and glutathione S-transferase (GST) were low. Strong inhibition was observed with protein-phosphatase-1, likely due to the microcystins present in the samples.

  16. Occurrence of Toxic Cyanobacterial Blooms in Rio de la Plata Estuary, Argentina: Field Study and Data Analysis

    PubMed Central

    Giannuzzi, L.; Carvajal, G.; Corradini, M. G.; Araujo Andrade, C.; Echenique, R.; Andrinolo, D.

    2012-01-01

    Water samples were collected during 3 years (2004–2007) at three sampling sites in the Rio de la Plata estuary. Thirteen biological, physical, and chemical parameters were determined on the water samples. The presence of microcystin-LR in the reservoir samples, and also in domestic water samples, was confirmed and quantified. Microcystin-LR concentration ranged between 0.02 and 8.6 μg.L−1. Principal components analysis was used to identify the factors promoting cyanobacteria growth. The proliferation of cyanobacteria was accompanied by the presence of high total and fecal coliforms bacteria (>1500 MNP/100 mL), temperature ≥25°C, and total phosphorus content ≥1.24 mg·L−1. The observed fluctuating patterns of Microcystis aeruginosa, total coliforms, and Microcystin-LR were also described by probabilistic models based on the log-normal and extreme value distributions. The sampling sites were compared in terms of the distribution parameters and the probability of observing high concentrations for Microcystis aeruginosa, total coliforms, and microcystin-LR concentration. PMID:22523486

  17. An Eco-Safety Assessment of Glyoxal-Containing Cellulose Ether on Freeze-Dried Microbial Strain, Cyanobacteria, Daphnia, and Zebrafish

    PubMed Central

    Park, Chang-Beom; Song, Min Ju; Choi, Nak Woon; Kim, Sunghoon; Jeon, Hyun Pyo; Kim, Sanghun; Kim, Youngjun

    2017-01-01

    The objective of this study was to investigate the aquatic-toxic effects of glyoxal-containing cellulose ether with four different glyoxal concentrations (0%, 1.4%, 2.3%, and 6.3%) in response to global chemical regulations, e.g., European Union Classification, Labeling and Packaging (EU CLP). Toxicity tests of glyoxal-containing cellulose ether on 11 different microbial strains, Microcystis aeruginosa, Daphnia magna, and zebrafish embryos were designed as an initial stage of toxicity screening and performed in accordance with standardized toxicity test guidelines. Glyoxal-containing cellulose ether showed no significant toxic effects in the toxicity tests of the 11 freeze-dried microbial strains, Daphnia magna, and zebrafish embryos. Alternatively, 6.3% glyoxal-containing cellulose ether led to a more than 60% reduction in Microcystis aeruginosa growth after 7 days of exposure. Approximately 10% of the developmental abnormalities (e.g., bent spine) in zebrafish embryos were also observed in the group exposed to 6.3% glyoxal-containing cellulose ether after 6 days of exposure. These results show that 6.3% less glyoxal-containing cellulose ether has no acute toxic effects on aquatic organisms. However, 6.3% less glyoxal-containing cellulose ether may affect the health of aquatic organisms with long-term exposure. In order to better evaluate the eco-safety of cellulosic products containing glyoxal, further studies regarding the toxic effects of glyoxal-containing cellulose ether with long-term exposure are required. The results from this study allow us to evaluate the aquatic-toxic effects of glyoxal-containing cellulosic products, under EU chemical regulations, on the health of aquatic organisms. PMID:28335565

  18. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    PubMed

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Toxicity of trifluoroacetate to aquatic organisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berends, A.G.; Rooij, C.G. de; Boutonnet, J.C.

    1999-05-01

    As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined amore » NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.« less

  20. Influence of Cyanobacterial Bloom on Freshwater Biocoenosis. Use of Bioassays for Cyanobacterial Microcystins Toxicity Assessment

    NASA Astrophysics Data System (ADS)

    Piontek, Marlena; Czyżewska, Wanda

    2017-03-01

    The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river), which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina) and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens). Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50) for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50) 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR). The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.

  1. Comparative Metagenomics of Toxic Freshwater Cyanobacteria Bloom Communities on Two Continents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steffen, Morgan M; Li, Zhou; Effler, Chad

    2012-01-01

    Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic community associated with bloom events. To address these issues, we examined the bloomassociated microbial communities in single samples from Lake Erie (North America), Lake Tai (Taihu, China), andmore » Grand Lakes St. Marys (OH, USA) using comparative metagenomics. Together the Cyanobacteria and Proteobacteria comprised .90% of each bloom bacterial community sample, although the dominant phylum varied between systems. Relative to the existing Microcystis aeruginosa NIES 843 genome, sequences from Lake Erie and Taihu revealed a number of metagenomic islands that were absent in the environmental samples. Moreover, despite variation in the phylogenetic assignments of bloomassociated organisms, the functional potential of bloom members remained relatively constant between systems. This pattern was particularly noticeable in the genomic contribution of nitrogen assimilation genes. In Taihu, the genetic elements associated with the assimilation and metabolism of nitrogen were predominantly associated with Proteobacteria, while these functions in the North American lakes were primarily contributed to by the Cyanobacteria. Our observations build on an emerging body of metagenomic surveys describing the functional potential of microbial communities as more highly conserved than that of their phylogenetic makeup within natural systems.« less

  2. Effects of solution chemistry on the sunlight inactivation of particles-associated viruses MS2.

    PubMed

    Wu, Xueyin; Feng, Zhe; Yuan, Baoling; Zhou, Zhenming; Li, Fei; Sun, Wenjie

    2018-02-01

    The inactivation efficacy of bacteriophage MS2 by simulated sunlight irradiation was investigated to understand the effects of MS2 aggregation and adsorption to particles in solutions with different components. Kaolinite and Microcystis aeruginosa were used as model inorganic and organic particles, respectively. Lower pH and di-valent ions (Ca 2+ ) were main factors on the aggregation and inactivation of MS2. In the presence of both particles, there was no significant impact on the MS2 inactivation efficacy by kaolinite (10-200mM) or Microcystis aeruginosa (10 2 -10 5 Cells/mL) in 1mM NaCl at pH 7. However at lower pH 3, MS2 aggregates formed in the particle-free and kaolinite-containing solutions, caused lower inactivation since the outer viruses of aggregation protect the inner viruses. In addition, more MS2 adsorbed on Microcystis aeruginosa at lower pH (3 and 4). Microcystis aeruginosa would act as a potential photosensitizer for ROS production to inactivate the adsorbed MS2, since extracellular organic matter (EOM) of Microcystis aeruginosa was detected in this study, which has been reported to produce ROS under solar irradiation. At pH 7, Na + had no effect on the inactivation of MS2, because MS2 was stable and dispersed even at 200mM Na + . MS2 aggregated and adsorbed on particles even at 10mM Ca 2+ and led to lower inactivation. Kaolinite cannot offer enough protection to adsorbed MS2 as aggregation and Microcystis aeruginosa acts as potential photosensitizer to produce ROS and inactivate the adsorbed MS2 at high concentration of Ca 2+ . In particle-free solution, SRNOM inhibited MS2 inactivation by shielding the sunlight and coating MS2 to increase its survival. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Toxic Cyanobacterial Bloom Triggers in Missisquoi Bay, Lake Champlain, as Determined by Next-Generation Sequencing and Quantitative PCR

    PubMed Central

    Fortin, Nathalie; Munoz-Ramos, Valentina; Bird, David; Lévesque, Benoît; Whyte, Lyle G.; Greer, Charles W.

    2015-01-01

    Missisquoi Bay (MB) is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes) and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP) ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages. PMID:25984732

  4. Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation.

    PubMed

    Chang, Che-Wei; Huo, Xiangchen; Lin, Tsair-Fuh

    2018-05-14

    The aims of this study are to evaluate, under visible light conditions, the ability of H 2 O 2 and TiO 2 to produce OH, their quantitative impacts on the cell integrity of Microcystis, and the subsequent release and degradation of microcystins (MCs). A sequential reaction model was developed, including one sub-model to simulate the rupture kinetics for cell integrity of Microcystis, and another to describe the release and degradation of MCs. For cell rupture, the dual-oxidant Delayed Chick-Watson model (DCWM) and dual-oxidant Hom model (HM) were first proposed and developed, giving excellent simulation results of cell rupture kinetics. Kinetic rate constants between Microcystis cells and H 2 O 2 [Formula: see text] as well as OH (k •OH, Cell ) under visible light successfully separated the individual effects of H 2 O 2 and OH on Microcystis. The dual-oxidant models were further validated with additional experiments, making the models more convincing. Finally, the dual-oxidant cell rupture models were integrated with the MC degradation model and well predicted the observed MCs concentrations in the experimental systems. The results of this study not only demonstrate the potential application of H 2 O 2 and TiO 2 for the control of cyanobacteria and metabolites in natural water bodies, but also provide a new methodology to differentiate the individual contributions of the two oxidants, H 2 O 2 and OH, on cell rupture, thus giving a novel way to more precisely determine the effective doses of applied oxidants for cyanobacteria control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Large-Scale Comparative Metagenomic Study Reveals the Functional Interactions in Six Bloom-Forming Microcystis-Epibiont Communities

    PubMed Central

    Li, Qi; Lin, Feibi; Yang, Chen; Wang, Juanping; Lin, Yan; Shen, Mengyuan; Park, Min S.; Li, Tao; Zhao, Jindong

    2018-01-01

    Cyanobacterial blooms are worldwide issues of societal concern and scientific interest. Lake Taihu and Lake Dianchi, two of the largest lakes in China, have been suffering from annual Microcystis-based blooms over the past two decades. These two eutrophic lakes differ in both nutrient load and environmental parameters, where Microcystis microbiota consisting of different Microcystis morphospecies and associated bacteria (epibionts) have dominated. We conducted a comprehensive metagenomic study that analyzed species diversity, community structure, functional components, metabolic pathways and networks to investigate functional interactions among the members of six Microcystis-epibiont communities in these two lakes. Our integrated metagenomic pipeline consisted of efficient assembly, binning, annotation, and quality assurance methods that ensured high-quality genome reconstruction. This study provides a total of 68 reconstructed genomes including six complete Microcystis genomes and 28 high quality bacterial genomes of epibionts belonging to 14 distinct taxa. This metagenomic dataset constitutes the largest reference genome catalog available for genome-centric studies of the Microcystis microbiome. Epibiont community composition appears to be dynamic rather than fixed, and the functional profiles of communities were related to the environment of origin. This study demonstrates mutualistic interactions between Microcystis and epibionts at genetic and metabolic levels. Metabolic pathway reconstruction provided evidence for functional complementation in nitrogen and sulfur cycles, fatty acid catabolism, vitamin synthesis, and aromatic compound degradation among community members. Thus, bacterial social interactions within Microcystis-epibiont communities not only shape species composition, but also stabilize the communities functional profiles. These interactions appear to play an important role in environmental adaptation of Microcystis colonies. PMID:29731741

  6. Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde.

    PubMed

    Semedo-Aguiar, Ana P; Pereira-Leal, Jose B; Leite, Ricardo B

    2018-05-05

    The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise.

  7. Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde

    PubMed Central

    Pereira-Leal, Jose B.

    2018-01-01

    The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise. PMID:29734762

  8. Blooms of cyanobacteria on the potomac river.

    PubMed

    Krogmann, D W; Butalla, R; Sprinkle, J

    1986-03-01

    Blooms of cyanobacteria have appeared on the Potomac River near Washington, DC in years of drought and low river volume. The location of the bloom may be related to tidal activity. In 1983, the bloom of Microcystis aeruginosa used ammonia as its nitrogen source and contained low levels of toxic peptides. Cells collected from this bloom proved to be homogeneous and were an excellent source material for the isolation of proteins involved in photosynthesis.

  9. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    PubMed

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br - on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA 254 ) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br - . When the concentration of Br - was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br - increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  10. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA

    EPA Science Inventory

    Microcystin toxins are cyclic heptapeptides produced by several genera and species of cyanobacteria that are responsible for the "green scum" frequently observed on eutrophic surface waters. These toxins, which are a million times more toxic than cyanide ion, have caused deaths o...

  11. Pyrosequencing reveals benthic bacteria changes responsing to heavy deposition of Microcystis scum in lab — searching bacteria for bloom control

    NASA Astrophysics Data System (ADS)

    Tang, Yali; Cheng, Dongmei; Guan, Baohua; Zhang, Xiufeng; Liu, Zhengwen; Liu, Zejun

    2017-05-01

    Bacteria capable of degrading cyanobacteria Microcystis are crucial for determining the ecological consequences of Microcystis blooms in freshwater lakes. Scum derived from Microcystis blooms tends to accumulate in bays of large lakes and then sink to the sediments where it is finally consumed by benthic bacteria. Understanding the response of benthic bacterial communities to massive Microcystis deposition events may help identify the bacteria best suited to Microcystis hydrolyzation and even bloom control. For that purpose, an experimental system was set up in which intact sediment cores were incubated in the laboratory with normal and heavy deposits of Microcystis detritus. Pyrosequencing was performed in order to describe a phylogenetic inventory of bacterial communities in samples taken at 0-1, 1-2 and 2-3 cm depths in incubated sediments and in original untreated sediment. A hierarchical cluster tree was constructed expose differences between sediments. Similarity percentage calculations were also performed to identify the bacterial species contributing to variation. The results of this study suggest that: (1) deposition of Microcystis scums exerts a strong effect on the bacterial community composition in the surface (0-1 cm) and sub-surface (1-2 cm) sediment layers; (2) bacterial community responses to Microcystis detritus deposition vary across vertical gradients. A list of bacteria with potential roles in Microcystis degradation was compiled. These findings may inform the development of future measures for Microcystis bloom control in lakes.

  12. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  13. Blooms of Cyanobacteria on the Potomac River 1

    PubMed Central

    Krogmann, David W.; Butalla, Ruth; Sprinkle, James

    1986-01-01

    Blooms of cyanobacteria have appeared on the Potomac River near Washington, DC in years of drought and low river volume. The location of the bloom may be related to tidal activity. In 1983, the bloom of Microcystis aeruginosa used ammonia as its nitrogen source and contained low levels of toxic peptides. Cells collected from this bloom proved to be homogeneous and were an excellent source material for the isolation of proteins involved in photosynthesis. PMID:16664682

  14. Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905.

    PubMed

    Hu, Xi; Liu, Yunguo; Zeng, Guangming; Hu, Xinjiang; Wang, Yaqin; Zeng, Xiaoxia

    2014-07-01

    The effects of limonene exposure on the growth of Microcystisaeruginosa and the release of toxic intracellular microcystin (MCY) were tested by evaluating the results obtained from the batch culture experiments with M. aeruginosa FACHB-905. The time series of cell as well as intracellular and extracellular MCY concentrations were evaluated during 5d of the incubation. After exposure to limonene, the number of cells gradually diminished; the net log cell reduction after 5d of the exposure was 3.0, 3.6, and 3.8log when the initial cell densities were set at 1.6×10(7), 1.1×10(6) and 4.1×10(5)cell/mL, respectively. Limonene was found to significantly influence the production and release of MCY. As the limonene exposure could inhibit the increase in the number of cells, the increase in the total MCY concentration in the medium was also inhibited. In the presence of limonene, the intracellular MCY was gradually released into the medium through a gradual reduction in the number of cells. The extracellular MCY concentration in the medium was significantly higher in the limonene-exposed samples than in the control samples, which confirmed that limonene cannot decompose the extracellular MCY. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth?

    PubMed

    Bykova, Olga; Laursen, Andrew; Bostan, Vadim; Bautista, Joseph; McCarthy, Lynda

    2006-12-01

    This study examined possible relationships between the presence of zebra mussels (Dreissena polymorpha) and Microcystis spp. abundance. Experiments were conducted in 12 microcosms designed to mimic shallow lake ecosystems. Fresh, aerated water with phytoplankton (pseudokirchneriella spp. and Microcystis spp.) was pumped into each microcosm daily to ensure zebra mussels were exposed to oxygen and food. Microcosms containing zebra mussels experienced significantly higher fluxes of nitrate (p=0.019) and lower fluxes of ortho-phosphate (p=0.047) into sediments. In a second experiment, water column nutrient concentrations were compared in microcosms with and without live zebra mussels. Consistent with results of the previous experiment, microcosms with zebra mussels had significantly less nitrate (p=0.023) and organic nitrogen (p=0.003) in the water column, while ammonium (p=0.074), phosphate (p=0.491), and dissolved organic carbon (p=0.820) in the water column were not different between microcosms with or without zebra mussels. Microcosms with zebra mussels also experienced a reduction in green algae (pseudokirchneriella) (p<0.001) and an increase in abundance of Microcystis (p<0.001) relative to microcosms without zebra mussels. In an experiment without zebra mussels, nutrient ratios (N/P) were manipulated to determine potential links between N/P and relative abundance of each phytoplankton. Manipulation of N/P was intended to mimic differences observed in microcosms with and without zebra mussels in the previous experiment. Low N/P (mimicking microcosms with zebra mussels) was related to an increase in Microcystis (p<0.001) and Microcystis/Pseudokirchneriella biovolume (p<0.001). It is this shift in N/P, and possibly some level of selective feeding, that is believed to have driven changes in the relative abundance of Microcystis. In lakes invaded by zebra mussels, alterations in the processing of nitrogen and phosphorus could contribute to the re-emergence of

  16. Study on the method and mechanism of pre-pressure coagulation and sedimentation for Microcystis removal from drinking-water sources.

    PubMed

    Cong, Haibing; Sun, Feng; Chen, Wenjing; Xu, Yajun; Wang, Wei

    2018-02-01

    In order to effectively remove the Microcystis from drinking-water sources, pre-pressure treatment was first used to make the Microcystis lose buoyancy, and then it is easily removed by coagulation and sedimentation processes. The Microcystis-containing water from Taihu Lake was taken for the pre-pressure coagulation and sedimentation treatments in this study. Both intermittent laboratory experiment and continuous-flow field experiment were conducted. Experimental results showed that the optimum pre-pressure condition was pressuring at 0.6-0.8 MPa for at least 10 s, and 60 s was the best. Comparing with the pre-oxidation, pre-pressure could obviously increase the removal efficiency of Microcystis by following coagulation and sedimentation, and would not increase the dissolved microcystins. The mechanism of pre-pressure treatment was that the pre-pressure destroys the gas vesicles in Microcystis cells and the gas diffuses out of the cells, which leads the Microcystis to lose buoyancy and make them to sink. The recovery time of gas vesicles was longer than the sludge discharge period of sedimentation tank; therefore, the sinking Microcystis would not re-float in the sedimentation tank. In the practical application of drinking water treatment plant, the continuous-flow pressure device could be chosen, with the energy consumption of about 22.9 kw·h per 10,000 m 3 .

  17. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils.

    PubMed

    Saif, Saima; Khan, Mohammad Saghir

    2018-04-17

    Considering the heavy metal risk to soil microbiota and agro-ecosystems, the study was designed to determine metal toxicity to bacteria and to find metal tolerant bacteria carrying multifarious plant growth promoting activities and to assess their impact on chickpea cultivated in stressed soils. Metal tolerant strain SFP1 recognized as Pseudomonas aeruginosa employing 16S rRNA gene sequence determination showed maximum tolerance to Cr (400 μg/ml) and Ni (800 μg/ml) and produced variable amounts of indole acetic acid, HCN, NH 3 , and ACC deaminase and could solubilize insoluble phosphates even under Cr (VI) and Ni stress. Metal tolerant P. aeruginosa reduced toxicity of Cr (VI) and Ni and concomitantly enhanced the performance of chickpea grown under stressed and conventional soils. At 144 mg Cr kg -1 , the measured parameters of a bacterial strain was significantly enhanced, but it was lower compared to those recorded at 660 mg Ni kg -1 . The strain SFP1 demonstrated maximum increase in seed yield (81%) and grain protein (16%) at 660 mg Ni kg -1 over uninoculated and untreated control. Stressed plants had more proline, antioxidant enzymes, and metal concentrations in plant tissues. P. aeruginosa, however, remarkably declined the level of stress markers (proline and APX, SOD, CAT, and GR), as well as with Cr (VI) and Ni uptake by chickpea. Conclusively, P. aeruginosa strain SFP1 due to its dual metal tolerant ability, capacity to secrete plant growth promoting regulators even under metal stress and potential to mitigate metal toxicity, could be developed as microbial inoculant for enhancing chickpea production in Cr and Ni contaminated soils.

  18. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  19. Pathophysiology of Peptide Toxins of Microcystis aeruginosa and Amanita phalloides

    DTIC Science & Technology

    1986-06-30

    minimal for dexamethasone . Thp chronic toxicity of repeated sublethal doses of toxin-LR has received limited study, but a definite lesion has been... 1 /12 1 /12 Dexamethasone 0.02 mg/gbw 5/5 4/5 5/5 4/5 Dexamethasone 0.20 mg/gbw 10/10 15/15 12/12 9/10 *Fractional mortality. 52 Table 15: Effect of...n For U’i. [IJ*•i •l .......................... 1 1 t !7 ... ... ’, D •-. .. .. a -+ .< # TABLE OF CONTENTS Page STATEMENT OF PROBLEM UNDER STUDY BACK

  20. [Investigation of toxigenic microcystis and microcystin pollution in Huayuankou Conservation Pool of Yellow River].

    PubMed

    Ban, Haiqun; Ba, Yue; Cheng, Xuemin; Wang, Guangzhou

    2007-09-01

    To investigate the contaminative, condition of planktonic algae, cyanobacteria, toxigenic microcystis and microcystin in Huayuankou Conservation Pool of Yellow River. From March 2005 to January 2006, water samples were taken 15 times by 2. 5L plastic sampler from Huayuankou Conservation Pool. The density of algae were counted by using blood cell counter. Phycocyanin intergenic spacer region (PC-IGS) and microcystin synthetase gene B (mcyB) of toxigenic microcystis was identified by the whole cell PCR. The concentration of microcystin was determined by ELISA kit. The positive results of PCR and ELISA were compared. Bacillariophyta, chlorophyta, cyanophyta (cyanobacteria) and euglenophyta were main algaes in Huayuankou conservation pool, and the dominant algae and cell density changed seasonally. Algae cell density and cyanobacteria cell density were higher in summer and autumn than in spring and winter. From July to November, 2005, PC-IGS and mcyB were detected positively by whole cell PCR. Microcystin was positively detected from July, the concentration of microcystin changed from 0 to 0.25microg/L, it was more higher in summer than other seasons. Toxigenic microcystis and microcystin could be detected in Huayuankou Conservation Pool of Yellow River. Whole cell PCR could be used to identify toxigenic microcystis.

  1. Application of Real-Time PCR for Quantification of Microcystin Genotypes in a Population of the Toxic Cyanobacterium Microcystis sp.

    PubMed Central

    Kurmayer, Rainer; Kutzenberger, Thomas

    2003-01-01

    The cyanobacterium Microcystis sp. frequently develops water blooms consisting of organisms with different genotypes that either produce or lack the hepatotoxin microcystin. In order to monitor the development of microcystin (mcy) genotypes during the seasonal cycle of the total population, mcy genotypes were quantified by means of real-time PCR in Lake Wannsee (Berlin, Germany) from June 1999 to October 2000. Standard curves were established by relating cell concentrations to the threshold cycle (the PCR cycle number at which the fluorescence passes a set threshold level) determined by the Taq nuclease assay (TNA) for two gene regions, the intergenic spacer region within the phycocyanin (PC) operon to quantify the total population and the mcyB gene, which is indicative of microcystin synthesis. In laboratory batch cultures, the cell numbers inferred from the standard curve by TNA correlated significantly with the microscopically determined cell numbers on a logarithmic scale. The TNA analysis of 10 strains revealed identical amplification efficiencies for both genes. In the field, the proportion of mcy genotypes made up the smaller part of the PC genotypes, ranging from 1 to 38%. The number of mcyB genotypes was one-to-one related to the number of PC genotypes, and parallel relationships between cell numbers estimated via the inverted microscope technique and TNA were found for both genes. It is concluded that the mean proportion of microcystin genotypes is stable from winter to summer and that Microcystis cell numbers could be used to infer the mean proportion of mcy genotypes in Lake Wannsee. PMID:14602633

  2. Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources.

    PubMed

    Zamyadi, A; McQuaid, N; Prévost, M; Dorner, S

    2012-02-01

    Toxic cyanobacteria threaten the water quality of drinking water sources across the globe. Two such water bodies in Canada (a reservoir on the Yamaska River and a bay of Lake Champlain in Québec) were monitored using a YSI 6600 V2-4 (YSI, Yellow Springs, Ohio, USA) submersible multi-probe measuring in vivo phycocyanin (PC) and chlorophyll-a (Chl-a) fluorescence, pH, dissolved oxygen, conductivity, temperature, and turbidity in parallel. The linearity of the in vivo fluorescence PC and Chl-a probe measurements were validated in the laboratory with Microcystis aeruginosa (r(2) = 0.96 and r(2) = 0.82 respectively). Under environmental conditions, in vivo PC fluorescence was strongly correlated with extracted PC (r = 0.79) while in vivo Chl-a fluorescence had a weaker relationship with extracted Chl-a (r = 0.23). Multiple regression analysis revealed significant correlations between extracted Chl-a, extracted PC and cyanobacterial biovolume and in vivo fluorescence parameters measured by the sensors (i.e. turbidity and pH). This information will help water authorities select the in vivo parameters that are the most useful indicators for monitoring cyanobacteria. Despite highly toxic cyanobacterial bloom development 10 m from the drinking water treatment plant's (DWTP) intake on several sampling dates, low in vivo PC fluorescence, cyanobacterial biovolume, and microcystin concentrations were detected in the plant's untreated water. The reservoir's hydrodynamics appear to have prevented the transport of toxins and cells into the DWTP which would have deteriorated the water quality. The multi-probe readings and toxin analyses provided critical evidence that the DWTP's untreated water was unaffected by the toxic cyanobacterial blooms present in its source water.

  3. Algicidal activity of a dibenzofuran-degrader Rhodococcus sp.

    PubMed

    Wang, Meng-Hui; Peng, Peng; Liu, Yu-Mei; Jia, Rui-Bao; Li, Li

    2013-02-01

    Rhodococcus sp. strain p52, a previously isolated dibenzofuran degrader, could effectively inhibit the growth of cyanobacteria, including species of Microcystis, Anabaena, and Nodularia. When strain p52 was inoculated at the concentration of 7.7×10(7) CFU/ml, 93.5% of exponentially growing Microcystis aeruginosa (7.3×10(6) cells/ml initially) was inhibited after 4 day. The threshold concentration for its algicidal activity against M. aeruginosa was 7.7×10(6) CFU/ml. Strain p52 exerted algicidal effect by synthesizing extracellular substances, which were identified as trans-3-indoleacrylic acid, DL-pipecolic acid, and L-pyroglutamic acid. The effective concentrations of trans-3-indoleacrylic acid and DL-pipecolic acid against M. aeruginosa were tested to be 0.5 mg/l and 5 mg/l, respectively.

  4. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria.

    PubMed

    Bittencourt-Oliveira, M C; Hereman, T C; Macedo-Silva, I; Cordeiro-Araújo, M K; Sasaki, F F C; Dias, C T S

    2015-05-01

    We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.

  5. Cesium-induced inhibition of bacterial growth of Pseudomonas aeruginosa PAO1 and their possible potential applications for bioremediation of wastewater.

    PubMed

    Kang, Sung-Min; Jang, Sung-Chan; Heo, Nam Su; Oh, Seo Yeong; Cho, Hye-Jin; Rethinasabapathy, Muruganantham; Vilian, A T Ezhil; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2017-09-15

    Radioactive isotopes and fission products have attracted considerable attention because of their long lasting serious damage to the health of humans and other organisms. This study examined the toxicity and accumulation behavior of cesium towards P. aeruginosa PAO1 and its capacity to remove cesium from waste water. Interestingly, the programmed bacterial growth inhibition occurred according to the cesium environment. The influence of cesium was analyzed using several optical methods for quantitative evaluation. Cesium plays vital role in the growth of microorganisms and functions as an anti-microbial agent. The toxicity of Cs to P. aeruginosa PAO1 increases as the concentration of cesium is increased in concentration-dependent manner. P. aeruginosa PAO1 shows excellent Cs removal efficiency of 76.1% from the contaminated water. The toxicity of cesium on the cell wall and in the cytoplasm were studied by transmission electron microscopy and electron dispersive X-ray analysis. Finally, the removal of cesium from wastewater using P. aeruginosa PAO1 as a potential biosorbent and the blocking of competitive interactions of other monovalent cation, such as potassium, were assessed. Overall, P. aeruginosa PAO1 can be used as a high efficient biomaterial in the field of radioactive waste disposal and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Inhibitory effect of a Microcystis sp (cyanobacteria) toxin on development of preimplantation mouse embryos.

    PubMed

    Sepulveda, M S; Rojas, M; Zambrano, F

    1992-07-01

    1. A soluble toxin, purified from the algae bloom of an eutrophic lake dominated by Microcystis, is a very effective inhibitor of early embryo development in a dose-response relationship. 2. Two- and 8-cell mouse embryos under the influence of Microcystis toxin do not reach the developmental stages of morula and blastocyst, respectively. 3. Actin cortex is disorganized without change in the microtubules structure. 4. Results are discussed in terms of the possible mechanisms by which the toxin arrests development considering, specifically, effects on the cytoskeleton and/or on voltage-insensitive transmembrane Ca2+ channels.

  7. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    PubMed Central

    Scarascia, Giantommaso; Yap, Scott A.; Kaksonen, Anna H.; Hong, Pei-Ying

    2018-01-01

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications. PMID:29770130

  8. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments.

    PubMed

    Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming

    2016-09-15

    Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were <100 μm in spring, but colonies within moderate-size (100-500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Inhibitory effect of a toxic peptide isolated from a waterbloom of Microcystis sp. (Cyanobacteria) on iron uptake by rabbit reticulocytes.

    PubMed

    Rojas, M; Nuñez, M T; Zambrano, F

    1990-01-01

    The effect of a soluble toxin purified from the algae bloom of a eutrophic lake dominated by Microcystis on the receptor-mediated endocytosis of ferro-transferrin in rabbit reticulocytes was studied. The toxin was a very effective inhibitor of cell iron uptake. Kinetic studies using 125I, 59Fe-labeled transferrin indicated that the step of ferrotransferrin internalization was selectively inhibited by the toxin while the surface receptor-binding capacity, the externalization of previously internalized transferrin, and the cellular ATP levels were not affected. These findings indicate that the reduction of iron uptake caused by the toxin is due to inhibition of the internalization of surface-located transferrin-transferrin receptor complexes, perhaps due to a disruption of cytoskeleton integrity.

  10. A toxic cyanobacterial bloom in an urban coastal lake, Rio Grande do Sul state, Southern Brazil

    PubMed Central

    de Carvalho, Luciana Retz; Pipole, Fernando; Werner, Vera Regina; Laughinghouse IV, Haywood Dail; de Camargo, Antonio Carlos M.; Rangel, Marisa; Konno, Katsuhiro; Sant’ Anna, Célia Leite

    2008-01-01

    Reports of cyanobacterial blooms developing worldwide have considerably increased, and, in most cases, the predominant toxins are microcystins. The present study reports a cyanobacterial bloom in Lake Violão, Torres, Rio Grande do Sul State, in January 2005. Samples collected on January 13, 2005, were submitted to taxonomical, toxicological, and chemical studies. The taxonomical analysis showed many different species of cyanobacteria, and that Microcystis protocystis and Sphaerocavum cf. brasiliense were dominant. Besides these, Microcystis panniformis, Anabaena oumiana, Cylindrospermopsis raciborskii, and Anabaenopsis elenkinii f. circularis were also present. The toxicity of the bloom was confirmed through intraperitoneal tests in mice, and chemical analyses of bloom extracts showed that the major substance was anabaenopeptin F, followed by anabaenopeptin B, microcystin-LR, and microcystin-RR. PMID:24031304

  11. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology

    PubMed Central

    Zhang, Bing-Huo; Ding, Zhang-Gui; Li, Han-Quan; Zhang, Yu-Qin; Yang, Jian-Yuan; Zhou, En-Min

    2016-01-01

    ABSTRACT Copper sulfate (CuSO4) has been widely used as an algicide to control harmful cyanobacterial blooms (CyanoHABs) in freshwater lakes. However, there are increasing concerns about this application, due mainly to the general toxicity of CuSO4 to other aquatic species and its long-term persistence in the environment. This study reported the isolation and characterization of two natural algicidal compounds, i.e., tryptamine and tryptoline, from Streptomyces eurocidicus JXJ-0089. At a concentration of 5 μg/ml, both compounds showed higher algicidal efficiencies than CuSO4 on Microcystis sp. FACHB-905 and some other harmful cyanobacterial strains. Tryptamine and tryptoline treatments induced a degradation of chlorophyll and cell walls of cyanobacteria. These two compounds also significantly increased the intracellular oxidant content, i.e., superoxide anion radical (O2−) and malondialdehyde (MDA), but reduced the activity of intracellular reductants, i.e., superoxide dismutase (SOD), of cyanobacteria. Moreover, tryptamine and tryptoline treatments significantly altered the internal and external contents of microcystin-LR (MC-LR), a common cyanotoxin. Like CuSO4, tryptamine and tryptoline led to releases of intracellular MC-LR from Microcystis, but with lower rates than CuSO4. Tryptamine and tryptoline (5 μg/ml) in cyanobacterial cultures were completely degraded within 8 days, while CuSO4 persisted for months. Overall, our results suggest that tryptamine and tryptoline could potentially serve as more efficient and environmentally friendly alternative algicides than CuSO4 in controlling harmful cyanobacterial blooms. IMPORTANCE Cyanobacterial harmful algal blooms (CyanoHABs) in aquatic environments have become a worldwide problem. Numerous efforts have been made to seek means to prevent, control, and mitigate CyanoHABs. Copper sulfate (CuSO4), was once a common algicide to treat and control CyanoHABs. However, its application has become limited due to concerns

  12. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology.

    PubMed

    Zhang, Bing-Huo; Ding, Zhang-Gui; Li, Han-Quan; Mou, Xiao-Zhen; Zhang, Yu-Qin; Yang, Jian-Yuan; Zhou, En-Min; Li, Wen-Jun

    2016-09-01

    Copper sulfate (CuSO4) has been widely used as an algicide to control harmful cyanobacterial blooms (CyanoHABs) in freshwater lakes. However, there are increasing concerns about this application, due mainly to the general toxicity of CuSO4 to other aquatic species and its long-term persistence in the environment. This study reported the isolation and characterization of two natural algicidal compounds, i.e., tryptamine and tryptoline, from Streptomyces eurocidicus JXJ-0089. At a concentration of 5 μg/ml, both compounds showed higher algicidal efficiencies than CuSO4 on Microcystis sp. FACHB-905 and some other harmful cyanobacterial strains. Tryptamine and tryptoline treatments induced a degradation of chlorophyll and cell walls of cyanobacteria. These two compounds also significantly increased the intracellular oxidant content, i.e., superoxide anion radical (O2 (-)) and malondialdehyde (MDA), but reduced the activity of intracellular reductants, i.e., superoxide dismutase (SOD), of cyanobacteria. Moreover, tryptamine and tryptoline treatments significantly altered the internal and external contents of microcystin-LR (MC-LR), a common cyanotoxin. Like CuSO4, tryptamine and tryptoline led to releases of intracellular MC-LR from Microcystis, but with lower rates than CuSO4 Tryptamine and tryptoline (5 μg/ml) in cyanobacterial cultures were completely degraded within 8 days, while CuSO4 persisted for months. Overall, our results suggest that tryptamine and tryptoline could potentially serve as more efficient and environmentally friendly alternative algicides than CuSO4 in controlling harmful cyanobacterial blooms. Cyanobacterial harmful algal blooms (CyanoHABs) in aquatic environments have become a worldwide problem. Numerous efforts have been made to seek means to prevent, control, and mitigate CyanoHABs. Copper sulfate (CuSO4), was once a common algicide to treat and control CyanoHABs. However, its application has become limited due to concerns about its general

  13. Model Simulation of Diurnal Vertical Migration Patterns of Different-Sized Colonies of Microcystis Employing a Particle Trajectory Approach.

