Sample records for toxin-mediated hemolytic uremic

  1. Hemolytic-uremic syndrome

    MedlinePlus

    ... page, please enable JavaScript. Shiga-like toxin producing E coli hemolytic-uremic syndrome (STEC-HUS) is a disorder ... HUS) often occurs after a gastrointestinal infection with E coli bacteria ( Escherichia coli O157:H7). However, the condition ...

  2. Serum Shiga toxin 2 values in patients during the acute phase of post-diarrheal hemolytic uremic syndrome

    USDA-ARS?s Scientific Manuscript database

    Shiga toxins (Stxs) produced by Shiga toxin-producing Escherichia coli (STEC) are considered as the main causative agent, leading to the development of the hemolytic uremic syndrome (HUS); these toxins injure endothelial cells mainly the glomeruli. After passing through the intestinal wall, Stxs hav...

  3. Enteroaggregative, Shiga Toxin-Producing Escherichia coli O111:H2 Associated with an Outbreak of Hemolytic-Uremic Syndrome

    PubMed Central

    Morabito, Stefano; Karch, Helge; Mariani-Kurkdjian, Patrizia; Schmidt, Herbert; Minelli, Fabio; Bingen, Edouard; Caprioli, Alfredo

    1998-01-01

    Shiga toxin-producing Escherichia coli O111:H2 strains from an outbreak of hemolytic-uremic syndrome showed aggregative adhesion to HEp-2 cells and harbored large plasmids which hybridized with the enteroaggregative E. coli probe PCVD432. These strains present a novel combination of virulence factors and might be as pathogenic to humans as the classic enterohemorrhagic E. coli. PMID:9508328

  4. Quiescent complement in nonhuman primates during E coli Shiga toxin-induced hemolytic uremic syndrome and thrombotic microangiopathy.

    PubMed

    Lee, Benjamin C; Mayer, Chad L; Leibowitz, Caitlin S; Stearns-Kurosawa, D J; Kurosawa, Shinichiro

    2013-08-01

    Enterohemorrhagic Escherichia coli (EHEC) produce ribosome-inactivating Shiga toxins (Stx1, Stx2) responsible for development of hemolytic uremic syndrome (HUS) and acute kidney injury (AKI). Some patients show complement activation during EHEC infection, raising the possibility of therapeutic targeting of complement for relief. Our juvenile nonhuman primate (Papio baboons) models of endotoxin-free Stx challenge exhibit full spectrum HUS, including thrombocytopenia, hemolytic anemia, and AKI with glomerular thrombotic microangiopathy. There were no significant increases in soluble terminal complement complex (C5b-9) levels after challenge with lethal Stx1 (n = 6) or Stx2 (n = 5) in plasma samples from T0 to euthanasia at 49.5 to 128 hours post-challenge. d-dimer and cell injury markers (HMGB1, histones) confirmed coagulopathy and cell injury. Thus, complement activation is not required for the development of thrombotic microangiopathy and HUS induced by EHEC Shiga toxins in these preclinical models, and benefits or risks of complement inhibition should be studied further for this infection.

  5. Genetics Home Reference: atypical hemolytic-uremic syndrome

    MedlinePlus

    ... Kidney Diseases: Kidney Failure: Choosing a Treatment That's Right for You Educational Resources (6 links) Disease InfoSearch: Hemolytic uremic syndrome, atypical MalaCards: genetic atypical hemolytic-uremic syndrome Merck Manual Consumer Version: Overview of Anemia Merck Manual Consumer Version: ...

  6. [Hemolytic and uremic syndrome and maternal-fetal Escherichia coli K1 infection].

    PubMed

    Flandrois, M; Bessière, A; Vieira-Roth, S; Vergnaud, M; Frémeaux-Bacchi, V; Eckart, P

    2011-03-01

    Hemolytic uremic syndrome (HUS) is primarily a disease of infancy and early childhood. In its classic form, it is preceded by a prodrome of Escherichia coli-mediated bloody mucoid diarrhea. Typical HUS is commonly related to an infection by shiga-toxin producing E. coli. Stool cultures may detect this bacteria or its toxin, and PCRs can detect the shiga-toxin virulence genes. Atypical cases of HUS are mainly related to abnormalities of the alternative complement pathway and mutations of H, I, or B factors. Some atypical cases of HUS may also be related to von Willebrand factor or vitamin B12 metabolism abnormalities. A number of HUS cases related to invasive pneumococcal infections (pneumonia or meningitis) have been reported. We report a case of HUS associated with a bacterial E. coli K1 infection in a newborn baby, with a good clinical outcome: there was no need for dialysis and normal renal function was quickly regained. The workup did not favor a toxinic origin or an abnormality on the alternative complement pathway. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome.

    PubMed

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-09-05

    Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol kinase-ε and C3 mutations. Data suggest that complement dysregulation influences

  8. Complement Mutations in Diacylglycerol Kinase-ε–Associated Atypical Hemolytic Uremic Syndrome

    PubMed Central

    Sánchez Chinchilla, Daniel; Pinto, Sheila; Hoppe, Bernd; Adragna, Marta; Lopez, Laura; Justa Roldan, Maria Luisa; Peña, Antonia; Lopez Trascasa, Margarita; Sánchez-Corral, Pilar; Rodríguez de Córdoba, Santiago

    2014-01-01

    Background and objectives Atypical hemolytic uremic syndrome is characterized by vascular endothelial damage caused by complement dysregulation. Consistently, complement inhibition therapies are highly effective in most patients with atypical hemolytic uremic syndrome. Recently, it was shown that a significant percentage of patients with early-onset atypical hemolytic uremic syndrome carry mutations in diacylglycerol kinase-ε, an intracellular protein with no obvious role in complement. These data support an alternative, complement-independent mechanism leading to thrombotic microangiopathy that has implications for treatment of early-onset atypical hemolytic uremic syndrome. To get additional insights into this new form of atypical hemolytic uremic syndrome, the diacylglycerol kinase-ε gene in a cohort with atypical hemolytic uremic syndrome was analyzed. Design, setting, participants, & measurements Eighty-three patients with early-onset atypical hemolytic uremic syndrome (<2 years) enrolled in the Spanish atypical hemolytic uremic syndrome registry between 1999 and 2013 were screened for mutations in diacylglycerol kinase-ε. These patients were also fully characterized for mutations in the genes encoding factor H, membrane cofactor protein, factor I, C3, factor B, and thrombomodulin CFHRs copy number variations and rearrangements, and antifactor H antibodies. Results Four patients carried mutations in diacylglycerol kinase-ε, one p.H536Qfs*16 homozygote and three compound heterozygotes (p.W322*/p.P498R, two patients; p.Q248H/p.G484Gfs*10, one patient). Three patients also carried heterozygous mutations in thrombomodulin or C3. Extensive plasma infusions controlled atypical hemolytic uremic syndrome recurrences and prevented renal failure in the two patients with diacylglycerol kinase-ε and thrombomodulin mutations. A positive response to plasma infusions and complement inhibition treatment was also observed in the patient with concurrent diacylglycerol

  9. Clostridium septicum infection and hemolytic uremic syndrome.

    PubMed Central

    Barnham, M.; Weightman, N.

    1998-01-01

    Five cases of Clostridium septicum infection secondary to Escherichia coli O157-induced hemolytic uremic syndrome have been reported. We report on three cases (one of which is included in the above five) of dual Cl. septicum and E. coil infection; all three patients were exposed to farm animals. A common zoonotic source for Cl. septicum and E. coli O157 infections should be considered. Patients with hemolytic uremic syndrome should be treated aggressively and monitored closely for Cl. septicum superinfection. PMID:9621207

  10. [Atypical hemolytic uremic syndrome].

    PubMed

    Blasco Pelicano, Miquel; Rodríguez de Córdoba, Santiago; Campistol Plana, Josep M

    2015-11-20

    The hemolytic uremic syndrome (HUS) is a clinical entity characterized by thrombocytopenia, non-immune hemolytic anemia and renal impairment. Kidney pathology shows thrombotic microangiopathy (TMA) with endothelial cell injury leading to thrombotic occlusion of arterioles and capillaries. Traditionally, HUS was classified in 2 forms: Typical HUS, most frequently occurring in children and caused by Shiga-toxin-producing bacteria, and atypical HUS (aHUS). aHUS is associated with mutations in complement genes in 50-60% of patients and has worse prognosis, with the majority of patients developing end stage renal disease. After kidney transplantation HUS may develop as a recurrence of aHUS or as de novo disease. Over the last years, many studies have demonstrated that complement dysregulation underlies the endothelial damage that triggers the development of TMA in most of these patients. Advances in our understanding of the pathogenic mechanisms of aHUS, together with the availability of novel therapeutic options, will enable better strategies for the early diagnosis and etiological treatment, which are changing the natural history of aHUS. This review summarizes the aHUS clinical entity and describes the role of complement dysregulation in the pathogenesis of aHUS. Finally, we review the differential diagnosis and the therapeutic options available to patients with aHUS. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  11. Therapeutic use of a receptor mimic probiotic reduces intestinal Shiga toxin levels in a piglet model of hemolytic uremic syndrome

    PubMed Central

    2014-01-01

    Background Hemolytic uremic syndrome (HUS) is a systemic and potentially fatal complication of gastroenteritis secondary to Shiga toxin-producing enterohemorrhagic Escherichia coli (EHEC) infection characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute renal damage. Shiga toxin (Stx), the toxin principle in HUS, is produced locally within the gut following EHEC colonization and is disseminated via the vasculature. Clinical development of HUS currently has no effective treatment and is a leading cause of renal failure in children. Novel post-exposure therapies are currently needed for HUS; therefore, the purpose of this study was to investigate the efficacy of a Stx receptor mimic probiotic in a porcine model of HUS. Edema disease, an infection of swine caused by host adapted Shiga toxin-producing Escherichia coli (STEC) and mediated by Shiga toxin 2e (Stx2e), shares many pathogenic similarities to HUS. In this study, three-week old piglets were inoculated with STEC and 24 hours later treated twice daily with a probiotic expressing an oligosaccharide receptor mimic for Stx2e to determine if the probiotic could reduce intestinal toxin levels. Methods Piglets were orally inoculated with 1010 CFU of STEC strain S1191 eight days after weaning. Beginning day 1 post-inoculation, piglets were treated orally twice daily with 5 × 1011 CFU of either the receptor mimic probiotic or a sham probiotic for 10 days. Intestinal Stx2e levels were assessed daily via Vero cell assay. The efficacy of the probiotic at reducing intestinal Stx2e, vascular lesions, and clinical disease was evaluated with repeated measures ANOVA and Fisher’s exact test as appropriate. Results The probiotic significantly reduced intestinal Stx2e, as reflected by decreased fecal toxin titers on days 3–8 post-inoculation (p < 0.01). Despite this reduction in intestinal toxin levels, however, the probiotic failed to reduce the incidence of vascular necrosis in target

  12. Hemolytic uremic syndrome complicating Mycoplasma pneumoniae infection.

    PubMed

    Godron, Astrid; Pereyre, Sabine; Monet, Catherine; Llanas, Brigitte; Harambat, Jérôme

    2013-10-01

    Mycoplasma pneumoniae can cause various extrapulmonary manifestations but, to our knowledge, no case of Mycoplasma pneumoniae associated with hemolytic uremic syndrome (HUS) has been reported. We describe a 1-year-old boy with M. pneumoniae respiratory tract infection and associated microangiopathic hemolytic anemia, slightly decreased platelet count and mild renal impairment, suggesting a diagnosis of HUS. Assuming M. pneumoniae infection was the cause of HUS in this case, the different possible mechanisms, including an atypical HUS due to preexisting complement dysregulation, an alternative complement pathway activation induced by M. pneumoniae infection at the acute phase, an autoimmune disorder, and a direct role of the bacteria in inducing endothelial injury, are discussed. The signs of HUS resolved with treatment of the M. pneumoniae infection. Hemolytic uremic syndrome may be an unusual complication of M. pneumoniae infection.

  13. Uremic toxins enhance statin-induced cytotoxicity in differentiated human rhabdomyosarcoma cells.

    PubMed

    Uchiyama, Hitoshi; Tsujimoto, Masayuki; Shinmoto, Tadakazu; Ogino, Hitomi; Oda, Tomoko; Yoshida, Takuya; Furukubo, Taku; Izumi, Satoshi; Yamakawa, Tomoyuki; Tachiki, Hidehisa; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2014-09-03

    The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF). Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins-hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate-on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated). In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated). However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated). These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  14. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS).

    PubMed

    Exeni, Ramon Alfonso; Fernandez-Brando, Romina Jimena; Santiago, Adriana Patricia; Fiorentino, Gabriela Alejandra; Exeni, Andrea Mariana; Ramos, Maria Victoria; Palermo, Marina Sandra

    2018-01-25

    Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.

  15. Genetics of hemolytic uremic syndromes.

    PubMed

    Malina, Michal; Roumenina, Lubka T; Seeman, Tomáš; Le Quintrec, Moglie; Dragon-Durey, Marie-Agnes; Schaefer, Franz; Fremeaux-Bacchi, Véronique

    2012-03-01

    Hemolytic uremic syndrome (HUS) is a very rare disease (two cases per year per 1 million population) but represents the most common cause of acute renal failure in young children that require dialysis. The majority of cases in childhood (90%) is caused by Shiga toxin producing Escherichia coli infection. This typical form of the disease does not relapse and has a good prognosis if the acute status can be managed successfully. Atypical HUS (aHUS) is a severe and frequently relapsing disorder with the same triad of thrombocytopenia, hemolysis and acute renal failure in the absence of Shiga toxin E. coli infection. More than 50% of patients with atypical HUS progress to chronic renal dysfunction and 10% die due to complications of the disease. Atypical HUS appears to have a genetic basis. Mutations in genes coding for components of the alternative complement pathway are found in about 60% of cases. The clinical presentation of aHUS overlaps with that of other thrombotic microangiopathies, rendering the diagnosis on clinical grounds alone extremely difficult. In recent years, genetic testing has opened the way for molecular diagnostics and helped establishing therapeutically and prognostically useful genotype-phenotype correlations. This review summarizes recent findings regarding the genetic basis of the HUS. The pathophysiology of the disease and the implication of genetic abnormalities in the complement system for the different types of HUS are discussed. Copyright © 2012. Published by Elsevier Masson SAS.

  16. Late onset seizures, hemiparesis and blindness in hemolytic uremic syndrome.

    PubMed

    Bennett, B; Booth, T; Quan, A

    2003-03-01

    Neurologic complications of hemolytic uremic syndrome, including seizures, usually occur early during the acute phase of the illness. We report a3-year-old girl with classic diarrhea-associated hemolytic uremic syndrome who developed late onset seizures, hemiparesis and transient blindness on the 17th hospital day, at which time her recovery was characterized by improvement in her blood pressure, serum electrolytes, renal function, hematocrit and platelet count. A CT and MR revealed brainstem and posterior parietal and occipital infarct/edema. The association of these radiologic findings within the posterior distribution along with visual loss and seizures are unique to posterior reversible encephalopathy syndrome. Within 7 days, she regained motor function and vision and had no further seizure activity. At 6 months follow-up, physical examination revealed normal motor function and vision and a repeat MR showed near resolution of the previous findings with minimal occipital lobe gliosis. This case report describes the uncommon finding of late onset seizures occurring during the recovery phase of hemolytic uremic syndrome with MR findings consistent with posterior reversible encephalopathy syndrome.

  17. Pathogenic Variants in Complement Genes and Risk of Atypical Hemolytic Uremic Syndrome Relapse after Eculizumab Discontinuation.

    PubMed

    Fakhouri, Fadi; Fila, Marc; Provôt, François; Delmas, Yahsou; Barbet, Christelle; Châtelet, Valérie; Rafat, Cédric; Cailliez, Mathilde; Hogan, Julien; Servais, Aude; Karras, Alexandre; Makdassi, Raifah; Louillet, Feriell; Coindre, Jean-Philippe; Rondeau, Eric; Loirat, Chantal; Frémeaux-Bacchi, Véronique

    2017-01-06

    The complement inhibitor eculizumab has dramatically improved the outcome of atypical hemolytic uremic syndrome. However, the optimal duration of eculizumab treatment in atypical hemolytic uremic syndrome remains debated. We report on the French atypical hemolytic uremic syndrome working group's first 2-year experience with eculizumab discontinuation in patients with atypical hemolytic uremic syndrome. Using the French atypical hemolytic uremic syndrome registry database, we retrospectively identified all dialysis-free patients with atypical hemolytic uremic syndrome who discontinued eculizumab between 2010 and 2014 and reviewed their relevant clinical and biologic data. The decision to discontinue eculizumab was made by the clinician in charge of the patient. All patients were closely monitored by regular urine dipsticks and blood tests. Eculizumab was rapidly (24-48 hours) restarted in case of relapse. Among 108 patients treated with eculizumab, 38 patients (nine children and 29 adults) discontinued eculizumab (median treatment duration of 17.5 months). Twenty-one patients (55%) carried novel or rare complement genes variants. Renal recovery under eculizumab was equally good in patients with and those without complement gene variants detected. After a median follow-up of 22 months, 12 patients (31%) experienced atypical hemolytic uremic syndrome relapse. Eight of 11 patients (72%) with complement factor H variants, four of eight patients (50%) with membrane cofactor protein variants, and zero of 16 patients with no rare variant detected relapsed. In relapsing patients, early reintroduction (≤48 hours) of eculizumab led to rapid (<7 days) hematologic remission and a return of serum creatinine to baseline level in a median time of 26 days. At last follow-up, renal function remained unchanged in nonrelapsing and relapsing patients compared with baseline values before eculizumab discontinuation. Pathogenic variants in complement genes were associated with higher

  18. Small-molecule factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

    PubMed

    Yuan, Xuan; Gavriilaki, Eleni; Thanassi, Jane A; Yang, Guangwei; Baines, Andrea C; Podos, Steven D; Huang, Yongqing; Huang, Mingjun; Brodsky, Robert A

    2017-03-01

    Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA -null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement

  19. CCR2-dependent Gr1high monocytes promote kidney injury in shiga toxin-induced hemolytic uremic syndrome in mice.

    PubMed

    Pohl, Judith-Mira; Volke, Julia K; Thiebes, Stephanie; Brenzel, Alexandra; Fuchs, Kerstin; Beziere, Nicolas; Ehrlichmann, Walter; Pichler, Bernd J; Squire, Anthony; Gueler, Faikah; Engel, Daniel R

    2018-06-01

    The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1 high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1 high monocyte infiltration into the kidney. Indeed, the number of Gr1 high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1 high monocytes. Lack of Gr1 high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1 high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (≥50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  1. Recent progress in the analysis of uremic toxins by mass spectrometry.

    PubMed

    Niwa, Toshimitsu

    2009-09-01

    Mass spectrometry (MS) has been successfully applied for the identification and quantification of uremic toxins and uremia-associated modified proteins. This review focuses on recent progress in the analysis of uremic toxins by using MS. Uremic toxins include low-molecular-weight compounds (e.g., indoxyl sulfate, p-cresol sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid, asymmetric dimethylarginine), middle-molecular-weight peptides, and proteins modified with advanced glycation and oxidation. These uremic toxins are considered to be involved in a variety of symptoms which may appear in patients with stage 5 chronic kidney disease. Based on MS analysis of these uremic toxins, the pathogenesis of the uremic symptoms will be elucidated to prevent and manage the symptoms.

  2. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany.

    PubMed

    Frank, Christina; Werber, Dirk; Cramer, Jakob P; Askar, Mona; Faber, Mirko; an der Heiden, Matthias; Bernard, Helen; Fruth, Angelika; Prager, Rita; Spode, Anke; Wadl, Maria; Zoufaly, Alexander; Jordan, Sabine; Kemper, Markus J; Follin, Per; Müller, Luise; King, Lisa A; Rosner, Bettina; Buchholz, Udo; Stark, Klaus; Krause, Gérard

    2011-11-10

    We describe an outbreak of gastroenteritis and the hemolytic-uremic syndrome caused by Shiga-toxin-producing Escherichia coli in Germany in May, June, and July, 2011. The consumption of sprouts was identified as the most likely vehicle of infection. We analyzed data from reports in Germany of Shiga-toxin-producing E. coli gastroenteritis and the hemolytic-uremic syndrome and clinical information on patients presenting to Hamburg University Medical Center (HUMC). An outbreak case was defined as a reported case of the hemolytic-uremic syndrome or of gastroenteritis in a patient infected by Shiga-toxin-producing E. coli, serogroup O104 or serogroup unknown, with an onset of disease during the period from May 1 through July 4, 2011, in Germany. A total of 3816 cases (including 54 deaths) were reported in Germany, 845 of which (22%) involved the hemolytic-uremic syndrome. The outbreak was centered in northern Germany and peaked around May 21 to 22. Most of the patients in whom the hemolytic-uremic syndrome developed were adults (88%; median age, 42 years), and women were overrepresented (68%). The estimated median incubation period was 8 days, with a median of 5 days from the onset of diarrhea to the development of the hemolytic-uremic syndrome. Among 59 patients prospectively followed at HUMC, the hemolytic-uremic syndrome developed in 12 (20%), with no significant differences according to sex or reported initial symptoms and signs. The outbreak strain was typed as an enteroaggregative Shiga-toxin-producing E. coli O104:H4, producing extended-spectrum beta-lactamase. In this outbreak, caused by an unusual E. coli strain, cases of the hemolytic-uremic syndrome occurred predominantly in adults, with a preponderance of cases occurring in women. The hemolytic-uremic syndrome developed in more than 20% of the identified cases.

  3. Hemolytic-uremic syndrome in children. A serious hazard of undercooked beef.

    PubMed

    Robson, W L; Leung, A K

    1990-10-01

    Hemolytic-uremic syndrome is the leading cause of acute renal failure in childhood. Its incidence in North America is increasing. Escherichia coli O157:H7 is the most common infectious trigger and is spread by contaminated beef products as well as from person to person. Antibiotics or antidiarrheal medications should not be used in the treatment of E coli hemorrhagic colitis or hemolytic-uremic syndrome. Mortality in children with the syndrome has fallen to less than 10% in North America, largely because of careful attention to nutrition, maintenance of a normal fluid and electrolyte balance, and careful monitoring. Education and emotional support of the family are important aspects of the treatment program.

  4. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    PubMed

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  5. Serogroup-Specific Bacterial Engineered Glycoproteins as Novel Antigenic Targets for Diagnosis of Shiga Toxin-Producing-Escherichia coli-Associated Hemolytic-Uremic Syndrome

    PubMed Central

    Melli, Luciano J.; Ciocchini, Andrés E.; Caillava, Ana J.; Vozza, Nicolás; Chinen, Isabel; Rivas, Marta; Feldman, Mario F.

    2014-01-01

    Human infection with Shiga toxin-producing Escherichia coli (STEC) is a major cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening condition characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. E. coli O157:H7 is the dominant STEC serotype associated with HUS worldwide, although non-O157 STEC serogroups can cause a similar disease. The detection of anti-O157 E. coli lipopolysaccharide (LPS) antibodies in combination with stool culture and detection of free fecal Shiga toxin considerably improves the diagnosis of STEC infections. In the present study, we exploited a bacterial glycoengineering technology to develop recombinant glycoproteins consisting of the O157, O145, or O121 polysaccharide attached to a carrier protein as serogroup-specific antigens for the serological diagnosis of STEC-associated HUS. Our results demonstrate that using these antigens in indirect ELISAs (glyco-iELISAs), it is possible to clearly discriminate between STEC O157-, O145-, and O121-infected patients and healthy children, as well as to confirm the diagnosis in HUS patients for whom the classical diagnostic procedures failed. Interestingly, a specific IgM response was detected in almost all the analyzed samples, indicating that it is possible to detect the infection in the early stages of the disease. Additionally, in all the culture-positive HUS patients, the serotype identified by glyco-iELISAs was in accordance with the serotype of the isolated strain, indicating that these antigens are valuable not only for diagnosing HUS caused by the O157, O145, and O121 serogroups but also for serotyping and guiding the subsequent steps to confirm diagnosis. PMID:25472487

  6. [Acute renal failure secondary to hemolytic uremic syndrome in a pregnant woman with pre-eclampsia].

    PubMed

    García-Miguel, F J; Mirón Rodríguez, M F; Alsina Aser, M J

    2009-02-01

    Acute renal failure is a serious complication of pregnancy associated with a high rate of morbidity and mortality; the incidence is currently 1 per 10,000 pregnancies. The most common causes are gestational hypertension, bleeding, sepsis, and intrinsic renal disease. Other less common pregnancy-related syndromes, such as HELLP syndrome or thrombotic microangiopathy, may also lead to kidney failure. Hemolytic uremic syndrome and thrombotic thrombocytopenic purpura are forms of thrombotic microangiopathy and although neither is specific to pregnancy, the incidence of these entities rises during gestation. The classic symptoms are fever, hemolytic microangiopathic anemia, thrombopenia, neurologic dysfunction, and kidney abnormalities. When renal involvement is the predominant manifestation, the diagnosis is usually hemolytic uremic syndrome.

  7. Glucose-6-Phosphate Dehydrogenase Deficiency Mimicking Atypical Hemolytic Uremic Syndrome.

    PubMed

    Walsh, Patrick R; Johnson, Sally; Brocklebank, Vicky; Salvatore, Jacobo; Christian, Martin; Kavanagh, David

    2018-02-01

    A 4-year-old boy presented with nonimmune hemolysis, thrombocytopenia, and acute kidney injury. Investigations for an underlying cause failed to identify a definitive cause and a putative diagnosis of complement-mediated atypical hemolytic uremic syndrome (aHUS) was made. The patient was started initially on plasma exchange and subsequently eculizumab therapy, after which his kidney function rapidly improved. While on eculizumab therapy, despite adequate complement blockade, he presented 2 more times with hemolytic anemia and thrombocytopenia, but without renal involvement. Genetic analysis did not uncover a mutation in any known aHUS gene (CFH, CFI, CFB, C3, CD46, THBD, INF2, and DGKE) and anti-factor H antibodies were undetectable. Whole-exome sequencing was undertaken to identify a cause for the eculizumab resistance. This revealed a pathogenic variant in G6PD (glucose-6-phosphate dehydrogenase), which was confirmed by functional analysis demonstrating decreased erythrocyte G6PD activity. Eculizumab therapy was withdrawn. Complement-mediated aHUS is a diagnosis of exclusion and this case highlights the diagnostic difficulty that remains without an immediately available biomarker for confirmation. This case of G6PD deficiency presented with a phenotype clinically indistinguishable from complement-mediated aHUS. We recommend that G6PD deficiency be included in the differential diagnosis of patients presenting with aHUS and suggest measuring erythrocyte G6PD concentrations in these patients. Copyright © 2017. Published by Elsevier Inc.

  8. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease

    PubMed Central

    Lu, Fuhua; Lu, Zhaoyu; Liu, Xusheng; Chen, Cha; Qu, Pinghua; Li, Dingcheng; Hua, Zhengshuang; Qu, Yanni; Zou, Chuan

    2016-01-01

    Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury. PMID:27003359

  9. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease.

    PubMed

    Zeng, Yu-Qun; Dai, Zhenhua; Lu, Fuhua; Lu, Zhaoyu; Liu, Xusheng; Chen, Cha; Qu, Pinghua; Li, Dingcheng; Hua, Zhengshuang; Qu, Yanni; Zou, Chuan

    2016-04-05

    Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury.

  10. Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome

    PubMed Central

    Abrey Recalde, Maria J.; Alvarez, Romina S.; Alberto, Fabiana; Mejias, Maria P.; Ramos, Maria V.; Fernandez Brando, Romina J.; Bruballa, Andrea C.; Exeni, Ramon A.; Alconcher, Laura; Ibarra, Cristina A.; Amaral, María M.; Palermo, Marina S.

    2017-01-01

    Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions. PMID:29068360

  11. Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland.

    PubMed

    Brocklebank, Vicky; Johnson, Sally; Sheerin, Thomas P; Marks, Stephen D; Gilbert, Rodney D; Tyerman, Kay; Kinoshita, Meredith; Awan, Atif; Kaur, Amrit; Webb, Nicholas; Hegde, Shivaram; Finlay, Eric; Fitzpatrick, Maggie; Walsh, Patrick R; Wong, Edwin K S; Booth, Caroline; Kerecuk, Larissa; Salama, Alan D; Almond, Mike; Inward, Carol; Goodship, Timothy H; Sheerin, Neil S; Marchbank, Kevin J; Kavanagh, David

    2017-11-01

    Factor H autoantibodies can impair complement regulation, resulting in atypical hemolytic uremic syndrome, predominantly in childhood. There are no trials investigating treatment, and clinical practice is only informed by retrospective cohort analysis. Here we examined 175 children presenting with atypical hemolytic uremic syndrome in the United Kingdom and Ireland for factor H autoantibodies that included 17 children with titers above the international standard. Of the 17, seven had a concomitant rare genetic variant in a gene encoding a complement pathway component or regulator. Two children received supportive treatment; both developed established renal failure. Plasma exchange was associated with a poor rate of renal recovery in seven of 11 treated. Six patients treated with eculizumab recovered renal function. Contrary to global practice, immunosuppressive therapy to prevent relapse in plasma exchange-treated patients was not adopted due to concerns over treatment-associated complications. Without immunosuppression, the relapse rate was high (five of seven). However, reintroduction of treatment resulted in recovery of renal function. All patients treated with eculizumab achieved sustained remission. Five patients received renal transplants without specific factor H autoantibody-targeted treatment with recurrence in one who also had a functionally significant CFI mutation. Thus, our current practice is to initiate eculizumab therapy for treatment of factor H autoantibody-mediated atypical hemolytic uremic syndrome rather than plasma exchange with or without immunosuppression. Based on this retrospective analysis we see no suggestion of inferior treatment, albeit the strength of our conclusions is limited by the small sample size. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1β expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms.

    PubMed

    Hagel, Christian; Krasemann, Susanne; Löffler, Judith; Püschel, Klaus; Magnus, Tim; Glatzel, Markus

    2015-03-01

    In 2011, a large outbreak of Shiga toxin-producing enterohemorrhagic Escherichia coli (EHEC) infections occurred in northern Germany, which mainly affected adults. Out of 3842 patients, 104 experienced a complicated course comprising hemolytic uremic syndrome and neurological complications, including cognitive impairment, aphasia, seizures and coma. T2 hyperintensities on magnet resonance imaging (MRI) bilateral in the thalami and in the dorsal pons were found suggestive of a metabolic toxic effect. Five of the 104 patients died because of toxic heart failure. In the present study, the post-mortem neuropathological findings of the five EHEC patients are described. Histological investigation of 13 brain regions (frontal, temporal, occipital cortex, corpora mammillaria, thalamus, frontal operculum, corona radiata, gyrus angularis, pons, medulla oblongata, cerebellar vermis and cerebellar hemisphere) showed no thrombosis, ischemic changes or fresh infarctions. Further, no changes were found in electron microscopy. In comparison with five age-matched controls, slightly increased activation of microglia and a higher neuronal expression of interleukin-1β and of Shiga toxin receptor CD77/globotriaosylceramide 3 was observed. The findings were confirmed by Western blot analyses. It is suggested that CD77/globotriaosylceramide upregulation may be a consequence to Shiga toxin exposure, whereas increased interleukin-1β expression may point to activation of inflammatory cascades. © 2014 International Society of Neuropathology.

  13. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations

    PubMed Central

    Salvadori, Maurizio; Bertoni, Elisabetta

    2013-01-01

    Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both “traditional therapy” (including plasma therapy, kidney and kidney-liver transplantation) and “new therapies”. The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody “eculizumab”. Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy. PMID:24255888

  14. Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations

    PubMed Central

    Mutsaers, Henricus A. M.; van den Heuvel, Lambertus P.; Ringens, Lauke H. J.; Dankers, Anita C. A.; Russel, Frans G. M.; Wetzels, Jack F. M.; Hoenderop, Joost G.; Masereeuw, Rosalinde

    2011-01-01

    During chronic kidney disease (CKD), there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP) was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concentrations of various uremic toxins were determined in plasma of CKD patients using high performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Our results show that hippuric acid, indoxyl sulfate and kynurenic acid inhibit MRP4-mediated [3H]-methotrexate ([3H]-MTX) uptake (calculated Ki values: 2.5 mM, 1 mM, 25 µM, respectively) and BCRP-mediated [3H]-estrone sulfate ([3H]-E1S) uptake (Ki values: 4 mM, 500 µM and 50 µM, respectively), whereas indole-3-acetic acid and phenylacetic acid reduce [3H]-MTX uptake by MRP4 only (Ki value: 2 mM and IC50 value: 7 mM, respectively). In contrast, p-cresol, p-toluenesulfonic acid, putrescine, oxalate and quinolinic acid did not alter transport mediated by MRP4 or BCRP. In addition, our results show that hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid and phenylacetic acid accumulate in plasma of end-stage CKD patients with mean concentrations of 160 µM, 4 µM, 129 µM, 1 µM and 18 µM, respectively. Moreover, calculated Ki values are below the maximal plasma concentrations of the tested toxins. In conclusion, this study shows that several uremic toxins inhibit active transport by MRP4 and BCRP at clinically relevant concentrations. PMID:21483698

  15. [Adsorbent effect of activated carbon on small molecular uremic toxin and its influence factors].

    PubMed

    Yang, Bo; Jiang, Yun-sheng; Li, Jun

    2003-06-01

    To analyze the adsorbent effect of activated carbon on uremic toxin and its influence factors. Uremic toxins (urea, creatinine and uric acid) were dissolved in the distilled water to obtain uremic toxic solution. Activated carbon was added to the solution, and the concentrations of uremic toxins were measured at different time spots. To determine the influence factors, some possible related materials, such as bile, amino acid, Ringer's, solution of glucose, HCl or NaOH respectively were added simultaneously. The concentrations of toxins in uremic toxic solution decreased 5 min after adding the activated carbon. The concentration of urea was the lowest at 30 min, but it increased after 50 min; while the concentrations of creatinine and uric acid reached the lowest level from 10 to 30 min after adding the activated carbon, and maintained at the same level after that. The bile, amino acid, electrolyte, glucose and pH value did not influence the adsorption of uric acid significantly, but they influenced the adsorption of urea and creatinine. Bile and amino acid influenced the concentration of urea remarkably, following glucose, NaOH and HCl. The effect of pH 2.0 solution on the creatinine concentration was the most significant, following glucose. Activated carbon has adsorptive effect on uremic toxins, but its adsorptive effect decreases as time goes on. Bile, glucose, amino acid, NaOH and HCl can affect the adsorptive effect of activated carbon on uremic toxins to some extent.

  16. Genome Sequence of the Hemolytic-Uremic Syndrome-Causing Strain Escherichia coli NCCP15647

    PubMed Central

    Jeong, Haeyoung; Zhao, Fumei; Igori, Davaajargal; Oh, Kyung-Hwan; Kim, Seon-Young; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Song, Ju Yeon; Yu, Dong Su; Park, Mi-Sun

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC) causes a disease involving diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). Here we present the draft genome sequence of NCCP15647, an EHEC isolate from an HUS patient. Its genome exhibits features of EHEC, such as genes for verotoxins, a type III secretion system, and prophages. PMID:22740672

  17. A new immunoassay for detecting all subtypes of Shiga toxins produced by Shiga toxin-producing E. coli in ground beef

    USDA-ARS?s Scientific Manuscript database

    Background Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none o...

  18. Shiga Toxin-Producing Escherichia coli Infection, Antibiotics, and Risk of Developing Hemolytic Uremic Syndrome: A Meta-analysis.

    PubMed

    Freedman, Stephen B; Xie, Jianling; Neufeld, Madisen S; Hamilton, William L; Hartling, Lisa; Tarr, Phillip I; Nettel-Aguirre, Alberto; Chuck, Anderson; Lee, Bonita; Johnson, David; Currie, Gillian; Talbot, James; Jiang, Jason; Dickinson, Jim; Kellner, Jim; MacDonald, Judy; Svenson, Larry; Chui, Linda; Louie, Marie; Lavoie, Martin; Eltorki, Mohamed; Vanderkooi, Otto; Tellier, Raymond; Ali, Samina; Drews, Steven; Graham, Tim; Pang, Xiao-Li

    2016-05-15

    Antibiotic administration to individuals with Shiga toxin-producing Escherichia coli (STEC) infection remains controversial. We assessed if antibiotic administration to individuals with STEC infection is associated with development of hemolytic uremic syndrome (HUS). The analysis included studies published up to 29 April 2015, that provided data from patients (1) with STEC infection, (2) who received antibiotics, (3) who developed HUS, and (4) for whom data reported timing of antibiotic administration in relation to HUS. Risk of bias was assessed; strength of evidence was adjudicated. HUS was the primary outcome. Secondary outcomes restricted the analysis to low-risk-of-bias studies employing commonly used HUS criteria. Pooled estimates of the odds ratio (OR) were obtained using random-effects models. Seventeen reports and 1896 patients met eligibility; 8 (47%) studies were retrospective, 5 (29%) were prospective cohort, 3 (18%) were case-control, and 1 was a trial. The pooled OR, including all studies, associating antibiotic administration and development of HUS was 1.33 (95% confidence interval [CI], .89-1.99; I(2) = 42%). The repeat analysis including only studies with a low risk of bias and those employing an appropriate definition of HUS yielded an OR of 2.24 (95% CI, 1.45-3.46; I(2) = 0%). Overall, use of antibiotics was not associated with an increased risk of developing HUS; however, after excluding studies at high risk of bias and those that did not employ an acceptable definition of HUS, there was a significant association. Consequently, the use of antibiotics in individuals with STEC infections is not recommended. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son".

    PubMed

    Castillo-Rodríguez, Esmeralda; Pizarro-Sánchez, Soledad; Sanz, Ana B; Ramos, Adrian M; Sanchez-Niño, Maria Dolores; Martin-Cleary, Catalina; Fernandez-Fernandez, Beatriz; Ortiz, Alberto

    2017-03-23

    Chronic kidney disease is among the fastest growing causes of death worldwide. An increased risk of all-cause and cardiovascular death is thought to depend on the accumulation of uremic toxins when glomerular filtration rate falls. In addition, the circulating levels of several markers of inflammation predict mortality in patients with chronic kidney disease. Indeed, a number of cytokines are listed in databases of uremic toxins and uremic retention solutes. They include inflammatory cytokines (IL-1β, IL-18, IL-6, TNFα), chemokines (IL-8), and adipokines (adiponectin, leptin and resistin), as well as anti-inflammatory cytokines (IL-10). We now critically review the cytokines that may be considered uremic toxins. We discuss the rationale to consider them uremic toxins (mechanisms underlying the increased serum levels and evidence supporting their contribution to CKD manifestations), identify gaps in knowledge, discuss potential therapeutic implications to be tested in clinical trials in order to make this knowledge useful for the practicing physician, and identify additional cytokines, cytokine receptors and chemokines that may fulfill the criteria to be considered uremic toxins, such as sIL-6R, sTNFR1, sTNFR2, IL-2, CXCL12, CX3CL1 and others. In addition, we suggest that IL-10, leptin, adiponectin and resistin should not be considered uremic toxins toxins based on insufficient or contradictory evidence of an association with adverse outcomes in humans or preclinical data not consistent with a causal association.

  20. The relationship between deiodinase activity and inflammatory responses under the stimulation of uremic toxins.

    PubMed

    Xu, Gaosi; Tu, Weiping; Qin, Shulan

    2014-08-31

    It is unclear to what extent uremic toxins participate in inflammatory responses and the activities of deiodinases, as well as the effects of deiodinases on inflammatory cytokines. Hepatocellular carcinoma cell lines (HepG2) were transfected with small interfering ribonucleic acid (siRNA) specific for deiodinase type 1 (DIO1) and cultured with or without uremic toxins. The mRNA expression of DIO1, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was detected by quantitative real-time PCR. The presence of selenoprotein M (SelM) and DIO1 was assessed by western blotting. Sonicate deiodinase activities in HepG2 cells were measured by a dithiothreitol-stimulated assay. The NF-κB, AP-1 and CREB-1 inflammatory signal pathways were confirmed by EMSA. After culturing for 24 h, the mRNA expression of DIO1 was significantly decreased by the specific siRNA (reduced by 76%, P = 0.0002). Uremic toxins significantly increased the mRNA expression (P < 0.01) of IL-1β, IL-6 and TNF-α and inhibited DIO1 mRNA expression (P < 0.01) compared with controls. Suppression of DIO1 by siRNA significantly decreased the mRNA expression of IL-1β and IL-6 (P < 0.05) but not TNF-α (P = 0.093). Uremic toxins and specific siRNA synchronously reduced the protein expression of SelM and DIO1. Uremic toxins activate the expression of inflammatory cytokines. The major findings of this study indicate that the uremic toxins, more than inflammatory cytokines, play direct inhibitory roles in DIO1 enzyme activity, which then provides a negative feedback to the growing accumulation of inflammatory cytokines.

  1. Hemolytic Uremic Syndrome-associated Encephalopathy Successfully Treated with Corticosteroids.

    PubMed

    Hosaka, Takashi; Nakamagoe, Kiyotaka; Tamaoka, Akira

    2017-11-01

    The encephalopathy that occurs in association with hemolytic uremic syndrome (HUS), which is caused by enterohemorrhagic Escherichia coli (E. coli), has a high mortality rate and patients sometimes present sequelae. We herein describe the case of a 20-year-old woman who developed encephalopathy during the convalescent stage of HUS caused by E.coli O26. Hyperintense lesions were detected in the pons, basal ganglia, and cortex on diffusion-weighted brain MRI. From the onset of HUS encephalopathy, we treated the patient with methylprednisolone (mPSL) pulse therapy alone. Her condition improved, and she did not present sequelae. Our study shows that corticosteroids appear to be effective for the treatment of some patients with HUS encephalopathy.

  2. [Difficulties in the diagnosis of diarrhea-associated hemolytic uremic syndrome in adults].

    PubMed

    Malov, V A; Maleev, V V; Kozlovskaya, N L; Tsvetkova, N A; Smetanina, S V; Gorobchenko, A N; Serova, V V; Chentsov, V B; Volkov, A G; Faller, A P

    Hemolytic uremic syndrome (HUS) is a rare, but menacing condition registered mainly in children. The paper gives a detailed description and analysis of a clinical case of HUS with a favorable outcome in an adult woman who developed the syndrome in the presence of bloody diarrhea. It considers an update on the etiology, pathogenesis, and clinical features of HUS associated with diarrheal syndrome and discusses differential diagnostic features, diagnostic problems, and characteristics of management tactics for patients.

  3. [Historical stages of Hemolytic Uremic Syndrome in Argentina (1964-2009)].

    PubMed

    Belardo, Marcela

    2012-10-01

    The aim is to present an historical time frame of Hemolytic Uremic Syndrome (HUS) in Argentina. From a public policy approach, the history of the disease is analyzed as an object of health policy and seeks to contribute in understanding the multiple dimensions of illness. As a medical and scientific issue, as a social problem and a matter of health policy, the article describes three phases ranging from its discovery up to the national program of HUS adopted in 2009. This article aims to provide an overview of developments in biomedical knowledge and the emergence of the issue in both social and political problem.

  4. Effects of co-existing microalgae and grazers on the production of hemolytic toxins in Karenia mikimotoi

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Zhang, Naisheng; Cui, Weimin; Xu, Yanyan; Li, Hongye; Liu, Jiesheng

    2011-11-01

    Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup is associated with harmful algal blooms in temperate and subtropical zones of the world. The hemolytic substances produced by K. mikimotoi are thought to cause mortality in fishes and invertebrates. We evaluated the composition of the hemolytic toxin produced by K. mikimotoi cultured in the laboratory using thin-layer chromatography. In addition, we evaluated the effect of co-occuring algae ( Prorocentrum donghaiense and Alexandrium tamarense) and the cladoceran grazer Moina mongolica on hemolytic toxin production in K. mikimotoi. The hemolytic toxins from K. mikimotoi were a mixture of 2 liposaccharides and 1 lipid. Waterborne clues from P. donghaiense and A. tamarense inhibited the growth of K. mikimotoi but increased the production of hemolytic toxins. Conversely, K. mikimotoi strongly inhibited the growth of caged P. donghaiense and A. tamarense. In addition, the ingestion of K. mikimotoi by M. mongolica induced the production of hemolytic toxins in K. mikimotoi. Taken together, our results suggest that the presence of other microalgae and grazers may be as important as environmental factors for controlling the production of hemolytic substances. K. mikimotoi secreted allelochemicals other than unstable fatty acids with hemolytic activity. The production of hemolytic toxins in dinoflagellates was not only dependent on resource availability, but also on the risk of predation. Hemolytic toxins likely play an important role as chemical deterrents secreted by K. mikimotoi.

  5. Antibody Response to Shiga Toxins in Argentinean Children with Enteropathic Hemolytic Uremic Syndrome at Acute and Long-Term Follow-Up Periods

    PubMed Central

    Fernández-Brando, Romina J.; Bentancor, Leticia V.; Mejías, María Pilar; Ramos, María Victoria; Exeni, Andrea; Exeni, Claudia; Laso, María del Carmen; Exeni, Ramón; Isturiz, Martín A.; Palermo, Marina S.

    2011-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is associated with a broad spectrum of clinical manifestations that include diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Systemic Stx toxemia is considered to be central to the genesis of HUS. Distinct methods have been used to evaluate anti-Stx response for immunodiagnostic or epidemiological analysis of HUS cases. The development of enzyme-linked immunosorbent assay (ELISA) and western blot (WB) assay to detect the presence of specific antibodies to Stx has introduced important advantages for serodiagnosis of HUS. However, application of these methods for seroepidemiological studies in Argentina has been limited. The aim of this work was to develop an ELISA to detect antibodies against the B subunit of Stx2, and a WB to evaluate antibodies against both subunits of Stx2 and Stx1, in order to analyze the pertinence and effectiveness of these techniques in the Argentinean population. We studied 72 normal healthy children (NHC) and 105 HUS patients of the urban pediatric population from the surrounding area of Buenos Aires city. Using the WB method we detected 67% of plasma from NHC reactive for Stx2, but only 8% for Stx1. These results are in agreement with the broad circulation of Stx2-expressing STEC in Argentina and the endemic behavior of HUS in this country. Moreover, the simultaneous evaluation by the two methods allowed us to differentiate acute HUS patients from NHC with a great specificity and accuracy, in order to confirm the HUS etiology when pathogenic bacteria were not isolated from stools. PMID:21559455

  6. Elimination of Endogenous Toxin, Creatinine from Blood Plasma Depends on Albumin Conformation: Site Specific Uremic Toxicity & Impaired Drug Binding

    PubMed Central

    Varshney, Ankita; Rehan, Mohd; Subbarao, Naidu; Rabbani, Gulam; Khan, Rizwan Hasan

    2011-01-01

    Uremic syndrome results from malfunctioning of various organ systems due to the retention of uremic toxins which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. The aim of this study was to elucidate the mechanisms underlying the renal elimination of uremic toxin creatinine that accumulate in chronic renal failure. Quantitative investigation of the plausible correlations was performed by spectroscopy, calorimetry, molecular docking and accessibility of surface area. Alkalinization of normal plasma from pH 7.0 to 9.0 modifies the distribution of toxin in the body and therefore may affect both the accumulation and the rate of toxin elimination. The ligand loading of HSA with uremic toxin predicts several key side chain interactions of site I that presumably have the potential to impact the specificity and impaired drug binding. These findings provide useful information for elucidating the complicated mechanism of toxin disposition in renal disease state. PMID:21386972

  7. Elimination of endogenous toxin, creatinine from blood plasma depends on albumin conformation: site specific uremic toxicity & impaired drug binding.

    PubMed

    Varshney, Ankita; Rehan, Mohd; Subbarao, Naidu; Rabbani, Gulam; Khan, Rizwan Hasan

    2011-02-28

    Uremic syndrome results from malfunctioning of various organ systems due to the retention of uremic toxins which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. The aim of this study was to elucidate the mechanisms underlying the renal elimination of uremic toxin creatinine that accumulate in chronic renal failure. Quantitative investigation of the plausible correlations was performed by spectroscopy, calorimetry, molecular docking and accessibility of surface area. Alkalinization of normal plasma from pH 7.0 to 9.0 modifies the distribution of toxin in the body and therefore may affect both the accumulation and the rate of toxin elimination. The ligand loading of HSA with uremic toxin predicts several key side chain interactions of site I that presumably have the potential to impact the specificity and impaired drug binding. These findings provide useful information for elucidating the complicated mechanism of toxin disposition in renal disease state.

  8. [Atypical hemolytic and uremic syndrome associated with von Willebrand factor-cleaving protease (ADAMTS 13) deficiency in children].

    PubMed

    Ben Abdallah Chabchoub, R; Boukedi, A; Bensalah, M; Maalej, B; Gargour, L; Turk, F; Ben Halima, N; Wolf, M; Veyradier, A; Mahfoudh, A

    2013-08-01

    Hemolytic and uremic syndrome (HUS) is a classical form of thrombotic microangiopathies characterized by the association of hemolytic anemia with schizocytes, thrombocytopenia, and acute renal failure. Two forms of HUS have been described: the typical form that occurs after ingestion of a strain of bacteria, usually Escherichia coli types, which expresses verotoxin (also called shiga-like toxin), typically followed by bloody diarrhea, and atypical HUS, which is rare during childhood and can also be revealed by bloody diarrhea. We report a case of a 25-month-old infant who presented with hematuria and pallor after an episode of diarrhea. Biological tests revealed anemia, thrombocytopenia, and renal failure. The diagnosis of typical HUS was made, but the causal microorganism was not identified. Progression was favorable within 5 days of plasma transfusions. Two months later, the patient presented with the same symptoms and neurological impairment without any diarrhea. Von Willebrand factor-cleaving protease activity (ADAMTS 13) was low. Therefore, the diagnosis of atypical HUS by severe deficiency of ADAMTS 13 was suggested. The treatment was based on plasma transfusions resulting in remission. Atypical HUS associated with severe ADAMTS 13 deficiency rarely occurs in childhood. The prognosis, usually threatening, has been completely transformed thanks to a better understanding of the pathogenesis and to therapeutic progress. Copyright © 2013. Published by Elsevier SAS.

  9. Ingested Shiga Toxin 2 (Stx2) Causes Histopathological Changes in Kidney, Spleen and Thymus Tissues and Mortality in Mice

    USDA-ARS?s Scientific Manuscript database

    The Shiga toxin (Stxs) producing bacterial strain, Escherichia coli O157:H7, colonizes the distal small intestine and the colon, initiating a very broad spectrum of illnesses such as hemolytic-uremic syndrome (HUS) characterized by microangiopathic hemolytic anemia, thrombocytopenia and acute renal ...

  10. Zebrafish, a Novel Model System to Study Uremic Toxins: The Case for the Sulfur Amino Acid Lanthionine.

    PubMed

    Perna, Alessandra F; Anishchenko, Evgeniya; Vigorito, Carmela; Zacchia, Miriam; Trepiccione, Francesco; D'Aniello, Salvatore; Ingrosso, Diego

    2018-04-29

    The non-proteinogenic amino acid lanthionine is a byproduct of hydrogen sulfide biosynthesis: the third endogenous vasodilator gas, after nitric oxide and carbon monoxide. While hydrogen sulfide is decreased in uremic patients on hemodialysis, lanthionine is increased and has been proposed as a new uremic toxin, since it is able to impair hydrogen sulfide production in hepatoma cells. To characterize lanthionine as a uremic toxin, we explored its effects during the early development of the zebrafish ( Danio rerio ), a widely used model to study the organ and tissue alterations induced by xenobiotics. Lanthionine was employed at concentrations reproducing those previously detected in uremia. Light-induced visual motor response was also studied by means of the DanioVision system. Treatment of zebrafish embryos with lanthionine determined acute phenotypical alterations, on heart organogenesis (disproportion in cardiac chambers), increased heart beating, and arrhythmia. Lanthionine also induced locomotor alterations in zebrafish embryos. Some of these effects could be counteracted by glutathione. Lanthionine exerted acute effects on transsulfuration enzymes and the expression of genes involved in inflammation and metabolic regulation, and modified microRNA expression in a way comparable with some alterations detected in uremia. Lanthionine meets the criteria for classification as a uremic toxin. Zebrafish can be successfully used to explore uremic toxin effects.

  11. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    PubMed

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  12. The Interactions of Human Neutrophils with Shiga Toxins and Related Plant Toxins: Danger or Safety?

    PubMed Central

    Brigotti, Maurizio

    2012-01-01

    Shiga toxins and ricin are well characterized similar toxins belonging to quite different biological kingdoms. Plant and bacteria have evolved the ability to produce these powerful toxins in parallel, while humans have evolved a defense system that recognizes molecular patterns common to foreign molecules through specific receptors expressed on the surface of the main actors of innate immunity, namely monocytes and neutrophils. The interactions between these toxins and neutrophils have been widely described and have stimulated intense debate. This paper is aimed at reviewing the topic, focusing particularly on implications for the pathogenesis and diagnosis of hemolytic uremic syndrome. PMID:22741061

  13. Top-down proteomic identification of Shiga toxin 2 variants from Shiga toxin-producing Escherichia coli (STEC) using MALDI-TOF-TOF-MS/MS-PSD

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) are increasingly linked to severe outbreaks of foodborne illness throughout the world, e.g. Germany and France in 2011. STEC infections can result in bloody diarrhea, hemolytic uremic syndrome, kidney failure and death. New analytical techniques are ne...

  14. Cerebro-renal interactions: impact of uremic toxins on cognitive function.

    PubMed

    Watanabe, Kimio; Watanabe, Tsuyoshi; Nakayama, Masaaki

    2014-09-01

    Cognitive impairment (CI) associated with chronic kidney disease (CKD) has received attention as an important problem in recent years. Causes of CI with CKD are multifactorial, and include cerebrovascular disease, renal anemia, secondary hyperparathyroidism, dialysis disequilibrium, and uremic toxins (UTs). Among these causes, little is known about the role of UTs. We therefore selected 21 uremic compounds, and summarized reports of cerebro-renal interactions associated with UTs. Among the compounds, uric acid, indoxyl sulfate, p-cresyl sulfate, interleukin 1-β, interleukin 6, TNF-α, and PTH were most likely to affect the cerebro-renal interaction dysfunction; however, sufficient data have not been obtained for other UTs. Notably, most of the data were not obtained under uremic conditions; therefore, the impact and mechanism of each UT on cognition and central nervous system in uremic state remains unknown. At present, impacts and mechanisms of UT effects on cognition are poorly understood. Clarifying the mechanisms and establishing novel therapeutic strategies for cerebro-renal interaction dysfunction is expected to be subject of future research. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Interventions for preventing diarrhea-associated hemolytic uremic syndrome: systematic review

    PubMed Central

    2013-01-01

    Background Hemolytic Uremic Syndrome (HUS) may follow infection with Shiga-toxin-producing organisms, principally E. coli O157: H7 (STEC), causing high morbidity and mortality. Our aim was to identify interventions to prevent diarrhea-associated HUS. Methods Systematic search of the literature for relevant systematic reviews (SRs), randomised controlled trials (RCTs) and public health guidelines. Results Of 1097 animal and 762 human studies, 18 animal studies (2 SRs, 2 reviews, plus 14 RCTs) and 6 human studies (3 SRs, plus 3 RCTs) met inclusion criteria. E. coli O157: H7 Type III secreted protein vaccination decreased fecal E. coli O157 shedding in cattle (P = 0.002). E. coli O157: H7 siderophore receptor and porin proteins (SRP) vaccines reduced fecal shedding in cows (OR 0.42 (95% CI 0.25 to 0.73) and increased anti-E. coli 0157: H7 SRP antibodies in their calves (P < 0.001). Bacterin vaccines had no effect. Probiotic or sodium chlorate additives in feeds reduced fecal E. coli O157 load as did improved farm hygiene (P < 0.05). Solarization of soil reduced E. coli O157: H7 contamination in the soil (P < 0.05). In an RCT examining the role of antibiotic treatment of E. coli O157: H7 diarrhea, HUS rates were similar in children treated with Trimethoprim-sulfamethoxazole and controls (RR 0.57; 95% CI 0.11 to 2.81). In another RCT, HUS rates were similar in children receiving Synsorb-Pk and placebo (RR 0.93; 95% CI 0.39 to 2.22). In one SR, hand washing reduced diarrhea by 39% in institutions (IRR 0.61; 95% CI 0.40 to 0.92) and 32% in community settings (IRR 0.68; 95% CI 0.52 to 0.90) compared to controls. Guidelines contained recommendations to prevent STEC transmission from animals and environments to humans, including appropriate food preparation, personal hygiene, community education, and control of environmental contamination, food and water quality. Conclusions Animal carriage of STEC is decreased by vaccination and improved farm practices

  16. Genome Sequence of the Shiga Toxin-Producing Escherichia coli Strain NCCP15657

    PubMed Central

    Kim, Byung Kwon; Song, Geun Cheol; Hong, Gun Hyong; Seong, Won-Keun; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kwon, Soon-Kyeong; Lee, Choong Hoon; Song, Ju Yeon; Yu, Dong Su; Park, Mi-Sun

    2012-01-01

    Shiga toxin-producing Escherichia coli causes bloody diarrhea and hemolytic-uremic syndrome and serious outbreaks worldwide. Here, we report the draft genome sequence of E. coli NCCP15657 isolated from a patient. The genome has virulence genes, many in the locus of enterocyte effacement (LEE) island, encoding a metalloprotease, the Shiga toxin, and constituents of type III secretion. PMID:22740674

  17. [Microalbuminuria in pediatric patients diagnosed with hemolytic uremic syndrome].

    PubMed

    Cubillos C, María Paz; Del Salas, Paulina; Zambrano, Pedro O

    2015-01-01

    Hemolytic uremic syndrome (HUS) is characterized by the presence of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. It is the leading cause of acute kidney failure in children under 3 years of age. A variable number of patients develop proteinuria, hypertension, and chronic renal failure. To evaluate the renal involvement in pediatric patients diagnosed with HUS using the microalbumin/creatinine ratio. Descriptive concurrent cohort study that analyzed the presence of microalbuminuria in patients diagnosed with HUS between January 2001 and March 2012, who evolved without hypertension and normal renal function (clearance greater than 90ml/min using Schwartz formula). Demographic factors (age, sex), clinical presentation at time of diagnosis, use of antibiotics prior to admission, and need for renal replacement therapy were evaluated. Of the 24 patients studied, 54% were male. The mean age at diagnosis was two years. Peritoneal dialysis was required in 45%, and 33% developed persistent microalbuminuria. Antiproteinuric treatment was introduce in 4 patients, with good response. The mean follow-up was 6 years (range 6 months to 11 years). The serum creatinine returned to normal in all patients during follow up. The percentage of persistent microalbuminuria found in patients with a previous diagnosis of HUS was similar in our group to that described in the literature. Antiproteinuric treatment could delay kidney damage, but further multicenter prospective studies are necessary. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  18. A cluster of Escherichia coli O157:H7 infections with the hemolytic-uremic syndrome and death in California. A mandate for improved surveillance.

    PubMed Central

    Shefer, A M; Koo, D; Werner, S B; Mintz, E D; Baron, R; Wells, J G; Barrett, T J; Ginsberg, M; Bryant, R; Abbott, S; Griffin, P M

    1996-01-01

    In mid-January 1993, an outbreak of Escherichia coli O157:H7 infections associated with eating hamburger patties at a fast-food restaurant chain (chain A) was reported in Washington State. From mid-December to mid-January, 9 cases of E coli O157:H7-associated bloody diarrhea and the hemolytic-uremic syndrome had been reported in San Diego County, California. A total of 34 persons had bloody diarrhea, the hemolytic-uremic syndrome, or E coli O157:H7 organisms isolated from stool during the period November 15, 1992, through January 31, 1993. Organisms of E coli O157:H7 identified from 6 persons were indistinguishable from those of the Washington outbreak strain. Illness was associated with eating at chain A restaurants in San Diego (odds ratio, 13; 95% confidence interval, 1.7, 99) and with eating regular-sized hamburgers (odds ratio, undefined; lower-limit 95% confidence interval, 1.3). Improved surveillance by mandating laboratory- and physician-based reporting of cases of E coli O157:H7 infection and the hemolytic-uremic syndrome might have alerted health officials to this outbreak sooner, which could have resulted in earlier investigation and the institution of measures to prevent more cases. Images Figure 1. PMID:8855679

  19. An improved method for detection of Shiga toxin 2 in human serum

    USDA-ARS?s Scientific Manuscript database

    Shiga toxins (Stx) produced by Stx-producing Escherichia coli (STEC) are virulence factors that is most closely associated with hemolytic uremic syndrome (HUS), a life-threatening complication of intestinal infections by STEC. Stx have to enter into the circulation system before they can be delivere...

  20. Mild Illness during Outbreak of Shiga Toxin-Producing Escherichia coli O157 Infections Associated with Agricultural Show, Australia.

