Science.gov

Sample records for transdermal medical devices

  1. Development of Thin-Film Battery Powered Transdermal Medical Devices

    SciTech Connect

    Bates, J.B.; Sein, T.

    1999-07-06

    Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-film battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.

  2. Cosmetic devices based on active transdermal technologies.

    PubMed

    Scott, Jessica A; Banga, Ajay K

    2015-09-01

    Active transdermal technology, commonly associated with drug delivery, has been used in recent years by the cosmetic industry for the aesthetic restoration of skin and delivery of cosmetic agents. In this article, we provide an overview of the skin's structure, various skin types, skin's self-repair mechanisms that are stimulated from the usage of cosmetic devices and discuss cosmetic applications. Summaries of the most common active transdermal technologies such as microneedles, iontophoresis, sonophoresis, lasers and microdermabrasion will be provided, in relation to the marketed cosmetic devices available that incorporate these technologies. Lastly, we cover combinations of active technologies that allow for more enhanced cosmetic results, and the current limitations of cosmetic devices. PMID:26389853

  3. Medical Device Safety

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Medical Devices Home Medical Devices Medical Device Safety Medical Device Safety Share Tweet Linkedin Pin it More sharing ...

  4. Taro corms mucilage/HPMC based transdermal patch: an efficient device for delivery of diltiazem hydrochloride.

    PubMed

    Sarkar, Gunjan; Saha, Nayan Ranjan; Roy, Indranil; Bhattacharyya, Amartya; Bose, Madhura; Mishra, Roshnara; Rana, Dipak; Bhattacharjee, Debashis; Chattopadhyay, Dipankar

    2014-05-01

    The aim of this work is to examine the effectiveness of mucilage/hydroxypropylmethylcellulose (HPMC) based transdermal patch (matrix type) as a drug delivery device. We have successfully extracted mucilage from Colocasia esculenta (Taro) corms and prepared diltiazem hydrochloride incorporated mucilage/HPMC based transdermal patches using various wt% of mucilage by the solvent evaporation technique. Characterization of both mucilage and transdermal patches has been done by several techniques such as Molisch's test, organoleptic evaluation of mucilage, mechanical, morphological and thermal analysis of transdermal patches. Skin irritation test is studied on hairless Albino rat skin showing that transdermal patches are apparently free of potentially hazardous skin irritation. Fourier transform infrared analysis shows that there is no interaction between drug, mucilage and HPMC while scanning electron microscopy shows the surface morphology of transdermal patches. In vitro drug release time of mucilage-HPMC based transdermal patches is prolonged with increasing mucilage concentration in the formulation. PMID:24556117

  5. Medical Device Safety

    MedlinePlus

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They range ... may need one in a hospital. To use medical devices safely Know how your device works. Keep instructions ...

  6. Medical Device Safety

    MedlinePlus

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They ... may need one in a hospital. To use medical devices safely Know how your device works. Keep ...

  7. Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk**

    PubMed Central

    Raja, Waseem K.; MacCorkle, Scott; Diwan, Izzuddin M.; Abdurrob, Abdurrahman; Lu, Jessica; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, we report the fabrication of dense microneedle arrays from silk with different drug release kinetics. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs were delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery. PMID:23653252

  8. Medical device error.

    PubMed

    Goodman, Gerald R

    2002-12-01

    This article discusses principal concepts for the analysis, classification, and reporting of problems involving medical device technology. We define a medical device in regulatory terminology and define and discuss concepts and terminology used to distinguish the causes and sources of medical device problems. Database classification systems for medical device failure tracking are presented, as are sources of information on medical device failures. The importance of near-accident reporting is discussed to alert users that reported medical device errors are typically limited to those that have caused an injury or death. This can represent only a fraction of the true number of device problems. This article concludes with a summary of the most frequently reported medical device failures by technology type, clinical application, and clinical setting. PMID:12400632

  9. New Medical Device Evaluation.

    PubMed

    Ikeda, Koji

    2016-01-01

    In this presentation, as a member of the Harmonization by Doing (HBD) project, I discuss the significance of regulatory science in global medical device development and our experience in the international collaboration process for medical devices. In Japan, most innovative medical therapeutic devices were previously developed and exported by foreign-based companies. Due to this device lag, Japanese had minimal opportunities for receiving treatment with innovative medical devices. To address this issue, the Japanese government has actively accepted foreign clinical trial results and promoted global clinical trials in projects such as HBD. HBD is a project with stakeholders from academia, regulatory authorities, and industry in the US and Japan to promote global clinical trials and reduce device lags. When the project started, medical device clinical trials were not actively conducted in Japan at not just hospitals but also at medical device companies. We started to identify issues under the concept of HBD. After 10 years, we have now become key members in global clinical trials and able to obtain approvals without delay. Recently, HBD has started promoting international convergence. Physicians and regulatory authorities play central roles in compiling guidelines for the clinical evaluation of medical device development, which will be a more active field in the near future. The guidelines compiled will be confirmed with members of academia and regulatory authorities in the United Sates. PMID:27040333

  10. [Implantable medical devices].