    PubMed

    Chien, Yu Ching; Wu, Shian Chee; Chen, Wan Ching; Chou, Chih Chung

    2013-04-01

    Microcystis , a genus of potentially harmful cyanobacteria, is known to proliferate in stratified freshwaters due to its capability to change cell density and regulate buoyancy. In this study, a trajectory model was developed to simulate the cell density change and spatial distribution of Microcystis cells with nonuniform colony sizes. Simulations showed that larger colonies migrate to the near-surface water layer during the night to effectively capture irradiation and become heavy enough to sink during daytime. Smaller-sized colonies instead took a longer time to get to the surface. Simulation of the diurnally varying Microcystis population profile matched the observed pattern in the field when the radii of the multisized colonies were in a beta distribution. This modeling approach is able to take into account the history of cells by keeping track of their positions and properties, such as cell density and the sizes of colonies. It also serves as the basis for further developmental modeling of phytoplanktons that are forming colonies and changing buoyancy.

  14. Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria

    PubMed Central

    Guellati, Fatma Zohra; Touati, Hassen; Tambosco, Kevin; Quiblier, Catherine; Bensouilah, Mourad

    2017-01-01

    Succession in bloom-forming cyanobacteria belonging to distant functional groups in freshwater ecosystems is currently an undescribed phenomenon. However in the Hammam Debagh reservoir (Algeria), P. rubescens and Microcystis sp. co-occur and sometimes proliferate. With the aim of identifying the main factors and processes involved in this unusual cohabitation, water samples were collected monthly from February 2013 to June 2015 at the subsurface at four sampling stations and along the entire water column at one sampling station. In addition, the composition of the cyanobacterial communities was estimated by Illumina sequencing of a 16S rRNA gene fragment from samples collected over one year (October 2013-November 2014). This molecular approach showed that the Hammam Debagh reservoir displays high species richness (89 species) but very low diversity due to the high dominance of Microcystis in this community. Furthermore, it appears that Planktothrix rubescens and Microcystis sp. coexisted (from September to January) but proliferated alternately (Spring 2015 for P. rubescens and Spring 2014 and Autumn 2014/2015 for Microcystis). The main factors and processes explaining these changes in bloom-forming species seem to be related to the variation in the depth of the lake during the mixing period and to the water temperatures during the winter prior to the bloom season in spring. PMID:28859113

  15. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074(T).

    PubMed

    Zhang, Bing-Huo; Chen, Wei; Li, Han-Quan; Yang, Jian-Yuan; Zha, Dai-Ming; Duan, Yan-Qing; N Hozzein, Wael; Xiao, Min; Gao, Rui; Li, Wen-Jun

    2016-05-01

    An antialgal compound was isolated from the cultured broth of Streptomyces jiujiangensis JXJ 0074(T) by using bioassay methods. Based on the data of (1)H-NMR, (13)C-NMR, ESI-MS, and thin layer chromatography, the active compound was identified as L-valine, which showed antialgal activity mainly against Microcystis. L-valine exhibited greater antialgal activities than both L-lysine and copper sulfate (CuSO4) did on Microcystis aeruginosa lawn. However, M. aeruginosa recovered growth earlier with higher growth rate in L-valine treatment than in L-lysine treatment. L-valine dissipated completely within 2 days, much quicker than L-lysine (6 days), which resulted in the lysing of more than 80 % M. aeruginosa cells and the release of amount of intracellular microcystin-LR (MC-LR) within 2 days. As a resultant, the extracellular MC-LR content was more than twice of the control from day 1 to 5. Exposure to L-valine significantly promoted the synthesis of MC-LR. L-lysine also promoted the release and synthesis of MC-LR with much lesser efficiency than L-valine. L-valine could damage Microcystis severely, causing perforation and collapse of M. aeruginosa cells and decrease of the chlorophyll. The superoxide dismutase (SOD) activity in L-valine-treated cells of M. aeruginosa initially increased with 32.94 ± 3.37 % higher than the control after 36 h and then decreased quickly. However, the increase rate of superoxide anion radical (O2 (-)) was much higher than that of SOD, which resulted in serious lipid peroxidation and accumulation of malondialdehyde (MDA). To our knowledge, this is the first report showing L-valine active against cyanobacteria.

  16. Nitrogen Forms Influence Microcystin Concentration and Composition via Changes in Cyanobacterial Community Structure

    PubMed Central

    Monchamp, Marie-Eve; Pick, Frances R.; Beisner, Beatrix E.; Maranger, Roxane

    2014-01-01

    The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N) concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC) concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA), the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity. PMID:24427318

  17. Synergistic Efficacy of Aedes aegypti Antimicrobial Peptide Cecropin A2 and Tetracycline against Pseudomonas aeruginosa

    PubMed Central

    Zheng, Zhaojun; Tharmalingam, Nagendran; Liu, Qingzhong; Kim, Wooseong; Fuchs, Beth Burgwyn; Zhang, Rijun; Vilcinskas, Andreas

    2017-01-01

    ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections. PMID:28483966

  18. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures.

    PubMed

    Smith, Karen; Rajendran, Ranjith; Kerr, Stephen; Lappin, David F; Mackay, William G; Williams, Craig; Ramage, Gordon

    2015-09-01

    In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19-38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Preliminary Assessment of Cyanobacteria Diversity and Toxic Potential in Ten Freshwater Lakes in Selangor, Malaysia.

    PubMed

    Sinang, Som Cit; Poh, Keong Bun; Shamsudin, Syakirah; Sinden, Ann

    2015-10-01

    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.

  20. Microvolume trace environmental analysis using peak-focusing online solid-phase extraction-nano-liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane

    2016-03-01

    Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.

  1. Presence of Potential Toxin-Producing Cyanobacteria in an Oligo-Mesotrophic Lake in Baltic Lake District, Germany: An Ecological, Genetic and Toxicological Survey

    PubMed Central

    Dadheech, Pawan K.; Selmeczy, Géza B.; Vasas, Gábor; Padisák, Judit; Arp, Wolfgang; Tapolczai, Kálmán; Casper, Peter; Krienitz, Lothar

    2014-01-01

    Massive developments of potentially toxic cyanobacteria in Lake Stechlin, an oligo-mesotrophic lake in the Baltic Lake District of Germany raised concerns about toxic contamination of these important ecosystems. Field samples in the phase of mass developments of cyanobacteria were used for genetic and toxicological analyses. Microcystins and microcystin genes were detected in field samples of the lake for the first time. However, the toxins were not produced by the dominant taxa (Dolichospermum circinale and Aphanizomenon flos-aquae) but by taxa, which were present only in low biomass in the samples (Microcystis cf. aeruginosa and Planktothrix rubescens). The phytoplankton successions during the study period revealed an increase of cyanobacterial populations. The findings contribute to the changes that have been investigated in Lake Stechlin since the mid-1990s. The possible reasons behind these developments may be climate change, special weather conditions and an increased nutrient pool. PMID:25268981

  2. Cyanobacterial Treatment Options: Permanganate and Powdered Activated Carbon

    EPA Science Inventory

    This presentation will begin with a brief overview of drinking water treatment options for cyanobacteria and their toxins. The treatment discussion will focus on the impacts of permanganate addition to suspensions of toxin-producing Microcystis aeruginosa, followed by powdered ac...

  3. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide

    PubMed Central

    Chang, Wook; Small, David A; Toghrol, Freshteh; Bentley, William E

    2005-01-01

    Background Pseudomonas aeruginosa, a pathogen infecting those with cystic fibrosis, encounters toxicity from phagocyte-derived reactive oxidants including hydrogen peroxide during active infection. P. aeruginosa responds with adaptive and protective strategies against these toxic species to effectively infect humans. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses to hydrogen peroxide in order to determine a more complete picture of how oxidative stress-induced genes are related and regulated. Our data reinforce the previous conclusion that DNA repair proteins and catalases may be among the most vital antioxidant defense systems of P. aeruginosa. Our results also suggest that sublethal oxidative damage reduces active and/or facilitated transport and that intracellular iron might be a key factor for a relationship between oxidative stress and iron regulation. Perhaps most intriguingly, we revealed that the transcription of all F-, R-, and S-type pyocins was upregulated by oxidative stress and at the same time, a cell immunity protein (pyocin S2 immunity protein) was downregulated, possibly leading to self-killing activity. Conclusion This finding proposes that pyocin production might be another novel defensive scheme against oxidative attack by host cells. PMID:16150148

  4. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa

    PubMed Central

    Anyan, Morgen E.; Amiri, Aboutaleb; Harvey, Cameron W.; Tierra, Giordano; Morales-Soto, Nydia; Driscoll, Callan M.; Alber, Mark S.; Shrout, Joshua D.

    2014-01-01

    Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP−TFP interactions between cells should be a dominant mechanism that promotes cell−cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell−cell association and directional collective motion within motile groups to aid their survival. PMID:25468980

  5. Detection and quantification of major toxigenic Microcystis genotypes in Moo-Tan reservoir and associated water treatment plant.

    PubMed

    Yen, Hung-Kai; Lin, Tsair-Fuh; Tseng, I-Cheng

    2012-02-01

    Two molecular methods, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time polymerase chain reaction (qPCR) with the Universal ProbeLibrary (UPL) probe, were developed and used for the characterization and quantification of several microcystin producers in Moo-Tan Reservoir (MTR), Taiwan and its associated water treatment plant (Shih-Men Water Treatment Plant, SMWTP). Internal transcribed spacer (ITS) sequence, a highly diversified region between the 16S rRNA and 23S rRNA genes, was used to further identify the isolated strains from MTR and also used in DGGE for the detection of the specific DNA fragments and biomarkers for 11 strains observed in MTR. These ITS-DGGE biomarkers were successfully applied to monitor the community changes of potential toxigenic Microcystis sp. over a period of five years. Two highly specific primers were combined with UPL probes to measure microcystins synthesis gene (mcyB) and phycocyanin intergenic spacer region (cpcB) concentrations in water samples. The copy concentrations of UPL-mcyB and UPL-cpcB correlated well with MC-RR concentrations/water temperature and Microcystis sp. cell numbers in the water samples, respectively. For SMWTP, toxin concentrations were low, but the DGGE bands clearly demonstrated the presence of potential microcystin producers in both water treatment plants and finished water samples. It was demonstrated that toxigenic Microcystis sp. may penetrate through the treatment processes and pose a potential risk to human health in the drinking water systems.

  6. The prrF-Encoded Small Regulatory RNAs Are Required for Iron Homeostasis and Virulence of Pseudomonas aeruginosa

    PubMed Central

    Reinhart, Alexandria A.; Powell, Daniel A.; Nguyen, Angela T.; O'Neill, Maura; Djapgne, Louise; Wilks, Angela; Ernst, Robert K.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence. PMID:25510881

  7. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis

    PubMed Central

    Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric

    2017-01-01

    ABSTRACT   Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. PMID:28119472

  8. Worse than cell lysis: The resilience of Oscillatoria sp. during sludge storage in drinking water treatment.

    PubMed

    Sun, Jiongming; Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Li, Hongmin; Ma, Chunxia

    2018-06-09

    Benthic Oscillatoria sp. may form dense surface blooms especially under eutrophic and calm conditions, which poses a threat to drinking water safety because it can produce toxic and odorous metabolites. This is the first study to investigate the effect of the conventional coagulant polyaluminium ferric chloride (PAFC) on removal of Oscillatoria sp., and the behavior of Oscillatoria sp. cells in sludges formed from different dosages of PAFC (control, optimum, and overdose system) during storage was also studied. Oscillatoria sp. cells can be removed efficiently by coagulation of PAFC. The adverse environmental stresses of sludge, such as lack of light and anoxic environment, decrease cell viability and induce the increase of superoxide dismutase activity (SOD) and malondialdehyde content (MDA) in Oscillatoria sp. cells during the first 4 days. Because Oscillatoria sp. can adapt to the low-light and hypoxic circumstances in sludge gradually, the cells regrow with prolonged storage time. Compared to planktonic Microcystis aeruginosa and Cylindrospermopsis raciborskii, regrowth of Oscillatoria sp. during storage may present a bigger threat, even though Microcystis aeruginosa and Cylindrospermopsis raciborskii cells will be damaged and release toxic compounds. Growth rates of algae in coagulated systems were lower than that in control system because of the restriction of flocs. It is worth noting that the chlorophyll a level was increased by a factor of 3.5 in the optimal-dose system, and worse, the overdose system increased by a factor of 6 in chlorophyll a after 8 d storage due to the benefit of higher Fe levels. Concentrations of extracellular geosmin and cylindrospermopsin also increased during storage, especially after 4 d, and varied in the following sequence for a given storage duration: control system > overdose system > optimum system. Overall, due to decrease of SOD and MDA in Oscillatoria sp. cells after 4 d storage, algae cells regrew rapidly

  9. Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu

    PubMed Central

    Tao, Min; Xie, Ping; Chen, Jun; Qin, Boqiang; Zhang, Dawen; Niu, Yuan; Zhang, Meng; Wang, Qing; Wu, Laiyan

    2012-01-01

    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation. PMID:22384128

  10. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake.

    PubMed

    Joshi, Chetna; Mathur, Priyanka; Khare, S K

    2011-04-01

    Large amount of seed cake is generated as by-product during biodiesel production from Jatropha seeds. Presence of toxic phorbol esters restricts its utilization as livestock feed. Safe disposal or meaningful utilization of this major by-product necessitates the degradation of these phorbol esters. The present study describes the complete degradation of phorbol esters by Pseudomonas aeruginosa PseA strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in nine days under the optimized SSF conditions viz. deoiled cake 5.0 g; moistened with 5.0 ml distilled water; inoculum 1.5 ml of overnight grown P. aeruginosa; incubation at temperature 30 °C, pH 7.0 and RH 65%. SSF of deoiled cake seems a potentially viable approach towards the complete degradation of the toxic phorbol esters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita.

    PubMed

    Mishra, Prabhakar; R S, Suresh Kumar; Jerobin, Jayakumar; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-01-01

    Presence of several biochemical constituents in neem makes it an efficient antimicrobial agent for pathogenic diseases. The current investigation was aimed to assess the therapeutic potential of neem nanoemulsion as a control measure for Pseudomonas aeruginosa infection in freshwater fish Labeo rohita. The median lethal concentration (LC50) for the neem oil and neem nanoemulsion was 73.9 and 160.3 mg/L, respectively. The biomarker enzymes of treated fish tissues showed a significant difference in the level of glutathione reductase, catalase, and lipid peroxidation in neem oil-treated samples than in neem nanoemulsion-treated samples at P<0.05. The results were corroborative with histopathology and ultrastructural analysis. The bacterial infection of P. aeruginosa treated using neem nanoemulsion was more effective in both in vitro and in vivo methods. Present findings suggest that neem-based nanoemulsion has negligible toxicity to Rohu fishes. This makes neem-based nanoemulsion as an efficient therapeutic agent against P. aeruginosa infection, leading to its possible usage in the aquaculture industry. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  12. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors.

    PubMed

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw

    2017-08-18

    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  13. Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms

    NASA Astrophysics Data System (ADS)

    Chronopoulou, Laura; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Palocci, Cleofe

    2016-10-01

    Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.

  14. Pseudomonas aeruginosa Trent and zinc homeostasis.

    PubMed

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Phylogenies of Microcystin-Producing Cyanobacteria in the Lower Laurentian Great Lakes Suggest Extensive Genetic Connectivity

    PubMed Central

    Davis, Timothy W.; Watson, Susan B.; Rozmarynowycz, Mark J.; Ciborowski, Jan J. H.; McKay, Robert Michael; Bullerjahn, George S.

    2014-01-01

    Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River's outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems. PMID:25207941

  16. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system.

    PubMed

    Anderson, Gregory G; Yahr, Timothy L; Lovewell, Rustin R; O'Toole, George A

    2010-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.

  17. Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits.

    PubMed

    Biswas, Jayanta Kumar; Mondal, Monojit; Rinklebe, Jörg; Sarkar, Santosh Kumar; Chaudhuri, Punarbasu; Rai, Mahendra; Shaheen, Sabry M; Song, Hocheol; Rizwan, Muhammad

    2017-12-01

    Water and soil pollution by toxic heavy metals (HMs) is increasing globally because of increase in population, industrialization and urbanization. It is a burning problem for the public, scientists, academicians and politicians how to tackle the toxic contaminants which jeopardize the environment. One possible solution for pollution abatement is a bioremediation-effective and innovative technology that uses biological systems for treatment of contaminants. Many bacteria synthesize indole-3-acetic acid (IAA) which is a product of L-tryptophan metabolism and belongs to the auxin class of plant growth-promoting hormone. The present study aimed at assessing the resistance pattern of wastewater bacteria against multiple HMs and plant growth promotion activity associated with IAA. A Gram-negative bacterial strain Pseudomonas aeruginosa KUJM was isolated from Kalyani Sewage Treatment Plant. This strain showed the potential to tolerate multiple contaminations such as As(III) (50 mM), As(V) (800 mM), Cd (8 mM), Co (18 mM), Cu (7 mM), Cr (2.5 mM), Ni (3 mM) and Zn (14 mM). The capability of IAA production at different tryptophan concentration (1, 2, 5 and 10 mg mL -1 ) was determined, and seed germination-enhancing potential was also estimated on lentil (Lens culinaris). Such type of HM-resistant, IAA-producing and seed germination-enhancing P. aeruginosa KUJM offer great promise as inoculants to promote plant growth in the presence of toxic HMs, as well as plant inoculant systems useful for phytoremediation of polluted soils. Hence, P. aeruginosa KUJM finds significant applications in HM-contaminated poor agricultural field as well as in bioremediation of HM-contaminated wastewater system.

  18. The Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Transcription of the Type III Secretion System▿ †

    PubMed Central

    Anderson, Gregory G.; Yahr, Timothy L.; Lovewell, Rustin R.; O'Toole, George A.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes. PMID:20028803

  19. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms

    PubMed Central

    Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated. PMID:28355248

  20. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.

    PubMed

    Jorge, Paula; Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.

  1. Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR.

    PubMed

    Azevedo, Catarina C; Azevedo, Joana; Osório, Hugo; Vasconcelos, Vitor; Campos, Alexandre

    2014-03-01

    Microcystin-leucine and arginine (microcystin-LR) is a cyanotoxin produced by cyanobacteria like Microcystis aeruginosa, and it's considered a threat to water quality, agriculture, and human health. Rice (Oryza sativa) is a plant of great importance in human food consumption and economy, with extensive use around the world. It is therefore important to assess the possible effects of using water contaminated with microcystin-LR to irrigate rice crops, in order to ensure a safe, high quality product to consumers. In this study, 12 and 20-day-old plants were exposed during 2 or 7 days to a M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations, 0.26-78 μg/L. Fresh and dry weight of roots and leaves, chlorophyll fluorescence, glutathione S-transferase and glutathione peroxidase activities, and protein identification by mass spectrometry through two-dimensional gel electrophoresis from root and leaf tissues, were evaluated in order to gauge the plant's physiological condition and biochemical response after toxin exposure. Results obtained from plant biomass, chlorophyll fluorescence, and enzyme activity assays showed no significant differences between control and treatment groups. However, proteomics data indicates that plants respond to M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations by changing their metabolism, responding differently to different toxin concentrations. Biological processes most affected were related to protein folding and stress response, protein biosynthesis, cell signalling and gene expression regulation, and energy and carbohydrate metabolism which may denote a toxic effect induced by M. aeruginosa extract and microcystin-LR. The implications of the metabolic alterations in plant physiology and growth require further elucidation.

  2. A conserved mitochondrial surveillance pathway is required for defense against Pseudomonas aeruginosa.

    PubMed

    Tjahjono, Elissa; Kirienko, Natalia V

    2017-06-01

    All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.

  3. Using quartz sand to enhance the removal efficiency of M. aeruginosa by inorganic coagulant and achieve satisfactory settling efficiency.

    PubMed

    Pei, Haiyan; Jin, Yan; Xu, Hangzhou; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-10-19

    In this study, low-cost and non-polluting quartz sand was respectively mixed with AlCl 3 , FeCl 3 and PAFC to synergistically remove Microcystis aeruginosa. Results showed that quartz sand could markedly increase the algae removal efficiency and decrease the coagulant doses. The increase of removal efficiency with AlCl 3 and FeCl 3 was only due to the enhancement of floc density by the quartz sand. However, the removal efficiency with PAFC was increased not only by the enhanced floc density, but also by the enlarged floc size. Flocs from 50 mg/L sand addition were larger than that with other sand doses, which was on account of the appropriate enhancement of collision efficiency at this dose. After coagulation, the extracellular organic matter (EOM) and microcystins (MCs) in system with quartz sand was remarkably reduced. That's because quartz sand can enhance the coagulation so as to improve capping the EOM and MCs in flocs during coagulation process. Owing to 200 mg/L quartz sand could damage the cell's membrane during coagulation proces, algal cells in the system lysed two days earlier than with 50 mg/L sand during flocs storage. In addition, cells with PAFC incurred relatively moderate cellular oxidative damage and could remain intact for longer time.

  4. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms.

    PubMed

    Chan, Wai Sum; Recknagel, Friedrich; Cao, Hongqing; Park, Ho-Dong

    2007-05-01

    Non-supervised artificial neural networks (ANN) and hybrid evolutionary algorithms (EA) were applied to analyse and model 12 years of limnological time-series data of the shallow hypertrophic Lake Suwa in Japan. The results have improved understanding of relationships between changing microcystin concentrations, Microcystis species abundances and annual rainfall intensity. The data analysis by non-supervised ANN revealed that total Microcystis abundance and extra-cellular microcystin concentrations in typical dry years are much higher than those in typical wet years. It also showed that high microcystin concentrations in dry years coincided with the dominance of the toxic Microcystis viridis whilst in typical wet years non-toxic Microcystis ichthyoblabe were dominant. Hybrid EA were used to discover rule sets to explain and forecast the occurrence of high microcystin concentrations in relation to water quality and climate conditions. The results facilitated early warning by 3-days-ahead forecasting of microcystin concentrations based on limnological and meteorological input data, achieving an r(2)=0.74 for testing.

  5. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    PubMed

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.

  6. Biosorption of antimony(V) by freshwater cyanobacteria Microcystis from Lake Taihu, China: effects of pH and competitive ions.

    PubMed

    Sun, Fuhong; Yan, Yuanbo; Liao, Haiqing; Bai, Yingchen; Xing, Baoshan; Wu, Fengchang

    2014-05-01

    There is limited knowledge available on metalloid biosorption by freshwater algae. In this study, biosorption properties of anionic Sb(OH) 6 (-) by naturally occurring cyanobacteria Microcystis were investigated as a function of initial pH, biosorbent dosage, contact time, and addition sequences of competitive ions, and their binding mechanisms were discussed. The biosorption process was fast and equilibrium was reached at 2 h. Sb(V) biosorption decreased with the increase of pH and the optimum pH range was 2.5-3.0, which corresponded with the changes of surface charges of the cell wall of Microcystis. The biosorption data satisfactorily followed the Freundlich model. The simultaneous addition of H2PO4 (-) and Ca(2+) enhanced Sb(V) biosorption, while NO3 (-) greatly inhibited the biosorption, compared with single Sb(V) addition. The initial addition of the competitive ions reduced Sb(V) biosorption at higher Sb(V) concentrations, compared with simultaneous addition. A fraction of biosorbed Sb(V) was replaced by the competitive ions which were added subsequently, and the exchange only occurred at higher concentrations of Sb(V). 1.0 mol/L HCl demonstrated the highest desorption efficiency. Speciation analyses indicated that no reduction of Sb(V) into Sb(III) occurred. Based on the results of zeta potential and attenuated total reflection infrared spectroscopy spectra, Sb(OH) 6 (-) bound to the biomass through electrostatic attraction and surface complexation, and amino, carboxyl, and hydroxyl groups were involved in the biosorption process. The study suggest that Microcystis from cyanobacteria blooms could be used as a potential biosorbent to remove Sb(V) from effluents at environmentally relevant concentrations (≤10.0 mg/L).

  7. Pseudomonas aeruginosa in premise plumbing of large buildings.

    PubMed

    Bédard, Emilie; Prévost, Michèle; Déziel, Eric

    2016-12-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is widely occurring in the environment and is recognized for its capacity to form or join biofilms. The present review consolidates current knowledge on P. aeruginosa ecology and its implication in healthcare facilities premise plumbing. The adaptability of P. aeruginosa and its capacity to integrate the biofilm from the faucet and the drain highlight the role premise plumbing devices can play in promoting growth and persistence. A meta-analysis of P. aeruginosa prevalence in faucets (manual and electronic) and drains reveals the large variation in device positivity reported and suggest the high variability in the sampling approach and context as the main reason for this variation. The effects of the operating conditions that prevail within water distribution systems (disinfection, temperature, and hydraulic regime) on the persistence of P. aeruginosa are summarized. As a result from the review, recommendations for proactive control measures of water contamination by P. aeruginosa are presented. A better understanding of the ecology of P. aeruginosa and key influencing factors in premise plumbing are essential to identify culprit areas and implement effective control measures. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Temporal variation in density and diversity of cyanobacteria and cyanotoxins in lakes at Nagpur (Maharashtra State), India.

    PubMed

    Maske, Sarika S; Sangolkar, Lalita Narendra; Chakrabarti, Tapan

    2010-10-01

    Toxic cyanobacteria (TCB) are known worldwide for the adverse impacts on humans and animals. Species composition and the seasonal variation of TCB in water bodies depend on interactions between physical and chemical factors. The present investigation delineates temporal variations in physico-chemical water quality parameters, viz. nutrients and density, diversity, and distribution of toxic cyanobacteria and cyanotoxins in Lake Ambazari (21 degrees 7'52''N, 79 degrees 2'22''E) and Lake Phutala (21 degrees 9'18''N, 79 degrees 2'37''E) at Nagpur (Maharashtra State), India. These lakes are important sources of recreational activities and fisheries. Toxic cyanobacterial diversity comprised Anabaena, Oscillatoria, Lyngbya, Phormidium, and Microcystis, a well-known toxic cyanobacterial genus, as dominant. Chlorophyll-a concentrations in the lakes ranged from 1.44 to 71.74 mg/m(3). A positive correlation of Microcystis biomass existed with orthophosphate-P (p < 0.05) and nitrate-N (p > 0.05). Identification and quantification of microcystin variants were carried out by high performance liquid chromatography equipped with photodiode array detector. Among all the tested toxin variants, microcystin-RR (arginine-arginine) was consistently recorded and exhibited a positive correlation (p < 0.05) with Microcystis in both the water bodies. Microcystis bloom formation was remarkable between post-monsoon and summer. Besides nutrient concentrations governing bloom formation, the allelopathic role of microcystins needs to be established.

  9. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control.

    PubMed

    Gorka, Danielle E; Osterberg, Joshua S; Gwin, Carley A; Colman, Benjamin P; Meyer, Joel N; Bernhardt, Emily S; Gunsch, Claudia K; DiGulio, Richard T; Liu, Jie

    2015-08-18

    The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.

  10. Pyocyanin Production by Pseudomonas aeruginosa Confers Resistance to Ionic Silver

    PubMed Central

    Merrett, Neil D.

    2014-01-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. PMID:25001302

  11. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng

    2014-06-01

    Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.

  12. Emergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa.

    PubMed

    Miyoshi-Akiyama, Tohru; Tada, Tatsuya; Ohmagari, Norio; Viet Hung, Nguyen; Tharavichitkul, Prasit; Pokhrel, Bharat Mani; Gniadkowski, Marek; Shimojima, Masahiro; Kirikae, Teruo

    2017-12-01

    Pseudomonas aeruginosa (P. aeruginosa) is one of the most common nosocomial pathogens worldwide. Although the emergence of multidrug-resistant (MDR) P. aeruginosa is a critical problem in medical practice, the key features involved in the emergence and spread of MDR P. aeruginosa remain unknown. This study utilized whole genome sequence (WGS) analyses to define the population structure of 185 P. aeruginosa clinical isolates from several countries. Of these 185 isolates, 136 were categorized into sequence type (ST) 235, one of the most common types worldwide. Phylogenetic analysis showed that these isolates fell within seven subclades. Each subclade harbors characteristic drug resistance genes and a characteristic genetic background confined to a geographic location, suggesting that clonal expansion following antibiotic exposure is the driving force in generating the population structure of MDR P. aeruginosa. WGS analyses also showed that the substitution rate was markedly higher in ST235 MDR P. aeruginosa than in other strains. Notably, almost all ST235 isolates harbor the specific type IV secretion system and very few or none harbor the CRISPR/CAS system. These findings may help explain the mechanism underlying the emergence and spread of ST235 P. aeruginosa as the predominant MDR lineage. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach.

    PubMed

    Wang, Zhenhong; Luo, Zhuanxi; Yan, Changzhou; Xing, Baoshan

    2017-07-01

    Very limited information is available on how and to what extent environmental factors influence arsenic (As) biotransformation and release in freshwater algae. These factors include concentrations of arsenate (As(V)), dissolved inorganic nitrogen (N), phosphate (P), and ambient pH. This study conducted a series of experiments using Taguchi methods to determine optimum conditions for As biotransformation. We assessed principal effective factors of As(V), N, P, and pH and determined that As biotransformation and release actuate at 10.0 μM As(V) in dead alga cells, the As efflux ratio and organic As efflux content actuate at 1.0 mg/L P, algal growth and intracellular arsenite (As(III)) content actuate at 10.0 mg/L N, and the total sum of As(III) efflux from dead alga cells actuates at a pH level of 10. Moreover, N is the critical component for As(V) biotransformation in M. aeruginosa, specifically for As(III) transformation, because N can accelerate algal growth, subsequently improving As(III) accumulation and its efflux, which results in an As(V) to As(III) reduction. Furthermore, low P concentrations in combination with high N concentrations promote As accumulation. Following As(V), P was the primary impacting factor for As accumulation. In addition, small amounts of As accumulation under low concentrations of As and high P were securely stored in living algal cells and were easily released after cell death. Results from this study will help to assess practical applications and the overall control of key environmental factors, particularly those associated with algal bioremediation in As polluted water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pseudomonas aeruginosa Promotes Escherichia coli Biofilm Formation in Nutrient-Limited Medium

    PubMed Central

    Culotti, Alessandro; Packman, Aaron I.

    2014-01-01

    Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions. PMID:25198725

  15. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts.

    PubMed

    Aleksic, Ivana; Ristivojevic, Petar; Pavic, Aleksandar; Radojević, Ivana; Čomić, Ljiljana R; Vasiljevic, Branka; Opsenica, Dejan; Milojković-Opsenica, Dušanka; Senerovic, Lidija

    2018-08-10

    Trapa natans L. (water chestnut or water caltrop) is a widespread aquatic plant, which has been cultivated for food and traditional medicine since ancient times. Pharmacological studies showed that water chestnut exhibits the wide range of biological activities, such as antimicrobial, antioxidative, analgesic, anti-inflammatory, as well as antiulcer. Evaluation of anti-virulence potential and toxicity of T. natans methanol (TnM), acetone (TnA) and ethyl acetate (TnEA) leaf extracts. The anti-quorum sensing activity of Tn extracts was addressed by measuring their effects on biofilm formation, swarming motility and pyocyanin and elastase production in Pseudomonas aeruginosa. Specific P. aeruginosa biosensors were used to identify which of the signaling pathways were affected. The lethal and developmental toxicity of extracts were addressed in vivo using the zebrafish (Danio rerio) model system. The phenolic composition of T. natans leafs extracts was analyzed by a linear ion trap-OrbiTrap hybrid mass spectrometer (LTQ OrbiTrapMS) and UHPLC system configured with a diode array detector (DAD) hyphenated with the triple quadrupole mass spectrometer. Subinhibitory concentrations of Tn leaf extracts (0.2 MIC) inhibited pyocyanin and elastase production up to 50% and 60%, respectively, and reduced swarming zones, comparing to non-treated P. aeruginosa. TnA inhibited biofilm formation by 15%, TnM showed a stimulatory effect on biofilm formation up to 20%, while TnEA showed no effect. The bioactive concentrations of TnM and TnA were not toxic in the zebrafish model system. Twenty-two phenolic compounds were tentatively identified in TnM, where thirteen of them were identified in T. natans for the first time. Tn extracts, as well as their major components, ellagic and ferulic acids, demonstrated the ability to interfere with P. aeruginosa Las and PQS signaling pathways. This study demonstrates anti-virulence potential of Tn leaf extracts against medically important pathogen P

  16. [Effect of Pseudomonas aeruginosa melanin on antibiotic activity].

    PubMed

    Rozhavin, M A

    1978-08-01

    The properties of microbial melanines are very diverse. Melanine of P. aeruginosa is little studied. The pigment was isolated from a strain of P. aeruginosa possessing all characteristic properties of the species. Interaction of P. aeruginosa melanine with various antibiotics was determined by the method of serial dilutions in beaf-peptone broth, using Staph. aureus 209 as a test-microbe, which was added to the medium in an amount of 10(6) cells to each tube. It was found that P. aeruginosa melanine differed from DOPA-melanine in a concentration of 1 mg/ml and did not change the activity of penicillin, tetracycline, oleandomycin, kanamycin and gentamicin with respect to Staph. aureus.

  17. Risk assessment of Pseudomonas aeruginosa in water.

    PubMed

    Mena, Kristina D; Gerba, Charles P

    2009-01-01

    P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also

  18. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species.