    PubMed

    Vasant, Bhakti R; Stafford, Russell J; Jennison, Amy V; Bennett, Sonya M; Bell, Robert J; Doyle, Christine J; Young, Jeannette R; Vlack, Susan A; Titmus, Paul; El Saadi, Debra; Jarvinen, Kari A J; Coward, Patricia; Barrett, Janine; Staples, Megan; Graham, Rikki M A; Smith, Helen V; Lambert, Stephen B

    2017-10-01

    During a large outbreak of Shiga toxin-producing Escherichia coli illness associated with an agricultural show in Australia, we used whole-genome sequencing to detect an IS1203v insertion in the Shiga toxin 2c subunit A gene of Shiga toxin-producing E. coli. Our study showed that clinical illness was mild, and hemolytic uremic syndrome was not detected.

  1. Hemolytic uremic syndrome (HUS) secondary to cobalamin C (cblC) disorder.

    PubMed

    Sharma, Ajay P; Greenberg, Cheryl R; Prasad, Asuri N; Prasad, Chitra

    2007-12-01

    Diarrhea-positive hemolytic uremic syndrome (HUS) is a common cause of acute renal failure in children. Diarrhea-negative (D-), or atypical HUS, is etiologically distinct. A Medline search identified seven previously reported D- cases of HUS secondary to cobalamin C (cblC) disease presenting in infancy. An infantile presentation is reported to be associated with a high mortality rate (6/7 cases). We describe the results of a 5-year longitudinal follow-up in a child diagnosed with D- HUS secondary to cblC disease in infancy. Mutation analysis in this patient identified homozygosity for the 271 dupA mutation (c.271 dupA) in the cblC MMACHC gene. We briefly review the published experience in cblC-associated HUS to highlight the clinical characteristics of this uncommon, but potentially treatable, condition.

  2. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, which can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. To examine if pigs are potential animal reservoirs for human STEC infections, we conducted a longitudinal cohort study in ...

  3. Mouse in vivo neutralization of Escherichia coli Shiga toxin 2 with monoclonal antibodies

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli (E. coli) food contaminations pose serious health and food safety concerns, and have been the subject of massive food recalls. Shiga toxin 2 (Stx2)-producing E. coli has been identified as the major cause of hemorrhagic colitis and hemolytic uremic syndrome (HUS), the most severe di...

  4. Targeting renin-angiotensin system in malignant hypertension in atypical hemolytic uremic syndrome

    PubMed Central

    Raghunathan, V.; Sethi, S. K.; Dragon-Durey, M. A.; Dhaliwal, M.; Raina, R.; Jha, P.; Bansal, S. B.; Kher, V.

    2017-01-01

    Hypertension is common in hemolytic uremic syndrome (HUS) and often difficult to control. Local renin-angiotensin activation is believed to be an important part of thrombotic microangiopathy, leading to a vicious cycle of progressive renal injury and intractable hypertension. This has been demonstrated in vitro via enhanced tissue factor expression on glomerular endothelial cells which is enhanced by angiotensin II. We report two pediatric cases of atypical HUS with severe refractory malignant hypertension, in which we targeted the renin-angiotensin system by using intravenous (IV) enalaprilat, oral aliskiren, and oral enalapril with quick and dramatic response of blood pressure. Both drugs, aliskiren and IV enalaprilat, were effective in controlling hypertension refractory to multiple antihypertensive medications. These appear to be promising alternatives in the treatment of severe atypical HUS-induced hypertension and hypertensive emergency. PMID:28356668

  5. Virulence gene profiles of shiga toxin-producing Escherichia coli isolated from fecal samples of finishing swine

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) are important pathogens responsible for food-borne outbreaks and serious illness including hemorrhagic colitis and hemolytic uremic syndrome. Certain STEC serogroups may cause edema disease in swine; and similar to cattle, swine have been shown to be a ...

  6. Shiga toxin-producing serogroup O91 Escherichia coli strains isolated from food and environmental samples

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) strains of the O91: H21 serotype have caused severe infections, including hemolytic-uremic syndrome. Strains of the O91 serogroup have been isolated from food, animals, and the environment worldwide but are not well characterized. We used a microarray an...

  7. Characterization of shiga toxin-producing Escherichia coli recovered from domestic animals to determine stx variants, virulence genes, and cytotoxicity in mammalian cells

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) can cause foodborne illnesses ranging from diarrhea to severe diseases such as hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) in humans. In this study, we determined virulence genes, stx subtypes and we evaluated the cytotoxicity in mammal...

  8. Hemolytic-uremic syndrome in adolescents.

    PubMed

    Siegler, R L; Pavia, A T; Cook, J B

    1997-02-01

    To compare the epidemiological characteristics, clinical features, and outcome of adolescents with hemolytic-uremic syndrome (HUS) with those of children with HUS. A retrospective descriptive study using data stored in the computerized Utah HUS registry. The HUS registry contains data on postdiarrheal and nondiarrheal HUS cases since 1970 in which the patients were younger than 18 years of age at the time of diagnosis and includes virtually all Utah cases as well as those referred from surrounding states. Seventeen adolescents (age, 12-17 years) and 276 younger patients from September 30, 1970, through December 5, 1993, who met the diagnostic criteria for HUS. Age, sex, seasonality, prodromal features (eg, antecedent diarrhea), laboratory values, hospital course, outcome, and chronic sequelae. The 17 adolescent patients, who composed 5.8% of the study population, experienced a course of the disease that was similar to that of the younger patients. Diarrhea preceded HUS in approximately 90% of the patients in both groups. Laboratory values were similar in teenagers and younger patients. The hospital courses were also similar; seizures occurred in almost 20%, and hypertension and oligoanuric renal failure occurred in most. Two (12%) of the teenagers and 7 (2.4%) of the younger patients died during the acute phase of the syndrome (P = .09); almost 50% of both groups experienced 1 or more chronic renal sequelae. End-stage renal disease has occurred in 1 (5.8%) of the teenagers and 6 (2.2%) of the children. At follow-up, 1 or more years (median, 5 years) after the onset of HUS, hypertension was present in 22% of the teenagers and 6.7% of the preteens (P = .14). A below-normal glomerular filtration rate was seen in approximately 30% of both groups; proteinuria was noted in approximately 25% of both groups. Approximately 10% of both groups had a combination of proteinuria and a low glomerular filtration rate and are, therefore, at risk for eventual end-stage renal disease

  9. ADAMTS13 Gene Mutations in Children with Hemolytic Uremic Syndrome

    PubMed Central

    Choi, Hyoung Soo; Cheong, Hae Il; Kim, Nam Keun

    2011-01-01

    We investigated ADAMTS13 activity as well as the ADAMTS13 gene mutation in children with hemolytic uremic syndrome (HUS). Eighteen patients, including 6 diarrhea-negative (D-HUS) and 12 diarrhea-associated HUS (D+HUS) patients, were evaluated. The extent of von Willebrand factor (VWF) degradation was assayed by multimer analysis, and all exons of the ADAMTS13 gene were PCR-amplified using Taq DNA polymerase. The median and range for plasma activity of ADAMTS13 in 6 D-HUS and 12 D+HUS patients were 71.8% (22.8-94.1%) and 84.9% (37.9-119.9%), respectively, which were not statistically significantly different from the control group (86.4%, 34.2-112.3%) (p>0.05). Five ADAMTS13 gene mutations, including 2 novel mutations [1584+2T>A, 3941C>T (S1314L)] and 3 polymorphisms (Q448E, P475S, S903L), were found in 2 D-HUS and one D+HUS patients, which were not associated with deficiency of ADAMTS13 activity. Whether these mutations without reduced ADAMTS13 activity are innocent bystanders or predisposing factors in HUS remains unanswered. PMID:21488199

  10. Functional genomic analysis identifies indoxyl sulfate as a major, poorly dialyzable uremic toxin in end-stage renal disease.

    PubMed

    Jhawar, Sachin; Singh, Prabhjot; Torres, Daniel; Ramirez-Valle, Francisco; Kassem, Hania; Banerjee, Trina; Dolgalev, Igor; Heguy, Adriana; Zavadil, Jiri; Lowenstein, Jerome

    2015-01-01

    Chronic renal failure is characterized by progressive renal scarring and accelerated arteriosclerotic cardiovascular disease despite what is considered to be adequate hemodialysis or peritoneal dialysis. In rodents with reduced renal mass, renal scarring has been attributed to poorly filtered, small protein-bound molecules. The best studied of these is indoxyl sulfate (IS). We have attempted to establish whether there are uremic toxins that are not effectively removed by hemodialysis. We examined plasma from patients undergoing hemodialysis, employing global gene expression in normal human renal cortical cells incubated in pre- and post- dialysis plasma as a reporter system. Responses in cells incubated with pre- and post-dialysis uremic plasma (n = 10) were compared with responses elicited by plasma from control subjects (n = 5). The effects of adding IS to control plasma and of adding probenecid to uremic plasma were examined. Plasma concentrations of IS were measured by HPLC (high pressure liquid chromatography). Gene expression in our reporter system revealed dysregulation of 1912 genes in cells incubated with pre-dialysis uremic plasma. In cells incubated in post-dialysis plasma, the expression of 537 of those genes returned to baseline but the majority of them (1375) remained dysregulated. IS concentration was markedly elevated in pre- and post-dialysis plasma. Addition of IS to control plasma simulated more than 80% of the effects of uremic plasma on gene expression; the addition of probenecid, an organic anion transport (OAT) inhibitor, to uremic plasma reversed the changes in gene expression. These findings provide evidence that hemodialysis fails to effectively clear one or more solutes that effect gene expression, in our reporter system, from the plasma of patients with uremia. The finding that gene dysregulation was simulated by the addition of IS to control plasma and inhibited by addition of an OAT inhibitor to uremic plasma identifies IS as a major

  11. Thrombomodulin Mutations in Atypical Hemolytic–Uremic Syndrome

    PubMed Central

    Delvaeye, Mieke; Noris, Marina; De Vriese, Astrid; Esmon, Charles T.; Esmon, Naomi L.; Ferrell, Gary; Del-Favero, Jurgen; Plaisance, Stephane; Claes, Bart; Lambrechts, Diether; Zoja, Carla; Remuzzi, Giuseppe; Conway, Edward M.

    2012-01-01

    BACKGROUND The hemolytic–uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin–producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic–uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis. Approximately half of the patients with atypical hemolytic–uremic syndrome have mutations in genes that regulate the complement system. Genetic factors in the remaining cases are unknown. We studied the role of thrombomodulin, an endothelial glycoprotein with anticoagulant, antiinflammatory, and cytoprotective properties, in atypical hemolytic–uremic syndrome. METHODS We sequenced the entire thrombomodulin gene (THBD) in 152 patients with atypical hemolytic–uremic syndrome and in 380 controls. Using purified proteins and cell-expression systems, we investigated whether thrombomodulin regulates the complement system, and we characterized the mechanisms. We evaluated the effects of thrombomodulin missense mutations associated with atypical hemolytic–uremic syndrome on complement activation by expressing thrombomodulin variants in cultured cells. RESULTS Of 152 patients with atypical hemolytic–uremic syndrome, 7 unrelated patients had six different heterozygous missense THBD mutations. In vitro, thrombomodulin binds to C3b and factor H (CFH) and negatively regulates complement by accelerating factor I–mediated inactivation of C3b in the presence of cofactors, CFH or C4b binding protein. By promoting activation of the plasma procarboxypeptidase B, thrombomodulin also accelerates the inactivation of anaphylatoxins C3a and C5a. Cultured cells expressing thrombomodulin variants associated with atypical hemolytic–uremic syndrome had diminished capacity to inactivate C3b and to activate procarboxypeptidase B and were

  12. Genomic Comparison of Two O111:H- Enterohemorrhagic Escherichia coli Isolates from a Historic Hemolytic-Uremic Syndrome Outbreak in Australia.

    PubMed

    McAllister, Lauren J; Bent, Stephen J; Petty, Nicola K; Skippington, Elizabeth; Beatson, Scott A; Paton, James C; Paton, Adrienne W

    2016-01-04

    Enterohemorrhagic Escherichia coli (EHEC) is an important cause of diarrhea and hemolytic-uremic syndrome (HUS) worldwide. Australia's worst outbreak of HUS occurred in Adelaide in 1995 and was one of the first major HUS outbreaks attributed to a non-O157 Shiga-toxigenic E. coli (STEC) strain. Molecular analyses conducted at the time suggested that the outbreak was caused by an O111:H(-) clone, with strains from later in the outbreak harboring an extra copy of the genes encoding the potent Shiga toxin 2 (Stx2). Two decades later, we have used next-generation sequencing to compare two isolates from early and late in this important outbreak. We analyzed genetic content, single-nucleotide polymorphisms (SNPs), and prophage insertion sites; for the latter, we demonstrate how paired-end sequence data can be leveraged to identify such insertion sites. The two strains are genetically identical except for six SNP differences and the presence of not one but two additional Stx2-converting prophages in the later isolate. Isolates from later in the outbreak were associated with higher levels of morbidity, suggesting that the presence of the additional Stx2-converting prophages is significant in terms of the virulence of this clone. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Characterization of free lytic bacteriophages isolated from compost against O145 Shiga toxin-producing Escherichia coli (STEC) as a potential biocontrol agent

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing E. coli (STEC), one of the most prevalent foodborne pathogens, are notorious for hemolytic uremic syndrome (HUS) and causing high mortality among children and the elder population after infection. Besides O157 STEC, non-O157 STEC—particularly serogroup O145—is commonly associat...

  14. Understanding and Therapeutic Strategies of Chinese Medicine on Gut-Derived Uremic Toxins in Chronic Kidney Disease.

    PubMed

    Guo, Chuan; Rao, Xiang-Rong

    2018-05-11

    Chronic kidney disease (CKD) is a major disease that threatens human health. With the progression of CKD, the risk of cardiovascular death increases, which is associated with the elevated levels of uremic toxins (UTs). Representative toxins such as indoxyl sulfate and p-cresyl sulfate are involed in CKD progression and cardiovascular events inseparable from the key role of endothelial dysfunction. The therapeutic strategies of UTs are aimed at signaling pathways that target the levels and damage of toxins in modern medicine. There is a certain relevance between toxins and "turbid toxin" in the theory of Chinese medicine (CM). CM treatments have been demonstrated to reduce the damage of gut-derived toxins to the heart, kidney and blood vessels. Modern medicine still lacks evidence-based therapies, so it is necessary to explore the treatments of CM.

  15. Uric Acid: The Unknown Uremic Toxin.

    PubMed

    Treviño-Becerra, Alejandro

    2018-01-01

    This review brings together concepts of uric acid metabolism affecting renal parenchyma and its function and the current therapies to reduce hyperuricemia (HyU) and avoid renal disease progression. High uric acid plays an important role in several chronic diseases including kidney diseases such as lithiasis, gout nephropathy, and preeclampsia. In the last 30 years, it has been shown that reducing HyU with low protein and low purine diets in addition to allopurinol creates physiopathological conditions that produce a slight increase in the glomerular filtration rate (GFR). In recent years, in a new era of research in clinical, genetics, pharmacological, and epidemiologic fields, they have been moving forward to support the idea that reduction in HyU could benefit the chronic renal failure (CRF) patients (stage III-IV), thereby avoiding the drop of GFR for undefined mechanisms. There are several clinical trials in progress that show the HyU reducing to very low values and an increased GFR. In a young population, when treating HyU there is a reduction in high blood pressure. There are some reports showing that HyU could play a role in the diabetic nephropathy. Therefore, there have been some speculations that HyU treatment could stop the progression of CRF modifying the natural history of the diseases. So there will be new clinical trials with old and new medication and metabolic procedure to maintain a very low blood levels in the unknown uremic toxin know as uric acid which seems to be the toxin to the damage kidney. © 2018 S. Karger AG, Basel.

  16. Preservation of renal function in atypical hemolytic uremic syndrome by eculizumab: a case report.

    PubMed

    Giordano, Mario; Castellano, Giuseppe; Messina, Giovanni; Divella, Claretta; Bellantuono, Rosa; Puteo, Flora; Colella, Vincenzo; Depalo, Tommaso; Gesualdo, Loreto

    2012-11-01

    Genetic mutations in complement components are associated with the development of atypical hemolytic uremic syndrome (aHUS), a rare disease with high morbidity rate triggered by infections or unidentified factors. The uncontrolled activation of the alternative pathway of complement results in systemic endothelial damage leading to progressive development of renal failure. A previously healthy 8-month-old boy was referred to our hospital because of onset of fever, vomiting, and a single episode of nonbloody diarrhea. Acute kidney injury with preserved diuresis, hemolytic anemia, and thrombocytopenia were detected, and common protocols for management of HUS were followed without considerable improvement. The persistent low levels of complement component C3 led us to hypothesize the occurrence of aHUS. In fact, the child carried a specific mutation in complement factor H (Cfh; nonsense mutation in 3514G>T, serum levels of Cfh 138 mg/L, normal range 350-750). Given the lack of response to therapy and the occurrence of kidney failure requiring dialysis, we used eculizumab as rescue therapy, a monoclonal humanized antibody against the complement component C5. One week from the first administration, we observed a significant improvement of all clinical and laboratory parameters with complete recovery from hemodialysis, even in the presence of systemic infections. Our case report shows that complement inhibiting treatment allows the preservation of renal function and avoids disease relapses during systemic infections.

  17. Estimated Glomerular Filtration Rate Is a Poor Predictor of Concentration for a Broad Range of Uremic Toxins

    PubMed Central

    Schepers, Eva; Barreto, Daniela V.; Barreto, Fellype C.; Liabeuf, Sophie; Van Biesen, Wim; Verbeke, Francis; Glorieux, Griet; Choukroun, Gabriel; Massy, Ziad; Vanholder, Raymond

    2011-01-01

    Summary Background and objectives The degree of chronic kidney disease (CKD) is currently expressed in terms of GFR, which can be determined directly or estimated according to different formulas on the basis of serum creatinine and/or cystatin C measurements (estimated GFR [eGFR]). The purpose of this study was to investigate whether eGFR values are representative for uremic toxin concentrations in patients with different degrees of CKD. Design, setting, participants, & measurements Associations between eGFR based on serum cystatin C and different uremic solutes (mol wt range 113 to 240 D; determined by colorimetry, HPLC, or ELISA) were evaluated in 95 CKD patients not on dialysis (CKD stage 2 to 5). The same analysis was also applied for six other eGFR formulas. Results There was a substantial disparity in fits among solutes. In linear regression, explained variance of eGFR was extremely low for most solutes, with eGFR > 0.4 only for creatinine. The other eGFR formulations gave comparably disappointing results with regard to their association to uremic solutes. Relative similarity in R2 values per solute for the different eGFR values and the strong disparity in values between solutes suggest that the differences in R2 are mainly due to discrepancies in solute handling apart from GFR. Conclusions eGFR is poorly associated with concentrations of all studied uremic toxins in patients with different degrees of CKD, correlates differently with each individual solute, and can thus not be considered representative for evaluating the accumulation of solutes in the course of CKD. PMID:21617084

  18. The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin

    PubMed Central

    Perna, Alessandra F.; Zacchia, Miriam; Trepiccione, Francesco; Ingrosso, Diego

    2017-01-01

    Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their β-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-β-synthase (CBS) or cystathionine-γ-lyase (CSE) independently, in the alternate reactions of the transsulfuration pathway devoted to hydrogen sulfide biosynthesis. Low plasma total hydrogen sulfide levels, probably due to reduced CSE expression, are present in uremia, while homolanthionine and lanthionine accumulate in blood, the latter several fold. Uremic patients display a derangement of sulfur amino acid metabolism with a high prevalence of hyperhomocysteinemia. Uremia is associated with a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity, due to the accumulation of retention products. Lanthionine inhibits hydrogen sulfide production in hepatoma cells, possibly through CBS inhibition, thus providing some basis for the biochemical mechanism, which may significantly contribute to alterations of metabolism sulfur compounds in these subjects (e.g., high homocysteine and low hydrogen sulfide). We therefore suggest that lanthionine is a novel uremic toxin. PMID:28075397

  19. Whole-Genome Characterization and Strain Comparison of VT2f-Producing Escherichia coli Causing Hemolytic Uremic Syndrome

    PubMed Central

    Michelacci, Valeria; Bondì, Roslen; Gigliucci, Federica; Franz, Eelco; Badouei, Mahdi Askari; Schlager, Sabine; Minelli, Fabio; Tozzoli, Rosangela; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Verotoxigenic Escherichia coli infections in humans cause disease ranging from uncomplicated intestinal illnesses to bloody diarrhea and systemic sequelae, such as hemolytic uremic syndrome (HUS). Previous research indicated that pigeons may be a reservoir for a population of verotoxigenic E. coli producing the VT2f variant. We used whole-genome sequencing to characterize a set of VT2f-producing E. coli strains from human patients with diarrhea or HUS and from healthy pigeons. We describe a phage conveying the vtx2f genes and provide evidence that the strains causing milder diarrheal disease may be transmitted to humans from pigeons. The strains causing HUS could derive from VT2f phage acquisition by E. coli strains with a virulence genes asset resembling that of typical HUS-associated verotoxigenic E. coli. PMID:27584691

  20. A novel strategy for hemolytic uremic syndrome: successful treatment with thrombomodulin α.

    PubMed

    Honda, Takashi; Ogata, Shohei; Mineo, Eri; Nagamori, Yukako; Nakamura, Shinya; Bando, Yuki; Ishii, Masahiro

    2013-03-01

    Hemolytic uremic syndrome (HUS) is a life-threatening infectious disease in childhood for which there is no confirmed therapeutic strategy. Endothelial inflammation leading to microthrombosis formation via complement activation is the main pathology of HUS. Thrombomodulin is an endothelial membrane protein that has anticoagulation and anti-inflammatory effects, including the suppression of complement activity. Recombinant human soluble thrombomodulin (rTM) is a novel therapeutic medicine for disseminated intravascular coagulation. We administered rTM to 3 patients with HUS for 7 days and investigated the outcomes in view of the patients' prognoses, changes in biochemical markers, complications, and adverse effects of rTM. Symptoms and laboratory data improved after initiation of rTM in all 3 patients. Abnormal activation of complements was also dramatically suppressed in 1 patient. The patients recovered without any complications or adverse effects of rTM. They were discharged having normal neurologic status and with no renal dysfunction. To our knowledge, this is the first report of rTM being used to treat HUS. These case reports show the positive effect of rTM in patients with HUS. Randomized controlled studies should be performed to assess the efficacy and safety of rTM for children with HUS.

  1. Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2

    PubMed Central

    Kulkarni, Ashish A.; Fuller-Schaefer, Cynthia; Korman, Henry; Weiss, Alison A.; Iyer, Suri S.

    2011-01-01

    Shiga toxins (Stx) released by Escherichia coli O157:H7 and Shigella dysentriae, cause life-threatening conditions that include hemolytic-uremic syndrome (HUS), kidney failure and neurological complications. Cellular entry is mediated by the B subunit of the AB5 toxin, which recognizes cell surface glycolipids present in lipid raft like structures. We developed gold glyconanoparticles that present a multivalent display similar to the cell surface glycolipids to compete for these toxins. These highly soluble glyconanoparticles were nontoxic to the Vero monkey kidney cell line and protected Vero cells from Stx-mediated toxicity in a dose dependent manner. The inhibition is highly dependent on the structure and density of the glycans; selective inhibition of Stx1 and the more clinically relevant Stx2 was achieved. Interestingly, natural variants of Stx2, Stx2c and Stx2d, possessing minimal amino acid variation in the receptor binding site of the B subunit or changes in the A subunit were not neutralized by either the Stx1- or Stx2-specific gold glyconanoparticles. Our results suggest that tailored glyconanoparticles that mimic the natural display of glycans in lipid rafts could serve as potential therapeutics for Stx1 and Stx2. However, a few amino acid changes in emerging Stx2 variants can change receptor specificity, and further research is needed to develop receptor mimics for the emerging variants of Stx2. PMID:20669970

  2. Urea, a true uremic toxin: the empire strikes back.

    PubMed

    Lau, Wei Ling; Vaziri, Nosratola D

    2017-01-01

    Blood levels of urea rise with progressive decline in kidney function. Older studies examining acute urea infusion suggested that urea was well-tolerated at levels 8-10× above normal values. More recent in vitro and in vivo work argue the opposite and demonstrate both direct and indirect toxicities of urea, which probably promote the premature aging phenotype that is pervasive in chronic kidney disease (CKD). Elevated urea at concentrations typically encountered in uremic patients induces disintegration of the gut epithelial barrier, leading to translocation of bacterial toxins into the bloodstream and systemic inflammation. Urea induces apoptosis of vascular smooth muscle cells as well as endothelial dysfunction, thus directly promoting cardiovascular disease. Further, urea stimulates oxidative stress and dysfunction in adipocytes, leading to insulin resistance. Finally, there are widespread indirect effects of elevated urea as a result of the carbamylation reaction, where isocyanic acid (a product of urea catabolism) alters the structure and function of proteins in the body. Carbamylation has been linked with renal fibrosis, atherosclerosis and anaemia. In summary, urea is a re-emerging Dark Force in CKD pathophysiology. Trials examining low protein diet to minimize accumulation of urea and other toxins suggest a clinical benefit in terms of slowing progression of CKD. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. First case report of Moraxella osloensis diarrhea in a hemolytic uremic syndrome/acute renal failure child from rural coastal India-Manipal, Karnataka.

    PubMed

    Ballal, Mamatha; Martena, Suganthi

    2013-03-01

    The authors report a rare case of diarrhea caused by Moraxella osloensis in a pediatric child with Hemolytic Uremic Syndrome/Acute Renal Failure (HUS/ARF). A 6-y-old boy was referred to the Pediatric Unit with a 3 d history of bloody diarrhea with mucus and fever and decreased urine output for 6 d. Microbiological investigations were done as per CLSI guidelines. His diarrhea, and the subsequent renal failure resolved with appropriate treatment. To the best of authors' knowledge and pubmed search, this is the first case of M. osloensis causing diarrhea in a HUS/ARF pediatric patient reported from India-Manipal.

  4. Gemcitabine-induced hemolytic uremic syndrome mimicking scleroderma renal crisis presenting with Raynaud's phenomenon, positive antinuclear antibodies and hypertensive emergency.

    PubMed

    Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu

    2014-01-01

    A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.

  5. Acute dialysis-associated peritonitis in children with D+ hemolytic uremic syndrome.

    PubMed

    Adragna, Marta; Balestracci, Alejandro; García Chervo, Laura; Steinbrun, Silvina; Delgado, Norma; Briones, Liliana

    2012-04-01

    Acute peritoneal dialysis (PD) is the preferred therapy for renal replacement in children with post-diarrheal hemolytic uremic syndrome (D+ HUS), but peritonitis remains a frequent complication of this procedure. We reviewed data from 149 patients with D+ HUS who had undergone acute PD with the aim of determining the prevalence and risk factors for the development of peritonitis. A total of 36 patients (24.2%) presented peritonitis. The median onset of peritonitis manifestations was 6 (range 2-18) days after the initiation of dialysis treatment, and Gram-positive microorganisms were the predominant bacterial type isolated (15/36 patients). The patients were divided into two groups: with or without peritonitis, respectively. Univariate analysis revealed that a longer duration of the oligoanuric period, more days of dialysis, catheter replacement, stay in the intensive care unit, and hypoalbuminemia were significantly associated to the development of peritonitis. The multivariate analysis, controlled by duration of PD, identified the following independent risk factors for peritonitis: catheter replacement [p = 0.037, odds ratio (OR) 1.33, 95% confidence interval (CI) 1.02-1.73], stay in intensive care unit (p = 0.0001, OR 2.62, 95% CI 1.65-4.19), and hypoalbuminemia (p = 0.0076, OR 1.45, 95% CI 1.10-1.91). Based on these findings, we conclude that the optimization of the aseptic technique during catheter manipulation and early nutritional support are targets for the prevention of peritonitis, especially in critically ill patients.

  6. Significance of the DNA-Histone Complex Level as a Predictor of Major Adverse Cardiovascular Events in Hemodialysis Patients: The Effect of Uremic Toxin on DNA-Histone Complex Formation.

    PubMed

    Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung

    2016-01-01

    Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.

  7. Dehydration at admission increased the need for dialysis in hemolytic uremic syndrome children.

    PubMed

    Balestracci, Alejandro; Martin, Sandra Mariel; Toledo, Ismael; Alvarado, Caupolican; Wainsztein, Raquel Eva

    2012-08-01

    Oligoanuric forms of postdiarrheal hemolytic uremic syndrome (D+ HUS) usually have more severe acute stage and higher risk of chronic sequelae than nonoligoanuric forms. During the diarrheal phase, gastrointestinal losses could lead to dehydration with pre-renal injury enhancing the risk of oligoanuric D+ HUS. Furthermore, it had been shown that intravenous volume expansion during the prodromal phase could decrease the frequency of oligoanuric renal failure. Thus, we performed this retrospective study to determine whether dehydration on admission is associated with increased need for dialysis in D+ HUS patients. Data from 137 children was reviewed, which were divided into two groups according to their hydration status at admission: normohydrated (n = 86) and dehydrated (n = 51). Laboratory parameters of the dehydrated patients reflected expected deteriorations (higher urea, higher hematocrit and lower sodium, bicarbonate, and pH) than normohydrated ones. Likewise, the dehydrated group had a higher rate of vomiting and need for dialysis (70.6 versus 40.7 %, p = 0.0007). Our data suggests that dehydration at hospital admission might represent a concomitant factor aggravating the intrinsic renal disease in D+ HUS patients increasing the need for dialysis. Therefore, the early recognition of patients at risk of D+ HUS is encouraged to guarantee a well-hydrated status.

  8. Evaluation of Performance and Potential Clinical Impact of ProSpecT Shiga Toxin Escherichia coli Microplate Assay for Detection of Shiga Toxin-Producing E. coli in Stool Samples

    PubMed Central

    Gavin, Patrick J.; Peterson, Lance R.; Pasquariello, Anna C.; Blackburn, Joanna; Hamming, Mark G.; Kuo, Kuo J.; Thomson, Richard B.

    2004-01-01

    Shiga toxin-producing Escherichia coli bacteria (STEC) are emerging pathogens capable of producing sporadic and epidemic diarrhea, hemorrhagic colitis, and potentially life-threatening hemolytic-uremic syndrome. Although the presence of E. coli O157 can be readily detected in stool by sorbitol-MacConkey agar culture (SMAC), STEC non-O157 serotypes cannot. In contrast to culture, testing for the presence of Shiga toxins 1 and 2 in stool detects both O157 and non-O157 STEC serotypes capable of causing disease. Over two consecutive summers, we evaluated the performance of the ProSpecT Shiga toxin E. coli Microplate assay (Alexon-Trend, Ramsey, Minn.), an enzyme immunoassay for the detection of Shiga toxins 1 and 2, on all stools submitted for culture of enteric pathogens, and the potential clinical impact of Shiga toxin detection. Twenty-nine stool specimens were STEC positive by ProSpecT assay. Twenty-seven of 29 STEC-positive isolates were confirmed by SMAC and serotyping or by a second enzyme immunoassay and PCR (positive predictive value, 93%). Thirteen of 27 confirmed Shiga toxin-producing strains were serotype O157. The remaining 14 strains represented 8 other serotypes. The ProSpecT assay was 100% sensitive and specific for detection of E. coli O157 in stool (7 of 7) compared to SMAC. In addition, the ProSpecT assay detected twice as many STEC as SMAC. Fifty-two percent of confirmed STEC-positive stools were nonbloody. Thus, in our population, screening strategies that test only visibly bloody stools for STEC would miss a majority of cases. Eleven (41%) STEC-positive patients were hospitalized, and eight (30%) developed severe disease (two developed hemolytic-uremic syndrome, and six developed hemorrhagic colitis). Prior to detection of STEC infection, seven (26%) and eight patients (30%) underwent unnecessary diagnostic procedures or received potentially deleterious empirical treatment, respectively. We propose that establishing a specific diagnosis of STEC

  9. Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction.

    PubMed

    Fujii, Hideki; Goto, Shunsuke; Fukagawa, Masafumi

    2018-05-16

    With decreasing kidney function, cardiovascular disease (CVD) and mineral bone disorders frequently emerge in patients with chronic kidney disease (CKD). For these patients, in addition to the traditional risk factors, non-traditional CKD-specific risk factors are also associated with such diseases and conditions. One of these non-traditional risk factors is the accumulation of uremic toxins (UTs). In addition, the accumulation of UTs further deteriorates kidney function. Recently, a huge number of UTs have been identified. Although many experimental and clinical studies have reported associations between UTs and the progression of CKD, CVD, and bone disease, these relationships are very complex and have not been fully elucidated. Among the UTs, indoxyl sulfate, asymmetric dimethylarginine, and p -cresylsulfate have been of particular focus, up until now. In this review, we summarize the pathophysiological influences of these UTs on the kidney, cardiovascular system, and bone, and discuss the clinical data regarding the harmful effects of these UTs on diseases and conditions.

  10. Endemic Esherichia coil O157:H7 infections and hemolytic-uremic syndrome in Oklahoma, 2002-2005.

    PubMed

    Karpac, Charity A; Lee, Anthony; Kunnel, Binitha S; Bamgbola, Oluwatoyin F; Vesely, Sara K; George, James N

    2007-11-01

    Hemorrhagic enterocolitis caused by Escherichia coli O157:H7 and its complication of hemolytic-uremic syndrome (HUS) are well known from large outbreaks caused by contaminated meats and vegetables. However most cases may be endemic, not related to an outbreak. We identified cases of HUS in Oklahoma, 2002-2005, from the Inpatient Hospital Discharge Database of the Oklahoma State Department of Health (OSDH) and also the cases of HUS and E. coli O157:H7 reported to the OSDH. 110 cases of HUS were identified from the hospital discharge database; only 14 (12.7%) were reported to the OSDH; 122 cases of E. coli O157:H7 infections were reported to the OSDH. Of the 110 cases of HUS, only six (5.5%) patients in two separate clusters may have had a common source of infection. Although interpretation is limited by the few reports to OSDH, our data suggest that E. coli O157:H7 infections and HUS, presumably related to contaminated food, are endemic throughout Oklahoma.

  11. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference.

    PubMed

    Goodship, Timothy H J; Cook, H Terence; Fakhouri, Fadi; Fervenza, Fernando C; Frémeaux-Bacchi, Véronique; Kavanagh, David; Nester, Carla M; Noris, Marina; Pickering, Matthew C; Rodríguez de Córdoba, Santiago; Roumenina, Lubka T; Sethi, Sanjeev; Smith, Richard J H

    2017-03-01

    In both atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) complement plays a primary role in disease pathogenesis. Herein we report the outcome of a 2015 Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference where key issues in the management of these 2 diseases were considered by a global panel of experts. Areas addressed included renal pathology, clinical phenotype and assessment, genetic drivers of disease, acquired drivers of disease, and treatment strategies. In order to help guide clinicians who are caring for such patients, recommendations for best treatment strategies were discussed at length, providing the evidence base underpinning current treatment options. Knowledge gaps were identified and a prioritized research agenda was proposed to resolve outstanding controversial issues. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation.

    PubMed

    Valoti, Elisabetta; Alberti, Marta; Tortajada, Agustin; Garcia-Fernandez, Jesus; Gastoldi, Sara; Besso, Luca; Bresin, Elena; Remuzzi, Giuseppe; Rodriguez de Cordoba, Santiago; Noris, Marina

    2015-01-01

    Genomic aberrations affecting the genes encoding factor H (FH) and the five FH-related proteins (FHRs) have been described in patients with atypical hemolytic uremic syndrome (aHUS), a rare condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and ARF. These genomic rearrangements occur through nonallelic homologous recombinations caused by the presence of repeated homologous sequences in CFH and CFHR1-R5 genes. In this study, we found heterozygous genomic rearrangements among CFH and CFHR genes in 4.5% of patients with aHUS. CFH/CFHR rearrangements were associated with poor clinical prognosis and high risk of post-transplant recurrence. Five patients carried known CFH/CFHR1 genes, but we found a duplication leading to a novel CFHR1/CFH hybrid gene in a family with two affected subjects. The resulting fusion protein contains the first four short consensus repeats of FHR1 and the terminal short consensus repeat 20 of FH. In an FH-dependent hemolysis assay, we showed that the hybrid protein causes sheep erythrocyte lysis. Functional analysis of the FHR1 fraction purified from serum of heterozygous carriers of the CFHR1/CFH hybrid gene indicated that the FHR1/FH hybrid protein acts as a competitive antagonist of FH. Furthermore, sera from carriers of the hybrid CFHR1/CFH gene induced more C5b-9 deposition on endothelial cells than control serum. These results suggest that this novel genomic hybrid mediates disease pathogenesis through dysregulation of complement at the endothelial cell surface. We recommend that genetic screening of aHUS includes analysis of CFH and CFHR rearrangements, particularly before a kidney transplant. Copyright © 2015 by the American Society of Nephrology.

  13. Hemolytic-uremic syndrome with acute encephalopathy in a pregnant woman infected with epidemic enterohemorrhagic Escherichia coli: characteristic brain images and cytokine profiles.

    PubMed

    Ito, M; Shiozaki, A; Shimizu, M; Saito, S

    2015-05-01

    A food-poisoning outbreak due to enterohemorrhagic Escherichia coli (EHEC) occurred in Toyama, Japan. The case of a 26-year-old pregnant woman with hemolytic-uremic syndrome who developed acute encephalopathy due to EHEC infection after eating raw meat is presented herein. On day 2 following admission, a cesarean section was performed because of a non-reassuring fetal status. Fecal bacterial culture confirmed an O111/O157 superinfection. Intensive care therapies including continuous hemodiafiltration and plasma exchange were performed. After the operation, the patient developed encephalopathy for which steroid pulse therapy was added. Her condition improved gradually and she was discharged 55 days after delivery. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  15. Virulence profiling and quantification of verocytotoxin-producing Escherichia coli O145:H28 and O26:H11 isolated during an ice cream-related hemolytic uremic syndrome outbreak.

    PubMed

    Buvens, Glenn; Possé, Björn; De Schrijver, Koen; De Zutter, Lieven; Lauwers, Sabine; Piérard, Denis

    2011-03-01

    In September-October 2007, a mixed-serotype outbreak of verocytotoxin-producing Escherichia coli (VTEC) O145:H28 and O26:H11 occurred in the province of Antwerp, Belgium. Five girls aged between 2 and 11 years developed hemolytic uremic syndrome, and seven other coexposed persons with bloody diarrhea were identified. Laboratory confirmation of O145:H28 infection was obtained for three hemolytic uremic syndrome patients, one of whom was coinfected with O26:H11. The epidemiological and laboratory investigations revealed ice cream as the most likely source of the outbreak. The ice cream was produced at a local dairy farm using pasteurized milk. VTEC of both serotypes with indistinguishable pulsed-field gel electrophoresis patterns were isolated from patients, ice cream, and environmental samples. Quantitative analysis of the ice cream indicated concentrations of 2.4 and 0.03 CFU/g for VTEC O145 and O26, respectively. Virulence typing revealed that the repertoire of virulence genes carried by the O145:H28 outbreak strain was comparable to that of O157 VTEC and more exhaustive as compared to the O26:H11 outbreak strain and nonrelated clinical strains belonging to these serotypes. Taken together, these data suggest that O145:H28 played the most important role in this outbreak.

  16. [Clinical and metabolic consequences of uremic toxicity].

    PubMed

    Rutkowski, Przemysław

    2006-01-01

    Retention of many substances takes place in the pathogenesis of uremic toxicity. There are almost 100 different molecules described and defined as uremic toxins. These substances are divided into three groups according to EUTOX group calssification. Small water soluble molecules with a molecular weight less than 500 D are included into the first group. Derivate of guanidines, purines, pyrimidines and methyloamines appeared in this group. There is also an unclassified subgroup with urea as a "classical" toxin which the real role in the uraemic syndrome is still discussed. Main symptoms caused by these molecules are digestive disturbances, neurological changes, hypertension etc. We can eliminate almost all of these toxins with standard methods used during dialysotherapy. Substances with a different molecular weight but connected with proteins determine the second group. AGE-s, phenol derivates, leptin and poliamines beside others create this group. There are many studies that have proved that these toxins cause hypertension, arteriosclerosis and shortened life time of hemodialysed patients. However, melatonin toxicity is not fully proved. Different types of renal replacement therapy are not valid to purify blood from protein-bound substances. Middle molecules are included into the third group, with a molecular weight higher than 500 D. There are cytokines, neuro-transmitters e.g. beta-endorphin, metencephalin and many others accounted into this group. One of them is the parathormon, well known and considered as "universal" toxin for several years. Middle molecules are causing very different effects. They are responsible for: anemia, arteriosclerosis, chronic inflammation and generally increase dialysed patient mortality. Toxic action of several molecules described below is still not proved; however there are some ongoing studies aimed to find pathophysiological links between old and new described uremic toxins.

  17. Enterohemorrhagic Escherichia coli as Causes of Hemolytic Uremic Syndrome in the Czech Republic

    PubMed Central

    Marejková, Monika; Bláhová, Květa; Janda, Jan; Fruth, Angelika; Petráš, Petr

    2013-01-01

    Background Enterohemorrhagic Escherichia coli (EHEC) cause diarrhea-associated hemolytic uremic syndrome (D+ HUS) worldwide, but no systematic study of EHEC as the causative agents of HUS was performed in the Czech Republic. We analyzed stools of all patients with D+ HUS in the Czech Republic between 1998 and 2012 for evidence of EHEC infection. We determined virulence profiles, phenotypes, antimicrobial susceptibilities and phylogeny of the EHEC isolates. Methodology/Principal Findings Virulence loci were identified using PCR, phenotypes and antimicrobial susceptibilities were determined using standard procedures, and phylogeny was assessed using multilocus sequence typing. During the 15-year period, EHEC were isolated from stools of 39 (69.4%) of 56 patients. The strains belonged to serotypes [fliC types] O157:H7/NM[fliC H7] (50% of which were sorbitol-fermenting; SF), O26:H11/NM[fliC H11], O55:NM[fliC H7], O111:NM[fliC H8], O145:H28[fliC H28], O172:NM[fliC H25], and Orough:NM[fliC H25]. O26:H11/NM[fliC H11] was the most common serotype associated with HUS (41% isolates). Five stx genotypes were identified, the most frequent being stx 2a (71.1% isolates). Most strains contained EHEC-hlyA encoding EHEC hemolysin, and a subset (all SF O157:NM and one O157:H7) harbored cdt-V encoding cytolethal distending toxin. espPα encoding serine protease EspPα was found in EHEC O157:H7, O26:H11/NM, and O145:H28, whereas O172:NM and Orough:NM strains contained espPγ. All isolates contained eae encoding adhesin intimin, which belonged to subtypes β (O26), γ (O55, O145, O157), γ2/θ (O111), and ε (O172, Orough). Loci encoding other adhesins (efa1, lpfA O26, lpfA O157OI-141, lpfA O157OI-154, iha) were usually associated with particular serotypes. Phylogenetic analysis demonstrated nine sequence types (STs) which correlated with serotypes. Of these, two STs (ST660 and ST1595) were not found in HUS-associated EHEC before. Conclusions/Significance EHEC strains, including O157:H

  18. Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis

    PubMed Central

    Deltombe, Olivier; Van Biesen, Wim; Glorieux, Griet; Massy, Ziad; Dhondt, Annemieke; Eloot, Sunny

    2015-01-01

    As protein binding of uremic toxins is not well understood, neither in chronic kidney disease (CKD) progression, nor during a hemodialysis (HD) session, we studied protein binding in two cross-sectional studies. Ninety-five CKD 2 to 5 patients and ten stable hemodialysis patients were included. Blood samples were taken either during the routine ambulatory visit (CKD patients) or from blood inlet and outlet line during dialysis (HD patients). Total (CT) and free concentrations were determined of p-cresylglucuronide (pCG), hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS) and p-cresylsulfate (pCS), and their percentage protein binding (%PB) was calculated. In CKD patients, %PB/CT resulted in a positive correlation (all p < 0.001) with renal function for all five uremic toxins. In HD patients, %PB was increased after 120 min of dialysis for HA and at the dialysis end for the stronger (IAA) and the highly-bound (IS and pCS) solutes. During one passage through the dialyzer at 120 min, %PB was increased for HA (borderline), IAA, IS and pCS. These findings explain why protein-bound solutes are difficult to remove by dialysis: a combination of the fact that (i) only the free fraction can pass the filter and (ii) the equilibrium, as it was pre-dialysis, cannot be restored during the dialysis session, as it is continuously disturbed. PMID:26426048

  19. Molecular Basis for Group B β -hemolytic Streptococcal Disease

    NASA Astrophysics Data System (ADS)

    Hellerqvist, Carl G.; Sundell, Hakan; Gettins, Peter

    1987-01-01

    Group B β -hemolytic Streptococcus (GBS) is a major pathogen affecting newborns. We have investigated the molecular mechanism underlying the respiratory distress induced in sheep after intravenous injection of a toxin produced by this organism. The pathophysiological response is characterized by pulmonary hypertension, followed by granulocytopenia and increased pulmonary vascular permeability to protein. 31P NMR studies of GBS toxin and model components before and after reductive alkaline hydrolysis demonstrated that phosphodiester residues are an integral part of the GBS toxin. Reductive alkaline treatment cleaves phosphate esters from secondary and primary alcohols and renders GBS toxin nontoxic in the sheep model and inactive as a mediator of elastase release in vitro from isolated human granulocytes. We propose that the interaction of cellular receptors with mannosyl phosphodiester groups plays an essential role in the pathophysiological response to GBS toxin.

  20. A De Novo Deletion in the Regulators of Complement Activation Cluster Producing a Hybrid Complement Factor H/Complement Factor H-Related 3 Gene in Atypical Hemolytic Uremic Syndrome.

    PubMed

    Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David

    2016-06-01

    The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. Copyright © 2016 by the American Society of Nephrology.

  1. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease

    PubMed Central

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B.; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-01-01

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes. PMID:28498348

  2. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease.

    PubMed

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-05-12

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.

  3. Intermediate Follow-up of Pediatric Patients With Hemolytic Uremic Syndrome During the 2011 Outbreak Caused by E. coli O104:H4.

    PubMed

    Loos, Sebastian; Aulbert, Wiebke; Hoppe, Bernd; Ahlenstiel-Grunow, Thurid; Kranz, Birgitta; Wahl, Charlotte; Staude, Hagen; Humberg, Alexander; Benz, Kerstin; Krause, Martin; Pohl, Martin; Liebau, Max C; Schild, Raphael; Lemke, Johanna; Beringer, Ortraud; Müller, Dominik; Härtel, Christoph; Wigger, Marianne; Vester, Udo; Konrad, Martin; Haffner, Dieter; Pape, Lars; Oh, Jun; Kemper, Markus J

    2017-06-15

    In 2011 Escherichia coli O104:H4 caused an outbreak with >800 cases of hemolytic uremic syndrome (HUS) in Germany, including 90 children. Data on the intermediate outcome in children after HUS due to E. coli O104:H4 have been lacking. Follow-up data were gathered retrospectively from the medical records of patients who had been included in the German Pediatric HUS Registry during the 2011 outbreak. Seventy-two of the 89 (81%) patients were included after a median follow-up of 3.0 (0.9-4.7) years. Hypertension and proteinuria were present in 19% and 28% of these patients, respectively. Of 4 patients with chronic kidney disease (CKD) > stage 2 at short-term follow-up, 1 had a normalized estimated glomerular filtration rate, and 3 (4%) had persistent CKD > stage 2. In 1 of these patients, CKD improved from stage 4 to 3; 1 who had CKD stage 5 at presentation received kidney transplantation; and 1 patient required further hemodialysis during follow-up. One patient (1.4%) still had major neurological symptoms at the latest follow-up. Dialysis during the acute phase (P = .01), dialysis duration (P = .01), and the duration of oligo-/anuria (P = .005) were associated with the development of renal sequelae. Patients treated with eculizumab (n = 11) and/or plasmapheresis (n = 13) during the acute phase of HUS had comparable outcomes. The overall outcome of pediatric patients after HUS due to E. coli O104:H4 was equivalent to previous reports on HUS due to other types of Shiga toxin-producing E. coli (STEC). Regular follow-up visits in patients are recommended after STEC-HUS. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  4. Efficacy of rituximab and plasmapharesis in an adult patient with antifactor H autoantibody-associated hemolytic uremic syndrome

    PubMed Central

    Deville, Clemence; Garrouste, Cyril; Coppo, Paul; Evrard, Bertrand; Lautrette, Alexandre; Heng, Anne Elisabeth

    2016-01-01

    Abstract Antifactor H antibody (anti-CFHAb) is found in 6% to 25% cases of atypical hemolytic uremic syndrome (aHUS) in children, but has been only exceptionally reported in adults. There is no consensus about the best treatment for this type of aHUS. We report the case of an adult patient treated successfully with plasma exchange (PE), steroids, and rituximab. A 27-year-old Caucasian male presented to hospital with anemia, thrombocytopenia, and acute renal failure. One week earlier, he had digestive problems with diarrhea. The diagnosis of anti-CFHAb-associated aHUS (82,000 AU/mL) without CFHR gene mutations was established. He received Rituximab 375 mg/m2 (4 pulses) with PE and steroids. This treatment achieved renal and hematological remission at day (D) 31 and negative anti-CFHAb at D45 (<100 AU/mL). At D76, a fifth rituximab pulse was performed while CD19 was higher than 10/mm3. Steroids were stopped at month (M) 9. The patient has not relapsed during long-term follow-up (M39). Rituximab therapy can be considered for anti-CFHAb-associated aHUS. Monitoring of anti-CFHAb titer may help to guide maintenance therapeutic strategies including Rituximab infusion. PMID:27684863

  5. Does Low-Protein Diet Influence the Uremic Toxin Serum Levels From the Gut Microbiota in Nondialysis Chronic Kidney Disease Patients?

    PubMed

    Black, Ana Paula; Anjos, Juliana S; Cardozo, Ludmila; Carmo, Flávia L; Dolenga, Carla J; Nakao, Lia S; de Carvalho Ferreira, Dennis; Rosado, Alexandre; Carraro Eduardo, José Carlos; Mafra, Denise

    2018-05-01

    To evaluate the effects of low-protein diet (LPD) on uremic toxins and the gut microbiota profile in nondialysis chronic kidney disease (CKD) patients. Longitudinal study with 30 nondialysis CKD patients (stage 3-4) undergoing LPD for 6 months. Adherence to the diet was evaluated based on the calculation of protein equivalent of nitrogen appearance from the 24-hour urine analysis. Good adherence to LPD was considered when protein intake was from 90% to 110% of the prescribed amount (0.6 g/kg/day). Food intake was analyzed by the 24-hour recall method. The anthropometric, biochemical and lipid profile parameters were measured according to standard methods. Uremic toxin serum levels (indoxyl sulfate, p-cresyl sulfate, indole-3-acetic acid) were obtained by reversed-phase high-performance liquid chromatography (RP-HPLC). Fecal samples were collected to evaluate the gut microbiota profile through polymerase chain reaction and denaturing gradient gel electrophoresis. Statistical analysis was performed by the SPSS 23.0 program software. Patients who adhered to the diet (n = 14) (0.7 ± 0.2 g/kg/day) presented an improvement in renal function (nonsignificant) and reduction in total and low-density lipoprotein cholesterol (183.9 ± 48.5-155.7 ± 37.2 mg/dL, P = .01; 99.4 ± 41.3-76.4 ± 33.2 mg/dL, P = .01, respectively). After 6 months of nutricional intervention, p-cresyl sulfate serum levels were reduced significantly in patients who adhered to the LPD (19.3 [9.6-24.7] to 15.5 [9.8-24.1] mg/L, P = .03), and in contrast, the levels were increased in patients who did not adhere (13.9 [8.0-24.8] to 24.3 [8.1-39.2] mg/L, P = .004). In addition, using the denaturing gradient gel electrophoresis technique, it was observed change in the intestinal microbiota profile after LPD intervention in both groups, and the number of bands was positively associated with protein intake (r = 0.44, P = .04). LPD seems be a good strategy to reduce the uremic

  6. End-stage renal disease from hemolytic uremic syndrome in the United States, 1995-2010.

    PubMed

    Sexton, Donal J; Reule, Scott; Solid, Craig A; Chen, Shu-Cheng; Collins, Allan J; Foley, Robert N

    2015-10-01

    Management of hemolytic uremic syndrome (HUS) has evolved rapidly, and optimal treatment strategies are controversial. However, it is unknown whether the burden of end-stage renal disease (ESRD) from HUS has changed, and outcomes on dialysis in the United States are not well described. We retrospectively examined data for patients initiating maintenance renal replacement therapy (RRT) (n = 1,557,117), 1995-2010, to define standardized incidence ratios (SIRs) and outcomes of ESRD from HUS) (n = 2241). Overall ESRD rates from HUS in 2001-2002 were 0.5 cases/million per year and were higher for patients characterized by age 40-64 years (0.6), ≥65 years (0.7), female sex (0.6), and non-Hispanic African American race (0.7). Standardized incidence ratios remained unchanged (P ≥ 0.05) between 2001-2002 and 2009-2010 in the overall population. Compared with patients with ESRD from other causes, patients with HUS were more likely to be younger, female, white, and non-Hispanic. Over 5.4 years of follow-up, HUS patients differed from matched controls with ESRD from other causes by lower rates of death (8.3 per 100 person-years in cases vs. 10.4 in controls, P < 0.001), listing for renal transplant (7.6 vs. 8.6 per 100 person-years, P = 0.04), and undergoing transplant (6.9 vs. 9 per 100 person-years, P < 0.001). The incidence of ESRD from HUS appears not to have risen substantially in the last decade. However, given that HUS subtypes could not be determined in this study, these findings should be interpreted with caution. © 2015 International Society for Hemodialysis.

  7. Serum Shiga toxin 2 values in patients during the acute phase of diarrhoea-associated hemolytic uremic syndrome

    USDA-ARS?s Scientific Manuscript database

    Aim: Shiga toxins, Stx-1 and Stx-2, by injuring endothelial cells mainly of the glomeruli, are considered as the cause of D+HUS. After passing through the intestinal wall, Stxs have to be delivered via the systemic circulation to the target organs. This study was aimed at measuring free Stx-2 in ser...

  8. Shiga Toxin Mediated Neurologic Changes in Murine Model of Disease.

    PubMed

    Pradhan, Suman; Pellino, Christine; MacMaster, Kayleigh; Coyle, Dennis; Weiss, Alison A

    2016-01-01

    Seizures and neurologic involvement have been reported in patients infected with Shiga toxin (Stx) producing E. coli , and hemolytic uremic syndrome (HUS) with neurologic involvement is associated with more severe outcome. We investigated the extent of renal and neurologic damage in mice following injection of the highly potent form of Stx, Stx2a, and less potent Stx1. As observed in previous studies, Stx2a brought about moderate to acute tubular necrosis of proximal and distal tubules in the kidneys. Brain sections stained with hematoxylin and eosin (H&E) appeared normal, although some red blood cell congestion was observed. Microglial cell responses to neural injury include up-regulation of surface-marker expression (e.g., Iba1) and stereotypical morphological changes. Mice injected with Stx2a showed increased Iba1 staining, mild morphological changes associated with microglial activation (thickening of processes), and increased microglial staining per unit area. Microglial changes were observed in the cortex, hippocampus, and amygdala regions, but not the nucleus. Magnetic resonance imaging (MRI) of Stx2a-treated mice revealed no hyper-intensities in the brain, although magnetic resonance spectroscopy (MRS) revealed significantly decreased levels of phosphocreatine in the thalamus. Less dramatic changes were observed following Stx1 challenge. Neither immortalized microvascular endothelial cells from the cerebral cortex of mice (bEnd.3) nor primary human brain microvascular endothelial cells were found to be susceptible to Stx1 or Stx2a. The lack of susceptibility to Stx for both cell types correlated with an absence of receptor expression. These studies indicate Stx causes subtle, but identifiable changes in the mouse brain.

  9. Microalbuminuria and early renal response to lethal dose Shiga toxin type 2 in rats.

    PubMed

    Ochoa, Federico; Oltra, Gisela; Gerhardt, Elizabeth; Hermes, Ricardo; Cohen, Lilian; Damiano, Alicia E; Ibarra, Cristina; Lago, Nestor R; Zotta, Elsa

    2012-01-01

    In Argentina, hemolytic uremic syndrome (HUS) constitutes the most frequent cause of acute renal failure in children. Approximately 2%-4% of patients die during the acute phase, and one-third of the 96% who survive are at risk of chronic renal sequelae. Little information is available about the direct effect of Shiga toxin type 2 (Stx2) on the onset of proteinuria and the evolution of toxin-mediated glomerular or tubular injury. In this work, rats were injected intraperitoneally with recombinant Escherichia coli culture supernatant containing Stx2 (sStx2; 20 μg/kg body weight) to induce HUS. Functional, immunoblotting, and immunohistochemistry studies were carried out to determine alterations in slit diaphragm proteins and the proximal tubule endocytic system at 48 hours post-inoculation. We detected a significant increase in microalbuminuria, without changes in the proteinuria values compared to the control rats. In immunoperoxidase studies, the renal tubules and glomerular mesangium showed an increased expression of transforming growth factor β(1)(TGF-β(1)). The expression of megalin was decreased by immunoperoxidase and the cytoplasm showed a granular pattern of megalin expression by immunofluorescence techniques. Western blot analysis performed in the renal cortex from sStx2-treated and control rats using anti-nephrin and anti-podocalyxin antibodies showed a decreased expression of these proteins. We suggest that the alterations in slit diaphragm proteins and megalin expression could be related to the development of microalbuminuria in response to lethal doses of Stx2.

  10. Prevention of renal damage caused by Shiga toxin type 2: Action of Miglustat on human endothelial and epithelial cells.

    PubMed

    Girard, Magalí C; Sacerdoti, Flavia; Rivera, Fulton P; Repetto, Horacio A; Ibarra, Cristina; Amaral, María M

    2015-10-01

    Typical hemolytic uremic syndrome (HUS) is responsible for acute and chronic renal failure in children younger than 5 years old in Argentina. Renal damages have been associated with Shiga toxin type 1 and/or 2 (Stx1, Stx2) produced by Escherichia coli O157:H7, although strains expressing Stx2 are highly prevalent in Argentina. Human glomerular endothelial cells (HGEC) and proximal tubule epithelial cells are very Stx-sensitive since they express high levels of Stx receptor (Gb3). Nowadays, there is no available therapy to protect patients from acute toxin-mediated cellular injury. New strategies have been developed based on the Gb3 biosynthesis inhibition through blocking the enzyme glucosylceramide (GL1) synthase. We assayed the action of a GL1 inhibitor (Miglustat: MG), on the prevention of the renal damage induced by Stx2. HGEC primary cultures and HK-2 cell line were pre-treated with MG and then incubated with Stx2. HK- 2 and HGEC express Gb3 and MG was able to decrease the levels of this receptor. As a consequence, both types of cells were protected from Stx2 cytotoxicity and morphology damage. MG was able to avoid Stx2 effects in human renal cells and could be a feasible strategy to protect kidney tissues from the cytotoxic effects of Stx2 in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Exploiting the Nephrotoxic Effects of Venom from the Sea Anemone, Phyllodiscus semoni, to Create a Hemolytic Uremic Syndrome Model in the Rat

    PubMed Central

    Mizuno, Masashi; Ito, Yasuhiko; Morgan, B. Paul

    2012-01-01

    In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS. PMID:22851928

  12. Novel monoclonal antibodies against Stx1d and 1e and their use for improvement of immunoassays

    USDA-ARS?s Scientific Manuscript database

    Shiga toxins (Stxs) are major causative agents for bloody diarrhea and hemolytic uremic syndrome, a life-threatening disease in humans. No effective treatment is available. Early detection of Stxs in clinical samples is critical for disease management. As bacteria evolve, new Stxs are produced; ther...

  13. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City.

    PubMed

    Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela

    2016-01-01

    Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii , and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx 1 /stx 2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD 50 ) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas , and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS.

  14. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City

    PubMed Central

    Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J.; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela

    2016-01-01

    Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii, and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx1/stx2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD50) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas, and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS. PMID:27725813

  15. Variant-specific quantification of factor H in plasma reveals null alleles associated with atypical hemolytic uremic syndrome

    PubMed Central

    Hakobyan, Svetlana; Tortajada, Agustín; Harris, Claire L.; de Córdoba, Santiago Rodríguez; Morgan, B. Paul

    2011-01-01

    Atypical hemolytic uremic syndrome (aHUS) associates with complement alternative pathway defects in over 50% of cases. Mutations in factor H (fH) are most common, usually point mutations affecting complement surface regulation and sometimes null mutations in heterozygosity. The latter are difficult to identify; although consistently low plasma fH concentration is suggestive, definitive proof has required the demonstration that the mutant sequence does not express in vitro. Here, novel reagents and assays that distinguish and individually quantify the common fH-Y402H polymorphic variants were used to identify alleles of the CFH gene resulting in low or no (‘null’) expression of full-length fH, but normal or increased expression of the alternative splice product FHL-1, also detected in these assays. Their use in an aHUS cohort identified three Y402H heterozygotes with low or absent fH-H402 but normal or increased FHL-1 levels. Novel mutations in heterozygosis explained the null phenotype in two cases, confirmed by family studies in one. In the third case, family studies showed that a known mutation was present on the Y allele; the cause of the reduced expression of H allele was not found, although data suggested altered fH/FHL-1 splicing. In each family, inheritance of “low expression” or “null” alleles for fH strongly associated with aHUS. These assays provide a rapid means to identify fH expression defects in aHUS without resorting to gene sequencing or expression analysis. PMID:20703214

  16. Recombinant Human Erythropoietin Therapy for a Jehovah's Witness Child With Severe Anemia due to Hemolytic-Uremic Syndrome.

    PubMed

    Woo, Da Eun; Lee, Jae Min; Kim, Yu Kyung; Park, Yong Hoon

    2016-02-01

    Patients with hemolytic-uremic syndrome (HUS) can rapidly develop profound anemia as the disease progresses, as a consequence of red blood cell (RBC) hemolysis and inadequate erythropoietin synthesis. Therefore, RBC transfusion should be considered in HUS patients with severe anemia to avoid cardiac or pulmonary complications. Most patients who are Jehovah's Witnesses refuse blood transfusion, even in the face of life-threatening medical conditions due to their religious convictions. These patients require management alternatives to blood transfusions. Erythropoietin is a glycopeptide that enhances endogenous erythropoiesis in the bone marrow. With the availability of recombinant human erythropoietin (rHuEPO), several authors have reported its successful use in patients refusing blood transfusion. However, the optimal dose and duration of treatment with rHuEPO are not established. We report a case of a 2-year-old boy with diarrhea-associated HUS whose family members are Jehovah's Witnesses. He had severe anemia with acute kidney injury. His lowest hemoglobin level was 3.6 g/dL, but his parents refused treatment with packed RBC transfusion due to their religious beliefs. Therefore, we treated him with high-dose rHuEPO (300 IU/kg/day) as well as folic acid, vitamin B12, and intravenous iron. The hemoglobin level increased steadily to 7.4 g/dL after 10 days of treatment and his renal function improved without any complications. To our knowledge, this is the first case of successful rHuEPO treatment in a Jehovah's Witness child with severe anemia due to HUS.

  17. Association of nucleotide polymorphisms within the O-antigen gene cluster of Escherichia coli O26, O45, O103, O111, O121, and O145 with serogroups and genetic subtypes

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin-producing Escherichia coli (STEC) cause severe disease and hemorrhagic colitis in humans. Of the STECs, E. coli O157:H7 is the most widely recognized and researched serotype, and the majority of cases of hemolytic-uremic syndrome in the United States are associated with this serotype. ...

  18. Effects of sugar addition in luria bertania (LB) media on Escherichia coli 0157:H7

    USDA-ARS?s Scientific Manuscript database

    Human pathogenic E. coli O157:H7 produces Shiga-like toxins (SLT) that causes hemolytic uremic syndrome. Typically SLT are released when a bacterium lyses but the mechanism on controlling SLT production is not clearly understood. This paper studies the growth and cell growth and metabolism of the ...

  19. Shiga Toxin-Producing Escherichia coli O104:H4: a New Challenge for Microbiology

    PubMed Central

    Muniesa, Maite; Hammerl, Jens A.; Hertwig, Stefan; Appel, Bernd

    2012-01-01

    In 2011, Germany experienced the largest outbreak with a Shiga toxin-producing Escherichia coli (STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregative E. coli (EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagic E. coli (EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment. PMID:22504816

  20. Angiotensinogen and interleukin-18 as markers of chronic kidney damage in children with a history of hemolytic uremic syndrome.

    PubMed

    Lipiec, K; Adamczyk, P; Świętochowska, E; Ziora, K; Szczepańska, M

    2017-05-04

    Hemolytic uremic syndrome (HUS) is a type of thrombotic microangiopathy, in the course of which some patients may develop chronic kidney disease (CKD). It is clinically important to investigate the markers of a poor prognosis. The levels of angiotensinogen (AGT) and interleukin-18 (IL-18) in serum and urine were evaluated. Study was conducted in 29 children with a history of HUS. Serum and urine AGT concentration was significantly higher in children after HUS as compared to the control group. No differences depending on the type of HUS and gender were noted. The serum concentration of IL-18 in children after HUS was significantly lower, whereas in urine did not differ significantly between the sick and healthy children. A negative correlation between the concentration of AGT in serum and albuminuria in patients after HUS was detected. The results indicate that the concentration of AGT in serum and urine in children after HUS increases, which may indicate the activation of the intrarenal renin-angiotensin-aldosterone system. The statement, that AGT may be a good biomarker of CKD after acute kidney injury due to HUS requires prospective studies with follow-up from the acute phase of the disease on a larger group of patients. Reduced IL-18 serum concentration in children after HUS with no difference in its urine concentration may indicate a loss of the protective effects of this cytokine on renal function due to previously occurred HUS.

  1. A Translational Murine Model of Sub-Lethal Intoxication with Shiga Toxin 2 Reveals Novel Ultrastructural Findings in the Brain Striatum

    PubMed Central

    Tironi-Farinati, Carla; Geoghegan, Patricia A.; Cangelosi, Adriana; Pinto, Alipio; Loidl, C. Fabian; Goldstein, Jorge

    2013-01-01

    Infection by Shiga toxin-producing Escherichia coli causes hemorrhagic colitis, hemolytic uremic syndrome (HUS), acute renal failure, and also central nervous system complications in around 30% of the children affected. Besides, neurological deficits are one of the most unrepairable and untreatable outcomes of HUS. Study of the striatum is relevant because basal ganglia are one of the brain areas most commonly affected in patients that have suffered from HUS and since the deleterious effects of a sub-lethal dose of Shiga toxin have never been studied in the striatum, the purpose of this study was to attempt to simulate an infection by Shiga toxin-producing E. coli in a murine model. To this end, intravenous administration of a sub-lethal dose of Shiga toxin 2 (0.5 ηg per mouse) was used and the correlation between neurological manifestations and ultrastructural changes in striatal brain cells was studied in detail. Neurological manifestations included significant motor behavior abnormalities in spontaneous motor activity, gait, pelvic elevation and hind limb activity eight days after administration of the toxin. Transmission electron microscopy revealed that the toxin caused early perivascular edema two days after administration, as well as significant damage in astrocytes four days after administration and significant damage in neurons and oligodendrocytes eight days after administration. Interrupted synapses and mast cell extravasation were also found eight days after administration of the toxin. We thus conclude that the chronological order of events observed in the striatum could explain the neurological disorders found eight days after administration of the toxin. PMID:23383285

  2. Enterohemorrhagic Escherichia coli Hybrid Pathotype O80:H2 as a New Therapeutic Challenge

    PubMed Central

    Soysal, Nurcan; Mariani-Kurkdjian, Patricia; Smail, Yasmine; Liguori, Sandrine; Gouali, Malika; Loukiadis, Estelle; Fach, Patrick; Bruyand, Mathias; Blanco, Jorge; Bidet, Philippe

    2016-01-01

    We describe the epidemiology, clinical features, and molecular characterization of enterohemorrhagic Escherichia coli (EHEC) infections caused by the singular hybrid pathotype O80:H2, and we examine the influence of antibiotics on Shiga toxin production. In France, during 2005–2014, a total of 54 patients were infected with EHEC O80:H2; 91% had hemolytic uremic syndrome. Two patients had invasive infections, and 2 died. All strains carried stx2 (variants stx2a, 2c, or 2d); the rare intimin gene (eae-ξ); and at least 4 genes characteristic of pS88, a plasmid associated with extraintestinal virulence. Similar strains were found in Spain. All isolates belonged to the same clonal group. At subinhibitory concentrations, azithromycin decreased Shiga toxin production significantly, ciprofloxacin increased it substantially, and ceftriaxone had no major effect. Antibiotic combinations that included azithromycin also were tested. EHEC O80:H2, which can induce hemolytic uremic syndrome complicated by bacteremia, is emerging in France. However, azithromycin might effectively combat these infections. PMID:27533474

  3. Charged and Hydrophobic Surfaces on the A Chain of Shiga-Like Toxin 1 Recognize the C-Terminal Domain of Ribosomal Stalk Proteins

    PubMed Central

    McCluskey, Andrew J.; Bolewska-Pedyczak, Eleonora; Jarvik, Nick; Chen, Gang; Sidhu, Sachdev S.; Gariépy, Jean

    2012-01-01

    Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A1 chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A1 chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A1 variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A1 chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A1 chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A1 chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs. PMID:22355345

  4. Toxic shock syndrome toxin-1, not α-toxin, mediated Bundaberg fatalities.

    PubMed

    Mueller, Elizabeth A; Merriman, Joseph A; Schlievert, Patrick M

    2015-12-01

    The 1928 Bundaberg disaster is one of the greatest vaccine tragedies in history. Of 21 children immunized with a diphtheria toxin-antitoxin preparation contaminated with Staphylococcus aureus, 18 developed life-threatening disease and 12 died within 48  h. Historically, the deaths have been attributed to α-toxin, a secreted cytotoxin produced by most S. aureus strains, yet the ability of the Bundaberg contaminant microbe to produce the toxin has never been verified. For the first time, the ability of the original strain to produce α-toxin and other virulence factors is investigated. The study investigates the genetic and regulatory loci mediating α-toxin expression by PCR and assesses production of the cytotoxin in vitro using an erythrocyte haemolysis assay. This analysis is extended to other secreted virulence factors produced by the strain, and their sufficiency to cause lethality in New Zealand white rabbits is determined. Although the strain possesses a wild-type allele for α-toxin, it must have a defective regulatory system, which is responsible for the strain's minimal α-toxin production. The strain encodes and produces staphylococcal superantigens, including toxic shock syndrome toxin-1 (TSST-1), which is sufficient to cause lethality in patients. The findings cast doubt on the belief that α-toxin is the major virulence factor responsible for the Bundaberg fatalities and point to the superantigen TSST-1 as the cause of the disaster.

  5. Mode of Action of Shigella Toxin: Effects on Ribosome Structure and Function

    DTIC Science & Technology

    1988-05-01

    1974. Sindrome hemolitico uremico: reporte de 60 casos asociados a una epidemia de enterocolitis hemorragica. Revista Colombiana de Ped. Puericult. 28...1518-1521. 34. Fong, J.S.C., J-P de Chadarevian and B.S. Kaplan. 1982. Hemolytic-uremic syndrome: current concepts and management. Ped. Clin. North Am

  6. Combining mass spectrometry, surface acoustic wave interaction analysis and cell viability assays for characterization of Shiga toxin subtypes of pathogenic Escherichia coli bacteria.

    PubMed

    Steil, Daniel; Pohlentz, Gottfried; Legros, Nadine; Mormann, Michael; Mellmann, Alexander; Karch, Helge; Müthing, Johannes

    2018-06-25

    Shiga toxin (Stx)-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) as a human-pathogenic subgroup of STEC are characterized by releasing Stx AB5-toxin as the major virulence factor. Worldwide disseminated EHEC strains cause sporadic infections and outbreaks in the human population and swine-pathogenic STEC strains represent greatly feared pathogens in pig breeding and fattening plants. Among the various Stx subtypes Stx1a and Stx2a are of eminent clinical importance in human infections being associated with life-threatening hemorrhagic colitis and hemolytic uremic syndrome, whereas Stx2e subtype is associated with porcine edema disease with generalized fatal outcome for the animals. Binding towards the glycosphingolipid globotriaosylceramide (Gb3Cer) is a common feature of all Stx subtypes analyzed so far. Here we report on the development of a matched strategy combining (i) miniaturized one-step affinity purification of native Stx subtypes from culture supernatant of bacterial wild-type strains using Gb3-functionalized magnetic beads, (ii) structural analysis and identification of Stx holotoxins by electrospray ionization ion mobility mass spectrometry (ESI MS) (iii), functional Stx-receptor real-time interaction analysis employing the surface acoustic wave technology (SAW), and (iv) Vero cell culture assays for determining Stx-caused cytotoxic effects. Structural investigations revealed diagnostic tryptic peptide ions for purified Stx1a, Stx2a and Stx2e, respectively, and functional analysis resulted in characteristic binding kinetics of each Stx subtype. Cytotoxicity studies revealed differing toxin-mediated cell damage ranked with Stx1a > Stx2a > Stx2e. Collectively, this matched procedure represents a promising clinical application for the characterization of life-endangering Stx subtypes at the protein level.

  7. Efficacy of rituximab and plasmapharesis in an adult patient with antifactor H autoantibody-associated hemolytic uremic syndrome: A case report and literature review.

    PubMed

    Deville, Clemence; Garrouste, Cyril; Coppo, Paul; Evrard, Bertrand; Lautrette, Alexandre; Heng, Anne Elisabeth

    2016-09-01

    Antifactor H antibody (anti-CFHAb) is found in 6% to 25% cases of atypical hemolytic uremic syndrome (aHUS) in children, but has been only exceptionally reported in adults. There is no consensus about the best treatment for this type of aHUS. We report the case of an adult patient treated successfully with plasma exchange (PE), steroids, and rituximab.A 27-year-old Caucasian male presented to hospital with anemia, thrombocytopenia, and acute renal failure. One week earlier, he had digestive problems with diarrhea. The diagnosis of anti-CFHAb-associated aHUS (82,000 AU/mL) without CFHR gene mutations was established.He received Rituximab 375 mg/m (4 pulses) with PE and steroids. This treatment achieved renal and hematological remission at day (D) 31 and negative anti-CFHAb at D45 (<100 AU/mL). At D76, a fifth rituximab pulse was performed while CD19 was higher than 10/mm. Steroids were stopped at month (M) 9. The patient has not relapsed during long-term follow-up (M39).Rituximab therapy can be considered for anti-CFHAb-associated aHUS. Monitoring of anti-CFHAb titer may help to guide maintenance therapeutic strategies including Rituximab infusion.

  8. Shiga Toxin 1–Producing Shigella sonnei Infections, California, United States, 2014–2015

    PubMed Central

    Nelson, Jennifer A.; Kimura, Akiko C.; Poe, Alyssa; Collins, Joan; Kao, Annie S.; Cruz, Laura; Inami, Gregory; Vaishampayan, Julie; Garza, Alvaro; Chaturvedi, Vishnu; Vugia, Duc J.

    2016-01-01

    Shiga toxins (Stx) are primarily associated with Shiga toxin–producing Escherichia coli and Shigella dysenteriae serotype 1. Stx production by other shigellae is uncommon, but in 2014, Stx1-producing S. sonnei infections were detected in California. Surveillance was enhanced to test S. sonnei isolates for the presence and expression of stx genes, perform DNA subtyping, describe clinical and epidemiologic characteristics of case-patients, and investigate for sources of infection. During June 2014–April 2015, we identified 56 cases of Stx1-producing S. sonnei, in 2 clusters. All isolates encoded stx1 and produced active Stx1. Multiple pulsed-field gel electrophoresis patterns were identified. Bloody diarrhea was reported by 71% of case-patients; none had hemolytic uremic syndrome. Some initial cases were epidemiologically linked to travel to Mexico, but subsequent infections were transmitted domestically. Continued surveillance of Stx1-producing S. sonnei in California is necessary to characterize its features and plan for reduction of its spread in the United States. PMID:26982255

  9. Mouse Models of Escherichia coli O157:H7 Infection and Shiga Toxin Injection

    PubMed Central

    Mohawk, Krystle L.; O'Brien, Alison D.

    2011-01-01

    Escherichia coli O157:H7 has been responsible for multiple food- and waterborne outbreaks of diarrhea and/or hemorrhagic colitis (HC) worldwide. More importantly, a portion of E. coli O157:H7-infected individuals, particularly young children, develop a life-threatening sequela of infection called hemolytic uremic syndrome (HUS). Shiga toxin (Stx), a potent cytotoxin, is the major virulence factor linked to the presentation of both HC and HUS. Currently, treatment of E. coli O157:H7 and other Stx-producing E. coli (STEC) infections is limited to supportive care. To facilitate development of therapeutic strategies and vaccines for humans against these agents, animal models that mimic one or more aspect of STEC infection and disease are needed. In this paper, we focus on the characteristics of various mouse models that have been developed and that can be used to monitor STEC colonization, disease, pathology, or combinations of these features as well as the impact of Stx alone. PMID:21274267

  10. Uremic toxin and bone metabolism.

    PubMed

    Iwasaki, Yoshiko; Yamato, Hideyuki; Nii-Kono, Tomoko; Fujieda, Ayako; Uchida, Motoyuki; Hosokawa, Atsuko; Motojima, Masaru; Fukagawa, Masafumi

    2006-01-01

    Patients with end-stage renal disease (ESRD) develop various kinds of abnormalities in bone and mineral metabolism, widely known as renal osteodystrophy (ROD). Although the pathogenesis of ESRD may be similar in many patients, the response of the bone varies widely, ranging from high to low turnover. ROD is classified into several types, depending on the status of bone turnover, by histomorphometric analysis using bone biopsy samples [1,2]. In the mild type, bone metabolism is closest to that of persons with normal renal function. In osteitis fibrosa, bone turnover is abnormally activated. This is a condition of high-turnover bone. A portion of the calcified bone loses its lamellar structure and appears as woven bone. In the cortical bone also, bone resorption by osteoclasts is active, and a general picture of bone marrow tissue infiltration and the formation of cancellous bone can be observed. In osteomalacia, the bone surface is covered with uncalcified osteoid. This condition is induced by aluminum accumulation or vitamin D deficiency. The mixed type possesses characteristics of both osteitis fibrosa and osteomalacia. The bone turnover is so markedly accelerated that calcification of the osteoid cannot keep pace. In the adynamic bone type, bone resorption and bone formation are both lowered. While bone turnover is decreased, there is little osteoid. The existence of these various types probably accounts for the diversity in degree of renal impairment, serum parathyroid hormone (PTH) level, and serum vitamin D level in patients with ROD. However, all patients share a common factor, i.e., the presence of a uremic condition.

  11. Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome (TTP-HUS): a 24-year clinical experience with 178 patients

    PubMed Central

    Levandovsky, Mark; Harvey, Danielle; Lara, Primo; Wun, Ted

    2008-01-01

    Background Thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome (TTP-HUS) are related and uncommon disorders with a high fatality and complication rate if untreated. Plasma exchange therapy has been shown to produce high response rates and improve survival in patients with many forms of TTP-HUS. We performed a retrospective cohort study of 178 consecutively treated patients with TTP-HUS and analyzed whether clinical or laboratory characteristics could predict for important short- and long-term outcome measures. Results Overall 30-day mortality was 16% (n = 27). 171 patients (96%) received plasma exchange as the principal treatment, with a mean of 8 exchanges and a mean cumulative infused volume of 42 ± 71 L of fresh frozen plasma. The rate of complete response was 65% or 55% depending on whether this was defined by a platelet count of 100,000/μl or 150,000/μl, respectively. The rate of relapse was 18%. The Clinical Severity Score did not predict for 30-day mortality or relapse. The time to complete response did not predict for relapse. Renal insufficiency at presentation was associated with a decreased risk of relapse, with each unit increase in serum creatinine associated with a 40% decreased odds of relapse. 72% of our cohort had an idiopathic TTP-sporadic HUS, while 17% had an underlying cancer, received a solid organ transplant or were treated with a mitomycin-based therapy. The estimated overall 5-year survival was 55% and was significantly better in those without serious underlying conditions. Conclusion Plasma exchange therapy produced both high response and survival rates in this large cohort of patients with TTP-HUS. The Clinical Severity Score did not predict for 30-day mortality or relapse, contrary to our previous findings. Interestingly, the presence of renal insufficiency was associated with a decreased risk of relapse. The most important predictor of mortality was the presence or absence of a serious underlying disorder. PMID

  12. Phylogenetic Clades 6 and 8 of Enterohemorrhagic Escherichia coli O157:H7 With Particular stx Subtypes are More Frequently Found in Isolates From Hemolytic Uremic Syndrome Patients Than From Asymptomatic Carriers

    PubMed Central

    Iyoda, Sunao; Manning, Shannon D.; Seto, Kazuko; Kimata, Keiko; Isobe, Junko; Etoh, Yoshiki; Ichihara, Sachiko; Migita, Yuji; Ogata, Kikuyo; Honda, Mikiko; Kubota, Tsutomu; Kawano, Kimiko; Matsumoto, Kazutoshi; Kudaka, Jun; Asai, Norio; Yabata, Junko; Tominaga, Kiyoshi; Terajima, Jun; Morita-Ishihara, Tomoko; Izumiya, Hidemasa; Ogura, Yoshitoshi; Saitoh, Takehito; Iguchi, Atsushi; Kobayashi, Hideki; Hara-Kudo, Yukiko; Ohnishi, Makoto; Arai, Reiko; Kawase, Masao; Asano, Yukiko; Asoshima, Nanami; Chiba, Kazuki; Furukawa, Ichiro; Kuroki, Toshiro; Hamada, Madoka; Harada, Seiya; Hatakeyama, Takashi; Hirochi, Takashi; Sakamoto, Yumiko; Hiroi, Midori; Takashi, Kanda; Horikawa, Kazumi; Iwabuchi, Kaori; Kameyama, Mitsuhiro; Kasahara, Hitomi; Kawanishi, Shinya; Kikuchi, Koji; Ueno, Hiroyuki; Kitahashi, Tomoko; Kojima, Yuka; Konishi, Noriko; Obata, Hiromi; Kai, Akemi; Kono, Tomomi; Kurazono, Takayuki; Matsumoto, Masakado; Matsumoto, Yuko; Nagai, Yuhki; Naitoh, Hideki; Nakajima, Hiroshi; Nakamura, Hiromi; Nakane, Kunihiko; Nishi, Keiko; Saitoh, Etsuko; Satoh, Hiroaki; Takamura, Mitsuteru; Shiraki, Yutaka; Tanabe, Junichi; Tanaka, Keiko; Tokoi, Yuki; Yatsuyanagi, Jun

    2014-01-01

    Background  Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection causes severe diseases such as bloody diarrhea and hemolytic uremic syndrome (HUS). Although EHEC O157:H7 strains have exhibited high genetic variability, their abilities to cause human diseases have not been fully examined. Methods  Clade typing and stx subtyping of EHEC O157:H7 strains, which were isolated in Japan during 1999–2011 from 269 HUS patients and 387 asymptomatic carriers (ACs) and showed distinct pulsed-field gel electrophoresis patterns, were performed to determine relationships between specific lineages and clinical presentation. Results  Clades 6 and 8 strains were more frequently found among the isolates from HUS cases than those from ACs (P = .00062 for clade 6, P < .0001 for clade 8). All clade 6 strains isolated from HUS patients harbored stx2a and/or stx2c, whereas all clade 8 strains harbored either stx2a or stx2a/stx2c. However, clade 7 strains were predominantly found among the AC isolates but less frequently found among the HUS isolates, suggesting a significant association between clade 7 and AC (P < .0001). Logistic regression analysis revealed that 0–9 year old age is a significant predictor of the association between clade 8 and HUS. We also found an intact norV gene, which encodes for a nitric oxide reductase that inhibits Shiga toxin activity under anaerobic condition, in all clades 1–3 isolates but not in clades 4–8 isolates. Conclusions  Early detection of EHEC O157:H7 strains that belonged to clades 6/8 and harbored specific stx subtypes may be important for defining the risk of disease progression in EHEC-infected 0- to 9-year-old children. PMID:25734131

  13. Genetic diversity and virulence potential of shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources.

    PubMed

    Feng, Peter C H; Delannoy, Sabine; Lacher, David W; Dos Santos, Luis Fernando; Beutin, Lothar; Fach, Patrick; Rivas, Marta; Hartland, Elizabeth L; Paton, Adrienne W; Guth, Beatriz E C

    2014-08-01

    Shiga toxin-producing Escherichia coli strains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogenic strains that were implicated in hemolytic-uremic syndrome in Australia, there were no clear differences between the pathogens and the environmental strains with respect to the 41 genetic markers tested. Furthermore, all of the strains carried only Shiga toxin subtypes associated with human infections, suggesting that the environmental strains have the potential to cause disease. Most of the O113:H21 strains were closely related and belonged in the same clonal group (ST-223), but CRISPR analysis showed a great degree of genetic diversity among the O113:H21 strains. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Staphylococcus Alpha-Toxin Action on the Rabbit Iris: Toxic Effects and Their Inhibition.

    PubMed

    Arana, Angela M; Bierdeman, Michael A; Balzli, Charles L; Tang, Aihua; Caballero, Armando R; Patel, Rupesh; O'Callaghan, Richard J

    2015-01-01

    Staphylococcus aureus infection of the anterior chamber can occur after cataract surgery, causing inflammation and extensive damage to the iris. Alpha-toxin, the most potent S. aureus corneal toxin, was tested as a possible mediator of damage to the iris, and alpha-toxin anti-serum and a chemical toxin inhibitor were tested as potential pathology-reducing agents. The hemolytic activity of alpha-toxin and its inhibition by a chemical inhibitor or anti-serum were quantified in vitro. Purified alpha-toxin, heat-inactivated toxin, or alpha-toxin plus normal serum, alpha-toxin anti-serum, or the chemical inhibitor, methyl-β-cyclodextrin-cholesterol (CD-cholesterol), was injected into the rabbit anterior chamber. Pathological changes were photographed, quantified by slit-lamp examination (SLE) scoring, and further documented by histopathological analysis. At five hours post-injection, eyes injected with alpha-toxin or heat-inactivated toxin had a mean SLE score of 7.3 ± 0.59 or 0.84 ± 0.19, respectively. Active toxin caused moderate to severe iris edema, severe erosion of the iris, and mild to moderate fibrin accumulation in the anterior chamber. Alpha-toxin plus anti-serum or CD-cholesterol, in contrast to alpha-toxin alone, caused less iris edema and epithelium sloughing as well as significantly lower SLE scores than eyes receiving alpha-toxin alone (p ≤ 0.019). Alpha-toxin caused extensive iris damage and inflammation, and either anti-alpha-toxin anti-serum or CD-cholesterol was able to significantly reduce toxin-mediated damage and inflammation.

  15. Association of Cell-adhesion Activities with Virulence in Shiga toxin-producing Escherichia coli O103:H2.

    PubMed

    Kobayashi, Naoki; Maeda, Eriko; Saito, Shioko; Furukawa, Ichiro; Ohnishi, Takahiro; Watanabe, Maiko; Terajima, Jun; Hara-Kudo, Yukiko

    2016-01-01

    The characteristics of 11 strains of Stx1-producing and Stx2-non-producing STEC O103:H2 were analyzed to investigate the differences in virulence in a single serotype of Shiga toxin (Stx) -producing Escherichia coli (STEC). Differences in the cell-adhesion activity to Caco-2 cells were observed among the strains. The activity of the one strain, isolated from a patient with hemolytic uremic syndrome was 4-20-fold higher than those of the other strains. Although the strains with high cell-adhesion activity showed high expressions of eae, espB, espD, and tir in the locus of enterocyte effacement related with cell-adhesion, those were not specific for this strain. In addition, the Stx1 production level of the strain was not particularly high. It was indicated that the high adhesion activity might be a potential factor to associate serious symptom.

  16. Monocyte chemoattractant protein-1 and interleukin-8 levels in urine and serum of patents with hemolytic uremic syndrome.

    PubMed

    van Setten, P A; van Hinsbergh, V W; van den Heuvel, L P; Preyers, F; Dijkman, H B; Assmann, K J; van der Velden, T J; Monnens, L A

    1998-06-01

    The epidemic form of the hemolytic uremic syndrome (HUS) in children is hallmarked by endothelial cell damage, most predominantly displayed by the glomerular capillaries. The influx of mononuclear (MO) and polymorphonuclear cells (PMNs) into the glomeruli may be an important event in the initiation, prolongation, and progression of glomerular endothelial cell damage in HUS patients. The molecular mechanisms for the recruitment of these leukocytes into the kidney are unclear, but monocyte chemoattractant protein-1 (MCP-1) and IL-8 are suggested to be prime candidates. In this study, we analyzed the presence of both chemokines in 24-h urinary (n = 15) and serum (n = 14) samples of HUS children by specific ELISAs. Furthermore, kidney biopsies of three different HUS children were examined for MO and PMN cell infiltration by histochemical techniques and electron microscopy. Whereas the chemokines MCP-1 and IL-8 were present in only very limited amounts in urine of 17 normal control subjects, serial samples of HUS patients demonstrated significantly elevated levels of both chemokines. HUS children with anuria showed higher initial and maximum chemokine levels than their counterparts without anuria. A strong positive correlation was observed between urinary MCP-1 and IL-8 levels. Whereas initial serum IL-8 levels were significantly increased in HUS children, serum MCP-1 levels were only slightly elevated compared with serum MCP-1 in control children. No correlation was found between urinary and serum chemokine concentrations. Histologic and EM studies of HUS biopsy specimens clearly showed the presence of MOs and to a lesser extent of PMNs in the glomeruli. The present data suggest an important local role for MOs and PMNs in the process of glomerular endothelial-cell damage. The chemokines MCP-1 and IL-8 may possibly be implicated in the pathogenesis of HUS through the recruitment and activation of MOs and PMNs, respectively.

  17. Shiga toxin-producing Escherichia coli: a single-center, 11-year pediatric experience.

    PubMed

    Schindler, Emily I; Sellenriek, Patricia; Storch, Gregory A; Tarr, Phillip I; Burnham, Carey-Ann D

    2014-10-01

    The aim of this study was to identify the best practices for the detection of Shiga toxin-producing Escherichia coli (STEC) in children with diarrheal illness treated at a tertiary care center, i.e., sorbitol-MacConkey (SMAC) agar culture, enzyme immunoassay (EIA) for Shiga toxin, or the simultaneous use of both methods. STEC was detected in 100 of 14,997 stool specimens submitted for enteric culture (0.7%), with 65 cases of E. coli O157. Among E. coli O157 isolates, 57 (88%) were identified by both SMAC agar culture and EIA, 6 (9%) by SMAC agar culture alone, and 2 (3%) by EIA alone. Of the 62 individuals with diarrheal hemolytic uremic syndrome (HUS) seen at our institution during the study period, 16 (26%) had STEC isolated from cultures at our institution and 15 (24%) had STEC isolated at other institutions. No STEC was recovered in 31 cases (50%). Of the HUS cases in which STEC was isolated, 28 (90%) were attributable to E. coli O157 and 3 (10%) were attributable to non-O157 STEC. Consistent with previous studies, we have determined that a subset of E. coli O157 infections will not be detected if an agar-based method is excluded from the enteric culture workup; this has both clinical and public health implications. The best practice would be concomitant use of an agar-based method and a Shiga toxin EIA, but a Shiga toxin EIA should not be considered to be an adequate stand-alone test for detection of E. coli O157 in clinical samples. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles

    NASA Astrophysics Data System (ADS)

    Trpkovic, Andreja; Todorovic-Markovic, Biljana; Kleut, Duska; Misirkic, Maja; Janjetovic, Kristina; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanovic, Svetlana; Dramicanin, Miroslav; Markovic, Zoran; Trajkovic, Vladimir

    2010-09-01

    The present study investigated the hemolytic properties of fullerene (C60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC60THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC60CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC60EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC60THF, but not nC60CDX or nC60EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC60THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC60THF. The nC60THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC60THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.

  19. Antibody-mediated inhibition of ricin toxin retrograde transport.

    PubMed

    Yermakova, Anastasiya; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J

    2014-04-08

    Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin's binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells. Following endocytosis, however, toxin-antibody complexes failed to reach the TGN; instead, they were shunted to Rab7-positive late endosomes and LAMP-1-positive lysosomes. Monovalent 24B11 Fab fragments also interfered with toxin retrograde transport, indicating that neither cross-linking of membrane glycoproteins/glycolipids nor the recently identified intracellular Fc receptor is required to derail ricin en route to the TGN. Identification of the mechanism(s) by which antibodies like 24B11 neutralize ricin will advance our fundamental understanding of protein trafficking in mammalian cells and may lead to the discovery of new classes of toxin inhibitors and therapeutics for biodefense and emerging infectious diseases. IMPORTANCE Ricin is the prototypic member of the AB family of medically important plant and bacterial toxins that includes cholera and Shiga toxins. Ricin is also a category B biothreat agent. Despite ongoing efforts to develop vaccines and antibody-based therapeutics against ricin, very little is known about the mechanisms by which antibodies neutralize this toxin. In general, it is thought that antibodies simply prevent toxins from attaching to cell surface receptors or promote their clearance through Fc receptor (FcR)-mediated uptake

  20. THE EFFECT OF STAPHYLOCOCCUS AUREUS TOXIN ON THE KIDNEY

    PubMed Central

    VonGlahn, William C.; Weld, Julia T.

    1935-01-01

    1. The hemolytic Staphylococcus aureus elaborates a toxin in vitro that when injected intravenously produces lesions in the kidneys of rabbits and cats. 2. The toxin injures primarily the blood vessels of the kidney. PMID:19870338

  1. Immunoproteomic Analysis To Identify Shiga Toxin-Producing Escherichia coli Outer Membrane Proteins Expressed during Human Infection

    PubMed Central

    Montero, David; Orellana, Paz; Gutiérrez, Daniela; Araya, Daniela; Salazar, Juan Carlos; Prado, Valeria; Oñate, Ángel; del Canto, Felipe

    2014-01-01

    Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization–tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development. PMID:25156722

  2. A zebrafish model for uremic toxicity: role of the complement pathway.

    PubMed

    Berman, Nathaniel; Lectura, Melisa; Thurman, Josh; Reinecke, James; Raff, Amanda C; Melamed, Michal L; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W; Hostetter, Thomas H

    2013-01-01

    Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. Copyright © 2013 S. Karger AG, Basel.

  3. A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway

    PubMed Central

    Thurman, Josh; Reinecke, James; Raff, Amanda C.; Melamed, Michal L.; Reinecke, James; Quan, Zhe; Evans, Todd; Meyer, Timothy W.; Hostetter, Thomas H

    2016-01-01

    Many organic solutes accumulate in ESRD and some are poorly removed removed with urea based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients pre-dialysis or from normal subjects. Zebrafish embryos 24 hours post fertilization were exposed to experimental media at a ratio of 3:1 water:human serum. Those exposed to serum from uremic subjects had significantly reduced survival at 8 hours (19% +/− 18% vs. 94% +/− 6%; p < 0.05, uremic serum vs control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50kD showed significantly greater toxicity with the larger molecular weight fraction (83% +/− 11% vs 7% +/−17% survival, p < 0.05, <50kD vs >50 kD, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96%+/− 5% vs 28%+/− 20% survival, p < 0.016, chelated vs non chelated serum respectively). Anti- factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98% +/− 6% vs. 3% +/− 9% survival, p < 0.016, anti- factor B treated vs non treated, respectively).Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and non-specific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement. PMID:23689420

  4. Atypical Hemolytic Uremic Syndrome: A Meta-Analysis of Case Reports Confirms the Prevalence of Genetic Mutations and the Shift of Treatment Regimens.

    PubMed

    Krishnappa, Vinod; Gupta, Mohit; Elrifai, Mohamed; Moftakhar, Bahar; Ensley, Michael J; Vachharajani, Tushar J; Sethi, Sidharth Kumar; Raina, Rupesh

    2018-04-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare life-threatening thrombotic microangiopathy (TMA) affecting multiple organ systems. Recently, aHUS has been shown to be associated with uncontrolled complement activation due to mutations in the alternative pathway of complement components paving the way for targeted drug therapy. By meta-analysis of case reports, we discuss the impact of new treatment strategies on the resolution time of aHUS symptoms and mortality, and the distribution of genetic mutations. A PubMed/Medline search was conducted for "atypical hemolytic uremic syndrome" case reports published between November 2005 and November 2015. R Version 3.2.2 was used to calculate descriptive statistics and perform univariate analyses. Wilcoxon rank-sum test was used to compare time to symptoms resolution, creatinine and platelet count normalization across the treatment and mutation carrier groups. A total of 259 aHUS patients were reported in 176 articles between 2005 and 2015. In the last 5-year period compared to the precedent, there was an increase in the number of aHUS cases reported (180 vs. 79 cases) and the use of eculizumab also increased (6.3% to 46.1%, P < 0.000), although plasma exchange usage did not change (P = 0.281). CFH antibodies were present in a significantly higher number of patients treated with plasma exchange therapy (19.1%, P = 0.000) while none of the non-plasma exchange therapy group had CFH antibodies. Most common mutation was CFH (50%, 69/139) followed by CFHR1 (35%, 30/85), MCP (22.8%, 23/101) and CFI (16.6%, 17/102). Time to symptoms resolution and serum creatinine or platelet count normalization were not significantly different between eculizumab and non-eculizumab group (P = 0.166, P = 0.361, P = 0.834), and between plasma exchange and non-plasma exchange group (P = 0.150, P = 0.135, P = 0.784). However, both eculizumab and plasma exchange groups had early platelet recovery (22 vs. 30

  5. Breaking down the complement system: a review and update on novel therapies.

    PubMed

    Reddy, Yuvaram N V; Siedlecki, Andrew M; Francis, Jean M

    2017-03-01

    The complement system represents one of the more primitive forms of innate immunity. It has increasingly been found to contribute to pathologies in the native and transplanted kidney. We provide a concise review of the physiology of the complement cascade, and discuss current and upcoming complement-based therapies. Current agents in clinical use either bind to complement components directly or prevent complement from binding to antibodies affixed to the endothelial surface. These include C1 esterase inhibitors, anti-C5 mAbs, anti-CD20 mAbs, and proteasome inhibitors. Treatment continues to show efficacy in the atypical hemolytic uremic syndrome and antibody-mediated rejection. Promising agents not currently available include CCX168, TP10, AMY-101, factor D inhibitors, coversin, and compstatin. Several new trials are targeting complement inhibition to treat antineutrophilic cystoplasmic antibody (ANCA)-associated vasculitis, C3 glomerulopathy, thrombotic microangiopathy, and IgA nephropathy. New agents for the treatment of the atypical hemolytic uremic syndrome are also in development. Complement-based therapies are being considered for targeted therapy in the atypical hemolytic uremic syndrome and antibody-mediated rejection, C3 glomerulopathy, and ANCA-associated vasculitis. A few agents are currently in use as orphan drugs. A number of other drugs are in clinical trials and, overall, are showing promising preliminary results.

  6. Shiga toxin-producing Escherichia coli in swine: the public health perspective

    PubMed Central

    Tseng, Marion; Fratamico, Pina M.; Manning, Shannon D.; Funk, Julie A.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that are an important public health concern. STEC infection is associated with severe clinical diseases in human beings, including hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), which can lead to kidney failure and death. Cattle are the most important STEC reservoir. However, a number of STEC outbreaks and HUS cases have been attributed to pork products. In swine, STEC strains are known to be associated with edema disease. Nevertheless, the relationship between STEC of swine origin and human illness has yet to be determined. This review critically summarizes epidemiologic and biological studies of swine STEC. Several epidemiologic studies conducted in multiple regions of the world have demonstrated that domestic swine can carry and shed STEC. Moreover, animal studies have demonstrated that swine are susceptible to STEC O157:H7 infection and can shed the bacterium for 2 months. A limited number of molecular epidemiologic studies, however, have provided conflicting evidence regarding the relationship between swine STEC and human illness. The role that swine play in STEC transmission to people and the contribution to human disease frequency requires further evaluation. PMID:24397985

  7. Effects of Escherichia coli subtilase cytotoxin and Shiga toxin 2 on primary cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Velázquez, Natalia; Repetto, Horacio A; Paton, Adrienne W; Paton, James C; Ibarra, Cristina; Silberstein, Claudia

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.

  8. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome.

    PubMed

    Lipiec, Katarzyna; Adamczyk, Piotr; Świętochowska, Elżbieta; Ziora, Katarzyna; Szczepańska, Maria

    2018-06-13

    Hemolytic-uremic syndrome (HUS) is a form of thrombotic microangiopathy, in the course of which some patients may develop chronic kidney disease (CKD). From a clinical point of view, it is important to search for markers that allow for early identification of patients at risk of a poor prognosis. The study evaluated the serum and urine levels of liver-type fatty acid binding protein (L-FABP) and interleukin 6 (IL-6). The study was conducted in 29 children with a history of HUS. The relationship between L-FABP and IL-6 and anthropometric measurements, the value of estimated glomerular filtration rate (eGFR) and albuminuria were additionally evaluated. In children after HUS, L-FABP and IL-6 concentration in both serum and urine was significantly higher in comparison to the control group. No differences in L-FABP and IL-6 concentration in serum and urine depending on the type of HUS and gender were noted. Correlation between L-FABP and IL-6 in serum and urine with eGFR and urine albumin-creatinine ratio (ACR) in the total group of patients after HUS was not detected. In the group of children after 6 month observation after HUS, a negative correlation of L-FABP concentration with eGFR was found. The results indicate that the higher concentration of L-FABP in serum and urine of children with a history of HUS can be the result of protracted injury initiated during the acute phase of the disease. Lack of correlation of L-FABP concentration with the ACR may be associated with a short (less than 6 months) observation after acute renal failure or merely temporary renal tubular damage in the acute phase of the disease. In contrast, higher levels of IL-6 in serum and urine in children after HUS compared to healthy children and the negative correlation of L-FABP concentration and eGFR in children after 6 month observation after HUS may confirm their participation in CKD. Thus, L-FABP and IL-6 seem to be good biomarkers of chronic kidney damage in survivors of the acute phase of

  9. Microbiota and prebiotics modulation of uremic toxin generation.

    PubMed

    Koppe, Laetitia; Fouque, Denis

    2017-06-01

    Recent data have shown that the host-intestinal microbiota interaction is intrinsically linked with overall health. Chronic kidney disease (CKD) could influence intestinal microbiota and gut dysbiosis is also considered as a cause of progression of kidney disease. An increasing body of evidence indicates that dysbiosis is a key contributor of uremic retention solutes (URS) accumulating in patients with CKD. The discovery of the kidney-gut axis has created new therapeutic opportunities for nutritional intervention in order to prevent adverse outcomes. One of these strategies is prebiotics, which refers to nondigestible food ingredients or substances that beneficial affect growth and/or activity of limited health-promoting bacteria in the gastrointestinal tract. The influence of prebiotics on the production and concentration of URS have been investigated in various animal and human CKD studies. However, to date, there is still paucity of high-quality intervention trials. Randomized controlled trials and adequately powered intervention studies are needed before recommending prebiotics in clinical practice. This review will outline the interconnection between CKD progression, dysbiosis and URS production and will discuss mechanisms of action and efficacy of prebiotics as a new CKD management tool, with a particular emphasis on URS generation.

  10. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    PubMed

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  11. Antibody-Mediated Inhibition of Ricin Toxin Retrograde Transport

    PubMed Central

    Yermakova, Anastasiya; Klokk, Tove Irene; Cole, Richard; Sandvig, Kirsten; Mantis, Nicholas J.

    2014-01-01

    ABSTRACT Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin’s binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells. Following endocytosis, however, toxin-antibody complexes failed to reach the TGN; instead, they were shunted to Rab7-positive late endosomes and LAMP-1-positive lysosomes. Monovalent 24B11 Fab fragments also interfered with toxin retrograde transport, indicating that neither cross-linking of membrane glycoproteins/glycolipids nor the recently identified intracellular Fc receptor is required to derail ricin en route to the TGN. Identification of the mechanism(s) by which antibodies like 24B11 neutralize ricin will advance our fundamental understanding of protein trafficking in mammalian cells and may lead to the discovery of new classes of toxin inhibitors and therapeutics for biodefense and emerging infectious diseases. PMID:24713323

  12. Differences in Purinergic Amplification of Osmotic Cell Lysis by the Pore-Forming RTX Toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the Role of Pore Size

    PubMed Central

    Fiser, Radovan; Linhartova, Irena; Osicka, Radim; Bumba, Ladislav; Hewlett, Erik L.; Benz, Roland; Sebo, Peter

    2013-01-01

    A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins. PMID:24082076

  13. Melatonin Promotes Brain-Derived Neurotrophic Factor (BDNF) Expression and Anti-Apoptotic Effects in Neonatal Hemolytic Hyperbilirubinemia via a Phospholipase (PLC)-Mediated Mechanism

    PubMed Central

    Luo, Yong; Peng, Mei; Wei, Hong

    2017-01-01

    Background Melatonin therapy shows positive effects on neuroprotective factor brain-derived neurotrophic factor (BDNF) expression and neuronal apoptosis in neonatal hemolytic hyperbilirubinemia. We hypothesized that melatonin promotes BDNF expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia through a phospholipase (PLC)-mediated mechanism. Material/Methods A phenylhydrazine hydrochloride (PHZ)-induced neonatal hemolytic hyperbilirubinemia model was constructed in neonatal rats. Four experimental groups – a control group (n=30), a PHZ group (n=30), a PHZ + melatonin group (n=30), and a PHZ + melatonin+U73122 (a PLC inhibitor) group (n=30) – were constructed. Trunk blood was assayed for serum hemoglobin, hematocrit, total and direct bilirubin, BDNF, S100B, and tau protein levels. Brain tissue levels of neuronal apoptosis, BDNF expression, PLC activity, IP3 content, phospho- and total Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV) expression, and phospho- and total cAMP response element binding protein (CREB) expression were also assayed. Results PHZ-induced hemolytic hyperbilirubinemia was validated by significantly decreased serum hemoglobin and hematocrit as well as significantly increased total and direct serum bilirubin (p<0.05). Neonatal bilirubin-induced neurotoxicity was validated by significantly decreased serum BDNF, brain BDNF, and serum S100B, along with significantly increased serum tau protein (p<0.05). PHZ-induced hemolytic hyperbilirubinemia significantly decreased serum BDNF, brain BDNF, and PLC/IP3/Ca2+ pathway activation while increasing neuronal apoptosis levels (p<0.05), all of which were partially rescued by melatonin therapy (p<0.05). Pre-treatment with the PLC inhibitor U73122 largely abolished the positive effects of melatonin on PLC/IP3/Ca2+ pathway activation, downstream BDNF levels, and neuronal apoptosis (p<0.05). Conclusions Promotion of BDNF expression and anti-apoptotic effects in neonatal

  14. Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin.

    PubMed

    Amaral, María M; Girard, Magalí C; Álvarez, Romina S; Paton, Adrienne W; Paton, James C; Repetto, Horacio A; Sacerdoti, Flavia; Ibarra, Cristina A

    2017-07-18

    Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children. The majority of cases are associated with Shiga toxin (Stx)-producing Escherichia coli (STEC). In Argentina, HUS is endemic and presents the highest incidence rate in the world. STEC strains expressing Stx type 2 (Stx2) are responsible for the most severe cases of this pathology. Subtilase cytotoxin (SubAB) is another STEC virulence factor that may contribute to HUS pathogenesis. To date, neither a licensed vaccine nor effective therapy for HUS is available for humans. Considering that Ouabain (OUA) may prevent the apoptosis process, in this study we evaluated if OUA is able to avoid the damage caused by Stx2 and SubAB on human glomerular endothelial cells (HGEC) and the human proximal tubule epithelial cell (HK-2) line. HGEC and HK-2 were pretreated with OUA and then incubated with the toxins. OUA protected the HGEC viability from Stx2 and SubAB cytotoxic effects, and also prevented the HK-2 viability from Stx2 effects. The protective action of OUA on HGEC and HK-2 was associated with a decrease in apoptosis and an increase in cell proliferation. Our data provide evidence that OUA could be considered as a therapeutic strategy to avoid the renal damage that precedes HUS.

  15. Ouabain Protects Human Renal Cells against the Cytotoxic Effects of Shiga Toxin Type 2 and Subtilase Cytotoxin

    PubMed Central

    Amaral, María M.; Girard, Magalí C.; Álvarez, Romina S.; Paton, Adrienne W.; Paton, James C.; Repetto, Horacio A.; Sacerdoti, Flavia; Ibarra, Cristina A.

    2017-01-01

    Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children. The majority of cases are associated with Shiga toxin (Stx)-producing Escherichia coli (STEC). In Argentina, HUS is endemic and presents the highest incidence rate in the world. STEC strains expressing Stx type 2 (Stx2) are responsible for the most severe cases of this pathology. Subtilase cytotoxin (SubAB) is another STEC virulence factor that may contribute to HUS pathogenesis. To date, neither a licensed vaccine nor effective therapy for HUS is available for humans. Considering that Ouabain (OUA) may prevent the apoptosis process, in this study we evaluated if OUA is able to avoid the damage caused by Stx2 and SubAB on human glomerular endothelial cells (HGEC) and the human proximal tubule epithelial cell (HK-2) line. HGEC and HK-2 were pretreated with OUA and then incubated with the toxins. OUA protected the HGEC viability from Stx2 and SubAB cytotoxic effects, and also prevented the HK-2 viability from Stx2 effects. The protective action of OUA on HGEC and HK-2 was associated with a decrease in apoptosis and an increase in cell proliferation. Our data provide evidence that OUA could be considered as a therapeutic strategy to avoid the renal damage that precedes HUS. PMID:28718802

  16. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx 2e (81%) was the most common Stx variant, followed by stx 1a (14%), stx 2d (3%), and stx 1c (1%). The STEC serogroups that carried stx 2d were O15:H27, O159:H16 and O159:H-. Similar to stx 2a and stx 2c, the stx 2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfA O113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfA O26, lpfA O157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  17. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE PAGES

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; ...

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx 2e (81%) was the most common Stx variant, followed by stx 1a (14%), stx 2d (3%), and stx 1c (1%). The STEC serogroups that carried stx 2d were O15:H27, O159:H16 and O159:H-. Similar to stx 2a and stx 2c, the stx 2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfA O113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfA O26, lpfA O157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  18. Effect of fatty acids on Staphylococcus aureus delta-toxin hemolytic activity.

    PubMed

    Kapral, F A

    1976-01-01

    The lysis of human erythrocytes by Staphylococcus aureus delta-toxin proceeded without a lag and was directly proportional to toxin concentration and temperature of incubation. Lysis was complete within 8 min. Addition of saturated, straight-chain fatty acids of 13 to 19 carbons increased the activity of delta-toxin, whereas those with 21 to 23 carbons were inhibitory. Palmitic acid was the fatty acid most active in augmenting delta-toxin, but its effect could be abolished by the simultaneous addition of either tricosanoic acid or egg lecithin.

  19. Uremic Toxins Affect the Imbalance of Redox State and Overexpression of Prolyl Hydroxylase 2 in Human Adipose Tissue-Derived Mesenchymal Stem Cells Involved in Wound Healing.

    PubMed

    Khanh, Vuong Cat; Ohneda, Kinuko; Kato, Toshiki; Yamashita, Toshiharu; Sato, Fujio; Tachi, Kana; Ohneda, Osamu

    2017-07-01

    Chronic kidney disease (CKD) results in a delay in wound healing because of its complications such as uremia, anemia, and fluid overload. Mesenchymal stem cells (MSCs) are considered to be a candidate for wound healing because of the ability to recruit many types of cells. However, it is still unclear whether the CKD-adipose tissue-derived MSCs (CKD-AT-MSCs) have the same function in wound healing as healthy donor-derived normal AT-MSCs (nAT-MSCs). In this study, we found that uremic toxins induced elevated reactive oxygen species (ROS) expression in nAT-MSCs, resulting in the reduced expression of hypoxia-inducible factor-1α (HIF-1α) under hypoxic conditions. Consistent with the uremic-treated AT-MSCs, there was a definite imbalance of redox state and high expression of ROS in CKD-AT-MSCs isolated from early-stage CKD patients. In addition, a transplantation study clearly revealed that nAT-MSCs promoted the recruitment of inflammatory cells and recovery from ischemia in the mouse flap model, whereas CKD-AT-MSCs had defective functions and the wound healing process was delayed. Of note, the expression of prolyl hydroxylase domain 2 (PHD2) is selectively increased in CKD-AT-MSCs and its inhibition can restore the expression of HIF-1α and the wound healing function of CKD-AT-MSCs. These results indicate that more studies about the functions of MSCs from CKD patients are required before they can be applied in the clinical setting.

  20. A New Immunoassay for Detecting All Subtypes of Shiga Toxins Produced by Shiga Toxin-Producing E. coli in Ground Beef.

    PubMed

    He, Xiaohua; Kong, Qiulian; Patfield, Stephanie; Skinner, Craig; Rasooly, Reuven

    2016-01-01

    Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none of them are capable of recognizing all subtypes of Stxs, which include three subtypes of Stx1 and seven subtypes of Stx2. New monoclonal and polyclonal antibodies against Stx1 and Stx2 were developed. A universal sandwich ELISA capable of detecting all known subtypes of Stx1 and Stx2 was established using a pool of newly developed antibodies. To precisely monitor the sensitivity of the assay for each subtype of Stxs, recombinant toxoids were created and used as standards in ELISAs. Because of the high affinity of the antibodies incorporated, the ELISA assay is highly sensitive with a limit of detection for the different subtypes of Stx1a and Stx2a between 10 and 50 pg/mL in phosphate buffered saline (PBS). The assay was also able to identify STEC based on the production of Stxs using the supernatants of culture fluids or even single colonies on agar plates without lengthy enrichment in liquid medium. When applied to ground beef samples, this newly developed ELISA was capable of distinguishing beef samples spiked with a single bacterial cell. A highly sensitive and universal assay for all subtypes of Stx1 and Stx2 was developed. It has significantly improved upon the current technologies by avoiding false negative results due to the narrow detection range of the assay. The assay developed in this study can be useful for prompt detection of new and emerging serotypes and screening ground beef samples for contamination of STEC at an early stage in the food supply chain, thus avoiding the need for possible recall.

  1. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    PubMed Central

    Parma, Y. R.; Chacana, P. A.; Lucchesi, P. M. A.; Rogé, A.; Granobles Velandia, C. V.; Krüger, A.; Parma, A. E.; Fernández-Miyakawa, M. E.

    2012-01-01

    Enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin producing E. coli (STEC) is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic-uremic syndrome (HUS). Regardless of serotype, Shiga toxins (Stx1 and/or Stx2) are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx) was developed using anti-Stx2B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933, and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 115 ng/ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for two strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli. PMID:22919675

  2. Heterogeneity in Induction Level, Infection Ability, and Morphology of Shiga Toxin-Encoding Phages (Stx Phages) from Dairy and Human Shiga Toxin-Producing Escherichia coli O26:H11 Isolates

    PubMed Central

    Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235

  3. Real-Time PCR Assay for Detection and Differentiation of Shiga Toxin-Producing Escherichia coli from Clinical Samples

    PubMed Central

    Klein, Eileen J.; Galanakis, Emmanouil; Thomas, Anita A.; Stapp, Jennifer R.; Rich, Shannon; Buccat, Anne Marie; Tarr, Phillip I.

    2015-01-01

    Timely accurate diagnosis of Shiga toxin-producing Escherichia coli (STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targeting stx1, stx2, and rfbEO157 with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagic E. coli [EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC. E. coli O157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 using rfbEO157, and LD-PCR results prompted successful recovery of E. coli O157 (n = 25) and non-O157 STEC (n = 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid “mega”-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and that E. coli O157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections. PMID:25926491

  4. Blood urea nitrogen to serum creatinine ratio is an accurate predictor of outcome in diarrhea-associated hemolytic uremic syndrome, a preliminary study.

    PubMed

    Keenswijk, Werner; Vanmassenhove, Jill; Raes, Ann; Dhont, Evelyn; Vande Walle, Johan

    2017-03-01

    Diarrhea-associated hemolytic uremic syndrome (D+HUS) is a common thrombotic microangiopathy during childhood and early identification of parameters predicting poor outcome could enable timely intervention. This study aims to establish the accuracy of BUN-to-serum creatinine ratio at admission, in addition to other parameters in predicting the clinical course and outcome. Records were searched for children between 1 January 2008 and 1 January 2015 admitted with D+HUS. A complicated course was defined as developing one or more of the following: neurological dysfunction, pancreatitis, cardiac or pulmonary involvement, hemodynamic instability, and hematologic complications while poor outcome was defined by death or development of chronic kidney disease. Thirty-four children were included from which 11 with a complicated disease course/poor outcome. Risk of a complicated course/poor outcome was strongly associated with oliguria (p = 0.000006) and hypertension (p = 0.00003) at presentation. In addition, higher serum creatinine (p = 0.000006) and sLDH (p = 0.02) with lower BUN-to-serum creatinine ratio (p = 0.000007) were significantly associated with development of complications. A BUN-to-sCreatinine ratio ≤40 at admission was a sensitive and highly specific predictor of a complicated disease course/poor outcome. A BUN-to-serum Creatinine ratio can accurately identify children with D+HUS at risk for a complicated course and poor outcome. What is Known: • Oliguria is a predictor of poor long-term outcome in D+HUS What is New: • BUN-to-serum Creatinine ratio at admission is an entirely novel and accurate predictor of poor outcome and complicated clinical outcome in D+HUS • Early detection of the high risk group in D+HUS enabling early treatment and adequate monitoring.

  5. Hemolytic anemia

    MedlinePlus

    Anemia - hemolytic ... bones that helps form all blood cells. Hemolytic anemia occurs when the bone marrow isn't making ... destroyed. There are several possible causes of hemolytic anemia. Red blood cells may be destroyed due to: ...

  6. Cumulative Review of Thrombotic Microangiopathy, Thrombotic Thrombocytopenic Purpura, and Hemolytic Uremic Syndrome Reports with Subcutaneous Interferon β-1a.

    PubMed

    Ben-Amor, Ali-Frédéric; Trochanov, Anton; Fischer, Tanya Z

    2015-05-01

    Rare cases of thrombotic microangiopathy (TMA), manifested as thrombotic thrombocytopenic purpura (TTP) or hemolytic uremic syndrome (HUS), have been reported with interferon β products. We performed a cumulative review of TMA cases recorded in a Global Safety Database for patients with multiple sclerosis who received subcutaneous interferon β-1a treatment. Search criteria were: all reported cases, serious and non-serious, from all sources (including non-health care professionals and clinical trial reports), regardless of event ranking and causality assessment by reporter or company. Data lock was May 3, 2014, with additional analysis of cases reported between August 1, 2014-November 30, 2014. Ninety-one patient cases (76.9% female) with 105 events were retrieved. Time to onset varied from 2 months to 14 years, and in 31.9% of patients the event occurred within 2 years of treatment initiation. Seven patients had a fatal outcome (five were secondary to other causes and two reported insufficient information). Forty-four patients recovered, 32 patients had not recovered at the time of the report, and in eight cases outcome was either not reported or unknown. Treatment was discontinued in 84.6% (77/91) of patients. In 67% (61/91) of patients, the reporter suspected a causal association between treatment and TMA/TTP-HUS. Risk factors and/or confounding factors were present in 45.1% (41/91) of patients. Early prodromal syndrome or specific patterns were not detected, although 54.9% (50/91) of cases contained insufficient information. Overall reporting rate of TMA/TTP-HUS was estimated as 7.2 per 100,000 patient-years. Reporting rates for human serum album (HSA)-containing and HSA-free formulations were 5.72 and 7.68 per 100,000 patient-years, respectively. No new signal relating specifically to increased frequency of TMA/TTP-HUS with HSA-free subcutaneous interferon β-1a was detected and no additional risk mitigation measures are required regarding the different

  7. Hypothermia in Uremic Dogs and Cats.

    PubMed

    Kabatchnick, E; Langston, C; Olson, B; Lamb, K E

    2016-09-01

    The prevalence of uremic hypothermia (UH) and the effects of improving uremia on body temperature have not been determined in veterinary patients. To determine the prevalence of UH and correlations between uremia and body temperature in patients undergoing intermittent hemodialysis (IHD). Uremic dogs (n = 122) and cats (n = 79) treated by IHD at the Bobst Hospital of the Animal Medical Center from 1997 to 2013. Retrospective review of medical records. The prevalence of hypothermia was 38% in azotemic cats and 20.5% in azotemic dogs. Statistically significant temperature differences were observed between uremic and nonuremic dogs (nonuremic: mean, 100.8°F; range, 91.2-109.5°F; uremic: mean, 99.9°F; range, 95.6-103.8°F; P < .0001) and cats (nonuremic: mean, 100.6°F; range, 94.0-103.8°F; uremic: mean, 99.3°F; range, 92.3-103.4°F; P < .0001). In dog dialysis patients, significant models included (1) timing (pre-dialysis versus post-dialysis) with weight class (small [P < .0001], medium [P = .016], and large breed [P = .033] dogs), (2) timing with serum creatinine concentration (P = .021), and (3) timing with BUN concentration (P < .0001). In cat dialysis patients, there was a significant interaction between timing and weight as a categorical variable (<5 kg and ≥5 kg). Uremic hypothermia appears to be a clinical phenomenon that occurs in cats and dogs. Uremic patients are hypothermic compared to ill nonuremic patients and body temperatures increase when uremia is corrected with IHD in dogs and in cats >5 kg. In cats, UH seems to be a more prevalent phenomenon driven by uremia. Uremic hypothermia does occur in dogs, but body weight is a more important predictor of body temperature. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  8. Hemolytic Uremic Syndrome

    MedlinePlus

    ... bleeding, or extreme fatigue. What causes HUS? Most cases of HUS occur after an E. coli infection. You can catch an E. coli infection by: Eating undercooked ground beef (for example, if the inside of a hamburger that you ...