    PubMed

    Rella, Antonella; Yang, Mo Wei; Gruber, Jordon; Montagna, Maria Teresa; Luberto, Chiara; Zhang, Yong-Mei; Del Poeta, Maurizio

    2012-06-01

    Pseudomonas aeruginosa is a ubiquitous and opportunistic bacterium that inhibits the growth of different microorganisms, including Gram-positive bacteria and fungi such as Candida spp. and Aspergillus fumigatus. In this study, we investigated the interaction between P. aeruginosa and Cryptococcus spp. We found that P. aeruginosa PA14 and, to a lesser extent, PAO1 significantly inhibited the growth of Cryptococcus spp. The inhibition of growth was observed on solid medium by the visualization of a zone of inhibition of yeast growth and in liquid culture by viable cell counting. Interestingly, such inhibition was only observed when P. aeruginosa and Cryptococcus were co-cultured. Minimal inhibition was observed when cell-cell contact was prevented using a separation membrane, suggesting that cell contact is required for inhibition. Using mutant strains of Pseudomonas quinoline signaling, we showed that P. aeruginosa inhibited the growth of Cryptococcus spp. by producing antifungal molecules pyocyanin, a redox-active phenazine, and 2-heptyl-3,4-dihydroxyquinoline (PQS), an extracellular quorum-sensing signal. Because both P. aeruginosa and Cryptococcus neoformans are commonly found in lung infections of immunocompromised patients, this study may have important implication for the interaction of these microbes in both an ecological and a clinical point of view.

  19. Introduction of Pseudomonas aeruginosa into a Hospital via Vegetables

    PubMed Central

    Kominos, Spyros D.; Copeland, Charles E.; Grosiak, Barbara; Postic, Bosko

    1972-01-01

    Pseudomonas aeruginosa was isolated from tomatoes, radishes, celery, carrots, endive, cabbage, cucumbers, onions, and lettuce obtained from the kitchen of a general hospital, with tomatoes yielding both highest frequencies of isolation and highest counts. Presence of P. aeruginosa on the hands of kitchen personnel and cutting boards and knives which they used suggests acquisition of the organism through contact with these vegetables. It is estimated that a patient consuming an average portion of tomato salad might ingest as many as 5 × 103 colony-forming units of P. aeruginosa. Pyocine types of P. aeruginosa isolated from clinical specimens were frequently identical to those recovered from vegetables, thus implicating tomatoes and other vegetables as an important source and vehicle by which P. aeruginosa colonizes the intestinal tract of patients. PMID:4628795

  20. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii).

    PubMed

    Liu, Lizhen; Qin, Boqiang; Zhang, Yunlin; Zhu, Guangwei; Gao, Guang; Huang, Qi; Yao, Xin

    2014-08-01

    Preliminary characterization of bound extracellular polymeric substances (bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However, the characterization of bEPS can be affected by extraction methods. Five sets (including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix (3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH, pure water and phosphate buffered saline (PBS) containing cationic exchange resins, and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks (peaks T₁ and T₂) present in all extractions were identified as protein-like fluorophores, two (peaks A and C) as humic-like fluorophores, and one (peak E) as a fulvic-like substance. Among these substances, the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also, NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH10.0 was the most appropriate method to extract bEPS from Microcystis. In addition, dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms. Copyright © 2014. Published by Elsevier B.V.

  1. Pseudomonas aeruginosa essentials: an update on investigation of essential genes.

    PubMed

    Juhas, Mario

    2015-11-01

    Pseudomonas aeruginosa is the leading cause of nosocomial infections, particularly in immunocompromised, cancer, burn and cystic fibrosis patients. Development of novel antimicrobials against P. aeruginosa is therefore of the highest importance. Although the first reports on P. aeruginosa essential genes date back to the early 2000s, a number of more sensitive genomic approaches have been used recently to better define essential genes in this organism. These analyses highlight the evolution of the definition of an 'essential' gene from the traditional to the context-dependent. Essential genes, particularly those indispensable under the clinically relevant conditions, are considered to be promising targets of novel antibiotics against P. aeruginosa. This review provides an update on the investigation of P. aeruginosa essential genes. Special focus is on recently identified P. aeruginosa essential genes and their exploitation for the development of antimicrobials.

  2. Management Approaches for Water Quality Enhancement at Whitney Point and East Sidney Lake, New York

    DTIC Science & Technology

    1990-08-01

    flos- aguae Anabaena sp. (colonial blue-greens) 8-16-88 Aphanizomenon flos- aguae Anabaena planctonica Coccoid sp. (colonial blue-greens...Goelosphaeriui sp. Microcystis aerug~inosa Comphosphaeria sp. 9-9-88 Aphanizomenon flos- aguae Oscillatoria sp. Melosira spp. Table 9 Dominant Phytoplankton Species...study (Kennedy et al. 1988). Sampling period was initiated in early April, 1988 and completed in early September, 1988. In situ variables, measured at

  3. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    PubMed

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tasco®: a product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection.

    PubMed

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T; Prithiviraj, Balakrishnan

    2012-01-01

    The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors.

  6. Tasco®: A Product of Ascophyllum nodosum Enhances Immune Response of Caenorhabditis elegans Against Pseudomonas aeruginosa Infection

    PubMed Central

    Kandasamy, Saveetha; Khan, Wajahatullah; Evans, Franklin; Critchley, Alan T.; Prithiviraj, Balakrishnan

    2012-01-01

    The effects of Tasco®, a product made from the brown seaweed (Ascophyllum nodosum) were tested for the ability to protect Caenorhabditis elegans against Pseudomonas aeruginosa infection. A water extract of Tasco® (TWE) reduced P. aeruginosa inflicted mortality in the nematode. The TWE, at a concentration of 300 µg/mL, offered the maximum protection and induced the expression of innate immune response genes viz.; zk6.7 (Lypases), lys-1 (Lysozyme), spp-1 (Saponin like protein), f28d1.3 (Thaumatin like protein), t20g5.7 (Matridin SK domain protein), abf-1 (Antibacterial protein) and f38a1.5 (Lectin family protein). Further, TWE treatment also affected a number of virulence components of the P. aeuroginosa and reduced its secreted virulence factors such as lipase, proteases and toxic metabolites; hydrogen cyanide and pyocyanin. Decreased virulence factors were associated with a significant reduction in expression of regulatory genes involved in quorum sensing, lasI, lasR, rhlI and rhlR. In conclusion, the TWE-treatment protected the C. elegans against P. aeruginosa infection by a combination of effects on the innate immunity of the worms and direct effects on the bacterial quorum sensing and virulence factors. PMID:22363222

  7. Pseudomonas aeruginosa infections of intact skin.

    PubMed

    Agger, W A; Mardan, A

    1995-02-01

    Pseudomonas aeruginosa infections of healthy skin are uncommon. We report four cases of P. aeruginosa infections of intact skin. These cases illustrate the clinical spectrum of these cutaneous infections: localized, mild epidermal infections (the green nail syndrome and webbed space infections), moderately serious infections (cutaneous folliculitis and otitis externa), and, in immunocompromised patients, extremely serious infections (malignant otitis externa, perirectal infection, and ecthyma gangrenosum).

  8. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    PubMed

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti- Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa . Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu , primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  9. Detection of Metallo-Beta Lactamases Among Carbapenem-Resistant Pseudomonas aeruginosa.

    PubMed

    Farajzadeh Sheikh, Ahmad; Rostami, Soodabeh; Jolodar, Abbas; Tabatabaiefar, Mohammad Amin; Khorvash, Farzin; Saki, Azadeh; Shoja, Saeed; Sheikhi, Raheleh

    2014-11-01

    Carbapenems are important drugs used for the treatment of Pseudomonas aeruginosa infections, however metallo-β-lactamases (MBL) are able to efficiently hydrolyze these classes of drugs. Immediate detection of the MBL-producing P. aeruginosa is necessary in order to accurately treat infections caused by this organism. To determine the prevalence of MBL producing P. aeruginosa in burn and non-burn patients by two phenotypic tests and polymerase chain reaction (PCR) and to compare phenotypic tests with PCR. A total of 223 non-duplicate strains of P. aeruginosa were collected from three teaching hospitals of Ahvaz, Iran. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) of carbapenems (imipenem, meropenem, doripenem and ertapenem) were determined by the Kirby-Bauer and E-test methods. Combined disk (CD) test, MBL E-test and PCR were performed for carbapenem-resistant P. aeruginosa isolates. Amongst all the P. aeruginosa isolates, 58.7% were resistant to imipenem while 31.8%, 13.5% and 74.4% were resistant to meropenem, doripenem and ertapenem, respectively. Amongst all the P. aeruginosa isolates, 44.4% were multidrug resistant and 13.45% were resistant to all of the carbapenems. The CD test with doripenem disk / 750 μg ethylene diamine tetra acetic acid (EDTA) had the highest efficiency compared to the other phenotypic tests. bla IMP and bla VIM genes were detected in 11.7% and 0.4% of isolates, respectively. bla SPM and bla NDM genes were not observed. Epidemiological and regional evaluation of MBL-producing P. aeruginosa through simple and inexpensive methods should be considered for effective treatment of carbapenem-resistant P. aeruginosa infections.

  10. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion.

    PubMed

    Zhu, Junying; Liu, Biyun; Wang, Jing; Gao, Yunni; Wu, Zhenbin

    2010-06-10

    For revealing the mechanism of allelopathic influence on phytoplankton by aquatic macrophytes, the growth and photosynthetic activities of cyanobacteria Microcystis aeruginosa and the chlorophyte Selenastrum capricornutum were investigated when they coexisted with submerged macrophyte Myriophyllum spicatum and were exposed to allelopathic polyphenols: pyrogallic acid (PA), gallic acid (GA), ellagic acid (EA) and (+)-catechin (CA). According to the results of coexistence assays, the non-photochemical quenching (NPQ) and effective quantum efficiency (YII) of M. aeruginosa were affected earlier and more rapidly than the cell density. However, the influence of M. spicatum on S. capricornutum was not found. When the Toxicity Index (TI) was applied to evaluate the combined effects of binary and multiple mixtures of polyphenols, it was found that the four tested polyphenols with the proportion identified in the M. spicatum-cultured solution were observed to present synergistic effect (0.36-0.49) according to the cell density, NPQ and YII of M. aeruginosa. With the combined effects of polyphenols on S. capricornutum, only additive action (0.52-1.62) was found. On the other hand, PA (2.97mgL(-1)), GA (2.65mgL(-1)) caused significant reductions of photosystem II (PSII) and whole electron transport chain activities of M. aeruginosa by 71.43 and 18.37%, 70.95 and 40.77% (P<0.05), respectively, after 24-h exposure, but no inhibition effect was found in S. capricornutum. The dark respiration and photosystem I (PSI) activities of M. aeruginosa were significantly increased by exposure to PA and GA (P<0.05). Nevertheless, EA and CA had no influence on the electron transport activities of the tested organisms. These results indicate that the reduction in photosynthetic activity of M. aeruginosa and the synergistic effect of allelochemicals may be two important causes for the inhibition of undesired phytoplankton by submersed macrophytes in natural aquatic ecosystems, and PSII in

  11. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa

    PubMed Central

    Lovewell, Rustin R.; Patankar, Yash R.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity. PMID:24464809

  12. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa.

    PubMed

    Lovewell, Rustin R; Patankar, Yash R; Berwin, Brent

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.

  13. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    NASA Astrophysics Data System (ADS)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  14. T lymphocyte-mediated protection against Pseudomonas aeruginosa infection in granulocytopenic mice.

    PubMed Central

    Powderly, W G; Pier, G B; Markham, R B

    1986-01-01

    BALB/c mice immunized with Pseudomonas aeruginosa immunotype 1 polysaccharide develop protective T cell immunity to bacterial challenge. In vitro, T cells from immunized mice kill P. aeruginosa by production of a bactericidal lymphokine. The present study demonstrates that adoptive transfer of T cells from immunized BALB/c mice to granulocytopenic mice resulted in 97% survival on challenge with P. aeruginosa, compared with 17% survival with adoptive transfer of T cells from nonimmune BALB/c mice. This protection is specifically elicited by reexposure to the original immunizing antigen; adoptive recipients cannot withstand challenge with immunotype 3 P. aeruginosa. However, the adoptive recipients do survive simultaneous infection with both P. aeruginosa immunotypes 1 and 3. Adoptive transfer of T cells from the congenic CB.20 mice, which are unable to kill P. aeruginosa in vitro, provides only 20% protection to granulocytopenic mice. These studies indicate that transfer of specific immune T lymphocytes can significantly enhance the resistance to P. aeruginosa infection in granulocytopenic mice. PMID:2426306

  15. Current therapies for pseudomonas aeruginosa.

    PubMed

    Giamarellou, Helen; Kanellakopoulou, Kyriaki

    2008-04-01

    Based on the worldwide prevalence of multidrug-resistant strains of Pseudomas aeruginosa and the fact that no newer antipseudomonal agents are available, this article aims to investigate therapeutic solutions for combating infections caused by P aeruginosa, including multidrug-resistant strains. The article focuses mainly on colistin, the re-emerging old antibiotic that possesses prominent antipseudomonal activity in vitro and on doripenem, a newer carbapenem that seems to be close to its global marketing. Regarding older antipseudomonal antibiotics that have been reviewed extensively, only newer aspects on their use are considered in this article.

  16. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.

    PubMed

    Arts, Isabelle S; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-12-10

    Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics

  17. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    PubMed Central

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration. PMID:28184354

  18. Pseudomonas aeruginosa Population Structure Revisited

    PubMed Central

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  19. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    EPA Science Inventory

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  20. Biodegradation of Microcystins during Gravity-Driven Membrane (GDM) Ultrafiltration

    PubMed Central

    Kohler, Esther; Villiger, Jörg; Posch, Thomas; Derlon, Nicolas; Shabarova, Tanja; Morgenroth, Eberhard; Pernthaler, Jakob; Blom, Judith F.

    2014-01-01

    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L−1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified. PMID:25369266

  1. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and

  2. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Background Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. Methods The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Results Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. Conclusion The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P

  3. Hypertrophic Cranial Pachymeningitis and Skull Base Osteomyelitis by Pseudomonas Aeruginosa: Case Report and Review of the Literature

    PubMed Central

    Caldas, Ana Rita; Brandao, Mariana; Paula, Filipe Seguro; Castro, Elsa; Farinha, Fatima; Marinho, Antonio

    2012-01-01

    Hypertrophic cranial pachymeningitis (HCP) is an uncommon disorder characterized by localized or diffuse thickening of the dura mater, and it usually presents with multiple cranial neurophaties. It has been associated with a variety of inflammatory, infectious, traumatic, toxic and neoplasic diseases, when no specific cause is found the process is called idiopathic. The infectious cases occur in patients under systemic immunosuppression, which have an evident contiguous source or those who have undergone neurosurgical procedures. We describe a case of a 62-year-old immunosuppressed woman with diabetes and rheumatoid arthritis, which had HCP and osteomyelitis of the skull base caused by pseudomonas aeruginosa, presenting with headache and diplopia. We believe this is the second documented case of pachymeningitis secondary to this microorganism. As a multifactorial disease, it is essencial to determine the specific causative agent of HCP before making treatment decisions, and great care is needed with immunocompromised patients. Keywords Pseudomonas aeruginosa; Hypertrophic pachymeningitis; Ophtalmoplegia, optical neuropathy; Osteomyelitis; Skull base PMID:22505989

  4. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers

    PubMed Central

    Gopal, Judy; Hasan, Nazim; Manikandan, M.; Wu, Hui-Fen

    2013-01-01

    For the first time, we have investigated the bacterial toxicity or compatibility properties of Pt nanoparticles (NPs) with different sizes (P1, P2, P3, P4 and P5). The bacterio-toxic or compatible properties of these five different sized Pt NPs with the clinical pathogen, Pseudomonas aeruginosa were explored by many analytical methods such as the conventional plate count method, matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), fluorescence microscopy and fluorescence sensoring techniques. The results revealed that the 1–3 nm sized (P1 and P2) Pt NPs showed bacterio-toxic properties while the 4–21 nm (P3, P4 and P5) Pt NPs exhibited bacterio-compatible properties. This is the first study which reports the bacterial toxicity of Pt NPs. The information released from this study is significantly important to future clinical, medical, biological and biomedical applications of Pt NPs. PMID:23405274

  5. Phylogenetic study of Geitlerinema and Microcystis (Cyanobacteria) using PC-IGS and 16S-23S ITS as markers: investigation of horizontal gene transfer.

    PubMed

    Piccin-Santos, Viviane; Brandão, Marcelo Mendes; Bittencourt-Oliveira, Maria Do Carmo

    2014-08-01

    Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S-23S ITS) and phycocyanin intergenic spacer (PC-IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC-IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC-IGS and 16S-23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC-IGS. Thus, PC-IGS is a suitable marker, along with 16S-23S ITS for phylogenetic studies of cyanobacteria. © 2014 Phycological Society of America.

  6. [Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa].

    PubMed

    Jin, X J; Gong, Y L; Yang, L; Mo, B H; Peng, Y Z; He, P; Zhao, J N; Li, X L

    2018-04-20

    Objective: To establish an optimized method of recombinase polymerase amplification (RPA) to rapidly detect Pseudomonas aeruginosa in clinic. Methods: (1) The DNA templates of one standard Pseudomonas aeruginosa strain was extracted and detected by polymerase chain reaction (PCR), real-time fluorescence quantitative PCR and RPA. Time of sample loading, time of amplification, and time of detection of the three methods were recorded. (2) One standard Pseudomonas aeruginosa strain was diluted in 7 concentrations of 1×10(7,) 1×10(6,) 1×10(5,) 1×10(4,) 1×10(3,) 1×10(2,) and 1×10(1) colony forming unit (CFU)/mL after recovery and cultivation. The DNA templates of Pseudomonas aeruginosa and negative control strain Pseudomonas putida were extracted and detected by PCR, real-time fluorescence quantitative PCR, and RPA separately. The sensitivity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (3) The DNA templates of one standard Pseudomonas aeruginosa strain and four negative control strains ( Staphylococcus aureus, Acinetobacter baumanii, Candida albicans, and Pseudomonas putida ) were extracted separately, and then they were detected by PCR, real-time fluorescence quantitative PCR, and RPA. The specificity of the three methods in detecting Pseudomonas aeruginosa was analyzed. (4) The DNA templates of 28 clinical strains of Pseudomonas aeruginosa preserved in glycerin, 1 clinical strain of which was taken by cotton swab, and negative control strain Pseudomonas putida were extracted separately, and then they were detected by RPA. Positive amplification signals of the clinical strains were observed, and the detection rate was calculated. All experiments were repeated for 3 times. Sensitivity results were analyzed by GraphPad Prism 5.01 statistical software. Results: (1) The loading time of RPA, PCR, and real-time fluorescence quantitative PCR for detecting Pseudomonas aeruginosa were all 20 minutes. In PCR, time of amplification was 98 minutes

  7. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

    2011-01-01

    Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

  8. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  9. An Environmentally Friendly Method for Testing Photocatalytic Inactivation of Cyanobacterial Propagation on a Hybrid Ag-TiO2 Photocatalyst under Solar Illumination

    PubMed Central

    Chang, Shu-Yu; Huang, Winn-Jung; Lu, Ben-Ren; Fang, Guor-Cheng; Chen, Yeah; Chen, Hsiu-Lin; Chang, Ming-Chin; Hsu, Cheng-Feng

    2015-01-01

    Cyanobacteria were inactivated under sunlight using mixed phase silver (Ag) and deposited titanium dioxide (TiO2) coated on the surface of diatomite (DM) as a hybrid photocatalyst (Ag-TiO2/DM). The endpoints of dose-response experiments were chlorophyll a, photosynthetic efficiency, and flow cytometry measurements. In vitro experiments revealed that axenic cultures of planktonic cyanobacteria lost their photosynthetic activity following photocatalyzed exposure to sunlight for more than 24 h. Nearly 92% of Microcystis aeruginosa cells lost their photosynthetic activity, and their cell morphology was severely damaged within 24 h of the reaction. Preliminary carbon-14 (14CO3−2) results suggest that the complete inactivation of cyanobacteria arises from damage to cell wall components (peroxidation). A small concomitant increase in cell wall disorder and a consequent decrease in cell wall functional groups increase the cell wall fluidity prior to cell lysis. A high dosage of Ag-TiO2/DM during photocatalysis increased the concentration of extracellular polymeric substances (EPSs) in the Microcystis aeruginosa suspension by up to approximately 260%. However, photocatalytic treatment had a small effect on the disinfection by-product (DBP) precursor, as revealed by only a slight increase in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). PMID:26690465

  10. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt

    PubMed Central

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-01-01

    Background Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. Objectives The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. Methods A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Results Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Conclusions Multidrug resistance was significantly associated with MBL production in P. aeruginosa. Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates. PMID:28138370

  11. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt.

    PubMed

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-11-01

    Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Multidrug resistance was significantly associated with MBL production in P. aeruginosa . Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates.

  12. Enhanced thermal destruction of toxic microalgal biomass by using CO2.

    PubMed

    Jung, Jong-Min; Lee, Jechan; Kim, Jieun; Kim, Ki-Hyun; Kim, Hyung-Wook; Jeon, Young Jae; Kwon, Eilhann E

    2016-10-01

    This work confirmed that dominant microalgal strain in the eutrophic site (the Han River in Korea) was Microcystis aeruginosa (M. aeruginosa) secreting toxins. Collected and dried microalgal biomass had an offensive odor due to microalgal lipid, of which the content reached up to 2±0.2wt.% of microalgal biomass (dry basis). This study has validated that the offensive odor is attributed to the C3-6 range of volatile fatty acids (VFAs), which was experimentally identified by the non-catalytic transformation of triglycerides (TGs) and free fatty acids (FFAs) in microalgal biomass into fatty acid methyl esters (FAMEs). In particular, this study mechanistically investigated the influence of CO2 in the thermal destruction (i.e., pyrolysis) of hazardous microalgal biomass in order to achieve dual purposes (i.e., thermal disposal of hazardous microalgal biomass and energy recovery). The influence of CO2 in pyrolysis of microalgal biomass was identified as 1) the enhanced thermal cracking behaviors of volatile organic compounds (VOCs) from the thermal degradation of microalgal biomass and 2) the direct gas phase reaction between CO2 and VOCs. These identified influences of CO2 in pyrolysis of microalgal biomass significantly enhanced the generation of CO: the enhanced generation of CO in the presence of CO2 was 590% at 660°C, 1260% at 690°C, and 3200% at 720°C. In addition, two identified influences of CO2 (i.e., enhanced thermal cracking and direct gas phase reaction) occurred simultaneously and independently. The identified gas phase reaction in the presence of CO2 was only initiated at temperatures higher than 500°C, which was different from the Boudouard reaction. Lastly, the experimental work justified that exploiting CO2 as a reaction medium and/or chemical feedstock will provide new technical approaches for controlling syngas ratio and in-situ air pollutant control without using catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  14. Chromosomally Encoded mcr-5 in Colistin non-susceptible Pseudomonas aeruginosa.

    PubMed

    Snesrud, Erik; Maybank, Rosslyn; Kwak, Yoon I; Jones, Anthony R; Hinkle, Mary K; Mc Gann, Patrick

    2018-05-29

    Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn 3 -like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa .

  15. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa

    PubMed Central

    Wagner, Andreas; MacLean, R. Craig

    2016-01-01

    Novel traits play a key role in evolution, but their origins remain poorly understood. Here we address this problem by using experimental evolution to study bacterial innovation in real time. We allowed 380 populations of Pseudomonas aeruginosa to adapt to 95 different carbon sources that challenged bacteria with either evolving novel metabolic traits or optimizing existing traits. Whole genome sequencing of more than 80 clones revealed profound differences in the genetic basis of innovation and optimization. Innovation was associated with the rapid acquisition of mutations in genes involved in transcription and metabolism. Mutations in pre-existing duplicate genes in the P. aeruginosa genome were common during innovation, but not optimization. These duplicate genes may have been acquired by P. aeruginosa due to either spontaneous gene amplification or horizontal gene transfer. High throughput phenotype assays revealed that novelty was associated with increased pleiotropic costs that are likely to constrain innovation. However, mutations in duplicate genes with close homologs in the P. aeruginosa genome were associated with low pleiotropic costs compared to mutations in duplicate genes with distant homologs in the P. aeruginosa genome, suggesting that functional redundancy between duplicates facilitates innovation by buffering pleiotropic costs. PMID:27149698

  16. Chronic Pseudomonas aeruginosa infection and respiratory muscle impairment in cystic fibrosis.

    PubMed

    Dassios, Theodore G; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel

    2014-03-01

    Chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis (CF) is associated with increased morbidity. Chronic infection can cause limb and respiratory muscle compromise. Respiratory muscle function can be assessed via maximal inspiratory pressure (PImax), maximal expiratory pressure (PEmax), and the pressure-time index of the respiratory muscles (PTImus). We studied the effect of chronic P. aeruginosa infection on respiratory muscle function in patients with CF. This cross-sectional study assessed PImax, PEmax, PTImus, FEV1, FVC, maximum expiratory flow during the middle half of the FVC maneuver, body mass index, and upper arm muscle area in 122 subjects with CF, in 4 subgroups matched for age and sex at different stages of P. aeruginosa infection, according to the Leeds criteria. We compared respiratory muscle function in the subgroups according to P. aeruginosa infection state. Median PImax was significantly lower in CF subjects with chronic P. aeruginosa infection (PImax = 62 cm H2O), compared to subjects who were never infected (PImax = 86 cm H2O, P = .02), free of infection (PImax = 74 cm H2O, P = .01), or intermittently infected (PImax = 72 cm H2O, P = .02). Median PTImus was significantly increased in CF subjects with chronic P. aeruginosa infection (PTImus = .142), compared to subjects who were free of infection (PTImus = .102, P = .006). Median upper-arm muscle area was significantly lower in CF subjects with chronic P. aeruginosa infection (upper-arm muscle area = 2,219 mm(2)), compared to subjects who were never infected (2,754 mm(2), P = .03), free of infection (2,678 mm(2), P = .01), or intermittently infected (2,603 mm(2), P = .04). Multivariate logistic regression revealed P. aeruginosa state of infection as a significant determinant of PTImus (P = .03) independently of sex, upper-arm muscle area, and FEV1. CF subjects with chronic P. aeruginosa infection exhibited impaired respiratory muscle function and decreased inspiratory

  17. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  18. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa.

    PubMed

    Takeoka, Yusuke; Tanino, Tetsuya; Sekiguchi, Mitsuaki; Yonezawa, Shuji; Sakagami, Masahiro; Takahashi, Fumiyo; Togame, Hiroko; Tanaka, Yoshikazu; Takemoto, Hiroshi; Ichikawa, Satoshi; Matsuda, Akira

    2014-05-08

    It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure-activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4-8 μg/mL.

  19. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa

    PubMed Central

    2014-01-01

    It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure–activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4–8 μg/mL. PMID:24900879

  20. Ecotoxicity of two organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii.

    PubMed

    Sun, Kai-Feng; Xu, Xiang-Rong; Duan, Shun-Shan; Wang, You-Shao; Cheng, Hao; Zhang, Zai-Wang; Zhou, Guang-Jie; Hong, Yi-Guo

    2015-10-01

    Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose-response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 μmol L(-1), respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F v/F m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F v/F m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose-response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation.

  1. Geographical differences in first acquisition of Pseudomonas aeruginosa in cystic fibrosis.

    PubMed

    Ranganathan, Sarath C; Skoric, Billy; Ramsay, Kay A; Carzino, Rosemary; Gibson, Anne-Marie; Hart, Emily; Harrison, Jo; Bell, Scott C; Kidd, Timothy J

    2013-04-01

    Risk of infection with Pseudomonas aeruginosa in cystic fibrosis (CF) may be associated with environmental factors. To determine whether residential location is associated with risk of first acquisition of P. aeruginosa. We performed bronchoalveolar lavage and upper airway cultures in children newly diagnosed with CF to identify infection with P. aeruginosa during infancy and early childhood. Children were assessed according to their residence in a regional or metropolitan area. Multilocus sequence typing was used to determine P. aeruginosa genotype. An environmental questionnaire was also administered. A total of 105 of 120 (87.5%) infants diagnosed with CF were included in this study. Diagnosis in 65 infants (61.9%) followed newborn screening at mean age of 4.6 weeks. Sixty subjects (57.1%) were homozygous ΔF508, and 47 (44.8%) were female. Fifty-five (52.3%) infants were regional, of whom 26 (47.3%), compared with 9 of 50 (18.0%) metropolitan children, acquired infection with P. aeruginosa (odds ratio, 4.084; 95% confidence interval, 1.55-11.30). Age at acquisition was similar (regional: median, 2.31 yr; range, 0.27-5.96 yr; metropolitan: median, 3.10 yr, range, 0.89-3.70 yr). Strain typing identified P. aeruginosa genotypes often encountered in different ecological settings and little evidence of cross-infection. Ninety questionnaires (85.7%) were completed. Those who acquired P. aeruginosa were more likely to be living in a household that used water sprinkler systems (P = 0.032), but no differences were identified to explain increased risk of acquisition of P. aeruginosa in regional children. Geographical difference in residence of children with CF was associated with increased risk of first acquisition of P. aeruginosa, usually with strains associated with the environment rather than with cross-infection.

  2. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis.

    PubMed

    Stefani, S; Campana, S; Cariani, L; Carnovale, V; Colombo, C; Lleo, M M; Iula, V D; Minicucci, L; Morelli, P; Pizzamiglio, G; Taccetti, G

    2017-09-01

    Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels

    NASA Astrophysics Data System (ADS)

    Kim, Han-Shin; Cha, Eunji; Kim, Yunhye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung

    2016-05-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.

  4. Engineering waterborne Pseudomonas aeruginosa out of a critical care unit.

    PubMed

    Garvey, Mark I; Bradley, Craig W; Wilkinson, Martyn A C; Bradley, Christina; Holden, Elisabeth

    2017-08-01

    To describe engineering and holistic interventions on water outlets contaminated with Pseudomonas aeruginosa and the observed impact on clinical P. aeruginosa patient isolates in a large Intensive Care Unit (ICU). Descriptive study. Queen Elizabeth Hospital Birmingham (QEHB), part of University Hospitals Birmingham (UHB) NHS Foundation Trust is a tertiary referral teaching hospital in Birmingham, UK and provides clinical services to nearly 1 million patients every year. Breakpoint models were used to detect any significant changes in the cumulative yearly rates of clinical P. aeruginosa patient isolates from August 2013-December 2016 across QEHB. Water sampling undertaken on the ICU indicated 30% of the outlets were positive for P. aeruginosa at any one time. Molecular typing of patient and water isolates via Pulsed Field Gel Electrophoresis suggested there was a 30% transmission rate of P. aeruginosa from the water to patients on the ICU. From, February 2014, QEHB implemented engineering interventions, consisting of new tap outlets and PALL point-of-use filters; as well as holistic measures, from February 2016 including a revised tap cleaning method and appropriate disposal of patient waste water. Breakpoint models indicated the engineering and holistic interventions resulted in a significant (p<0.001) 50% reduction in the number of P. aeruginosa clinical patient isolates over a year. Here we demonstrate that the role of waterborne transmission of P. aeruginosa in an ICU cannot be overlooked. We suggest both holistic and environmental factors are important in reducing transmission. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Transferable Drug Resistance in Pseudomonas aeruginosa1

    PubMed Central

    Bryan, L. E.; Elzen, H. M. Van Den; Tseng, Jui Teng

    1972-01-01

    Three strains of Pseudomonas aeruginosa were demonstrated to transfer double-drug resistance by conjugation to a P. aeruginosa recipient at frequencies of 10−4 to 10−2 per recipient cell. Two of the three strains also transferred to Escherichia coli at frequencies which were 103- to 105-fold lower, but the third strain could not be demonstrated to do so. The latter strain, however, conferred maleness on the Pseudomonas recipient. The transfer of streptomycin resistance was associated with the acquisition of streptomycin phosphorylase by both P. aeruginosa and E. coli recipients. Maximal broth mating frequencies were obtained with nonagitated cultures less than 1 mm in depth. A pyocine selection system based on donor sensitivity and recipient resistance is described and appears to have future value as a generalized selective device for use after matings. PMID:4207756

  6. Pseudomonas aeruginosa Genotype Prevalence in Dutch Cystic Fibrosis Patients and Age Dependency of Colonization by Various P. aeruginosa Sequence Types ▿

    PubMed Central

    van Mansfeld, Rosa; Willems, Rob; Brimicombe, Roland; Heijerman, Harry; van Berkhout, Ferdinand Teding; Wolfs, Tom; van der Ent, Cornelis; Bonten, Marc

    2009-01-01

    The patient-to-patient transmission of highly prevalent Pseudomonas aeruginosa clones which are associated with enhanced disease progression has led to strict segregation policies for cystic fibrosis (CF) patients in many countries. However, little is known about the population structure of P. aeruginosa among CF patients. The aim of the present cross-sectional study was to determine the prevalence and genetic relatedness of P. aeruginosa isolates from CF patients who visited two major CF centers in The Netherlands in 2007 and 2008. These patients represented 45% of the Dutch CF population. P. aeruginosa carriage in the respiratory tract was determined by standard microbiological culture techniques, and all phenotypically different isolates in the first specimens recovered in 2007 and 2008 were genotyped by multilocus sequence typing. A total of 313 (57%) of 551 patients whose samples were cultured carried P. aeruginosa. Two sequence types (STs), ST406 and ST497, were found in 15% and 5% of the patients, respectively, and 60% of the patients harbored a strain that was also found in at least two other patients. The risk ratios for carrying ST406 and ST497 were 17.8 (95% confidence interval [CI], 7.2 to 43.6) for those aged between 15 and 24 years and 6 (95% CI, 1.4 to 26.1) for those aged >25 years. ST406 and ST497 were not genetically linked to previously described epidemic clones, which were also not found in this CF population. The population structure of P. aeruginosa in Dutch CF patients is characterized by the presence of two prevalent STs that are associated with certain age groups and that are not genetically linked to previously described epidemic clones. PMID:19828746

  7. [Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem].

    PubMed

    Ghibu, Laura; Miftode, Egidia; Teodor, Andra; Bejan, Codrina; Dorobăţ, Carmen Mihaela

    2010-01-01

    Since their introduction in clinical practice,carbapenems have been among the most powerful antibiotics for treating serious infections cased by Gram-negative nosocomial pathogens, including Pseudomonas aeruginosa. The emergence of betalactamases with carbapenem-hydrolyzing activity is of major clinical concern. Pseudomonas aeruginosa is a leading cause of nosocomial infection. Risk factors for colonization with carbapenems-resistant Pseudomonas in hospital are: history of P. aeruginosa infection or colonization within the previous year, (length of hospital stay, being bedridden or in the ICU, mechanical ventilation, malignant disease, and history of chronic obstructive pulmonary disease have all been identified as independent risk factors for MDR P. aeruginosa infection. Long-term-care facilities are also reservoirs of resistant bacteria. Risk factors for colonization of LTCF residents with resistant bacteria included age > 86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit.

  8. Fast biodegradation of toxic bisphenol a by Pseudomonas aeruginosa NR.22 (Ps.NR.22) isolated from Malaysian local lake

    NASA Astrophysics Data System (ADS)

    Him, Nik Raikhan Nik; Zainuddin, Mohammad Fiqri; Basha, Anuar Zain Anuar

    2017-12-01

    The paper focused on microbial degradation of Bisphenol A (BPA) as a safe and fast method to reduce BPA contamination in water. BPA is found in waste water, sea water and home water pipeline and it is nondegradable pollutant. Biodegradation is suggested to be practical solution for large volume of BPA. Biodegradation plays an important role and the effect of low concentration significantly decreased the degradation rate. Pseudomonas aeruginosa NR.22 (Ps.NR.22) which has been isolated from a lake at Seksyen 2, Shah Alam, was used. In Malaysia, Ps.NR.22 isolation agar is used for the BPA degradation process. It was stained with Gram negative-rod shaped bacteria that confirmed to carry a 16S rRNA gene. BPA as a sole carbon has been tested at various concentrations. The research showed that BPA was degraded at 10, 20, 30, 40 and 50 ppm and the bacteria growth rate was excellent in 20 ppm BPA. Degradation of BPA was carried out for 9 hours to 18 hours and the maximum degradation was recorded at 9 hours. The value of the highest peak of growth at 540 nm was 2.0617 using 20 ppm BPA. This novel Pseudomonas aeruginosa NR.22 has great potential to be used in waste water treatment.

  9. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing.

    PubMed

    Goldufsky, Josef; Wood, Stephen J; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A; Shafikhani, Sasha H

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa-induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. © 2015 by the Wound Healing Society.

  10. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    PubMed

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa.

  11. Molecular epidemiology of Pseudomonas aeruginosa.

    PubMed

    Speert, David P

    2002-10-01

    Pseudomonas aeruginosa is a serious opportunistic pathogen in certain compromised hosts, such as those with cystic fibrosis, thermal burns and cancer. It also causes less severe noninvasive disease, such as otitis externa and hot tub folliculitis, in normal hosts. P. aeruginosa is phenotypically very unstable, particularly in patients with chronic infection. Phenotypic typing techniques are useful for understanding the epidemiology of acute infections, but they are limited by their discriminatory power and by their inability to group isolates that are phenotypically unrelated but genetically homologous. Molecular typing techniques, developed over the past decade, are highly discriminatory and are useful for typing strains from patients with chronic infection where the bacterial phenotype is unstable; this is particularly true in cystic fibrosis, where patients often are infected with the same strain for several decades, but the bacteria undergo phenotypic alteration. Molecular typing techniques, which have proven useful in typing P. aeruginosa for epidemiological purposes, include pulsed field gel electrophoresis, restriction fragment length polymorphic DNA analysis, random amplified polymorphic DNA analysis, repetitive extrapalindromic PCR analysis, and multilocus sequence typing. These methods are generally only available in specialized laboratories, but they should be used when data from phenotypic typing analysis are ambiguous or when phenotypic methods are unreliable, such as in cystic fibrosis.

  12. [In vitro indirect pathogenesis of Pseudomonas aeruginosa against anti MRSA chemotherapy].

    PubMed

    Satoh, Naotake; Kondo, Shigemi; Yamada, Toshihiko; Saionji, Katsu; Oguri, Toyoko; Igari, Jun

    2004-09-01

    In the patient with a chronic respiratory disease, both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) are frequently detected from expectoration. Vancomycin (VCM) and arbekacin (ABK) are both recommended for the chemotherapy of MRSA infection in Japan. Minocycline (MINO) is also selected for the treatment of MRSA infection. While rifampicin (RFP) and a trimetoprim-sulfamethoxazole combination (ST) are also recommended in Europe and USA but not recommended in Japan for the chemotherapy of MRSA infection. It is pointed out that coexistence bacteria affect chemotherapy as an indirect pathogen. Not only an antibacterial action but the immunological action or the metabolic effect against chronic P. aeruginosa infection such as DPB is known by the administration of 14-membered ring macrolides including erythromycin (EM). We considered the influence of P. aeruginosa isolated with MRSA on the activity against anti-MRSA agents by the disk diffusion method with bilayer flat agar in vitro. Moreover, we also examined the influence of EM against the activity of the anti-MRSA agents when P. aeruginosa was coexistence. One strain of MRSA as an indicator strain and 100 strains of P. aeruginosa as test strains, which were obtained from clinical materials, were used for the following experiment. P. aeruginosa was streaked on to the Mueller-Hinton agar culture medium (MHA), and they incubated at 35 degrees C for 24 hours. Then, the blood agar plate was piled up, MRSA was streaked on the blood agar surface, the susceptibility test disks (VCM, ABK, MINO, RFP, ST) were put on it, and incubated at 35 degrees C for a further 24 hours. The diameter of the zone of inhibition around the susceptibility disks against MRSA was measured and compared with P. aeruginosa free experiments. The anti-MRSA activity of MINO, ST and ABK was reduced by coexistence of P. aeruginosa. In RFP and VCM, the anti-MRSA activity was reinforced by coexistence of P. aeruginosa

  13. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.

    PubMed

    Kramer, Benjamin J; Davis, Timothy W; Meyer, Kevin A; Rosen, Barry H; Goleski, Jennifer A; Dick, Gregory J; Oh, Genesok; Gobler, Christopher J

    2018-01-01

    Lake Okeechobee, FL, USA, has been subjected to intensifying cyanobacterial blooms that can spread to the adjacent St. Lucie River and Estuary via natural and anthropogenically-induced flooding events. In July 2016, a large, toxic cyanobacterial bloom occurred in Lake Okeechobee and throughout the St. Lucie River and Estuary, leading Florida to declare a state of emergency. This study reports on measurements and nutrient amendment experiments performed in this freshwater-estuarine ecosystem (salinity 0-25 PSU) during and after the bloom. In July, all sites along the bloom exhibited dissolved inorganic nitrogen-to-phosphorus ratios < 6, while Microcystis dominated (> 95%) phytoplankton inventories from the lake to the central part of the estuary. Chlorophyll a and microcystin concentrations peaked (100 and 34 μg L-1, respectively) within Lake Okeechobee and decreased eastwards. Metagenomic analyses indicated that genes associated with the production of microcystin (mcyE) and the algal neurotoxin saxitoxin (sxtA) originated from Microcystis and multiple diazotrophic genera, respectively. There were highly significant correlations between levels of total nitrogen, microcystin, and microcystin synthesis gene abundance across all surveyed sites (p < 0.001), suggesting high levels of nitrogen supported the production of microcystin during this event. Consistent with this, experiments performed with low salinity water from the St. Lucie River during the event indicated that algal biomass was nitrogen-limited. In the fall, densities of Microcystis and concentrations of microcystin were significantly lower, green algae co-dominated with cyanobacteria, and multiple algal groups displayed nitrogen-limitation. These results indicate that monitoring and regulatory strategies in Lake Okeechobee and the St. Lucie River and Estuary should consider managing loads of nitrogen to control future algal and microcystin-producing cyanobacterial blooms.

  14. Potential risk of acute toxicity induced by AgI cloud seeding on soil and freshwater biota.

    PubMed

    Fajardo, C; Costa, G; Ortiz, L T; Nande, M; Rodríguez-Membibre, M L; Martín, M; Sánchez-Fortún, S

    2016-11-01

    Silver iodide is one of the most common nucleating materials used in cloud seeding. Previous cloud seeding studies have concluded that AgI is not practically bioavailable in the environment but instead remains in soils and sediments such that the free Ag amounts are likely too low to induce a toxicological effect. However, none of these studies has considered the continued use of this practice on the same geographical areas and thus the potential cumulative effect of environmental AgI. The aim of this study is to assess the risk of acute toxicity caused by AgI exposure under laboratory conditions at the concentration expected in the environment after repeated treatments on selected soil and aquatic biota. To achieve the aims, the viability of soil bacteria Bacillus cereus and Pseudomonas stutzeri and the survival of the nematode Caenorhabditis elegans exposed to different silver iodide concentrations have been evaluated. Freshwater green algae Dictyosphaerium chlorelloides and cyanobacteria Microcystis aeruginosa were exposed to silver iodide in culture medium, and their cell viability and photosynthetic activity were evaluated. Additionally, BOD5 exertion and the Microtox® toxicity test were included in the battery of toxicological assays. Both tests exhibited a moderate AgI adverse effect at the highest concentration (12.5µM) tested. However, AgI concentrations below 2.5µM increased BOD5. Although no impact on the growth and survival endpoints in the soil worm C. elegans was recorded after AgI exposures, a moderate decrease in cell viability was found for both of the assessed soil bacterial strains at the studied concentrations. Comparison between the studied species showed that the cyanobacteria were more sensitive than green algae. Exposure to AgI at 0.43μM, the reference value used in monitoring environmental impact, induced a significant decrease in photosynthetic activity that is primarily associated with the respiration (80% inhibition) and, to a lesser

  15. Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice.

    PubMed

    von Klitzing, Eliane; Ekmekciu, Ira; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    The rising incidence of multidrug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa has become a serious issue in prevention of its spread particularly among hospitalized patients. It is, however, unclear whether distinct conditions such as acute intestinal inflammation facilitate P. aeruginosa infection of vertebrate hosts. To address this, we analysed P. aeruginosa infection in human microbiota-associated (hma) mice with acute ileitis induced by peroral Toxoplasma gondii challenge. When perorally infected with P. aeruginosa at day 3 post ileitis induction, hma mice displayed higher intestinal P. aeruginosa loads as compared to hma mice without ileitis. However, the overall intestinal microbiota composition was not disturbed by P. aeruginosa (except for lowered bifidobacterial populations), and the infection did not further enhance ileal immune cell responses. Pro-inflammatory cytokines including IFN-γ and IL-12p70 were similarly increased in ileum and mesenteric lymph nodes of P. aeruginosa infected and uninfected hma mice with ileitis. The anti-inflammatory cytokine IL-10 increased multifold upon ileitis induction, but interestingly more distinctly in P. aeruginosa infected as compared to uninfected controls. Immune responses were not restricted to the intestines as indicated by elevated pro-inflammatory cytokine levels in liver and kidney upon ileitis induction. However, except for hepatic TNF-α levels, P. aeruginosa infection did not result in more distinct pro-inflammatory cytokine secretion in liver and kidney of hma mice with ileitis. Whereas viable intestinal bacteria were more frequently detected in systemic compartments such as spleen and cardiac blood of P. aeruginosa infected than uninfected mice at day 7 following ileitis induction, P. aeruginosa infection did not exacerbate systemic pro-inflammatory sequelae, but resulted in lower IL-10 serum levels. Acute intestinal inflammation facilitates infection of the vertebrate host

  16. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater.

    PubMed

    Barrington, Dani J; Ghadouani, Anas

    2008-12-01

    Phytoplankton blooms containing elevated levels of cyanobacteria are common in wastewatertreatment plants. Microcystis aeruginosa, the most common freshwater cyanobacterial species, produces the hepatotoxin microcystin, which is a threat to human and environmental health. Blooms also affect the viability of treating and reusing water and cause problems when detritus accumulates in pipe and pumping delivery infrastructure. We proposed the application of hydrogen peroxide (H2O2) to induce cyanobacterial cell death. Spectral fingerprinting of phytoplankton into four groups (cyanobacteria, chlorophyta, diatoms, and cryptophyta) allowed for determination of equivalent chlorophyll-a (chl-a) concentrations contributed by photosynthetic pigments, an indicative measure of the photosynthetic activity of each phytoplankton group. This was used to establish the effect of H2O2 addition on phytoplankton in wastewater samples. The lowest H2O2 dose that caused statistically significant exponential decay of phytoplankton groups was approximately 3.0 x 10(-3) g H2O2/microg phytoplankton chl-a. At this dose, cyanobacteria and total phytoplankton exhibited a half-life of 2.3 and 4.5 h, respectively. Cyanobacteria decayed at a rate approximately twice that of chlorophyta and diatoms, and the combined chl-a of all phytoplankton groups decreased to negligible levels within 48 h of H202 application.

  17. [Nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit].

    PubMed

    Wu, Yu-Qi; Shan, Hong-Wei; Zhao, Xian-Yu; Yang, Xing-Yi

    2011-02-01

    To investigate the risk factors of nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit (ICU), in order to provide reference for an effective measure of infection control. A retrospective study of cases of Pseudomonas aeruginosa infection occurring in ICU was made with multivariable Logistic regression analysis. The clinical data of 1 950 cases admitted from January 2002 to December 2006 were found to have nosocomial infection caused by Pseudomonas aeruginosa were analyzed in order to identify its independent risk factors. Sixty-four out of 1 950 patients were found to suffer from nosocomial infection caused by Pseudomonas aeruginosa, the morbidity rate was 3.3%. At the same time, and in the same department, 37 patients suffering from infection caused by Escherichia coli, served as control group. Univariate analysis showed that the risk factors for nosocomial infection caused by Pseudomonas aeruginosa were the use of corticosteroid, unconsciousness or craniocerebral trauma, abdominal surgery, thorax/abdomen drainage tube, mechanical ventilation, and tracheostomy [the use of corticosteroid: odds ratio (OR)=3.364, 95% confidence interval (95%CI) 1.445-7.830; unconsciousness or craniocerebral trauma: OR=4.026, 95%CI 1.545-10.490; abdominal surgery: OR=0.166, 95%CI 0.068-0.403; thorax/abdomen drainage tube: OR=0.350, 95%CI 0.150-0.818; tracheostomy: OR=4.095, 95%CI 1.638-10.740]. Multivariate analysis showed that the independent risk factors of nosocomial infection caused by Pseudomonas aeruginosa in ICU were: the use of corticosteroid and mechanical ventilation [the use of corticosteroid: OR=3.143, 95%CI 1.115-8.856; mechanical ventilation: OR=3.195, 95%CI 1.607-6.353, P<0.05 and P<0.01]. The independent risk factors of nosocomial infection caused by Pseudomonas aeruginosa in ICU are the use of corticosteroid and mechanical ventilation. Measures should be taken to take care of the risk factors in order to prevent nosocomial infection caused by

  18. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    PubMed

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis.

    PubMed

    Langan, Katherine M; Kotsimbos, Tom; Peleg, Anton Y

    2015-12-01

    The current guidelines and recent clinical research in the management of Pseudomonas aeruginosa respiratory infections in cystic fibrosis (CF) are reviewed. Areas where further research is required will also be highlighted. P. aeruginosa is a key respiratory pathogen in CF. Inhaled tobramycin or colistin is recommended for early eradication to prevent establishment of chronic infection. Other antibiotic options are currently being investigated. The long-term success of eradication strategies is also now being assessed. The use of inhaled antibiotics in the management of chronic P. aeruginosa infection is an area of active investigation. Acute pulmonary exacerbations are still a major cause of morbidity and mortality. Guidelines continue to recommend combination intravenous therapy but further research is required to clarify the advantage of this approach. Multidrug resistance is common and potentially more effective antipseudomonal antibiotics may soon become available. The management of P. aeruginosa respiratory infection in CF remains a challenging area, especially in the setting of multidrug resistance. The role of inhaled antibiotics continues to be expanded. Further research is required in the key areas of eradication and management of chronic infection and acute pulmonary exacerbations to identify those treatments that optimize long-term, clinical benefits.

  20. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  1. Draft Genome Sequences of Pseudomonas aeruginosa Isolates from Wounded Military Personnel.

    PubMed

    Arivett, Brock A; Ream, Dave C; Fiester, Steven E; Kidane, Destaalem; Actis, Luis A

    2016-08-11

    Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work. Copyright © 2016 Arivett et al.

  2. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence

    PubMed Central

    Moradali, M. Fata; Ghods, Shirin; Rehm, Bernd H. A.

    2017-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance

  3. Effect of novel antibacterial gallium-carboxymethyl cellulose on Pseudomonas aeruginosa.

    PubMed

    Valappil, Sabeel P; Yiu, Humphrey H P; Bouffier, Laurent; Hope, Christopher K; Evans, Gary; Claridge, John B; Higham, Susan M; Rosseinsky, Matthew J

    2013-02-07

    Gallium has emerged as a new therapeutic agent due partly to the scarcity in development of new antibiotics. In this study, a novel antibacterial gallium exchanged carboxymethyl cellulose (Ga-CMC) has been developed and tested for the susceptibility on a common bacteria, Pseudomonas aeruginosa. The results show that an increase in average molecular weight (MW) from 90 k, 250 k to 700 k of Ga-CMC caused a decrease in antimicrobial activity against planktonic P. aeruginosa. Gallium loading of the Ga-CMC (250 k) samples was altered by varying the amount of functionality (0.7, 0.9 and 1.2 acid groups per mole of carbohydrate) which affected also its antimicrobial activity against planktonic P. aeruginosa. Further, the ability to prevent the growth of biofilms of P. aeruginosa was tested on MW = 250 k samples with 0.9 acid groups per mole of carbohydrate as this sample showed the most promising activity against planktonic P. aeruginosa. Gallium was found to reduce biofilm growth of P. aeruginosa with a maximum effect (0.85 log(10) CFU reduction compared to sodium-carboxymethyl cellulose, Na-CMC) after 24 h. Results of the solubility and ion exchange studies show that this compound is suitable for the controlled release of Ga(3+) upon their breakdown in the presence of bacteria. SEM EDX analysis confirmed that Ga(3+) ions are evenly exchanged on the cellulose surface and systematic controls were carried out to ensure that antibacterial activity is solely due to the presence of gallium as samples intrinsic acidity or nature of counterion did not affect the activity. The results presented here highlight that Ga-CMC may be useful in controlled drug delivery applications, to deliver gallium ions in order to prevent infections due to P. aeruginosa biofilms.

  4. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2'-bipyridyl, lipoic, kojic and picolinic acids.

    PubMed

    Çevik, Kübra; Ulusoy, Seyhan

    2015-08-01

    The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. The inhibitory activity of 2,2'-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  5. Establishing the diagnosis of chronic colonization with Pseudomonas aeruginosa of cystic fibrosis patients: Comparison of the European consensus criteria with genotyping of P. aeruginosa isolates.

    PubMed

    Jonckheere, Leander; Schelstraete, Petra; Van Simaey, Leen; Van Braeckel, Eva; Willekens, Julie; Van Daele, Sabine; De Baets, Frans; Vaneechoutte, Mario

    2018-04-11

    After antibiotic eradication treatment for a first ever Pseudomonas aeruginosa isolation, the European consensus criteria (ECC) are widely used to assess colonization status with P. aeruginosa in CF-patients. We evaluated to what extent genotyping (GT) of subsequent P. aeruginosa isolates could predict/assess chronic colonization (CC), in comparison with the ECC. Over a 14-year period, sputa were cultured from 80 CF-patients (age range: 2-51 years), from a first ever isolation of P. aeruginosa onwards. Patients with a positive culture for P. aeruginosa received antibiotic eradication treatment. For the 40 patients for whom three or more P. aeruginosa isolates were available, these isolates were genotyped. According to the ECC, 27 out of the 40 patients (67.5%) became CC during the study period (ECC-positive patients). Genotyping confirmed persistence of the same genotype for 25 of these ECC-positive patients. Genotyping indicated persistence of the same genotype for at least two subsequent isolates for 5 out of 13 ECC-negative patients. Culture-positivity characteristics of the 27 ECC-positive patients corresponded well to those of the 30 GT-positive patients, with an overall higher number of positive cultures as well as a shorter interval in between first and second isolate compared to ECC-negative and GT-negative patients. Genotyping indicated persistence of the same genotype on average 9.3 months earlier than CC according to the ECC (P < 0.01). Genotyping of P. aeruginosa isolates confirmed CC for 25 out of 27 ECC-positive patients (92.6% specificity) and predicted CC 9.3 months earlier than the ECC. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

    PubMed Central

    Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C

    2002-01-01

    Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484

  7. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    PubMed

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  8. The Effect of Strict Segregation on Pseudomonas aeruginosa in Cystic Fibrosis Patients

    PubMed Central

    van Mansfeld, Rosa; de Vrankrijker, Angelica; Brimicombe, Roland; Heijerman, Harry; Teding van Berkhout, Ferdinand; Spitoni, Cristian; Grave, Sanne; van der Ent, Cornelis; Wolfs, Tom; Willems, Rob; Bonten, Marc

    2016-01-01

    Introduction Segregation of patients with cystic fibrosis (CF) was implemented to prevent chronic infection with epidemic Pseudomonas aeruginosa strains with presumed detrimental clinical effects, but its effectiveness has not been carefully evaluated. Methods The effect of strict segregation on the incidence of P. aeruginosa infection in CF patients was investigated through longitudinal protocolized follow-up of respiratory tract infection before and after segregation. In two nested cross-sectional studies in 2007 and 2011 the P. aeruginosa population structure was investigated and clinical parameters were determined in patients with and without infection with the Dutch epidemic P. aeruginosa clone (ST406). Results Of 784 included patients 315 and 382 were at risk for acquiring chronic P. aeruginosa infection before and after segregation. Acquisition rates were, respectively, 0.14 and 0.05 per 1,000 days at risk (HR: 0.66, 95% CI [0.2548–1.541]; p = 0.28). An exploratory subgroup analysis indicated lower acquisition after segregation in children < 15 years of age (HR: 0.43, 95% CI[0.21–0.95]; p = 0.04). P. aeruginosa population structure did not change after segregation and ST406 was not associated with lung function decline, death or lung transplantation. Conclusions Strict segregation was not associated with a statistically significant lower acquisition of chronic P. aeruginosa infection and ST406 was not associated with adverse clinical outcome. After segregation there were no new acquisitions of ST406. In an unplanned exploratory analysis chronic acquisition of P. aeruginosa was lower after implementation of segregation in patients under 15 years of age. PMID:27280467

  9. Pseudomonas aeruginosa isolates in severe chronic obstructive pulmonary disease: characterization and risk factors

    PubMed Central

    2014-01-01

    Background Patients with severe chronic obstructive pulmonary disease (COPD) are at increased risk of infection by P. aeruginosa. The specific role of bronchiectasis in both infection and chronic colonization by this microorganism in COPD, however, remains ill defined. To evaluate the prevalence and risk factors for P. aeruginosa recovery from sputum in outpatients with severe COPD, characterizing P. aeruginosa isolates by pulsed-field gel electrophoresis (PFGE) and focusing on the influence of bronchiectasis on chronic colonization in these patients. Methods A case-cohort study of 118 patients with severe COPD attended at a Respiratory Day Unit for an acute infectious exacerbation and followed up over one year. High-resolution CT scans were performed during stability for bronchiectasis assessment and sputum cultures were obtained during exacerbation and stability in all patients. P. aeruginosa isolates were genotyped by PFGE. Determinants of the recovery of P. aeruginosa in sputum and chronic colonization by this microorganism were assessed by multivariate analysis. Results P. aeruginosa was isolated from 41 of the 118 patients studied (34.7%). Five of these 41 patients (12.2%) with P. aeruginosa recovery fulfilled criteria for chronic colonization. In the multivariate analysis, the extent of bronchiectasis (OR 9.8, 95% CI: 1.7 to 54.8) and the number of antibiotic courses (OR 1.7, 95% CI: 1.1 to 2.5) were independently associated with an increased risk of P. aeruginosa isolation. Chronic colonization was unrelated to the presence of bronchiectasis (p=0.75). In patients with chronic colonization the isolates of P. aeruginosa retrieved corresponded to the same clones during the follow-up, and most of the multidrug resistant isolates (19/21) were harbored by these patients. Conclusions The main risk factors for P. aeruginosa isolation in severe COPD were the extent of bronchiectasis and exposure to antibiotics. Over 10% of these patients fulfilled criteria for

  10. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa.

    PubMed

    Fuse, Katsuhiro; Fujimura, Shigeru; Kikuchi, Toshiaki; Gomi, Kazunori; Iida, Yasuhiro; Nukiwa, Toshihiro; Watanabe, Akira

    2013-02-01

    Nosocomial infections caused by metallo-β-lactamase (MBL)-producing multidrug-resistant (MDR) Pseudomonas aeruginosa have become a worldwide problem. Pyocyanin, a representative pigment produced by P. aeruginosa, is the major virulence factor of this organismThe aim of this study was to investigate the pyocyanin-producing ability of MBL-producing MDR P. aeruginosa. A total of 50 clinical isolates of P. aeruginosa, including 20 MDR strains, were collected at 18 general hospitals in Japan. The chromaticity and luminosity produced by pyocyanin in each isolate were measured. The quantity of pyocyanin and the expression of the phzM and phzS genes coding a pyocyanin synthesis enzyme were measured. MDR strains showed a bright yellow-green, while non-MDR strains tended to show a dark blue-green. The quantities of pyocyanin in MBL-producing strains and non-producing strains were 0.015 ± 0.002 and 0.41 ± 0.10 μg, respectively. The expression of the phzM and phzS genes in the MDR strains was 11 and 14 %, respectively, of the expression in the non-MDR strains. When the MBL gene was transduced into P. aeruginosa and it acquired multidrug resistance, it was shown that the pyocyanin-producing ability decreased. The pathogenicity of MBL-producing MDR P. aeruginosa may be lower than that of non-MDR strains. These MBL-producing MDR strains may be less pathogenic than non-MDR strains. This may explain why MDR-P. aeruginosa is unlikely to cause infection but, rather, causes subclinical colonization only.

  11. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  12. Pseudomonas aeruginosa keratitis: outcomes and response to corticosteroid treatment.

    PubMed

    Sy, Aileen; Srinivasan, Muthiah; Mascarenhas, Jeena; Lalitha, Prajna; Rajaraman, Revathi; Ravindran, Meenakshi; Oldenburg, Catherine E; Ray, Kathryn J; Glidden, David; Zegans, Michael E; McLeod, Stephen D; Lietman, Thomas M; Acharya, Nisha R

    2012-01-25

    To compare the clinical course and effect of adjunctive corticosteroid therapy in Pseudomonas aeruginosa with those of all other strains of bacterial keratitis. Subanalyses were performed on data collected in the Steroids for Corneal Ulcers Trial (SCUT), a large randomized controlled trial in which patients were treated with moxifloxacin and were randomly assigned to 1 of 2 adjunctive treatment arms: corticosteroid or placebo (4 times a day with subsequent reduction). Multivariate analysis was used to determine the effect of predictors, organism, and treatment on outcomes, 3-month best-spectacle-corrected visual acuity (BSCVA), and infiltrate/scar size. The incidence of adverse events over a 3-month follow-up period was compared using Fisher's exact test. SCUT enrolled 500 patients. One hundred ten patients had P. aeruginosa ulcers; 99 of 110 (90%) enrolled patients returned for follow-up at 3 months. Patients with P. aeruginosa ulcers had significantly worse visual acuities than patients with other bacterial ulcers (P = 0.001) but showed significantly more improvement in 3-month BSCVA than those with other bacterial ulcers, adjusting for baseline characteristics (-0.14 logMAR; 95% confidence interval, -0.23 to -0.04; P = 0.004). There was no significant difference in adverse events between P. aeruginosa and other bacterial ulcers. There were no significant differences in BSCVA (P = 0.69), infiltrate/scar size (P = 0.17), and incidence of adverse events between patients with P. aeruginosa ulcers treated with adjunctive corticosteroids and patients given placebo. Although P. aeruginosa corneal ulcers have a more severe presentation, they appear to respond better to treatment than other bacterial ulcers. The authors did not find a significant benefit with corticosteroid treatment, but they also did not find any increase in adverse events. (ClinicalTrials.gov number, NCT00324168.).

  13. Pseudomonas aeruginosa Keratitis: Outcomes and Response to Corticosteroid Treatment

    PubMed Central

    Sy, Aileen; Srinivasan, Muthiah; Mascarenhas, Jeena; Lalitha, Prajna; Rajaraman, Revathi; Ravindran, Meenakshi; Oldenburg, Catherine E.; Ray, Kathryn J.; Glidden, David; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.

    2012-01-01

    Purpose. To compare the clinical course and effect of adjunctive corticosteroid therapy in Pseudomonas aeruginosa with those of all other strains of bacterial keratitis. Methods. Subanalyses were performed on data collected in the Steroids for Corneal Ulcers Trial (SCUT), a large randomized controlled trial in which patients were treated with moxifloxacin and were randomly assigned to 1 of 2 adjunctive treatment arms: corticosteroid or placebo (4 times a day with subsequent reduction). Multivariate analysis was used to determine the effect of predictors, organism, and treatment on outcomes, 3-month best-spectacle-corrected visual acuity (BSCVA), and infiltrate/scar size. The incidence of adverse events over a 3-month follow-up period was compared using Fisher's exact test. Results. SCUT enrolled 500 patients. One hundred ten patients had P. aeruginosa ulcers; 99 of 110 (90%) enrolled patients returned for follow-up at 3 months. Patients with P. aeruginosa ulcers had significantly worse visual acuities than patients with other bacterial ulcers (P = 0.001) but showed significantly more improvement in 3-month BSCVA than those with other bacterial ulcers, adjusting for baseline characteristics (−0.14 logMAR; 95% confidence interval, −0.23 to −0.04; P = 0.004). There was no significant difference in adverse events between P. aeruginosa and other bacterial ulcers. There were no significant differences in BSCVA (P = 0.69), infiltrate/scar size (P = 0.17), and incidence of adverse events between patients with P. aeruginosa ulcers treated with adjunctive corticosteroids and patients given placebo. Conclusions. Although P. aeruginosa corneal ulcers have a more severe presentation, they appear to respond better to treatment than other bacterial ulcers. The authors did not find a significant benefit with corticosteroid treatment, but they also did not find any increase in adverse events. (ClinicalTrials.gov number, NCT00324168.) PMID:22159005

  14. The impact of toxic cyanobacteria on the water quality in the Deep Subalpine Lakes (DSL)

    NASA Astrophysics Data System (ADS)

    Cerasino, Leonardo; Shams, Shiva; Salmaso, Nico; Dietrich, Daniel

    2013-04-01

    Toxic cyanobacteria represent an emerging threat for aquatic ecosystems worldwide. Eutrophication and climate changes are mentioned among factors favouring toxic blooms. The toxicity of cyanobacteria is related to the ability of some species (the most common in temperate waters belong to the genera Microcystis, Planktothrix, Dolichospermum) of producing a wide variety of toxic secondary metabolites, i.e. microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins. Some of these toxins can accumulate in water and aquatic organisms. They can therefore produce severe effects on humans by direct exposure (contact or ingestion of contaminated water) or by indirect exposure (by consumption of contaminated food). We have conducted a survey on the distribution of cyanobacterial toxins in the largest Italian lakes (Garda, Iseo, Como, Maggiore, Lugano), which are important water resources for drinking purposes and for recreational use. Cyanobacterial toxins were present in all lakes, although with a big variability in concentration. More specifically, in the frame of the European project EULAKES, we have investigated in detail the temporal dynamics of the toxin production in Lake Garda, and the mechanisms of trophic transfer of the microcystins along the lacustrine food chain. By applying advanced analytical techniques based on LC-MS technologies, we were able to detect several microcystins at sub-ppb level and follow their variations during the year. The total concentrations of microcystins were strictly linked to the temporal and vertical dynamics of Planktothrix rubescens. Laboratory experiments allowed us to determine the kinetics of microcystin accumulation in zooplankton (daphnia magna).

  15. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature.

    PubMed

    Thanabalasuriar, Ajitha; Surewaard, Bas Gj; Willson, Michelle E; Neupane, Arpan S; Stover, Charles K; Warrener, Paul; Wilson, George; Keller, Ashley E; Sellman, Bret R; DiGiandomenico, Antonio; Kubes, Paul

    2017-06-01

    Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen's presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.

  16. Isolation of an iron-binding compound from Pseudomonas aeruginosa.

    PubMed Central

    Cox, C D; Graham, R

    1979-01-01

    An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures. The purified compound was characterized by UV, visible, infrared, and fluorescence spectroscopy. The compound possesses phenolic characteristics, with little or no similarity to dihydroxybenzoates and no indication of a hydroxamate group. P. aeruginosa synthesized the compound during active growth in culture media containing less than 5 X 10(-6) M added FeCl3. When added to iron-poor cultures of P. aeruginosa, the compound promoted the growth of the bacterium and also reversed growth inhibition by the iron chelator ethylenediamine-di-(o-hydroxyphenylacetic acid). PMID:104968

  17. Prevention of bloodstream infections by photodynamic inactivation of multiresistant Pseudomonas aeruginosa in burn wounds

    NASA Astrophysics Data System (ADS)

    Hashimoto, M. C. E.; Prates, R. A.; Toffoli, D. J.; Courrol, L. C.; Ribeiro, M. S.

    2010-02-01

    Bloodstream infections are potentially life-threatening diseases. They can cause serious secondary infections, and may result in endocarditis, severe sepsis or toxic-shock syndrome. Pseudomonas aeruginosa is an opportunistic pathogen and one of the most important etiological factors responsible for nosocomial infections, mainly in immuno-compromissed hosts, characteristic of patients with severe burns. Its multiresistance to antibiotics produces many therapeutic problems, and for this reason, the development of an alternative method to antibiotic therapy is needed. Photodynamic inactivation (PDI) may be an effective and alternative therapeutic option to prevent bloodstream infections in patients with severe burns. In this study we report the use of PDI to prevent bloodstream infections in mice with third-degree burns. Burns were produced on the back of the animals and they were infected with 109 cfu/mL of multi-resistant (MR) P. aeruginosa. Fifteen animals were divided into 3 groups: control, PDT blue and PDT red. PDT was performed thirty minutes after bacterial inoculation using 10μM HB:La+3 and a light-emitting diode (LED) emitting at λ=460nm+/-20nm and a LED emitting at λ=645 nm+/-10nm for 120s. Blood of mice were colected at 7h, 10h, 15h, 18h and 22h pos-infection (p.i.) for bacterial counting. Control group presented 1×104 cfu/mL in bloodstream at 7h p.i. increasing to 1×106 at 22h, while mice PDT-treated did not present any bacteria at 7h; only at 22h p.i. they presented 1×104cfu/mL. These results suggest that HB:La+3 associated to blue LED or red LED is effective to delay and diminish MR P.aeruginosa bloodstream invasion in third-degree-burned mice.

  18. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa.

    PubMed

    Osthoff, Michael; Brown, Karl D; Kong, David C M; Daniell, Mark; Eisen, Damon P

    2014-01-01

    Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT-PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed.

  19. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa

    PubMed Central

    Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark

    2014-01-01

    Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774

  20. Isolation, identification and characterization of an algicidal bacterium from Lake Taihu and preliminary studies on its algicidal compounds.

    PubMed

    Tian, Chuan; Liu, Xianglong; Tan, Jing; Lin, Shengqin; Li, Daotang; Yang, Hong

    2012-01-01

    In an effort to identify a bio-agent capable of controlling cyanobacterial blooms, we isolated a bacterial strain, A27, which exhibited strong algicidal activity against the dominant bloom-forming species of Microcystis aeruginosa in Lake Taihu. Based on 16S rRNA gene sequence analysis, this strain belongs to the genus Exiguobacterium. This is the first report of an algicidal bacterial strain belonging to the genus Exiguobacterium. Strain A27 exhibited algicidal activity against a broad range of cyanobacteria, but elicited little or no algicidal activity against the two green algal strains tested. The algicidal activity of strain A27 was shown to be dependent on the density of the bacteria and to have a threshold density of 1.5x10(6) CFU/mL. Our data also showed that the algicidal activity of strain A27 depended on different growth stages of Microcystis aeruginosa (exponential approximately lag phase > early stationary) rather than that of the bacterium itself. Our results also suggested the algicidal activity of strain A27 occurred via the production of extracellular algicidal compounds. Investigation of the algicidal compounds revealed that there were at least two different algicidal compounds produced by strain A27. These results indicated that strain A27 has great potential for use in the control of outbreaks of cyanobacterial blooms in Lake Taihu.