  9. Characterization of SNF472 pharmacokinetics and efficacy in uremic and non-uremic rats models of cardiovascular calcification

    PubMed Central

    Ferrer, Miguel D.; Ketteler, Markus; Tur, Fernando; Tur, Eva; Isern, Bernat; Salcedo, Carolina; Joubert, Pieter H.; Behets, Geert J.; Neven, Ellen; D’Haese, Patrick C.

    2018-01-01

    End-stage renal disease is strongly associated with progressive cardiovascular calcification (CVC) and there is currently no therapy targeted to treat CVC. SNF472 is an experimental formulation under development for treatment of soft tissue calcification. We have investigated the pharmacokinetics of SNF472 administration in rats and its inhibitory effects on CVC. SNF472 was studied in three rat models: (1) prevention of vitamin D3-induced CVC with an intravenous SNF472 bolus of 1 mg/kg SNF472, (2) inhibition of progression of vitamin D3-induced CVC with a subcutaneous SNF472 bolus of 10 or 60 mg/kg SNF472, starting after calcification induction, (3) CVC in adenine-induced uremic rats treated with 50 mg/kg SNF472 via i.v. 4h -infusion. Uremic rats presented lower plasma levels of SNF472 than control animals after i.v. infusion. CVC in non-uremic rats was inhibited by 60–70% after treatment with SNF472 and progression of cardiac calcification completely blocked. Development of CVC in uremic rats was inhibited by up to 80% following i.v. infusion of SNF472. SNF472 inhibits the development and progression of CVC in uremic and non-uremic rats in the same range of SNF472 plasma levels but using in each case the required dose to obtain those levels. These results collectively support the development of SNF472 as a novel therapeutic option for treatment of CVC in humans. PMID:29742152

  10. The Bacillus thuringiensis cyt Genes for Hemolytic Endotoxins Constitute a Gene Family

    PubMed Central

    Guerchicoff, Alejandra; Delécluse, Armelle; Rubinstein, Clara P.

    2001-01-01

    In the same way that cry genes, coding for larvicidal delta endotoxins, constitute a large and diverse gene family, the cyt genes for hemolytic toxins seem to compose another set of highly related genes in Bacillus thuringiensis. Although the occurrence of Cyt hemolytic factors in B. thuringiensis has been typically associated with mosquitocidal strains, we have recently shown that cyt genes are also present in strains with different pathotypes; this is the case for the morrisoni subspecies, which includes strains biologically active against dipteran, lepidopteran, and coleopteran larvae. In addition, while one Cyt type of protein has been described in all of the mosquitocidal strains studied so far, the present study confirms that at least two Cyt toxins coexist in the more toxic antidipteran strains, such as B. thuringiensis subsp. israelensis and subsp. morrisoni PG14, and that this could also be the case for many others. In fact, PCR screening and Western blot analysis of 50 B. thuringiensis strains revealed that cyt2-related genes are present in all strains with known antidipteran activity, as well as in some others with different or unknown host ranges. Partial DNA sequences for several of these genes were determined, and protein sequence alignments revealed a high degree of conservation of the structural domains. These findings point to an important biological role for Cyt toxins in the final in vivo toxic activity of many B. thuringiensis strains. PMID:11229896

  11. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology

    PubMed Central

    Mairpady Shambat, Srikanth; Chen, Puran; Nguyen Hoang, Anh Thu; Bergsten, Helena; Vandenesch, Francois; Siemens, Nikolai; Lina, Gerard; Monk, Ian R.; Foster, Timothy J.; Arakere, Gayathri; Svensson, Mattias; Norrby-Teglund, Anna

    2015-01-01

    ABSTRACT Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human

  12. Overview of the role of Shiga toxins in porcine edema disease pathogenesis.

    PubMed

    Casanova, Natalia A; Redondo, Leandro M; Dailoff, Gabriela C; Arenas, David; Fernández Miyakawa, Mariano E

    2018-06-15

    Shiga toxin-producing Escherichia coli (STEC) have been implicated as the cause of enterotoxemias, such as hemolytic uremic syndrome in humans and edema disease (ED) of pigs. Stx1 and Stx2 are the most common types found in association with illness, but only Stx2e is associated with disease in the animal host. Porcine edema disease is a serious affection which can lead to dead causing great losses of weaned piglets. Stx2e is the most frequent Stx variant found in porcine feces and is considered the key virulence factor involved in the pathogenesis of porcine edema disease. Stx2e binds with higher affinity to Gb4 receptor than to Gb3 which could be due to amino acid changes in B subunit. Moreover, this subtype also binds to Forssman glycosphingolipids conferring upon Stx2e a unique promiscuous recognition feature. Manifestations of edema disease are caused by systemic effects of Stx2e with no significant morphologic changes in enterocytes. Endothelial cell necrosis in the brain is an early event in the pathogenesis of ED caused by Stx2e-producing STEC strains. Further studies are needed to generate techniques and tools which allow to understand the circulation and ecology of STEC strains in pigs even in resistant animals for diagnostic and epidemiological purposes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Shiga Toxin 1 Induces on Lipopolysaccharide-Treated Astrocytes the Release of Tumor Necrosis Factor-alpha that Alter Brain-Like Endothelium Integrity

    PubMed Central

    Landoni, Verónica I.; Schierloh, Pablo; de Campos Nebel, Marcelo; Fernández, Gabriela C.; Calatayud, Cecilia; Lapponi, María J.; Isturiz, Martín A.

    2012-01-01

    The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. PMID:22479186

  14. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    PubMed Central

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  15. Analysis of Linear Antibody Epitopes on Factor H and CFHR1 Using Sera of Patients with Autoimmune Atypical Hemolytic Uremic Syndrome.

    PubMed

    Trojnár, Eszter; Józsi, Mihály; Uray, Katalin; Csuka, Dorottya; Szilágyi, Ágnes; Milosevic, Danko; Stojanović, Vesna D; Spasojević, Brankica; Rusai, Krisztina; Müller, Thomas; Arbeiter, Klaus; Kelen, Kata; Szabó, Attila J; Reusz, György S; Hyvärinen, Satu; Jokiranta, T Sakari; Prohászka, Zoltán

    2017-01-01

    In autoimmune atypical hemolytic uremic syndrome (aHUS), the complement regulator factor H (FH) is blocked by FH autoantibodies, while 90% of the patients carry a homozygous deletion of its homolog complement FH-related protein 1 (CFHR1). The functional consequence of FH-blockade is widely established; however, the molecular basis of autoantibody binding and the role of CFHR1 deficiency in disease pathogenesis are still unknown. We performed epitope mapping of FH to provide structural insight in the autoantibody recruitment on FH and potentially CFHR1. Eight anti-FH positive aHUS patients were enrolled in this study. With overlapping synthetic FH and CFHR1 peptides, we located the amino acids (aa) involved in binding of acute and convalescence stage autoantibodies. We confirmed the location of the mapped epitopes using recombinant FH domains 19-20 that carried single-aa substitutions at the suspected antibody binding sites in three of our patients. Location of the linear epitopes and the introduced point mutations was visualized using crystal structures of the corresponding domains of FH and CFHR1. We identified three linear epitopes on FH (aa1157-1171; aa1177-1191; and aa1207-1226) and one on CFHR1 (aa276-290) that are recognized both in the acute and convalescence stages of aHUS. We observed a similar extent of autoantibody binding to the aHUS-specific epitope aa1177-1191 on FH and aa276-290 on CFHR1, despite seven of our patients being deficient for CFHR1. Epitope mapping with the domain constructs validated the location of the linear epitopes on FH with a distinct autoantibody binding motif within aa1183-1198 in line with published observations. According to the results, the linear epitopes we identified are located close to each other on the crystal structure of FH domains 19-20. This tertiary configuration contains the amino acids reported to be involved in C3b and sialic acid binding on the regulator, which may explain the functional deficiency of FH in the

  16. Inhibition of the lethality of Shiga-like toxin-1 by functional gold nanoparticles.

    PubMed

    Li, Chun-Hsien; Bai, Yi-Ling; Chen, Yu-Chie

    2018-02-15

    Escherichia coli O157:H7 is a pathogen, which can generate Shiga-like toxins (SLTs) and cause hemolytic-uremic syndrome. Foodborne illness outbreaks caused by E. coli O157:H7 have become a global issue. Since SLTs are quite toxic, effective medicines that can reduce the damage caused by SLTs should be explored. SLTs consist of a single A and five B subunits, which can inhibit ribosome activity for protein synthesis and bind with the cell membrane of host cells, respectively. Pigeon ovalbumin (POA), i.e. a glycoprotein, is abundant in pigeon egg white (PEW) proteins. The structure of POA contains Gal-α(1→4)-Gal-β(1→4)-GlcNAc ligands, which have binding affinity toward the B subunit in SLT type-1 (SLT-1B). POA immobilized gold nanoparticles (POA-Au NPs) can be generated by reacting PEW proteins with aqueous tetrachloroauric acid in one-pot. The generated POA-Au NPs have been demonstrated to have selective trapping-capacity toward SLT-1B previously. Herein, we explore that POA-Au NPs can be used as protective agents to neutralize the toxicity of SLT-1 in SLT-1-infected model cells. The results show that the cells can be completely rescued when a sufficient amount of POA-Au NPs is used to treat the SLT-1-infected cells within 1 h.

  17. Dexamethasone Rescues Neurovascular Unit Integrity from Cell Damage Caused by Systemic Administration of Shiga Toxin 2 and Lipopolysaccharide in Mice Motor Cortex

    PubMed Central

    Pinto, Alipio; Jacobsen, Mariana; Geoghegan, Patricia A.; Cangelosi, Adriana; Cejudo, María Laura; Tironi-Farinati, Carla; Goldstein, Jorge

    2013-01-01

    Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies. PMID:23894578

  18. Isolation and in vitro partial characterization of hemolytic proteins from the nematocyst venom of the jellyfish Stomolophus meleagris.

    PubMed

    Li, Rongfeng; Yu, Huahua; Xing, Ronge; Liu, Song; Qing, Yukun; Li, Kecheng; Li, Bing; Meng, Xiangtao; Cui, Jinhui; Li, Pengcheng

    2013-09-01

    Jellyfish venom contains various toxins and can cause itching, edema, muscle aches, shortness of breath, blood pressure depression, shock or even death after being stung. Hemolytic protein is one of the most hazardous components in the venom. The present study investigated the hemolytic activity of the nematocyst venom from jellyfish Stomolophus meleagris. Anion exchange chromatography, DEAE Sepharose Fast Flow, and gel filtration chromatography, Superdex200 had been employed to isolate hemolytic proteins from the nematocyst venom of jellyfish S. meleagris. Hemolysis of chicken red blood cells was used to quantify hemolytic potency of crude nematocyst venom and chromatography fractions during the purification process. Native-PAGE profile displayed one protein band in the purified hemolytic protein (SmTX); however, two protein bands with apparent molecular weights of ≈ 45 kDa and 52 kDa were observed in the reducing SDS-PAGE analysis. Approximately 70 μg/mL of SmTX caused 50% hemolysis (HU50) of the erythrocyte suspension. The hemolytic activity of SmTX was shown to be temperature and pH dependent, with the optimum temperature and pH being 37°C and pH 5.0. The present study is the first report of isolation and partial characterization of hemolytic proteins from the nematocyst venom of the jellyfish S. meleagris. The mechanism of the hemolytic activity of SmTX is not clear and deserves further investigation. Copyright © 2013. Published by Elsevier Ltd.

  19. Oral Intoxication of Mice with Shiga Toxin Type 2a (Stx2a) and Protection by Anti-Stx2a Monoclonal Antibody 11E10

    PubMed Central

    Russo, L. M.; Melton-Celsa, A. R.; Smith, M. A.; Smith, M. J.

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) strains cause food-borne outbreaks of hemorrhagic colitis and, less commonly, a serious kidney-damaging sequela called the hemolytic uremic syndrome (HUS). Stx, the primary virulence factor expressed by STEC, is an AB5 toxin with two antigenically distinct forms, Stx1a and Stx2a. Although both toxins have similar biological activities, Stx2a is more frequently produced by STEC strains that cause HUS than is Stx1a. Here we asked whether Stx1a and Stx2a act differently when delivered orally by gavage. We found that Stx2a had a 50% lethal dose (LD50) of 2.9 μg, but no morbidity occurred after oral intoxication with up to 157 μg of Stx1a. We also compared several biochemical and histological parameters in mice intoxicated orally versus intraperitoneally with Stx2a. We discovered that both intoxication routes caused similar increases in serum creatinine and blood urea nitrogen, indicative of kidney damage, as well as electrolyte imbalances and weight loss in the animals. Furthermore, kidney sections from Stx2a-intoxicated mice revealed multifocal, acute tubular necrosis (ATN). Of particular note, we detected Stx2a in kidney sections from orally intoxicated mice in the same region as the epithelial cell type in which ATN was detected. Lastly, we showed reduced renal damage, as determined by renal biomarkers and histopathology, and full protection of orally intoxicated mice with monoclonal antibody (MAb) 11E10 directed against the toxin A subunit; conversely, an irrelevant MAb had no therapeutic effect. Orally intoxicated mice could be rescued by MAb 11E10 6 h but not 24 h after Stx2a delivery. PMID:24379294

  20. Characteristics of shiga toxin-producing Escherichia coli isolated from Swiss raw milk cheese within a 3-year monitoring program.

    PubMed

    Zweifel, C; Giezendanner, N; Corti, S; Krause, G; Beutin, L; Danuser, J; Stephan, R

    2010-01-01

    Food is an important vehicle for transmission of Shiga toxin-producing Escherichia coli (STEC). To assess the potential public health impact of STEC in Swiss raw milk cheese produced from cow's, goat's, and ewe's milk, 1,422 samples from semihard or hard cheese and 80 samples from soft cheese were examined for STEC, and isolated strains were further characterized. By PCR, STEC was detected after enrichment in 5.7% of the 1,502 raw milk cheese samples collected at the producer level. STEC-positive samples comprised 76 semihard, 8 soft, and 1 hard cheese. By colony hybridization, 29 STEC strains were isolated from 24 semihard and 5 soft cheeses. Thirteen of the 24 strains typeable with O antisera belonged to the serogroups O2, O22, and O91. More than half (58.6%) of the 29 strains belonged to O:H serotypes previously isolated from humans, and STEC O22:H8, O91:H10, O91:H21, and O174:H21 have also been identified as agents of hemolytic uremic syndrome. Typing of Shiga toxin genes showed that stx(1) was only found in 2 strains, whereas 27 strains carried genes encoding for the Stx(2) group, mainly stx(2) and stx(2vh-a/b). Production of Stx(2) and Stx(2vh-a/b) subtypes might be an indicator for a severe outcome in patients. Nine strains harbored hlyA (enterohemorrhagic E. coli hemolysin), whereas none tested positive for eae (intimin). Consequently, semihard and hard raw milk cheese may be a potential source of STEC, and a notable proportion of the isolated non-O157 STEC strains belonged to serotypes or harbored Shiga toxin gene variants associated with human infections.

  1. Protection of Human Podocytes from Shiga Toxin 2-Induced Phosphorylation of Mitogen-Activated Protein Kinases and Apoptosis by Human Serum Amyloid P Component

    PubMed Central

    Dettmar, Anne K.; Binder, Elisabeth; Greiner, Friederike R.; Liebau, Max C.; Kurschat, Christine E.; Jungraithmayr, Therese C.; Saleem, Moin A.; Schmitt, Claus-Peter; Feifel, Elisabeth; Orth-Höller, Dorothea; Kemper, Markus J.; Pepys, Mark; Würzner, Reinhard

    2014-01-01

    Hemolytic uremic syndrome (HUS) is mainly induced by Shiga toxin 2 (Stx2)-producing Escherichia coli. Proteinuria can occur in the early phase of the disease, and its persistence determines the renal prognosis. Stx2 may injure podocytes and induce proteinuria. Human serum amyloid P component (SAP), a member of the pentraxin family, has been shown to protect against Stx2-induced lethality in mice in vivo, presumably by specific binding to the toxin. We therefore tested the hypothesis that SAP can protect against Stx2-induced injury of human podocytes. To elucidate the mechanisms underlying podocyte injury in HUS-associated proteinuria, we assessed Stx2-induced activation of mitogen-activated protein kinases (MAPKs) and apoptosis in immortalized human podocytes and evaluated the impact of SAP on Stx2-induced damage. Human podocytes express Stx2-binding globotriaosylceramide 3. Stx2 applied to cultured podocytes was internalized and then activated p38α MAPK and c-Jun N-terminal kinase (JNK), important signaling steps in cell differentiation and apoptosis. Stx2 also activated caspase 3, resulting in an increased level of apoptosis. Coincubation of podocytes with SAP and Stx2 mitigated the effects of Stx2 and induced upregulation of antiapoptotic Bcl2. These data suggest that podocytes are a target of Stx2 and that SAP protects podocytes against Stx2-induced injury. SAP may therefore be a useful therapeutic option. PMID:24566618

  2. Fidaxomicin Inhibits Clostridium difficile Toxin A-Mediated Enteritis in the Mouse Ileum

    PubMed Central

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C.; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P.

    2014-01-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  3. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425

  4. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    PubMed

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  5. Hemolytic crisis

    MedlinePlus

    Hemolytic crisis occurs when large numbers of red blood cells are destroyed over a short time. The loss of ... During a hemolytic crisis, the body cannot make enough red blood cells to replace those that are destroyed. This causes acute and often ...

  6. Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Fach, Patrick

    2016-05-01

    Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.

  7. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  8. German outbreak of Escherichia coli O104:H4 associated with sprouts.

    PubMed

    Buchholz, Udo; Bernard, Helen; Werber, Dirk; Böhmer, Merle M; Remschmidt, Cornelius; Wilking, Hendrik; Deleré, Yvonne; an der Heiden, Matthias; Adlhoch, Cornelia; Dreesman, Johannes; Ehlers, Joachim; Ethelberg, Steen; Faber, Mirko; Frank, Christina; Fricke, Gerd; Greiner, Matthias; Höhle, Michael; Ivarsson, Sofie; Jark, Uwe; Kirchner, Markus; Koch, Judith; Krause, Gérard; Luber, Petra; Rosner, Bettina; Stark, Klaus; Kühne, Michael

    2011-11-10

    A large outbreak of the hemolytic-uremic syndrome caused by Shiga-toxin-producing Escherichia coli O104:H4 occurred in Germany in May 2011. The source of infection was undetermined. We conducted a matched case-control study and a recipe-based restaurant cohort study, along with environmental, trace-back, and trace-forward investigations, to determine the source of infection. The case-control study included 26 case subjects with the hemolytic-uremic syndrome and 81 control subjects. The outbreak of illness was associated with sprout consumption in univariable analysis (matched odds ratio, 5.8; 95% confidence interval [CI], 1.2 to 29) and with sprout and cucumber consumption in multivariable analysis. Among case subjects, 25% reported having eaten sprouts, and 88% reported having eaten cucumbers. The recipe-based study among 10 groups of visitors to restaurant K included 152 persons, among whom bloody diarrhea or diarrhea confirmed to be associated with Shiga-toxin-producing E. coli developed in 31 (20%). Visitors who were served sprouts were significantly more likely to become ill (relative risk, 14.2; 95% CI, 2.6 to ∞). Sprout consumption explained 100% of cases. Trace-back investigation of sprouts from the distributor that supplied restaurant K led to producer A. All 41 case clusters with known trading connections could be explained by producer A. The outbreak strain could not be identified on seeds from the implicated lot. Our investigations identified sprouts as the most likely outbreak vehicle, underlining the need to take into account food items that may be overlooked during subjects' recall of consumption.

  9. Damaging effects of Clostridium perfringens delta toxin on blood platelets and their relevance to ganglioside GM2.

    PubMed

    Jolivet-Reynaud, C; Launay, J M; Alouf, J E

    1988-04-01

    The lytic effect of Clostridium perfringens delta toxin was investigated on goat, human, rabbit, and guinea pig platelets. In contrast to erythrocytes from the latter three species, which are insensitive to the toxin, the platelets were equally lysed by the same amount of toxin. These results suggest the presence of GM2 or GM2-like ganglioside(s) as a specific recognition site of the toxin on platelet plasmic membrane as previously established for sensitive erythrocytes. Plasmic membrane damage of human platelets was evidenced by the release of entrapped alpha-[14C]aminoisobutyric acid used as a cytoplasmic marker. The specific binding of hemolytically active 125I-delta toxin by human and rabbit platelets was practically identical, dose dependent, and inhibitable by GM2. Labeled toxin was also bound by various subcellular organelles separated from rabbit platelets except the 5-hydroxytryptamine (5-HT)-containing dense bodies, suggesting the absence or inaccessibility of GM2 on the surface of the latter organelles. This result correlates with the low amounts of 5-[3H]HT liberated after platelet challenge with delta toxin whereas this mediator was massively liberated upon lysis by the sulfhydryl-activated toxin alveolysin. The levels of M and P forms of phenol sulfotransferase (PST), involved in 5-HT catabolism, were determined in human platelet lysates after challenge with delta toxin, alveolysin, and other disruptive treatments. The low PST-M activities detected after lysis by delta toxin suggest that this isoenzyme is very likely associated to dense bodies in contrast to PST-P which is cytoplasmic. Platelet lysis by the toxin allows easy separation of these organelles.

  10. Effects of shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells.

    PubMed

    Márquez, Laura B; Araoz, Alicia; Repetto, Horacio A; Ibarra, Fernando R; Silberstein, Claudia

    2016-10-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of zeolite shape and particle size on their capacity to adsorb uremic toxin as powders and as fillers in membranes.

    PubMed

    Lu, Limin; Chen, Chen; Samarasekera, Champika; Yeow, John T W

    2017-08-01

    Membranes with zeolites are promising for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the size and the shape of zeolite particles can potentially influence the performance of the membranes with respect of creatinine uptake level, it is not clear what sizes and shapes lead to better performance. In this paper, we carry out experiments to answer this question. Spherical microparticle 840, spherical nanoparticle P-87 and rod-like nanoparticle P-371 zeolites were chosen to be used in all the experiments. Their creatinine uptake levels were first measured as powders in creatinine solutions with different concentrations, volumes and adsorption times. Then, nanofibrous membranes with zeolites were electrospun and their ability to adsorb creatinine was measured and compared against their respective powders' creatinine uptake level. The experiment shows that the zeolites have similar creatinine uptake ability as powders. However, they have significantly different creatinine uptake ability after being incorporated inside the membranes. Spherical microparticle 840 in the membrane presented the best creatinine uptake ability, at 8957 µg g -1 , which was half of its powders'. On the other hand, P-87 presented largely decreased, while P-371 presented even lower creatinine uptake ability in membranes when compared to respective powders'. The results shows that microparticle and sphere shaped particles perform better inside the membranes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1594-1601, 2017. © 2016 Wiley Periodicals, Inc.

  12. Uremic Solutes in Chronic Kidney Disease and Their Role in Progression.

    PubMed

    van den Brand, Jan A J G; Mutsaers, Henricus A M; van Zuilen, Arjan D; Blankestijn, Peter J; van den Broek, Petra H; Russel, Frans G M; Masereeuw, Rosalinde; Wetzels, Jack F M

    2016-01-01

    To date, over 150 possible uremic solutes have been listed, but their role in the progression of CKD is largely unknown. Here, the association between a selected panel of uremic solutes and progression in CKD patients was investigated. Patients from the MASTERPLAN study, a randomized controlled trial in CKD patients with a creatinine clearance between 20 and 70 ml/min per 1.73m2, were selected based on their rate of eGFR decline during the first five years of follow-up. They were categorized as rapid (decline >5 ml/min per year) or slow progressors. Concentrations of eleven uremic solutes were obtained at baseline and after one year of follow-up. Logistic regression was used to compare the odds for rapid to slow progression by uremic solute concentrations at baseline. Variability in uremic solute levels was assessed using scatter plots, and limits of variability were calculated. In total, 40 rapidly and 40 slowly progressing patients were included. Uremic solutes were elevated in all patients compared to reference values for healthy persons. The serum levels of uremic solutes were not associated with rapid progression. Moreover, we observed substantial variability in solute levels over time. Elevated concentrations of uremic solutes measured in this study did not explain differences in rate of eGFR decline in CKD patients, possibly due to lack of power as a result of the small sample size, substantial between patient variability, and variability in solute concentrations over time. The etiology of intra-individual variation in uremic solute levels remains to be elucidated.

  13. Interaction of staphylococcal delta-toxin and synthetic analogues with erythrocytes and phospholipid vesicles. Biological and physical properties of the amphipathic peptides.

    PubMed

    Alouf, J E; Dufourcq, J; Siffert, O; Thiaudiere, E; Geoffroy, C

    1989-08-01

    Staphylococcal delta-toxin, a 26-residue amphiphilic peptide is lytic for cells and phospholipid vesicles and is assumed to insert as an amphipathic helix and oligomerize in membranes. For the first time, the relationship between these properties and toxin structure is investigated by means of eight synthetic peptides, one identical in sequence to the natural toxin, five 26-residue analogues and two shorter peptides corresponding to residues 1-11 and 11-26. These peptides were designed by the Edmundson wheel axial projection in order to maintain: (a) the hydrophilic/hydrophobic balance while rationalizing the sequence, (b) the alpha-helical configuration and (c) the common epitopic structure. The fluorescence of the single Trp residue was used to monitor the behaviour of the natural toxin and analogues. All 26-residue analogues were hemolytically active although to a lesser extent than natural toxin. The peptide of residues 11-26 bound lipids weakly and was hemolytic at high concentration. The peptide of residues 1-11 did not bind lipids and was hemolytically inactive. All peptides except the latter cross-reacted in immunoprecipitation tests with the natural toxin. The study of a 26-residue analogue by circular dichroism revealed an alpha-helical configuration in both the free and lipid-bound state. Changes in the fluorescence of the peptides in the presence of lipid micelles and bilayers varied according to the position of the reporter group. When bound to lipids, Trp5, Trp16 and the Fmoc-1 positions of the analogues became buried while Trp15 of the natural toxin and its synthetic replicate remained more exposed. All changes are rationalized by the proposal of an amphipathic helix whose hydrophobic face is embedded within the apolar core of bilayers while the hydrophilic and charged face remains more exposed to solvent.

  14. Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables.

    PubMed

    Kim, Jung-Beom; Choi, Ok-Kyung; Kwon, Sun-Mok; Cho, Seung-Hak; Park, Byung-Jae; Jin, Na Young; Yu, Yong Man; Oh, Deog-Hwan

    2017-08-28

    The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua . The hblCDA, nheABC , and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus , which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

  15. Coculture of Escherichia coli O157:H7 with a Nonpathogenic E. coli Strain Increases Toxin Production and Virulence in a Germfree Mouse Model

    PubMed Central

    Goswami, Kakolie; Chen, Chun; Xiaoli, Lingzi; Eaton, Kathryn A.

    2015-01-01

    Escherichia coli O157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenic E. coli. This study characterized an E. coli O157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strain E. coli C600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence of E. coli O157:H7, particularly a subset of clade 8 strains. PMID:26259815

  16. Coculture of Escherichia coli O157:H7 with a Nonpathogenic E. coli Strain Increases Toxin Production and Virulence in a Germfree Mouse Model.

    PubMed

    Goswami, Kakolie; Chen, Chun; Xiaoli, Lingzi; Eaton, Kathryn A; Dudley, Edward G

    2015-11-01

    Escherichia coli O157:H7 is a notorious foodborne pathogen due to its low infectious dose and the disease symptoms it causes, which include bloody diarrhea and severe abdominal cramps. In some cases, the disease progresses to hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), due to the expression of one or more Shiga toxins (Stx). Isoforms of Stx, including Stx2a, are encoded within temperate prophages. In the presence of certain antibiotics, phage induction occurs, which also increases the expression of toxin genes. Additionally, increased Stx2 accumulation has been reported when O157:H7 was cocultured with phage-susceptible nonpathogenic E. coli. This study characterized an E. coli O157:H7 strain, designated PA2, that belongs to the hypervirulent clade 8 cluster. Stx2a levels after ciprofloxacin induction were lower for PA2 than for the prototypical outbreak strains Sakai and EDL933. However, during coculture with the nonpathogenic strain E. coli C600, PA2 produced Stx2a levels that were 2- to 12-fold higher than those observed during coculture with EDL933 and Sakai, respectively. Germfree mice cocolonized by PA2 and C600 showed greater kidney damage, increased Stx2a accumulation in feces, and more visible signs of disease than mice given PA2 or C600 alone. These data suggest one mechanism by which microorganisms associated with the colonic microbiota could enhance the virulence of E. coli O157:H7, particularly a subset of clade 8 strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. A Cryptosporidium parvum genomic region encoding hemolytic activity.

    PubMed Central

    Steele, M I; Kuhls, T L; Nida, K; Meka, C S; Halabi, I M; Mosier, D A; Elliott, W; Crawford, D L; Greenfield, R A

    1995-01-01

    Successful parasitization by Cryptosporidium parvum requires multiple disruptions in both host and protozoan cell membranes as cryptosporidial sporozoites invade intestinal epithelial cells and subsequently develop into asexual and sexual life stages. To identify cryptosporidial proteins which may play a role in these membrane alterations, hemolytic activity was used as a marker to screen a C. parvum genomic expression library. A stable hemolytic clone (H4) containing a 5.5-kb cryptosporidial genomic fragment was identified. The hemolytic activity encoded on H4 was mapped to a 1-kb region that contained a complete 690-bp open reading frame (hemA) ending in a common stop codon. A 21-kDa plasmid-encoded recombinant protein was expressed in maxicells containing H4. Subclones of H4 which contained only a portion of hemA did not induce hemolysis on blood agar or promote expression of the recombinant protein in maxicells. Reverse transcriptase-mediated PCR analysis of total RNA isolated from excysted sporozoites and the intestines of infected adult mice with severe combined immunodeficiency demonstrated that hemA is actively transcribed during the cryptosporidial life cycle. PMID:7558289

  18. Functional responses of uremic single skeletal muscle fibers to redox imbalances.

    PubMed

    Mitrou, G I; Poulianiti, K P; Koutedakis, Y; Jamurtas, A Z; Maridaki, M D; Stefanidis, I; Sakkas, G K; Karatzaferi, C

    2017-01-01

    The exact causes of skeletal muscle weakness in chronic kidney disease (CKD) remain unknown with uremic toxicity and redox imbalances being implicated. To understand whether uremic muscle has acquired any sensitivity to acute redox changes we examined the effects of redox disturbances on force generation capacity. Permeabilized single psoas fibers (N =37) from surgically induced CKD (UREM) and sham-operated (CON) rabbits were exposed to an oxidizing (10 mM Hydrogen Peroxide, H 2 O 2 ) and/or a reducing [10 mM Dithiothreitol (DTT)] agent, in a blind design, in two sets of experiments examining: A) the acute effect of the addition of H 2 O 2 on maximal (pCa 4.4) isometric force of actively contracting fibers and the effect of incubation in DTT on subsequent re-activation and force recovery (N =9 CON; N =9 UREM fibers); B) the effect of incubation in H 2 O 2 on both submaximal (pCa 6.2) and maximal (pCa 4.4) calcium activated isometric force generation (N =9 CON; N =10 UREM fibers). Based on cross-sectional area (CSA) calculations, a 14 % atrophy in UREM fibers was revealed; thus forces were evaluated in absolute values and corrected for CSA (specific force) values. A) Addition of H 2 O 2 during activation did not significantly affect force generation in any group or the pool of fibers. Incubation in DTT did not affect the CON fibers but caused a 12 % maximal isometric force decrease in UREM fibers (both in absolute force p =0.024, and specific force, p =0.027). B) Incubation in H 2 O 2 during relaxation lowered subsequent maximal (but not submaximal) isometric forces in the Pool of fibers by 3.5 % (for absolute force p =0.033, for specific force p =0.019) but not in the fiber groups separately. Force generation capacity of CON and UREM fibers is affected by oxidation similarly. However, DTT significantly lowered force in UREM muscle fibers. This may indicate that at baseline UREM muscle could have already been at a more reduced redox state than physiological. This

  19. Molecular Characterization of Shiga Toxin-Producing Escherichia coli Strains Isolated in Poland.

    PubMed

    Januszkiewicz, Aleksandra; Rastawicki, Waldemar

    2016-08-26

    Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic - uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria. virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over

  20. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli.

    PubMed

    Karve, Sayali S; Pradhan, Suman; Ward, Doyle V; Weiss, Alison A

    2017-01-01

    Infection with Shiga toxin (Stx) producing Escherichia coli O157:H7 can cause the potentially fatal complication hemolytic uremic syndrome, and currently only supportive therapy is available. Lack of suitable animal models has hindered study of this disease. Induced human intestinal organoids (iHIOs), generated by in vitro differentiation of pluripotent stem cells, represent differentiated human intestinal tissue. We show that iHIOs with addition of human neutrophils can model E. coli intestinal infection and innate cellular responses. Commensal and O157:H7 introduced into the iHIO lumen replicated rapidly achieving high numbers. Commensal E. coli did not cause damage, and were completely contained within the lumen, suggesting defenses, such as mucus production, can constrain non-pathogenic strains. Some O157:H7 initially co-localized with cellular actin. Loss of actin and epithelial integrity was observed after 4 hours. O157:H7 grew as filaments, consistent with activation of the bacterial SOS stress response. SOS is induced by reactive oxygen species (ROS), and O157:H7 infection increased ROS production. Transcriptional profiling (RNAseq) demonstrated that both commensal and O157:H7 upregulated genes associated with gastrointestinal maturation, while infection with O157:H7 upregulated inflammatory responses, including interleukin 8 (IL-8). IL-8 is associated with neutrophil recruitment, and infection with O157:H7 resulted in recruitment of human neutrophils into the iHIO tissue.

  1. [Contribution of blue-green pigments to hemolytic activity of Pseudomonas aeruginosa cultural fluid].

    PubMed

    Pyzh, A É; Nikandrov, V N

    2011-01-01

    To assess the contribution of blue-green pigments of Pseudomonas aeruginosa to hemolytic activity of its cultural fluid. MATERIALS AND METHODS. Eight hospital strains and reference strain ATCC 15442 were used. Growth dynamics of strains as well as features of accumulation of hemolytic and phospholipase activity were studied. Purified samples of pyoverdin and pyocyanin were extracted by gel-chromatography and chloroform extraction methods. Hemolytic and lecitinase activities of the samples as well as effect of active oxygen scavengers and chelating agents on these activities were studied. Dynamics of accumulation of hemolytic activity significantly differed from that of phospholipase activity when strains were grown in liquid medium. Chromatographic separation of the pigments from cultural fluid supernatants sharply reduced its hemolytic activity. Purified samples of pyoverdin and pyocyanin were capable to lyse erythrocytes and chicken egg lecitin. These characteristics of the pigments were inhibited by nitroblue tetrazolium and sensitive to chelating agents. Conclusion. Pyoverdin and pyocyanin of pathogenic strains of P. aeruginosa are capable to lyse erythrocytes and suspension of purified chicken egg lecitin, they contribute to total hemolytic activity of pathogenic strains of Pseudomonas, which is not determined only by phospholipase C produced by microorganism. Lytic activity of the pigments is blocked by nitroblue tetrazolium and susceptible to some chelating agents. Apparently, this activity is mediated by superoxide radical and determined by presence of metals with transient valence in pigments' molecules.

  2. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    PubMed

    Löbel, Ulrike; Forkert, Nils Daniel; Schmitt, Peter; Dohrmann, Thorsten; Schroeder, Maria; Magnus, Tim; Kluge, Stefan; Weiler-Normann, Christina; Bi, Xiaoming; Fiehler, Jens; Sedlacik, Jan

    2016-01-01

    Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P < 0.001), and TTP (r = 0.35, P = 0.036). No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower compared to patients with normal MRI (mean SWI score, 1

  3. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    NASA Astrophysics Data System (ADS)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  4. [Compression of the sciatic nerve in uremic tumor calcinosis].

    PubMed

    García, S; Cofán, F; Combalia, A; Casas, A; Campistol, J M; Oppenheimer, F

    1999-02-01

    Tumoral calcinosis is an uncommon and benign condition characterized by the presence of slow-growing calcified periarticular soft tissue masses of varying size. They are usually asymptomatic and nerve compression is rare. We describe the case of a 54-year-old female patient on long-term hemodialysis for chronic renal failure presenting sciatica in the left lower limb secondary to an extensive uremic tumoral calcinosis that affected the hip and thigh. The pathogenesis of uremic tumoral calcinosis as well as the treatment and clinical outcome are analyzed. The uncommon nerve compression due to tumoral calcinosis are reviewed. In conclusion, uremic tumoral calcinosis is a not previously reported infrequent cause of sciatic nerve compression.

  5. Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): close similarity in properties and primary structures to stonefish toxins.

    PubMed

    Kiriake, Aya; Suzuki, Yasuko; Nagashima, Yuji; Shiomi, Kazuo

    2013-08-01

    The crude toxins from three species of venomous fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis) belonging to the order Scorpaeniformes exhibited mouse-lethal, hemolytic, edema-forming and nociceptive activities. In view of the antigenic cross-reactivity with the stonefish toxins, the primary structures of the stonefish toxin-like toxins from the three scorpaeniform fish were determined by cDNA cloning using primers designed from the highly conserved sequences of the stonefish toxins. Based on the data obtained in gel filtration, immunoblotting and cDNA cloning, each toxin was judged to be a 160 kDa heterodimer composed of 80 kDa α- and β-subunits. The three scorpaeniform fish toxins contain a B30.2/SPRY domain (∼200 amino acid residues) in the C-terminal region of each subunit, as reported for the toxins from two species of lionfish and two species of stonefish. With respect to the amino acid sequence similarity, the scorpaeniform fish toxins are divided into the following two groups: toxins from three species of lionfish and those from devil stinger, two species of stonefish and waspfish. The phylogenetic tree generated also clearly supports the classification of the toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Shiga Toxin 2 and Lipopolysaccharide Induce Human Microvascular Endothelial Cells To Release Chemokines and Factors That Stimulate Platelet Function

    PubMed Central

    Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.

    2005-01-01

    Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328

  7. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.

    PubMed

    Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2017-09-01

    α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.

  8. Hypothesis: Hemolytic Transfusion Reactions Represent an Alternative Type of Anaphylaxis

    PubMed Central

    Hod, Eldad A.; Sokol, Set A.; Zimring, James C.; Spitalnik, Steven L.

    2009-01-01

    Classical anaphylaxis is the most severe, and potentially fatal, type of allergic reaction, manifested by hypotension, bronchoconstriction, and vascular permeability. Similarly, a hemolytic transfusion reaction (HTR) is the most feared consequence of blood transfusion. Evidence for the existence of an alternative, IgG-mediated pathway of anaphylaxis may be relevant for explaining the pathophysiology of IgG-mediated-HTRs. The purpose of this review is to summarize the evidence for this alternative pathway of anaphylaxis and to present the hypothesis that an IgG-mediated HTR is one example of this type of anaphylaxis. PMID:18830382

  9. Contribution of Urease to Colonization by Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Steyert, Susan R.

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH3 produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STEC ure gene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of the ure gene locus was constructed in STEC strain 88-0643, and the ure mutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to the ure mutant strain. These in vivo experiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC. PMID:22665380

  10. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael

    2006-02-15

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceousmore » material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and

  11. Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus α-toxin action.

    PubMed

    von Hoven, Gisela; Rivas, Amable J; Neukirch, Claudia; Klein, Stefan; Hamm, Christian; Qin, Qianqian; Meyenburg, Martina; Füser, Sabine; Saftig, Paul; Hellmann, Nadja; Postina, Rolf; Husmann, Matthias

    2016-07-01

    Staphylococcus aureus is a leading cause of bacterial infections in humans, including life-threatening diseases such as pneumonia and sepsis. Its small membrane-pore-forming α-toxin is considered an important virulence factor. By destroying cell-cell contacts through cleavage of cadherins, the metalloproteinase ADAM10 (a disintegrin and metalloproteinase 10) critically contributes to α-toxin-dependent pathology of experimental S. aureus infections in mice. Moreover, ADAM10 was proposed to be a receptor for α-toxin. However, it is unclear whether the catalytic activity or specific domains of ADAM10 are involved in mediating binding and/or subsequent cytotoxicity of α-toxin. Also, it is not known how α-toxin triggers ADAM10's enzymatic activity, and whether ADAM10 is invariably required for all α-toxin action on cells. In the present study, we show that efficient cleavage of the ADAM10 substrate epithelial cadherin (E-cadherin) requires supra-cytotoxic concentrations of α-toxin, leading to significant increases in intracellular [Ca(2+)]; the fall in cellular ATP levels, typically following membrane perforation, became observable at far lower concentrations. Surprisingly, ADAM10 was dispensable for α-toxin-dependent xenophagic targeting of S. aureus, whereas a role for α-toxin attack on the plasma membrane was confirmed. The catalytic site of ADAM10, furin cleavage site, cysteine switch and intracellular domain of ADAM10 were not required for α-toxin binding and subsequent cytotoxicity. In contrast, an essential role for the disintegrin domain and the prodomain emerged. Thus, co-expression of the prodomain with prodomain-deficient ADAM10 reconstituted binding of α-toxin and susceptibility of ADAM10-deficient cells. The results of the present study may help to inform structural analyses of α-toxin-ADAM10 interactions and to design novel strategies to counteract S. aureus α-toxin action. © 2016 The Author(s). published by Portland Press Limited on behalf

  12. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

    PubMed Central

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K.; Iyer, Lakshminarayan M.; Aravind, L.; Hitti, Jane

    2013-01-01

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury. PMID:23712433

  13. Baby oil therapy for uremic pruritus in haemodialysis patients.

    PubMed

    Lin, Tzu-Chen; Lai, Yu-Hung; Guo, Su-Er; Liu, Chin-Fang; Tsai, Jer-Chia; Guo, How-Ran; Hsu, Hsin-Tien

    2012-01-01

    The purpose of this study was to investigate the effectiveness of chilled/un-chilled baby oil therapy for treating uremic pruritus in haemodialysis patients. Uremic pruritus affects 50-90% of haemodialysis patients, which makes it one of the most common medical problems in this population. Pruritus can cause skin infection, desquamation, pathological skin change, sleep disorder, anxiety, depression and social dysfunction. A prospective, pretest-post-test quasi-experimental design was used. Haemodialysis patients with uremic pruritus were recruited and randomly assigned to one of three groups: experimental group 1 (chilled baby oil treatment; n = 30), experimental group 2 (un-chilled baby oil treatment; n = 31) and a control group (routine care only; n = 32). Participants in experimental group 1 and experimental group 2 were treated with chilled and un-chilled baby oil, respectively, for 15 minutes at least once daily for three weeks. The control group received no intervention other than standard care. Data collection included demographic data and itch severity. Medical records were also reviewed. The baseline characteristics of subjects in this study were as follows: 59% were male, mean age was 61·88 (SD 12·7) years, mean duration of haemodialysis was 5·31 years, mean duration of uremic pruritus was 40·58 (SD 37·8) months and mean intensity of uremic pruritus was mild. The anti-pruritic effects were significantly larger in subjects treated with either chilled or un-chilled baby oil than in those who received routine care. Anti-pruritic effects did not significantly differ between experimental group 1 and experimental group 2. The study confirmed that, for relieving pruritus in haemodialysis patients, either chilled or un-chilled baby oil is as effective as moisturising lotions and cooling soothing agents. Applying baby oil is a simple, safe, inexpensive and easily administered treatment for itchy skin in haemodialysis patients. By preventing or reducing uremic

  14. Pure and zinc doped nano-hydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies

    NASA Astrophysics Data System (ADS)

    Tank, Kashmira P.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.

    2014-09-01

    The structural, antimicrobial, and hemolytic properties and bioactivity have been studied of pure hydroxyapatite (HAP) and zinc doped hydroxyapatite (Zn-HAP) nano-particles for their medical applications. Pure HAP and Zn-HAP nano-particles were synthesized by the surfactant mediated approach. The doping of zinc was estimated by EDAX. The average particle size was determined by applying Scherrer's formula to powdered XRD patterns. The nano-particle morphology was studied by TEM and the presence of various functional groups was identified by FTIR spectroscopy. Good antimicrobial activity of nano-HAP and nano-Zn-HAP was found against five organisms, viz., Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus, Staphylococcous aureus and Bacillus cereus as Gram positive. The ability of new apatite formation on the surface of pure and doped HAP samples was studied by using Simulated Body Fluid (SBF) in vitro. Hemolytic study indicated that all samples were non-hemolytic and suggesting potential application as bone implant material.

  15. Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence.

    PubMed

    Navarro-Garcia, Fernando

    2014-12-01

    A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.

  16. Hemolytic Uremic Syndrome in Children

    MedlinePlus

    ... in a health care provider's office or a commercial facility. For the test, a nurse or technician ... at a health care provider's office or a commercial facility and sending the sample to a lab ...

  17. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  18. Effects of sodium dodecyl sulfate on the conformation and hemolytic activity of St I and St II, two isotoxins purified from Stichodactyla helianthus.

    PubMed

    Lanio, M E; Alvarez, C; Pazos, F; Martinez, D; Martínez, Y; Casallanovo, F; Abuin, E; Schreier, S; Lissi, E

    2003-01-01

    The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein concentrations. In this surfactant range, the proteins show an increase in intrinsic fluorescence intensity and reduced quenching by acrylamide, with an almost total loss of its hemolytic activity. At higher surfactant concentrations the protein adducts disaggregates. This produces a decrease in fluorescence intensity, increase in quenching efficiency by acrylamide, loss of the native tertiary conformation (as reported by the near UV-CD spectra), and increase in alpha-helix content (as evidenced by the far UV-CD spectra). However, and in spite of these substantial changes, the toxins partially recover their hemolytic activity. The reasons for this recovering of the activity at high surfactant concentrations is discussed.

  19. Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity.

    PubMed

    Ui, Mihoko; Harima, Kousuke; Takei, Toshiaki; Tsumoto, Kouhei; Tabata, Kazuhito V; Noji, Hiroyuki; Endo, Sumire; Akiyama, Kimio; Muraoka, Takahiro; Kinbara, Kazushi

    2014-12-01

    The chemical modification of proteins to provide desirable functions and/or structures broadens their possibilities for use in various applications. Usually, proteins can acquire new functions and characteristics, in addition to their original ones, via the introduction of synthetic functional moieties. Here, we adopted a more radical approach to protein modification, i.e., the replacement of a functional domain of proteins with alternative chemical compounds to build "cyborg proteins." As a proof of concept model, we chose staphylococcal α-hemolysin (Hla), which is a well-studied, pore-forming toxin. The hemolytic activity of Hla mutants was dramatically decreased by truncation of the stem domain, which forms a β-barrel pore in the membrane. However, the impaired hemolytic activity was significantly restored by attaching a pyrenyl-maleimide unit to the cysteine residue that was introduced in the remaining stem domain. In contrast, negatively charged fluorescein-maleimide completely abolished the remaining activity of the mutants.

  20. Origins of the E. coli Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany

    PubMed Central

    Rasko, David A.; Webster, Dale R.; Sahl, Jason W.; Bashir, Ali; Boisen, Nadia; Scheutz, Flemming; Paxinos, Ellen E.; Sebra, Robert; Chin, Chen-Shan; Iliopoulos, Dimitris; Klammer, Aaron; Peluso, Paul; Lee, Lawrence; Kislyuk, Andrey O.; Bullard, James; Kasarskis, Andrew; Wang, Susanna; Eid, John; Rank, David; Redman, Julia C.; Steyert, Susan R.; Frimodt-Møller, Jakob; Struve, Carsten; Petersen, Andreas M.; Krogfelt, Karen A.; Nataro, James P.; Schadt, Eric E.; Waldor, Matthew K.

    2011-01-01

    BACKGROUND A large outbreak of diarrhea and the hemolytic–uremic syndrome caused by an unusual serotype of Shiga-toxin–producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin–producing E. coli have been reported — 3167 without the hemolytic–uremic syndrome (16 deaths) and 908 with the hemolytic–uremic syndrome (34 deaths) — indicating that this strain is notably more virulent than most of the Shiga-toxin–producing E. coli strains. Preliminary genetic characterization of the outbreak strain suggested that, unlike most of these strains, it should be classified within the enteroaggregative pathotype of E. coli. METHODS We used third-generation, single-molecule, real-time DNA sequencing to determine the complete genome sequence of the German outbreak strain, as well as the genome sequences of seven diarrhea-associated enteroaggregative E. coli serotype O104:H4 strains from Africa and four enteroaggregative E. coli reference strains belonging to other serotypes. Genomewide comparisons were performed with the use of these enteroaggregative E. coli genomes, as well as those of 40 previously sequenced E. coli isolates. RESULTS The enteroaggregative E. coli O104:H4 strains are closely related and form a distinct clade among E. coli and enteroaggregative E. coli strains. However, the genome of the German outbreak strain can be distinguished from those of other O104:H4 strains because it contains a prophage encoding Shiga toxin 2 and a distinct set of additional virulence and antibiotic-resistance factors. CONCLUSIONS Our findings suggest that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga-toxin–producing enteroaggregative E. coli O104:H4 strain that caused the German outbreak. More broadly, these findings highlight the way in which the plasticity of bacterial genomes facilitates the emergence of new pathogens. PMID:21793740

  1. [Coagulation factor VII levels in uremic patients and theirs influence factors].

    PubMed

    Fang, Jun; Xia, Ling-Hui; Wei, Wen-Ning; Song, Shan-Jun

    2004-12-01

    This study was aimed to investigate coagulation factor VII level in uremic patients with chronic renal failure and to explore theirs influence factors. The plasma levels of coagulation factor VII were detected in 30 uremic patients with chronic renal failure before and after hemodialysis for 1 month, the factor VII activity (FVII:C) was determined by one-stage coagulation method, while activated factor VII (FVIIa) was measured by one-stage coagulation method using recombinant soluble tissue factor, and factor VII antigen was detected by ELISA. The results showed that: (1) The FVIIa, FVII:C and FVIIAg levels in chronic uremic patients before hemodialysis were 4.00 +/- 0.86 microg/L, (148.5 +/- 40.4)% and (99.8 +/- 21.1)% respectively, which were significantly increased, as compared with healthy controls [2.77 +/- 1.02 microg/L, (113.1 +/- 33.0)% and (73.7 +/- 18.3)% respectively, P < 0.05]. (2) After hemodialysis the FVIIa, FVII:C and FVIIAg levels in uremic patients significantly enhanced to 5.56 +/- 1.45 microg/L, (200.8 +/- 68.7)% and (124.1 +/- 19.3)% respectively (P < 0.05). (3) The abnormal increase of coagulation factor VII was positively correlated with levels of blood uria nitrogen and serum creatinine before hemodialysis but not after hemodialysis. It is concluded that the enhanced levels of coagulation factor VII in chronic uremic patients suggested abnormal activated state, herperactivity and elevated production of factor VII which correlated with renal functional injury. The abnormality of factor VII in uremia may be aggravated by hemodialysis. Coagulation factor (FVII) may be a risk factor for cardiovascular events in uremic patients who especially had been accepted long-term hemodialysis.

  2. Pore-forming activity of clostridial binary toxins.

    PubMed

    Knapp, O; Benz, R; Popoff, M R

    2016-03-01

    Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of Antibiotics on Shiga Toxin 2 Production and Bacteriophage Induction by Epidemic Escherichia coli O104:H4 Strain

    PubMed Central

    Bielaszewska, Martina; Idelevich, Evgeny A.; Zhang, Wenlan; Bauwens, Andreas; Schaumburg, Frieder; Mellmann, Alexander; Peters, Georg

    2012-01-01

    The role of antibiotics in treatment of enterohemorrhagic Escherichia coli (EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction of stx2-harboring bacteriophages, stx2 transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increased stx2-harboring phage induction and Stx2 production in outbreak isolates (P values of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P > 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P ≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulated stx2 transcription, respectively (P < 0.01); the other antibiotics had insignificant effects (P > 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither induced stx2-harboring phages nor increased stx2 transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS. PMID:22391549

  4. Promoter Sequence of Shiga Toxin 2 (Stx2) Is Recognized In Vivo, Leading to Production of Biologically Active Stx2

    PubMed Central

    Bentancor, Leticia V.; Mejías, Maria P.; Pinto, Alípio; Bilen, Marcos F.; Meiss, Roberto; Rodriguez-Galán, Maria C.; Baez, Natalia; Pedrotti, Luciano P.; Goldstein, Jorge; Ghiringhelli, Pablo D.; Palermo, Marina S.

    2013-01-01

    ABSTRACT Shiga toxins (Stx) are the main agent responsible for the development of hemolytic-uremic syndrome (HUS), the most severe and life-threatening systemic complication of infection with enterohemorrhagic Escherichia coli (EHEC) strains. We previously described Stx2 expression by eukaryotic cells after they were transfected in vitro with the stx2 gene cloned into a prokaryotic plasmid (pStx2). The aim of this study was to evaluate whether mammalian cells were also able to express Stx2 in vivo after pStx2 injection. Mice were inoculated by hydrodynamics-based transfection (HBT) with pStx2. We studied the survival, percentage of polymorphonuclear leukocytes in plasma, plasma urea levels, and histology of the kidneys and the brains of mice. Mice displayed a lethal dose-related response to pStx2. Stx2 mRNA was recovered from the liver, and Stx2 cytotoxic activity was observed in plasma of mice injected with pStx2. Stx2 was detected by immunofluorescence in the brains of mice inoculated with pStx2, and markers of central nervous system (CNS) damage were observed, including increased expression of glial fibrillary acidic protein (GFAP) and fragmentation of NeuN in neurons. Moreover, anti-Stx2B-immunized mice were protected against pStx2 inoculation. Our results show that Stx2 is expressed in vivo from the wild stx2 gene, reproducing pathogenic damage induced by purified Stx2 or secondary to EHEC infection. PMID:24085779

  5. Noninvasive diagnosis of uremic osteodystrophy: uses and limitations.

    PubMed

    Heaf, J G; Joffe, P; Pødenphant, J; Andersen, J R

    1987-01-01

    45 bone biopsies from patients with chronic uremia were reviewed to define which noninvasive investigations were of value in predicting the histological diagnosis and to quantify the spectrum of uremic bone disease at a center that has consistently used an aluminum-free dialysis bath. 17 biopsies were taken postmortem. 15 patients received conservative treatment, the rest were on maintenance dialysis. 13 patients had symptomatic bone disease. Virtually all patients with a uremia duration greater than 3 years had uremic osteodystrophy. All patients with clinical bone disease, hypercalcemia or raised alkaline phosphatase activity had osteodystrophy, but the specific histology was not indicated. Greatly raised parathyroid levels suggested secondary hyperparathyroidism, but the test was only 100% specific when 20 times normal. Total aluminum consumption was highly indicative of bone aluminum concentration (p less than 0.0001) and aluminum-related osteomalacia (5 cases), suggesting that a considerable proportion of uremic bone disease is iatrogenic. Serum aluminum was of some use in the diagnosis of aluminum-related osteomalacia, but was not wholly reliable. Bone mineral content (BMC) using both forearm measurements and total body bone mineral levels (TBBM) were assessed in 32 patients and were found to be reduced in 12, with a preponderance of secondary hyperparathyroidism. BMC and TBBM were negatively correlated to resorbing surfaces and bone formation rate, suggesting that secondary hyperparathyroidism is the uremic bone disease that represents the greatest threat to bone mass. It is concluded that while noninvasive investigations give considerable information, reliable diagnosis requires the use of histological methods.

  6. Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli.

    PubMed

    Toval, Francisco; Schiller, Roswitha; Meisen, Iris; Putze, Johannes; Kouzel, Ivan U; Zhang, Wenlan; Karch, Helge; Bielaszewska, Martina; Mormann, Michael; Müthing, Johannes; Dobrindt, Ulrich

    2014-11-01

    Enterohemorrhagic Escherichia coli (EHEC), a subgroup of Shiga toxin (Stx)-producing E. coli (STEC), is a leading cause of diarrhea and hemolytic-uremic syndrome (HUS) in humans. However, urinary tract infections (UTIs) caused by this microorganism but not associated with diarrhea have occasionally been reported. We geno- and phenotypically characterized three EHEC isolates obtained from the urine of hospitalized patients suffering from UTIs. These isolates carried typical EHEC virulence markers and belonged to HUS-associated E. coli (HUSEC) clones, but they lacked virulence markers typical of uropathogenic E. coli. One isolate exhibited a localized adherence (LA)-like pattern on T24 urinary bladder epithelial cells. Since the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) are well-known receptors for Stx but also for P fimbriae, a major virulence factor of extraintestinal pathogenic E. coli (ExPEC), the expression of Gb3Cer and Gb4Cer by T24 cells and in murine urinary bladder tissue was examined by thin-layer chromatography and mass spectrometry. We provide data indicating that Stxs released by the EHEC isolates bind to Gb3Cer and Gb4Cer isolated from T24 cells, which were susceptible to Stx. All three EHEC isolates expressed stx genes upon growth in urine. Two strains were able to cause UTI in a murine infection model and could not be outcompeted in urine in vitro by typical uropathogenic E. coli isolates. Our results indicate that despite the lack of ExPEC virulence markers, EHEC variants may exhibit in certain suitable hosts, e.g., in hospital patients, a uropathogenic potential. The contribution of EHEC virulence factors to uropathogenesis remains to be further investigated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. The major autoantibody epitope on factor H in atypical hemolytic uremic syndrome is structurally different from its homologous site in factor H-related protein 1, supporting a novel model for induction of autoimmunity in this disease.

    PubMed

    Bhattacharjee, Arnab; Reuter, Stefanie; Trojnár, Eszter; Kolodziejczyk, Robert; Seeberger, Harald; Hyvärinen, Satu; Uzonyi, Barbara; Szilágyi, Ágnes; Prohászka, Zoltán; Goldman, Adrian; Józsi, Mihály; Jokiranta, T Sakari

    2015-04-10

    Atypical hemolytic uremic syndrome (aHUS) is characterized by complement attack against host cells due to mutations in complement proteins or autoantibodies against complement factor H (CFH). It is unknown why nearly all patients with autoimmune aHUS lack CFHR1 (CFH-related protein-1). These patients have autoantibodies against CFH domains 19 and 20 (CFH19-20), which are nearly identical to CFHR1 domains 4 and 5 (CFHR14-5). Here, binding site mapping of autoantibodies from 17 patients using mutant CFH19-20 constructs revealed an autoantibody epitope cluster within a loop on domain 20, next to the two buried residues that are different in CFH19-20 and CFHR14-5. The crystal structure of CFHR14-5 revealed a difference in conformation of the autoantigenic loop in the C-terminal domains of CFH and CFHR1, explaining the variation in binding of autoantibodies from some aHUS patients to CFH19-20 and CFHR14-5. The autoantigenic loop on CFH seems to be generally flexible, as its conformation in previously published structures of CFH19-20 bound to the microbial protein OspE and a sialic acid glycan is somewhat altered. Cumulatively, our data suggest that association of CFHR1 deficiency with autoimmune aHUS could be due to the structural difference between CFHR1 and the autoantigenic CFH epitope, suggesting a novel explanation for CFHR1 deficiency in the pathogenesis of autoimmune aHUS. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Treatment with pyrophosphate inhibits uremic vascular calcification

    PubMed Central

    O’Neill, W. Charles; Lomashvili, Koba A.; Malluche, Hartmut H.; Faugere, Marie-Claude; Riser, Bruce L.

    2011-01-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone. PMID:21124302

  9. Treatment with pyrophosphate inhibits uremic vascular calcification.

    PubMed

    O'Neill, W Charles; Lomashvili, Koba A; Malluche, Hartmut H; Faugere, Marie-Claude; Riser, Bruce L

    2011-03-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.

  10. Anti-Legionella activity of staphylococcal hemolytic peptides.

    PubMed

    Marchand, A; Verdon, J; Lacombe, C; Crapart, S; Héchard, Y; Berjeaud, J M

    2011-05-01

    A collection of various Staphylococci was screened for their anti-Legionella activity. Nine of the tested strains were found to secrete anti-Legionella compounds. The culture supernatants of the strains, described in the literature to produce hemolytic peptides, were successfully submitted to a two step purification process. All the purified compounds, except one, corresponded to previously described hemolytic peptides and were not known for their anti-Legionella activity. By comparison of the minimal inhibitory concentrations, minimal permeabilization concentrations, decrease in the number of cultivable bacteria, hemolytic activity and selectivity, the purified peptides could be separated in two groups. First group, with warnericin RK as a leader, corresponds to the more hemolytic and bactericidal peptides. The peptides of the second group, represented by the PSMα from Staphylococcus epidermidis, appeared bacteriostatic and poorly hemolytic. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Vaccine-associated immune-mediated hemolytic anemia in the dog.