  1. Inhibition of Biofilm Formation by Esomeprazole in Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Singh, Vandana; Arora, Vaneet; Alam, M. Jahangir

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa are common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each of S. aureus and P. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (against S. aureus) and meropenem (against P. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses. P. aeruginosa and S. aureus strains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P < 0.001, each parameter). After 72 h of exposure, there was a 1-log10 decrease in the CFU/ml of esomeprazole-exposed P. aeruginosa and S. aureus strains compared to controls (P < 0.001). After 72 h of exposure, measured absorbance was 100% greater in P. aeruginosa control strains than in esomeprazole-exposed strains (P < 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P < 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs for P. aeruginosa and S. aureus isolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producing S. aureus and P. aeruginosa. PMID:22664967

  2. A network biology approach to denitrification in Pseudomonas aeruginosa

    DOE PAGES

    Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard

    2015-02-23

    Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less

  3. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing

    PubMed Central

    Goldufsky, Josef; Wood, Stephen J.; Jayaraman, Vijayakumar; Majdobeh, Omar; Chen, Lin; Qin, Shanshan; Zhang, Chunxiang; DiPietro, Luisa A.; Shafikhani, Sasha H.

    2015-01-01

    Diabetic foot ulcers are responsible for more hospitalizations than any other complication of diabetes. Bacterial infection is recognized as an important factor associated with impaired healing in diabetic ulcers. Pseudomonas aeruginosa is the most frequently detected Gram-negative pathogen in diabetic ulcers. P. aeruginosa infection has been shown to impair healing in diabetic wounds in a manner that correlates with its ability to form biofilm. While the majority of infections in diabetic ulcers are biofilm associated, 33% of infections are nonbiofilm in nature. P. aeruginosa is the most prevalent Gram-negative pathogen in all diabetic wound types, which suggests that the deleterious impact of P. aeruginosa on healing in diabetic wounds goes beyond its ability to form biofilm and likely involves other factors. The Type III Secretion System (T3SS) virulence structure is required for the pathogenesis of all P. aeruginosa clinical isolates, suggesting that it may also play a role in the inhibition of wound repair in diabetic skin ulcers. We evaluated the role of T3SS in mediating P. aeruginosa–induced tissue damage in the wounds of diabetic mice. Our data demonstrate that P. aeruginosa establishes a robust and persistent infection in diabetic wounds independent of its ability to form biofilm and causes severe wound damage in a manner that primarily depends on its T3SS. PMID:25912785

  4. Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt.

    PubMed

    Abaza, Amani F; El Shazly, Soraya A; Selim, Heba S A; Aly, Gehan S A

    2017-09-27

    Pseudomonas aeruginosa has emerged as a major healthcare associated pathogen that creates a serious public health disaster in both developing and developed countries. In this work we aimed at studying the occurrence of metallo-beta-lactamase (MBL) producing P. aeruginosa in a healthcare setting in Alexandria, Egypt. This cross sectional study included 1583 clinical samples that were collected from patients admitted to Alexandria University Students' Hospital. P. aeruginosa isolates were identified using standard microbiological methods and were tested for their antimicrobial susceptibility patterns using single disc diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Thirty P. aeruginosa isolates were randomly selected and tested for their MBL production by both phenotypic and genotypic methods. Diagnostic Epsilometer test was done to detect metallo-beta-lactamase enzyme producers and polymerase chain reaction test was done to detect imipenemase (IMP), Verona integron-encoded (VIM) and Sao Paulo metallo-beta-lactamase (IMP) encoding genes. Of the 1583 clinical samples, 175 (11.3%) P. aeruginosa isolates were identified. All the 30 (100%) selected P. aeruginosa isolates that were tested for MBL production by Epsilometer test were found to be positive; where 19 (63.3%) revealed blaSPM gene and 11 (36.7%) had blaIMP gene. blaVIM gene was not detected in any of the tested isolates. Isolates of MBL producing P. aeruginosa were highly susceptible to polymyxin B 26 (86.7%) and highly resistant to amikacin 26 (86.7%). MBL producers were detected phenotypically by Epsilometer test in both carbapenem susceptible and resistant P. aeruginosa isolates. blaSPM was the most commonly detected MBL gene in P. aeruginosa isolates.

  5. On the successful use of a simplified model to simulate the succession of toxic cyanobacteria in a hypereutrophic reservoir with a highly fluctuating water level.

    PubMed

    Fadel, Ali; Lemaire, Bruno J; Vinçon-Leite, Brigitte; Atoui, Ali; Slim, Kamal; Tassin, Bruno

    2017-09-01

    Many freshwater bodies worldwide that suffer from harmful algal blooms would benefit for their management from a simple ecological model that requires few field data, e.g. for early warning systems. Beyond a certain degree, adding processes to ecological models can reduce model predictive capabilities. In this work, we assess whether a simple ecological model without nutrients is able to describe the succession of cyanobacterial blooms of different species in a hypereutrophic reservoir and help understand the factors that determine these blooms. In our study site, Karaoun Reservoir, Lebanon, cyanobacteria Aphanizomenon ovalisporum and Microcystis aeruginosa alternatively bloom. A simple configuration of the model DYRESM-CAEDYM was used; both cyanobacteria were simulated, with constant vertical migration velocity for A. ovalisporum, with vertical migration velocity dependent on light for M. aeruginosa and with growth limited by light and temperature and not by nutrients for both species. The model was calibrated on two successive years with contrasted bloom patterns and high variations in water level. It was able to reproduce the measurements; it showed a good performance for the water level (root-mean-square error (RMSE) lower than 1 m, annual variation of 25 m), water temperature profiles (RMSE of 0.22-1.41 °C, range 13-28 °C) and cyanobacteria biomass (RMSE of 1-57 μg Chl a L -1 , range 0-206 μg Chl a L -1 ). The model also helped understand the succession of blooms in both years. The model results suggest that the higher growth rate of M. aeruginosa during favourable temperature and light conditions allowed it to outgrow A. ovalisporum. Our results show that simple model configurations can be sufficient not only for theoretical works when few major processes can be identified but also for operational applications. This approach could be transposed on other hypereutrophic lakes and reservoirs to describe the competition between dominant phytoplankton

  6. Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

    PubMed Central

    Nde, Chantal W; Jang, Hyeung-Jin; Toghrol, Freshteh; Bentley, William E

    2008-01-01

    Background Pseudomonas aeruginosa (P. aeruginosa) is the most common opportunistic pathogen implicated in nosocomial infections and in chronic lung infections in cystic fibrosis patients. Ortho-phenylphenol (OPP) is an antimicrobial agent used as an active ingredient in several EPA registered disinfectants. Despite its widespread use, there is a paucity of information on its target molecular pathways and the cellular responses that it elucidates in bacteria in general and in P. aeruginosa in particular. An understanding of the OPP-driven gene regulation and cellular response it elicits will facilitate more effective utilization of this antimicrobial and possibly lead to the development of more effective disinfectant treatments. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of P. aeruginosa exposed to 0.82 mM OPP for 20 and 60 minutes. Our data indicated that OPP upregulated the transcription of genes encoding ribosomal, virulence and membrane transport proteins after both treatment times. After 20 minutes of exposure to 0.82 mM OPP, genes involved in the exhibition of swarming motility and anaerobic respiration were upregulated. After 60 minutes of OPP treatment, the transcription of genes involved in amino acid and lipopolysaccharide biosynthesis were upregulated. Further, the transcription of the ribosome modulation factor (rmf) and an alternative sigma factor (rpoS) of RNA polymerase were downregulated after both treatment times. Conclusion Results from this study indicate that after 20 minutes of exposure to OPP, genes that have been linked to the exhibition of anaerobic respiration and swarming motility were upregulated. This study also suggests that the downregulation of the rmf and rpoS genes may be indicative of the mechanism by which OPP causes decreases in cell viability in P. aeruginosa. Consequently, a protective response involving the upregulation of translation leading to the increased synthesis of

  7. [Antiseptic sensitivity of clinical strains of Pseudomonas aeruginosa].

    PubMed

    Adarchenko, A A; Krasil'nikov, A P; Sobeshchuk, O P

    1989-12-01

    MICs, the frequency of clinical and statistic resistance and the antiseptic activity index were studied in complex on out-of-hospital and hospital ecovars of P. aeruginosa. The forms resistant to a number of antiseptics, i.e. chloramine B, chlorhexidine, decamethoxine and dioxidine whose frequency eventually increased were shown to be widely distributed. The antiseptic sensitivity spectrum was more narrow and more heterogeneous than that of other bacteria, the heterogeneity level being dependent on the antiseptic type and bacterial ecovar. The activity of pervomur, phenol, resorcin and boric acid was higher against the clinical strains of P. aeruginosa while iodopyrin, sulfacetamide sodium and dioxidine were less active. The P. aeruginosa strains had natural resistance to cetylpyridinium chloride, rokkal, ethonium, sodium laurate and laurylsulfate and rivanol. It was recommended to assay antiseptic sensitivity of agents causing purulent inflammatory infections and to control circulation of antiseptic resistant variants of bacteria in hospitals.

  8. RAPD- and ERIC-Based Typing of Clinical and Environmental Pseudomonas aeruginosa Isolates.

    PubMed

    Auda, Ibtesam Ghadban; Al-Kadmy, Israa M S; Kareem, Sawsan Mohammed; Lafta, Aliaa Khyuon; A'Affus, Mustafa Hussein Obeid; Khit, Ibrahim Abd Aloahd; Al Kheraif, Abdulaziz Abdullah; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2017-03-01

    Pseudomonas aeruginosa is a major cause of nosocomial infection in children and adults, resulting in significant morbidity and mortality due to its ability to acquire drug resistance. The ability of P. aeruginosa in the environment to cause infection in individuals has been reported previously; henceforth, surveillance of the emergence and transmission of P. aeruginosa strains among patients is important for infection control in a clinical setup. Various gene-typing methods have been used for epidemiological typing of P. aeruginosa isolates for the purpose of surveillance. In this work, the suitability and comparability of two typing methods, enterobacterial repetitive intergenic consensus (ERIC)-PCR and random amplification of polymorphic DNA (RAPD)-PCR fingerprinting, were studied to characterize P. aeruginosa strains isolated from clinical and environmental sources. Forty-four clinical and environmental bacterial isolates of P. aeruginosa were collected between October 2015 and January 2016. DNA extraction, ERIC-PCR and RAPD-PCR, agarose gel electrophoresis, and phylogenetic analyses were carried using the unweighted pair-group method with mean. RAPD typing revealed less clonality among clinical isolates, whereas the ERIC method showed greater similarity in comparison with RAPD. Environmental isolates, however, showed greater similarity using RAPD compared with ERIC typing. With only a few exceptions, most clinical isolates were distinct from environmental isolates, irrespective of the typing method. In conclusion, both the RAPD and ERIC typing methods proved to be good tools in understanding clonal diversity. The results also suggest that there is no relationship between clinical and environmental isolates. The absence of clonality among the clinical isolates may indicate that most P. aeruginosa infection cases could be endemic and not epidemic and that endemic infections may be due to nonclonal strains of P. aeruginosa.

  9. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  10. Fe/starch nanoparticle - Pseudomonas aeruginosa: Bio-physiochemical and MD studies.

    PubMed

    Mofradnia, Soheil Rezazadeh; Tavakoli, Zahra; Yazdian, Fatemeh; Rashedi, Hamid; Rasekh, Behnam

    2018-05-03

    In this research, we attempt to study biosurfactant production by Pseudomonas aeruginosa using Fe/starch nanoparticles. Fe/starch showed no bacterial toxicity at 1 mg/ml and increased the growth rate and biosurfactant production up to 23.21 and 20.73%, respectively. Surface tension, dry weight cell, and emulsification indexes (E24) were measured. Biosurfactant production was considered via computational techniques and molecular dynamic (MD) simulation through flexible and periodic conditions (by material studio software) as well. The results of software predictions demonstrate by radial distribution function (RDF), density, energy and temperature graphs. According to the present experimental results, increased 30% growth of the bacterium has been observed and the subsequent production of biosurfactant. The difference between the experimental results and simulation data were achieved up to 0.17 g/cm 3 , which confirms the prediction of data by the software due to a difference of <14.5% (ideal error value is 20%). Copyright © 2017. Published by Elsevier B.V.

  11. Occurrence of Pseudomonas aeruginosa in waters: implications for patients with cystic fibrosis (CF).

    PubMed

    Caskey, S; Stirling, J; Moore, J E; Rendall, J C

    2018-06-01

    Chronic Pseudomonas aeruginosa infection is associated with increased morbidity and mortality in patients with cystic fibrosis (CF). Current understanding of risk factors for acquisition is limited and so the aim of this study was to examine a large sample of environmental waters from diverse sources. Environmental water samples (n = 7904) from jacuzzis, hydrants, swimming pools, hot tubs, plunge pools, bottled natural mineral water, taps, springs, ice machines, water coolers, bores and showers were examined for the presence of P. aeruginosa. Pseudomonas aeruginosa was detected in 524/7904 (6·6%) waters examined. Hot tubs (51/243; 20·9%), tap water (3/40; 8%) and jacuzzis (432/5811; 7·4%) were the most likely environments where P. aeruginosa was isolated. Pseudomonas aeruginosa was isolated from bottled water (2/67; 3%). Our study highlights the ubiquitous nature of P. aeruginosa in the environment. Given CF patients are frequently counselled to make lifestyle changes to minimize P. aeruginosa exposure, these results have important implications. In particular, the occurrence of P. aeruginosa in tap water highlights the need to disinfect the CF patients' nebulizer after each use. This study examined a large number of water sources (n = 7904) over a 9-year period for the presence of Pseudomonas aeruginosa. The study highlighted that jacuzzis (n = 5811; 7% positive) and hot tubs had the highest occurrence of this organism (n = 243, 21% positive). Patients with cystic fibrosis (CF) are interested in knowing what water environments are likely to be contaminated with this organism, as this bacterium is an important cause of increased morbidity and mortality in such patients. With such information, CF patients and parents may make informed decisions about lifestyle choice and water environment avoidance. © 2018 The Society for Applied Microbiology.

  12. Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis.

    PubMed

    Roser, D J; Van Den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2015-05-01

    We developed two dose-response algorithms for P. aeruginosa pool folliculitis using bacterial and lesion density estimates, associated with undetectable, significant, and almost certain folliculitis. Literature data were fitted to Furumoto & Mickey's equations, developed for plant epidermis-invading pathogens: N l = A ln(1 + BC) (log-linear model); P inf = 1-e(-r c C) (exponential model), where A and B are 2.51644 × 107 lesions/m2 and 2.28011 × 10-11 c.f.u./ml P. aeruginosa, respectively; C = pathogen density (c.f.u./ml), N l = folliculitis lesions/m2, P inf = probability of infection, and r C = 4·3 × 10-7 c.f.u./ml P. aeruginosa. Outbreak data indicates these algorithms apply to exposure durations of 41 ± 25 min. Typical water quality benchmarks (≈10-2 c.f.u./ml) appear conservative but still useful as the literature indicated repeated detection likely implies unstable control barriers and bacterial bloom potential. In future, culture-based outbreak testing should be supplemented with quantitative polymerase chain reaction and organic carbon assays, and quantification of folliculitis aetiology to better understand P. aeruginosa risks.

  13. Molecular Characterization of OXA-198 Carbapenemase-Producing Pseudomonas aeruginosa Clinical Isolates.

    PubMed

    Bonnin, Rémy A; Bogaerts, Pierre; Girlich, Delphine; Huang, Te-Din; Dortet, Laurent; Glupczynski, Youri; Naas, Thierry

    2018-06-01

    Carbapenemase-producing Pseudomonadaceae have increasingly been reported worldwide, with an ever-increasing heterogeneity of carbapenem resistance mechanisms, depending on the bacterial species and the geographical location. OXA-198 is a plasmid-encoded class D β-lactamase involved in carbapenem resistance in one Pseudomonas aeruginosa isolate from Belgium. In the setting of a multicenter survey of carbapenem resistance in P. aeruginosa strains in Belgian hospitals in 2013, three additional OXA-198-producing P. aeruginosa isolates originating from patients hospitalized in one hospital were detected. To reveal the molecular mechanism underlying the reduced susceptibility to carbapenems, MIC determinations, whole-genome sequencing, and PCR analyses to confirm the genetic organization were performed. The plasmid harboring the bla OXA-198 gene was characterized, along with the genetic relatedness of the four P. aeruginosa isolates. The bla OXA-198 gene was harbored on a class 1 integron carried by an ∼49-kb IncP-type plasmid proposed as IncP-11. The same plasmid was present in all four P. aeruginosa isolates. Multilocus sequence typing revealed that the isolates all belonged to sequence type 446, and single-nucleotide polymorphism analysis revealed only a few differences between the isolates. This report describes the structure of a 49-kb plasmid harboring the bla OXA-198 gene and presents the first description of OXA-198-producing P. aeruginosa isolates associated with a hospital-associated cluster episode. Copyright © 2018 American Society for Microbiology.

  14. Investigation of a pseudo-outbreak of orthopedic infections caused by Pseudomonas aeruginosa.

    PubMed

    Forman, W; Axelrod, P; St John, K; Kostman, J; Khater, C; Woodwell, J; Vitagliano, R; Truant, A; Satishchandran, V; Fekete, T

    1994-10-01

    To report a pseudoepidemic of Pseudomonas aeruginosa infections discovered during an investigation of postoperative joint infections. A retrospective review of case patients' hospital charts, operative reports, and laboratory data, as well as environmental culturing, polymerase chain reaction (PCR) ribotyping of outbreak isolates, and in vitro analysis of P aeruginosa growth characteristics. A 510-bed, university-affiliated adult tertiary care hospital. Between October 1 and December 1, 1992, seven postsurgical joint infections were diagnosed, including four caused by P aeruginosa. A bottle of "sterile" saline used to process tissue specimens was found to be contaminated with P aeruginosa. Further investigation revealed that P aeruginosa had grown from seven additional tissue cultures, all of which had been processed with the contaminated saline. PCR ribotypes of the contaminant matched those of the clinical isolates. In vitro, P aeruginosa strains were viable in commercial nonbacteriostatic saline, but never caused visible turbidity. Six patients received antibiotics for their presumed infections; four patients had peripherally inserted central catheters placed, and one experienced severe anaphylactic reactions to several antibiotics. Pseudoepidemics due to common organisms are often difficult to detect, and delayed recognition can result in substantial morbidity. This outbreak investigation illustrates the potential for contamination of diluents in the microbiology laboratory and emphasizes the need for meticulous quality control.

  15. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm

    PubMed Central

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-01-01

    Pseudomonas aeruginosa is a ubiquitous bacterium capable of forming problematic biofilms in many environments. They cause biocorrosion of medical implants and industrial equipment and infrastructure. Aerobic corrosion of P. aeruginosa against stainless steels has been reported by some researchers while there is a lack of reports on anaerobic P. aeruginosa corrosion in the literature. In this work, the corrosion by a wild-type P. aeruginosa (strain PAO1) biofilm against 304 stainless steel (304 SS) was investigated under strictly anaerobic condition for up to 14 days. The anaerobic corrosion of 304 SS by P. aeruginosa was reported for the first time. Results showed that the average sessile cell counts on 304 SS coupons after 7- and 14-day incubations were 4.8 × 107 and 6.2 × 107 cells/cm2, respectively. Scanning electron microscopy and confocal laser scanning microscopy corroborated the sessile cell counts. The X-ray diffraction analysis identified the corrosion product as iron nitride, confirming that the corrosion was caused by the nitrate reducing biofilm. The largest pit depths on 304 SS surfaces after the 7- and 14-day incubations with P. aeruginosa were 3.9 and 7.4 μm, respectively. Electrochemical tests corroborated the pitting data. PMID:29230206

  16. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes

    PubMed Central

    Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454

  17. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO 3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [The description of an esculin-positive biovar of Pseudomonas aeruginosa].

    PubMed

    Sivolodskiĭ, E P

    2000-01-01

    In the study of 280 P. aeruginosa strains isolated in different hospitals of St. Petersburg for the first time 48 strains capable of hydrolyzing esculin have been detected. The hydrolysis of esculin is determined in plates with the use of the microvolume techniques the results were evaluated after 3-hour incubation at 37 degrees C. The data confirming the existence of the exculin-positive biovar of P. aeruginosa have been obtained; these data show the wide spread of esculin-positive strains in hospitals of different specialization (17.1 +/- 5.1% of P. aeruginosa strains), the characteristic combination of the sign of esculin hydrolysis with such signs as the absence of the smell of trimethylamine and the phenomenon of "iridescent lysis" of the colonies, the stability of the sign of esculin hydrolysis in strains, repeatedly isolated from patients, after the storage of the cultures and their treatment with plasmid-eliminating preparation. The name "esculinolytica" has been proposed for this biovar. The typing strain of biovar esculinolytica has been deposited in the culture collection of the Russian Research Institute of Agricultural Microbiology as P. aeruginosa ARRIAM 64-A. This biovar been found to be most widely spread in urological hospitals, where esculin-positive strains are isolated 3 times more frequently (32.2 +/- 5.1% of P. aeruginosa strains) than in surgical hospitals (10.7 +/- 2.2%).

  19. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin.

    PubMed

    Rico, Andreu; Zhao, Wenkai; Gillissen, Frits; Lürling, Miquel; Van den Brink, Paul J

    2018-02-01

    Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and species competition may affect the sensitivity of the cyanobacterium Microcystis aeruginosa and the green-algae Scenedesmus obliquus to the antibiotic enrofloxacin. First, we performed single-species tests to assess the toxicity of enrofloxacin under different temperature conditions (20°C and 30°C) and to assess the sensitivity of different species strains using a standard temperature (20°C). Next, we investigated how enrofloxacin contamination may affect the competition between M. aeruginosa and S. obliquus. A competition experiment was performed following a full factorial design with different competition treatments, defined as density ratios (i.e. initial bio-volume of 25/75%, 10/90% and 1/99% of S. obliquus/M. aeruginosa, respectively), one 100% S. obliquus treatment and one 100% M. aeruginosa treatment, and four different enrofloxacin concentrations (i.e. control, 0.01, 0.05 and 0.10mg/L). Growth inhibition based on cell number, bio-volume, chlorophyll-a concentration as well as photosynthetic activity were used as evaluation endpoints in the single-species tests, while growth inhibition based on measured chlorophyll-a was primarily used in the competition experiment. M. aeruginosa photosynthetic activity was found to be the most sensitive endpoint to enrofloxacin (EC50-72h =0.02mg/L), followed by growth inhibition based on cell number. S. obliquus was found to be slightly more sensitive at 20°C than at 30°C (EC50-72h cell number growth inhibition of 38 and 41mg/L, respectively), whereas an opposite trend was observed for M. aeruginosa (0.047 and 0.037mg/L, respectively). Differences in EC50-72h values between algal strains of the same species were within a factor

  20. Cloning and characterization of EF-Tu and EF-Ts from Pseudomonas aeruginosa.

    PubMed

    Palmer, Stephanie O; Rangel, Edna Y; Montalvo, Alberto E; Tran, Alexis T; Ferguson, Kate C; Bullard, James M

    2013-01-01

    We have cloned genes encoding elongation factors EF-Tu and EF-Ts from Pseudomonas aeruginosa and expressed and purified the proteins to greater than 95% homogeneity. Sequence analysis indicated that P. aeruginosa EF-Tu and EF-Ts are 84% and 55% identical to E. coli counterparts, respectively. P. aeruginosa EF-Tu was active when assayed in GDP exchange assays. Kinetic parameters for the interaction of EF-Tu with GDP in the absence of EF-Ts were observed to be K M = 33 μM, k cat (obs) = 0.003 s(-1), and the specificity constant k cat (obs)/K M was 0.1 × 10(-3) s(-1) μM(-1). In the presence of EF-Ts, these values were shifted to K M = 2 μM, k cat (obs) = 0.005 s(-1), and the specificity constant k(cat)(obs)/K M was 2.5 × 10(-3) s(-1) μM(-1). The equilibrium dissociation constants governing the binding of EF-Tu to GDP (K GDP) were 30-75 nM and to GTP (K GTP) were 125-200 nM. EF-Ts stimulated the exchange of GDP by EF-Tu 10-fold. P. aeruginosa EF-Tu was active in forming a ternary complex with GTP and aminoacylated tRNA and was functional in poly(U)-dependent binding of Phe-tRNA(Phe) at the A-site of P. aeruginosa ribosomes. P. aeruginosa EF-Tu was active in poly(U)-programmed polyphenylalanine protein synthesis system composed of all P. aeruginosa components.

  1. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  2. Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population.

    PubMed

    Vichi, Susanna; Lavorini, Paolo; Funari, Enzo; Scardala, Simona; Testai, Emanuela

    2012-12-01

    Blue green algae supplements (BGAS) are generally proposed as health-promoting natural products for their purported beneficial effects. Spirulina spp. and Aphanizomenon flos aquae are mainly used in BGAS production. They are usually collected from the natural environment, where other potentially toxic cyanobacteria can be present, making possible BGAS contamination by cyanotoxins, with potential risk for human health. In this work we apply a combined approach, by using chemical and molecular techniques, on BGAS of 17 brands available in Italy. Samples containing Spirulina-only were free of contamination. The Aphanizomenon flos aquae-based samples were contaminated by highly variable levels of microcystins (MC-LR and MC-LA congeners), up to 5.2 μg MC-LR equivalents per gram product. The highest variability (up to 50 fold) was among batches of the same brand, although intra-batch differences were also evidenced. PCR analyses were positive only for the presence of Microcystis sp., identified as the toxin-producing species responsible for contamination. At the maximum contamination levels found, a risk for consumers can be expected following chronic or sub-chronic exposure to a reasonable daily BGAS consumption of 4 g. The need for a strict monitoring by producers and Health Authority to assure an adequate protection for consumers is underscored. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model.

    PubMed

    Thomsen, K; Christophersen, L; Bjarnsholt, T; Jensen, P Ø; Moser, C; Høiby, N

    2016-03-01

    Oral prophylactic therapy by gargling with pathogen-specific egg yolk immunoglobulins (IgY) may reduce the initial airway colonization with Pseudomonas aeruginosa in cystic fibrosis (CF) patients. IgY antibodies impart passive immunization and we investigated the effects of anti-P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. Prophylactic administration of IgY antibodies targeting P. aeruginosa significantly reduced the bacterial burden by 2-log 24h post-infection compared to controls and was accompanied by significantly reduced clinical symptom scores and successive inflammatory cytokine profile indicative of diminished lung inflammation. Passive immunization by anti-P. aeruginosa IgY therapy facilitates promptly bacterial clearance and moderates inflammation in P. aeruginosa lung infection and may serve as an adjunct to antibiotics in reducing early colonization. Copyright © 2015. Published by Elsevier B.V.

  4. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    PubMed Central

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  5. Effects of hyperbaric oxygen on Pseudomonas aeruginosa susceptibility to imipenem and macrophages.

    PubMed

    Lima, Flavia Luna; Joazeiro, Paulo Pinto; Lancellotti, Marcelo; de Hollanda, Luciana Maria; de Araújo Lima, Bruna; Linares, Edlaine; Augusto, Ohara; Brocchi, Marcelo; Giorgio, Selma

    2015-01-01

    The seriousness to treat burn wounds infected with Pseudomonas aeruginosa led us to examine whether the effect of the carbapenem antibiotic imipenem is enhanced by hyperbaric oxygen (HBO). The effects of HBO (100% O2, 3 ATA, 5 h) in combination with imipenen on bacterial counts of six isolates of P. aeruginosa and bacterial ultrastructure were investigated. Infected macrophages were exposed to HBO (100% O2, 3 ATA, 90 min) and the production of reactive oxygen species monitored. HBO enhanced the effects of imipenen. HBO increased superoxide anion production by macrophages and likely kills bacteria by oxidative mechanisms. HBO in combination with imipenem can be used to kill P. aeruginosa in vitro and such treatment may be beneficial for the patients with injuries containing the P. aeruginosa.

  6. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa.

    PubMed

    van Belkum, Alex; Soriaga, Leah B; LaFave, Matthew C; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S; Richardson, Toby H; Peterson, Todd C; Hubby, Bolyn; Cady, Kyle C

    2015-11-24

    Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. P. aeruginosa is both an antibiotic-refractory pathogen and an important model system for type I CRISPR-Cas bacterial immune systems. By combining the genome sequences of 672 newly and previously sequenced genomes, we were able to provide a global view of the phylogenetic distribution, conservation, and potential targets of these systems. This analysis identified a new and putatively mobile P. aeruginosa CRISPR-Cas subtype, characterized the diverse distribution of known CRISPR-inhibiting genes, and

  7. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake.

    PubMed

    Lee, Tammy A; Rollwagen-Bollens, Gretchen; Bollens, Stephen M; Faber-Hammond, Joshua J

    2015-04-01

    The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches.

    PubMed

    Lund-Palau, Helena; Turnbull, Andrew R; Bush, Andrew; Bardin, Emmanuelle; Cameron, Loren; Soren, Odel; Wierre-Gore, Natasha; Alton, Eric W F W; Bundy, Jacob G; Connett, Gary; Faust, Saul N; Filloux, Alain; Freemont, Paul; Jones, Andy; Khoo, Valerie; Morales, Sandra; Murphy, Ronan; Pabary, Rishi; Simbo, Ameze; Schelenz, Silke; Takats, Zoltan; Webb, Jeremy; Williams, Huw D; Davies, Jane C

    2016-06-01

    Pseudomonas aeruginosa is a remarkably versatile environmental bacterium with an extraordinary capacity to infect the cystic fibrosis (CF) lung. Infection with P. aeruginosa occurs early, and although eradication can be achieved following early detection, chronic infection occurs in over 60% of adults with CF. Chronic infection is associated with accelerated disease progression and increased mortality. Extensive research has revealed complex mechanisms by which P. aeruginosa adapts to and persists within the CF airway. Yet knowledge gaps remain, and prevention and treatment strategies are limited by the lack of sensitive detection methods and by a narrow armoury of antibiotics. Further developments in this field are urgently needed in order to improve morbidity and mortality in people with CF. Here, we summarize current knowledge of pathophysiological mechanisms underlying P. aeruginosa infection in CF. Established treatments are discussed, and an overview is offered of novel detection methods and therapeutic strategies in development.

  9. Gene PA2449 Is Essential for Glycine Metabolism and Pyocyanin Biosynthesis in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lundgren, Benjamin R.; Thornton, William; Dornan, Mark H.; Villegas-Peñaranda, Luis Roberto; Boddy, Christopher N.

    2013-01-01

    Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria. PMID:23457254

  10. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    PubMed

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  11. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  12. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. Copyright ©ERS 2015.

  13. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  14. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  15. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  16. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa.

    PubMed

    Mohanam, Lavanya; Menon, Thangam

    2017-07-01

    The emergence and rapid spread of carbapenem resistance mediated by metallo-beta-lactamase (MBL) in Pseudomonas aeruginosa is of major concern due to limited therapeutic options. This study was aimed at detecting the presence of MBL and its association with integrons in imipenem-resistant P. aeruginosa isolates and to determine their genetic relatedness. A total of 213 P. aeruginosa isolates were collected from two tertiary care centres and tested against anti-pseudomonal antibiotics by antimicrobial susceptibility testing, followed by the detection of MBL production by combined disk method. Minimum inhibitory concentration (MIC) of meropenem was determined by E-test. Multiplex polymerase chain reaction (PCR) was performed for the detection of blaSPM, blaIMP, blaVIM, blaNDM, blaGIM and blaSIM. PCR was carried out to characterize the variable region of class 1 integron. Transcongujation assay was carried out for the confirmation of plasmid-mediated resistance. Enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR was performed for determining the genetic relatedness among P. aeruginosa isolates. Of the 213 P. aeruginosa isolates, 22 (10%) were found to be carbapenem resistant and these were from pus 18 (82%), urine 2 (9%), sputum 1 (5%) and tracheal wash 1 (5%). Among 22 isolates, 18 (81.8%) were found to be MBL producers by phenotypic method and MIC range of meropenem was 8 to >32 μg/ml. PCR amplification showed that 20 (91%) isolates carried any one of the MBL genes tested: blaVIM and blaNDM in seven (32%) and six (27%) isolates, respectively; blaVIM and blaNDMin three (14%); blaIMP and blaNDM in two (9%); blaVIM and blaIMP in one (5%) isolate. The blaVIM, blaIMP and blaNDM were found to co-exist in one isolate. None of the isolates were positive for blaSPM, blaSIM and blaGIM. All 22 isolates carried class I integron. Of the 20 MBL-positive isolates, transconjugants were obtained for 15 isolates. ERIC-PCR analysis showed all isolates to be clonally

  17. [The effect of biyuanshu oral liquid on the formation of Pseudomonas aeruginosa biofilms in vitro].

    PubMed

    Liu, Xiang; Chen, Haihong; Wang, Shengqing

    2012-07-01

    To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 staining. After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 staining and the number of viable bacteria were measured by serial dilution. The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detection of AgNO3 staining. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups (P < 0.05). The biyuanshu oral liquid and erythromycin can inhibit the formation of pseudomonas aeruginosa biofilms in vitro.

  18. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    PubMed

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  19. Pseudomonas aeruginosa isolation in patients with non-cystic fibrosis bronchiectasis: a retrospective study.

    PubMed

    Wang, Hong; Ji, Xiao-Bin; Mao, Bei; Li, Cheng-Wei; Lu, Hai-Wen; Xu, Jin-Fu

    2018-03-14

    Pseudomonas aeruginosa (P. aeruginosa) occupies an important niche in the pathogenic microbiome of bronchiectasis. The objective of this study is to evaluate the clinical characteristics and prognostic value of P. aeruginosa in Chinese adult patients with bronchiectasis. This retrospective and follow-up study enrolled 1188 patients diagnosed with bronchiectasis at Shanghai Pulmonary Hospital between January 2011 and December 2012. The patients' clinical data including anthropometry, clinical symptoms, serum biomarkers, radiographic manifestations and lung function indices were reviewed. The median follow-up duration (IQR) was 44 (40-54) months, during which 289 patients were lost to follow-up. Data from 899 patients were collected and analysed for the outcomes of mortality, annual exacerbation frequency and health-related quality of life. P. aeruginosa was isolated from 232 patients, alongside other pathogens such as Aspergillus (n=75) and Candida albicans (n=72). There were 74 deaths (12% of patients with P. aeruginosa , 7.3% of those without) over the course of the follow-up. The isolation of P. aeruginosa was a risk factor for all-cause mortality (HR, 3.07; 95% CI 1.32 to 7.15) and was associated with high rates of exacerbations (ie, ≥3 exacerbations per year of follow-up) (HR, 2.40; 95% CI 1.20 to 4.79). Patients with P. aeruginosa also had worse scores on the Hospital Anxiety and Depression Scale (anxiety, p=0.005; depression, p<0.001), the Leicester Cough Questionnaire (p=0.033) and the modified Medical Research Council scale (p=0.001) compared with those without P. aeruginosa . Isolation of P. aeruginosa in patients with bronchiectasis is a significant prognostic indicator and should be a major factor in the clinical management of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

    PubMed Central

    Bosire, Erick M.; Blank, Lars M.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an

  1. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa

    PubMed Central

    Pages-Monteiro, Laurence; Marti, Romain; Commun, Carine; Alliot, Nolwenn; Bardel, Claire; Meugnier, Helene; Perouse-de-Montclos, Michele; Reix, Philippe; Durieu, Isabelle; Durupt, Stephane; Vandenesch, Francois; Freney, Jean; Cournoyer, Benoit; Doleans-Jordheim, Anne

    2017-01-01

    Cystic fibrosis (CF) lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp) and 52 P. aeruginosa-negative (Pn) pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA) from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota. PMID:28282386

  2. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections

    PubMed Central

    Cornelis, Pierre; Dingemans, Jozef

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative γ-Proteobacterium which is known for its capacity to colonize various niches, including some invertebrate and vertebrate hosts, making it one of the most frequent bacteria causing opportunistic infections. P. aeruginosa is able to cause acute as well as chronic infections and it uses different colonization and virulence factors to do so. Infections range from septicemia, urinary infections, burn wound colonization, and chronic colonization of the lungs of cystic fibrosis patients. Like the vast majority of organisms, P. aeruginosa needs iron to sustain growth. P. aeruginosa utilizes different strategies to take up iron, depending on the type of infection it causes. Two siderophores are produced by this bacterium, pyoverdine and pyochelin, characterized by high and low affinities for iron respectively. P. aeruginosa is also able to utilize different siderophores from other microorganisms (siderophore piracy). It can also take up heme from hemoproteins via two different systems. Under microaerobic or anaerobic conditions, P. aeruginosa is also able to take up ferrous iron via its Feo system using redox-cycling phenazines. Depending on the type of infection, P. aeruginosa can therefore adapt by switching from one iron uptake system to another as we will describe in this short review. PMID:24294593

  3. Cyanobacterial Treatment Options: Permanganate and ...

    EPA Pesticide Factsheets

    This presentation will begin with a brief overview of drinking water treatment options for cyanobacteria and their toxins. The treatment discussion will focus on the impacts of permanganate addition to suspensions of toxin-producing Microcystis aeruginosa, followed by powdered activated carbon (PAC) addition. Results will be presented that show changes in toxin concentrations, chlorophyll-a concentrations and cell membrane integrity. The EPA Small Systems Webinar Presentations allow the dissemination of the latest Agency guidance and research to a large geographically dispersed audience while minimizing taxpayer expense

  4. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa

    PubMed Central

    Sil, Payel; Chassaing, Benoit; Yoo, Dae-goon; Gewirtz, Andrew T.; Goldberg, Joanna B.; McCarter, Linda L.; Rada, Balázs

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs) to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also largely dependent upon

  5. A PhoPQ-Regulated ABC Transporter System Exports Tetracycline in Pseudomonas aeruginosa.

    PubMed

    Chen, Lin; Duan, Kangmin

    2016-05-01

    Pseudomonas aeruginosa is an important human pathogen whose infections are difficult to treat due to its high intrinsic resistance to many antibiotics. Here, we show that the disruption of PA4456, encoding the ATP binding component of a putative ATP-binding cassette (ABC) transporter, increased the bacterium's susceptible to tetracycline and other antibiotics or toxic chemicals. Fluorescence spectroscopy and antibiotic accumulation tests showed that the interruption of the ABC transporter caused increased intracellular accumulation of tetracycline, demonstrating a role of the ABC transporter in tetracycline expulsion. Site-directed mutagenesis proved that the conserved residues of E170 in the Walker B motif and H203 in the H-loop, which are important for ATP hydrolysis, were essential for the function of PA4456. Through a genome-wide search, the PhoPQ two-component system was identified as a regulator of the computationally predicted PA4456-4452 operon that encodes the ABC transporter system. A >5-fold increase of the expression of this operon was observed in the phoQ mutant. The results obtained also show that the expression of the phzA1B1C1D1E1 operon and the production of pyocyanin were significantly higher in the ABC transporter mutant, signifying a connection between the ABC transporter and pyocyanin production. These results indicated that the PhoPQ-regulated ABC transporter is associated with intrinsic resistance to antibiotics and other adverse compounds in P. aeruginosa, probably by extruding them out of the cell. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    PubMed Central

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. PMID:23362320

  7. Nitrogen Source Stabilization of Quorum Sensing in the Pseudomonas aeruginosa Bioaugmentation Strain SD-1.

    PubMed

    Wang, Mei-Zhen; Lai, Bai-Min; Dandekar, Ajai A; Yang, Yu-Sheng; Li, Na; Yin, Jun; Shen, Dong-Sheng

    2017-08-15

    Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa , PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH 4 Cl, NaNO 3 , or NaNO 2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH 4 Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO 2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO 3 and NaNO 2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species. IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we

  8. Solar Disinfection of Pseudomonas aeruginosa in Harvested Rainwater: A Step towards Potability of Rainwater

    PubMed Central

    Amin, Muhammad T.; Nawaz, Mohsin; Amin, Muhammad N.; Han, Mooyoung

    2014-01-01

    Efficiency of solar based disinfection of Pseudomonas aeruginosa (P. aeruginosa) in rooftop harvested rainwater was evaluated aiming the potability of rainwater. The rainwater samples were exposed to direct sunlight for about 8–9 hours and the effects of water temperature (°C), sunlight irradiance (W/m2), different rear surfaces of polyethylene terephthalate bottles, variable microbial concentrations, pH and turbidity were observed on P. aeruginosa inactivation at different weathers. In simple solar disinfection (SODIS), the complete inactivation of P. aeruginosa was obtained only under sunny weather conditions (>50°C and >700 W/m2) with absorptive rear surface. Solar collector disinfection (SOCODIS) system, used to improve the efficiency of simple SODIS under mild and weak weather, completely inactivated the P. aeruginosa by enhancing the disinfection efficiency of about 20% only at mild weather. Both SODIS and SOCODIS systems, however, were found inefficient at weak weather. Different initial concentrations of P. aeruginosa and/or Escherichia coli had little effects on the disinfection efficiency except for the SODIS with highest initial concentrations. The inactivation of P. aeruginosa increased by about 10–15% by lowering the initial pH values from 10 to 3. A high initial turbidity, adjusted by adding kaolin, adversely affected the efficiency of both systems and a decrease, about 15–25%; in inactivation of P. aeruginosa was observed. The kinetics of this study was investigated by Geeraerd Model for highlighting the best disinfection system based on reaction rate constant. The unique detailed investigation of P. aeruginosa disinfection with sunlight based disinfection systems under different weather conditions and variable parameters will help researchers to understand and further improve the newly invented SOCODIS system. PMID:24595188

  9. Anti-Quorum Sensing Activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa.

    PubMed

    Zhang, An; Chu, Wei-Hua

    2017-01-01

    Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa , and the interruption of QS will be a hopeful pathway to combat bacterial infection. In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing-regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa . The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472 Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa . Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa , Forsythia suspense F. suspense , FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N -acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection, PBS: phosphate buffered saline.

  10. Anti-Quorum Sensing Activity of Forsythia suspense on Chromobacterium violaceum and Pseudomonas aeruginosa

    PubMed Central

    Zhang, An; Chu, Wei-Hua

    2017-01-01

    Background: Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in Pseudomonas aeruginosa, and the interruption of QS will be a hopeful pathway to combat bacterial infection. Objective: In this study, we selected Forsythia suspense (Thunb.) Vahl from traditional Chinese herbal medicines for its anti-QS activity. Materials and Methods: Anti-QS of F. suspense extracts (FSE) was monitored using the Chromobacterium violaceum 12472 bioassay. Standard methods were used to investigate the effects of FSE on QS-controlled virulence factors production, swimming motility, and biofilm establishment in P. aeruginosa PAO1. Results: FSE could obviously inhibit the violacein production in C. violaceum 12472 and also could inhibit quorum sensing–regulated virulence factors production and biofilm formation in P. aeruginosa in a concentration-dependent manner. The elastase activity and pyocyanin production were inhibited at a maximum of 40.97 and 47.58% when P. aeruginosa was grown in the presence of 0.25 g/mL FSE, which can also inhibit swimming motility of P. aeruginosa. The biofilm formation ability was decreased about 72.45% when in PAO1 cultured with the 0.25 g/mL FSE. The results suggested that FSE may be used as an alternative drug to control and handle harmful infections caused by bacterial pathogens based on QS inhibition. SUMMARY Forsythia suspense water extract could obviously inhibit the purple pigment production in C. violaceum 12472Forsythia suspense water extract could inhibit QS-regulated virulence factors production and biofilm formation in P. aeruginosa. Abbreviations used: QS: Quorum sensing, Pseudomonas aeruginosa P. aeruginosa, Forsythia suspense F. suspense, FSE: F. suspense extracts, Chromobacterium violaceum 12472 C. violaceum 12472, AIs: autoinducers, AHLs: N-acyl-homoserinelactones, LB: Luria-Bertani, MICs: Minimum inhibitory concentrations, CFU: Colony-Forming Units, ATCC: American Type Culture Collection

  11. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa infections are associated with progressive life threatening decline of lung function in cystic fibrosis sufferers. Growth of Ps. aeruginosa releases a "grape-like" odour that has been identified as the microbial volatile organic compound 2-aminoacetophenone (2-AA). Methods We investigated 2-AA for its specificity to Ps. aeruginosa and its suitability as a potential breath biomarker of colonisation or infection by Solid Phase Micro Extraction and Gas Chromatography-Mass Spectrometry (GC/MS). Results Cultures of 20 clinical strains of Ps. aeruginosa but not other respiratory pathogens had high concentrations of 2-AA in the head space of in vitro cultures when analysed by GC/MS. 2-AA was stable for 6 hours in deactivated glass sampling bulbs but was not stable in Tedlar® bags. Optimisation of GC/MS allowed detection levels of 2-AA to low pico mol/mol range in breath. The 2-AA was detected in a significantly higher proportion of subjects colonised with Ps. aeruginosa 15/16 (93.7%) than both the healthy controls 5/17 (29%) (p < 0.0002) and CF patients not colonised with Ps. aeruginosa 4/13(30.7%) (p < 0.001). The sensitivity and specificity of the 2-AA breath test compared to isolation of Ps. aeruginosa in sputum and/or BALF was 93.8% (95% CI, 67-99) and 69.2% (95% CI, 38-89) respectively. The peak integration values for 2-AA analysis in the breath samples were significantly higher in Ps. aeruginosa colonised subjects (median 242, range 0-1243) than the healthy controls (median 0, range 0-161; p < 0.001) and CF subjects not colonised with Ps. aeruginosa (median 0, range 0-287; p < 0.003) Conclusions Our results report 2-AA as a promising breath biomarker for the detection of Ps. aeruginosa infections in the cystic fibrosis lung. PMID:21054900

  12. Genome-Wide Transcription Profiles Reveal Genotype-Dependent Responses of Biological Pathways and Gene-Families in Daphnia Exposed to Single and Mixed Stressors

    PubMed Central

    2015-01-01

    The present study investigated the possibilities and limitations of implementing a genome-wide transcription-based approach that takes into account genetic and environmental variation to better understand the response of natural populations to stressors. When exposing two different Daphnia pulex genotypes (a cadmium-sensitive and a cadmium-tolerant one) to cadmium, the toxic cyanobacteria Microcystis aeruginosa, and their mixture, we found that observations at the transcriptomic level do not always explain observations at a higher level (growth, reproduction). For example, although cadmium elicited an adverse effect at the organismal level, almost no genes were differentially expressed after cadmium exposure. In addition, we identified oxidative stress and polyunsaturated fatty acid metabolism-related pathways, as well as trypsin and neurexin IV gene-families as candidates for the underlying causes of genotypic differences in tolerance to Microcystis. Furthermore, the whole-genome transcriptomic data of a stressor mixture allowed a better understanding of mixture responses by evaluating interactions between two stressors at the gene-expression level against the independent action baseline model. This approach has indicated that ubiquinone pathway and the MAPK serine-threonine protein kinase and collagens gene-families were enriched with genes showing an interactive effect in expression response to exposure to the mixture of the stressors, while transcription and translation-related pathways and gene-families were mostly related with genotypic differences in interactive responses to this mixture. Collectively, our results indicate that the methods we employed may improve further characterization of the possibilities and limitations of transcriptomics approaches in the adverse outcome pathway framework and in predictions of multistressor effects on natural populations. PMID:24552364

  13. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc.

    PubMed

    Xu, Kui; Juneau, Philippe

    2016-01-01

    Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate-suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (ФM) and operational (Ф'M) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299>CPCC632>FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios decreased with high zinc concentrations under HL only in CPCC299, but not under low light (LL) conditions for all the studied strains, suggesting that the three strains have different response mechanisms to high zinc stress when grown under different light regimes. We demonstrated that interactions between light intensity and zinc need to be considered when studying the bloom dynamics of cyanobacteria in freshwater ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [Effect of Pseudomonas aeruginosa exometabolites on planktonic and biofilm cultures of Escherichia coli].

    PubMed

    Kuznetsova, M V; Karpunina, T I; Maslennikova, I L; Nesterova, L Iu; Demakov, V A

    2012-01-01

    Study the effect of P. aeruginosa exometabolites on planktonic and biofilm cultures of bioluminescent E. coli strain. E. coli K12 TG1 (pF1 lux+ Ap(r)) recombinant bioluminescent strain, P. aeruginosa ATCC 27853 reference strain and 2 nosocomial isolates were used. Pyocyanin and pyoverdin content in supernatant of P. aeruginosa over-night cultures was evaluated according to E. Deziel et al. (2001). Planktonic and biofilm cultures of E. coli were obtained in 96-well plates (LB, statically, 37 degrees C), optical density of plankton, film biomass (OD600, OD580) and bioluminescence in plankton and biofilm were evaluated in microplate reader Infiniti M200 (Tecan, Austria). P. aeruginosa exometabolites increased the duration of lag-phase in E. coli, and short term exposition inhibited luminescence of planktonic cells. These effects are determined by bactericidal action ofpyocyanin and pyoverdin. Supernatants ofover-night cultures of P. aeruginosa inhibit formation of biofilm and disrupt the formed biofilm of E. coli. Effect of pyocyanin and pyoverdin on these processes is not established, other factors may have higher significance. Bioluminescence of E. coli K12 TGI that reflects the energetic status of the cell allows to evaluate and prognose the character of coexistence of P. aeruginosa in combined with E. coli planktonic and biofilm culture.

  15. Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis.

    PubMed

    Smith, Wynne D; Bardin, Emmanuelle; Cameron, Loren; Edmondson, Claire L; Farrant, Katie V; Martin, Isaac; Murphy, Ronan A; Soren, Odel; Turnbull, Andrew R; Wierre-Gore, Natasha; Alton, Eric W; Bundy, Jacob G; Bush, Andrew; Connett, Gary J; Faust, Saul N; Filloux, Alain; Freemont, Paul S; Jones, Andrew L; Takats, Zoltan; Webb, Jeremy S; Williams, Huw D; Davies, Jane C

    2017-08-01

    Pseudomonas aeruginosa opportunistically infects the airways of patients with cystic fibrosis and causes significant morbidity and mortality. Initial infection can often be eradicated though requires prompt detection and adequate treatment. Intermittent and then chronic infection occurs in the majority of patients. Better detection of P. aeruginosa infection using biomarkers may enable more successful eradication before chronic infection is established. In chronic infection P. aeruginosa adapts to avoid immune clearance and resist antibiotics via efflux pumps, β-lactamase expression, reduced porins and switching to a biofilm lifestyle. The optimal treatment strategies for P. aeruginosa infection are still being established, and new antibiotic formulations such as liposomal amikacin, fosfomycin in combination with tobramycin and inhaled levofloxacin are being explored. Novel agents such as the alginate oligosaccharide OligoG, cysteamine, bacteriophage, nitric oxide, garlic oil and gallium may be useful as anti-pseudomonal strategies, and immunotherapy to prevent infection may have a role in the future. New treatments that target the primary defect in cystic fibrosis, recently licensed for use, have been associated with a fall in P. aeruginosa infection prevalence. Understanding the mechanisms for this could add further strategies for treating P. aeruginosa in future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  17. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    PubMed

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  18. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model.

    PubMed

    Byrd, Matthew S; Pang, Bing; Hong, Wenzhou; Waligora, Elizabeth A; Juneau, Richard A; Armbruster, Chelsie E; Weimer, Kristen E D; Murrah, Kyle; Mann, Ethan E; Lu, Haiping; Sprinkle, April; Parsek, Matthew R; Kock, Nancy D; Wozniak, Daniel J; Swords, W Edward

    2011-08-01

    Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.

  19. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  20. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  1. Sepsis associated with hematological malignancies: prophylaxis of Pseudomonas aeruginosa sepsis.

    PubMed

    Sakamoto, M; Saruta, K; Nakazawa, Y; Shindo, N; Maezawa, H; Yoshikawa, K; Yoshida, M; Shiba, K; Sakai, O; Saito, A

    1996-02-01

    Underlying diseases, pathogenic bacteria, clinical background and outcome were studied during 91 febrile episodes complicated by sepsis in 55 patients with hematological malignancies, who had been admitted to our hospital (Jikei University Kashiwa Hospital) between January 1990 and December 1994. Particularly in patients with P. aeruginosa sepsis, we compared the prophylactic effect of ciprofloxacin (CPFX) alone with that of the combination of polymyxin B (PL-B) plus kanamycin (KM). The major underlying diseases were acute myelocytic leukemia and malignant lymphoma, followed by myelodysplastic syndrome, acute lymphocytic leukemia and chronic myelocytic leukemia. Nearly two-thirds of the pathogenic microorganisms isolated were gram-positive bacteria (including coagulase-negative staphylococci and Staphylococcus aureus); approximately one-quarter were gram-negative bacteria (such as Pseudomonas aeruginosa), and the remainder were fungi. These microorganisms usually induced sepsis when granulocyte counts were decreased. Sepsis was a direct cause of death in about 60% of the patients and P. aeruginosa sepsis had the worst outcome. Oral administration of CPFX was more effective than PL-B plus KM in preventing P. aeruginosa sepsis. The difference in effectiveness might depend on the absorption profile of the drugs.

  2. Some Nutritional Characteristics of a Naturally Occurring Alga (Microcystis sp.) in a Guatemalan Lake

    PubMed Central

    de la Fuente, Gabriel; Flores, Antonio; Molina, Mario R.; Almengor, Leticia; Bressani, Ricardo

    1977-01-01

    The nutritional characteristics of an alga (Microcystis sp.) that occurs naturally in a Guatemalan lake were determined. The sun-dried material proved to have a high protein content (55.6%) and to be a possible good source of calcium and phosphorus (1, 169.1 and 633.4 mg/100 mg, respectively). Amino acid analysis showed that total sulfur amino acids were the most deficient ones, giving a protein score of 42 to the material. The in vitro protein digestibility of the material was 69.5%. Biological trials demonstrated that when the material was offered as the only protein source, very low consumption and a high mortality rate were obtained whether or not the diet was supplemented with 0.4% dl-methionine. However, when the material supplied 25% of the total protein of a corn-algae diet, the protein quality of the cereal was significantly improved (P < 0.05). PMID:16345191

  3. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2016-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Application of Multispectral and Hyperspectral Remote Sensing For Detection of Freshwater Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Kudela, R. M.; Accorsi, E.; Austerberry, D.; Palacios, S. L.

    2013-12-01

    Freshwater Cyanobacterial Harmful algal blooms (CHABs) represent a pressing and apparently increasing threat to both human and environmental health. In California, toxin producing blooms of several species, including Aphanizomenon, Microcystis, Lyngbya, and Anabaena are common; toxins from these blooms have been linked to impaired drinking water, domestic and wild animal deaths, and increasing evidence for toxin transfer to coastal marine environments, including the death of several California sea otters, a threatened marine species. California scientists and managers are under increasing pressure to identify and mitigate these potentially toxic blooms, but point-source measurements and grab samples have been less than effective. There is increasing awareness that these toxic events are both spatially widespread and ephememeral, leading to the need for better monitoring methods applicable to large spatial and temporal scales. Based on monitoring in several California water bodies, it appears that Aphanizomenon blooms frequently precede dangerous levels of toxins from Microcystis. We are exploring new detection methods for identifying CHABs and potentially distinguishing between blooms of the harmful cyanobacteria Aphanizomenon and Microcystis using remote sensing reflectance from a variety of airborne and satellite sensors. We suggest that Aphanizomenon blooms could potentially be used as an early warning of more highly toxic subsequent blooms, and that these methods, combined with better toxin monitoring, can lead to improved understanding and prediction of CHABs by pinpointing problematic watersheds.

  5. Pseudomonas aeruginosa ventilator-associated pneumonia management.

    PubMed

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising.

  6. Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfection.

    PubMed

    Akinbobola, A B; Sherry, L; Mckay, W G; Ramage, G; Williams, C

    2017-10-01

    Biofilm has been suggested as a cause of disinfection failures in flexible endoscopes where no lapses in the decontamination procedure can be identified. To test this theory, the activity of peracetic acid, one of the widely used disinfectants in the reprocessing of flexible endoscopes, was evaluated against both planktonic and sessile communities of Pseudomonas aeruginosa. To investigate the ability of P. aeruginosa biofilm to survive high-level peracetic acid disinfection. The susceptibility of planktonic cells of P. aeruginosa and biofilms aged 24, 48, 96, and 192 h to peracetic acid was evaluated by estimating their viability using resazurin viability and plate count methods. The biomass of the P. aeruginosa biofilms was also quantified using Crystal Violet assay. Planktonic cells of P. aeruginosa were treated with 5-30 ppm concentration of peracetic acid in the presence of 3.0 g/L of bovine serum albumin (BSA) for 5 min. Biofilms of P. aeruginosa were also treated with various peracetic acid concentrations (100-3000 ppm) for 5 min. Planktonic cells of P. aeruginosa were eradicated by 20 ppm of peracetic acid, whereas biofilms showed an age-dependent tolerance to peracetic acid, and 96 h biofilm was only eradicated at peracetic acid concentration of 2500 ppm. Ninety-six-hour P. aeruginosa biofilm survives 5 min treatment with 2000 ppm of peracetic acid, which is the working concentration used in some endoscope washer-disinfectors. This implies that disinfection failure of flexible endoscopes might occur when biofilms build up in the lumens of endoscopes. Copyright © 2017. Published by Elsevier Ltd.

  7. Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals.

    PubMed

    Mathlouthi, Najla; Areig, Zaynab; Al Bayssari, Charbel; Bakour, Sofiane; Ali El Salabi, Allaaeddin; Ben Gwierif, Salha; Zorgani, Abdulaziz A; Ben Slama, Karim; Chouchani, Chedly; Rolain, Jean-Marc

    2015-06-01

    The aim of the present study was to investigate the molecular mechanism of carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates recovered from Libyan hospitals between April 2013 and April 2014. In total, 49 strains (24 P. aeruginosa and 25 A. baumannii) were isolated, including 21 P. aeruginosa and 22 A. baumannii isolates (87.75%) resistant to imipenem (minimum inhibitory concentrations ≥16 μg/ml). The blaVIM-2 gene was detected in 19 P. aeruginosa isolates. All imipenem-resistant P. aeruginosa isolates showed the presence of OprD mutations. Acquired OXA-carbapenemase-encoding genes were present in all A. baumannii isolates: blaOXA-23 (n=19) and blaOXA-24 (n=3). Finally, a total of 13 and 17 different sequence types were assigned to the 21 P. aeruginosa and the 22 A. baumannii carbapenem-resistant isolates, respectively. This study is the first report describing imipenem-resistant P. aeruginosa and A. baumannii isolated from patients in Libya. We report the first case of co-occurrence of blaVIM-2 with oprD porin loss in identical isolates of P. aeruginosa in Libya and demonstrate that these oprD mutations can be used as a tool to study the clonality in P. aeruginosa isolates. We also report the first identification of multidrug-resistant A. baumannii isolates harboring blaOXA-23-like, blaOXA-24-like, and blaOXA-48-like genes in Libya.

  8. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    PubMed

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  9. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    PubMed

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  10. Prevalence of genomic island PAPI-1 in clinical isolates of Pseudomonas aeruginosa in Iran.

    PubMed

    Sadeghifard, Nourkhoda; Rasaei, Seyedeh Zahra; Ghafourian, Sobhan; Zolfaghary, Mohammad Reza; Ranjbar, Reza; Raftari, Mohammad; Mohebi, Reza; Maleki, Abbas; Rahbar, Mohammad

    2012-03-01

    Pseudomonas aeruginosa, a gram-negative rod-shaped bacterium, is an opportunistic pathogen, which causes various serious diseases in humans and animals. The aims of this study were to evaluate of the presence of genomic island PAPI-1 in Pseudomonas aeruginosa isolated from Reference Laboratory of Ilam, Milad Hospital and Emam Khomeini Hospital, Iran and to study the frequency of extended spectrum beta-lactamases (ESBLs) among isolates. Forty-eight clinical isolates of P. aeruginosa were obtained during April to September 2010, and were evaluated for ESBLs by screening and confirmatory disk diffusion methods and PAPI-1 by PCR. Fifteen of 48 P. aeruginosa isolates were positive for ESBLs and 17 isolates positive for PAPI-1. This was first study of the prevalence of PAPI-1 in clinical isolates of P. aeruginosa in Iran, showing that most of PAPI-1 positive strains had high levels of antibiotic resistance and produced ESBLs.

  11. LED array designing and its bactericidal effect researching on Pseudomonas aeruginosa in vitro

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Xing, Jin; Gao, Liucun; Shen, Benjian; Kang, Hongxiang; Jie, Liang; Peng, Chen

    2015-10-01

    Lights with some special waveband and output power density have a bactericidal effect to some special bacteria. In this paper, the bactericidal effect of light at wavelength of 470 nm on P. aeruginosa (ATCC 27853) is researched with different irradiation dose. The light source is a LED array which is obtained by incoherent combine of 36 LEDs with emitting wavelength of 470 nm. The P. aeruginosa suspension is exposed with the LED array at the light power density of 100 mW/cm2 with exposures time of 0, 5, 10, 20, 40, and 80 min, respectively. The numbers of CFU are then determined by serial dilutions on LB agar plates. The bactericidal effect research results of 470 nm LED on P. aeruginosa show that the killing ratio increases with increasing of the exposure time. For the 80 min irradiation, as much as 92.4% reduction of P. aeruginosa is achieved. The results indicate that, in vitro, 470-nm lights produce dose dependent bactericidal effects on P. aeruginosa.

  12. Pseudomonas aeruginosa genotypes acquired by children with cystic fibrosis by age 5-years.

    PubMed

    Kidd, Timothy J; Ramsay, Kay A; Vidmar, Suzanna; Carlin, John B; Bell, Scott C; Wainwright, Claire E; Grimwood, Keith

    2015-05-01

    We describe Pseudomonas aeruginosa acquisitions in children with cystic fibrosis (CF) aged ≤5-years, eradication treatment efficacy, and genotypic relationships between upper and lower airway isolates and strains from non-CF sources. Of 168 CF children aged ≤5-years in a bronchoalveolar lavage (BAL)-directed therapy trial, 155 had detailed microbiological results. Overall, 201/271 (74%) P. aeruginosa isolates from BAL and oropharyngeal cultures were available for genotyping, including those collected before and after eradication therapy. Eighty-two (53%) subjects acquired P. aeruginosa, of which most were unique strains. Initial eradication success rate was 90%, but 36 (44%) reacquired P. aeruginosa, with genotypic substitutions more common in BAL (12/14) than oropharyngeal (3/11) cultures. Moreover, oropharyngeal cultures did not predict BAL genotypes reliably. CF children acquire environmental P. aeruginosa strains frequently. However, discordance between BAL and oropharyngeal strains raises questions over upper airway reservoirs and how to best determine eradication in non-expectorating children. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  13. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri.

    PubMed

    de Oliveira, Admilton G; Spago, Flavia R; Simionato, Ane S; Navarro, Miguel O P; da Silva, Caroline S; Barazetti, André R; Cely, Martha V T; Tischer, Cesar A; San Martin, Juca A B; de Jesus Andrade, Célia G T; Novello, Cláudio R; Mello, João C P; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL(-1). In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker.

  14. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    PubMed Central

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  15. [Immunization with Bifidobacterium bifidum-vectored OprI vaccine of Pseudomonas aeruginosa enhances inhibitory effect on P. aeruginosa in mice].

    PubMed

    Liu, Xiao; Li, Wengui

    2017-08-01

    Objective To study the pulmonary bacterial loads, splenocyte proliferation, distributions of T cell subsets and cell apoptosis in mice immunized with Bifidobacterium bifidum-vectored OprI (Bb-OprI) vaccine of Pseudomonas aeruginosa and challenged with P. aeruginosa PA01 strain. Methods BALB/c mice were immunized with 5×10 9 CFUs of vaccine by intragastric administration, 3 times a week for 3 weeks, and challenged intranasally with 5×10 6 CFUs of PA01 strain at the fourth week after the first immunization. At the second week after the challenge, all mice were sacrificed to separate their lungs and spleens, and the pulmonary bacterial loads were counted. The proliferation of the splenocytes was determined by MTT assay. The splenic CD4 + , CD8 + T cell subsets and the apoptotic rate of splenocytes were detected by flow cytometry. Results The number of pulmonary bacterial colonies in the mice immunized with the vaccine and challenged with PA01 strain decreased, while the proliferation of splenocytes and the proportion of CD4 + T cells markedly increased, and the apoptosis of splenocytes was notably reduced. Conclusion The intragastric vaccination of recombinant Bb-OprI vaccine can increase the proportion of CD4 + T cells and enhance the inhibitory effect on P. aeruginosa.

  16. Inhaled Colistin in Patients with Bronchiectasis and Chronic Pseudomonas aeruginosa Infection

    PubMed Central

    Foweraker, Juliet E.; Wilkinson, Peter; Kenyon, Robert F.; Bilton, Diana

    2014-01-01

    Rationale: Chronic infection with Pseudomonas aeruginosa is associated with an increased exacerbation frequency, a more rapid decline in lung function, and increased mortality in patients with bronchiectasis. Objectives: To perform a randomized placebo-controlled study assessing the efficacy and safety of inhaled colistin in patients with bronchiectasis and chronic P. aeruginosa infection. Methods: Patients with bronchiectasis and chronic P. aeruginosa infection were enrolled within 21 days of completing a course of antipseudomonal antibiotics for an exacerbation. Participants were randomized to receive colistin (1 million IU; n = 73) or placebo (0.45% saline; n = 71) via the I-neb twice a day, for up to 6 months. Measurements and Main Results: The primary endpoint was time to exacerbation. Secondary endpoints included time to exacerbation based on adherence recorded by the I-neb, P. aeruginosa bacterial density, quality of life, and safety parameters. All analyses were on the intention-to-treat population. Median time (25% quartile) to exacerbation was 165 (42) versus 111 (52) days in the colistin and placebo groups, respectively (P = 0.11). In adherent patients (adherence quartiles 2–4), the median time to exacerbation was 168 (65) versus 103 (37) days in the colistin and placebo groups, respectively (P = 0.038). P. aeruginosa density was reduced after 4 (P = 0.001) and 12 weeks (P = 0.008) and the St. George’s Respiratory Questionnaire total score was improved after 26 weeks (P = 0.006) in the colistin versus placebo patients, respectively. There were no safety concerns. Conclusions: Although the primary endpoint was not reached, this study shows that inhaled colistin is a safe and effective treatment in adherent patients with bronchiectasis and chronic P. aeruginosa infection. Clinical trial registered with http://www.isrctn.org/ (ISRCTN49790596) PMID:24625200

  17. Outbreak of Pseudomonas aeruginosa folliculitis associated with a swimming pool inflatable.

    PubMed Central

    Tate, D.; Mawer, S.; Newton, A.

    2003-01-01

    On 18 February 2002, the Communicable Disease Unit was notified by the local Public Health Service Laboratory of a child with a positive skin swab for Pseudomonas aeruginosa. This child had attended the local swimming pool and played on an inflatable, subsequently presenting to a Primary Care Nurse Practitioner with folliculitis. A total of 35 cases was identified during the outbreak. This paper describes a case-control study and microbiological sampling of the cases, the suspected inflatable and a survey of 10 swimming pool inflatables in the local area. The odds ratio for developing folliculitis following use of the inflatable was 12 (95% CI 1.05-136.80). The strain of P. aeruginosa found on the inflatable was identical to that obtained from skin swabs of cases. Nine of 10 (90%) of the inflatables sampled were colonized by P. aeruginosa. Attention should be given to the problem of routine decontamination of swimming pool inflatables. P. aeruginosa folliculitis needs to be considered in the differential diagnosis of skin rashes in children, especially in Primary Care. PMID:12729186

  18. Molecular Epidemiology of a Pseudomonas aeruginosa Hospital Outbreak Driven by a Contaminated Disinfectant-Soap Dispenser

    PubMed Central

    Lanini, Simone; D'Arezzo, Silvia; Puro, Vincenzo; Martini, Lorena; Imperi, Francesco; Piselli, Pierluca; Montanaro, Marco; Paoletti, Simonetta; Visca, Paolo; Ippolito, Giuseppe

    2011-01-01

    Background and Objective Pseudomonas aeruginosa infection represents a main cause of morbidity and mortality among immunocompromised patients. This study describes a fatal epidemic of P. aeruginosa that occurred in a hematology unit in Italy. Methods Retrospective cohort study, prospective surveillance, auditing, extensive testing on healthcare workers and environmental investigation were performed to define the dynamics and potential causes of transmission. RAPD, macrorestriction analyses and sequence typing were used to define relationships between P. aeruginosa isolates. Results Eighteen cases of infection were identified in the different phases of the investigation. Of these, five constitute a significant molecular cluster of infection. A P. aeruginosa strain with the same genetic fingerprint and sequence type (ST175) as clinical isolates strain was also isolated from a heavily contaminated triclosan soap dispenser. Discussion and Conclusions Our results are consistent with the hypothesis that patients became indirectly infected, e.g., during central venous catheter handling through contaminated items, and that the triclosan soap dispenser acted as a common continuous source of P. aeruginosa infection. Since P. aeruginosa is intrinsically unsusceptible to triclosan, the use of triclosan-based disinfectant formulations should be avoided in those healthcare settings hosting patients at high risk of P. aeruginosa infection. PMID:21359222

  19. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway.