    PubMed

    Duval, D; Giger, U

    1996-01-01

    Vaccination has been incriminated as a trigger of immune-mediated hemolytic anemia (IMHA) in dogs and in people, but evidence to support this association is lacking. In a controlled retrospective study, idiopathic IMHA was identified in 58 dogs over a 27-month period. When compared with a randomly selected control group of 70 dogs (presented for reasons other than IMHA) over the same period, the distribution of cases versus time since vaccination was different (P < .05). Fifteen of the dogs (26%) had been vaccinated within 1 month (mean, 13 days; median, 14 days; range, 1 to 27 days) of developing IMHA (P < .0001), whereas in the control group no marked increase in frequency of presentation was seen in the first month after vaccination. The dogs with IMHA were divided into 2 groups based on time since vaccination: the vaccine IMHA group included dogs vaccinated within 1 month of developing IMHA; the nonvaccine IMHA group included dogs that developed IMHA more than 1 month after vaccination. The recently vaccinated dogs with IMHA (vaccine IMHA group) had significantly lower platelet counts (P < .05) and a trend towards increased prevalence of intravascular hemolysis and autoagglutination when compared with the nonvaccine IMHA group. Similar mortality rates were seen in teh vaccine IMHA group (60%) and the nonvaccine IMHA group (44%), with the majority of fatalities (> 75%) occurring in the first 3 weeks after presentation. Persistent autoagglutination was a negative prognostic indicator for survival in both groups (P < .05). Presence of icterus and hyperbilirubinemia were negative prognostic indicators for survival in the nonvaccine IMHA group (P < .0001 and P < .01, respectively) but not in the vaccine IMHA group. In the recently vaccinated dogs, combination vaccines from various manufacturers against canine distemper, adenovirus type 2, leptospirosis, parainfluenza, and parvovirus (DHLPP) were involved in each case. Vaccines against rabies virus, Bordetella spp

  12. Phospholipase C produced by Clostridium botulinum types C and D: comparison of gene, enzymatic, and biological activities with those of Clostridium perfringens alpha-toxin.

    PubMed

    Fatmawati, Ni Nengah Dwi; Sakaguchi, Yoshihiko; Suzuki, Tomonori; Oda, Masataka; Shimizu, Kenta; Yamamoto, Yumiko; Sakurai, Jun; Matsushita, Osamu; Oguma, Keiji

    2013-01-01

    Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs), the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival.

  13. Genetic makeup of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children.

    PubMed

    Matussek, A; Jernberg, C; Einemo, I-M; Monecke, S; Ehricht, R; Engelmann, I; Löfgren, S; Mernelius, S

    2017-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STECs) cause non-bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome, and are the primary cause of acute renal failure in children worldwide. This study investigated the correlation of genetic makeup of STEC strains as revealed by DNA microarray to clinical symptoms and the duration of STEC shedding. All STEC isolated (n = 96) from patients <10 years of age in Jönköping County, Sweden from 2003 to 2015 were included. Isolates were characterized by DNA microarray, including almost 280 genes. Clinical data were collected through a questionnaire and by reviewing medical records. Of the 96 virulence genes (including stx) in the microarray, 62 genes were present in at least one isolate. Statistically significant differences in prevalence were observed for 21 genes when comparing patients with bloody diarrhea (BD) and with non-bloody stool (18 of 21 associated with BD). Most genes encode toxins (e.g., stx2 alleles, astA, toxB), adhesion factors (i.e. espB_O157, tir, eae), or secretion factors (e.g., espA, espF, espJ, etpD, nleA, nleB, nleC, tccP). Seven genes were associated with prolonged stx shedding; the presence of three genes (lpfA, senB, and stx1) and the absence of four genes (espB_O157, espF, astA, and intI1). We found STEC genes that might predict severe disease outcome already at diagnosis. This can be used to develop diagnostic tools for risk assessment of disease outcome. Furthermore, genes associated with the duration of stx shedding were detected, enabling a possible better prediction of length of STEC carriage after infection.

  14. Glioma Dual-Targeting Nanohybrid Protein Toxin Constructed by Intein-Mediated Site-Specific Ligation for Multistage Booster Delivery

    PubMed Central

    Chen, Yingzhi; Zhang, Meng; Jin, Hongyue; Li, Dongdong; Xu, Fan; Wu, Aihua; Wang, Jinyu; Huang, Yongzhuo

    2017-01-01

    Malignant glioma is one of the most untreatable cancers because of the formidable blood-brain barrier (BBB), through which few therapeutics can penetrate and reach the tumors. Biologics have been booming in cancer therapy in the past two decades, but their application in brain tumor has long been ignored due to the impermeable nature of BBB against effective delivery of biologics. Indeed, it is a long unsolved problem for brain delivery of macromolecular drugs, which becomes the Holy Grail in medical and pharmaceutical sciences. Even assisting by targeting ligands, protein brain delivery still remains challenging because of the synthesis difficulties of ligand-modified proteins. Herein, we propose a rocket-like, multistage booster delivery system of a protein toxin, trichosanthin (TCS), for antiglioma treatment. TCS is a ribosome-inactivating protein with the potent activity against various solid tumors but lack of specific action and cell penetration ability. To overcome the challenge of its poor druggability and site-specific modification, intein-mediated ligation was applied, by which a gelatinase-cleavable peptide and cell-penetrating peptide (CPP)-fused recombinant TCS toxin can be site-specifically conjugated to lactoferrin (LF), thus constructing a BBB-penetrating, gelatinase-activatable cell-penetrating nanohybrid TCS toxin. This nanohybrid TCS system is featured by the multistage booster strategy for glioma dual-targeting delivery. First, LF can target to the BBB-overexpressing low-density lipoprotein receptor-related protein-1 (LRP-1), and assist with BBB penetration. Second, once reaching the tumor site, the gelatinase-cleavable peptide acts as a separator responsive to the glioma-associated matrix metalloproteinases (MMPs), thus releasing to the CPP-fused toxin. Third, CPP mediates intratumoral and intracellular penetration of TCS toxin, thereby enhancing its antitumor activity. The BBB penetration and MMP-2-activability of this delivery system were

  15. A Conserved Structural Motif Mediates Retrograde Trafficking of Shiga Toxin Types 1 and 2.

    PubMed

    Selyunin, Andrey S; Mukhopadhyay, Somshuvra

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A-subunits block protein synthesis, while the B-subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B-subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B-subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome-to-Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface-exposed loop in STx2B (β4-β5 loop) is required for its endosome-to-Golgi trafficking. We previously demonstrated that residues in the corresponding β4-β5 loop of STx1B are required for interaction with GPP130, the STx1B-specific endosomal receptor, and for endosome-to-Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    PubMed

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P < 0.001) than those of sham animals (SAL, 3 +/- 0 and 26.5 +/- 2.2; SPF, 4 +/- 0 and 26.5 +/- 2.1). UREM rats became growth retarded as shown by a daily longitudinal tibia growth rate below (P < 0.05) that observed in SAL animals (156 +/- 3 vs. 220 +/- 5 microm/day). GH treatment resulted in significant growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  17. Hemolytic Anemia

    MedlinePlus

    ... t known. AIHA accounts for half of all cases of hemolytic anemia. AIHA may come on very quickly and become serious. Having certain diseases or infections can raise your risk for AIHA. Examples include: Autoimmune diseases, such as lupus Chronic lymphocytic ...

  18. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody.

    PubMed

    Qiu, Yulou; Li, Pan; Dong, Sa; Zhang, Xiaoshuai; Yang, Qianru; Wang, Yulong; Ge, Jing; Hammock, Bruce D; Zhang, Cunzheng; Liu, Xianjin

    2018-01-31

    Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.

  19. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-10-28

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  20. Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics.

    PubMed

    Solecki, Olivia; Mosbah, Amor; Baudy Floc'h, Michèle; Felden, Brice

    2015-03-19

    Staphylococcus aureus produces peptide toxins that it uses to respond to environmental cues. We previously characterized PepA1, a peptide toxin from S. aureus, that induces lytic cell death of both bacterial and host cells. That led us to suggest that PepA1 has an antibacterial activity. Here, we demonstrate that exogenously provided PepA1 has activity against both Gram-positive and Gram-negative bacteria. We also see that PepA1 is significantly hemolytic, thus limiting its use as an antibacterial agent. To overcome these limitations, we converted PepA1 into nonhemolytic derivatives. Our most promising derivative is a cyclic heptapseudopeptide with inconsequential toxicity to human cells, enhanced stability in human sera, and sharp antibacterial activity. Mechanistically, linear and helical PepA1 derivatives form pores at the bacterial and erythrocyte surfaces, while the cyclic peptide induces bacterial envelope reorganization, with insignificant action on the erythrocytes. Our work demonstrates that bacterial toxins might be an attractive starting point for antibacterial drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Clostridium perfringens type A–E toxin plasmids

    PubMed Central

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  2. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  3. Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion

    PubMed Central

    Tozzoli, Rosangela; Grande, Laura; Michelacci, Valeria; Ranieri, Paola; Maugliani, Antonella; Caprioli, Alfredo; Morabito, Stefano

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely. PMID:24999453

  4. Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases

    PubMed Central

    Uzal, F. A.; Vidal, J. E.; McClane, B. A.; Gurjar, A. A.

    2013-01-01

    Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes (A, B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta (CPB), epsilon (ETX) and iota (ITX). However, this microorganism can produce up to 16 toxins in various combinations, including lethal toxins such as perfringolysin O (PFO), enterotoxin (CPE), and beta2 toxin (CPB2). Most diseases caused by this microorganism are mediated by one or more of these toxins. The role of CPA in intestinal disease of mammals is controversial and poorly documented, but there is no doubt that this toxin is essential in the production of gas gangrene of humans and several animal species. CPB produced by C. perfringens types B and C is responsible for necrotizing enteritis and enterotoxemia mainly in neonatal individuals of several animal species. ETX produced by C. perfringens type D is responsible for clinical signs and lesions of enterotoxemia, a predominantly neurological disease of sheep and goats. The role of ITX in disease of animals is poorly understood, although it is usually assumed that the pathogenesis of intestinal diseases produced by C. perfringens type E is mediated by this toxin. CPB2, a necrotizing and lethal toxin that can be produced by all types of C. perfringens, has been blamed for disease in many animal species, but little information is currently available to sustain or rule out this claim. CPE is an important virulence factor for C. perfringens type A gastrointestinal disease in humans and dogs; however, the data implicating CPE in other animal diseases remains ambiguous. PFO does not seem to play a direct role as the main virulence factor for animal diseases, but it may have a synergistic role with CPA-mediated gangrene and ETX-mediated enterotoxemia. The recent improvement of animal models for C. perfringens infection and the use of toxin gene knock-out mutants have demonstrated the specific pathogenic role of several toxins of C

  5. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-01-01

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins. PMID:28800062

  6. Secondary thrombotic microangiopathy in two patients with Philadelphia-positive hematological malignancies treated with imatinib mesylate.

    PubMed

    Ojeda-Uribe, Mario; Merieau, Sylvain; Guillon, Marie; Aujoulat, Olivier; Hinschberger, Olivier; Eisenmann, Jean-Claude; Kenizou, David; Debliquis, Agathe; Veyradier, Agnès; Chantrel, François

    2016-04-01

    Drug-mediated thrombotic microangiopathy may cause life-threatening medical emergencies. Novel targeted therapies have dramatically changed the prognosis of a number of oncological diseases. Tyrosine kinase inhibitors of the Breakpoint Cluster Region-Abelson (BCR-ABL) oncoprotein are used in patients with chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia. Imatinib mesylate, which was the first anti-BCR-ABL tyrosine kinase inhibitor, has demonstrated a high tolerance profile and efficacy in these patients for many years. Good results have also been observed in patients with gastrointestinal stromal tumors. In this study, we describe two patients with Philadelphia chromosome-positive hematological malignancies who presented with secondary thrombotic microangiopathy that was most likely linked to the use of imatinib. Other potential causes of thrombotic microangiopathy were discarded, and the predisposing role of some comorbidities and potential short or long-term drug-drug interactions was assessed. The clinical and biological data were more indicative of atypical secondary hemolytic uremic syndrome in one of the cases and of secondary thrombotic microangiopathy with renal and cardiac impairment in the other, which is also categorized as secondary hemolytic uremic syndrome. The outcome was favorable after imatinib discontinuation and the treatment of severe cardiac and renal failures. © The Author(s) 2015.

  7. Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738.

    PubMed

    Kwon, Taesoo; Kim, Jung-Beom; Bak, Young-Seok; Yu, Young-Bin; Kwon, Ki Sung; Kim, Won; Cho, Seung-Hak

    2016-01-01

    The non-shiga toxin-producing Escherichia coli (non-STEC) O157 is a pathogenic strain that cause diarrhea but does not cause hemolytic-uremic syndrome, or hemorrhagic colitis. Here, we present the 5-Mb draft genome sequence of non-STEC O157 NCCP15738, which was isolated from the feces of a Korean patient with diarrhea, and describe its features and the structural basis for its genome evolution. A total of 565-Mbp paired-end reads were generated using the Illumina-HiSeq 2000 platform. The reads were assembled into 135 scaffolds throughout the de novo assembly. The assembled genome size of NCCP15738 was 5,005,278 bp with an N50 value of 142,450 bp and 50.65 % G+C content. Using Rapid Annotation using Subsystem Technology analysis, we predicted 4780 ORFs and 31 RNA genes. The evolutionary tree was inferred from multiple sequence alignment of 45 E. coli species. The most closely related neighbor of NCCP15738 indicated by whole-genome phylogeny was E. coli UMNK88, but that indicated by multilocus sequence analysis was E. coli DH1(ME8569). A comparison between the NCCP15738 genome and those of reference strains, E. coli K-12 substr. MG1655 and EHEC O157:H7 EDL933 by bioinformatics analyses revealed unique genes in NCCP15738 associated with lysis protein S, two-component signal transduction system, conjugation, the flagellum, nucleotide-binding proteins, and metal-ion binding proteins. Notably, NCCP15738 has a dual flagella system like that in Vibrio parahaemolyticus, Aeromonas spp., and Rhodospirillum centenum. The draft genome sequence and the results of bioinformatics analysis of NCCP15738 provide the basis for understanding the genomic evolution of this strain.

  8. Residual Renal Function in Children Treated with Chronic Peritoneal Dialysis

    PubMed Central

    Roszkowska-Blaim, Maria

    2013-01-01

    Residual renal function (RRF) in patients with end-stage renal disease (ESRD) receiving renal replacement therapy is defined as the ability of native kidneys to eliminate water and uremic toxins. Preserved RRF improves survival and quality of life in adult ESRD patients treated with peritoneal dialysis. In children, RRF was shown not only to help preserve adequacy of renal replacement therapy but also to accelerate growth rate, improve nutrition and blood pressure control, reduce the risk of adverse myocardial changes, facilitate treatment of anemia and calcium-phosphorus balance abnormalities, and result in reduced serum and dialysate fluid levels of advanced glycation end-products. Factors contributing to RRF loss in children treated with peritoneal dialysis include the underlying renal disease such as hemolytic-uremic syndrome and hereditary nephropathy, small urine volume, severe proteinuria at the initiation of renal replacement therapy, and hypertension. Several approaches can be suggested to decrease the rate of RRF loss in pediatric patients treated with chronic peritoneal dialysis: potentially nephrotoxic drugs (e.g., aminoglycosides), episodes of hypotension, and uncontrolled hypertension should be avoided, urinary tract infections should be treated promptly, and loop diuretics may be used to increase salt and water excretion. PMID:24376376

  9. Chemiluminescence analysis of antioxidant capacity for serum albumin isolated from healthy or uremic volunteers.

    PubMed

    Huang, Chih-Yang; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Chang, Yen-Lin; Chen, Tung-Sheng

    2016-12-01

    Regular hemodialysis treatment induces an elevation in oxidative stress in patients with end-stage renal failure, resulting in oxidative damage of the most abundant serum protein, albumin. Oxidation of serum albumin causes depletion of albumin reactive thiols, leading to oxidative modification of serum albumin. The aim of this study was to screen the antioxidant capacity of albumins isolated from uremic patients (HD-ALB) or healthy volunteers (N-ALB). From high-performance liquid chromatography spectra, we observed that one uremic solute binds to HD-ALB via the formation of disulfide bonds between HD-ALB and the uremic solute. Furthermore, we found using chemiluminescent analysis that the antioxidant capacities for N-ALB to scavenge reactive oxygen species including singlet oxygen, hypochlorite and hydrogen peroxide were higher than HD-ALB. Our results suggest that protein-bound uremic solute binds to albumin via formation of disulfide bonds, resulting in the depletion of albumin reactive thiols. The depletion of albumin reactive thiols leads to a reduced antioxidant capacity of HD-ALB, implying postmodification of albumin. This situation may reduce the antioxidant capacity of albumin and increase oxidative stress, resulting in increase in complications related to oxidative damage in uremic patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD

    PubMed Central

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N.; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi

    2015-01-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis–mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. PMID:25525179

  11. Hemolytic potential of hydrodynamic cavitation.

    PubMed

    Chambers, S D; Bartlett, R H; Ceccio, S L

    2000-08-01

    The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturigeometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor.

  12. Retinal phlebitis associated with autoimmune hemolytic anemia.

    PubMed

    Chew, Fiona L M; Tajunisah, Iqbal

    2009-01-01

    To describe a case of retinal phlebitis associated with autoimmune hemolytic anemia. Observational case report. A 44-year-old Indian man diagnosed with autoimmune hemolytic anemia presented with a 1-week history of blurred vision in both eyes. Fundus biomicroscopy revealed bilateral peripheral retinal venous sheathing and cellophane maculopathy. Fundus fluorescent angiogram showed bilateral late leakage from the peripheral venous arcades and submacular fluid accumulation. The retinal phlebitis resolved following a blood transfusion and administration of systemic steroids. Retinopathy associated with autoimmune hemolytic anemia is not well known. This is thought to be the first documentation of retinal phlebitis occurring in this condition.

  13. Complement deposition in autoimmune hemolytic anemia is a footprint for difficult-to-detect IgM autoantibodies

    PubMed Central

    Meulenbroek, Elisabeth M.; de Haas, Masja; Brouwer, Conny; Folman, Claudia; Zeerleder, Sacha S.; Wouters, Diana

    2015-01-01

    In autoimmune hemolytic anemia autoantibodies against erythrocytes lead to increased clearance of the erythrocytes, which in turn results in a potentially fatal hemolytic anemia. Depending on whether IgG or IgM antibodies are involved, response to therapy is different. Proper identification of the isotype of the anti-erythrocyte autoantibodies is, therefore, crucial. However, detection of IgM autoantibodies can be challenging. We, therefore, set out to improve the detection of anti-erythrocyte IgM. Direct detection using a flow cytometry-based approach did not yield satisfactory improvements. Next, we analyzed whether the presence of complement C3 on a patient’s erythrocytes could be used for indirect detection of anti-erythrocyte IgM. To this end, we fractionated patients’ sera by size exclusion chromatography and tested which fractions yielded complement deposition on erythrocytes. Strikingly, we found that all patients with C3 on their erythrocytes according to standard diagnostic tests had an IgM anti-erythrocyte component that could activate complement, even if no such autoantibody had been detected with any other test. This also included all tested patients with only IgG and C3 on their erythrocytes, who would previously have been classified as having an IgG-only mediated autoimmune hemolytic anemia. Depleting patients’ sera of either IgG or IgM and testing the remaining complement activation confirmed this result. In conclusion, complement activation in autoimmune hemolytic anemia is mostly IgM-mediated and the presence of covalent C3 on patients’ erythrocytes can be taken as a footprint of the presence of anti-erythrocyte IgM. Based on this finding, we propose a diagnostic workflow that will aid in choosing the optimal treatment strategy. PMID:26354757

  14. Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

    NASA Astrophysics Data System (ADS)

    Tank, Kashmira P.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.

    2013-05-01

    Hydroxyapatite (Ca10(PO4)6(OH)2; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson-Hall analysis. The average particle size was found to be 30-60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

  15. Sub-Lethal Dose of Shiga Toxin 2 from Enterohemorrhagic Escherichia coli Affects Balance and Cerebellar Cytoarchitecture

    PubMed Central

    Pinto, Alipio; Cangelosi, Adriana; Geoghegan, Patricia A.; Tironi-Farinati, Carla; Brener, Gabriela J.; Goldstein, Jorge

    2016-01-01

    Shiga toxin producing Escherichia coli may damage the central nervous system before or concomitantly to manifested hemolytic–uremic syndrome symptoms. The cerebellum is frequently damaged during this syndrome, however, the deleterious effects of Shiga toxin 2 has never been integrally reported by ultrastructural, physiological and behavioral means. The aim of this study was to determine the cerebellar compromise after intravenous administration of a sub-lethal dose of Shiga toxin 2 by measuring the cerebellar blood–brain barrier permeability, behavioral task of cerebellar functionality (inclined plane test), and ultrastructural analysis (transmission electron microscope). Intravenous administration of vehicle (control group), sub-lethal dose of 0.5 and 1 ηg of Stx2 per mouse were tested for behavioral and ultrastructural studies. A set of three independent experiments were performed for each study (n = 6). Blood–brain barrier resulted damaged and consequently its permeability was significantly increased. Lower scores obtained in the inclined plane task denoted poor cerebellar functionality in comparison to their controls. The most significant lower score was obtained after 5 days of 1 ηg of toxin administration. Transmission electron microscope micrographs from the Stx2-treated groups showed neurons with a progressive neurodegenerative condition in a dose dependent manner. As sub-lethal intravenous Shiga toxin 2 altered the blood brain barrier permeability in the cerebellum the toxin penetrated the cerebellar parenchyma and produced cell damaged with significant functional implications in the test balance. PMID:26904009

  16. Discriminating the hemolytic risk of blood type A plasmas using the complement hemolysis using human erythrocytes (CHUHE) assay.

    PubMed

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Sass, Megan A; Enos, Clinton W; Whitley, Pamela H; Maes, Lanne Y; Goldberg, Corinne L

    2017-03-01

    The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors. Plasma or serum from each type A blood donor was incubated with AB or B red blood cells in the CHUHE assay and measured for free hemoglobin release. CHUHE assays for serum or plasma demonstrate a wide, dynamic range and high sensitivity for complement-mediated hemolysis for individual serum/plasma and red blood cell combinations. CHUHE results suggest that agglutination assays alone are only moderately predictive of complement-mediated hemolysis. CHUHE results also suggest that plasma from particular type A blood donors produce minimal complement-mediated hemolysis, whereas plasma from other type A blood donors produce moderate to high-level complement-mediated hemolysis, depending on the red blood cell donor. The current results indicate that the CHUHE assay can be used to assess complement-mediated hemolysis for plasma or serum from a type A blood donor, providing additional risk discrimination over agglutination titers alone. © 2016 AABB.

  17. Future perspectives, applications and challenges of genomic epidemiology studies for food-borne pathogens: A case study of Enterohemorrhagic Escherichia coli (EHEC) of the O157:H7 serotype

    PubMed Central

    Eppinger, Mark; Cebula, Thomas A

    2015-01-01

    The shiga-toxin (Stx)-producing human pathogen Escherichia coli serotype O157:H7 is a highly pathogenic subgroup of Stx-producing E. coli (STEC) with food-borne etiology and bovine reservoir. Each year in the U. S., approximately 100,000 patients are infected with enterohemorrhagic E. coli (EHEC) of the O157:H7 serotype. This food-borne pathogen is a global public health threat responsible for widespread outbreaks of human disease. Since its initial discovery in 1982, O157:H7 has rapidly become the dominant EHEC serotype in North America. Hospitalization rates among patients as high as 50% have been reported for severe outbreaks of human disease. Symptoms of disease can rapidly deteriorate and progress to life-threatening complications such as Hemolytic Uremic Syndrome (HUS), the leading cause of kidney failure in children, or Hemorrhagic Colitis. In depth understanding of the genomic diversity that exists among currently circulating EHEC populations has broad applications for improved molecular-guided biosurveillance, outbreak preparedness, diagnostic risk assessment, and development of alternative toxin-suppressing therapeutics. PMID:25483335

  18. Liquid chromatographic assay of ceftizoxime in sera of normal and uremic patients.

    PubMed Central

    McCormick, E M; Echols, R M; Rosano, T G

    1984-01-01

    The application of high-pressure liquid chromatography assays for cephalosporin serum concentrations is difficult in uremic patients because of interference from nondialyzable substances. We developed a high-pressure liquid chromatography method for determining the serum concentration of ceftizoxime in normal and uremic patients. The method involves protein precipitation with acetonitrile, followed by removal of the acetonitrile with dichloromethane. Separation was accomplished with a reverse-phase (C-18) column and a mobile phase of 13% acetonitrile and 2.8% acetic acid. UV detection at 310 nm was used to monitor the peaks. This assay produced a linear relationship between peak height ratio and ceftizoxime concentration from 1.5 to 100 micrograms/ml. Samples from 30 patients were assayed by this method and by a bioassay, with a good correlation of results (r = 0.9832). The method was applicable equally to normal and uremic serum samples. PMID:6326665

  19. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  20. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides

    NASA Astrophysics Data System (ADS)

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C.; Raghava, Gajendra P. S.

    2016-03-01

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/).

  1. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.

    PubMed

    Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C; Raghava, Gajendra P S

    2016-03-08

    Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., "FKK", "LKL", "KKLL", "KWK", "VLK", "CYCR", "CRR", "RFC", "RRR", "LKKL") are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/).

  2. Infection by verocytotoxin-producing Escherichia coli.

    PubMed Central

    Karmali, M A

    1989-01-01

    Verocytotoxin (VT)-producing Escherichia coli (VTEC) are a newly recognized group of enteric pathogens which are increasingly being recognized as common causes of diarrhea in some geographic settings. Outbreak studies indicate that most patients with VTEC infection develop mild uncomplicated diarrhea. However, a significant risk of two serious and potentially life-threatening complications, hemorrhagic colitis and the hemolytic uremic syndrome, makes VTEC infection a public health problem of serious concern. The main reservoirs of VTEC appear to be the intestinal tracts of animals, and foods of animal (especially bovine) origin are probably the principal sources for human infection. The term VT refers to a family of subunit exotoxins with high biological activity. Individual VTEC strains elaborate one or both of at least two serologically distinct, bacteriophage-mediated VTs (VT1 and VT2) which are closely related to Shiga toxin and are thus also referred to as Shiga-like toxins. The holotoxins bind to cells, via their B subunits, to a specific receptor which is probably the glycolipid, globotriosyl ceramide (Gb3). Binding is followed by internalization of the A subunit, which, after it is proteolytically nicked and reduced to the A1 fragment, inhibits protein synthesis in mammalian cells by inactivating 60S ribosomal subunits through selective structural modification of 28S ribosomal ribonucleic acid. The mechanism of VTEC diarrhea is still controversial, and the relative roles of locally acting VT and "attaching and effacing adherence" of VTEC to the mucosa have yet to be resolved. There is increasing evidence that hemolytic uremic syndrome and possibly hemorrhagic colitis result from the systemic action of VT on vascular endothelial cells. The role of antitoxic immunity in preventing the systemic complications of VTEC infection is being explored. Antibiotics appear to be contraindicated in the treatment of VTEC infection. The most common VTEC serotype associated

  3. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages.

    PubMed

    Schmidt, Carrie E; Shringi, Smriti; Besser, Thomas E

    2016-01-01

    Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1-3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.

  4. [Treatment and results of therapy in autoimmune hemolytic anemia].

    PubMed

    Tasić, J; Macukanović, L; Pavlović, M; Koraćević, S; Govedarević, N; Kitić, Lj; Tijanić, I; Bakić, M

    1994-01-01

    Basic principles in the therapy of idiopathic autoimmune hemolytic anemia induced by warm antibody were glucocorticoides and splenectomy. Immunosupresive drugs, plasmaferesis and intravenous high doses gamma globulin therapy are also useful. In secundary autoimmune hemolytic anemia induced by warm antibody we treated basic illness. During the period of 1990-1992 we treated 21 patients with primary autoimmune hemolytic anemia and 6 patients with secondary /4 CLL and 2 Non-Hodgkin's lymphoma/. Complete remission we found as a normalisation of reticulocites and hemoglobin level respectively. Complete remission by corticoides we got in 14/21 patients, partial response in 2/21 respectively. Complete response by splenectomy we got in 2/3 splenoctomized patients (idiopathic type). For successful treatment secondary hemolytic anemias we treated primary diseases (CLL and malignant lymphoma) and we got in 4/6 patients complete remission. Our results were standard in both type of autoimmune hemolytic anaemias induced by warm antibody.

  5. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD.

    PubMed

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki

    2015-08-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. Copyright © 2015 by the American Society of Nephrology.

  6. Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease

    PubMed Central

    Zumbrun, Steven D.; Melton-Celsa, Angela R.; Smith, Mark A.; Gilbreath, Jeremy J.; Merrell, D. Scott; O’Brien, Alison D.

    2013-01-01

    The likelihood that a single individual infected with the Shiga toxin (Stx)-producing, food-borne pathogen Escherichia coli O157:H7 will develop a life-threatening sequela called the hemolytic uremic syndrome is unpredictable. We reasoned that conditions that enhance Stx binding and uptake within the gut after E. coli O157:H7 infection should result in greater disease severity. Because the receptor for Stx, globotriaosylceramide, is up-regulated in the presence of butyrate in vitro, we asked whether a high fiber diet (HFD) that reportedly enhances butyrate production by normal gut flora can influence the outcome of an E. coli O157 infection in mice. To address that question, groups of BALB/c mice were fed high (10%) or low (2%) fiber diets and infected with E. coli O157:H7 strain 86-24 (Stx2+). Mice fed an HFD exhibited a 10- to 100-fold increase in colonization, lost 15% more body weight, exhibited signs of morbidity, and had 25% greater mortality relative to the low fiber diet (LFD)-fed group. Additionally, sections of intestinal tissue from HFD-fed mice bound more Stx1 and expressed more globotriaosylceramide than did such sections from LFD-fed mice. Furthermore, the gut microbiota of HFD-fed mice compared with LFD-fed mice contained reduced levels of native Escherichia species, organisms that might protect the gut from colonization by incoming E. coli O157:H7. Taken together, these results suggest that susceptibility to infection and subsequent disease after ingestion of E. coli O157:H7 may depend, at least in part, on individual diet and/or the capacity of the commensal flora to produce butyrate. PMID:23690602

  7. A thermolabile aldolase A mutant causes fever-induced recurrent rhabdomyolysis without hemolytic anemia.

    PubMed

    Mamoune, Asmaa; Bahuau, Michel; Hamel, Yamina; Serre, Valérie; Pelosi, Michele; Habarou, Florence; Nguyen Morel, Marie-Ange; Boisson, Bertrand; Vergnaud, Sabrina; Viou, Mai Thao; Nonnenmacher, Luc; Piraud, Monique; Nusbaum, Patrick; Vamecq, Joseph; Romero, Norma; Ottolenghi, Chris; Casanova, Jean-Laurent; de Lonlay, Pascale

    2014-11-01

    Aldolase A deficiency has been reported as a rare cause of hemolytic anemia occasionally associated with myopathy. We identified a deleterious homozygous mutation in the ALDOA gene in 3 siblings with episodic rhabdomyolysis without hemolytic anemia. Myoglobinuria was always triggered by febrile illnesses. We show that the underlying mechanism involves an exacerbation of aldolase A deficiency at high temperatures that affected myoblasts but not erythrocytes. The aldolase A deficiency was rescued by arginine supplementation in vitro but not by glycerol, betaine or benzylhydantoin, three other known chaperones, suggesting that arginine-mediated rescue operated by a mechanism other than protein chaperoning. Lipid droplets accumulated in patient myoblasts relative to control and this was increased by cytokines, and reduced by dexamethasone. Our results expand the clinical spectrum of aldolase A deficiency to isolated temperature-dependent rhabdomyolysis, and suggest that thermolability may be tissue specific. We also propose a treatment for this severe disease.

  8. Conditional Toxin Splicing Using a Split Intein System.

    PubMed

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  9. Associations of age and sex with the clinical outcome and incubation period of Shiga toxin-producing Escherichia coli O104:H4 infections, 2011.

    PubMed

    Werber, Dirk; King, Lisa A; Müller, Luise; Follin, Per; Buchholz, Udo; Bernard, Helen; Rosner, Bettina; Ethelberg, Steen; de Valk, Henriette; Höhle, Michael

    2013-09-15

    We pooled data on adults who reported diarrhea or developed life-threatening hemolytic uremic syndrome (HUS) in any of 6 closed cohorts from 4 countries (1 cohort each in Denmark, France, and Sweden and 3 in Germany) that were investigated during a large outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in 2011. Logistic regression and Weibull regression for interval censored data were used to assess the relation of age and sex with clinical outcome and with incubation period. Information on the latter was used in a nonparametric back-projection context to estimate when adult cases reported in Germany were exposed to STEC O104:H4. Overall, data from 119 persons (median age, 49 years; 80 women) were analyzed. Bloody diarrhea and HUS were recorded as the most severe outcome for 44 and 26 individuals, respectively. Older age was significantly associated with bloody diarrhea but not with HUS. Woman had nonsignificantly higher odds for bloody diarrhea (odds ratio = 1.81) and developing HUS (odds ratio = 1.83) than did men. Older participants had a statistically significantly reduced incubation period. The shortest interval that included 75% of exposures in adults spanned only 12 days and preceded outbreak detection. In conclusion, the frequency of bloody diarrhea but not of HUS and the length of the incubation period depended on the age of individuals infected with STEC O104:H4. A large number of people were exposed to STEC O104:H4 for a short period of time.

  10. H-NS Mutation-Mediated CRISPR-Cas Activation Inhibits Phage Release and Toxin Production of Escherichia coli Stx2 Phage Lysogen.

    PubMed

    Fu, Qiang; Li, Shiyu; Wang, Zhaofei; Shan, Wenya; Ma, Jingjiao; Cheng, Yuqiang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe

    2017-01-01

    Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. There is limited understanding of the effect that an Escherichia coli ( E. coli ) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune system has on Stx phage lysogen. We investigated heat-stable nucleoid-structuring (H-NS) mutation-mediated CRISPR-Cas activation and its effect on E. coli Stx2 phage lysogen. The Δ hns mutant (MG1655Δ hns ) of the E. coli K-12 strain MG1655 was obtained. The Δ hns mutant lysogen that was generated after Stx phage lysogenic infection had a repressed growth status and showed subdued group behavior, including biofilm formation and swarming motility, in comparison to the wild-type strain. The de-repression effect of the H-NS mutation on CRISPR-Cas activity was then verified. The results showed that cas gene expression was upregulated and the transformation efficiency of the wild-type CRISPR plasmids was decreased, which may indicate activation of the CRISPR-Cas system. Furthermore, the function of CRISPR-Cas on Stx2 phage lysogen was investigated by activating the CRISPR-Cas system, which contains an insertion of the protospacer regions of the Stx2 phage Min27. The phage release and toxin production of four lysogens harboring the engineered CRISPRs were investigated. Notably, in the supernatant of the Δ hns mutant lysogen harboring the Min27 spacer, both the progeny phage release and the toxin production were inhibited after mitomycin C induction. These observations demonstrate that the H-NS mutation-activated CRISPR-Cas system plays a role in modifying the effects of the Stx2 phage lysogen. Our findings indicated that H-NS mutation-mediated CRISPR-Cas activation in E. coli protects bacteria against Stx2 phage lysogeny by inhibiting the phage release and toxin production of the lysogen.

  11. Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection

    PubMed Central

    Garcia-Angulo, Victor A.; Kalita, Anjana; Torres, Alfredo G.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; therefore, displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model. PMID:23707170

  12. Significance of Hemolytic Colonies in Throat Cultures

    PubMed Central

    Quinn, Robert W.; Lowry, P. Nye

    1969-01-01

    These studies indicate that a single strain of hemolytic streptococci almost exclusively predominates the bacterial flora in patients with streptococcal infections and in the carrier state. One can proceed with confidence that, in isolating streptococci from throat swabs cultured on blood-agar plates, only a single hemolytic colony need be picked for serological grouping and typing. PMID:4888863

  13. Group A β-hemolytic streptococcal pharyngotonsillitis outbreak.

    PubMed

    Culqui, Dante R; Manzanares-Laya, Sandra; Van Der Sluis, Sarah Lafuente; Fanlo, Albert Anton; Comas, Rosa Bartolomé; Rossi, Marcello; Caylá, Joán A

    2014-04-01

    The aim was to describe an outbreak of group A β-hemolytic streptococcal pharyngotonsillitis in health care professionals. This is a cross-sectional descriptive study of 17 clients who dined at the same table in a restaurant in Barcelona in July 2012. The frequency, timing and severity of symptoms were analyzed, as were demographic variables and others concerning the food ingested. The attack rate was 58.8%. Six of the 10 clients were positive for group A β-hemolytic streptococcal. Six of the 13 individuals who handled the food involved in the dinner had symptoms. No association was identified with the food consumed. There is epidemiological evidence of foodborne group A β-hemolytic streptococcal transmission, but respiratory transmission could not be ruled out.

  14. Group A β-hemolytic streptococcal pharyngotonsillitis outbreak

    PubMed Central

    Culqui, Dante R; Manzanares-Laya, Sandra; Van Der Sluis, Sarah Lafuente; Fanlo, Albert Anton; Comas, Rosa Bartolomé; Rossi, Marcello; Caylá, Joán A

    2014-01-01

    The aim was to describe an outbreak of group A β-hemolytic streptococcal pharyngotonsillitis in health care professionals. This is a cross-sectional descriptive study of 17 clients who dined at the same table in a restaurant in Barcelona in July 2012. The frequency, timing and severity of symptoms were analyzed, as were demographic variables and others concerning the food ingested. The attack rate was 58.8%. Six of the 10 clients were positive for group A β-hemolytic streptococcal. Six of the 13 individuals who handled the food involved in the dinner had symptoms. No association was identified with the food consumed. There is epidemiological evidence of foodborne group A β-hemolytic streptococcal transmission, but respiratory transmission could not be ruled out. PMID:24897054

  15. Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen

    PubMed Central

    Grad, Yonatan H.; Godfrey, Paul; Cerquiera, Gustavo C.; Mariani-Kurkdjian, Patricia; Gouali, Malika; Bingen, Edouard; Shea, Terrence P.; Haas, Brian J.; Griggs, Allison; Young, Sarah; Zeng, Qiandong; Lipsitch, Marc; Waldor, Matthew K.; Weill, François-Xavier; Wortman, Jennifer R.; Hanage, William P.

    2013-01-01

    ABSTRACT The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. PMID:23341549

  16. Middle molecules and small-molecular-weight proteins in ESRD: properties and strategies for their removal.

    PubMed

    Clark, William R; Winchester, James F

    2003-10-01

    Molecular weight has traditionally been the parameter most commonly used to classify uremic toxins, with a value of approximately 500 Da frequently used as a demarcation point below which the molecular weights of small nitrogenous waste products fall. This toxin group, the most extensively studied from a clinical perspective, is characterized by a high degree of water solubility and the absence of protein binding. However, uremia is mediated by the retention of a plethora of other compounds having characteristics that differ significantly from those of the previously mentioned group. As opposed to the relative homogeneity of the nitrogenous metabolite class, other uremic toxins collectively are a very heterogeneous group, not only with respect to molecular weight but also other characteristics, such as protein binding and hydrophobicity. A recently proposed classification scheme by the European Uraemic Toxin Work Group subdivides the remainder of molecules into 2 categories: protein-bound solutes and middle molecules. For the latter group, the Work Group proposes a molecular weight range (500-60,000 Da) that incorporates many toxins identified since the original middle molecule hypothesis, for which the upper molecular weight limit was approximately 2,000 Da. In fact, low-molecular-weight peptides and proteins (LMWPs) comprise nearly the entire middle molecule category in the new scheme. The purpose of this article is to provide an overview of the middle molecule class of uremic toxins, with the focus on LMWPs. A brief review of LMWP metabolism under conditions of normal (and in a few cases, abnormal) renal function will be presented. The physical characteristics of several LMWPs will also be presented, including molecular weight, conformation, and charge. Specific LMWPs to be covered will include beta 2-microglobulin, complement proteins (C3a and Factor D), leptin, and proinflammatory cytokines. The article will also include a discussion of the treatment

  17. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  18. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea.

    PubMed

    Almeida, Camila Bononi; Souza, Lucas Eduardo Botelho; Leonardo, Flavia Costa; Costa, Fabio Trindade Maranhão; Werneck, Claudio C; Covas, Dimas Tadeu; Costa, Fernando Ferreira; Conran, Nicola

    2015-08-06

    Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation. Intravenous water induced acute hemolysis in C57BL/6 mice, attaining plasma Hb levels comparable to those observed in chimeric SCD mice. This hemolysis resulted in significant and rapid systemic inflammation and vascular leukocyte recruitment within 15 minutes, accompanied by NO metabolite generation. Administration of another potent NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to C57BL/6 mice induced similar alterations in leukocyte recruitment, whereas hemin-induced inflammation occurred over a longer time frame. Importantly, the acute inflammatory effects of water-induced hemolysis were abolished by the simultaneous administration of DEANO or HU, without altering CFHb, in an NO pathway-mediated manner. In vitro, HU partially reversed the Hb-mediated induction of endothelial proinflammatory cytokine secretion and adhesion molecule expression. In summary, pathophysiological levels of hemolysis trigger an immediate inflammatory response, possibly mediated by vascular NO consumption. HU presents beneficial anti-inflammatory effects by inhibiting rapid-onset hemolytic inflammation via an NO-dependent mechanism, independently of fetal Hb elevation. Data provide novel insights into mechanisms of hemolytic inflammation and further support perspectives for the use of HU as an acute treatment for SCD and other hemolytic disorders. © 2015 by The American Society of Hematology.

  19. Expression of Shiga toxin 2e glycosphingolipid receptors of primary porcine brain endothelial cells and toxin-mediated breakdown of the blood-brain barrier.

    PubMed

    Meisen, Iris; Rosenbrück, Regina; Galla, Hans-Joachim; Hüwel, Sabine; Kouzel, Ivan U; Mormann, Michael; Karch, Helge; Müthing, Johannes

    2013-06-01

    Shiga toxin (Stx) 2e, released by certain Stx-producing Escherichia coli, is presently the best characterized virulence factor responsible for pig edema disease, which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Although Stx2e-mediated brain vascular injury is the key event in development of neurologic signs, the glycosphingolipid (GSL) receptors of Stx2e and toxin-mediated impairment of pig brain endothelial cells have not been investigated so far. Here, we report on the detailed structural characterization of Stx2e receptors globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), which make up the major neutral GSLs in primary porcine brain capillary endothelial cells (PBCECs). Various Gb3Cer and Gb4Cer lipoforms harboring sphingenine (d18:1) or sphinganine (d18:0) and mostly a long-chain fatty acid (C20-C24) were detected. A notable batch-to-batch heterogeneity of primary endothelial cells was observed regarding the extent of ceramide hydroxylation of Gb3Cer or Gb4Cer species. Gb3Cer, Gb4Cer and sphingomyelin preferentially distribute to detergent-resistant membrane fractions and can be considered lipid raft markers in PBCECs. Moreover, we employed an in vitro model of the blood-brain barrier (BBB), which exhibited strong cytotoxic effects of Stx2e on the endothelial monolayer and a rapid collapse of the BBB. These data strongly suggest the involvement of Stx2e in cerebral vascular damage with resultant neurological disturbance characteristic of edema disease.

  20. Pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, B.L.; Takahashi, J.S.

    The avian pineal gland is a photoreceptive organ that has been shown to contain postjunctional alpha 2-adrenoceptors that inhibit melatonin synthesis and/or release upon receptor activation. Physiological response and (32P)ADP ribosylation experiments were performed to investigate whether pertussis toxin-sensitive guanine nucleotide-binding proteins (G-proteins) were involved in the transduction of the alpha 2-adrenergic signal. For physiological response studies, the effects of pertussis toxin on melatonin release in dissociated cell cultures exposed to norepinephrine were assessed. Pertussis toxin blocked alpha 2-adrenergic receptor-mediated inhibition in a dose-dependent manner. Pertussis toxin-induced blockade appeared to be noncompetitive. One and 10 ng/ml doses of pertussis toxinmore » partially blocked and a 100 ng/ml dose completely blocked norepinephrine-induced inhibition. Pertussis toxin-catalyzed (32P)ADP ribosylation of G-proteins in chick pineal cell membranes was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Membranes were prepared from cells that had been pretreated with 0, 1, 10, or 100 ng/ml pertussis toxin. In the absence of pertussis toxin pretreatment, two major proteins of 40K and 41K mol wt (Mr) were labeled by (32P)NAD. Pertussis toxin pretreatment of pineal cells abolished (32P) radiolabeling of the 40K Mr G-protein in a dose-dependent manner. The norepinephrine-induced inhibition of both cAMP efflux and melatonin release, as assessed by RIA of medium samples collected before membrane preparation, was also blocked in a dose-dependent manner by pertussis toxin. Collectively, these results suggest that a pertussis toxin-sensitive 40K Mr G-protein labeled by (32P)NAD may be functionally associated with alpha 2-adrenergic signal transduction in chick pineal cells.« less

  1. Factors influencing hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye.

    PubMed

    Yu, Huahua; Li, Cuiping; Li, Ronggui; Xing, Ronge; Liu, Song; Li, Pengcheng

    2007-07-01

    In this study, hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye and some factors affecting it were assayed. The HU(50) of R. esculentum full venom (RFV) against chicken erythrocytes was 3.40 microg/ml and a Hill coefficient value was 1.73 suggesting at least two molecules participated in hemolytic activity. The hemolytic activity of RFV was affected by some chemical and physical factors such as divalent cations, EDTA, (NH(4))(2)SO(4), pH and temperature. In the presence of Mg(2+), Cu(2+), Zn(2+), Fe(2+), Ca(2+) (>or=2 mM), Mn(2+) ((>or=1 mM), EDTA ((>or=2 mM) and (NH(4))(2)SO(4), the hemolytic activity of RFV was reduced. RFV had strong hemolytic activity at the pH 6-10 and the hemolytic ratios were 0.95-1.19. Hemolytic activity was temperature-sensitive and when RFV was pre-incubated at temperatures over 40 degrees C, it was sharply reduced.

  2. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death.

    PubMed

    Brauweiler, Anne M; Bin, Lianghua; Kim, Byung Eui; Oyoshi, Michiko K; Geha, Raif S; Goleva, Elena; Leung, Donald Y M

    2013-02-01

    The skin of patients with atopic dermatitis (AD) has defects in keratinocyte differentiation, particularly in expression of the epidermal barrier protein filaggrin. AD skin lesions are often exacerbated by Staphylococcus aureus-mediated secretion of the virulence factor α-toxin. It is unknown whether lack of keratinocyte differentiation predisposes to enhanced lethality from staphylococcal toxins. We investigated whether keratinocyte differentiation and filaggrin expression protect against cell death induced by staphylococcal α-toxin. Filaggrin-deficient primary keratinocytes were generated through small interfering RNA gene knockdown. RNA expression was determined by using real-time PCR. Cell death was determined by using the lactate dehydrogenase assay. Keratinocyte cell survival in filaggrin-deficient (ft/ft) mouse skin biopsies was determined based on Keratin 5 staining. α-Toxin heptamer formation and acid sphingomyelinase expression were determined by means of immunoblotting. We found that filaggrin expression, occurring as the result of keratinocyte differentiation, significantly inhibits staphylococcal α-toxin-mediated pathogenicity. Furthermore, filaggrin plays a crucial role in protecting cells by mediating the secretion of sphingomyelinase, an enzyme that reduces the number of α-toxin binding sites on the keratinocyte surface. Finally, we determined that sphingomyelinase enzymatic activity directly prevents α-toxin binding and protects keratinocytes against α-toxin-induced cytotoxicity. The current study introduces the novel concept that S aureus α-toxin preferentially targets and destroys filaggrin-deficient keratinocytes. It also provides a mechanism to explain the increased propensity for S aureus-mediated exacerbation of AD skin disease. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  3. Outbreak of Shiga Toxin-Producing Escherichia coli (STEC) O157:H7 Associated with Romaine Lettuce Consumption, 2011

    PubMed Central

    Slayton, Rachel B.; Turabelidze, George; Bennett, Sarah D.; Schwensohn, Colin A.; Yaffee, Anna Q.; Khan, Faisal; Butler, Cindy; Trees, Eija; Ayers, Tracy L.; Davis, Marjorie L.; Laufer, Alison S.; Gladbach, Stephen; Williams, Ian; Gieraltowski, Laura B.

    2013-01-01

    Background Shiga toxin-producing Escherichia coli (STEC) O157:H7 is the causal agent for more than 96,000 cases of diarrheal illness and 3,200 infection-attributable hospitalizations annually in the United States. Materials and Methods We defined a confirmed case as a compatible illness in a person with the outbreak strain during 10/07/2011-11/30/2011. Investigation included hypothesis generation, a case-control study utilizing geographically-matched controls, and a case series investigation. Environmental inspections and tracebacks were conducted. Results We identified 58 cases in 10 states; 67% were hospitalized and 6.4% developed hemolytic uremic syndrome. Any romaine consumption was significantly associated with illness (matched Odds Ratio (mOR) = 10.0, 95% Confidence Interval (CI) = 2.1–97.0). Grocery Store Chain A salad bar was significantly associated with illness (mOR = 18.9, 95% CI = 4.5–176.8). Two separate traceback investigations for romaine lettuce converged on Farm A. Case series results indicate that cases (64.9%) were more likely than the FoodNet population (47%) to eat romaine lettuce (p-value = 0.013); 61.3% of cases reported consuming romaine lettuce from the Grocery Store Chain A salad bar. Conclusions This multistate outbreak of STEC O157:H7 infections was associated with consumption of romaine lettuce. Traceback analysis determined that a single common lot of romaine lettuce harvested from Farm A was used to supply Grocery Store Chain A and a university campus linked to a case with the outbreak strain. An investigation at Farm A did not identify the source of contamination. Improved ability to trace produce from the growing fields to the point of consumption will allow more timely prevention and control measures to be implemented. PMID:23390525

  4. Efficacy of Urtoxazumab (TMA-15 Humanized Monoclonal Antibody Specific for Shiga Toxin 2) Against Post-Diarrheal Neurological Sequelae Caused by Escherichia coli O157:H7 Infection in the Neonatal Gnotobiotic Piglet Model.

    PubMed

    Moxley, Rodney A; Francis, David H; Tamura, Mizuho; Marx, David B; Santiago-Mateo, Kristina; Zhao, Mojun

    2017-01-26

    Enterohemorrhagic Escherichia coli (EHEC) is the most common cause of hemorrhagic colitis and hemolytic uremic syndrome in human patients, with brain damage and dysfunction the main cause of acute death. We evaluated the efficacy of urtoxazumab (TMA-15, Teijin Pharma Limited), a humanized monoclonal antibody against Shiga toxin (Stx) 2 for the prevention of brain damage, dysfunction, and death in a piglet EHEC infection model. Forty-five neonatal gnotobiotic piglets were inoculated orally with 3 × 10⁸ colony-forming units of EHEC O157:H7 strain EDL933 (Stx1⁺, Stx2⁺) when 22-24 h old. At 24 h post-inoculation, piglets were intraperitoneally administered placebo or TMA-15 (0.3, 1.0 or 3.0 mg/kg body weight). Compared to placebo ( n = 10), TMA-15 ( n = 35) yielded a significantly greater probability of survival, length of survival, and weight gain ( p <0.05). The efficacy of TMA-15 against brain lesions and death was 62.9% ( p = 0.0004) and 71.4% ( p = 0.0004), respectively. These results suggest that TMA-15 may potentially prevent or reduce vascular necrosis and infarction of the brain attributable to Stx2 in human patients acutely infected with EHEC. However, we do not infer that TMA-15 treatment will completely protect human patients infected with EHEC O157:H7 strains that produce both Stx1 and Stx2.

  5. Wild Ungulates as Disseminators of Shiga Toxin-Producing Escherichia coli in Urban Areas

    PubMed Central

    Franklin, Alan B.; VerCauteren, Kurt C.; Maguire, Hugh; Cichon, Mary K.; Fischer, Justin W.; Lavelle, Michael J.; Powell, Amber; Root, J. Jeffrey; Scallan, Elaine

    2013-01-01

    Background In 2008, children playing on a soccer field in Colorado were sickened with a strain of Shiga toxin-producing Escherichia coli (STEC) O157:H7, which was ultimately linked to feces from wild Rocky Mountain elk. We addressed whether wild cervids were a potential source of STEC infections in humans and whether STEC was ubiquitous throughout wild cervid populations in Colorado. Methodology/Principal Findings We collected 483 fecal samples from Rocky Mountain elk and mule deer in urban and non-urban areas. Samples testing positive for STEC were higher in urban (11.0%) than non-urban (1.6%) areas. Elk fecal samples in urban areas had a much higher probability of containing STEC, which increased in both urban and non-urban areas as maximum daily temperature increased. Of the STEC-positive samples, 25% contained stx1 strains, 34.3% contained stx2, and 13% contained both stx1 and stx2. Additionally, eaeA genes were detected in 54.1% of the positive samples. Serotypes O103, and O146 were found in elk and deer feces, which also have the potential to cause human illness. Conclusions/Significance The high incidence of stx2 strains combined with eaeA and E-hyl genes that we found in wild cervid feces is associated with severe human disease, such as hemolytic uremic syndrome. This is of concern because there is a very close physical interface between elk and humans in urban areas that we sampled. In addition, we found a strong relationship between ambient temperature and incidence of STEC in elk feces, suggesting a higher incidence of STEC in elk feces in public areas on warmer days, which in turn may increase the likelihood that people will come in contact with infected feces. These concerns also have implications to other urban areas where high densities of coexisting wild cervids and humans interact on a regular basis. PMID:24349083

  6. Prevalence of Stx-producing Shigella species isolated from French Travelers Returning from the Caribbean: An Emerging Pathogen with International Implications

    PubMed Central

    Gray, Miranda D.; Lacher, David W.; Leonard, Susan R.; Abbott, Jason; Zhao, Shaohua; Lampel, Keith A.; Prothery, Estelle; Gouali, Malika; Weill, François-Xavier; Maurelli, Anthony T.

    2015-01-01

    Shiga toxins are potent cytotoxins that inhibit host cell protein synthesis, leading to cell death. Classically, these toxins are associated with intestinal infections due to Shiga toxin-producing Escherichia coli or Shigella dysenteriae serotype 1 and infections with these strains can lead to hemolytic uremic syndrome. Over the past decade there is increasing recognition that Shiga toxin is produced by additional Shigella species. We recently reported the presence and expression of stx genes in Shigella flexneri 2a clinical isolates. The toxin genes were carried by a new stx-encoding bacteriophage and infection with these strains correlated with recent travel to Haiti or the Dominican Republic. In this study we further explored the epidemiological link to this region by utilizing the French National Reference Center for Escherichia coli, Shigella and Salmonella collection to survey the frequency of Stx-producing Shigella species isolated from French travelers returning from the Caribbean. About 21% of the isolates tested were found to encode and produce Stx. These isolates included strains of S. flexneri 2a, S. flexneri Y, and S. dysenteriae 4. All of the travelers whom were infected with Stx-producing Shigella had recently traveled to Haiti, the Dominican Republic, or French Guiana. Furthermore, whole genome sequencing found that the toxin genes were encoded by a prophage that was highly identical to the phage we identified in our previous study. These findings demonstrate that this new stx-encoding prophage is circulating within that geographical area, has spread to other continents, and is capable of spreading to multiple Shigella serogroups. PMID:25980352

  7. Nanoparticle-detained toxins for safe and effective vaccination

    NASA Astrophysics Data System (ADS)

    Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Zhang, Liangfang

    2013-12-01

    Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here, we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal α-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. Compared with vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin-mediated adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate that this study will open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.

  8. Crystal structure of Clostridium difficile toxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis eventmore » that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA 1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.« less

  9. Nε-Fatty acylation of Rho GTPases by a MARTX toxin effector.

    PubMed

    Zhou, Yan; Huang, Chunfeng; Yin, Li; Wan, Muyang; Wang, Xiaofei; Li, Lin; Liu, Yanhua; Wang, Zhao; Fu, Panhan; Zhang, Ni; Chen, She; Liu, Xiaoyun; Shao, Feng; Zhu, Yongqun

    2017-10-27

    The multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a family of large toxins that are extensively distributed in bacterial pathogens. MARTX toxins are autocatalytically cleaved to multiple effector domains, which are released into host cells to modulate the host signaling pathways. The Rho guanosine triphosphatase (GTPase) inactivation domain (RID), a conserved effector domain of MARTX toxins, is implicated in cell rounding by disrupting the host actin cytoskeleton. We found that the RID is an N ε -fatty acyltransferase that covalently modifies the lysine residues in the C-terminal polybasic region of Rho GTPases. The resulting fatty acylation inhibited Rho GTPases and disrupted Rho GTPase-mediated signaling in the host. Thus, RID can mediate the lysine N ε -fatty acylation of mammalian proteins and represents a family of toxins that harbor N-fatty acyltransferase activities in bacterial pathogens. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions

    PubMed Central

    Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály

    2012-01-01

    Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127

  11. Comparative Characterization of Shiga Toxin Type 2 and Subtilase Cytotoxin Effects on Human Renal Epithelial and Endothelial Cells Grown in Monolayer and Bilayer Conditions.

    PubMed

    Álvarez, Romina S; Sacerdoti, Flavia; Jancic, Carolina; Paton, Adrienne W; Paton, James C; Ibarra, Cristina; Amaral, María M

    2016-01-01

    Postdiarrheal hemolytic uremic syndrome (HUS) affects children under 5 years old and is responsible for the development of acute and chronic renal failure, particularly in Argentina. This pathology is a complication of Shiga toxin (Stx)-producing Escherichia coli infection and renal damage is attributed to Stx types 1 and 2 (Stx1, Stx2) produced by Escherichia coli O157:H7 and many other STEC serotypes. It has been reported the production of Subtilase cytotoxin (SubAB) by non-O157 STEC isolated from cases of childhood diarrhea. Therefore, it is proposed that SubAB may contribute to HUS pathogenesis. The human kidney is the most affected organ because very Stx-sensitive cells express high amounts of biologically active receptor. In this study, we investigated the effects of Stx2 and SubAB on primary cultures of human glomerular endothelial cells (HGEC) and on a human tubular epithelial cell line (HK-2) in monoculture and coculture conditions. We have established the coculture as a human renal proximal tubule model to study water absorption and cytotoxicity in the presence of Stx2 and SubAB. We obtained and characterized cocultures of HGEC and HK-2. Under basal conditions, HGEC monolayers exhibited the lowest electrical resistance (TEER) and the highest water permeability, while the HGEC/HK-2 bilayers showed the highest TEER and the lowest water permeability. In addition, at times as short as 20-30 minutes, Stx2 and SubAB caused the inhibition of water absorption across HK-2 and HGEC monolayers and this effect was not related to a decrease in cell viability. However, toxins did not have inhibitory effects on water movement across HGEC/HK-2 bilayers. After 72 h, Stx2 inhibited the cell viability of HGEC and HK-2 monolayers, but these effects were attenuated in HGEC/HK-2 bilayers. On the other hand, SubAB cytotoxicity shows a tendency to be attenuated by the bilayers. Our data provide evidence about the different effects of these toxins on the bilayers respect to the

  12. Genetic Relatedness and Novel Sequence Types of Non-O157 Shiga Toxin-Producing Escherichia coli Strains Isolated in Argentina.

    PubMed

    Cadona, Jimena S; Bustamante, Ana V; González, Juliana; Sanso, A Mariel

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen responsible for severe disease in humans such as hemolytic uremic syndrome (HUS) and cattle, the principal reservoir. Identification of the clones/lineages is important as several characteristics, among them propensity to cause disease varies with STEC phylogenetic origin. At present, we do not know what STEC clones, especially of non-O157:H7, are circulating in Argentina. To fill this knowledge gap we assessed the genetic diversity of STEC strains isolated in Argentina from various sources, mostly cattle and food, using multilocus sequence typing (MLST). Our objectives were to determine the phylogenetic relationships among strains and to compare them with strains from different geographic origins, especially with those from clinical human cases, in order to evaluate their potential health risk. A total of 59 STEC isolates from 41 serotypes were characterized by MLST. Analysis using EcMLST database identified 38 sequence types (ST), 17 (45%) of which were new STs detected in 18 serotypes. Fifteen out of 38 STs identified were grouped into 11 clonal groups (CGs) and, 23 not grouped in any of the defined CGs. Different STs were found in the same serotype. Results highlighted a high degree of phylogenetic heterogeneity among Argentinean strains and they showed that several cattle and food isolates belonged to the same STs that are commonly associated with clinical human cases in several geographical areas. STEC is a significant public health concern. Argentina has the highest incidence of HUS in the world and this study provides the first data about which STEC clones are circulating. Data showed that most of them might pose a serious zoonotic risk and this information is important for developing public health initiatives. However, the actual potential risk will be defined by the virulence profiles, which may differ among isolates belonging to the same ST.

  13. Monoclonal antibodies and toxins--a perspective on function and isotype.

    PubMed

    Chow, Siu-Kei; Casadevall, Arturo

    2012-06-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins--Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)--and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.

  14. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions.

    PubMed

    Smith, Andrew B; López-Villarejo, Juan; Diago-Navarro, Elizabeth; Mitchenall, Lesley A; Barendregt, Arjan; Heck, Albert J; Lemonnier, Marc; Maxwell, Anthony; Díaz-Orejas, Ramón

    2012-01-01

    Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.