    PubMed

    Mukherjee, Ashis K; Bhagowati, Pabitra; Biswa, Bhim Bahadur; Chanda, Abhishek; Kalita, Bhargab

    2017-09-07

    Pseudomonas aeruginosa strain ASP-53, isolated from a petroleum oil-contaminated soil sample, was found to be an efficient degrader of pyrene. PCR amplification of selected hydrocarbon catabolic genes (alkB gene, which encodes for monooxygenase, and the C12O, C23O, and PAH-RHDα genes encoding for the dioxygenase enzyme) from the genomic DNA of P. aeruginosa strain ASP-53 suggested its hydrocarbon degradation potential. The GC-MS analysis demonstrated 30.1% pyrene degradation by P. aeruginosa strain ASP-53 after 144h of incubation at pH6.5, 37°C. Expressions of 115 and 196 intracellular proteins were unambiguously identified and quantitated by shotgun proteomics analysis when the isolate was grown in medium containing pyrene and glucose, respectively. The pyrene-induced uniquely expressed and up-regulated proteins in P. aeruginosa strain ASP-53 in addition to substrate (pyrene) metabolism are also likely to be associated with different cellular functions for example-related to protein folding (molecular chaperone), stress response, metabolism of carbohydrate, proteins and amino acids, and fatty acids; transport of metabolites, energy generation such as ATP synthesis, electron transport and nitrate assimilation, and other oxidation-reduction reactions. Proteomic analyses identified some important enzymes involved in pyrene degradation by P. aeruginosa ASP-53 which shows that this bacterium follows the salicylate pathway of pyrene degradation. This study is the first report on proteomic analysis of pyrene biodegradation pathway by Pseudomonas aeruginosa, isolated from a petroleum-oil contaminated soil sample. The pathway displays partial similarity with deduced pyrene degradation mechanisms of Mycobacterium vanbaalenii PYR-1. The GC-MS analysis as well as PCR amplification of hydrocarbon catabolic genes substantiated the potency of the bacterium under study to effectively degrade high molecular weight, toxic PAH such as pyrene for its filed scale bioremediation

  1. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: Application of catalytic asymmetric phase-transfer reaction

    PubMed Central

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-01-01

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure–activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide–BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined. PMID:15004282

  2. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: application of catalytic asymmetric phase-transfer reaction.

    PubMed

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-04-13

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.

  3. Comparison of phenotypic tests for the detection of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Lucena, Andréa; Dalla Costa, Libera M; Nogueira, Keite da Silva; Matos, Adriana P; Gales, Ana C; Raboni, Sonia M

    2014-12-01

    Metallo-β-lactamase (MBL)-producing gram-negative bacteria are an increasing public health concern worldwide. Screening tests for the rapid and specific identification of these pathogens are essential, and should be included among routine diagnostics in laboratories. This study aimed to determine the MBL frequency among carbapenem-resistant Pseudomonas aeruginosa isolates, and to evaluate the accuracy of different tests in screening for MBL production. From January 2001 to December 2008, a total of 142 imipenem-non-susceptible P. aeruginosa strains were isolated from distinct clinical samples from hospitalized patients. These isolates were examined by PCR, MBL E-test, double-disk synergy test (DDST), and combined disk (CD) test. The minimal inhibitory concentration (MIC; μg/mL) was determined by agar dilution, and pulsed field gel electrophoresis (PFGE) was performed on all samples. Sequencing was performed to confirm and define the MBL variant and subtype. Using PCR and DNA sequence analysis, 93 strains were confirmed positive for MBLs, 91 strains for the blaSPM-1 gene, 1 strain for the blaIMP-1 gene, and 1 strain for the blaIMP-16 gene. PFGE displayed a clonal pattern. The sensitivities, specificities, positive and negative predictive values were evaluated for all tests. The DDST assay (CAZ-MPA) was the optimal method for screening MBL production in P. aeruginosa strains. However, the results of the CD assay (IMP/EDTA) showed close agreement with those of the DDST. In addition, the CD assay allowed a more objective interpretation and did not require the use of a toxic substance. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    PubMed

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  5. Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa

    PubMed Central

    Dehner, Carolyn; Morales-Soto, Nydia; Behera, Rabindra K.; Shrout, Joshua; Theil, Elizabeth C.; Maurice, Patricia A.

    2013-01-01

    Metabolism of iron derived from insoluble and/ or scarce sources is essential for pathogenic and environmental microbes. The ability of Pseudomonas aeruginosa to acquire iron from exogenous ferritin was assessed; ferritin is an iron-concentrating and antioxidant protein complex composed of a catalytic protein and caged ferrihydrite nanomineral synthesized from Fe(II) and O2 or H2O2. Ferritin and free ferrihydrite supported growth of P. aeruginosa with indistinguishable kinetics and final culture densities. The P. aeruginosa PAO1 mutant (ΔpvdDΔpchEF), which is incapable of siderophore production, grew as well as the wild type when ferritin was the iron source. Such data suggest that P. aeruginosa can acquire iron by siderophore-independent mechanisms, including secretion of small-molecule reductant(s). Protease inhibitors abolished the growth of the siderophore-free strain on ferritins, with only a small effect on growth of the wild type; predictably, protease inhibitors had no effect on growth with free ferrihydrite as the iron source. Proteolytic activity was higher with the siderophore-free strain, suggesting that the role of proteases in the degradation of ferritin is particularly important for iron acquisition in the absence of siderophores. The combined results demonstrate the importance of both free ferrihydrite, a natural environmental form of iron and a model for an insoluble form of partly denatured ferritin called hemosiderin, and caged ferritin iron minerals as bacterial iron sources. Ferritin is also revealed as a growth promoter of opportunistic, pathogenic bacteria such a P. aeruginosa in diseased tissues such as the cystic fibrotic lung, where ferritin concentrations are abnormally high. PMID:23417538

  6. Pseudomonas aeruginosa in Cystic Fibrosis Patients With G551D-CFTR Treated With Ivacaftor

    PubMed Central

    Heltshe, Sonya L.; Mayer-Hamblett, Nicole; Burns, Jane L.; Khan, Umer; Baines, Arthur; Ramsey, Bonnie W.; Rowe, Steven M.

    2015-01-01

    Background. Ivacaftor improves outcomes in cystic fibrosis (CF) patients with the G551D mutation; however, effects on respiratory microbiology are largely unknown. This study examines changes in CF respiratory pathogens with ivacaftor and correlates them with baseline characteristics and clinical response. Methods. The G551D Observational Study enrolled a longitudinal observational cohort of US patients with CF aged 6 years and older with at least 1 copy of the G551D mutation. Results were linked with retrospective and prospective culture data in the US Cystic Fibrosis Foundation's National Patient Registry. Pseudomonas aeruginosa infection category in the year before and year after ivacaftor was compared and correlated with clinical findings. Results. Among 151 participants prescribed ivacaftor, 29% (26/89) who were culture positive for P. aeruginosa the year prior to ivacaftor use were culture negative the year following treatment; 88% (52/59) of those P. aeruginosa free remained uninfected. The odds of P. aeruginosa positivity in the year after ivacaftor compared with the year prior were reduced by 35% (odds ratio [OR], 0.65; P < .001). Ivacaftor was also associated with reduced odds of mucoid P. aeruginosa (OR, 0.77; P = .013) and Aspergillus (OR, 0.47; P = .039), but not Staphylococcus aureus or other common CF pathogens. Patients with intermittent culture positivity and higher forced expiratory volume in 1 second (FEV1) were most likely to turn culture negative. Reduction in P. aeruginosa was not associated with change in FEV1, body mass index, or hospitalizations. Conclusions. Pseudomonas aeruginosa culture positivity was significantly reduced following ivacaftor treatment. Efficacious CFTR modulation may contribute to lower frequency of culture positivity for P. aeruginosa and other respiratory pathogens, particularly in patients with less established disease. PMID:25425629

  7. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor.

    PubMed

    Heltshe, Sonya L; Mayer-Hamblett, Nicole; Burns, Jane L; Khan, Umer; Baines, Arthur; Ramsey, Bonnie W; Rowe, Steven M

    2015-03-01

    Ivacaftor improves outcomes in cystic fibrosis (CF) patients with the G551D mutation; however, effects on respiratory microbiology are largely unknown. This study examines changes in CF respiratory pathogens with ivacaftor and correlates them with baseline characteristics and clinical response. The G551D Observational Study enrolled a longitudinal observational cohort of US patients with CF aged 6 years and older with at least 1 copy of the G551D mutation. Results were linked with retrospective and prospective culture data in the US Cystic Fibrosis Foundation's National Patient Registry. Pseudomonas aeruginosa infection category in the year before and year after ivacaftor was compared and correlated with clinical findings. Among 151 participants prescribed ivacaftor, 29% (26/89) who were culture positive for P. aeruginosa the year prior to ivacaftor use were culture negative the year following treatment; 88% (52/59) of those P. aeruginosa free remained uninfected. The odds of P. aeruginosa positivity in the year after ivacaftor compared with the year prior were reduced by 35% (odds ratio [OR], 0.65; P < .001). Ivacaftor was also associated with reduced odds of mucoid P. aeruginosa (OR, 0.77; P = .013) and Aspergillus (OR, 0.47; P = .039), but not Staphylococcus aureus or other common CF pathogens. Patients with intermittent culture positivity and higher forced expiratory volume in 1 second (FEV1) were most likely to turn culture negative. Reduction in P. aeruginosa was not associated with change in FEV1, body mass index, or hospitalizations. Pseudomonas aeruginosa culture positivity was significantly reduced following ivacaftor treatment. Efficacious CFTR modulation may contribute to lower frequency of culture positivity for P. aeruginosa and other respiratory pathogens, particularly in patients with less established disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For

  8. Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production

    PubMed Central

    Van Laar, Tricia A.; Esani, Saika; Birges, Tyler J.; Hazen, Bethany; Thomas, Jason M.

    2018-01-01

    ABSTRACT Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause severe opportunistic infections. The principal redox buffer employed by this organism is glutathione (GSH). To assess the role of GSH in the virulence of P. aeruginosa, a number of analyses were performed using a mutant strain deficient in gshA, which does not produce GSH. The mutant strain exhibited a growth delay in minimal medium compared to the wild-type strain. Furthermore, the gshA mutant was defective in biofilm and persister cell formation and in swimming and swarming motility and produced reduced levels of pyocyanin, a key virulence factor. Finally, the gshA mutant strain demonstrated increased sensitivity to methyl viologen (a redox cycling agent) as well as the thiol-reactive antibiotics fosfomycin and rifampin. Taken together, these data suggest a key role for GSH in the virulence of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection. PMID:29669887

  9. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates.

    PubMed

    Sismaet, Hunter J; Pinto, Ameet J; Goluch, Edgar D

    2017-11-15

    In clinical practice, delays in obtaining culture results impact patient care and the ability to tailor antibiotic therapy. Despite the advancement of rapid molecular diagnostics, the use of plate cultures inoculated from swab samples continues to be the standard practice in clinical care. Because the inoculation culture process can take between 24 and 48h before a positive identification test can be run, there is an unmet need to develop rapid throughput methods for bacterial identification. Previous work has shown that pyocyanin can be used as a rapid, redox-active biomarker for identifying Pseudomonas aeruginosa in clinical infections. However, further validation is needed to confirm pyocyanin production occurs in all clinical strains of P. aeruginosa. Here, we validate this electrochemical detection strategy using clinical isolates obtained from patients with hospital-acquired infections or with cystic fibrosis. Square-wave voltammetric scans of 94 different clinical P. aeruginosa isolates were taken to measure the concentration of pyocyanin. The results showed that all isolates produced measureable concentrations of pyocyanin with production rates correlated with patient symptoms and comorbidity. Further bioinformatics analysis confirmed that 1649 genetically sequenced strains (99.9%) of P. aeruginosa possess the two genes (PhzM and PhzS) necessary to produce pyocyanin, supporting the specificity of this biomarker. Confirming the production of pyocyanin by all clinically-relevant strains of P. aeruginosa is a significant step towards validating this strategy for rapid, point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An outbreak of hospital-acquired Pseudomonas aeruginosa infection caused by contaminated bottled water in intensive care units.

    PubMed

    Eckmanns, T; Oppert, M; Martin, M; Amorosa, R; Zuschneid, I; Frei, U; Rüden, H; Weist, K

    2008-05-01

    This study describes an outbreak of Pseudomonas aeruginosa infections caused by contaminated bottled still water (BSW) in six intensive care units (ICUs) of a German university hospital. Clinical and environmental samples from these units were cultured and genotyped by amplified fragment-length polymorphism and pulsed-field gel electrophoresis analysis. Microbiological results were reviewed on a weekly basis to determine the number of P. aeruginosa infections and colonisations of ICU patients. Clinical specimens from 19 ICU patients--15 infections and four colonisations--yielded the same strain of P. aeruginosa. Furthermore, four of 103 environmental samples also yielded P. aeruginosa. However, only a P. aeruginosa strain isolated from unopened BSW was genetically identical to the P. aeruginosa strain isolated from the patients. In the 42-week period before the outbreak, the mean weekly number of new ICU patients infected or colonised with P. aeruginosa was 46.9 (95% CI 40.7-53.1)/1000 bed-days. During the 6-week period of the outbreak, the weekly number of new patients with P. aeruginosa was 88.9 (95% CI 54.3-122.2)/1000 bed-days. This number returned to the previous level after removal of the BSW. Thus, the microbiological and epidemiological findings revealed that the outbreak was related to BSW contaminated with P. aeruginosa. It was concluded that all untested BSW should be removed from ICUs.

  11. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors

    PubMed Central

    Gu, Xinzhe; Sun, Ye; Tu, Kang; Dong, Qingli; Pan, Leiqing

    2016-01-01

    A rapid method of predicting the growing situation of Pseudomonas aeruginosa is presented. Gas sensors were used to acquire volatile compounds generated by P. aeruginosa on agar plates and meat stuffs. Then, optimal sensors were selected to simulate P. aeruginosa growth using modified Logistic and Gompertz equations by odor changes. The results showed that the responses of S8 or S10 yielded high coefficients of determination (R2) of 0.89–0.99 and low root mean square errors (RMSE) of 0.06–0.17 for P. aeruginosa growth, fitting the models on the agar plate. The responses of S9, S4 and the first principal component of 10 sensors fit well with the growth of P. aeruginosa inoculated in meat stored at 4 °C and 20 °C, with R2 of 0.73–0.96 and RMSE of 0.25–1.38. The correlation coefficients between the fitting models, as measured by electronic nose responses, and the colony counts of P. aeruginosa were high, ranging from 0.882 to 0.996 for both plate and meat samples. Also, gas chromatography–mass spectrometry results indicated the presence of specific volatiles of P. aeruginosa on agar plates. This work demonstrated an acceptable feasibility of using gas sensors—a rapid, easy and nondestructive method for predicting P. aeruginosa growth. PMID:27941841

  12. A diagnostic PCR assay for the detection of an Australian epidemic strain of Pseudomonas aeruginosa

    PubMed Central

    2010-01-01

    Background Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF) and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I) has been found to be widespread in CF patients in eastern Australia. Methods Suppression subtractive hybridization (SSH) was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE), 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources. Results We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples. Conclusions We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum. PMID:20637114

  13. Cyanobacteria of the 2016 Lake Okeechobee and Okeechobee Waterway harmful algal bloom

    USGS Publications Warehouse

    Rosen, Barry H.; Davis, Timothy W.; Gobler, Christopher J.; Kramer, Benjamin J.; Loftin, Keith A.

    2017-05-31

    The Lake Okeechobee and the Okeechobee Waterway (Lake Okeechobee, the St. Lucie Canal and River, and the Caloosahatchee River) experienced an extensive harmful algal bloom within Lake Okeechobee, the St. Lucie Canal and River and the Caloosahatchee River in 2016. In addition to the very visible bloom of the cyanobacterium Microcystis aeruginosa, several other cyanobacteria were present. These other species were less conspicuous; however, they have the potential to produce a variety of cyanotoxins, including anatoxins, cylindrospermopsins, and saxitoxins, in addition to the microcystins commonly associated with Microcystis. Some of these species were found before, during, and 2 weeks after the large Microcystis bloom and could provide a better understanding of bloom dynamics and succession. This report provides photographic documentation and taxonomic assessment of the cyanobacteria present from Lake Okeechobee and the Caloosahatchee River and St. Lucie Canal, with samples collected June 1st from the Caloosahatchee River and Lake Okeechobee and in July from the St. Lucie Canal. The majority of the images were of live organisms, allowing their natural complement of pigmentation to be captured. The report provides a digital image-based taxonomic record of the Lake Okeechobee and the Okeechobee Waterway microscopic flora. It is anticipated that these images will facilitate current and future studies on this system, such as understanding the timing of cyanobacteria blooms and their potential toxin production.

  14. Characteristics of carbapenem-resistant Pseudomonas aeruginosa strains in patients with ventilator-associated pneumonia in intensive care units.

    PubMed

    Vitkauskienė, Astra; Skrodenienė, Erika; Dambrauskienė, Asta; Bakšytė, Giedrė; Macas, Andrius; Sakalauskas, Raimundas

    2011-01-01

    The aim of this study was to determine the characteristics of carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains and 5-year changes in resistance in a tertiary university hospital. The study included 90 and 101 randomly selected P. aeruginosa strains serotyped in 2003 and 2008, respectively. The standardized disk diffusion test and E-test were used to determine resistance to antibiotics. P. aeruginosa strains were considered to have high-level resistance if a minimum inhibitory concentration (MIC) for imipenem or meropenem was >32 µg/mL. To identify serogroups, sera containing specific antibodies against O group antigens of P. aeruginosa were used. P. aeruginosa isolates resistant to imipenem or/and meropenem were screened for metallo-β-lactamase (MBL) production by using the MBL E-test. Comparison of the changes in resistance of P. aeruginosa strains to carbapenems within the 5-year period revealed that the level of resistance to imipenem increased. In 2003, 53.3% of P. aeruginosa strains were found to be highly resistant to imipenem, while in 2008, this percentage increased to 87.8% (P=0.01). The prevalence of MBL-producing strains increased from 15.8% in 2003 to 61.9% in 2008 (P<0.001). In 2003 and 2008, carbapenem-resistant P. aeruginosa strains were more often resistant to ciprofloxacin and gentamicin than carbapenem-sensitive strains. In 2008, carbapenem-resistant strains additionally were more often resistant to ceftazidime, cefepime, aztreonam, piperacillin, and amikacin than carbapenem-sensitive strains. MBL-producing P. aeruginosa strains belonged more often to the O:11 serogroup than MBL-non-producing strains (51.7% vs. 34.3%, P<0.05). A greater percentage of non-MBL-producing strains had low MICs against ciprofloxacin and amikacin as compared with MBL-producing strains. The results of our study emphasize the need to restrict the spread of O:11 serogroup P. aeruginosa strains and usage of carbapenems to treat infections with P

  15. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pseudomonas aeruginosa ventilator-associated pneumonia management

    PubMed Central

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  17. Tolerance of cyanobacteria to the toxicity of BDE-47 and their removal ability.

    PubMed

    Chalifour, Annie; Tam, Nora Fung-Yee

    2016-12-01

    Polybrominated diphenyl ethers are ubiquitous and toxic contaminants in aquatic environments. The effect of polybrominated diphenyl ether BDE-47 on five species of cyanobacteria, along with their removal ability was investigated. Four species, namely Synechocystis sp., Oscillatoria planctonica, Microcystis flos-aquae and Nostoc sp., were exposed to BDE-47 at concentrations ranging from 0.05 to 1.0 mg L -1 for 14 days, while the exposure time for Pseudanabaena sp. was 30 days. The first four species were very tolerant to BDE-47 while growth and photosynthesis of Pseudanabaena were significantly inhibited by BDE-47 at concentrations over 0.1 mg L -1 . However, this species could recover from the toxicity of high concentrations of BDE-47 after 30 days of exposure, indicating the development of some "resistance" after pre-exposure to 1.0 mg L -1 BDE-47. The "resistant" cells had a higher growth rate, photosynthesis and glutathione S-transferase activity than normal Pseudanabaena cells. The sensitivity of Pseudanabaena to BDE-47 toxicity was affected by its initial filament density, with cultures having a low filament density (2.3 × 10 6 filaments mL -1 ) being up to 14-15 times more sensitive than cultures with a high filament density (13 × 10 6 filaments mL -1 ). All cyanobacteria could remove 70-82% of BDE-47 in their media, with more than 60% of BDE-47 accumulated in cells. This is the first study showing the high tolerance of different cyanobacteria species to BDE-47 toxicity and their removal ability. The study also revealed that the sensitive Pseudanabaena could acquire a "resistance" to BDE-47, which was transferred to the next generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. In-Vivo Expression Profiling of Pseudomonas aeruginosa Infections Reveals Niche-Specific and Strain-Independent Transcriptional Programs

    PubMed Central

    Bielecki, Piotr; Puchałka, Jacek; Wos-Oxley, Melissa L.; Loessner, Holger; Glik, Justyna; Kawecki, Marek; Nowak, Mariusz; Tümmler, Burkhard; Weiss, Siegfried; dos Santos, Vítor A. P. Martins

    2011-01-01

    Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies. PMID:21931663

  19. In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs.

    PubMed

    Bielecki, Piotr; Puchałka, Jacek; Wos-Oxley, Melissa L; Loessner, Holger; Glik, Justyna; Kawecki, Marek; Nowak, Mariusz; Tümmler, Burkhard; Weiss, Siegfried; dos Santos, Vítor A P Martins

    2011-01-01

    Pseudomonas aeruginosa is a threatening, opportunistic pathogen causing disease in immunocompromised individuals. The hallmark of P. aeruginosa virulence is its multi-factorial and combinatorial nature. It renders such bacteria infectious for many organisms and it is often resistant to antibiotics. To gain insights into the physiology of P. aeruginosa during infection, we assessed the transcriptional programs of three different P. aeruginosa strains directly after isolation from burn wounds of humans. We compared the programs to those of the same strains using two infection models: a plant model, which consisted of the infection of the midrib of lettuce leaves, and a murine tumor model, which was obtained by infection of mice with an induced tumor in the abdomen. All control conditions of P. aeruginosa cells growing in suspension and as a biofilm were added to the analysis. We found that these different P. aeruginosa strains express a pool of distinct genetic traits that are activated under particular infection conditions regardless of their genetic variability. The knowledge herein generated will advance our understanding of P. aeruginosa virulence and provide valuable cues for the definition of prospective targets to develop novel intervention strategies.

  20. Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa.

    PubMed

    Xu, G; Xiong, W; Hu, Q; Zuo, P; Shao, B; Lan, F; Lu, X; Xu, Y; Xiong, S

    2010-10-01

    To investigate the bactericidal activity of lactoferrin-derived peptides and a new LF-derived peptides chimera (LFchimera) against P. aeruginosa and the influence on virulence factors of P. aeruginosa. Lactoferricin (LFcin) and lactoferrampin (LFampin) are highly bioactive peptides isolated from the N-terminal region of lactoferrin (LF) by pepsin digestion. In this study, we designed LFchimera containing LFcin amino acids 17-30 and LFampin amino acids 268-284. Pseudomonas aeruginosa cells were incubated in medium with peptides at different concentrations, and then the assays of viability, pyocyanin, elastase activity and biofilm formation of P. aeruginosa were performed. We found that the concentration-dependent antibactericidal activity and down-regulating pyocyanin, elastase and biofilm formation of LFchimera were significantly stronger than those of LF, LFcin, LFampin or LFcin plus LFampin. Our results indicated that LF, LFcin, LFampin and LFchimera were potential candidates to combat P. aeruginosa, and LFchimera was the most effective in them. The new LFchimera has better activity against P. aeruginosa than LF, LFcin and LFampin and may be a promising new compound for treatment of P. aeruginosa infection. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  1. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  2. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  3. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa.

    PubMed

    Klepac-Ceraj, Vanja; Lemon, Katherine P; Martin, Thomas R; Allgaier, Martin; Kembel, Steven W; Knapp, Alixandra A; Lory, Stephen; Brodie, Eoin L; Lynch, Susan V; Bohannan, Brendan J M; Green, Jessica L; Maurer, Brian A; Kolter, Roberto

    2010-05-01

    Polymicrobial bronchopulmonary infections in cystic fibrosis (CF) cause progressive lung damage and death. Although the arrival of Pseudomonas aeruginosa often heralds a more rapid rate of pulmonary decline, there is significant inter-individual variation in the rate of decline, the causes of which remain poorly understood. By coupling culture-independent methods with ecological analyses, we discovered correlations between bacterial community profiles and clinical disease markers in respiratory tracts of 45 children with CF. Bacterial community complexity was inversely correlated with patient age, presence of P. aeruginosa and antibiotic exposure, and was related to CF genotype. Strikingly, bacterial communities lacking P. aeruginosa were much more similar to each other than were those containing P. aeruginosa, regardless of antibiotic exposure. This suggests that community composition might be a better predictor of disease progression than the presence of P. aeruginosa alone and deserves further study.

  4. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals.

    PubMed

    Pan, Gang; Zhang, Ming-Ming; Chen, Hao; Zou, Hua; Yan, Hai

    2006-05-01

    Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.

  5. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014

    PubMed Central

    Dou, Yi; Guo, Feng; Zhou, Zengding; Shi, Yan

    2017-01-01

    Objective To assess the application of antibacterial agents, alongside pathogen prevalence and Pseudomonas aeruginosa drug resistance, with the aim of understanding the impact of inappropriate antibacterial use. Methods This retrospective study assessed bacteria from wounds, catheters, blood, faeces, urine and sputum of hospitalized patients in burn wards between 2007 and 2014. The intensity of use of antibacterial agents and resistance of P. aeruginosa to common anti-Gram-negative antibiotics were measured. Results Annual detection rates of Staphylococcus aureus were significantly decreased, whereas annual detection rates of P. aeruginosa and Klebsiella pneumoniae were significantly increased. Multidrug-resistant strains of P. aeruginosa were increased. The intensity of use of some anti-Gramnegative antibiotics positively correlated with resistance rates of P. aeruginosa to similar antimicrobials. Conclusion In burn wards, more attention should be paid to P. aeruginosa and K. pneumoniae. The use of ciprofloxacin, ceftazidime and cefoperazone/sulbactam should be limited to counter the related increase in resistance levels. PMID:28443385

  6. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    PubMed

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  7. Royal Jelly Inhibits Pseudomonas aeruginosa Adherence and Reduces Excessive Inflammatory Responses in Human Epithelial Cells

    PubMed Central

    Susilowati, Heni; Amoh, Takashi; Hirao, Kouji; Hirota, Katsuhiko; Matsuo, Takashi; Miyake, Yoichiro

    2017-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium and causes respiratory infection especially in elderly patients. Royal jelly has been used worldwide as a traditional remedy and as a nutrient; however, the effect against P. aeruginosa is unclear. The aim of this study was to analyze antibacterial, antiadherent, and anti-inflammatory effects of royal jelly against P. aeruginosa. Wild-type strain PAO1 and clinical isolates of P. aeruginosa were used for antibacterial assay and antiadherent assay to abiotic surface and epithelial cells, which are pharynx (Detroit 562) and lung (NCI-H292) epithelial cells. In anti-inflammatory assay, epithelial cells were pretreated with royal jelly before bacterial exposure to investigate its inhibitory effect on interleukin (IL-8) and macrophage inflammatory protein-3α/CCL20 overproduction. Although royal jelly did not have antibacterial activity at concentration of 50% w/v, antiadherent activity was confirmed on the abiotic surface and epithelial cells under concentration of 25%. Pretreatment with royal jelly significantly inhibited overproduction of IL-8 and CCL20 from both cells. These results demonstrated that royal jelly inhibits P. aeruginosa adherence and protects epithelial cells from excessive inflammatory responses against P. aeruginosa infection. Our findings suggested that royal jelly may be a useful supplement as complementary and alternative medicine for preventing respiratory infection caused by P. aeruginosa. PMID:29075644

  8. Royal Jelly Inhibits Pseudomonas aeruginosa Adherence and Reduces Excessive Inflammatory Responses in Human Epithelial Cells.

    PubMed

    Susilowati, Heni; Murakami, Keiji; Yumoto, Hiromichi; Amoh, Takashi; Hirao, Kouji; Hirota, Katsuhiko; Matsuo, Takashi; Miyake, Yoichiro

    2017-01-01

    Pseudomonas aeruginosa is a Gram-negative bacterium and causes respiratory infection especially in elderly patients. Royal jelly has been used worldwide as a traditional remedy and as a nutrient; however, the effect against P. aeruginosa is unclear. The aim of this study was to analyze antibacterial, antiadherent, and anti-inflammatory effects of royal jelly against P. aeruginosa . Wild-type strain PAO1 and clinical isolates of P. aeruginosa were used for antibacterial assay and antiadherent assay to abiotic surface and epithelial cells, which are pharynx (Detroit 562) and lung (NCI-H292) epithelial cells. In anti-inflammatory assay, epithelial cells were pretreated with royal jelly before bacterial exposure to investigate its inhibitory effect on interleukin (IL-8) and macrophage inflammatory protein-3 α /CCL20 overproduction. Although royal jelly did not have antibacterial activity at concentration of 50% w/v, antiadherent activity was confirmed on the abiotic surface and epithelial cells under concentration of 25%. Pretreatment with royal jelly significantly inhibited overproduction of IL-8 and CCL20 from both cells. These results demonstrated that royal jelly inhibits P. aeruginosa adherence and protects epithelial cells from excessive inflammatory responses against P. aeruginosa infection. Our findings suggested that royal jelly may be a useful supplement as complementary and alternative medicine for preventing respiratory infection caused by P. aeruginosa .

  9. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection

    PubMed Central

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-01-01

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body. PMID:24765368

  10. A case of orbital apex syndrome due to Pseudomonas aeruginosa infection.

    PubMed

    Kusunoki, Takeshi; Kase, Kaori; Ikeda, Katsuhisa

    2011-09-28

    Orbital apex syndrome is commonly been thought to have a poor prognosis. Many cases of this syndrome have been reported to be caused by paranasal sinus mycosis. We encountered a very rare case (60-year-old woman) of sinusitis with orbital apex syndrome due to Pseudomonas aeruginosa infection. She had received insulin and dialysis for diabtes and diabetic nephropathy, moreover anticoagulants after heart by-pass surgery. She underwent endoscopic sinus operation and was treated with antibiotics, but her loss of left vision did not improve. Recently, sinusitis cases due to Pseudomonas aeruginosa were reported to be a increasing. Therefore, we should consider the possibility of Pseudomonas aeruginosa as well as mycosis as infections of the sinus, especially inpatients who are immunocompromised body.

  11. Physiological effects of a bactericidal protein from human polymorphonuclear leukocytes on Pseudomonas aeruginosa.

    PubMed

    Hovde, C J; Gray, B H

    1986-04-01

    The physiological changes seen in Pseudomonas aeruginosa after exposure to a bactericidal protein (BP) from the granules of human polymorphonuclear leukocytes were studied. It was demonstrated, using radiolabeled proline or leucine, that both the rate of cellular uptake and amino acid incorporation into trichloroacetic acid-insoluble material were markedly decreased immediately after exposure to BP. The rate of O2 consumption by P. aeruginosa was decreased immediately after exposure to BP and continued to decline exponentially until it ceased completely 30 min after exposure to BP. In the presence of 30 mM CaCl2 or MgCl2, bacteria were protected from death due to BP and respiration rates were unaffected. The cellular ATP pool of P. aeruginosa remained constant for up to 2 h after exposure to BP. Membrane depolarization was measured by the influx of the lipophilic anion thiocyanate. It was shown that the cytoplasmic membrane of P. aeruginosa was partially depolarized after exposure to BP. Purified BP killed 95% of 5 X 10(6) CFU of P. aeruginosa at a concentration of 60 to 100 ng of protein per ml. Although the concentration of bacteria and BP varied with each type of experiment, the BP/bacteria ratio required to cause a 95 to 99% loss in viability remained constant. We propose that cytoplasmic membrane depolarization is the biochemical lesion responsible for the other physiological changes seen and ultimately for the death of P. aeruginosa induced by BP.

  12. Pyoverdine and Proteases Affect the Response of Pseudomonas aeruginosa to Gallium in Human Serum

    PubMed Central

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco

    2015-01-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  13. Oral ofloxacin therapy of Pseudomonas aeruginosa sepsis in mice after irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brook, I.; Ledney, G.D.

    Death subsequent to whole-body irradiation is associated with gram-negative bacterial sepsis. The effect of oral therapy with the new quinolone ofloxacin for orally acquired Pseudomonas aeruginosa infection was tested in B6D2F1 mice exposed to 7.0 Gy of bilateral radiation from 60Co. A dose of 10(7) organisms was given orally 2 days after irradiation, and therapy was started 1 day later. Only 4 of 20 untreated mice (20%) survived for at least 30 days compared with 19 of 20 mice (95%) treated with ofloxacin (P less than 0.005). P. aeruginosa was isolated from the livers of 21 to 28 untreated micemore » (75%), compared with only 2 of 30 treated mice (P less than 0.005). Ofloxacin reduced colonization of the ileum by P. aeruginosa; 24 of 28 untreated mice (86%) harbored the organisms, compared with only 5 of 30 (17%) with ofloxacin (P less than 0.005). This experiment was replicated twice, and similar results were obtained. These data illustrate the efficacy of the quinolone ofloxacin for oral therapy of orally acquired P. aeruginosa infection in irradiated hosts.« less

  14. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.

    PubMed

    Langton Hewer, Simon C; Smyth, Alan R

    2017-04-25

    Respiratory tract infection with Pseudomonas aeruginosa occurs in most people with cystic fibrosis. Once chronic infection is established, Pseudomonas aeruginosa is virtually impossible to eradicate and is associated with increased mortality and morbidity. Early infection may be easier to eradicate.This is an update of a Cochrane review first published in 2003, and previously updated in 2006, 2009 and 2014. To determine whether antibiotic treatment of early Pseudomonas aeruginosa infection in children and adults with cystic fibrosis eradicates the organism, delays the onset of chronic infection, and results in clinical improvement. To evaluate whether there is evidence that a particular antibiotic strategy is superior to or more cost-effective than other strategies and to compare the adverse effects of different antibiotic strategies (including respiratory infection with other micro-organisms). We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Most recent search: 10 October 2016. We included randomised controlled trials of people with cystic fibrosis, in whom Pseudomonas aeruginosa had recently been isolated from respiratory secretions. We compared combinations of inhaled, oral or intravenous antibiotics with placebo, usual treatment or other combinations of inhaled, oral or intravenous antibiotics. We excluded non-randomised trials, cross-over trials, and those utilising historical controls. Both authors independently selected trials, assessed risk of bias and extracted data. The search identified 60 trials; seven trials (744 participants) with a duration between 28 days and 27 months were eligible for inclusion. Three of the trials are over 10 years old and their results may be less applicable today given the changes in standard treatment. Some of the trials had low

  15. Carbenicillin and gentamicin in the treatment of Pseudomonas aeruginosa infection

    PubMed Central

    Yuce, Kemal; van Rooyen, C. E.

    1971-01-01

    The administration separately and sequentially of carbenicillin and gentamicin eradicated Ps. aeruginosa infections, during the period over which they were given, in all of 25 critically ill patients. Electron microscopy revealed differences in the action of these two antibiotics against Ps. aeruginosa in vitro. Culture studies showed synergism between them and destruction by gentamicin of the carbenicillin-induced long, filamentous form of the organism. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:5004774

  16. Production of Pseudomonas aeruginosa Intercellular Small Signaling Molecules in Human Burn Wounds

    PubMed Central

    Que, Yok-Ai; Hazan, Ronen; Ryan, Colleen M.; Milot, Sylvain; Lépine, François; Lydon, Martha; Rahme, Laurence G.

    2011-01-01

    Pseudomonas aeruginosa has developed a complex cell-to-cell communication system that relies on low-molecular weight excreted molecules to control the production of its virulence factors. We previously characterized the transcriptional regulator MvfR, that controls a major network of acute virulence functions in P. aeruginosa through the control of its ligands, the 4-hydroxy-2-alkylquinolines (HAQs)—4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS). Though HHQ and PQS are produced in infected animals, their ratios differ from those in bacterial cultures. Because these molecules are critical for the potency of activation of acute virulence functions, here we investigated whether they are also produced during human P. aeruginosa acute wound infection and whether their ratio is similar to that observed in P. aeruginosa-infected mice. We found that a clinically relevant P. aeruginosa isolate produced detectable levels of HAQs with ratios of HHQ and PQS that were similar to those produced in burned and infected animals, and not resembling ratios in bacterial cultures. These molecules could be isolated from wound tissue as well as from drainage liquid. These results demonstrate for the first time that HAQs can be isolated and quantified from acute human wound infection sites and validate the relevance of previous studies conducted in mammalian models of infection. PMID:23533774

  17. Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Varma, Parvathi; Nisha, N; Dinesh, Kavitha R; Kumar, Anil V; Biswas, Raja

    2011-01-01

    Surgical wounds and implant-associated Staphylococcus aureus and Pseudomonas aeruginosa infections are often difficult to treat because of limited susceptibility of several of these strains to conventional antibiotics. As a result, there is a constant need for new alternative drugs. The aim of this study was to investigate the antimicrobial properties of Lactobacillus fermentum, a probiotic bacterium, which we have isolated from colonic biopsies. The inhibition of S. aureus and P. aeruginosa growth was evaluated by coincubating with L. fermentum strains. Growth inhibition was tested for several of their clinical isolates using agar well diffusion assays. For biofilm assay S. aureus and P. aeruginosa were grown on the glass slides and in 96-well plates in presence of 2.5 μg/ml culture filtrate of L. fermentum. Biofilms were photographed using confocal microscope or stained with 0.1% crystal violet. Reduction in the cytotoxicity of S. aureus and P. aeruginosa was observed in presence of 2.5 μg/ml L. fermentum-spent media. Using in vitroexperiments, we showed that L. fermentum-secreted compound(s) inhibits the growth, cytotoxicity and biofilm formation of several S. aureus and P. aeruginosa strains. Compound(s) present in the culture supernatant of L. fermentum may have promising applications in treating hospital-acquired infections. Copyright © 2011 S. Karger AG, Basel.

  18. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  19. Pseudomonas aeruginosa proteolytically alters the interleukin 22-dependent lung mucosal defense.

    PubMed

    Guillon, Antoine; Brea, Deborah; Morello, Eric; Tang, Aihua; Jouan, Youenn; Ramphal, Reuben; Korkmaz, Brice; Perez-Cruz, Magdiel; Trottein, Francois; O'Callaghan, Richard J; Gosset, Philippe; Si-Tahar, Mustapha

    2017-08-18

    The IL-22 signaling pathway is critical for regulating mucosal defense and limiting bacterial dissemination. IL-22 is unusual among interleukins because it does not directly regulate the function of conventional immune cells, but instead targets cells at outer body barriers, such as respiratory epithelial cells. Consequently, IL-22 signaling participates in the maintenance of the lung mucosal barrier by controlling cell proliferation and tissue repair, and enhancing the production of specific chemokines and anti-microbial peptides. Pseudomonas aeruginosa is a major pathogen of ventilator-associated pneumonia and causes considerable lung tissue damage. A feature underlying the pathogenicity of this bacterium is its capacity to persist and develop in the host, particularly in the clinical context of nosocomial lung infections. We aimed to investigate the ability of P. auruginosa to disrupt immune-epithelial cells cross-talk. We found that P. aeruginosa escapes the host mucosal defenses by degrading IL-22, leading to severe inhibition of IL-22-mediated immune responses. We demonstrated in vitro that, protease IV, a type 2 secretion system-dependent serine protease, is responsible for the degradation of IL-22 by P. aeruginosa. Moreover, the major anti-proteases molecules present in the lungs were unable to inhibit protease IV enzymatic activity. In addition, tracheal aspirates of patients infected by P. aeruginosa contain protease IV activity which further results in IL-22 degradation. This so far undescribed cleavage of IL-22 by a bacterial protease is likely to be an immune-evasion strategy that contributes to P. aeruginosa-triggered respiratory infections.

  20. Comparative In Vitro Efficacy of Doripenem and Imipenem Against Multi-Drug Resistant Pseudomonas aeruginosa.

    PubMed

    Wali, Nadia; Mirza, Irfan Ali

    2016-04-01

    To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Descriptive cross-sectional study. Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosaas compared to imipenem when tested by both E-test and agar dilution methods.

  1. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    NASA Astrophysics Data System (ADS)

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-03-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm-1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device.

  2. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  3. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  4. Genotyping of Pseudomonas aeruginosa isolates from lung transplant recipients and aquatic environment-detected in-hospital transmission.

    PubMed

    Johansson, Ewa; Welinder-Olsson, Christina; Gilljam, Marita

    2014-02-01

    Lung infection with Pseudomonas aeruginosa is common in lung transplant recipients and may lead to severe complications. Bacteriological surveillance aims to detect transmission of microbes between hospital environment and patients. We sought to determine whether genotyping of P. aeruginosa isolates could improve identifications of pathways of infection. From 2004 to 2009, we performed genotyping with multiple-locus variable number of tandem repeats analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of P. aeruginosa isolates cultured from lung transplant recipients at Sahlgrenska University Hospital, Gothenburg. During a small outbreak in 2008, cultivation and genotyping of isolates from sink and drains samples from the hospital ward were performed. Pseudomona aeruginosa from 11/18 patients were genotyped to unique strains. The remaining seven patients were carriers of a P. aeruginosa strain of cluster A genotype. Pseudomona aeruginosa was isolated in 4/8 water samples, typed by MLVA also as cluster A genotype and confirmed by PFGE to be similar or identical to the isolates from four transplanted patients. In conclusion, genotyping of isolates revealed a clonal relationship between patient and water isolates, indicating in-hospital transmission of P. aeruginosa. We suggest genotyping with MLVA for rapid routine surveillance, with the PFGE method used for extended, confirmatory analyses. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  5. Induced Formation of Chelating Agents by Pseudomonas aeruginosa Grown in Presence of Thorium and Uranium

    DTIC Science & Technology

    1985-07-01

    aerugiaosa PAO-l, Saccharomyces cerevisiae, Aspergillus niger , P. fluorescens, Escherichia coli, and Thiobacillus ferroxidans. Interaction of these...shown that P. aeruginosa CSU has..a-••reference for uranium while P. aeruginosa PAO-l, Aspergillus niger and-P. fluorescens exhibits a preference for...exhibits a preference for chromium. Aspergillus niger under identical conditions is chromium and manganese selective. P. aeruginosa when grown in th

  6. Antiphagocytic Effect of Slime from a Mucoid Strain of Pseudomonas aeruginosa

    PubMed Central

    Schwarzmann, Stephen; Boring, John R.

    1971-01-01

    Mucoid strains of Pseudomonas aeruginosa produce a viscid slime when grown on the surface of agar media. These strains are known to colonize persistently the tracheobronchial tree of children with cystic fibrosis. Colonization may result from inhibition of phagocytosis due to slime produced by the organism. Slime separated from one mucoid strain was examined to determine whether it possessed antiphagocytic activity in vitro. Cells of P. aeruginosa, Escherichia coli, and Staphylococcus aureus were rapidly phagocytized by rabbit polymorphonuclear leukocytes when mixtures were rotated for 2 hr at 37 C in the absence of slime. The addition of relatively small amounts of slime to bacteria and leukocytes inhibited phagocytosis as measured by phagocytic killing of the organisms. Inhibition was found to be most complete with P. aeruginosa. PMID:16558051

  7. Resistance to antibiotics in clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Sevillano, E; Valderrey, C; Canduela, M J; Umaran, A; Calvo, F; Gallego, L

    2006-01-01

    To analyse the global resistance to some antibiotics used to treat nosocomial infections by Pseudomonas aeruginosa, specially to carbapenems, and its relationship with the presence of carbapenemases, OXA, VIM and IMP. The study included 229 P. aeruginosa isolates from a Hospital in Northern Spain (year 2002). Susceptibility to antimicrobial agents was determined by the analysis of the MIC. Genetic typing was carried out by RAPD-PCR fingerprinting with primer ERIC-2. Genetic experiments to detect class-1 integrons were performed by PCR with primers 5'CS and 3'CS. Detection of carbapenemases was done by phenotypic (Hodge test and DDST) and genotypic methods (PCR with primers for imp, vim1, vim2 and oxa40 genes). 23.9% of isolates were resistant to ceftazidime, 35.9% to cefotaxime, 5.3% to amikacin, 54.9% to gentamicin, 14.6% to imipenem and 6.6% to meropenem. Isolates resistant to imipenem (33) were furtherly tested. Genetic typing didn't show clonal relatedness among the most of the isolates. Class-1 integrons were present in most isolates (sizes 600-1700 bp). Phenotypic methods for carbapenemases showed 5 positive isolates. Genotypic methods showed the presence of two isolates with the oxa40 gene. Meropenem, amikacin and imipenem were the most active agents to treat infections caused by Pseudomonas aeruginosa. In our study, the presence of carbapenemase enzymes wasn't high. Phenotypic tests cannot be considered as accurate screening tool to detect carbapenemases. This is the fist report of the oxa40 gene in Pseudomonas aeruginosa isolates.

  8. One time quantitative PCR detection of Pseudomonas aeruginosa to discriminate intermittent from chronic infection in cystic fibrosis.

    PubMed

    Boutin, Sébastien; Weitnauer, Michael; Hassel, Selina; Graeber, Simon Y; Stahl, Mirjam; Dittrich, A Susanne; Mall, Marcus A; Dalpke, Alexander H

    2018-05-01

    Chronic airway infection with Pseudomonas aeruginosa is a major risk factor of progression of lung disease in patients with cystic fibrosis (CF). Chronic P. aeruginosa infection evolves from intermittent infection that is amenable to antibiotic eradication, whereas chronically adapted P. aeruginosa becomes resistant to antibiotic therapy. Discrimination of intermittent versus chronic infection is therefore of high therapeutic relevance, yet the available diagnostic methods are only partly satisfactory. The aim of the present study was, therefore, to evaluate the usage of quantitative PCR (qPCR) to measure pathogen abundance and to discriminate between intermittent and chronic Pseudomonas infection in patients with CF. Using an established qPCR protocol, we analyzed the abundance of P. aeruginosa in 141 throats swabs and 238 sputa from CF patients with intermittent or chronic infection with P. aeruginosa, as determined by standard culture based diagnostics. We observed a large increase of abundance of P. aeruginosa in throat swabs and sputum samples from patients with chronic compared to intermittent infections with P. aeruginosa. The data show that abundance of P. aeruginosa as measured by qPCR is a valuable tool to discriminate intermittent from chronic infection. Of note, P. aeruginosa burden seems more sensitive than mucoidity phenotype to discriminate chronic from intermittent strains. Furthermore we observed that molecular detection in throat swabs was linked to a viable culture in the sputum when sputum was available. This result is of special interest in young patients with cystic fibrosis that often cannot expectorate sputum. We also observed that qPCR in comparison to culture detected the infection earlier. The results suggest that qPCR detection and quantification of P. aeruginosa is a precious tool to be added to the diagnostic toolbox in cystic fibrosis. Copyright © 2018 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  9. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    PubMed

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity

    PubMed Central

    2014-01-01

    Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed. PMID:24773920

  11. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.

    PubMed

    Elamin, Ayssar A; Steinicke, Susanne; Oehlmann, Wulf; Braun, Yvonne; Wanas, Hanaa; Shuralev, Eduard A; Huck, Carmen; Maringer, Marko; Rohde, Manfred; Singh, Mahavir

    2017-01-01

    For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.

  12. A Biofilm Matrix-Associated Protease Inhibitor Protects Pseudomonas aeruginosa from Proteolytic Attack

    PubMed Central

    2018-01-01

    ABSTRACT Pseudomonas aeruginosa produces an extracellular biofilm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the protein component of the biofilm matrix is poorly defined and understudied relative to the other major matrix constituents. While matrix proteins have been suggested to provide many functions to the biofilm, only proteins that play a structural role have been characterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa biofilms. We then focused on a candidate matrix protein, the serine protease inhibitor ecotin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme produced by the host immune system during P. aeruginosa biofilm infections. We show that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This may represent a novel mechanism of protection for biofilms to increase their tolerance against the innate immune response. PMID:29636440

  13. Prevalence and spread of pseudomonas aeruginosa and Klebsiella pneumoniae strains in patients with hematological malignancies.

    PubMed

    Kolar, Milan; Sauer, Pavel; Faber, Edgar; Kohoutova, Jarmila; Stosová, Tatana; Sedlackova, Michaela; Chroma, Magdalena; Koukalova, Dagmar; Indrak, Karel

    2009-01-01

    The aim of the study was to determine the prevalence of Pseudomonas aeruginosa and Klebsiella pneumoniae strains in patients with acute leukemias, to assess their clinical significance, and to define the sources and ways of their spread using genetic analysis. Thirty-four patients were investigated during the observed period. Twenty-one strains of Pseudomonas aeruginosa and 35 strains of Klebsiella pneumoniae were isolated from patient samples. In the case of Pseudomonas aeruginosa, 47.6% of strains were identified as pathogens and caused infection. By contrast, only 4 isolates (11.4%) of Klebsiella pneumoniae could be regarded as etiological agents of bacterial infection. Based on the obtained results, Klebsiella pneumoniae strains are assumed to be of mostly endogenous origin. In the case of Pseudomonas aeruginosa strains, the proportion of identical strains detected in various patients was higher and exogenous sources were more significant. In addition, our results confirmed the ability of Pseudomonas aeruginosa strains to survive on a particular site in the hospital for a longer time.

  14. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  15. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  16. Hydrogel Dressing with a Nano-Formula against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Diabetic Foot Bacteria.

    PubMed

    El-Naggar, Moustafa Y; Gohar, Yousry M; Sorour, Magdy A; Waheeb, Marian G

    2016-02-01

    This study proposes an alternative approach for the use of chitosan silver-based dressing for the control of foot infection with multidrug-resistant bacteria. Sixty-five bacterial isolates were isolated from 40 diabetic patients. Staphylococcus aureus (37%) and Pseudomonas aeruginosa (18.5%) were the predominant isolates in the ulcer samples. Ten antibiotics were in vitro tested against diabetic foot clinical bacterial isolates. The most resistant S. aureus and P. aeruginosa isolates were then selected for further study. Three chitosan sources were tested individually for chelating silver nanoparticles. Squilla chitosan silver nanoparticles (Sq. Cs-Ag(0)) showed the maximum activity against the resistant bacteria when mixed with amikacin that showed the maximum synergetic index. This, in turn, resulted in the reduction of the amikacin MIC value by 95%. For evaluation of the effectiveness of the prepared dressing using Artemia salina as the toxicity biomarker, the LC50 was found to be 549.5, 18,000, and 10,000 μg/ml for amikacin, Sq. Cs-Ag(0), and dressing matrix, respectively. Loading the formula onto chitosan hydrogel dressing showed promising antibacterial activities, with responsive healing properties for the wounds in normal rats of those diabetic rats (polymicrobial infection). It is quite interesting to note that no emergence of any side effect on either kidney or liver biomedical functions was noticed.

  17. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa.

    PubMed

    Sachdeva, Rohit; Sharma, Babita; Sharma, Rajni

    2017-01-01

    Pseudomonas aeruginosa causes a wide spectrum of infections including bacteremia, pneumonia, urinary tract infection, etc., Metallo-beta-lactamase (MBL) producing P. aeruginosa is an emerging threat and cause of concern as they have emerged as one of the most feared resistance mechanisms. This study was designed to know the prevalence of MBL production in P. aeruginosa and to evaluate the four phenotypic tests for detection of MBL production in imipenem-resistant clinical isolates of P. aeruginosa . Totally, 800 isolates of P. aeruginosa isolated from various clinical samples were evaluated for carbapenem resistance and MBL production. All imipenem-resistant strains were tested for carabapenemase production by modified Hodge test. Screening for MBL production was done by double-disc synergy test and combined disc test (CDT). Confirmation of MBL production was done by the E-test (Ab BioDisk, Solna, Sweden). Out of the 800 isolates of P. aeruginosa , 250 isolates were found resistant to imipenem. Based on the results of E-test, 147 (18.37%) isolates of P. aeruginosa were positive for MBL production. The CDT has the highest sensitivity and specificity for the detection of MBL production as compared to other tests. The results of this study are indicative that MBL production is an important mechanism of carbapenem resistance among P. aeruginosa . Use of simple screening test like CDT will be crucial step toward large-scale monitoring of these emerging resistant determinants. Phenotypic test for MBL production has to be standardized, and all the isolates should be routinely screened for MBL production.

  18. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa

    PubMed Central

    Sachdeva, Rohit; Sharma, Babita; Sharma, Rajni

    2017-01-01

    PURPOSE: Pseudomonas aeruginosa causes a wide spectrum of infections including bacteremia, pneumonia, urinary tract infection, etc., Metallo-beta-lactamase (MBL) producing P. aeruginosa is an emerging threat and cause of concern as they have emerged as one of the most feared resistance mechanisms. This study was designed to know the prevalence of MBL production in P. aeruginosa and to evaluate the four phenotypic tests for detection of MBL production in imipenem-resistant clinical isolates of P. aeruginosa. METHODS: Totally, 800 isolates of P. aeruginosa isolated from various clinical samples were evaluated for carbapenem resistance and MBL production. All imipenem-resistant strains were tested for carabapenemase production by modified Hodge test. Screening for MBL production was done by double-disc synergy test and combined disc test (CDT). Confirmation of MBL production was done by the E-test (Ab BioDisk, Solna, Sweden). RESULTS: Out of the 800 isolates of P. aeruginosa, 250 isolates were found resistant to imipenem. Based on the results of E-test, 147 (18.37%) isolates of P. aeruginosa were positive for MBL production. The CDT has the highest sensitivity and specificity for the detection of MBL production as compared to other tests. CONCLUSION: The results of this study are indicative that MBL production is an important mechanism of carbapenem resistance among P. aeruginosa. Use of simple screening test like CDT will be crucial step toward large-scale monitoring of these emerging resistant determinants. Phenotypic test for MBL production has to be standardized, and all the isolates should be routinely screened for MBL production. PMID:28966485

  19. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa

    PubMed Central

    Bae, Il Kwon; Jang, In-Ho; Kang, Hyun-Kyung; Lee, Kyungwon

    2015-01-01

    Metallo-β-lactamase-producing Pseudomonas aeruginosa (MPPA) is an important nosocomial pathogen that shows resistance to all β-lactam antibiotics except monobactams. There are various types of metallo-β-lactamases (MBLs) in carbapenem-resistant P. aeruginosa including Imipenemase (IMP), Verona integron-encoded metallo-β-lactamase (VIM), Sao Paulo metallo-β-lactamase (SPM), Germany imipenemase (GIM), New Delhi metallo-β-lactamase (NDM), Florence imipenemase (FIM). Each MBL gene is located on specific genetic elements including integrons, transposons, plasmids, or on the chromosome, in which they carry genes encoding determinants of resistance to carbapenems and other antibiotics, conferring multidrug resistance to P. aeruginosa. In addition, these genetic elements are transferable to other Gram-negative species, increasing the antimicrobial resistance rate and complicating the treatment of infected patients. Therefore, it is essential to understand the epidemiology, resistance mechanism, and molecular characteristics of MPPA for infection control and prevention of a possible global health crisis. Here, we highlight the characteristics of MPPA. PMID:26157586

  20. Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa.

    PubMed

    Osipiuk, Jerzy; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Edwards, Aled; Joachimiak, Andrzej

    2011-03-01

    The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.

  1. FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa.

    PubMed

    Shen, Jiangsheng; Meldrum, Allison; Poole, Keith

    2002-06-01

    Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.

  2. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    PubMed

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, M.Z.C.; Norman, J.M.; Faison, B.D.

    1996-07-20

    Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less

  4. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In Vivo

    PubMed Central

    Coorens, Maarten; Banaschewski, Brandon J. H.; Baer, Brandon J.; Yamashita, Cory; van Dijk, Albert; Veldhuizen, Ruud A. W.; Veldhuizen, Edwin J. A.

    2017-01-01

    ABSTRACT The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro. Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo. Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation. PMID:28947647

  5. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa.

    PubMed

    Yokoyama, Keiko; Doi, Yohei; Yamane, Kunikazu; Kurokawa, Hiroshi; Shibata, Naohiro; Shibayama, Keigo; Yagi, Tetsuya; Kato, Haru; Arakawa, Yoshichika

    2003-12-06

    Bacteria develop resistance to aminoglycosides by producing aminoglycoside-modifying enzymes such as acetyltransferase, phosphorylase, and adenyltransferase. These enzymes, however, cannot confer consistent resistance to various aminoglycosides because of their substrate specificity. Notwithstanding, a Pseudomonas aeruginosa strain AR-2 showing high-level resistance (minimum inhibitory concentration >1024 mg/L) to various aminoglycosides was isolated clinically. We aimed to clone and characterise the genetic determinant of this resistance. We used conventional methods for DNA manipulation, susceptibility testing, and gene analyses to clone and characterise the genetic determinant of the resistance seen. PCR detection of the gene was also done on a stock of P aeruginosa strains that were isolated clinically since 1997. An aminoglycoside-resistance gene, designated rmtA, was identified in P aeruginosa AR-2. The Escherichia coli transformant and transconjugant harbouring the rmtA gene showed very high-level resistance to various aminoglycosides, including amikacin, tobramycin, isepamicin, arbekacin, kanamycin, and gentamicin. The 756-bp nucleotide rmtA gene encoded a protein, RmtA. This protein showed considerable similarity to the 16S rRNA methylases of aminoglycoside-producing actinomycetes, which protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation. Incorporation of radiolabelled methyl groups into the 30S ribosome was detected in the presence of RmtA. Of 1113 clinically isolated P aeruginosa strains, nine carried the rmtA gene, as shown by PCR analyses. Our findings strongly suggest intergeneric lateral gene transfer of 16S rRNA methylase gene from some aminoglycoside-producing microorganisms to P aeruginosa. Further dissemination of the rmtA gene in nosocomial bacteria could be a matter of concern in the future.

  6. Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms.

    PubMed

    Peterson, Brandon W; Busscher, Henk J; Sharma, Prashant K; van der Mei, Henny C

    2014-06-01

    Bacterial biofilms relieve themselves from external stresses through internal rearrangement, as mathematically modeled in many studies, but never microscopically visualized for their underlying microbiological processes. The aim of this study was to visualize rearrangement processes occurring in mechanically deformed biofilms using confocal-laser-scanning-microscopy after SYTO9 (green-fluorescent) and calcofluor-white (blue-fluorescent) staining to visualize bacteria and extracellular-polymeric matrix substances, respectively. We apply 20% uniaxial deformation to Pseudomonas aeruginosa biofilms and fix deformed biofilms prior to staining, after allowing different time-periods for relaxation. Two isogenic P. aeruginosa strains with different abilities to produce extracellular polymeric substances (EPS) were used. By confocal-laser-scanning-microscopy all biofilms showed intensity distributions for fluorescence from which rearrangement of EPS and bacteria in deformed biofilms were derived. For the P. aeruginosa strain producing EPS, bacteria could not find new, stable positions within 100 s after deformation, while EPS moved toward deeper layers within 20 s. Bacterial rearrangement was not seen in P. aeruginosa biofilms deficient in production of EPS. Thus, EPS is required to stimulate bacterial rearrangement in mechanically deformed biofilms within the time-scale of our experiments, and the mere presence of water is insufficient to induce bacterial movement, likely due to its looser association with the bacteria.

  7. Molecular identification and genotyping of Pseudomonas aeruginosa isolated from cystic fibrosis and non-cystic fibrosis patients with bronchiectasis.

    PubMed

    Eusebio, Nadia; Amorim, Adelina A; Gamboa, Fernanda; Araujo, Ricardo

    2015-03-01

    There is no standard methodology for the molecular identification and genotyping of Pseudomonas aeruginosa which are frequently isolated in bronchiectasis patients. Hence, the main goal of this work was to propose a methodology capable to simultaneously identify and genotype, in less than 6 h, clinical P. aeruginosa collected from cystic fibrosis (CF) and non-CF patients with bronchiectasis. Molecular analyses were conducted in clinical isolates by testing the newly colony-PCR strategy and SNaPaer assay. A total of 207 isolates of P. aeruginosa were collected from clinical samples. To assess the assay specificity, other Gram-negative non-aeruginosa bacteria, namely Pseudomonas and Burkholderia, were tested. The complete group of 23 markers included in the SNaPaer panel was observed exclusively in P. aeruginosa; more than 18 markers failed in other bacteria. A total of 43 SnaP profiles were obtained for clinical P. aeruginosa, being the profiles highly patient-specific. Six CF patients were colonized with P. aeruginosa isolates with very distinct SnaP profiles, particularly following adjustments on antibiotic therapy, thus suggesting changes on the dynamics and dominance of these bacteria. SnaPaer proved to be a good and reliable tool for identification and genotyping of clinical P. aeruginosa in a single-tube multiplex PCR. Combined with the proposed colony-PCR strategy, SnaPaer assay facilitates the molecular analysis of P. aeruginosa. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.

    PubMed

    Sporer, Abigail J; Beierschmitt, Christopher; Bendebury, Anastasia; Zink, Katherine E; Price-Whelan, Alexa; Buzzeo, Marisa C; Sanchez, Laura M; Dietrich, Lars E P

    2018-05-01

    The activities of critical metabolic and regulatory proteins can be altered by exposure to natural or synthetic redox-cycling compounds. Many bacteria, therefore, possess mechanisms to transport or transform these small molecules. The opportunistic pathogen Pseudomonas aeruginosa PA14 synthesizes phenazines, redox-active antibiotics that are toxic to other organisms but have beneficial effects for their producer. Phenazines activate the redox-sensing transcription factor SoxR and thereby induce the transcription of a small regulon, including the operon mexGHI-opmD, which encodes an efflux pump that transports phenazines, and PA14_35160 (pumA), which encodes a putative monooxygenase. Here, we provide evidence that PumA contributes to phenazine resistance and normal biofilm development, particularly during exposure to or production of strongly oxidizing N-methylated phenazines. We show that phenazine resistance depends on the presence of residues that are conserved in the active sites of other putative and characterized monooxygenases found in the antibiotic producer Streptomyces coelicolor. We also show that during biofilm growth, PumA is required for the conversion of phenazine methosulfate to unique phenazine metabolites. Finally, we compare ∆mexGHI-opmD and ∆pumA strains in assays for colony biofilm morphogenesis and SoxR activation, and find that these deletions have opposing phenotypic effects. Our results suggest that, while MexGHI-OpmD-mediated efflux has the effect of making the cellular phenazine pool more reducing, PumA acts on cellular phenazines to make the pool more oxidizing. We present a model in which these two SoxR targets function simultaneously to control the biological activity of the P. aeruginosa phenazine pool.

  9. 1H NMR-Based Global Metabolic Studies of Pseudomonas aeruginosa upon Exposure of the Quorum Sensing Inhibitor Resveratrol.

    PubMed

    Chen, Tongtong; Sheng, Jiyang; Fu, Yonghong; Li, Minghui; Wang, Junsong; Jia, Ai-Qun

    2017-02-03

    Quorum sensing (QS) is a process of bacterial communication that has been a novel target for drug discovery. Pyocyanin quantification assay confirmed that resveratrol was an effective quorum sensing inhibitor (QSI) against Pseudomonas aeruginosa PAO1. In this study, the global metabolite changes of P. aeruginosa PAO1 exposed to QSI resveratrol were investigated by 1 H NMR spectroscopy. A total of 40 metabolites containing amino acids, organic acid, organic amine, and energy storage compounds were identified. The changed metabolic profile indicated that resveratrol influenced pathways including oxidative stress, protein synthesis, and energy metabolism. Oxidative stress could upregulate the expression of genes related to QS in P. aeruginosa. It suggested that resveratrol could inhibit the QS systems in P. aeruginosa PAO1 by relieving oxidative stress due to its antioxidant activity. On the other hand, resveratrol could attenuate the pathogenicity of P. aeruginosa PAO1 by disturbing the TCA cycle so that anaerobic respiration could suppress the virulence because anaerobiosis could induce the loss of cytotoxicity regulated by QS in P. aeruginosa. These findings deepened our comprehending of the metabolic responses of P. aeruginosa PAO1 to resveratrol and pinpointed the possible underlying mechanism of resveratrol's inhibition effect on QS in P. aeruginosa PAO1.

  10. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa

    PubMed Central

    Oglesby-Sherrouse, Amanda G.; Djapgne, Louise; Nguyen, Angela T.; Vasil, Adriana I.; Vasil, Michael L.

    2014-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment of such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, non-siderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by sub-inhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development. PMID:24436170

  11. Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites.

    PubMed

    Gao, Bei; Gallagher, Tara; Zhang, Ying; Elbadawi-Sidhu, Mona; Lai, Zijuan; Fiehn, Oliver; Whiteson, Katrine L

    2018-04-25

    Due to a lack of effective immune clearance, the airways of cystic fibrosis patients are colonized by polymicrobial communities. One of the most widespread and destructive opportunistic pathogens is Pseudomonas aeruginosa ; however, P. aeruginosa does not colonize the airways alone. Microbes that are common in the oral cavity, such as Rothia mucilaginosa , are also present in cystic fibrosis patient sputum and have metabolic capacities different from those of P. aeruginosa Here we examine the metabolic interactions of P. aeruginosa and R. mucilaginosa using stable-isotope-assisted metabolomics. Glucose-derived 13 C was incorporated into glycolysis metabolites, namely, lactate and acetate, and some amino acids in R. mucilaginosa grown aerobically and anaerobically. The amino acid glutamate was unlabeled in the R. mucilaginosa supernatant but incorporated the 13 C label after P. aeruginosa was cross-fed the R. mucilaginosa supernatant in minimal medium and artificial-sputum medium. We provide evidence that P. aeruginosa utilizes R. mucilaginosa -produced metabolites as precursors for generation of primary metabolites, including glutamate. IMPORTANCE Pseudomonas aeruginosa is a dominant and persistent cystic fibrosis pathogen. Although P. aeruginosa is accompanied by other microbes in the airways of cystic fibrosis patients, few cystic fibrosis studies show how P. aeruginosa is affected by the metabolism of other bacteria. Here, we demonstrate that P. aeruginosa generates primary metabolites using substrates produced by another microbe that is prevalent in the airways of cystic fibrosis patients, Rothia mucilaginosa These results indicate that P. aeruginosa may get a metabolic boost from its microbial neighbor, which might contribute to its pathogenesis in the airways of cystic fibrosis patients.

  12. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    PubMed

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  13. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    PubMed Central

    Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M.

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities. PMID:22114708

  14. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    PubMed

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  15. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    PubMed Central

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  16. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Silva, Lívia V; Galdino, Anna Clara M; Nunes, Ana Paula F; dos Santos, Kátia R N; Moreira, Beatriz M; Cacci, Luciana C; Sodré, Cátia L; Ziccardi, Mariangela; Branquinha, Marta H; Santos, André L S

    2014-11-01

    Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-β-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15±5.65 μg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43±303.08 FAU) and biofilm formation (OD590 0.676±0

  17. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  18. Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization

    DOE PAGES

    Keravec, Marlène; Mounier, Jérôme; Prestat, Emmanuel; ...

    2015-08-09

    Pseudomonas aeruginosa plays a major role in cystic fibrosis (CF) progression. Therefore, it is important to understand the initial steps of P. aeruginosa infection. The structure and dynamics of CF respiratory tract microbial communities during the early stages of P. aeruginosa colonization were characterized by pyrosequencing and cloning-sequencing. The respiratory microbiota showed high diversity, related to the young age of the CF cohort (mean age 10 years). Wide inter- and intra-individual variations were revealed. A common core microbiota of 5 phyla and 13 predominant genera was found, the majority of which were obligate anaerobes. A few genera were significantly moremore » prevalent in patients never infected by P. aeruginosa. Persistence of an anaerobic core microbiota regardless of P. aeruginosa status suggests a major role of certain anaerobes in the pathophysiology of lung infections in CF. Some genera may be potential biomarkers of pulmonary infection state.« less

  19. Response surface methodology for cadmium biosorption on Pseudomonas aeruginosa.

    PubMed

    Ahmady-Asbchin, Salman

    2016-01-01

    In this research the effects of various physicochemical factors on Cd(2+) biosorption such as initial metal concentration, pH and contact exposure time were studied. This study has shown a Cd(2+) biosorption, equilibrium time of about 5 min for Pseudomonas aeruginosa and the adsorption equilibrium data were well described by Langmuir equation. The maximum capacity for biosorption has been extrapolated to 0.56 mmol.g(-1) for P. aeruginosa. The thermodynamic properties ΔG(0), ΔH(0), and ΔS(0) of Cd(2+) for biosorption were analyzed by the equilibrium constant value obtained from experimented data at different temperatures. The results show that biosorption of Cd(2+) by P. aeruginosa are endothermic and spontaneous with ΔH value of 36.35 J.mol(-1). By response surface methodology, the quadratic model has adequately described the experimental data based on the adjusted determination coefficient (R(2) = 0.98). The optimum conditions for maximum uptake onto the biosorbent were established at 0.5 g.l(-1) biosorbent concentration, pH 6 for the aqueous solution, and a temperature of 30 °C.

  20. Efficacy of methanolic extract of green and black teas against extended-spectrum β-Lactamase-producing Pseudomonas aeruginosa.

    PubMed

    Taherpour, Arezou; Hashemi, Ali; Erfanimanesh, Soroor; Taki, Elahe

    2016-07-01

    Pseudomonas aeruginosa is one of the major bacteria causing acute infections. β-Lactamase production is the principal defense mechanism in gram-negative bacteria. The aim of our study was to evaluate the antibacterial activity of Methanolic Extracts of Green and Black Teas on P. aeruginosa Extended Spectrum-β-Lactamases (ESBLs) production. This research was carried out on burn wounds of 245 hospitalized patients in Kerman, Iran. P. aeruginosa ESBLs and MBL producing strains were detected by Combination Disk Diffusion Test (CDDT) and Epsilometer test (E-test) strips, respectively. Minimum inhibitory concentration (MIC) was measured for Ceftazidime, Meropenem, Imipenem, Aztreonam, Cefotaxime and methanollic extracts of Camellia Sinensis (Green Tea). From 245 patients in the burn ward, 120 cases were infected with P. aeruginosa. 41 isolates contained ESBL while MBL was not detected. P. aeruginosa were resistant to Cefotaxime, Aztreonam, Ceftazidime, Meropenem and Imipenem, 72 (60%), 50 (41.66%), 79 (65.83%), 33 (27.5%) and 24 (20%), respectively. Green tea extract had the highest anti-bacterial effect on standard and P. aeruginosa strains in 1.25mg/ml concentration. This study determined that the methanolic extract of green tea has a higher effect against ESBL producing P. aeruginosa than Cefotaxime, Aztreonam and Ceftazidime.