  15. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany

    PubMed Central

    Miko, Angelika; Rivas, Marta; Bentancor, Adriana; Delannoy, Sabine; Fach, Patrick; Beutin, Lothar

    2014-01-01

    More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113, terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113, espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans. PMID:24987616

  16. Design of a new therapy for patients with chronic kidney disease: use of microarrays for selective hemoadsorption of uremic wastes and toxins to improve homeostasis.

    PubMed

    Shahidi Bonjar, Mohammad Rashid; Shahidi Bonjar, Leyla

    2015-01-01

    The hypothesis proposed here would provide near to optimum homeostasis for patients with chronic kidney disease (CKD) without the need for hemodialysis. This strategy has not been described previously in the scientific literature. It involves a targeted therapy that may prevent progression of the disease and help to improve the well-being of CKD patients. It proposes a nanotechnological device, ie, a microarray-oriented homeostasis provider (MOHP), to improve homeostasis in CKD patients. MOHP would be an auxiliary kidney aid, and would improve the filtration functions that impaired kidneys cannot perform by their own. MOHP is composed of two main computer-oriented components, ie, a quantitative microarray detector (QMD) and a homeostasis-oriented microarray column (HOMC). QMD detects and HOMC selectively removes defined quantities of uremic wastes, toxins and any other metabolites which is programmed for. The QMD and HOMC would accomplish this with the help of a peristaltic blood pump that would circulate blood aseptically in an extracorporeal closed circuit. During the passage of blood through the QMD, this microarray detector would quantitatively monitor all of the blood compounds that accumulate in the blood of a patient with impaired glomerular filtration, including small-sized, middle-sized and large-sized molecules. The electronic information collected by QMD would be electronically transmitted to the HOMC, which would adjust the molecules to the concentrations they are electronically programmed for and/or receive from QMD. This process of monitoring and removal of waste continues until the programmed homeostasis criteria are reached. Like a conventional kidney machine, MOHP can be used in hospitals and homes under the supervision of a trained technician. The main advantages of this treatment would include improved homeostasis, a reduced likelihood of side effects and of the morbidity resulting from CKD, slower progression of kidney impairment, prevention of

  17. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects

    PubMed Central

    Di Bella, Stefano; Ascenzi, Paolo; Siarakas, Steven; Petrosillo, Nicola; di Masi, Alessandra

    2016-01-01

    Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies. PMID:27153087

  18. Dietary Metabolites and Chronic Kidney Disease.

    PubMed

    Hasegawa, Sho; Jao, Tzu-Ming; Inagi, Reiko

    2017-04-04

    Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.

  19. Dietary Metabolites and Chronic Kidney Disease

    PubMed Central

    Hasegawa, Sho; Jao, Tzu-Ming; Inagi, Reiko

    2017-01-01

    Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events. PMID:28375181

  20. Isolation of Shiga toxin-producing Escherichia coli from fresh produce using STEC heart infusion washed blood agar with mitomycin-C.

    PubMed

    Lin, Andrew; Nguyen, Lam; Clotilde, Laurie M; Kase, Julie A; Son, Insook; Lauzon, Carol R

    2012-11-01

    The ability to detect and isolate Shiga toxin-producing Escherichia coli (STEC) remains a major challenge for food microbiologists. Although methods based on nucleic acids and antibodies have improved detection of STECs in foods, isolation of these bacteria remains arduous. STEC isolation is necessary for matching food, environmental, and clinical isolates during outbreak investigations and for distinguishing between pathogenic and nonpathogenic organisms. STEC heart infusion washed blood agar with mitomycin-C (SHIBAM) is a modification of washed sheep blood agar prepared by adding mitomycin-C and optimizing both the washed blood and base agar to better isolate STECs. Most STEC isolates produce a zone of hemolysis on SHIBAM plates and are easily distinguishable from background microbiota. Here, we present data supporting the use of SHIBAM to isolate STECs from fresh produce. SHIBAM was tested for accuracy in identifying STECs (365 of 410 STEC strains were hemolytic, and 63 of 73 E. coli strains that did not produce Shiga toxin were not hemolytic) and for recovery from artificially inoculated fresh produce (11 of 24 romaine lettuce samples and 6 of 24 tomato samples). STEC recovery with SHIBAM agar was greatly improved when compared with recovery on Levine's eosin-methylene blue agar as a reference method.

  1. [Molecular-genetic characterization of shiga-toxin producing Escherichia coli isolated during a food-borne outbreak in St. Petersburg in 2013].

    PubMed

    Onishchenko, G G; Dyatlov, I A; Svetoch, E A; Volozhantsev, N V; Bannov, V A; Kartsev, N N; Borzenkov, V N; Fursova, N K; Shemyakin, I G; Bogun, A G; Kislichkina, A A; Popova, A V; Myakinina, V P; Teimurazov, M G; Polosenko, O V; Kaftyreva, L A; Makarova, M A; Matveeva, Z N; Grechaninova, T A; Grigor'eva, N S; Kicha, E V; Zabalueva, G V; Kutasova, T B; Korzhaev, Yu N; Bashketova, N S; Bushmanova, O N; Stalevskaya, A V; Tchinjeria, I G; Zhebrun, F B

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) food-borne infections are reported worldwide and represent a serious problem for public healthcare. In the Russian Federation there is little information on epidemiology and etiology of STEC-infections as well as on molecular-genetic peculiarities of STEC pathogens. Our aim was to describe a food-borne outbreak as hemorrhagic colitis (HC) along with hemolytic uremic syndrome (HUS), enterocolitis, and acute gastroenteritis in children in St. Petersburg in 2013. Epidemiological, microbiological, molecular-genetic and bioinformatic methods were applied. Objects to study were clinical specimens, milk and food samples, as well as STEC strains isolated during the outbreak. The outbreak of food-borne infection was found to be caused by STEC-contaminated raw milk as confirmed by epidemiological analysis, detection of STEC DNA and isolation of relevant pathogens in milk and sick children fecal specimens. The whole-genome sequencing revealed two groups ofpathogens, E. coli O157:H7 and E. coli O101:H33 among collected strains. Group I strains were attributed to the previously known sequence type ST24, while group II strains belonged to the previously non-described sequence type ST145. In strain genomes of both groups there were identified nucleotide sequences of VT2-like prophage carrying stx2c gene, plasmid enterohemolysin gene, and gene of the STEC main adhesion factor intimin. Gene of intimin gamma was identified in E. coli O157:H7 strains and intimin iota 2 in E. coli O101:H33 strains. The latter previously was identified only in enteropathogenic E. coli (EPEC) strains. The additional knowledge of epidemiology and biology of STEC pathogens would assist clinicians and epidemiologists in diagnosing, treating and preventing hemorrhagic colitis.

  2. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-04-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia.

  3. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed Central

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-01-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia. PMID:2832446

  4. A Common Origin for the Bacterial Toxin-Antitoxin Systems parD and ccd, Suggested by Analyses of Toxin/Target and Toxin/Antitoxin Interactions

    PubMed Central

    Mitchenall, Lesley A.; Barendregt, Arjan; Heck, Albert J.; Lemonnier, Marc; Maxwell, Anthony; Díaz-Orejas, Ramón

    2012-01-01

    Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets. PMID:23029540

  5. Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin Internalization and Activation through Caveolae-like Domains

    PubMed Central

    Orlandi, Palmer A.; Fishman, Peter H.

    1998-01-01

    The mechanism by which cholera toxin (CT) is internalized from the plasma membrane before its intracellular reduction and subsequent activation of adenylyl cyclase is not well understood. Ganglioside GM1, the receptor for CT, is predominantly clustered in detergent-insoluble glycolipid rafts and in caveolae, noncoated, cholesterol-rich invaginations on the plasma membrane. In this study, we used filipin, a sterol-binding agent that disrupts caveolae and caveolae-like structures, to explore their role in the internalization and activation of CT in CaCo-2 human intestinal epithelial cells. When toxin internalization was quantified, only 33% of surface-bound toxin was internalized by filipin-treated cells within 1 h compared with 79% in untreated cells. However, CT activation as determined by its reduction to form the A1 peptide and CT activity as measured by cyclic AMP accumulation were inhibited in filipin-treated cells. Another sterol-binding agent, 2-hydroxy-β-cyclodextrin, gave comparable results. The cationic amphiphilic drug chlorpromazine, an inhibitor of clathrin-dependent, receptor-mediated endocytosis, however, affected neither CT internalization, activation, nor activity in contrast to its inhibitory effects on diphtheria toxin cytotoxicity. As filipin did not inhibit the latter, the two drugs appeared to distinguish between caveolae- and coated pit–mediated processes. In addition to its effects in CaCo-2 cells that express low levels of caveolin, filipin also inhibited CT activity in human epidermoid carcinoma A431 and Jurkat T lymphoma cells that are, respectively, rich in or lack caveolin. Thus, filipin inhibition correlated more closely with alterations in the biochemical characteristics of CT-bound membranes due to the interactions of filipin with cholesterol rather than with the expressed levels of caveolin and caveolar structure. Our results indicated that the internalization and activation of CT was dependent on and mediated through cholesterol

  6. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain.

    PubMed

    Haug, Gerd; Wilde, Christian; Leemhuis, Jost; Meyer, Dieter K; Aktories, Klaus; Barth, Holger

    2003-12-30

    The Clostridium botulinum C2 toxin is the prototype of the family of binary actin-ADP-ribosylating toxins. C2 toxin is composed of two separated nonlinked proteins. The enzyme component C2I ADP-ribosylates actin in the cytosol of target cells. The binding/translocation component C2II mediates cell binding of the enzyme component and its translocation from acidic endosomes into the cytosol. After proteolytic activation, C2II forms heptameric pores in endosomal membranes, and most likely, C2I translocates through these pores into the cytosol. For this step, the cellular heat shock protein Hsp90 is essential. We analyzed the effect of methotrexate on the cellular uptake of a fusion toxin in which the enzyme dihydrofolate reductase (DHFR) was fused to the C-terminus of C2I. Here, we report that unfolding of C2I-DHFR is required for cellular uptake of the toxin via the C2IIa component. The C2I-DHFR fusion toxin catalyzed ADP-ribosylation of actin in vitro and was able to intoxicate cultured cells when applied together with C2IIa. Binding of the folate analogue methotrexate favors a stable three-dimensional structure of the dihydrofolate reductase domain. Pretreatment of C2I-DHFR with methotrexate prevented cleavage of C2I-DHFR by trypsin. In the presence of methotrexate, intoxication of cells with C2I-DHFR/C2II was inhibited. The presence of methotrexate diminished the translocation of the C2I-DHFR fusion toxin from endosomal compartments into the cytosol and the direct C2IIa-mediated translocation of C2I-DHFR across cell membranes. Methotrexate had no influence on the intoxication of cells with C2I/C2IIa and did not alter the C2IIa-mediated binding of C2I-DHFR to cells. The data indicate that methotrexate prevented unfolding of the C2I-DHFR fusion toxin, and thereby the translocation of methotrexate-bound C2I-DHFR from endosomes into the cytosol of target cells is inhibited.

  7. 78 FR 10269 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... agencies incur the remaining costs. Abbreviations Used in This Document AGI--Acute Gastrointestinal Illness AIDS--Acquired Immune Deficiency Syndrome AIP--Agreement in Principle AWWA--American Water Works... Analysis HUS--Hemolytic Uremic Syndrome ICR--Information Collection Request IESWTR--Interim Enhanced...

  8. A hemolytic factor from Haemonchus contortus alters erythrocyte morphology.

    PubMed

    Fetterer, R H; Rhoads, M L

    1998-12-15

    A hemolytic factor from adult Haemonchus contortus caused distinct morphological changes in the surface of sheep red blood cells (RBCs). After a 15 min exposure to the hemolytic factor, hemolysis was not detected in incubation media, but RBCs were spherical in shape with numerous surface projections compared to control cells that were smooth-surfaced biconcave disks. After 30 min, a time at which significant hemolysis occurred, echinocytes were formed, and after 90 min, cells were severely disrupted with many visible holes in membranes. No RBC ghosts were observed. RBCs from four other mammalian species were lysed by the H. contortus hemolytic factor. However, the rate of hemolysis varied with a relative order of sheep approximately rabbit>goat>pig>calf. The morphology of RBCs from all four species was significantly altered after 30 min incubation with the degree of morphological changes related to the degree of hemolysis. These results support the hypothesis that the hemolytic factor acts as a pore-forming agent, although a phospholipase or other enzyme might play a role in solubilization of cell membranes.

  9. Red blood cell vesiculation in hereditary hemolytic anemia

    PubMed Central

    Alaarg, Amr; Schiffelers, Raymond M.; van Solinge, Wouter W.; van Wijk, Richard

    2013-01-01

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias. PMID

  10. Antibody to ricin a chain hinders intracellular routing of toxin and protects cells even after toxin has been internalized.

    PubMed

    Song, Kejing; Mize, R Ranney; Marrero, Luis; Corti, Miriam; Kirk, Jason M; Pincus, Seth H

    2013-01-01

    Mechanisms of antibody-mediated neutralization are of much interest. For plant and bacterial A-B toxins, A chain mediates toxicity and B chain binds target cells. It is generally accepted and taught that antibody (Ab) neutralizes by preventing toxin binding to cells. Yet for some toxins, ricin included, anti-A chain Abs afford greater protection than anti-B. The mechanism(s) whereby Abs to the A chain neutralize toxins are not understood. We use quantitative confocal imaging, neutralization assays, and other techniques to study how anti-A chain Abs function to protect cells. Without Ab, ricin enters cells and penetrates to the endoplasmic reticulum within 15 min. Within 45-60 min, ricin entering and being expelled from cells reaches equilibrium. These results are consistent with previous observations, and support the validity of our novel methodology. The addition of neutralizing Ab causes ricin accumulation at the cell surface, delays internalization, and postpones retrograde transport of ricin. Ab binds ricin for >6hr as they traffic together through the cell. Ab protects cells even when administered hours after exposure. CONCLUSIONS/KEY FINDINGS: We demonstrate the dynamic nature of the interaction between the host cell and toxin, and how Ab can alter the balance in favor of the cell. Ab blocks ricin's entry into cells, hinders its intracellular routing, and can protect even after ricin is present in the target organelle, providing evidence that the major site of neutralization is intracellular. These data add toxins to the list of pathogenic agents that can be neutralized intracellularly and explain the in vivo efficacy of delayed administration of anti-toxin Abs. The results encourage the use of post-exposure passive Ab therapy, and show the importance of the A chain as a target of Abs.

  11. Antibody to Ricin A Chain Hinders Intracellular Routing of Toxin and Protects Cells Even after Toxin Has Been Internalized

    PubMed Central

    Song, Kejing; Mize, R. Ranney; Marrero, Luis; Corti, Miriam; Kirk, Jason M.; Pincus, Seth H.

    2013-01-01

    Background Mechanisms of antibody-mediated neutralization are of much interest. For plant and bacterial A-B toxins, A chain mediates toxicity and B chain binds target cells. It is generally accepted and taught that antibody (Ab) neutralizes by preventing toxin binding to cells. Yet for some toxins, ricin included, anti-A chain Abs afford greater protection than anti-B. The mechanism(s) whereby Abs to the A chain neutralize toxins are not understood. Methodology/Principal Findings We use quantitative confocal imaging, neutralization assays, and other techniques to study how anti-A chain Abs function to protect cells. Without Ab, ricin enters cells and penetrates to the endoplasmic reticulum within 15 min. Within 45–60 min, ricin entering and being expelled from cells reaches equilibrium. These results are consistent with previous observations, and support the validity of our novel methodology. The addition of neutralizing Ab causes ricin accumulation at the cell surface, delays internalization, and postpones retrograde transport of ricin. Ab binds ricin for >6hr as they traffic together through the cell. Ab protects cells even when administered hours after exposure. Conclusions/Key Findings We demonstrate the dynamic nature of the interaction between the host cell and toxin, and how Ab can alter the balance in favor of the cell. Ab blocks ricin’s entry into cells, hinders its intracellular routing, and can protect even after ricin is present in the target organelle, providing evidence that the major site of neutralization is intracellular. These data add toxins to the list of pathogenic agents that can be neutralized intracellularly and explain the in vivo efficacy of delayed administration of anti-toxin Abs. The results encourage the use of post-exposure passive Ab therapy, and show the importance of the A chain as a target of Abs. PMID:23638075

  12. Acute Fulminant Uremic Neuropathy Following Coronary Angiography Mimicking Guillain-Barre Syndrome.

    PubMed

    Priti, Kumari; Ranwa, Bhanwar

    2017-01-01

    A 55-year-old diabetic woman suffered a posterior wall ST-elevation myocardial infarction. She developed contrast-induced nephropathy following coronary angiography. Acute fulminant uremic neuropathy was precipitated which initially mimicked Guillan-Barre Syndrome, hence reported.

  13. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  14. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  15. A comparison of Shiga-toxin 2 bacteriophage from classical enterohemorrhagic Escherichia coli serotypes and the German E. coli O104:H4 outbreak strain.

    PubMed

    Laing, Chad R; Zhang, Yongxiang; Gilmour, Matthew W; Allen, Vanessa; Johnson, Roger; Thomas, James E; Gannon, Victor P J

    2012-01-01

    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors.

  16. A Comparison of Shiga-Toxin 2 Bacteriophage from Classical Enterohemorrhagic Escherichia coli Serotypes and the German E. coli O104:H4 Outbreak Strain

    PubMed Central

    Laing, Chad R.; Zhang, Yongxiang; Gilmour, Matthew W.; Allen, Vanessa; Johnson, Roger; Thomas, James E.; Gannon, Victor P. J.

    2012-01-01

    Escherichia coli O104:H4 was associated with a severe foodborne disease outbreak originating in Germany in May 2011. More than 4000 illnesses and 50 deaths were reported. The outbreak strain was a typical enteroaggregative E. coli (EAEC) that acquired an antibiotic resistance plasmid and a Shiga-toxin 2 (Stx2)-encoding bacteriophage. Based on whole-genome phylogenies, the O104:H4 strain was most closely related to other EAEC strains; however, Stx2-bacteriophage are mobile, and do not necessarily share an evolutionary history with their bacterial host. In this study, we analyzed Stx2-bacteriophage from the E. coli O104:H4 outbreak isolates and compared them to all available Stx2-bacteriophage sequences. We also compared Stx2 production by an E. coli O104:H4 outbreak-associated isolate (ON-2011) to that of E. coli O157:H7 strains EDL933 and Sakai. Among the E. coli Stx2-phage sequences studied, that from O111:H- strain JB1-95 was most closely related phylogenetically to the Stx2-phage from the O104:H4 outbreak isolates. The phylogeny of most other Stx2-phage was largely concordant with their bacterial host genomes. Finally, O104:H4 strain ON-2011 produced less Stx2 than E. coli O157:H7 strains EDL933 and Sakai in culture; however, when mitomycin C was added, ON-2011 produced significantly more toxin than the E. coli O157:H7 strains. The Stx2-phage from the E. coli O104:H4 outbreak strain and the Stx2-phage from O111:H- strain JB1-95 likely share a common ancestor. Incongruence between the phylogenies of the Stx2-phage and their host genomes suggest the recent Stx2-phage acquisition by E. coli O104:H4. The increase in Stx2-production by ON-2011 following mitomycin C treatment may or may not be related to the high rates of hemolytic uremic syndrome associated with the German outbreak strain. Further studies are required to determine whether the elevated Stx2-production levels are due to bacteriophage or E. coli O104:H4 host related factors. PMID:22649523

  17. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    PubMed

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  18. Acute Fulminant Uremic Neuropathy Following Coronary Angiography Mimicking Guillain–Barre Syndrome

    PubMed Central

    Priti, Kumari; Ranwa, Bhanwar

    2017-01-01

    A 55-year-old diabetic woman suffered a posterior wall ST-elevation myocardial infarction. She developed contrast-induced nephropathy following coronary angiography. Acute fulminant uremic neuropathy was precipitated which initially mimicked Guillan–Barre Syndrome, hence reported. PMID:28706599

  19. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma

    NASA Astrophysics Data System (ADS)

    Pavlenko, Denys; van Geffen, Esmée; van Steenbergen, Mies J.; Glorieux, Griet; Vanholder, Raymond; Gerritsen, Karin G. F.; Stamatialis, Dimitrios

    2016-10-01

    Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients’ outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).

  20. 75 FR 40925 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... discussion on docket. Abbreviations Used in This Document ADWR Airline Drinking Water Rule AGI Acute Gastrointestinal Illness AIDS Acquired Immune Deficiency Syndrome AIP Agreement in Principle AWWA American Water... Cost Analysis HUS Hemolytic Uremic Syndrome ICR Information Collection Request IESWTR Interim Enhanced...

  1. Host cell interactions of outer membrane vesicle-associated virulence factors of Enterohemorrhagic Escherichia coli O157: intracellular delivery, trafficking and mechanisms of cell injury

    USDA-ARS?s Scientific Manuscript database

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, confocal laser...

  2. [Hemolytic anemia due to hemoglobin Evans in an Argentinean family].

    PubMed

    Zanotto, María I; Calvo, Karina; Schvartzman, Gabriel; Deana, Alejandra; Noguera, Nélida; Bragós, Irma; Milani, Angela

    2010-12-01

    Unstable hemoglobins are structural variants of the hemoglobin molecule, mostly originated by single amino-acid replacement in some globin chains. These changes affect molecule stability, leading to loss of solubility, precipitation, and cellular lysis. Patients carrying these unstable hemoglobins may present mild to severe chronic hemolytic anemia. Hemoglobin Evans is an unstable variant originated by replacement of valine with methionine at position 62 of the α-globin chain. We have identified this variant in a girl with an acute hemolytic crisis associated to pharyngitis, as well as in two of her family members. This is the third case of hemolytic anemia due to hemoglobin Evans reported in the literature.

  3. Pernicious anemia associated with autoimmune hemolytic anemia and alopecia areata.

    PubMed

    Zafad, Saadia; Madani, Abdellah; Harif, Mhamed; Quessar, Asmaa; Benchekroun, Said

    2007-12-01

    We report a 16-year-old male with a combination of pernicious anemia, auto-immune hemolytic anemia and alopecia areata. Autoimmune hemolytic anemia coexisted with pernicious anemia but was diagnosed only when the anemia failed to respond to cobalamin therapy. Alopecia areata occurred 9 years later. 2007 Wiley-Liss, Inc

  4. Effect of calcium on the hemolytic activity of Stichodactyla helianthus toxin sticholysin II on human erythrocytes.

    PubMed

    Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos

    2009-11-01

    Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.

  5. Clostridial binary toxins: iota and C2 family portraits.

    PubMed

    Stiles, Bradley G; Wigelsworth, Darran J; Popoff, Michel R; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host-cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.

  6. Clostridial Binary Toxins: Iota and C2 Family Portraits

    PubMed Central

    Stiles, Bradley G.; Wigelsworth, Darran J.; Popoff, Michel R.; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium. PMID:22919577

  7. Mechanosensing regulates virulence in Escherichia coli O157:H7.

    PubMed

    Islam, Md Shahidul; Krachler, Anne Marie

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host. Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the host environment are known to up-regulate LEE expression, we recently demonstrated that changes in physical forces at the site of attachment are required for localized, full induction of the system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings in the light of other recent studies describing mechanosensing of the host and force-dependent induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and mechanotransduction, and the level of conservation across bacterial species.

  8. Genomic Comparisons and Shiga Toxin Production among Escherichia coli O157:H7 Isolates from a Day Care Center Outbreak and Sporadic Cases in Southeastern Wisconsin

    PubMed Central

    Gouveia, S.; Proctor, M. E.; Lee, M.-S.; Luchansky, J. B.; Kaspar, C. W.

    1998-01-01

    Contour-clamped homogeneous electric field pulsed-field gel electrophoresis (CHEF-PFGE) was used to compare Wisconsin isolates of Escherichia coli O157:H7, including 39 isolates from a 1994 day care center outbreak, 28 isolates from 18 individuals from the surrounding geographic area with sporadic cases occurring during the 3 months before the outbreak, and 3 isolates, collected in 1995, from patients with hemolytic-uremic syndrome (HUS) who were from eastern Wisconsin counties other than those inhabited by the day care center and sporadic-case individuals. The technique of CHEF-PFGE using XbaI identified seven highly related restriction endonuclease digestion profiles (REDPs) (93 to 98% similarity) among the 39 day care center isolates and nine XbaI REDPs (63 to 93% similarity) among the 28 isolates from sporadic-case individuals, including REDP 33, which was exhibited by both day care and sporadic-case isolates. PFGE analyses of sequential E. coli O157:H7 isolates from symptomatic day care center attendees revealed that the REDPs of 25 isolates from eight patients were indistinguishable whereas the REDPs of 2 of 6 isolates from two patients differed slightly (93 to 95% similarity). The REDPs of the three isolates from 1995 HUS patients were 78 to 83% similar, with REDP 26 being exhibited by one HUS-associated isolate and an isolate from one day care attendee who did not develop HUS. The genes for both Shiga toxins I and II (stx1 and stx2, respectively) were detected in all but one isolate (sporadic case), and Shiga toxin production by the day care center isolates was not significantly different from that of the other isolates, including the three HUS-associated isolates. Analyses of E. coli O157:H7 isolates from both the day care center outbreak and sporadic cases by CHEF-PFGE permitted us to define the REDP variability of an outbreak and geographic region and demonstrated that the day care center outbreak and a HUS case in 1995 were caused by E. coli O157:H7

  9. Role of Fc in Antibody-Mediated Protection from Ricin Toxin

    PubMed Central

    Pincus, Seth. H.; Das, Anushka; Song, Kejing; Maresh, Grace A.; Corti, Miriam; Berry, Jody

    2014-01-01

    We have studied the role of the antibody (Ab) Fc region in mediating protection from ricin toxicity. We compared the in vitro and in vivo effects of intact Ig and of Fab fragments derived from two different neutralizing Ab preparations, one monoclonal, the other polyclonal. Consistent results were obtained from each, showing little difference between Ig and Fab in terms of antigen binding and in vitro neutralization, but with relatively large differences in protection of animals. We also studied whether importing Ab into the cell by Fc receptors enhanced the intracellular neutralization of ricin toxin. We found that the imported Ab was found in the ER and Golgi, a compartment traversed by ricin, as it traffics through the cell, but intracellular Ab did not contribute to the neutralization of ricin. These results indicate that the Fc region of antibody is important for in vivo protection, although the mechanism of enhanced protection by intact Ig does not appear to operate at the single cell level. When using xenogeneic antibodies, the diminished immunogenicity of Fab/F(ab’)2 preparations should be balanced against possible loss of protective efficacy. PMID:24811206

  10. Clostridium perfringens epsilon toxin inhibits the gastrointestinal transit in mice.

    PubMed

    Losada-Eaton, D M; Fernandez-Miyakawa, M E

    2010-12-01

    Epsilon toxin produced by Clostridium perfringens type B and D is a potent toxin that is responsible for a highly fatal enterotoxemia in sheep and goats. In vitro, epsilon toxin produces contraction of the rat ileum as the result of an indirect action, presumably mediated through the autonomic nervous system. To examine the impact of epsilon toxin in the intestinal transit, gastric emptying (GE) and gastrointestinal transit (GIT) were evaluated after intravenous and oral administration of epsilon toxin in mice. Orally administered epsilon toxin produced a delay on the GIT. Inhibition of the small intestinal transit was observed as early as 1 h after the toxin was administered orally but the effects were not observed after 1 week. Epsilon toxin also produced an inhibition in GE and a delay on the GIT when relatively high toxin concentrations were given intravenously. These results indicate that epsilon toxin administered orally or intravenously to mice transitorily inhibits the GIT. The delay in the GIT induced by epsilon toxin could be relevant in the pathogenesis of C. perfringens type B and D enterotoxemia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The GLUT-1 XbaI gene polymorphism is associated with vascular calcifications in nondiabetic uremic patients.

    PubMed

    Rufino, Margarita; Hernández, Domingo; Barrios, Ysamar; Salido, Eduardo

    2008-01-01

    Glucose transporters mediate the facilitative uptake of glucose into cells, with GLUT-1 being the predominant isoform in vascular smooth muscle cell (VSMC). Clones of human cells overexpressing the GLUT-1 transporter showed a high increase in intracellular glucose concentrations, mimicking the diabetic milieu. It is possible that high intracellular glucose together with uremic factors may play an important role in vascular calcification by transforming VSMC into osteoblast-like cells. The XbaI polymorphism in the GLUT-1 gene has been linked to variations in GLUT-1 expression, with consequent changes in intracellular glucose concentration. To assess the association between the GLUT-1 XbaI gene polymorphism and the presence of VC in nondiabetic uremic patients, a total of 105 nondiabetic patients on hemodialysis were studied. VC were evaluated by conventional simple X-ray. Mean values of serum calcium, phosphorous, cholesterol, triglycerides, HbA1c, PTH and insulin were measured. Height, weight, BMI and waist circumference were also determined. The GLUT-1 XbaI polymorphism in the second intron of the gene was ascertained by means of the polymerase chain reaction and restriction fragment length polymorphism analysis on DNA isolated from peripheral blood DNA. In the absence of an XbaI site, a fragment of 305 bp was seen (so-called x allele), whereas fragments of 232 and 73 bp were generated if the XbaI site was present (X allele). Genotype distribution in all patients was similar to the Caucasian population. However, when the patients were grouped according to the presence or absence of VC, there were marked differences in the frequency of the GLUT1 genotypes: the xx GLUT-1 genotype was more prevalent in the group with VC (30.7 vs. 4.5%, p = 0.001). Stepwise logistic regression demonstrated that the xx GLUT-1 genotype was independently associated with the presence of VC after adjusting for other variables such as age, calcium x phosphrus product, BMI and time on

  12. CD44 Promotes intoxication by the clostridial iota-family toxins.

    PubMed

    Wigelsworth, Darran J; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D; Carman, Robert J; Wilkins, Tracy D; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G; Popoff, Michel R; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.

  13. CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins

    PubMed Central

    Wigelsworth, Darran J.; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D.; Carman, Robert J.; Wilkins, Tracy D.; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G.; Popoff, Michel R.; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins. PMID:23236484

  14. Autoregulation and Virulence Control by the Toxin-Antitoxin System SavRS in Staphylococcus aureus

    PubMed Central

    Wen, Wen; Liu, Banghui; Xue, Lu; Zhu, Zhongliang; Niu, Liwen

    2018-01-01

    ABSTRACT Toxin-antitoxin (TA) systems play diverse physiological roles, such as plasmid maintenance, growth control, and persister cell formation, but their involvement in bacterial pathogenicity remains largely unknown. Here, we have identified a novel type II toxin-antitoxin system, SavRS, and revealed the molecular mechanisms of its autoregulation and virulence control in Staphylococcus aureus. Electrophoretic mobility shift assay and isothermal titration calorimetry data indicated that the antitoxin SavR acted as the primary repressor bound to its own promoter, while the toxin SavS formed a complex with SavR to enhance the ability to bind to the operator site. DNase I footprinting assay identified the SavRS-binding site containing a short and long palindrome in the promoter region. Further, mutation and DNase I footprinting assay demonstrated that the two palindromes were crucial for DNA binding and transcriptional repression. More interestingly, genetic deletion of the savRS system led to the increased hemolytic activity and pathogenicity in a mouse subcutaneous abscess model. We further identified two virulence genes, hla and efb, by real-time quantitative reverse transcription-PCR and demonstrated that SavR and SavRS could directly bind to their promoter regions to repress virulence gene expression. PMID:29440365

  15. Stevia rebaudiana Bertoni effect on the hemolytic potential of Listeria monocytogenes.

    PubMed

    Sansano, S; Rivas, A; Pina-Pérez, M C; Martinez, A; Rodrigo, D

    2017-06-05

    The effect of Stevia rebaudiana Bertoni on the hemolytic potential of Listeria monocytogenes was studied by means of the assessment of the Listeriolysin O (LLO) production. The three factors under study, stevia concentration in the range [0-2.5] % (w/v), incubation temperature (10 and 37°C), and exposure time (0-65h) significantly affected (p≤0.05) the hemolytic activity of L. monocytogenes. Results showed that at the lower incubation temperature the hemolytic potential of the bacterium was significantly reduced, from 100% at 37°C to 8% at 10°C (after 65h of incubation) in unsupplemented substrate (0% stevia). Irrespective of the temperature, 10 or 37°C, supplementation of the medium with stevia at 2.5 % (w/v) reduced the bacterium's hemolytic activity by a maximum of 100%. Furthermore, the time of exposure to 2.5 % (w/v) stevia concentration was also a significant factor reducing the hemolytic capability of L. monocytogenes. The possibility of reducing the pathogenic potential of L. monocytogenes (hemolysis) by exposure to stevia should be confirmed in real food matrices, opening a research niche with a valuable future impact on food safety. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The role of toxins in Clostridium difficile infection.

    PubMed

    Chandrasekaran, Ramyavardhanee; Lacy, D Borden

    2017-11-01

    Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease. Published by Oxford University Press on behalf of FEMS 2017.

  17. Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli.

    PubMed

    Toma, Claudia; Martínez Espinosa, Estela; Song, Tianyan; Miliwebsky, Elizabeth; Chinen, Isabel; Iyoda, Sunao; Iwanaga, Masaaki; Rivas, Marta

    2004-11-01

    The distribution of eight putative adhesins that are not encoded in the locus for enterocyte effacement (LEE) in 139 Shiga toxin-producing Escherichia coli (STEC) of different serotypes was investigated by PCR. Five of the adhesins (Iha, Efa1, LPF(O157/OI-141), LPF(O157/OI-154), and LPF(O113)) are encoded in regions corresponding to genomic O islands of E. coli EDL933, while the other three adhesins have been reported to be encoded in the STEC megaplasmid of various serotypes (ToxB [O157:H7], Saa [O113:H21], and Sfp [O157:NM]). STEC strains were isolated from humans (n = 54), animals (n = 52), and food (n = 33). They were classified into five seropathotypes (A through E) based on the reported occurrence of STEC serotypes in human disease, in outbreaks, and in the hemolytic-uremic syndrome (M. A. Karmali, M. Mascarenhas, S. Shen, K. Ziebell, S. Johnson, R. Reid-Smith, J. Isaac-Renton, C. Clark, K. Rahn, and J. B. Kaper, J. Clin. Microbiol. 41:4930-4940, 2003). The most prevalent adhesin was that encoded by the iha gene (91%; 127 of 139 strains), which was distributed in all seropathotypes. toxB and efa1 were present mainly in strains of seropathotypes A and B, which were LEE positive. saa was present only in strains of seropathotypes C, D, and E, which were LEE negative. Two fimbrial genes, lpfA(O157/OI-141) and lpfA(O157/OI-154), were strongly associated with seropathotype A. The fimbrial gene lpfA(O113) was present in all seropathotypes except for seropathotype A, while sfpA was not present in any of the strains studied. The distribution of STEC adhesins depends mainly on serotypes and not on the source of isolation. Seropathotype A, which is associated with severe disease and frequently is involved in outbreaks, possesses a unique adhesin profile which is not present in the other seropathotypes. The wide distribution of iha in STEC strains suggested that it could be a candidate for vaccine development.

  18. Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts

    PubMed Central

    Upadhyay, Abhinav; Mooyottu, Shankumar; Yin, Hsinbai; Surendran Nair, Meera; Bhattaram, Varunkumar; Venkitanarayanan, Kumar

    2015-01-01

    Many pathogenic bacteria and fungi produce potentially lethal toxins that cause cytotoxicity or impaired cellular function either at the site of colonization or other locations in the body through receptor-mediated interactions. Various factors, including biotic and abiotic environments, competing microbes, and chemical cues affect toxin expression in these pathogens. Recent work suggests that several natural compounds can modulate toxin production in pathogenic microbes. However, studies explaining the mechanistic basis for their effect are scanty. This review discusses the potential of various plant-derived compounds for reducing toxin production in foodborne and other microbes. In addition, studies highlighting their anti-toxigenic mechanism(s) are discussed. PMID:28930207

  19. Dietary magnesium supplementation prevents and reverses vascular and soft tissue calcifications in uremic rats.

    PubMed

    Diaz-Tocados, Juan M; Peralta-Ramirez, Alan; Rodríguez-Ortiz, María E; Raya, Ana I; Lopez, Ignacio; Pineda, Carmen; Herencia, Carmen; Montes de Oca, Addy; Vergara, Noemi; Steppan, Sonja; Pendon-Ruiz de Mier, M Victoria; Buendía, Paula; Carmona, Andrés; Carracedo, Julia; Alcalá-Díaz, Juan F; Frazao, Joao; Martínez-Moreno, Julio M; Canalejo, Antonio; Felsenfeld, Arnold; Rodriguez, Mariano; Aguilera-Tejero, Escolástico; Almadén, Yolanda; Muñoz-Castañeda, Juan R

    2017-11-01

    Although magnesium has been shown to prevent vascular calcification in vitro, controlled in vivo studies in uremic animal models are limited. To determine whether dietary magnesium supplementation protects against the development of vascular calcification, 5/6 nephrectomized Wistar rats were fed diets with different magnesium content increasing from 0.1 to 1.1%. In one study we analyzed bone specimens from rats fed 0.1%, 0.3%, and 0.6% magnesium diets, and in another study we evaluated the effect of intraperitoneal magnesium on vascular calcification in 5/6 nephrectomized rats. The effects of magnesium on established vascular calcification were also evaluated in uremic rats fed on diets with either normal (0.1%) or moderately increased magnesium (0.6%) content. The increase in dietary magnesium resulted in a marked reduction in vascular calcification, together with improved mineral metabolism and renal function. Moderately elevated dietary magnesium (0.3%), but not high dietary magnesium (0.6%), improved bone homeostasis as compared to basal dietary magnesium (0.1%). Results of our study also suggested that the protective effect of magnesium on vascular calcification was not limited to its action as an intestinal phosphate binder since magnesium administered intraperitoneally also decreased vascular calcification. Oral magnesium supplementation also reduced blood pressure in uremic rats, and in vitro medium magnesium decreased BMP-2 and p65-NF-κB in TNF-α-treated human umbilical vein endothelial cells. Finally, in uremic rats with established vascular calcification, increasing dietary magnesium from 0.1% magnesium to 0.6% reduced the mortality rate from 52% to 28%, which was associated with reduced vascular calcification. Thus, increasing dietary magnesium reduced both vascular calcification and mortality in uremic rats. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. A liquid chromatography - tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism.

    PubMed

    de Loor, Henriette; Poesen, Ruben; De Leger, Wout; Dehaen, Wim; Augustijns, Patrick; Evenepoel, Pieter; Meijers, Björn

    2016-09-14

    Chronic kidney disease (CKD) is associated with an increased risk of mortality and cardiovascular disease, which is, at least partly, mediated by the accumulation of so-called uremic retention solutes. Although there has been an increasing interest in the behavior of these solutes, derived from both the endogenous and colonic microbial metabolism, methods to simultaneously and accurately measure a broad panel of relevant uremic retention solutes remain scarce. We developed a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. A high throughput sample preparation was used with extraction of analytes from 50 μl serum using Ostro plate technology. For most solutes, stable isotopes labelled metabolites were used as internal standards. Chromatography was achieved using an Acquity UPLC CSH Fluoro Phenyl column. The total run time was 8 min, the mobile phase was a gradient of 0.1% formic acid in Milli-Q water and pure methanol at a flow rate of 0.5 ml min(-1). Detection was performed using a tandem mass spectrometer with alternated positive and negative electrospray ionization. Calibration curves were linear for all solutes. Precision was assessed according to the NCCLS EP5-T guideline, being below 15% for all metabolites. Mean recoveries were between 83 and 104% for all metabolites. The validated method was successfully applied in a cohort of 488 patients with CKD. We developed and validated a sensitive and robust UPLC-MS/MS method for quantification of 15 uremic retention solutes derived from endogenous and colonic microbial metabolism. This method allows for studying the behavior and relevance of these solutes in patients with CKD. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hemolytic venoms from marine cnidarian jellyfish - an overview.

    PubMed

    Mariottini, Gian Luigi

    2014-01-01

    Cnidarian jellyfish are viewed as an emergent problem in several coastal zones throughout the world. Recurrent outbreaks pose a serious threat to tourists and bathers, as well as to sea-workers, involving health and economical aspects. As a rule, cnidarian stinging as a consequence of nematocyst firing induces merely local symptoms but cardiovascular or neurological complications can also occur. Hemolysis is a frequent effect of cnidarian stinging; this dangerous condition is known to be caused by several venoms and can sometimes be lethal. At present, the bulk of data concerning hemolytic cnidarian venoms comes from the study of benthic species, such as sea anemones and soft corals, but hemolytic factors were found in venoms of several siphonophore, cubozoan and scyphozoan jellyfish, which are mainly involved in the envenomation of bathers and sea-workers. Therefore, the aim of this paper is to review the scientific literature concerning the hemolytic venoms from cnidarian jellyfish taking into consideration their importance in human pathology as well as health implications and possible therapeutic measures.

  2. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia.

    PubMed

    Suzuki, Naoko; Fukamachi, Haruka; Arimoto, Takafumi; Yamamoto, Matsuo; Igarashi, Takeshi

    2012-06-01

    Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Potential immunosuppressive effects of E. coli O157:H7 experimental infection on the bovine host

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic Escherichia coli (EHEC) bacteria, such as serotype O157:H7, are an important human pathogen responsible for global outbreaks of bloody diarrhea and hemolytic uremic syndrome. EHEC is frequently detected in cattle feces in slaughterhouses. As a result, cattle are the main natural r...

  4. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  5. Hemolytic activity of pH-responsive polymer-streptavidin bioconjugates.

    PubMed

    Lackey, C A; Murthy, N; Press, O W; Tirrell, D A; Hoffman, A S; Stayton, P S

    1999-01-01

    Drug delivery systems that increase the rate and/or quantity of drug release to the cytoplasm are needed to enhance cytosolic delivery and to circumvent nonproductive cell trafficking routes. We have previously demonstrated that poly(2-ethylacrylic acid) (PEAAc) has pH-dependent hemolytic properties, and more recently, we have found that poly(2-propylacrylic acid) (PPAAc) displays even greater pH-responsive hemolytic activity than PEAAc at the acidic pHs of the early endosome. Thus, these polymers could potentially serve as endosomal releasing agents in immunotoxin therapies. In this paper, we have investigated whether the pH-dependent membrane disruptive activity of PPAAc is retained after binding to a protein. We did this by measuring the hemolytic activity of PPAAc-streptavidin model complexes with different protein to polymer stoichiometries. Biotin was conjugated to amine-terminated PPAAc, which was subsequently bound to streptavidin by biotin complexation. The ability of these samples to disrupt red blood cell membranes was investigated for a range of polymer concentrations, a range of pH values, and two polymer-to-streptavidin ratios of 3:1 and 1:1. The results demonstrate that (a) the PPAAc-streptavidin complex retains the ability to lyse the RBC lipid bilayers at low pHs, such as those existing in endosomes, and (b) the hemolytic ability of the PPAAc-streptavidin complex is similar to that of the free PPAAc.

  6. Pulmonary hypertension in chronic hemolytic anemias: Pathophysiology and treatment.

    PubMed

    Haw, Alexandra; Palevsky, Harold I

    2018-04-01

    Pulmonary hypertension has emerged as a major cause of morbidity and mortality in patients with hemoglobinopathies and chronic hemolytic anemias. These hematological diseases include - but are not limited to - sickle cell disease (SCD), thalassemia, paroxysmal nocturnal hematuria, and hereditary spherocytosis. Although most studies have been based on the use of echocardiography as a screening tool for pulmonary hypertension as opposed to the gold standard of right heart catheterization for definitive diagnosis, the association between chronic hemolytic anemia and pulmonary hypertension is evident. Studies have shown that patients with SCD and a tricuspid regurgitant velocity (TRV) ≥ 2.5 m/sec are at increased risk of pulmonary hypertension and are at increased mortality risk. Additional markers of risk of pulmonary hypertension and increased mortality include a pro-BNP >160 pg/mL combined with a 6-min walk distance of <333 m. There is currently a lack of concrete data to support the use of targeted oral pulmonary arterial hypertension therapy in chronic hemolytic anemia. As a result, management is generally targeted towards medical optimization of the underlying anemia. This literature review aims to discuss the pathophysiology, diagnostic and prognostic tools, recent studies and current protocols that are essential in guiding management of pulmonary hypertension in chronic hemolytic anemias. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    PubMed

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella

  8. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    PubMed Central

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis

    2009-01-01

    AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC)1, which causes serious gastrointestinal disease in humans2. SubAB causes haemolytic uraemic syndrome-like pathology in mice3 via SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone4. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesised in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite human lack of Neu5Gc biosynthesis, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, together with the human lack of Neu5Gc-containing body fluid competitors, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin’s receptor is generated by metabolic incorporation of an exogenous factor derived from food. PMID:18971931

  9. Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo.

    PubMed

    Martorelli, L; Albanese, A; Vilte, D; Cantet, R; Bentancor, A; Zolezzi, G; Chinen, I; Ibarra, C; Rivas, M; Mercado, E C; Cataldi, A

    2017-09-01

    Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpf O113 . E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 10 8 CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Outbreak of E. coli O157:H7 Infections Associated with Exposure to Animal Manure in a Rural Community - Arizona and Utah, June-July 2017.

    PubMed

    Luna, Sarah; Krishnasamy, Vikram; Saw, Louise; Smith, Lori; Wagner, Jennifer; Weigand, Jenna; Tewell, Mackenzie; Kellis, Marilee; Penev, Roumen; McCullough, Laine; Eason, Jeffrey; McCaffrey, Keegan; Burnett, Cindy; Oakeson, Kelly; Dimond, Melissa; Nakashima, Allyn; Barlow, Deidre; Scherzer, Anna; Sarino, Melanie; Schroeder, Morgan; Hassan, Rashida; Basler, Colin; Wise, Matthew; Gieraltowski, Laura

    2018-06-15

    On June 26, 2017, a hospital in southern Utah notified the Utah Department of Health of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infections in two children from a small community on the Arizona-Utah border. Both children developed hemolytic uremic syndrome, characterized by hemolytic anemia, acute kidney failure, and thrombocytopenia and died within a few days of illness onset. Over the next few days, several more STEC-associated illnesses were reported in residents of the community. A joint investigation by local and state health agencies from Arizona and Utah and CDC was initiated to identify the outbreak source and prevent additional cases; a total of 12 cases were identified, including the two children who died. Investigators initially explored multiple potential sources of illness; epidemiologic and environmental information revealed cow manure contact as the likely initial cause of the outbreak, which was followed by subsequent person-to-person transmission. One of the outbreak strains was isolated from bull and horse manure collected from a yard near a community household with two ill children. Local health agencies made recommendations to the public related to both animal contact and hand hygiene to reduce the risk for STEC transmission. Animal or animal manure contact should be considered a potential source of STEC O157:H7 during outbreaks in communities where ruminants are kept near the home.

  11. Anti-hemolytic and anti-inflammatory activities of the methanolic extract of Solenostemon Monostachyus (P.Beauv.) Briq. leaves in 2-butoxyethanol-hemolytic induced rats

    NASA Astrophysics Data System (ADS)

    Osikoya, Iyanuoluwa Olubukola; Afolabi, Israel Sunmola; Rotimi, Solomon Oladapo; Okafor, Adaobi Mary-Joy

    2018-04-01

    Traditional medicine is largely used to sustain global health requirements. Determining the biological activities of Solenostemon monostachyus is essential to provide a platform for treating hemolytic diseases. The methanolic extract of the leaves was orally administered for 5 days at 150 mg/kg, 200 mg/kg and 250 mg/kg of body weight doses to determine concentration of tumor necrosis factor-alpha (TNF-α), and the activities of the heme oxygenase-1 (HO-1) and cyclooxygenase 2 (COX-2) of plasma in the kidney, spleen and liver of 2-butoxyethanol hemolytic-induced rats. A dose of 150 mg of extract/kg of body weight significantly increased (p<0.05) HO-1 in the kidney. COX-2 activity was significantly reduced (p<0.05) mainly in the kidney untreated hemolytic induced rats. All treatments significantly increased (p<0.05) TNF-α concentrations in the kidney and spleen. HO-1 gene expression was downregulated, indicating stress reduction in the liver, by an extract dose of 200 mg/kg of body weight and caffeic acid and was upregulated, indicating stress in the spleen, by an extract dose of 150-200 mg/kg of body weight. A dose of 200-250 mg of extract/kg of body weight resulted in relatively good anti-inflammatory properties, and may possess healing properties in patients with hemolytic related diseases.

  12. Factors Associated with Shiga Toxin-Producing Escherichia coli Shedding by Dairy and Beef Cattle

    PubMed Central

    Venegas-Vargas, Cristina; Henderson, Scott; Khare, Akanksha; Mosci, Rebekah E.; Lehnert, Jonathan D.; Singh, Pallavi; Ouellette, Lindsey M.; Norby, Bo; Funk, Julie A.; Rust, Steven; Bartlett, Paul C.; Grooms, Daniel

    2016-01-01

    ABSTRACT Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen that can cause hemorrhagic colitis and hemolytic-uremic syndrome. Cattle are the primary reservoir for STEC, and food or water contaminated with cattle feces is the most common source of infections in humans. Consequently, we conducted a cross-sectional study of 1,096 cattle in six dairy herds (n = 718 animals) and five beef herds (n = 378 animals) in the summers of 2011 and 2012 to identify epidemiological factors associated with shedding. Fecal samples were obtained from each animal and cultured for STEC. Multivariate analyses were performed to identify risk factors associated with STEC positivity. The prevalence of STEC was higher in beef cattle (21%) than dairy cattle (13%) (odds ratio [OR], 1.76; 95% confidence interval [CI], 1.25, 2.47), with considerable variation occurring across herds (range, 6% to 54%). Dairy cattle were significantly more likely to shed STEC when the average temperature was >28.9°C 1 to 5 days prior to sampling (OR, 2.5; 95% CI, 1.25, 4.91), during their first lactation (OR, 1.8; 95% CI, 1.1, 2.8), and when they were <30 days in milk (OR, 3.9; 95% CI, 2.1, 7.2). These data suggest that the stress or the negative energy balance associated with lactation may result in increased STEC shedding frequencies in Michigan during the warm summer months. Future prevention strategies aimed at reducing stress during lactation or isolating high-risk animals could be implemented to reduce herd-level shedding levels and avoid transmission of STEC to susceptible animals and people. IMPORTANCE STEC shedding frequencies vary considerably across cattle herds in Michigan, and the shedding frequency of strains belonging to non-O157 serotypes far exceeds the shedding frequency of O157 strains, which is congruent with human infections in the state. Dairy cattle sampled at higher temperatures, in their first lactation, and early in the milk production stage were

  13. Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity.

    PubMed

    Considine, R V; Simpson, L L

    1991-01-01

    Clostridial organisms produce a number of binary toxins. Thus far, three complete toxins (botulinum, perfringens and spiroforme) and one incomplete toxin (difficile) have been identified. In the case of complete toxins, there is a heavy chain component (Mr approximately 100,000) that binds to target cells and helps create a docking site for the light chain component (Mr approximately 50,000). The latter is an enzyme that possesses mono(ADP-ribosyl)transferase activity. The toxins appear to proceed through a three step sequence to exert their effects, including a binding step, an internalization step and an intracellular poisoning step. The substrate for the toxins is G-actin. By virtue of ADP-ribosylating monomeric actin, the toxins prevent polymerization as well as promoting depolymerization. The most characteristic cellular effect of the toxins is alteration of the cytoskeleton, which leads directly to changes in cellular morphology and indirectly to changes in cell function (e.g. release of chemical mediators). Binary toxins capable of modifying actin are likely to be useful tools in the study of cell biology.

  14. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165

    PubMed Central

    Saroj, Sunil D.; Holmer, Linda; Berengueras, Júlia M.; Jonsson, Ann-Beth

    2017-01-01

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence. PMID:28303956

  15. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165.

    PubMed

    Saroj, Sunil D; Holmer, Linda; Berengueras, Júlia M; Jonsson, Ann-Beth

    2017-03-17

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.

  16. Complete genome sequences of two Escherichia coli O145:H28 outbreak strains of food origin

    USDA-ARS?s Scientific Manuscript database

    Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. O145 is recognized as one of the six non-O157 serotypes that are most frequently assoc...

  17. Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Background Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the...

  18. Botulinum Toxin for Rhinitis.

    PubMed

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  19. Antibody mediated rejection associated with complement factor h-related protein 3/1 deficiency successfully treated with eculizumab.

    PubMed

    Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C

    2012-09-01

    Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    PubMed

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  1. Characterization of plasma labile heme in hemolytic conditions

    PubMed Central

    Gouveia, Zélia; Carlos, Ana R.; Yuan, Xiaojing; Aires-da-Silva, Frederico; Stocker, Roland; Maghzal, Ghassan J.; Leal, Sónia S.; Gomes, Cláudio M.; Todorovic, Smilja; Iranzo, Olga; Ramos, Susana; Santos, Ana C.; Hamza, Iqbal; Gonçalves, João; Soares, Miguel P.

    2018-01-01

    Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro-oxidant manner and regulates cellular metabolism while exerting pro-inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme-specific single domain antibodies (sdAbs) that together with a cellular-based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7 m and that 2–8% (∼ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme-binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7 m. The heme-specific sdAbs neutralize the pro-oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme-specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme-specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme. PMID:28783254

  2. Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin

    PubMed Central

    Blöcker, Dagmar; Behlke, Joachim; Aktories, Klaus; Barth, Holger

    2001-01-01

    The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH ≤ 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 ± 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor. PMID:11292715

  3. The Janus face of α-toxin: a potent mediator of cytoprotection in staphylococci-infected macrophages.

    PubMed

    Koziel, Joanna; Chmiest, Daniela; Bryzek, Danuta; Kmiecik, Katarzyna; Mizgalska, Danuta; Maciag-Gudowska, Agnieszka; Shaw, Lindsey N; Potempa, Jan

    2015-01-01

    After phagocytosis by macrophages, Staphylococcus aureus evades killing in an α-toxin-dependent manner, and then prevents apoptosis of infected cells by upregulating expression of antiapoptotic genes like MCL-1 (myeloid cell leukemia-1). Here, using purified α-toxin and a set of hla-deficient strains, we show that α-toxin is critical for the induction of MCL-1 expression and the cytoprotection of infected macrophages. Extracellular or intracellular treatment of macrophages with α-toxin alone did not induce cytoprotection conferred by increased Mcl-1, suggesting that the process is dependent on the production of α-toxin by intracellular bacteria. The increased expression of MCL-1 in infected cells was associated with enhanced NFκB activation, and subsequent IL-6 secretion. This effect was only partially inhibited by blocking TLR2, which suggests the participation of intracellular receptors in the specific recognition of S. aureus strains secreting α-toxin. Thus, S. aureus recognition by intracellular receptors and/or activation of downstream pathways leading to Mcl-1 expression is facilitated by α-toxin released by intracellular bacteria which permeabilize phagosomes, ensuring pathogen access to the cytoplasmatic compartment. Given that the intracellular survival of S. aureus depends on α-toxin, we propose a novel role for this agent in the protection of the intracellular niche, and further dissemination of staphylococci by infected macrophages. © 2014 S. Karger AG, Basel.

  4. Effects of therapeutic plasma exchange on serum immunoglobulin concentrations in a dog with refractory immune-mediated hemolytic anemia.

    PubMed

    Scagnelli, Alyssa M; Walton, Stuart A; Liu, Chin-Chi; Acierno, Mark J

    2018-05-01

    CASE DESCRIPTION A 9-year-old 8.3-kg (18.3-lb) neutered male Miniature Schnauzer was referred for diagnosis and treatment of a sudden onset of lethargy, anorexia, vomiting, and pallor. CLINICAL FINDINGS On physical examination, the dog was lethargic with pale mucous membranes and a capillary refill time ≥ 2 seconds. Skin and sclera were mildly icteric. Signs of pain were elicited during abdominal palpation, and an enlarged spleen was noted. Results of agglutination testing and cytologic findings were consistent with immune-mediated hemolytic anemia (IMHA). No contributing factors for development of IMHA were identified. TREATMENT AND OUTCOME Initial treatment included management with immunosuppressant medications. Three packed RBC transfusions were administered, but clinical signs continued to progress. Therefore, therapeutic plasma exchange (TPE) was performed 5 and 9 days after admission. Following each TPE procedure, the dog had an appreciable clinical improvement and decrease in RBC autoagglutination, and the Hct stabilized. Serum IgG and IgM concentrations were measured during and after both TPE procedures. Despite anticoagulative treatment, the dog developed a thrombus in the splenic vein, necessitating a splenectomy. CLINICAL RELEVANCE The decrease and rebound in serum IgG and IgM concentrations following TPE provided evidence that TPE may have the same immunomodulatory effects in dogs as have been proposed to occur in people. Further, findings suggested that TPE may be a useful alternative in dogs with refractory IMHA when traditional treatments fail.

  5. Modelling toxin effects on protein biosynthesis in eukaryotic cells.

    PubMed

    Skakauskas, Vladas; Katauskis, Pranas

    2017-08-01

    We present a rather generic model for toxin (ricin) inhibition of protein biosynthesis in eukaryotic cells. We also study reduction of the ricin toxic effects with application of antibodies against the RTB subunit of ricin molecules. Both species initially are delivered extracellularly. The model accounts for the pinocytotic and receptor-mediated toxin endocytosis and the intact toxin exocytotic removal out of the cell. The model also includes the lysosomal toxin destruction, the intact toxin motion to the endoplasmic reticulum (ER) for separation of its molecules into the RTA and RTB subunits, and the RTA chain translocation into the cytosol. In the cytosol, one portion of the RTA undergoes degradation via the ERAD. The other its portion can inactivate ribosomes at a large rate. The model is based on a system of deterministic ODEs. The influence of the kinetic parameters on the protein concentration and antibody protection factor is studied in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Treatment of Gastrointestinal Sphincters Spasms with Botulinum Toxin A

    PubMed Central

    Brisinda, Giuseppe; Sivestrini, Nicola; Bianco, Giuseppe; Maria, Giorgio

    2015-01-01

    Botulinum toxin A inhibits neuromuscular transmission. It has become a drug with many indications. The range of clinical applications has grown to encompass several neurological and non-neurological conditions. One of the most recent achievements in the field is the observation that botulinum toxin A provides benefit in diseases of the gastrointestinal tract. Although toxin blocks cholinergic nerve endings in the autonomic nervous system, it has also been shown that it does not block non-adrenergic non-cholinergic responses mediated by nitric oxide. This has promoted further interest in using botulinum toxin A as a treatment for overactive smooth muscles and sphincters. The introduction of this therapy has made the treatment of several clinical conditions easier, in the outpatient setting, at a lower cost and without permanent complications. This review presents current data on the use of botulinum toxin A in the treatment of pathological conditions of the gastrointestinal tract. PMID:26035487

  7. Quantification of diphtheria toxin mediated ADP-ribosylation in a solid-phase assay.

    PubMed

    Bachran, Christopher; Sutherland, Mark; Bachran, Diana; Fuchs, Hendrik

    2007-09-01

    Because of reduced vaccination programs, the number of diphtheria infections has increased in the last decade. Diphtheria toxin (DT) is expressed by Corynebacterium diphtheriae and is responsible for the lethality of diphtheria. DT inhibits cellular protein synthesis by ADP-ribosylation of the eukaryotic elongation factor 2 (eEF2). No in vitro system for the quantification of DT enzymatic activity exists. We developed a solid-phase assay for the specific detection of ADP-ribosylation by DT. Solid phase-bound his-tag eEF2 is ADP-ribosylated by toxins using biotinylated NAD(+) as substrate, and the transferred biotinylated ADP-ribose is detected by streptavidin-peroxidase. DT enzymatic activity correlated with absorbance. We measured the amount of ADP-ribosylated eEF2 after precipitation with streptavidin-Sepharose. Quantification was done after Western blotting and detection with anti-his-tag antibody using an LAS-1000 System. The assay detected enzymatically active DT at 30 ng/L, equivalent to 5 mU/L ADP-ribosylating activity. Pseudomonas exotoxin A (PE) activity was also detected at 100 ng/L. We verified the assay with chimeric toxins composed of the catalytic domain of DT or PE and a tumor-specific ligand. These chimeric toxins revealed increased signals at 1000 ng/L. Heat-inactivated DT and cholera toxin that ADP-ribosylates G-proteins did not show any signal increase. The assay may be the basis for the development of a routine diagnostic assay for the detection of DT activity and highly specific inhibitors of DT.

  8. The rebirth of interest in renal tubular function.

    PubMed

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  9. Escherichia coli O157:H7: Recent Advances in Research on Occurrence, Transmission, and Control in Cattle and the Production Environment

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a zoonotic pathogen that is an important cause of human food- and waterborne disease, with a spectrum of illnesses ranging from asymptomatic carriage and diarrhea to the sometimes fatal hemolytic uremic syndrome. Outbreaks of E. coli O157:H7 disease are frequently associ...

  10. Comparison of the H7 latex agglutination test with a fliCh7 real-time PCR assay for confirmation of the H type of Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a food-borne pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. Positive identification of E. coli O157:H7 is made using biochemical tests and latex agglutination using specific antisera. However, under certain conditions, some E. coli O157:H7 isolate...

  11. Evaluation of an inactivated whole-cell vaccine-adjuvant preparation for reducing fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    Cattle are the primary reservoir for Escherichia coli O157:H7 (O157). O157 can cause from a mild diarrheal illness in healthy adults to hemorrhagic colitis and hemolytic uremic syndrome in young children and elderly patients. O157-colonized cattle remain asymptomatic but shed these bacteria in feces...

  12. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  13. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  14. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro

    PubMed Central

    Tharmalingam, Nagendran; Park, Min; Lee, Min Ho; Woo, Hyun Jun; Kim, Hyun Woo; Yang, Ji Yeong; Rhee, Ki-Jong; Kim, Jong-Bae

    2016-01-01

    Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro. PMID:27158376

  15. Group A beta-hemolytic streptococcal hemorrhagic colitis complicated with pharyngitis and impetigo.

    PubMed

    Isozaki, Atsushi; Matsubara, Keiko; Yui, Takako; Kobayashi, Kenji; Kawano, Yutaka

    2007-12-01

    A 6-year-old boy with bloody diarrhea was diagnosed with group A beta-hemolytic streptococcal hemorrhagic colitis. Complications included pharyngitis and impetigo, both caused by the same organisms. In addition to being isolated from stools, Streptococcus pyogenes was also isolated from skin lesions. Furthermore, a rapid group A streptococcal antigen test by throat swab was also positive. Hemorrhagic colitis caused by group A beta-hemolytic streptococcus is extremely rare, and much rarer are its complications with pharyngitis and impetigo. Compared with findings in reports of group A beta-hemolytic streptococcal proctitis and perianal and perineal diseases, this case suggests a distinct pathogenesis for hemorrhagic colitis.

  16. Hemolytic venoms from marine cnidarian jellyfish – an overview

    PubMed Central

    Mariottini, Gian Luigi

    2014-01-01

    Cnidarian jellyfish are viewed as an emergent problem in several coastal zones throughout the world. Recurrent outbreaks pose a serious threat to tourists and bathers, as well as to sea-workers, involving health and economical aspects. As a rule, cnidarian stinging as a consequence of nematocyst firing induces merely local symptoms but cardiovascular or neurological complications can also occur. Hemolysis is a frequent effect of cnidarian stinging; this dangerous condition is known to be caused by several venoms and can sometimes be lethal. At present, the bulk of data concerning hemolytic cnidarian venoms comes from the study of benthic species, such as sea anemones and soft corals, but hemolytic factors were found in venoms of several siphonophore, cubozoan and scyphozoan jellyfish, which are mainly involved in the envenomation of bathers and sea-workers. Therefore, the aim of this paper is to review the scientific literature concerning the hemolytic venoms from cnidarian jellyfish taking into consideration their importance in human pathology as well as health implications and possible therapeutic measures. PMID:25386336

  17. Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins.

    PubMed

    Perelle, S; Scalzo, S; Kochi, S; Mock, M; Popoff, M R

    1997-01-01

    Clostridium perfringens iota and C. spiroforme toxins consist of two separate proteins. One is the binding component and the other the enzymatic component. The two toxins secreted by Bacillus anthracis are composed of binary combinations of three proteins: protective antigen, lethal factor, and edema factor. As shown by Western blotting and ELISA, the binding component of anthrax toxin shares common epitopes with that of iota toxin and C. spiroforme toxin which are closely related immunologically. However, no functional complementation was observed between iota toxin and anthrax toxin components. The binding components can form toxins active on macrophages only in combination with their respective enzymatic components. Agents which prevent acidification of endosomes do not have the same effects on anthrax toxin activity as they do on iota and C. spiroforme toxins. Therefore, the mechanisms of entry into the cells are presumably different. Since the binding components of anthrax toxins and iota toxin share a conserved putative translocation domain, these binding components could have a common mode of insertion into the cell membranes.

  18. Anthrax toxin.

    PubMed

    Bhatnagar, R; Batra, S

    2001-01-01

    Anthrax is primarily a disease of herbivores caused by gram-positive, aerobic, spore-forming Bacillus anthracis. Humans are accidental hosts through the food of animal origin and animal products. Anthrax is prevelant in most parts of the globe, and cases of anthrax have been reported from almost every country. Three forms of the disease have been recognized: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). The major virulence factors of Bacillus anthracis are a poly-D glutamic acid capsule and a three-component protein exotoxin. The genes coding for the toxin and the enzymes responsible for capsule production are carried on plasmid pXO1 and pXO2, respectively. The three proteins of the exotoxin are protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). The toxins follow the A-B model with PA being the B moeity and LF/EF, the alternative A moeities. LF and EF are individually nontoxic, but in combination with PA form two toxins causing different pathogenic responses in animals and cultured cells. PA + LF forms the lethal toxin and PA + EF forms the edema toxin. During the process of intoxication, PA binds to the cell surface receptor and is cleaved at the sequence RKKR (167) by cell surface proteases such as furin generating a cell-bound, C-terminal 63 kDa protein (PA63). PA63 possesses a binding site to which LF or EF bind with high affinity. The complex is then internalized by receptor-mediated endocytosis. Acidification of the vesicle leads to instertion of PA63 into the endosomal membrane and translocation of LF/EF across the bilayer into the cytosol where they exert their toxic effects. EF has a calcium- and calmodulin-dependent adenylate cyclase activity. Recent reports indicate that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and 2), and this cleavage inactivates MAPKK1 and thus inhibits the

  19. Identification of the cellular receptor for anthrax toxin

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth A.; Mogridge, Jeremy; Mourez, Michael; Collier, R. John; Young, John A. T.

    2001-11-01

    The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.

  20. Insufficiency of the Kanagawa hemolytic test for detecting pathogenic Vibrio parahaemolyticus in Shanghai, China.

    PubMed

    Hongping, Wang; Jilun, Zhang; Ting, Jiang; Yixi, Bao; Xiaoming, Zhou

    2011-01-01

    We evaluated the Kanagawa hemolytic test and tdh gene test for accuracy in identifying pathogenic Vibrio parahaemolyticus isolates in Shanghai. One hundred and seventy-two V. parahaemolyticus isolates were collected from diarrhea patients, freshly harvested sea fish, or fresh water samples. Statistical data for the Kanagawa hemolytic test and tdh gene test were compared. There were 83.51% isolates (81/97) from patients and 22.22% isolates (10/45) from sea-fish positive for the tdh gene. However, none of 30 isolates from fresh water samples were tdh-positive. Positive Kanagawa hemolytic tests were obtained in 88.66%, 46.67%, and 76.67% of isolates, which were from patients, sea fish, and fresh water samples, respectively. Positive rates of the Kanagawa hemolytic tests and the tdh gene tests were significantly different in isolates from those 3 sources (P < 0.001). The tdh gene test showed higher specificity than the Kanagawa hemolytic test on identifying pathogenic V. parahaemolyticus isolates in Shanghai, China. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Role of Receptors in Bacillus thuringiensis Crystal Toxin Activity

    PubMed Central

    Pigott, Craig R.; Ellar, David J.

    2007-01-01

    Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death. PMID:17554045

  2. Trapping toxins within lipid droplets is a resistance mechanism in fungi

    PubMed Central

    Chang, Wenqiang; Zhang, Ming; Zheng, Sha; Li, Ying; Li, Xiaobin; Li, Wei; Li, Gang; Lin, Zhaomin; Xie, Zhiyu; Zhao, Zuntian; Lou, Hongxiang

    2015-01-01

    Lipid droplets (LDs) act as intracellular storage organelles in most types of cells and are principally involved in energy homeostasis and lipid metabolism. However, the role of LDs in resistance to toxins in fungi remains largely unknown. Here, we show that the trapping of endogenous toxins by LDs is a self-resistance mechanism in the toxin producer, while absorbing external lipophilic toxins is a resistance mechanism in the toxin recipient that acts to quench the production of reactive oxygen species. We found that an endolichenic fungus that generates phototoxic perylenequinones (PQs) trapped the PQs inside LDs. Using a model that incorporates the fungicidal action of hypocrellin A (HA), a PQ derivative, we showed that yeast cells escaped killing by trapping toxins inside LDs. Furthermore, LD-deficient mutants were hypersusceptible to HA-mediated phototoxins and other fungicides. Our study identified a previously unrecognised function of LDs in fungi that has implications for our understanding of environmental adaptation strategies for fungi and antifungal drug discovery. PMID:26463663

  3. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: Implications on public health.

    PubMed

    Cha, Wonhee; Fratamico, Pina M; Ruth, Leah E; Bowman, Andrew S; Nolting, Jacqueline M; Manning, Shannon D; Funk, Julie A

    2018-01-02

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, which can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. To study the epidemiology of STEC in finishing pigs and examine the potential risks they pose for human STEC infections, we conducted a longitudinal cohort study in three finishing sites. Six cohorts of pigs (2 cohorts/site, 20 pigs/cohort) were randomly selected, and fecal samples (n=898) were collected every two weeks through their finishing period. Eighty-two pigs (68.3%) shed STEC at least once, and the proportion of STEC-positive pigs varied across sites (50-97.5%) and cohorts (15-100%). Clinically important serotypes, O157:H7 (stx 2c , eae) and O26:H11 (stx 1a , eae), were recovered from two pigs at sites C and A, respectively. The most common serotype isolated was O59:H21 (stx 2e ), which was particularly prevalent in site B as it was recovered from all STEC positive pigs (n=39). Each cohort showed different patterns of STEC shedding, which were associated with the prevalent serotype. The median shedding duration of STEC in pigs was 28days, consistent with our prior study. However, among pigs shedding O59:H21 at least once, pigs in cohort B2 had a significantly longer shedding duration of 42days (P<0.05) compared to other cohorts. Stx2e was the most commonly observed stx variant in finishing pigs (93.9%), in accordance with the previous studies. Stx2e has been reported to be significantly associated with edema disease in pigs, however, the pathogenicity in humans warrants further investigations. Nonetheless, our findings affirm that pigs are an important reservoir for human STEC infections, and that the circulating serotypes in a cohort and site management factors may significantly affect the prevalence of STEC. Molecular characterization of STEC isolates and epidemiological studies to identify risk factors for shedding in pigs are strongly warranted to further address the

  4. Complex toxin profile of French Mediterranean Ostreopsis cf. ovata strains, seafood accumulation and ovatoxins prepurification.

    PubMed

    Brissard, Charline; Herrenknecht, Christine; Séchet, Véronique; Hervé, Fabienne; Pisapia, Francesco; Harcouet, Jocelyn; Lémée, Rodolphe; Chomérat, Nicolas; Hess, Philipp; Amzil, Zouher

    2014-05-13

    Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 μg·kg-1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 μg·kg-1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell-1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises.

  5. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies.

    PubMed

    Scully, M; Cataland, S; Coppo, P; de la Rubia, J; Friedman, K D; Kremer Hovinga, J; Lämmle, B; Matsumoto, M; Pavenski, K; Sadler, E; Sarode, R; Wu, H

    2017-02-01

    Essentials An international collaboration provides a consensus for clinical definitions. This concerns thrombotic microangiopathies and thrombotic thrombocytopenic purpura (TTP). The consensus defines diagnosis, disease monitoring and response to treatment. Requirements for ADAMTS-13 are given. Background Thrombotic thrombocytopenic purpura (TTP) and hemolytic-uremic syndrome (HUS) are two important acute conditions to diagnose. Thrombotic microangiopathy (TMA) is a broad pathophysiologic process that leads to microangiopathic hemolytic anemia and thrombocytopenia, and involves capillary and small-vessel platelet aggregates. The most common cause is disseminated intravascular coagulation, which may be differentiated by abnormal coagulation. Clinically, a number of conditions present with microangiopathic hemolytic anemia and thrombocytopenia, including cancer, infection, transplantation, drug use, autoimmune disease, and pre-eclampsia and hemolysis, elevated liver enzymes and low platelet count syndrome in pregnancy. Despite overlapping clinical presentations, TTP and HUS have distinct pathophysiologies and treatment pathways. Objectives To present a consensus document from an International Working Group on TTP and associated thrombotic microangiopathies (TMAs). Methods The International Working Group has proposed definitions and terminology based on published information and consensus-based recommendations. Conclusion The consensus aims to aid clinical decisions, but also future studies and trials, utilizing standardized definitions. It presents a classification of the causes of TMA, and criteria for clinical response, remission and relapse of congenital and immune-mediated TTP. © 2016 International Society on Thrombosis and Haemostasis.

  6. [Balance between cardiovascular pharmacological and hemolytic effects of saponins of Panax notogenseng].

    PubMed

    Han, Shu-Xian; You, Yun

    2016-03-01

    PNS (total saponins of Panax notognseng, PNS) has a clear effect and wide application prospect for cardiovascular diseases. At the same time, saponins have hemolytic properties, which are related to its molecular structure type and dosage. On one hand, this article summarizes the research progress of PNS in heart cerebrovascular pharmacology pharmacological in recent five years, a number of studies both in vitro and in vivo for overall body, organs, cells and molecules, show that PNS could improve myocardial and cerebral ischemia injury, and it has effects in resisting thrombosis, inflammation, oxidation, atherosclerosis, and modulating vascular endothelial cells function and improving the cerebral ischemia injury etc. On the other hand, the hemolysis effect of PNS is closely related to its molecular structure type and administrating dosage. Different structures bring about different hemolysis activities. Structure-activity relationship suggests that the length of sugar side chains attached to C-20 and the disaccharide connection mode on C-3 may influence the hemolysis activity of PNS. Within the dose range from 2.5 to 250 mg•L⁻¹, PNS has no hemolysis activity. However, PNS exhibits hemolytic properties at high concentrations(≥500 mg•L⁻¹). Based on the hemolytic or anti-hemolysis characteristics of saponins, and dose-response relationship, the rational clinical application of PNS can be guaranteed by controlling the ratio of hemolytic monosaponins in PNS and improving the hemolytic test method. Copyright© by the Chinese Pharmaceutical Association.

  7. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  8. Uremic Pruritus is Associated with Two-Year Cardiovascular Mortality in Long Term Hemodialysis Patients.

    PubMed

    Weng, Cheng-Hao; Hu, Ching-Chih; Yen, Tzung-Hai; Hsu, Ching-Wei; Huang, Wen-Hung

    2018-06-15

    Uremic pruritus (UP) is an unpleasant complication in patients undergoing maintenance dialysis. Cardiovascular and infection related deaths are the major causes of mortality in patients undergoing dialysis. Studies on the correlation between cardiovascular or infection related mortality and UP are limited. We analyze 866 maintenance hemodialysis (MHD) patients in our hemodialysis centers. Clinical parameters and 24-month cardiovascular and infection-related mortality are recorded. The associations between all-cause, cardiovascular and infection related mortality with clinical data including UP are analyzed. Multivariate Cox regression demonstrated that UP is a significantly predictor for 24-month cardiovascular mortality in the MHD patients (Hazard ratio: 3.164; 95% confidence interval, 1.743-5.744; p < 0.001). Uremic pruritus is one of the predictor of 24-month cardiovascular mortality in MHD patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. E. Coli: Preventing Outbreaks at Camp.

    ERIC Educational Resources Information Center

    McKinney, Mary D.

    1996-01-01

    One strain of E. coli is not usually found in foods, but has been related to consumption of undercooked ground beef. Symptoms are stomach cramps and diarrhea, and 2-7% of infections lead to hemolytic uremic syndrome, which is life threatening. Camps can prevent outbreaks by avoiding uncooked meat on overnight campouts and requiring appropriate…

  10. Vaccination with killed whole-cells of Escherichia coli O157:H7 hha mutant emulsified with an adjuvant induced vaccine strain-specific serum antibodies and reduced E. coli O157:H7 fecal shedding in cattle

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 (O157) can cause from a mild diarrheal illness to hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are the primary reservoir for O157 and fecal shedding of O157 by these animals is a major risk factor in contamination of cattle hides and carcasses at slaug...

  11. Acute kidney injury in symptomatic primary Epstein-Barr virus infectious mononucleosis: Systematic review.

    PubMed

    Moretti, Milena; Lava, Sebastiano A G; Zgraggen, Lorenzo; Simonetti, Giacomo D; Kottanattu, Lisa; Bianchetti, Mario G; Milani, Gregorio P

    2017-06-01

    Textbooks and reviews do not mention the association of symptomatic primary Epstein-Barr virus infectious mononucleosis with acute kidney injury in subjects without immunodeficiency or autoimmunity. Stimulated by our experience with two cases, we performed a review of the literature. The literature documents 38 cases (26 male and 12 female individuals ranging in age from 0.3 to 51, median 18 years) of symptomatic primary Epstein-Barr virus infectious mononucleosis complicated by acute kidney injury: 27 acute interstitial nephritides, 1 jaundice-associated nephropathy, 7 myositides and 3 hemolytic uremic syndromes. Acute kidney injury requiring renal replacement therapy was observed in 18 (47%) cases. Acute kidney injury did not resolve in one patient with acute interstitial nephritis. Two patients died because of systemic complications. The remaining 35 cases fully recovered. In individuals with acute symptomatic Epstein-Barr virus infectious mononucleosis, a relevant kidney injury is rare but the outcome potentially fatal. It results from interstitial nephritis, myositis-associated acute kidney injury, hemolytic uremic syndrome or jaundice-associated nephropathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Role of Pore-Forming Toxins in Bacterial Infectious Diseases

    PubMed Central

    Los, Ferdinand C. O.; Randis, Tara M.

    2013-01-01

    SUMMARY Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens. PMID:23699254

  13. [Permanent cardiac pacing for chronic symptomatic atrioventricular block in uremic hemodialysed patients. A prospective study].

    PubMed

    Arsenescu, Cătălina; Georgescu, G I M; Covic, A; Briotă, Laura

    2002-01-01

    Though sudden cardiac death accounts for as much as 15% of all cause mortality in uremia, reports concerning advanced A-V block, requiring permanent cardiac pacing in end-stage renal disease (ESRD) hemodialysed (HD) patients are very few. This is the first long term prospective study reporting on systematic permanent pacemaker implantation, in a cohort of ESRD patients from a single HD unit. Between 01/06/1997 and 30/12/2001, 396 pacemakers were inserted for advanced, symptomatic A-V block in our institution, including 5 in ESRD, HD patients (M/F--4/1, age 47-73, M +/- SD--61 +/- 12 years) from a single dialysis center, treating 137 patients during the study period. Thus, the incidence and prevalence of A-V defects treated by permanent pacing in uremic patients was 0.81% and 3.65% respectively. Conversely, the incidence and prevalence of ESRD treated by hemodialysis, among patients with advanced A-V conduction disturbances, requiring permanent pacing were 0.28% and 1.26%. Mitral valve calcifications were present in all patients; 3 subjects also had extensive aortic valve calcifications. Left ventricular hypertrophy (echocardiographic Framingham criteria) was present in 4 patients, but the systolic function (ejection fraction and fractional shortening index) was normal in all cases, although a clinical picture of chronic heart failure was seen in 3 subjects preoperatively. A-V conduction defects were attributed to extensive metastatic calcifications, involving the cardiac squeleton, consecutive to severe hyperparathyroidism and inadvertent use of calcitriol and calcium carbonate as phosphate binders. No technical difficulties, short or long-term complications related to pacemaker implantation (4 VVI and 1 VVD devices) were encountered. Acute threshold and sensing values were similar with those of non-uremic patients. During follow-up, one patients died from a non cardiac death. If optimal hemodialysis is provided, benefits of permanent pacing are equal in uremic or

  14. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons.

    PubMed

    Bomba-Warczak, Ewa; Vevea, Jason D; Brittain, Joel M; Figueroa-Bernier, Annette; Tepp, William H; Johnson, Eric A; Yeh, Felix L; Chapman, Edwin R

    2016-08-16

    Recent reports suggest that botulinum neurotoxin (BoNT) A, which is widely used clinically to inhibit neurotransmission, can spread within networks of neurons to have distal effects, but this remains controversial. Moreover, it is not known whether other members of this toxin family are transferred between neurons. Here, we investigate the potential distal effects of BoNT/A, BoNT/D, and tetanus toxin (TeNT), using central neurons grown in microfluidic devices. Toxins acted upon the neurons that mediated initial entry, but all three toxins were also taken up, via an alternative pathway, into non-acidified organelles that mediated retrograde transport to the somato-dendritic compartment. Toxins were then released into the media, where they entered and exerted their effects upon upstream neurons. These findings directly demonstrate that these agents undergo transcytosis and interneuronal transfer in an active form, resulting in long-distance effects. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) in bovine dairy herds in Northern Italy.

    PubMed

    Trevisani, M; Mancusi, R; Delle Donne, G; Bacci, C; Bassi, L; Bonardi, S

    2014-08-01

    The aim of this study was to monitor the presence of Shiga toxin (Stx)-producing Escherichia coli in dairy farms authorized to sell raw milk and other farms, located in the same area, which sell milk to industry or use it to produce Parmesan or Grana cheese. Our research was focused on the serogroups O157 and O26, which are the most common in human cases in Italy and genetic markers that characterize the strains that can cause hemorrhagic colitis and hemolytic uremic syndrome (EHEC) in humans. Overall, 255 bulk-milk and 225 milk filter samples were screened for the presence of Shiga toxin genes (stx1 and stx2), O157 and O26 serogroups by using PCR. The samples were collected in 193 bovine dairy farms located in Northern Italy, including 32 farms selling raw milk to consumers. According to the preliminary PCR screening test, 32 out of 255 (12.5%; CI95%, 8.7% to 17.3%) bulk milk samples and 68 out of 225 (30.2%; CI95%, 24.3% to 36.7%) milk filters were positive for stx genes. Of the 32 milk samples that were stx-positive, 4 (1.6%, CI95%, 0.4% to 4%) were also positive by PCR for the rfbEO157 gene and 6 (2.4%, CI95%, 0.9% to 5.1%) were positive for the wzxO26 gene. The culture detection method, which was based on the immunomagnetic separation, achieved isolation rates of E. coli serogroups O157 and O26 in 25-67% of the milk samples that tested positive by PCR for these serogroups. STEC O26 was detected in one milk filter (1.6%) from a farm that sells raw milk to consumers directly and one sample (1.4%) of bulk milk intended for pasteurization. The presence of STEC O157 was also detected in 2 milk filters (1.7%) from farms that use milk to produce Grana cheese. All the STEC stains O157 and O26 isolated carried the genes eae and espK and genes belonging to the pathogenicity island OI-122 (efa1/2, sen, pagC), which are markers suitable for screening the human virulent EHEC strains. These virulence markers were also detected in the three strains of stx-negative E. coli O

  16. Immunization with Bacillus Spores Expressing Toxin A Peptide Repeats Protects against Infection with Clostridium difficile Strains Producing Toxins A and B ▿ †

    PubMed Central

    Permpoonpattana, Patima; Hong, Huynh A.; Phetcharaburanin, Jutarop; Huang, Jen-Min; Cook, Jenny; Fairweather, Neil F.; Cutting, Simon M.

    2011-01-01

    Clostridium difficile is a leading cause of nosocomial infection in the developed world. Two toxins, A and B, produced by most strains of C. difficile are implicated as virulence factors, yet only recently has the requirement of these for infection been investigated by genetic manipulation. Current vaccine strategies are focused mostly on parenteral delivery of toxoids. In this work, we have used bacterial spores (Bacillus subtilis) as a delivery vehicle to evaluate the carboxy-terminal repeat domains of toxins A and B as protective antigens. Our findings are important and show that oral immunization of the repeat domain of toxin A is sufficient to confer protection in a hamster model of infection designed to closely mimic the human course of infection. Importantly, neutralizing antibodies to the toxin A repeat domain were shown to be cross-reactive with the analogous domain of toxin B and, being of high avidity, provided protection against challenge with a C. difficile strain producing toxins A and B (A+B+). Thus, although many strains produce both toxins, antibodies to only toxin A can mediate protection. Animals vaccinated with recombinant spores were fully able to survive reinfection, a property that is particularly important for a disease with which patients are prone to relapse. We show that mucosal immunization, not parenteral delivery, is required to generate secretory IgA and that production of these neutralizing polymeric antibodies correlates with protection. This work demonstrates that an effective vaccine against C. difficile can be designed around two attributes, mucosal delivery and the repeat domain of toxin A. PMID:21482682

  17. Structure and Function of Thermostable Direct Hemolysin (TDH) from Vibrio Parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroshi; Yamane, Tsutomu; Ikeguchi, Mitsunori; Nakahira, Kumiko; Yanagihara, Itaru

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic food-borne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside the pore. Molecular dynamics (MD) simulations suggested that water molecules permeate freely through the central and side channel pores. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.

  18. Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean.

    PubMed

    Hassan, Sherif M; Byrd, James A; Cartwright, Aubry L; Bailey, Chris A

    2010-10-01

    Hemolytic and antibacterial activities of eight serial concentrations ranged from 5-666 microg/mL of saponin-rich extracts from guar meal (GM), quillaja, yucca, and soybean were tested in 96-well plates and read by enzyme-linked immunosorbent assay plate-well as 650 nm. Hemolytic assay used a 1% suspension of chicken red blood cells with water and phosphate buffered saline as positive and negative controls, respectively. Antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli were evaluated using ampicillin and bacteria without saponin-rich extract as positive and negative controls, respectively. The 100% MeOH GM and commercial quillaja saponin-rich extracts were significantly the highest in both hemolytic and antibacterial activities against all bacteria at the same concentration tested. Soybean saponin-rich extract had no antibacterial activity against any of the bacteria at the concentrations tested while yucca saponin-rich extract had no antibacterial activity against the gram-negative bacteria at the concentrations tested. GM and quillaja saponin-rich extracts were hemolytic, while yucca and soybean saponin-rich extracts were not hemolytic at the concentrations tested. No saponin-rich extract source had antibacterial activity against S. typhimurium or E. coli at the concentrations tested. Both GM and quillaja saponin-rich extracts exhibited antibacterial activity against S. aureus. Saponin-rich extracts from different plant sources have different hemolytic and antibacterial activities.

  19. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity againstmore » ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.« less

  20. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    PubMed

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  1. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin.

    PubMed

    Kreidler, Anna-Maria; Benz, Roland; Barth, Holger

    2017-03-01

    The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B 7 ) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B 7 components of C2 toxin and LT, C2IIa and PA 63 , respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA 63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA 63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA 63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA 63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.

  2. Rasburicase-induced Hemolytic Anemia in an Adolescent With Unknown Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Akande, Manzilat; Audino, Anthony N; Tobias, Joseph D

    2017-01-01

    Rasburicase, used in the prevention and treatment of tumor lysis syndrome (TLS), may cause hemolytic anemia and methemoglobinemia in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Although routine screening for G6PD deficiency has been recommended, given the turnaround time for test results and the urgency to treat TLS, such screening may not be feasible. We report a case of rasburicase-induced hemolytic anemia without methemoglobinemia in an adolescent with T-cell lymphoblastic lymphoma, TLS, and previously unrecognized G6PD deficiency. Previous reports of hemolytic anemia with rasburicase are reviewed, mechanisms discussed, and preventative strategies presented.

  3. Defective interplay between mTORC1 activity and endoplasmic reticulum stress-unfolded protein response in uremic vascular calcification.

    PubMed

    Panda, Dibyendu K; Bai, Xiuying; Sabbagh, Yves; Zhang, Yan; Zaun, Hans-Christian; Karellis, Angeliki; Koromilas, Antonis E; Lipman, Mark L; Karaplis, Andrew C

    2018-06-01

    Vascular calcification increases the risk of cardiovascular disease and death in patients with chronic kidney disease (CKD). Increased activity of mammalian target of rapamycin complex 1 (mTORC1) and endoplasmic reticulum (ER) stress-unfolded protein response (UPR) are independently reported to partake in the pathogenesis of vascular calcification in CKD. However, the association between mTORC1 activity and ER stress-UPR remains unknown. We report here that components of the uremic state [activation of the receptor for advanced glycation end products (RAGE) and hyperphosphatemia] potentiate vascular smooth muscle cell (VSMC) calcification by inducing persistent and exaggerated activity of mTORC1. This gives rise to prolonged and excessive ER stress-UPR as well as attenuated levels of sestrin 1 ( Sesn1) and Sesn3 feeding back to inhibit mTORC1 activity. Activating transcription factor 4 arising from the UPR mediates cell death via expression of CCAAT/enhancer-binding protein (c/EBP) homologous protein (CHOP), impairs the generation of pyrophosphate, a potent inhibitor of mineralization, and potentiates VSMC transdifferentiation to the osteochondrocytic phenotype. Short-term treatment of CKD mice with rapamycin, an inhibitor of mTORC1, or tauroursodeoxycholic acid, a bile acid that restores ER homeostasis, normalized mTORC1 activity, molecular markers of UPR, and calcium content of aortas. Collectively, these data highlight that increased and/or protracted mTORC1 activity arising from the uremic state leads to dysregulated ER stress-UPR and VSMC calcification. Manipulation of the mTORC1-ER stress-UPR pathway opens up new therapeutic strategies for the prevention and treatment of vascular calcification in CKD.

  4. Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes.

    PubMed

    Högfors-Rönnholm, Eva; Wiklund, Tom

    2010-12-01

    The hemolytic activity of cells of smooth and rough phenotypic variants of the Gram-negative fish pathogen Flavobacterium psychrophilum was investigated in two different assays, a microplate and an agarose hemolysis assay, using rainbow trout erythrocytes. The smooth cells showed a high and the rough cells a negligible, concentration dependent, hemolytic activity in the microplate assay. Both smooth and rough cells showed a rather weak hemolytic activity, with two distinct hemolytic patterns, in the agarose assay. The hemolytic activity of the cells was not regulated by iron availability and cell-free extracellular products did not show any hemolytic activity. The smooth cells, in contrast to the rough cells, showed a high ability to agglutinate erythrocytes and both hemagglutination and hemolytic activity was impaired by treatment of the cells with sialic acid. The hemolytic activity was furthermore reduced after proteolytic and heat treatment of the cells. The results from the present study suggest that the hemolytic activity in F. psychrophilum is highly expressed in the smooth phenotype, and that it is a contact-dependent and two-step mechanism that is initiated by the binding of the bacterial cells to the erythrocytes through sialic acid-binding lectins and then executed by thermolabile proteinaceous hemolysins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Binding of epsilon-toxin from Clostridium perfringens in the nervous system.

    PubMed

    Dorca-Arévalo, Jonatan; Soler-Jover, Alex; Gibert, Maryse; Popoff, Michel R; Martín-Satué, Mireia; Blasi, Juan

    2008-09-18

    Epsilon-toxin (epsilon-toxin), produced by Clostridium perfringens type D, is the main agent responsible for enterotoxaemia in livestock. Neurological disorders are a characteristic of the onset of toxin poisoning. Epsilon-Toxin accumulates specifically in the central nervous system, where it produces a glutamatergic-mediated excitotoxic effect. However, no detailed study of putative binding structures in the nervous tissue has been carried out to date. Here we attempt to identify specific acceptor moieties and cell targets for epsilon-toxin, not only in the mouse nervous system but also in the brains of sheep and cattle. An epsilon-toxin-GFP fusion protein was produced and used to incubate brain sections, which were then analyzed by confocal microscopy. The results clearly show specific binding of epsilon-toxin to myelin structures. epsilon-Prototoxin-GFP and epsilon-toxin-GFP, the inactive and active forms of the toxin, respectively, showed identical results. By means of pronase E treatment, we found that the binding was mainly associated to a protein component of the myelin. Myelinated peripheral nerve fibres were also stained by epsilon-toxin. Moreover, the binding to myelin was not only restricted to rodents, but was also found in humans, sheep and cattle. Curiously, in the brains of both sheep and cattle, the toxin strongly stained the vascular endothelium, a result that may explain the differences in potency and effect between species. Although the binding of epsilon-toxin to myelin does not directly explain its neurotoxic effect, this feature opens up a new line of enquiry into its mechanism of toxicity and establishes the usefulness of this toxin for the study of the mammalian nervous system.

  6. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    PubMed

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  7. Binary actin-ADP-ribosylating toxins and their use as molecular Trojan horses for drug delivery into eukaryotic cells.

    PubMed

    Barth, Holger; Stiles, Bradley G

    2008-01-01

    Binary bacterial toxins are unique AB-type toxins, composed of two non-linked proteins that act as a binding/translocation component and an enzyme component. All known actin-ADP-ribosylating toxins from clostridia possess this binary structure. This toxin family is comprised of the prototypical Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridium difficile CDT, and Clostridium spiroforme toxin. Once in the cytosol of host cells, these toxins transfer an ADP-ribose moiety from nicotinamide-adenosine-dinucleotide onto G-actin that then leads to depolymerization of actin filaments. In recent years much progress has been made towards understanding the cellular uptake mechanism of binary actin-ADP-ribosylating toxins, and in particular that of C2 toxin. Both components act in a precisely concerted manner to intoxicate eukaryotic cells. The binding/translocation (B-) component forms a complex with the enzyme (A-) component and mediates toxin binding to a cell-surface receptor. Following receptor-mediated endocytosis, the enzyme component escapes from acidic endosomes into the cytosol. Acidification of endosomes triggers pore formation by the binding/translocation component in endosomal membranes and the enzyme component subsequently translocates through the pore. This step requires a host cell chaperone, Hsp90. Due to their unique structure, binary toxins are naturally "tailor made" for transporting foreign proteins into the cytosol of host cells. Several highly specific and cell-permeable recombinant fusion proteins have been designed and successfully used in experimental cell research. This review will focus on the recent progress in studying binary actin ADP-ribosylating toxins as highly effective virulence factors and innovative tools for cell physiology as well as pharmacology.

  8. High-tone external muscle stimulation in end-stage renal disease: effects on symptomatic diabetic and uremic peripheral neuropathy.

    PubMed

    Klassen, A; Di Iorio, B; Guastaferro, P; Bahner, U; Heidland, A; De Santo, N

    2008-01-01

    Pain and peripheral neuropathy are frequent complications of end-stage renal disease (ESRD). Because drug treatment is associated with numerous side effects and is largely ineffective in many maintenance hemodialysis (MHD) patients, nonpharmacologic strategies such as electrotherapy are a potential recourse. Among various forms of electrostimulation, high-tone external muscle stimulation (HTEMS) is a promising alternative treatment for symptomatic diabetic peripheral polyneuropathy (PPN), as demonstrated in a short-term study. Based on these novel findings, we performed a prospective, nonrandomized, pilot trial in MHD patients to determine (1) whether HTEMS is also effective in treating diabetic PPN in the uremic state, and (2) whether uremic PPN is similarly modulated. In total, 40 MHD patients diagnosed with symptomatic PPN (25 with diabetic and 15 with uremic PPN) were enrolled. Both lower extremities were treated intradialytically with HTEMS for 1 hour, three times a week. Initially, a subgroup of 12 patients was followed for 4 weeks, and a further 28 patients for 12 weeks. The patients' degree of neuropathy was graded at baseline before HTEMS and after 1 and 3 months, respectively. Five neuropathic symptoms (tingling, burning, pain, numbness, and numbness in painful areas) as well as sleep disturbances were measured, using the 10-point Neuropathic Pain Scale of Galer and Jensen (Neurology 48:332-338, 1997). A positive response was defined as the improvement of one symptom or more, by at least 3 points. Other parameters included blood pressure, heart rate, dry body weight, and a routine laboratory investigation. The HTEMS led to a significant improvement in all five neuropathic symptoms, and to a significant reduction in sleep disturbances for both diabetic and uremic PPN. The response was independent of the patient's age, with a responder rate of 73%. The improvement of neuropathy was time-dependent, with the best results achieved after 3 months of treatment

  9. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid.

    PubMed

    Yang, Fa-zhong; Yang, Bin; Li, Bei-bei; Xiao, Chun

    2015-04-01

    Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.

  10. Targeted Silencing of Anthrax Toxin Receptors Protects against Anthrax Toxins*

    PubMed Central

    Arévalo, Maria T.; Navarro, Ashley; Arico, Chenoa D.; Li, Junwei; Alkhatib, Omar; Chen, Shan; Diaz-Arévalo, Diana; Zeng, Mingtao

    2014-01-01

    Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax. PMID:24742682

  11. Serum antibodies in mares and foals to Actinobacillus equuli whole cells, outer membrane proteins, and Aqx toxin.

    PubMed

    Holyoak, G R; Smith, C M; Boyette, R; Montelongo, M; Wray, J H; Ayalew, S; Duggan, V E; Confer, A W

    2007-08-15

    Actinobacillus equuli is carried in the alimentary tract of mares and can cause severe septicemia of neonatal foals. A hemolytic subspecies, A. equuli subsp. haemolyticus, and a non-hemolytic subspecies, A. equuli subsp. equuli, have been identified. Hemolytic strains produce the RTX toxin Aqx. The purpose of this study was to demonstrate sequentially in two sets of mare-foal pairs antibodies to A. equuli whole bacterial cells, outer membrane proteins, and recombinant Aqx and to compare the transfer of antibodies to these antigens between mares and their foals. Two mare/foal sets of sera were evaluated. Cohort A consisted of 18 mare-foal pairs obtained in the spring of 2005. Cohort B consisted of 10 mare-foal pairs obtained in the spring of 2006. For both sets, mare and foal sera were obtained immediately after foaling and prior to nursing (time 0) as well as at 12 and 24h and daily thereafter for 7 days. For Cohort B, sera were also obtained 30 days after birth. At parturition all mares had detectable antibodies to A. equuli whole cells and outer membranes; however, of those mares, two in Cohort A had undetectable antibodies to Aqx and their foals likewise had undetectable anti-Aqx antibodies. Antibodies against whole cells, outer membrane proteins, and Aqx were readily transferred from mares to foals. In most cases, there were significant correlations (p<0.05) between antibodies against whole cells, outer membrane proteins, and Aqx in mares' sera at the time of parturition and foal sera 24 after birth. Antibodies against the three antigen preparations had declined insignificantly (p>0.05) by day 30.

  12. Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX).

    PubMed

    Knapp, Oliver; Maier, Elke; Benz, Roland; Geny, Blandine; Popoff, Michel R

    2009-12-01

    Epsilon-toxin (ETX) is a potent toxin produced by Clostridium perfringens strains B and D. The bacteria are important pathogens in domestic animals and cause edema mediated by ETX. This toxin acts most likely by heptamer formation and rapid permeabilization of target cell membranes for monovalent anions and cations followed by a later entry of calcium. In this study, we compared the primary structure of ETX with that of the channel-forming stretches of a variety of binding components of A-B-types of toxins such as Anthrax protective antigen (PA), C2II of C2-toxin and Ib of Iota-toxin and found a remarkable homology to amino acids 151-180 of ETX. Site-directed mutagenesis of amino acids within the putative channel-forming domain resulted in changes of cytotoxicity and effects on channel characteristics in lipid bilayer experiments including changes of selectivity and partial channel block by methanethiosulfonate (MTS) reagents and antibodies against His(6)-tags from the trans-side of the lipid bilayer membranes.

  13. Toxin studies using an integrated biophysical and structural biology approach.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membranemore » a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.« less

  14. Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli.

    PubMed Central

    Braun, C J; Siedow, J N; Levings, C S

    1990-01-01

    Expression of the maize mitochondrial T-urf13 gene results in a sensitivity to a family of fungal pathotoxins and to methomyl, a structurally unrelated systemic insecticide. Similar effects of pathotoxins and methomyl are observed when T-urf13 is cloned and expressed in Escherichia coli. An interaction between these compounds and the membrane-bound URF13 protein permeabilizes the inner mitochondrial and bacterial plasma membranes. To understand the toxin-URF13 effects, we have investigated whether toxin specifically binds to the URF13 protein. Our studies indicate that toxin binds to the URF13 protein in maize mitochondria and in E. coli expressing URF13. Binding analysis in E. coli reveals cooperative toxin binding. A low level of specific toxin binding is also demonstrated in cms-T and cms-T-restored mitochondria; however, binding does not appear to be cooperative in maize mitochondria. Competition and displacement studies in E. coli demonstrate that toxin binding is reversible and that the toxins and methomyl compete for the same, or for overlapping, binding sites. Two toxin-insensitive URF13 mutants display a diminished capability to bind toxin in E. coli, which identifies residues of URF13 important in toxin binding. A third toxin-insensitive URF13 mutant shows considerable toxin binding in E. coli, demonstrating that toxin binding can occur without causing membrane permeabilization. Our results indicate that toxin-mediated membrane permeabilization only occurs when toxin or methomyl is bound to URF13. PMID:2136632

  15. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype.

    PubMed

    Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong

    2016-01-01

    Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC , and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC , and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus . We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.

  16. Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins.

    PubMed

    Navarro, Mauricio A; McClane, Bruce A; Uzal, Francisco A

    2018-05-22

    Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), and necrotic B-like (NetB) toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens -mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host⁻toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis.

  17. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins.

    PubMed

    Polyansky, Anton A; Vassilevski, Alexander A; Volynsky, Pavel E; Vorontsova, Olga V; Samsonova, Olga V; Egorova, Natalya S; Krylov, Nicolay A; Feofanov, Alexei V; Arseniev, Alexander S; Grishin, Eugene V; Efremov, Roman G

    2009-07-21

    In silico structural analyses of sets of alpha-helical antimicrobial peptides (AMPs) are performed. Differences between hemolytic and non-hemolytic AMPs are revealed in organization of their N-terminal region. A parameter related to hydrophobicity of the N-terminal part is proposed as a measure of the peptide propensity to exhibit hemolytic and other unwanted cytotoxic activities. Based on the information acquired, a rational approach for selective removal of these properties in AMPs is suggested. A proof of concept is gained through engineering specific mutations that resulted in elimination of the hemolytic activity of AMPs (latarcins) while leaving the beneficial antimicrobial effect intact.

  18. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, R. Alexandra; Arbing, Mark A.; Shin, Annie

    The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin–antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate–latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novelmore » TA system involved inMycobacterium tuberculosislatency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.« less

  19. Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors

    PubMed Central

    2015-01-01

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629

  20. [Occurrence and drug-resistance of beta-hemolytic streptococci].

    PubMed

    Mikołajczyk, Dorota; Budzyńska, Anna; Kaczmarek, Agnieszka; Gospodarek, Eugenia

    2007-01-01

    The aim of this study was the analysis of drug-resistance and frequency appearance of beta-hemolytic streptococci strains which were isolated in 2003-2005 in the University Hospital at the L. Rydygier Collegium Medicum in Bydgoszcz University of Nicolaus Copernicus in Toruń. Among investigeted beta-hemolytic streptococci the most frequency isolated species was S. agalactiae. All isolates examined in our study were susceptible to penicillin, the higest rate of resistance was found for tetracycline. The rates of resistence to macrolide-lincosamide-streptogramin B (phenotyp MLS(B)) were as follows: S. agalactiae (18.7%), S. pyogenes (10.1%), group G streptococci (10.6%) and group C streptococci (8.0%). In our study we presented also a special case patient from which in investigeted period S. agalactiae was isolated twenty eight times. For ten chromosomal DNA isolated from this patient three different PFGE profiles were obtained.

  1. Severe Hemolytic Jaundice in a Neonate with a Novel COL4A1 Mutation.

    PubMed

    Tomotaki, Seiichi; Mizumoto, Hiroshi; Hamabata, Takayuki; Kumakura, Akira; Shiota, Mitsutaka; Arai, Hiroshi; Haginoya, Kazuhiro; Hata, Daisuke

    2016-12-01

    We report our experience with a preterm infant with severe hemolytic jaundice who required exchange transfusion just after birth. The patient was negative for alloimmune hemolysis as a result of maternal-fetal blood type incompatibility, and tests for inherited defects in erythrocyte metabolism, membrane function, and hemoglobin synthesis were normal. We also performed a bone marrow examination, but could not identify the cause of hemolysis. The patient had several other complications, including porencephaly, epilepsy, elevated serum levels of creatine kinase, and persistent microscopic hematuria. Later, we detected a genetic mutation in COL4A1, which was recently found to be associated with hemolytic anemia. We therefore believe that all of the patient's clinical features, including hemolytic anemia, were due to the mutation in COL4A1. Genetic testing for COL4A1 mutations is recommended in neonates who exhibit hemolytic disease of unknown etiology, especially when other complications compatible with COL4A1-related disorders are present. Copyright © 2014. Published by Elsevier B.V.

  2. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    PubMed Central

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  3. Uremic pericarditis in patients with End Stage Renal Disease: Prevalence, symptoms and outcome in 2017.

    PubMed

    Bentata, Yassamine; Hamdi, F; Chemlal, A; Haddiya, I; Ismaili, N; El Ouafi, N

    2018-03-01

    The prevalence of uremic pericarditis (UP) used to range from 3% to 41%. More recently, it has decreased to about 5%-20% and to <5% in the last decades, as hemodialysis techniques have become widely used and dialysis quality improved. The objective of this work is to determine the initial clinical picture and the prognosis of patients presenting End Stage Renal Disease (ESRD) with UP. This is a retrospective study (May 2015-September 2017). Inclusion criteria targeted patients who had uremic pericarditis defined as pericarditis occurring in a patient with ESRD before initiation of renal replacement therapy, or within eight weeks of its initiation. 16 patients met the inclusion criteria. The median age of patients was 54 [24, 71] years and 56.2% were male. Pericardial effusion was small, moderate and large in 31.2%, 37.6% and 31.2% of cases respectively. One pericardiocentesis was performed in view of a clinical picture of impending cardiac tamponade and three pericardial drainages were performed given presentation of tamponade. Hemodialysis was initiated for all the patients and continued for 2 to 3weeks until complete regression of the pericardial effusion. The mean number of dialysis sessions was 11±3.5. One patient died of septic shock that developed three weeks after diagnosis of uremic pericarditis. UP is considered a rare but fatal complication of ESRD because of the risk of tamponade and its prognosis remains dependent on early diagnosis and adequate treatment of ESRD. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Epsilon toxin: a fascinating pore-forming toxin.

    PubMed

    Popoff, Michel R

    2011-12-01

    Epsilon toxin (ETX) is produced by strains of Clostridium perfringens classified as type B or type D. ETX belongs to the heptameric β-pore-forming toxins including aerolysin and Clostridium septicum alpha toxin, which are characterized by the formation of a pore through the plasma membrane of eukaryotic cells consisting in a β-barrel of 14 amphipatic β strands. By contrast to aerolysin and C. septicum alpha toxin, ETX is a much more potent toxin and is responsible for enterotoxemia in animals, mainly sheep. ETX induces perivascular edema in various tissues and accumulates in particular in the kidneys and brain, where it causes edema and necrotic lesions. ETX is able to pass through the blood-brain barrier and stimulate the release of glutamate, which accounts for the symptoms of nervous excitation observed in animal enterotoxemia. At the cellular level, ETX causes rapid swelling followed by cell death involving necrosis. The precise mode of action of ETX remains to be determined. ETX is a powerful toxin, however, it also represents a unique tool with which to vehicle drugs into the central nervous system or target glutamatergic neurons. © 2011 The Author Journal compilation © 2011 FEBS.

  5. Stool C difficile toxin

    MedlinePlus

    ... toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... be analyzed. There are several ways to detect C difficile toxin in the stool sample. Enzyme immunoassay ( ...

  6. [Haemolytic uremic syndrome and thrombotic thrombocytopenic purpura: classification based on molecular etiology and review of recent developments in diagnostics].

    PubMed

    Prohászka, Zoltán

    2008-07-06

    Haemolytic uremic syndrome and thrombotic thrombocytopenic purpura are overlapping clinical entities based on historical classification. Recent developments in the unfolding of the pathomechanisms of these diseases resulted in the creation of a molecular etiology-based classification. Understanding of some causative relationships yielded detailed diagnostic approaches, novel therapeutic options and thorough prognostic assortment of the patients. Although haemolytic uremic syndrome and thrombotic thrombocytopenic purpura are rare diseases with poor prognosis, the precise molecular etiology-based diagnosis might properly direct the therapy of the affected patients. The current review focuses on the theoretical background and detailed description of the available diagnostic possibilities, and some practical information necessary for the interpretation of their results.

  7. Structural Characteristics of the Plasmid-Encoded Toxin from Enteroaggregative Escherichia coli†

    PubMed Central

    Scaglione, Patricia; Nemec, Kathleen N.; Burlingame, Kaitlin E.; Grabon, Agnieszka; Huerta, Jazmin; Navarro-García, Fernando; Tatulian, Suren A.; Teter, Ken

    2008-01-01

    Intoxication by the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli requires toxin translocation from the endoplasmic reticulum (ER) to the cytosol. This event involves the quality control system of ER-associated degradation (ERAD), but the molecular details of the process are poorly characterized. For many structurally distinct AB-type toxins, ERAD-mediated translocation is triggered by the spontaneous unfolding of a thermally unstable A chain. Here we show that Pet, a non-AB toxin, engages ERAD by a different mechanism that does not involve thermal unfolding. Circular dichroism and fluorescence spectroscopy measurements demonstrated that Pet maintains most of its secondary and tertiary structural features at 37°C, with significant thermal unfolding only occurring at temperatures ≥50°C. Fluorescence quenching experiments detected the partial solvent exposure of Pet aromatic amino acid residues at 37°C, and a cell-based assay suggested these changes could activate an ERAD-related event known as the unfolded protein response. We also found that HEp-2 cells were resistant to Pet intoxication when incubated with glycerol, a protein stabilizer. Altogether, our data are consistent with a model in which ERAD activity is triggered by a subtle structural destabilization of Pet and the exposure of Pet hydrophobic residues at physiological temperature. This was further supported by computer modeling analysis, which identified a surface-exposed hydrophobic loop among other accessible nonpolar residues in Pet. From our data it appears that Pet can promote its ERAD-mediated translocation into the cytosol by a distinct mechanism involving partial exposure of hydrophobic residues rather than the substantial unfolding observed for certain AB toxins. PMID:18702515

  8. Intrapericardial triamcinolone hexacetonide in the treatment of intractable uremic pericarditis in a child.

    PubMed

    Medani, C R; Ringel, R E

    1988-01-01

    Uremic pericarditis in children on chronic hemodialysis represents a difficult management problem, necessitating vigorous medical therapy and often surgical drainage of the pericardial effusion. Standard therapeutic approaches have met with limited success. The successful use of intrapericardial triamcinolone in a 10-year anephric boy on chronic dialysis is reported and accompanied by a description of the technique applied and literature review.

  9. Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model.

    PubMed

    Krebs, Shelly J; Taylor, Ronald K

    2011-10-01

    Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.

  10. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    USDA-ARS?s Scientific Manuscript database

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  11. Features associated with, and the impact of, hemolytic anemia in patients with systemic lupus erythematosus: LX, results from a multiethnic cohort.

    PubMed

    Durán, Sergio; Apte, Mandar; Alarcón, Graciela S; Marion, Miranda C; Edberg, Jeffrey C; Kimberly, Robert P; Zhang, Jie; Langefeld, Carl D; Vilá, Luis M; Reveille, John D

    2008-09-15

    To examine the clinical and genetic correlates of hemolytic anemia and its impact on damage accrual and mortality in systemic lupus erythematosus (SLE) patients. SLE patients (American College of Rheumatology [ACR] criteria) of Hispanic (Texan or Puerto Rican), African American, and Caucasian ethnicity from the LUMINA (LUpus in MInorities, NAture versus nurture) cohort were studied. Hemolytic anemia was defined as anemia with reticulocytosis (ACR criterion). The association between degrees of hemolytic anemia and socioeconomic/demographic, clinical, pharmacologic, immunologic, psychological, and behavioral variables was examined by univariable and multivariable (proportional odds model) analyses. Genetic variables (FCGR and Fas/Fas ligand polymorphisms) were examined by 2 degrees of freedom test of association and Cochran-Armitage trend tests. The impact of hemolytic anemia on damage accrual and mortality was examined by multivariable linear and Cox regression analyses, respectively. Of 628 patients studied, 90% were women, 19% were Texan Hispanic, 16% were Puerto Rican Hispanic, 37% were African American, and 28% were Caucasian. Sixty-five (10%) patients developed hemolytic anemia at some time during the disease course, 83% at or before diagnosis. Variables independently associated with degrees of hemolytic anemia were African American ethnicity, thrombocytopenia, and the use of azathioprine. Hemolytic anemia was associated with damage accrual after adjusting for variables known to affect this outcome; however, hemolytic anemia was not associated with mortality. The association of hemolytic anemia with thrombocytopenia suggests a common mechanism in their pathophysiology. Hemolytic anemia is an early disease manifestation and is associated with African American ethnicity and the use of azathioprine; it appears to exert an impact on damage but not on mortality.

  12. Features Associated With, and the Impact of, Hemolytic Anemia in Patients With Systemic Lupus Erythematosus: LX, Results From a Multiethnic Cohort

    PubMed Central

    DURÁN, SERGIO; APTE, MANDAR; ALARCÓN, GRACIELA S.; MARION, MIRANDA C.; EDBERG, JEFFREY C.; KIMBERLY, ROBERT P.; ZHANG, JIE; LANGEFELD, CARL D.; VILÁ, LUIS M.; REVEILLE, JOHN D.

    2009-01-01

    Objective To examine the clinical and genetic correlates of hemolytic anemia and its impact on damage accrual and mortality in systemic lupus erythematosus (SLE) patients. Methods SLE patients (American College of Rheumatology [ACR] criteria) of Hispanic (Texan or Puerto Rican), African American, and Caucasian ethnicity from the LUMINA (LUpus in MInorities, NAture versus nurture) cohort were studied. Hemolytic anemia was defined as anemia with reticulocytosis (ACR criterion). The association between degrees of hemolytic anemia and socioeconomic/demographic, clinical, pharmacologic, immunologic, psychological, and behavioral variables was examined by univariable and multivariable (proportional odds model) analyses. Genetic variables (FCGR and Fas/Fas ligand polymorphisms) were examined by 2 degrees of freedom test of association and Cochran-Armitage trend tests. The impact of hemolytic anemia on damage accrual and mortality was examined by multivariable linear and Cox regression analyses, respectively. Results Of 628 patients studied, 90% were women, 19% were Texan Hispanic, 16% were Puerto Rican Hispanic, 37% were African American, and 28% were Caucasian. Sixty-five (10%) patients developed hemolytic anemia at some time during the disease course, 83% at or before diagnosis. Variables independently associated with degrees of hemolytic anemia were African American ethnicity, thrombocytopenia, and the use of azathioprine. Hemolytic anemia was associated with damage accrual after adjusting for variables known to affect this outcome; however, hemolytic anemia was not associated with mortality. Conclusion The association of hemolytic anemia with thrombocytopenia suggests a common mechanism in their pathophysiology. Hemolytic anemia is an early disease manifestation and is associated with African American ethnicity and the use of azathioprine; it appears to exert an impact on damage but not on mortality. PMID:18759263

  13. Hemolytic and cytotoxic properties of saponin purified from Holothuria leucospilota sea cucumber.

    PubMed

    Soltani, Mozhgan; Parivar, Kazem; Baharara, Javad; Kerachian, Mohammad Amin; Asili, Javad

    2014-10-01

    Holothuroids (sea cucumbers) are members of the phylum echinodermata, which produce saponins. Saponins exhibit a wide spectrum of pharmacological and biological activities. In this study, we isolated the crude saponins from the body wall of the dominant Iranian species of sea cucumber, Holothuria leucospilota (H. leucospilota). The purpose of this study was to confirm the presence of saponins in the Persian Gulf H. leucospilota and study the hemolytic and cytotoxic activities of these compounds. The body wall of sea cucumber was dried and powdered and the crude saponins were isolated using various solvents. The crude saponins were further purified by column chromatography using HP-20 resin. The foam test, Thin Layer Chromatography (TLC), hemolytic assay, and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of saponins. Cytotoxicity was analyzed using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on A549 cells, a human lung cancer cell line. The foam test, hemolytic assay, and TLC supported the presence of saponin compounds in the 80% ethanol fraction of H. leucospilota. The infrared (IR) spectrum of the extract showed hydroxyl (-OH), alkyl (C-H), ether (C-O) and ester (-C=O) absorption characteristic of teriterpenoid saponins. The C-O-C absorption indicated glycoside linkages to the sapogenins. The crude saponin extracted from sea cucumber was cytotoxic to A549 cells. The 80% ethanol fraction of saponin isolated from H. leucospilota exhibited hemolytic activity and offers promise as an anti-cancer candidate.

  14. Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins

    PubMed Central

    Navarro, Mauricio A.; Uzal, Francisco A.

    2018-01-01

    Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), and necrotic B-like (NetB) toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens-mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host–toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis. PMID:29786671

  15. Structure of a bacterial toxin-activating acyltransferase.

    PubMed

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  16. Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature Oligodendrocytes and Central Nervous System Demyelination

    PubMed Central

    Linden, Jennifer R.; Ma, Yinghua; Zhao, Baohua; Harris, Jason Michael; Rumah, Kareem Rashid; Schaeren-Wiemers, Nicole

    2015-01-01

    ABSTRACT Clostridium perfringens epsilon toxin (ε-toxin) is responsible for a devastating multifocal central nervous system (CNS) white matter disease in ruminant animals. The mechanism by which ε-toxin causes white matter damage is poorly understood. In this study, we sought to determine the molecular and cellular mechanisms by which ε-toxin causes pathological changes to white matter. In primary CNS cultures, ε-toxin binds to and kills oligodendrocytes but not astrocytes, microglia, or neurons. In cerebellar organotypic culture, ε-toxin induces demyelination, which occurs in a time- and dose-dependent manner, while preserving neurons, astrocytes, and microglia. ε-Toxin specificity for oligodendrocytes was confirmed using enriched glial culture. Sensitivity to ε-toxin is developmentally regulated, as only mature oligodendrocytes are susceptible to ε-toxin; oligodendrocyte progenitor cells are not. ε-Toxin sensitivity is also dependent on oligodendrocyte expression of the proteolipid myelin and lymphocyte protein (MAL), as MAL-deficient oligodendrocytes are insensitive to ε-toxin. In addition, ε-toxin binding to white matter follows the spatial and temporal pattern of MAL expression. A neutralizing antibody against ε-toxin inhibits oligodendrocyte death and demyelination. This study provides several novel insights into the action of ε-toxin in the CNS. (i) ε-Toxin causes selective oligodendrocyte death while preserving all other neural elements. (ii) ε-Toxin-mediated oligodendrocyte death is a cell autonomous effect. (iii) The effects of ε-toxin on the oligodendrocyte lineage are restricted to mature oligodendrocytes. (iv) Expression of the developmentally regulated proteolipid MAL is required for the cytotoxic effects. (v) The cytotoxic effects of ε-toxin can be abrogated by an ε-toxin neutralizing antibody. PMID:26081637

  17. Timeliness of Surveillance during Outbreak of Shiga Toxin–producing Escherichia coli Infection, Germany, 2011

    PubMed Central

    Wadl, Maria; Altmann, Doris; Benzler, Justus; Eckmanns, Tim; Krause, Gérard; Spode, Anke; an der Heiden, Matthias

    2011-01-01

    In the context of a large outbreak of Shiga toxin–producing Escherichia coli O104:H4 in Germany, we quantified the timeliness of the German surveillance system for hemolytic uremic syndrome and Shiga toxin–producing E. coli notifiable diseases during 2003–2011. Although reporting occurred faster than required by law, potential for improvement exists at all levels of the information chain. PMID:22000368

  18. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    PubMed Central

    Gurnev, Philip A.; Nestorovich, Ekaterina M.

    2014-01-01

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications. PMID:25153255

  19. Effect of amino acid substitution in the staphylococcal peptides warnericin RK and PSMα on their anti-Legionella and hemolytic activities.

    PubMed

    Marchand, Adrienne; Augenstreich, Jacques; Loiseau, Clémence; Verdon, Julien; Lecomte, Sophie; Berjeaud, Jean-Marc

    2015-07-01

    Warnericin RK from Staphylococcus warneri and PSMα from Staphylococcus epidermidis are anti-Legionella peptides which were differently classified in a previous study according to their mode of action. Indeed, warnericin RK is highly hemolytic with a bactericidal mode of action, whereas PSMα is poorly hemolytic with a bacteriostatic mode of action toward L. pneumophila. In order to find anti-Legionella peptides which are not hemolytic, a collection of peptides varying in sequence from warnericin RK to PSMα were designed and synthesized, and their anti-Legionella activities, in terms of growth inhibition, permeabilization, and bactericidal effect, as well as their hemolytic activities, were measured and compared. The results showed that some residues, at position 14 for both peptides for instance, were of major importance for bactericidal and hemolytic activities.

  20. Validity of rapid antigen detection testing in group A beta-hemolytic streptococcal tonsillopharyngitis.

    PubMed

    Küçük, Oznur; Biçer, Suat; Giray, Tuba; Cöl, Defne; Erdağ, Gülay Ciler; Gürol, Yeşim; Kaspar, Ciğdem E; Vitrinel, Ayça

    2014-02-01

    To evaluate the utility of rapid antigen detection testing (RADT) for the diagnosis of group A beta-hemolytic streptococcal tonsillopharyngitis in children, and to detect the sensitivity and specificity of rapid antigen detection of group A beta-hemolytic streptococci from throat specimen compared with throat culture. Rapid antigen detection and throat culture results for group A beta-hemolytic streptococci from outpatients attending university hospital between 1st January 2011 and 31st of December 2011 were evaluated retrospectively. The antigen test negative-throat culture positive patients were investigated for streptococcal carriage. For this purpose, the throat culture results taken from these patients were reviewed after treatment. Eight hundred and ninetytwo children were included in the studywith a mean age of 5.34 y. There were 639 and 253 children in two groups with age of 0-6 and 7-17 y, RADT sensitivity and specificity were found to be 59.5 % and 97.2 %, respectively. The positive predictive value was 87.1 %, whereas negative predictive value was 88.4 %. After treatment of 74 patients with throat culture positive and antigen test negative. Group A beta-hemolytic streptococci were isolated in 12 of them (16.2 %) and accepted as a carrier. The low sensitivity of the RADT may be related to streptococcal carriage in some patients. The throat culture should be repeated after treatment to detect streptococcal carriage.

  1. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrationsmore » below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.« less

  2. Uremic Pruritus, Dialysis Adequacy, and Metabolic Profiles in Hemodialysis Patients: A Prospective 5-Year Cohort Study

    PubMed Central

    Chen, Hung-Yuan; Chiu, Yen-Ling; Hsu, Shih-Ping; Pai, Mei-Fen; Ju-YehYang; Lai, Chun-Fu; Lu, Hui-Min; Huang, Shu-Chen; Yang, Shao-Yu; Wen, Su-Yin; Chiu, Hsien-Ching; Hu, Fu-Chang; Peng, Yu-Sen; Jee, Shiou-Hwa

    2013-01-01

    Background Uremic pruritus is a common and intractable symptom in patients on chronic hemodialysis, but factors associated with the severity of pruritus remain unclear. This study aimed to explore the associations of metabolic factors and dialysis adequacy with the aggravation of pruritus. Methods We conducted a 5-year prospective cohort study on patients with maintenance hemodialysis. A visual analogue scale (VAS) was used to assess the intensity of pruritus. Patient demographic and clinical characteristics, laboratory parameters, dialysis adequacy (assessed by Kt/V), and pruritus intensity were recorded at baseline and follow-up. Change score analysis of the difference score of VAS between baseline and follow-up was performed using multiple linear regression models. The optimal threshold of Kt/V, which is associated with the aggravation of uremic pruritus, was determined by generalized additive models and receiver operating characteristic analysis. Results A total of 111 patients completed the study. Linear regression analysis showed that lower Kt/V and use of low-flux dialyzer were significantly associated with the aggravation of pruritus after adjusting for the baseline pruritus intensity and a variety of confounding factors. The optimal threshold value of Kt/V for pruritus was 1.5 suggested by both generalized additive models and receiver operating characteristic analysis. Conclusions Hemodialysis with the target of Kt/V ≥1.5 and use of high-flux dialyzer may reduce the intensity of pruritus in patients on chronic hemodialysis. Further clinical trials are required to determine the optimal dialysis dose and regimen for uremic pruritus. PMID:23940749

  3. Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications.

    PubMed

    Miyata, T; van Ypersele de Strihou, C; Kurokawa, K; Baynes, J W

    1999-02-01

    Advanced glycation end products (AGEs), formed during Maillard or browning reactions by nonenzymatic glycation and oxidation (glycoxidation) of proteins, have been implicated in the pathogenesis of several diseases, including diabetes and uremia. AGEs, such as pentosidine and carboxymethyllysine, are markedly elevated in both plasma proteins and skin collagen of uremic patients, irrespective of the presence of diabetes. The increased chemical modification of proteins is not limited to AGEs, because increased levels of advanced lipoxidation end products (ALEs), such as malondialdehydelysine, are also detected in plasma proteins in uremia. The accumulation of AGEs and ALEs in uremic plasma proteins is not correlated with increased blood glucose or triglycerides, nor is it determined by a decreased removal of chemically modified proteins by glomerular filtration. It more likely results from increased plasma concentrations of small, reactive carbonyl precursors of AGEs and ALEs, such as glyoxal, methylglyoxal, 3-deoxyglucosone, dehydroascorbate, and malondialdehyde. Thus, uremia may be described as a state of carbonyl overload or "carbonyl stress" resulting from either increased oxidation of carbohydrates and lipids (oxidative stress) or inadequate detoxification or inactivation of reactive carbonyl compounds derived from both carbohydrates and lipids by oxidative and nonoxidative chemistry. Carbonyl stress in uremia may contribute to the long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and accelerated atherosclerosis. The increased levels of AGEs and ALEs in uremic blood and tissue proteins suggest a broad derangement in the nonenzymatic biochemistry of both carbohydrates and lipids.

  4. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    USDA-ARS?s Scientific Manuscript database

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  5. Hemolytic and cytotoxic properties of saponin purified from Holothuria leucospilota sea cucumber

    PubMed Central

    Soltani, Mozhgan; Parivar, Kazem; Baharara, Javad; Kerachian, Mohammad Amin; Asili, Javad

    2014-01-01

    Background: Holothuroids (sea cucumbers) are members of the phylum echinodermata, which produce saponins. Saponins exhibit a wide spectrum of pharmacological and biological activities. In this study, we isolated the crude saponins from the body wall of the dominant Iranian species of sea cucumber, Holothuria leucospilota (H. leucospilota). The purpose of this study was to confirm the presence of saponins in the Persian Gulf H. leucospilota and study the hemolytic and cytotoxic activities of these compounds. Methods: The body wall of sea cucumber was dried and powdered and the crude saponins were isolated using various solvents. The crude saponins were further purified by column chromatography using HP-20 resin. The foam test, Thin Layer Chromatography (TLC), hemolytic assay, and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of saponins. Cytotoxicity was analyzed using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on A549 cells, a human lung cancer cell line. Results: The foam test, hemolytic assay, and TLC supported the presence of saponin compounds in the 80% ethanol fraction of H. leucospilota. The infrared (IR) spectrum of the extract showed hydroxyl (-OH), alkyl (C-H), ether (C-O) and ester (–C=O) absorption characteristic of teriterpenoid saponins. The C-O-C absorption indicated glycoside linkages to the sapogenins. The crude saponin extracted from sea cucumber was cytotoxic to A549 cells. Conclusion: The 80% ethanol fraction of saponin isolated from H. leucospilota exhibited hemolytic activity and offers promise as an anti-cancer candidate. PMID:26989736

  6. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation

    PubMed Central

    Nagahama, Masahiro; Morimitsu, Shinsuke; Kihara, Atsushi; Akita, Masahiko; Setsu, Koujun; Sakurai, Jun

    2003-01-01

    Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. Tachykinin NK1 receptor antagonists, [D-Pro2, D-Trp7,9]-SP, [D-Pro4, D-Trp7,9]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK1 receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP8-37). The toxin-induced leakage was significantly inhibited by the N-type Ca2+ channel blocker, ω-conotoxin MVIIA, and the bradykinin B2 receptor antagonist, HOE140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), but was not affected by the selective L-type Ca2+ channel blocker, verapamil, the P-type Ca2+ channel blocker, ω-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na+ channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK1 receptors. PMID:12522069

  7. An Outbreak of Heinz Body Positive Hemolytic Anemia in Chronic Hemodialysis Patients1

    PubMed Central

    Pyo, Heui-Jung; Kwon, Young Joo; Wee, Kyoung So; Kwon, So Young; Lee, Chang Hong; Kim, Suhnggwon; Lee, Jung Sang; Cho, Soo-Hun; Cha, Chul Whan

    1993-01-01

    During the four month period, from December 1988 to March 1989, there was an outbreak of Heinz body positive hemolytic anemia in 34 patients undergoing hemodialysis in a 500-bed hospital, Seoul, Korea. The episodes of hemolysis were not reduced by changing the charcoal column and reverse osmosis system, or by adding ascorbic acid to the dialysate. The concentrations of nitrate, copper, aluminum and zinc in the treated water were all within the standards for hemodialysis. The chloramine concentration of the treated water was over 0.6 mg/L, markedly exceeding the allowable level of 0.1 mg/L. This high level of chloramine was proved to be due to the contamination of the water source by raw sewage. After we changed the source of water supply to another, no more episodes of hemolytic anemia occurred. It is concluded that chloramine is one of the major contaminants causing dialysis-induced hemolytic anemia and regular determinations are necessary, especially during winter and dry seasons. PMID:8031729

  8. Exposure to Bordetella pertussis adenylate cyclase toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells.

    PubMed

    Angely, Christelle; Nguyen, Ngoc-Minh; Andre Dias, Sofia; Planus, Emmanuelle; Pelle, Gabriel; Louis, Bruno; Filoche, Marcel; Chenal, Alexandre; Ladant, Daniel; Isabey, Daniel

    2017-08-01

    The adenylate cyclase (CyaA) toxin is a major virulent factor of Bordetella pertussis, the causative agent of whooping cough. CyaA toxin is able to invade eukaryotic cells where it produces high levels of cyclic adenosine monophosphate (cAMP) affecting cellular physiology. Whether CyaA toxin can modulate cell matrix adhesion and mechanics of infected cells remains largely unknown. In this study, we use a recently proposed multiple bond force spectroscopy (MFS) with an atomic force microscope to assess the early phase of cell adhesion (maximal detachment and local rupture forces) and cell rigidity (Young's modulus) in alveolar epithelial cells (A549) for toxin exposure <1 h. At 30 min of exposure, CyaA toxin has a minimal effect on cell viability (>95%) at CyaA concentration of 0.5 nM, but a significant effect (≈81%) at 10 nM. MFS performed on A549 for three different concentrations (0.5, 5 and 10 nM) demonstrates that CyaA toxin significantly affects both cell adhesion (detachment forces are decreased) and cell mechanics (Young's modulus is increased). CyaA toxin (at 0.5 nM) assessed at three indentation/retraction speeds (2, 5 and 10 μm/s) significantly affects global detachment forces, local rupture events and Young modulus compared with control conditions, while an enzymatically inactive variant CyaAE5 has no effect. These results reveal the loading rate dependence of the multiple bonds newly formed between the cell and integrin-specific coated probe as well as the individual bond kinetics which are only slightly affected by the patho-physiological dose of CyaA toxin. Finally, theory of multiple bond force rupture enables us to deduce the bond number N which is reduced by a factor of 2 upon CyaA exposure (N ≈ 6 versus N ≈ 12 in control conditions). MFS measurements demonstrate that adhesion and mechanical properties of A549 are deeply affected by exposure to the CyaA toxin but not to an enzymatically inactive variant. This indicates that the

  9. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    PubMed

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  10. Binding of ATP by pertussis toxin and isolated toxin subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner;more » however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.« less

  11. Trichomonas vaginalis: identification of soluble and membrane-associated phospholipase A1 and A2 activities with direct and indirect hemolytic effects.

    PubMed

    Vargas-Villarreal, Javier; Mata-Cárdenas, Benito David; Palacios-Corona, Rebeca; González-Salazar, Francisco; Cortes-Gutierrez, Elva I; Martínez-Rodríguez, Herminia G; Said-Fernández, Salvador

    2005-02-01

    A direct hemolytic activity, dependent on phospholipase A (PLA) activity, was located in the particulate subcellular fraction (P30) of Trichomonas vaginalis. We identified soluble direct and indirect hemolytic activities in the spent medium and soluble fraction (S30) of T. vaginalis strain GT-13. Spent medium showed the highest specific indirect hemolytic activity (SIHA) at pH 6.0 (91 indirect hemolytic units [HU]/mg/hr). Spent medium and P30, but not S30, showed direct hemolytic activity. PLA activity was protein dose dependent and time dependent. The highest PLA activity was observed at pH 6.0. All trichomonad preparations showed phospholipase A1 (PLA A1) and phospholipase A2 (PLA A2) activities. Indirect and direct hemolytic activity and PLA A1 and PLA A2 diminished at pH 6.0 and 8.0 with increasing concentrations of Rosenthal's inhibitor. The greatest effect was observed with 80 microM at pH 6.0 on the SIHA of S30 (83% reduction) and the lowest at pH 8.0, also on the SIHA of S30 (26% reduction). In conclusion, T. vaginalis contains particulate and soluble acidic, and alkaline direct and indirect hemolytic activities, which are partially dependent on alkaline or acidic PLA A1 and PLA A2 enzymes. These could be responsible for the contact-dependent and -independent hemolytic and cytolytic activities of T. vaginalis.

  12. Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering

    PubMed Central

    Bergeron, Zachary L.; Bingham, Jon-Paul

    2012-01-01

    Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics. PMID:23202307

  13. Cholera toxin activation of adenylate cyclase in cancer cell membrane fragments.

    PubMed Central

    Bitensky, M W; Wheeler, M A; Mehta, H; Miki, N

    1975-01-01

    Activation of adenylate [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by cholera toxin (84,000 daltons, 5.5 S) is demonstrated in plasma membrane fragments of mouse ascites cancer cells. The activation of adenylate cyclase is mediated by a macromolecular cyclase activating factor (MCAF), which has a sedimentation constant of 2.7 S and a molecular weight of about 26,000. MCAF is derived from, and may be identical to the "A fragment" of cholera toxin. Generation of MCAF depends on prior interaction of cholera toxin with either dithiothreitol, NADH, NAD, or a low-molecular-weight component (less than 700 daltons) present in cytoplasm. Subsequent exposure of this pretreated cholera toxin to cell membranes from a variety of mouse ascites cancer cells is followed rapidly by the appearance of MCAF, which no longer requires dithiothreitol, NADH, or NAD for the activation of adenylate cyclase. Activation of adenylate cyclase by MCAF in ascites cancer cell membrane fragments is not reversed by repeated washing of these membrane fragments. Adenylate cyclase in normal cell membrane fragments fails to respond either to cholera toxin or MCAF in the presence of dithiothreitol. In striking contrast, the adenylate cyclase in membrane fragments from five ascites cancer cells responds to either MCAF or native cholera toxin preincubated with dithiothreitol, NADH, or NAD. PMID:1058474

  14. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    PubMed Central

    Whiteley, Marvin

    2017-01-01

    ABSTRACT Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. PMID:29233893

  15. Alpha-Toxin Promotes Staphylococcus aureus Mucosal Biofilm Formation

    PubMed Central

    Anderson, Michele J.; Lin, Ying-Chi; Gillman, Aaron N.; Parks, Patrick J.; Schlievert, Patrick M.; Peterson, Marnie L.

    2012-01-01

    Staphylococcus aureus causes many diseases in humans, ranging from mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS). S. aureus may be asymptomatically carried in the anterior nares or vagina or on the skin, serving as a reservoir for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and the leading cause of TSS. The cytolysin α-toxin (also known as α-hemolysin or Hla) is the major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. The current study aims to characterize the differences between TSS USA200 strains [high (hla+) and low (hla−) α-toxin producers] in their ability to disrupt vaginal mucosal tissue and to characterize the subsequent infection. Tissue viability post-infection and biofilm formation of TSS USA200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hla−), MNPE (hla+), and MNPE isogenic hla knockout (hlaKO), were observed via LIVE/DEAD® staining and confocal microscopy. All TSS strains grew to similar bacterial densities (1–5 × 108 CFU) on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587 (hla−), MN8 (hla−), nor MNPE hlaKO formed biofilms. The latter strains were also less cytotoxic than wild-type MNPE. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. We speculate that α-toxin affects S. aureus phenotypic growth on vaginal mucosa by promoting tissue disruption and biofilm formation. Further, α-toxin mutants (hla−) are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic variants (HDPV). PMID:22919655

  16. Effect of Dietary Supplements in Reducing Probability of Death for Uremic Crises in Dogs Affected by Chronic Kidney Disease (Masked RCCT)

    PubMed Central

    Zatelli, Andrea; Pierantozzi, Marco; D'Ippolito, Paola; Bigliati, Mauro; Zini, Eric

    2012-01-01

    Chitosan and alkalinizing agents can decrease morbidity and mortality in humans with chronic kidney disease (CKD). Whether this holds true in dog is not known. Objective of the study was to determine whether a commercial dietary supplement containing chitosan, phosphate binders, and alkalinizing agents (Renal), compared to placebo, reduces mortality rate due to uremic crises in dogs with spontaneous CKD, fed a renal diet (RD). A masked RCCT was performed including 31 azotemic dogs with spontaneous CKD. Dogs enrolled in the study were randomly allocated to receive RD plus placebo (group A; 15 dogs) or RD plus Renal (group B; 16 dogs). During a first 4-week period, all dogs were fed an RD and then randomized and clinically evaluated up to 44 weeks. The effects of dietary supplements on mortality rate due to uremic crises were assessed. At 44 weeks, compared to group A, dogs in group B had approximately 50% lower mortality rate due to uremic crises (P = 0.015). Dietary supplementation with chitosan, phosphate binders, and alkalinizing agents, along with an RD, is beneficial in reducing mortality rate in dogs with spontaneous CKD. PMID:22593665

  17. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity.

    PubMed

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C; Campo, Brice; Sampath, Aruna; Magill, Alan J; Tekwani, Babu L; Walker, Larry A

    2013-10-22

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations.

  18. Role of sph2 Gene Regulation in Hemolytic and Sphingomyelinase Activities Produced by Leptospira interrogans.

    PubMed

    Narayanavari, Suneel A; Lourdault, Kristel; Sritharan, Manjula; Haake, David A; Matsunaga, James

    2015-01-01

    Pathogenic members of the genus Leptospira are the causative agents of leptospirosis, a neglected disease of public and veterinary health concern. Leptospirosis is a systemic disease that in its severest forms leads to renal insufficiency, hepatic dysfunction, and pulmonary failure. Many strains of Leptospira produce hemolytic and sphingomyelinase activities, and a number of candidate leptospiral hemolysins have been identified based on sequence similarity to well-characterized bacterial hemolysins. Five of the putative hemolysins are sphingomyelinase paralogs. Although recombinant forms of the sphingomyelinase Sph2 and other hemolysins lyse erythrocytes, none have been demonstrated to contribute to the hemolytic activity secreted by leptospiral cells. In this study, we examined the regulation of sph2 and its relationship to hemolytic and sphingomyelinase activities produced by several L. interrogans strains cultivated under the osmotic conditions found in the mammalian host. The sph2 gene was poorly expressed when the Fiocruz L1-130 (serovar Copenhageni), 56601 (sv. Lai), and L495 (sv. Manilae) strains were cultivated in the standard culture medium EMJH. Raising EMJH osmolarity to physiological levels with sodium chloride enhanced Sph2 production in all three strains. In addition, the Pomona subtype kennewicki strain LC82-25 produced substantially greater amounts of Sph2 during standard EMJH growth than the other strains, and sph2 expression increased further by addition of salt. When 10% rat serum was present in EMJH along with the sodium chloride supplement, Sph2 production increased further in all strains. Osmotic regulation and differences in basal Sph2 production in the Manilae L495 and Pomona strains correlated with the levels of secreted hemolysin and sphingomyelinase activities. Finally, a transposon insertion in sph2 dramatically reduced hemolytic and sphingomyelinase activities during incubation of L. interrogans at physiologic osmolarity

  19. Characterization of the Enzymatic Component of the ADP-Ribosyltransferase Toxin CDTa from Clostridium difficile

    PubMed Central

    Gülke, Irene; Pfeifer, Gunther; Liese, Jan; Fritz, Michaela; Hofmann, Fred; Aktories, Klaus; Barth, Holger

    2001-01-01

    Certain strains of Clostridium difficile produce the ADP-ribosyltransferase CDT, which is a binary actin ADP-ribosylating toxin. The toxin consists of the binding component CDTb, which mediates receptor binding and cellular uptake, and the enzyme component CDTa. Here we studied the enzyme component (CDTa) of the toxin using the binding component of Clostridium perfringens iota toxin (Ib), which is interchangeable with CDTb as a transport component. Ib was used because CDTb was not expressed as a recombinant protein in Escherichia coli. Similar to iota toxin, CDTa ADP-ribosylates nonmuscle and skeletal muscle actin. The N-terminal part of CDTa (CDTa1–240) competes with full-length CDTa for binding to the iota toxin binding component. The C-terminal part (CDTa244–263) harbors the enzyme activity but was much less active than the full-length CDTa. Changes of Glu428 and Glu430 to glutamine, Ser388 to alanine, and Arg345 to lysine blocked ADP-ribosyltransferase activity. Comparison of CDTa with C. perfringens iota toxin and Clostridium botulinum C2 toxin revealed full enzyme activity of the fragment Ia208–413 but loss of activity of several N-terminally deleted C2I proteins including C2I103–431, C2I190–431, and C2I30–431. The data indicate that CDTa belongs to the iota toxin subfamily of binary actin ADP-ribosylating toxins with respect to interaction with the binding component and substrate specificity. It shares typical conserved amino acid residues with iota toxin and C2 toxin that are suggested to be involved in NAD-binding and/or catalytic activity. The enzyme components of CDT, iota toxin, and C2 toxin differ with respect to the minimal structural requirement for full enzyme activity. PMID:11553537

  20. Utility of Clostridium difficile toxin B for inducing anti-tumor immunity.

    PubMed

    Huang, Tuxiong; Li, Shan; Li, Guangchao; Tian, Yuan; Wang, Haiying; Shi, Lianfa; Perez-Cordon, Gregorio; Mao, Li; Wang, Xiaoning; Wang, Jufang; Feng, Hanping

    2014-01-01

    Clostridium difficile toxin B (TcdB) is a key virulence factor of bacterium and induces intestinal inflammatory disease. Because of its potent cytotoxic and proinflammatory activities, we investigated the utility of TcdB in developing anti-tumor immunity. TcdB induced cell death in mouse colorectal cancer CT26 cells, and the intoxicated cells stimulated the activation of mouse bone marrow-derived dendritic cells and subsequent T cell activation in vitro. Immunization of BALB/c mice with toxin-treated CT26 cells elicited potent anti-tumor immunity that protected mice from a lethal challenge of the same tumor cells and rejected pre-injected tumors. The anti-tumor immunity generated was cell-mediated, long-term, and tumor-specific. Further experiments demonstrated that the intact cell bodies were important for the immunogenicity since lysing the toxin-treated tumor cells reduced their ability to induce antitumor immunity. Finally, we showed that TcdB is able to induce potent anti-tumor immunity in B16-F10 melanoma model. Taken together, these data demonstrate the utility of C. difficile toxin B for developing anti-tumor immunity.

  1. Antioxidant therapy improves non-thyroidal illness syndrome in uremic rats.

    PubMed

    Yang, Pingping; Li, Yun; Xu, Gaosi

    2016-01-01

    The roles of antioxidant therapy on non-thyroidal illness syndrome (NTIS) in uremic rats is still unclear. Twenty-four Sprague-Dawley (SD) rats were randomly divided into blank, 5/6 nephrectomy (Nx), pyrrolidine dithiocarbamate (PDTC, 10 mg/100 g), sodium bicarbonate (SB, 0.1 g/100 g), N-acetylcysteine (NAC, 80 mg/100 g) and thyroid hormones (TH, levothyroxine 2 μg/100 g) groups. The serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), advanced oxidation protein products (AOPP), interleukin (IL)-1β, free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) were detected in the sixth week. The expressions of IL-1β and deiodinase type 1 (DIO1) were assessed by western blotting. The nuclear factor kappa B (NF-κB) inflammatory signal pathway was confirmed by electrophoretic mobility shift assay (EMSA). Compared with 5/6 Nx group, PDTC and NAC significantly reduced the levels (p < 0.01, respectively) of serum MDA, AOPP, TSH, and elevated levels of serum SOD (p < 0.01, respectively) and FT3 (p = 0.016 and p < 0.01). Neither had significant effects on serum IL-1β content (p = 0.612 and p = 0.582). PDTC and NAC markedly decreased the protein expression of IL-1β (p < 0.01) and increased the protein expression of DIO1 (p < 0.01), respectively. Both had been considerably blunted NF-κB activity (p < 0.01). In uremic rat model, PDTC and NAC can effectively improve oxidative stress level and NTIS. In terms of improving oxidative stress level, NAC is probably superior to PDTC.

  2. Failure of botulinum toxin injection for neurogenic detrusor overactivity: Switch of toxin versus second injection of the same toxin.

    PubMed

    Peyronnet, Benoit; Castel-Lacanal, Evelyne; Manunta, Andréa; Roumiguié, Mathieu; Marque, Philippe; Rischmann, Pascal; Gamé, Xavier

    2015-12-01

    To evaluate the efficacy of a second injection of the same toxin versus switching to a different botulinum toxin A after failure of a first detrusor injection in patients with neurogenic detrusor overactivity. The charts of all patients who underwent detrusor injections of botulinum toxin A (either abobotulinumtoxinA or onabotulinumtoxinA) for the management of neurogenic detrusor overactivity at a single institution were retrospectively reviewed. Patients in whom a first detrusor injection had failed were included in the present study. They were managed by a second injection of the same toxin at the same dosage or by a new detrusor injection using a different botulinum toxin A. Success was defined as a resolution of urgency, urinary incontinence and detrusor overactivity in a patient self-catheterizing seven times or less per 24 h. A total of 58 patients were included for analysis. A toxin switch was carried out in 29 patients, whereas the other 29 patients received a reinjection of the same toxin at the same dose. The success rate was higher in patients who received a toxin switch (51.7% vs. 24.1%, P = 0.03). Patients treated with a switch from abobotulinumtoxinA to onabotulinumtoxinA and those treated with a switch from onabotulinumtoxinA to abobotulinumtoxinA had similar success rates (52.9% vs. 50%, P = 0.88). After failure of a first detrusor injection of botulinum toxin for neurogenic detrusor overactivity, a switch to a different toxin seems to be more effective than a second injection of the same toxin. The replacement of onabotulinumtoxin by abobotulinumtoxin or the reverse provides similar results. © 2015 The Japanese Urological Association.

  3. Urea inhibits NaK2Cl cotransport in human erythrocytes.

    PubMed Central

    Lim, J; Gasson, C; Kaji, D M

    1995-01-01

    We examined the effect of urea on NaK2Cl cotransport in human erythrocytes. In erythrocytes from nine normal subjects, the addition of 45 mM urea, a concentration commonly encountered in uremic subjects, inhibited NaK2Cl cotransport by 33 +/- 7%. Urea inhibited NaK2Cl cotransport reversibly, and in a concentration-dependent fashion with half-maximal inhibition at 63 +/- 10 mM. Acute cell shrinkage increased, and acute cell swelling decreased NaK2Cl cotransport in human erythrocytes. Okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, increased NaK2Cl cotransport by nearly 80%, suggesting an important role for these phosphatases in the regulation of NaK2Cl cotransport. Urea inhibited bumetanide-sensitive K influx even when protein phosphatases were inhibited with OA, suggesting that urea acted by inhibiting a kinase. In cells subjected to shrinking and OA pretreatment, maneuvers expected to increase the net phosphorylation, urea inhibited cotransport only minimally, suggesting that urea acted by causing a net dephosphorylation of the cotransport protein, or some key regulatory protein. The finding that concentrations of urea found in uremic subjects inhibited NaK2Cl cotransport, a widespread transport pathway with important physiological functions, suggests that urea is not only a marker for accumulation of other uremic toxins, but may be a significant uremic toxin itself. PMID:7593597

  4. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology.

    PubMed

    Harms, Alexander; Brodersen, Ditlev Egeskov; Mitarai, Namiko; Gerdes, Kenn

    2018-06-07

    Bacterial toxin-antitoxin (TA) modules are abundant genetic elements that encode a toxin protein capable of inhibiting cell growth and an antitoxin that counteracts the toxin. The majority of toxins are enzymes that interfere with translation or DNA replication, but a wide variety of molecular activities and cellular targets have been described. Antitoxins are proteins or RNAs that often control their cognate toxins through direct interactions and, in conjunction with other signaling elements, through transcriptional and translational regulation of TA module expression. Three major biological functions of TA modules have been discovered, post-segregational killing ("plasmid addiction"), abortive infection (bacteriophage immunity through altruistic suicide), and persister formation (antibiotic tolerance through dormancy). In this review, we summarize the current state of the field and highlight how multiple levels of regulation shape the conditions of toxin activation to achieve the different biological functions of TA modules. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene.

    PubMed

    Méndez, M B; Goñi, A; Ramirez, W; Grau, R R

    2012-01-01

    Histotoxic strains of Clostridium perfringens cause human gas gangrene, a devastating infection during which potent tissue-degrading toxins are produced and secreted. Although this pathogen only grows in anaerobic-nutrient-rich habitats such as deep wounds, very little is known regarding how nutritional signals influence gas gangrene-related toxin production. We hypothesize that sugars, which have been used throughout history to prevent wound infection, may represent a nutritional signal against gas gangrene development. Here we demonstrate, for the first time, that sugars (sucrose, glucose) inhibited the production of the main protein toxins, PLC (alpha-toxin) and PFO (theta-toxin), responsible for the onset and progression of gas gangrene. Transcription analysis experiments using plc-gusA and pfoA-gusA reporter fusions as well as RT-PCR analysis of mRNA transcripts confirmed that sugar represses plc and pfoA expression. In contrast an isogenic C. perfringens strain that is defective in CcpA, the master transcription factor involved in carbon catabolite response, was completely resistant to the sugar-mediated inhibition of PLC and PFO toxin production. Furthermore, the production of PLC and PFO toxins in the ccpA mutant strain was several-fold higher than the toxin production found in the wild type strain. Therefore, CcpA is the primary or unique regulatory protein responsible for the carbon catabolite (sugar) repression of toxin production of this pathogen. The present results are analyzed in the context of the role of CcpA for the development and aggressiveness of clostridial gas gangrene and the well-known, although poorly understood, anti-infective and wound healing effects of sugars and related substances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Yersinia enterocolitica YopT and Clostridium difficile Toxin B Induce Expression of GILZ in Epithelial Cells

    PubMed Central

    Köberle, Martin; Göppel, David; Grandl, Tanja; Gaentzsch, Peer; Manncke, Birgit; Berchtold, Susanne; Müller, Steffen; Lüscher, Bernhard; Asselin-Labat, Marie-Liesse; Pallardy, Marc; Sorg, Isabel; Langer, Simon; Barth, Holger; Zumbihl, Robert; Autenrieth, Ingo B.; Bohn, Erwin

    2012-01-01

    Glucocorticoid induced-leucine zipper (GILZ) has been shown to be induced in cells by different stimuli such as glucocorticoids, IL-10 or deprivation of IL-2. GILZ has anti-inflammatory properties and may be involved in signalling modulating apoptosis. Herein we demonstrate that wildtype Yersinia enterocolitica which carry the pYV plasmid upregulated GILZ mRNA levels and protein expression in epithelial cells. Infection of HeLa cells with different Yersinia mutant strains revealed that the protease activity of YopT, which cleaves the membrane-bound form of Rho GTPases was sufficient to induce GILZ expression. Similarly, Clostridium difficile toxin B, another bacterial inhibitor of Rho GTPases induced GILZ expression. YopT and toxin B both increased transcriptional activity of the GILZ promoter in HeLa cells. GILZ expression could not be linked to the inactivation of an individual Rho GTPase by these toxins. However, forced expression of RhoA and RhoB decreased basal GILZ promoter activity. Furthermore, MAPK activation proved necessary for profound GILZ induction by toxin B. Promoter studies and gel shift analyses defined binding of upstream stimulatory factor (USF) 1 and 2 to a canonical c-Myc binding site (E-box) in the GILZ promoter as a crucial step of its trans-activation. In addition we could show that USF-1 and USF-2 are essential for basal as well as toxin B induced GILZ expression. These findings define a novel way of GILZ promoter trans-activation mediated by bacterial toxins and differentiate it from those mediated by dexamethasone or deprivation of IL-2. PMID:22792400

  7. Translocation of the Catalytic Domain of Diphtheria Toxin across Planar Phospholipid Bilayers by Its Own T Domain

    NASA Astrophysics Data System (ADS)

    Oh, Kyoung Joon; Senzel, Lisa; Collier, R. John; Finkelstein, Alan

    1999-07-01

    The T domain of diphtheria toxin is known to participate in the pH-dependent translocation of the catalytic C domain of the toxin across the endosomal membrane, but how it does so, and whether cellular proteins are also required for this process, remain unknown. Here, we report results showing that the T domain alone is capable of translocating the entire C domain across model, planar phospholipid bilayers in the absence of other proteins. The T domain therefore contains the entire molecular machinery for mediating transfer of the catalytic domain of diphtheria toxin across membranes.

  8. Comparison of Directigen Group A Strep Test with a traditional culture technique for detection of group A beta-hemolytic streptococci.

    PubMed Central

    McCusker, J J; McCoy, E L; Young, C L; Alamares, R; Hirsch, L S

    1984-01-01

    The Directigen Group A Strep Test (DGAST), a new rapid method of detecting group A beta-hemolytic streptococci directly from throat swabs, was compared with a traditional culture technique for the detection of group A beta-hemolytic streptococci. Five hundred oropharyngeal swabs from pediatric and adult patients were cultured and then processed by using the DGAST. Of the 144 specimens positive by culture, 131 were DGAST positive (sensitivity, 90.9%). Of the 356 specimens negative by culture, 353 were DGAST negative (specificity, 99.2%). Twelve of the 13 false-negative DGAST results were from pediatric patients. One hundred isolates of non-group A beta-hemolytic streptococci were recovered, primarily groups C, F, and G. The DGAST is easy to perform, rapid, sensitive, and very specific for detection of group A beta-hemolytic streptococci directly from swabs. Supplementing the DGAST with a culture on a 5% sheep blood agar plate would enhance detection of group A beta-hemolytic streptococci, especially in pediatric patients. PMID:6386884

  9. Immune hemolytic anemia associated with probenecid.

    PubMed

    Sosler, S D; Behzad, O; Garratty, G; Lee, C L; Postoway, N; Khomo, O

    1985-09-01

    Upon hospital admission a patient was found to have severe anemia and a strongly positive direct antiglobulin test (DAT). The patient was taking probenecid periodically for gout. An antibody was detected in the patient's serum that only reacted with red blood cells (RBCs) when probenecid was added. Eluates from the patient's RBCs, with and without the presence of drug, were nonreactive. Upon the discontinuation of probenecid, the patient's hemoglobin level improved steadily. We believe this to be the first reported case of immune hemolytic anemia associated with probenecid.

  10. Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation.

    PubMed

    Lazarovici, P; Yavin, E

    1985-01-25

    The properties of tetanus toxin interaction with human erythrocytes supplemented with disialo- and trisialo-gangliosides have been investigated. Binding of toxin is linear with time for 1 h and is 3-4-fold higher at 37 degrees C than at 4 degrees C during incubation of long duration. It exhibits saturation at toxin concentrations between 0.1 and 1 microgram/ml; however, it is nonsaturable between 1 and up to 50 micrograms/ml. It is effectively prevented by free gangliosides and antibodies or by pretreatment with sialidase but is unaffected by a number of closely related ligands including toxoid and toxin fragments. NaCl (1 M) removes a great portion (86%) of cell-associated toxin while Triton X-100 extracts an additional fraction (30%) of the salt-resistant cell-bound toxin. The residual sequestred toxin after detergent extraction is sensitive to proteolytic degradation. The trypsin-stable fraction (1.5%) is biotoxic and may be indicative of internalization of toxin. A macromolecular complex of about 700 kDa containing toxin and gangliosides has been isolated and characterized by Sephacryl S-300 gel permeation chromatography, SDS-gel electrophoresis, immunoprecipitability and biotoxicity. This complex is obtained only in ganglioside-supplemented cells and not when free 3H-labeled GD1b is reacted with 125I-labeled toxin in solution in the absence of cells. The hydrophobicity properties acquired as a result of ganglioside-toxin interaction, presumably at the cell surface, suggest a conformational change of the toxin which may enable its penetration into the bilayer.

  11. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    PubMed

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections. Published by Elsevier Inc.

  12. Pathogenesis and mechanisms of antibody-mediated hemolysis

    PubMed Central

    Flegel, Willy A

    2015-01-01

    Background The clinical consequences of antibodies to red blood cells (RBC) have been studied for a century. Most clinically relevant antibodies can be detected by sensitive in vitro assays. Several mechanisms of antibody-mediated hemolysis are well understood. Such hemolysis following transfusion is reliably avoided in a donor/recipient pair, if one individual is negative for the cognate antigen to which the other has the antibody. Study design and results Mechanisms of antibody-mediated hemolysis were reviewed based on a presentation at the Strategies to Address Hemolytic Complications of Immune Globulin Infusions Workshop addressing intravenous immunoglobulin (IVIG) and ABO antibodies. The presented topics included the rates of intravascular and extravascular hemolysis; IgM and IgG isoagglutinins; auto- and alloantibodies; antibody specificity; A, B, A,B and A1 antigens; A1 versus A2 phenotypes; monocytes/macrophages, other immune cells and complement; monocyte monolayer assay (MMA); antibody-dependent cell-mediated cytotoxicity (ADCC); and transfusion reactions due to ABO and other antibodies. Conclusion Several clinically relevant questions remained unresolved, and diagnostic tools were lacking to routinely and reliably predict the clinical consequences of RBC antibodies. Most hemolytic transfusion reactions associated with IVIG were due to ABO antibodies. Reducing the titers of such antibodies in IVIG may lower the frequency of this kind of adverse event. The only way to stop these events is to have no anti-A or anti-B antibodies in the IVIG products. PMID:26174897

  13. Crucial Role of the Aryl Hydrocarbon Receptor (AhR) in Indoxyl Sulfate-Induced Vascular Inflammation.

    PubMed

    Ito, Shunsuke; Osaka, Mizuko; Edamatsu, Takeo; Itoh, Yoshiharu; Yoshida, Masayuki

    2016-08-01

    The aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor mediating toxic effects of dioxins and uremic toxins, has recently emerged as a pathophysiological regulator of immune-inflammatory conditions. Indoxyl sulfate, a uremic toxin, is associated with cardiovascular disease in patients with chronic kidney disease and has been shown to be a ligand for AhR. The aim of this study was to investigate the potential role of AhR in indoxyl sulfate-induced leukocyte-endothelial interactions. Endothelial cell-specific AhR knockout (eAhR KO) mice were produced by crossing AhR floxed mice with Tie2 Cre mice. Indoxyl sulfate was administered for 2 weeks, followed by injection of TNF-α. Leukocyte recruitment to the femoral artery was assessed by intravital microscopy. Vascular endothelial cells were transfected with siRNA specific to AhR (siAhR) and treated with indoxyl sulfate, followed by stimulation with TNF-α. Indoxyl sulfate dramatically enhanced TNF-α-induced leukocyte recruitment to the vascular wall in control animals but not in eAhR KO mice. In endothelial cells, siAhR significantly reduced indoxyl sulfate-enhanced leukocyte adhesion as well as E-selectin expression, whereas the activation of JNK and nuclear factor-κB was not affected. A luciferase assay revealed that the region between -153 and -146 bps in the E-selectin promoter was responsible for indoxyl sulfate activity via AhR. Mutational analysis of this region revealed that activator protein-1 (AP-1) is responsible for indoxyl sulfate-triggered E-selectin expression via AhR. AhR mediates indoxyl sulfate-enhanced leukocyte-endothelial interactions through AP-1 transcriptional activity, which may constitute a new mechanism of vascular inflammation in patients with renal disease.

  14. Effect of cross-linked chitosan iron (III) on vascular calcification in uremic rats.

    PubMed

    de Castro, Barbara Bruna Abreu; do Carmo, Wander Barros; de Albuquerque Suassuna, Paulo Giovani; Carminatti, Moises; Brito, Julia Bianchi; Dominguez, Wagner Vasques; de Oliveira, Ivone Braga; Jorgetti, Vanda; Custodio, Melani Ribeiro; Sanders-Pinheiro, Helady

    2018-05-01

    Cross-linked chitosan iron (III) is a chitin-derived polymer with a chelating effect on phosphorus, but it is untested in vascular calcification. We evaluated this compound's ability to reduce hyperphosphatemia and its effect on vascular calcification in uremic rats using an adenine-based, phosphorus-rich diet for seven weeks. We used a control group to characterize the uremia. Uremic rats were divided according the treatment into chronic kidney disease, CKD-Ch-Fe(III)CL (CKD-Ch), CKD-calcium carbonate, or CKD-sevelamer groups. We measured creatinine, phosphorus, calcium, alkaline phosphatase, phosphorus excretion fraction, parathyroid hormone, and fibroblast growth factor 23. Vascular calcification was assessed using the aortic calcium content, and a semi-quantitative analysis was performed using Von Kossa and hematoxylin-eosin staining. At week seven, rats in the chronic kidney disease group had higher creatinine, phosphorus, phosphorus excretion fraction, calcium, alkaline phosphatase, fibroblast growth factor 23, and aortic calcium content than those in the Control group. Treatments with cross-linked chitosan iron (III) and calcium carbonate prevented phosphorus increase (20%-30% reduction). The aortic calcium content was lowered by 88% and 85% in the CKD-Ch and CKD-sevelamer groups, respectively. The prevalence of vascular changes was higher in the chronic kidney disease and CKD-calcium carbonate (62.5%) groups than in the CKD-Ch group (37.5%). In conclusion, cross-linked chitosan iron (III) had a phosphorus chelating effect similar to calcium carbonate already available for clinical use, and prevented calcium accumulation in the aorta. Impact statement Vascular calcification (VC) is a common complication due to CKD-related bone and mineral disorder (BMD) and is characterized by deposition of calcium in vessels. Effective therapies are not yet available but new phosphorus chelators can prevent complications from CV. We tested the effect of chitosan, a new

  15. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    NASA Astrophysics Data System (ADS)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  16. The Pathogenetic Effect of Natural and Bacterial Toxins on Atopic Dermatitis

    PubMed Central

    Park, Kyung-Duck; Pak, Sok Cheon; Park, Kwan-Kyu

    2016-01-01

    Atopic dermatitis (AD) is a common allergic skin disease that is associated with chronic, recurrent eczematous and pruritic lesions at the flexural folds caused by interacting factors related to environmental and immune system changes. AD results in dry skin, and immunoglobulin E-mediated allergic reactions to foods and environmental allergens. While steroids and anti-histamines temporarily relieve the symptoms of AD, the possibility of side effects from pharmacological interventions remains. Despite intensive research, the underlying mechanisms for AD have not been clarified. A study of Staphylococcus aureus (S. aureus) established the role of its toxins in the pathogenesis of AD. Approximately 90% of patients with AD experience S. aureus colonization and up to 50%–60% of the colonizing S. aureus is toxin-producing. Any damage to the protective skin barrier allows for the entry of invading allergens and pathogens that further drive the pathogenesis of AD. Some natural toxins (or their components) that have therapeutic effects on AD have been studied. In addition, recent studies on inflammasomes as one component of the innate immune system have been carried out. Additionally, studies on the close relationship between the activation of inflammasomes and toxins in AD have been reported. This review highlights the literature that discusses the pathogenesis of AD, the role of toxins in AD, and the positive and negative effects of toxins on AD. Lastly, suggestions are made regarding the role of inflammasomes in AD. PMID:28025545

  17. Neonatal management and outcome in alloimmune hemolytic disease.

    PubMed

    Ree, Isabelle M C; Smits-Wintjens, Vivianne E H J; van der Bom, Johanna G; van Klink, Jeanine M M; Oepkes, Dick; Lopriore, Enrico

    2017-07-01

    Hemolytic disease of the fetus and newborn (HDFN) occurs when fetal and neonatal erythroid cells are destroyed by maternal erythrocyte alloantibodies, it leads to anemia and hydrops in the fetus, and hyperbilirubinemia and kernicterus in the newborn. Postnatal care consists of intensive phototherapy and exchange transfusions to treat severe hyperbilirubinemia and top-up transfusions to treat early and late anemia. Other postnatal complications have been reported such as thrombocytopenia, iron overload and cholestasis requiring specific management. Areas covered: This review focusses on the current neonatal management and outcome of hemolytic disease and discusses postnatal treatment options as well as literature on long-term neurodevelopmental outcome. Expert commentary: Despite major advances in neonatal management, multiple issues have to be addressed to optimize postnatal management and completely eradicate kernicterus. Except for strict adherence to guidelines, improvement could be achieved by clarifying the epidemiology and pathophysiology of HDFN. Several pharmacotherapeutic agents should be further researched as alternative treatment options in hyperbilirubinemia, including immunoglobulins, albumin, phenobarbital, metalloporphyrins, zinc, clofibrate and prebiotics. Larger trials are warranted to evaluate EPO, folate and vitamin E in neonates. Long-term follow-up studies are needed in HDFN, especially on thrombocytopenia, iron overload and cholestasis.

  18. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  19. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity

    PubMed Central

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C.; Campo, Brice; Sampath, Aruna; Magill, Alan J.; Tekwani, Babu L.; Walker, Larry A.

    2013-01-01

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations. PMID:24101478

  20. Anthrax Toxin

    DTIC Science & Technology

    1984-10-26

    focused initially on EF because it seemed possible that this component, like cholera toxin, might cause edema in skin through elevation of cellular cAMP...behavior differed from that seen in cells exposed to cholera toxin, where cellular cAMP levels remain elevated upon toxin removal. Studies in CHO cell...LF, the rat bioassay is not likely to be an appropriate system for studying the cellular and molecular mechanisms of action of LF. Therefore, a survey

  1. Idiopathic autoimmune hemolytic anemia due to lecithin overdose: a case report

    PubMed Central

    2009-01-01

    Introduction Idiopathic Autoimmune Hemolytic Anemia is a potentially fatal condition which requires prompt and potent treatment. Diagnosis of idiopathic autoimmune hemolytic anemia requires both serologic evidence of autoantibody presence and hemolysis. Although most of the times it is considered idiopathic, several underlying causes have been identified, like autoimmune and connective tissue diseases, viral infections, drugs or hyper function of the immune system. To our knowledge, this is the first case in the international literature describing lecithin-induced autoimmune hemolytic anemia. Case Presentation This case report is to highlight a rare but dangerous adverse reaction to overdose of lecithin. A 38 year old white female from Greece, presented to our emergency room with progressive fatigue over a period of ten days and icteric discoloration of her skin and conjunctiva. The patient had been taking lecithin supplements (1200 mg, 3 capsules a day) over a period of ten days for weight loss. She reports that the last 3 days, prior to the examination, she took 5 capsules/day, so that the supplement would take effect more rapidly. Her past medical, social and family history showed no disturbance. Relatives of the patient were requested to submit any blood-tests taken over a period of 20 days prior to the onset of symptoms caused by Lecithin. All tests proved that all functions were within normal scale. Her physical examination revealed pallor and jaundice without palpable hepatosplenomegaly. Blood biochemistry tests showed total bilirubin 7.5 mg/dl, with indirect bilirubin 6.4 mg/dl and complete blood count showed hemoglobin 7.6 g/dl with blood levels 21.4%. Conclusion In every case of idiopathic autoimmune hemolytic anemia the administration of pharmaceutical substances should always be examined, except for the standard reasons that cause it. In this case the cause of hemolysis was attributed to the excessive intake of lecithin capsules for the loss of body

  2. Chemical synthesis, 3D structure, and ASIC binding site of the toxin mambalgin-2.

    PubMed

    Schroeder, Christina I; Rash, Lachlan D; Vila-Farrés, Xavier; Rosengren, K Johan; Mobli, Mehdi; King, Glenn F; Alewood, Paul F; Craik, David J; Durek, Thomas

    2014-01-20

    Mambalgins are a novel class of snake venom components that exert potent analgesic effects mediated through the inhibition of acid-sensing ion channels (ASICs). The 57-residue polypeptide mambalgin-2 (Ma-2) was synthesized by using a combination of solid-phase peptide synthesis and native chemical ligation. The structure of the synthetic toxin, determined using homonuclear NMR, revealed an unusual three-finger toxin fold reminiscent of functionally unrelated snake toxins. Electrophysiological analysis of Ma-2 on wild-type and mutant ASIC1a receptors allowed us to identify α-helix 5, which borders on the functionally critical acidic pocket of the channel, as a major part of the Ma-2 binding site. This region is also crucial for the interaction of ASIC1a with the spider toxin PcTx1, thus suggesting that the binding sites for these toxins substantially overlap. This work lays the foundation for structure-activity relationship (SAR) studies and further development of this promising analgesic peptide. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bioterrorism: toxins as weapons.

    PubMed

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  4. Metabolism of HT-2 Toxin and T-2 Toxin in Oats

    PubMed Central

    Meng-Reiterer, Jacqueline; Bueschl, Christoph; Rechthaler, Justyna; Berthiller, Franz; Lemmens, Marc; Schuhmacher, Rainer

    2016-01-01

    The Fusarium mycotoxins HT-2 toxin (HT2) and T-2 toxin (T2) are frequent contaminants in oats. These toxins, but also their plant metabolites, may contribute to toxicological effects. This work describes the use of 13C-assisted liquid chromatography–high-resolution mass spectrometry for the first comprehensive study on the biotransformation of HT2 and T2 in oats. Using this approach, 16 HT2 and 17 T2 metabolites were annotated including novel glycosylated and hydroxylated forms of the toxins, hydrolysis products, and conjugates with acetic acid, putative malic acid, malonic acid, and ferulic acid. Further targeted quantitative analysis was performed to study toxin metabolism over time, as well as toxin and conjugate mobility within non-treated plant tissues. As a result, HT2-3-O-β-d-glucoside was identified as the major detoxification product of both parent toxins, which was rapidly formed (to an extent of 74% in HT2-treated and 48% in T2-treated oats within one day after treatment) and further metabolised. Mobility of the parent toxins appeared to be negligible, while HT2-3-O-β-d-glucoside was partly transported (up to approximately 4%) through panicle side branches and stem. Our findings demonstrate that the presented combination of untargeted and targeted analysis is well suited for the comprehensive elucidation of mycotoxin metabolism in plants. PMID:27929394

  5. Glucose-6-phosphate dehydrogenase deficiency: the added value of cytology.

    PubMed

    Roelens, Marie; Dossier, Claire; Fenneteau, Odile; Couque, Nathalie; Da Costa, Lydie

    2016-06-01

    We report the case of a 2 year-old boy hospitalized into the emergency room for influenza pneumonia infection. The evolution was marked by a respiratory distress syndrome, a severe hemolytic anemia, associated with thrombocytopenia and kidney failure. First, a diagnosis of hemolytic uremic syndrome (HUS) has been judiciously suggested due to the classical triad: kidney failure, hemolytic anemia and thrombocytopenia. But, strikingly, blood smears do not exhibit schizocytes, but instead ghosts and hemighosts, some characteristic features of a glucose-6-phosphate dehydrogenase deficiency. Our hypothesis has been confirmed by enzymatic dosage and molecular biology. The unusual initial aplastic feature of this anemia could be the result of a transient erythroblastopenia due to the viral agent, at the origin of the G6PD crisis on a background of a major erythrocyte anti-oxydant enzyme defect. This case of G6PD defect points out the continuously importance of the cytology, which was able to redirect the diagnosis by the hemighost and ghost detection.

  6. A Novel Tenebrio molitor Cadherin Is a Functional Receptor for Bacillus thuringiensis Cry3Aa Toxin*

    PubMed Central

    Fabrick, Jeff; Oppert, Cris; Lorenzen, Marcé D.; Morris, Kaley; Oppert, Brenda; Jurat-Fuentes, Juan Luis

    2009-01-01

    Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera. PMID:19416969

  7. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems.

    PubMed

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  8. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems

    PubMed Central

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  9. Studies on the hemolytic activity of tentacle extracts of jellyfish Rhopilema esculentum Kishinouye: application of orthogonal test.

    PubMed

    Yu, Huahua; Xing, Ronge; Liu, Song; Li, Cuiping; Guo, Zhanyong; Li, Pengcheng

    2007-02-20

    The present work is first reporting the hemolytic activity of venom from jellyfish Rhopilema esculentum Kishinouye extracted by different phosphate buffer solutions and incubated at different temperature according to the orthogonal test L6(1) x 3(6). Of the seven controllable independent variables, incubated temperature and phenylmethylsulfonyl fluoride (PMSF) had strongest effect on the hemolytic activity.

  10. Prevalence of β-hemolytic Streptococcus in children with special health care needs.

    PubMed

    Morais, Viviane Martha Santos de; Orsi, Alice Ramos; Maranhão, Fernanda Cristina de Albuquerque; Castro, Therezita Maria Peixoto Patury Galvão; Castro, Karina Cavalcante Beltrão de; Silva, Denise Maria Wanderlei

    2012-10-01

    Pharyngotonsillitis by β-hemolytic Streptococcus mostly affects children and immunocompromised, being Streptococcus pyogenes (Group A) the most common agent in bacterial pharyngotonsillitis. This work targeted the research of β-hemolytic Streptococcus Group-A (SBHGA) and No-A (SBHGNA) in the oropharynx of individuals with special health needs from the APAE (Maceió-AL). A prospective study with oropharynx samples from patients with Down syndrome and other mental disorders (test) and students from a private school (control) aged 5-15 years. Cultures in blood agar (5%) were identified through Gram/catalase tests and bacitracin/trimethoprim-sulfamethoxazole disk diffusion method, applying the chi-squared statistical analysis. A total of 222 bacterial colonies were isolated in 74 individuals from APAE and 65 in the control group. In the test group, previous episodes of pharyngotonsillitis were reported by 36.49% (27/74) and 9.46% (7/74) were diagnosed with symptoms and/or signs suggestive of oropharynx infection. No positive sample of S. pyogenes was confirmed at APAE, being all samples classified as SBHGNA, with 5 SBHGA in the control group. The early identification of β-hemolytic Streptococcus is important for the fast treatment of pharyngotonsillitis and the absence of S. pyogenes avoid future suppurative or not-suppurative sequels in the group from APAE.

  11. Structure and Functional Characterization of Vibrio parahaemolyticus Thermostable Direct Hemolysin*

    PubMed Central

    Yanagihara, Itaru; Nakahira, Kumiko; Yamane, Tsutomu; Kaieda, Shuji; Mayanagi, Kouta; Hamada, Daizo; Fukui, Takashi; Ohnishi, Kiyouhisa; Kajiyama, Shin'ichiro; Shimizu, Toshiyuki; Sato, Mamoru; Ikegami, Takahisa; Ikeguchi, Mitsunori; Honda, Takeshi; Hashimoto, Hiroshi

    2010-01-01

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-Cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin. PMID:20335168

  12. Sentinel case of group A beta-hemolytic streptococcus causing constrictive pericarditis presenting as hypogammaglobulinemia.

    PubMed

    Ahmadian, Homayoun R; Tankersley, Michael; Otto, Hans

    2011-05-01

    This is a unique case of a previously healthy 7-year-old boy, which highlights the importance of considering immunodeficiency when a rare infection occurs. In the following case report, the patient develops constrictive pericarditis secondary to group A beta-hemolytic streptococcal infection. As a result of this infection, we speculate that he develops hypogammaglobulinemia secondary to the documented association between constrictive pericarditis and intestinal lymphangiectasia because an extensive work-up for a primary immunodeficiency was negative. This is the first case ever to present constrictive pericarditis because of group A beta-hemolytic streptococcal infection.

  13. Global Transcriptome Analysis of the Tentacle of the Jellyfish Cyanea capillata Using Deep Sequencing and Expressed Sequence Tags: Insight into the Toxin- and Degenerative Disease-Related Transcripts

    PubMed Central

    Liu, Dan; Wang, Qianqian; Ruan, Zengliang; He, Qian; Zhang, Liming

    2015-01-01

    Background Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods. Results We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases. This is the first description of degenerative disease-associated genes in jellyfish. Conclusion We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular

  14. Global Transcriptome Analysis of the Tentacle of the Jellyfish Cyanea capillata Using Deep Sequencing and Expressed Sequence Tags: Insight into the Toxin- and Degenerative Disease-Related Transcripts.

    PubMed

    Liu, Guoyan; Zhou, Yonghong; Liu, Dan; Wang, Qianqian; Ruan, Zengliang; He, Qian; Zhang, Liming

    2015-01-01

    Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods. We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington's, Alzheimer's and Parkinson's diseases. This is the first description of degenerative disease-associated genes in jellyfish. We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying

  15. Auto immune hemolytic anemia in a child precipitated by chicken pox.

    PubMed

    Billoo, Samina Shamim; Jamalvi, Syed Waseem

    2008-05-01

    Auto Immune Hemolytic Anemia (AIHA) is a rare entity in children. We report a case of an adolescent girl with AIHA, which was precipitated by chicken pox. Clinical course over 3 years, till remission is described.

  16. Metal Complexes and Free Radical Toxins Produced by Pfiesteria piscicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller,P.; Beauchesne, K.; Huncik, K.

    2007-01-01

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less

  17. Metal Complexes And Free Radical Toxins Produced By Pfiesteria Piscicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, P.D.R.; Beauchesne, K.R.; Huncik, K.M.

    2009-06-03

    Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICPMS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less

  18. Curative effect of neutral macroporous resin hemoperfusion on treating hemodialysis patients with refractory uremic pruritus.

    PubMed

    Li, Wen-Hong; Yin, Yu-Min; Chen, Hao; Wang, Xiao-Dan; Yun, He; Li, Hui; Luo, Jie; Wang, Jin-Wen

    2017-03-01

    This study aims to investigate the efficacy and safety of neutral macroporous resin hemoperfusion in treating maintenance hemodialysis (MHD) patients with refractory uremic pruritus (RUP).Ninety patients were enrolled and were randomly divided into 3 groups: control group, experiment 1 group, and experiment 2 group. Clinical symptom scores of skin itching were recorded before and at 4 and 8 weeks after the treatment. In addition, serum parathyroid hormone (PTH), calcium (Ca), phosphorus (P), and C-reactive protein (CRP) were detected; and the calcium-phosphorus product ([Ca] × [P]) was calculated to compare the curative effect.VSA score, modified Duo pruritus score, and CRP: these indices decreased to some extent at 4 and 8 weeks after treatment in the 2 experiment groups, compared with pretreatment (P < 0.05); and differences among these 3 groups were statistically significant (P < 0.05). PTH, P, and [Ca] × [P]: these indices decreased to some extent at 4 and 8 weeks after treatment in the 2 experiment groups, compared with pretreatment (P < 0.05); and differences between the control and experiment 1 groups, as well as between the control and experiment 2 groups, were statistically significant (P < 0.05). However, the difference between the experiment 1 and experiment 2 groups were not statistically significant (P < 0.05).The effects of HA330 and HA130 resin hemoperfusion apparatus on secondary hyperparathyroidism and the disorder of calcium and phosphorus metabolism are similar. The mechanism may be related to its strong adsorption effect, and its capacity to widely remove inflammatory mediators, immune mediators, and endotoxins.

  19. Curative effect of neutral macroporous resin hemoperfusion on treating hemodialysis patients with refractory uremic pruritus

    PubMed Central

    Li, Wen-Hong; Yin, Yu-Min; Chen, Hao; Wang, Xiao-Dan; Yun, He; Li, Hui; Luo, Jie; Wang, Jin-Wen

    2017-01-01

    Abstract This study aims to investigate the efficacy and safety of neutral macroporous resin hemoperfusion in treating maintenance hemodialysis (MHD) patients with refractory uremic pruritus (RUP). Ninety patients were enrolled and were randomly divided into 3 groups: control group, experiment 1 group, and experiment 2 group. Clinical symptom scores of skin itching were recorded before and at 4 and 8 weeks after the treatment. In addition, serum parathyroid hormone (PTH), calcium (Ca2+), phosphorus (P3+), and C-reactive protein (CRP) were detected; and the calcium–phosphorus product ([Ca] × [P]) was calculated to compare the curative effect. VSA score, modified Duo pruritus score, and CRP: these indices decreased to some extent at 4 and 8 weeks after treatment in the 2 experiment groups, compared with pretreatment (P < 0.05); and differences among these 3 groups were statistically significant (P < 0.05). PTH, P3+, and [Ca] × [P]: these indices decreased to some extent at 4 and 8 weeks after treatment in the 2 experiment groups, compared with pretreatment (P < 0.05); and differences between the control and experiment 1 groups, as well as between the control and experiment 2 groups, were statistically significant (P < 0.05). However, the difference between the experiment 1 and experiment 2 groups were not statistically significant (P < 0.05). The effects of HA330 and HA130 resin hemoperfusion apparatus on secondary hyperparathyroidism and the disorder of calcium and phosphorus metabolism are similar. The mechanism may be related to its strong adsorption effect, and its capacity to widely remove inflammatory mediators, immune mediators, and endotoxins. PMID:28328802

  20. Toxin yet not toxic: Botulinum toxin in dentistry.

    PubMed

    Archana, M S

    2016-04-01

    Paracelsus contrasted poisons from nonpoisons, stating that "All things are poisons, and there is nothing that is harmless; the dose alone decides that something is a poison". Living organisms, such as plants, animals, and microorganisms, constitute a huge source of pharmaceutically useful medicines and toxins. Depending on their source, toxins can be categorized as phytotoxins, mycotoxins, or zootoxins, which include venoms and bacterial toxins. Any toxin can be harmful or beneficial. Within the last 100 years, the perception of botulinum neurotoxin (BTX) has evolved from that of a poison to a versatile clinical agent with various uses. BTX plays a key role in the management of many orofacial and dental disorders. Its indications are rapidly expanding, with ongoing trials for further applications. However, despite its clinical use, what BTX specifically does in each condition is still not clear. The main aim of this review is to describe some of the unclear aspects of this potentially useful agent, with a focus on the current research in dentistry.