    PubMed

    Crickx, B; Arrault, X

    2008-01-01

    Medical devices have been individualized to include a category of implantable medical devices, "designed to be totally implanted in the human body or to replace an epithelial surface or a surface of the eye, through surgery, and remain in place after the intervention" (directive 93/42/CEE and decree of 20 April 206). Each implantable medical device has a common name and a commercial name for precise identification of the model (type/references). The users' service and the implanting physician should be clearly identified. There are a number of rules concerning health traceability to rapidly identify patients exposed to risks in which the implantable medical devices of a particular batch or series were used and to monitor the consequences. The traceability data should be preserved 10 years and the patient's medical file for 20 years. PMID:18442666

  11. Medication errors related to transdermal opioid patches: lessons from a regional incident reporting system

    PubMed Central

    2014-01-01

    Objective A few cases of adverse reactions linked to erroneous use of transdermal opioid patches have been reported in the literature. The aim of this study was to describe and characterize medication errors (MEs) associated with use of transdermal fentanyl and buprenorphine. Methods All events concerning transdermal opioid patches reported between 2004 and 2011 to a regional incident reporting system and assessed as MEs were scrutinized and characterized. MEs were defined as “a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient”. Results In the study 151 MEs were identified. The three most common error types were wrong administration time 67 (44%), wrong dose 34 (23%), and omission of dose 20 (13%). Of all MEs, 118 (78%) occurred in the administration stage of the medication process. Harm was reported in 26 (17%) of the included cases, of which 2 (1%) were regarded as serious harm (nausea/vomiting and respiratory depression). Pain was the most common adverse reaction reported. Conclusions Of the reported MEs related to transdermal fentanyl and buprenorphine, most occurred during administration. Improved routines to ascertain correct and timely administration and educational interventions to reduce MEs for these drugs are warranted. PMID:24912424

  12. Controlled systemic delivery of indomethacin using membrane-moderated, cream formulation-based transdermal devices.

    PubMed

    Rao, P Rama; Chalasani, Kishore B; Chauhan, Abhay S; Jain, Akhlesh K; Diwan, Prakash V; Ram, Meduri Kodanda

    2006-01-01

    The present study was carried out to design a viable and practically effective transdermal systems of indomethacin using cream-based drug reservoirs and suitable rate controlling membranes. As vehicles, a more lipophilic base (F(1)) and a cream formulation containing predominant aqueous phase (F(2)) were chosen to study the influence of vehicle nature and role of permeation enhancers that increases thermodynamic activity and to provide diffusible species of drug to skin. Rate controlling membranes of cellulose acetate (CA) and ethyl cellulose (EC) with polyvinyl pyrollidine and hydroxypropyl methyl cellulose were used to design transdermal devices. In vivo, effective plasma concentrations of indomethacin are maintained up to 24 hr whereas oral formulation showed only up to 8 hr. Although the plasma drug levels between both EC films differ insignificantly, PVP film showed a better pharmacokinetic profile. The pharmacodynamic performance of the transdermal devices exhibited good anti-inflammatory activity over 24 hr compared with orally administered indomethacin. In vivo studies indicate the superiority of CA films over the EC films. Further, enhancement may be achieved with other classic enhancers/enhancement strategies with such devices containing aqueous cream vehicle and the optimum membranes. PMID:16556573

  13. Ex vivo evaluation of a microneedle array device for transdermal application.

    PubMed

    Indermun, Sunaina; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Modi, Girish; van Vuuren, Sandy; Luttge, Regina; Pillay, Viness

    2015-12-30

    A new approach of transdermal drug delivery is the use of microneedles. This promising technique offers the potential to be broadly used for drug administration as it enables the dramatic increase in permeation of medicaments across the stratum corneum. The potential of microneedles has evolved to spawn a plethora of potential transdermal applications. In order to advance the microneedle capabilities and possibly revolutionize advanced drug delivery, this study introduces a novel transdermal electro-modulated hydrogel-microneedle array (EMH-MNA) device composed of a nano-porous, embeddable ceramic microneedle array as well as an optimized EMH for the electro-responsive delivery of indomethacin through the skin. The ex vivo permeation as well as drug release experiments were performed on porcine skin tissue to ascertain the electro-responsive capabilities of the device. In addition, the microbial permeation ability of the microneedles across the viable epidermis in both microneedle-punctured skin as well as hypodermic needle-punctured skin was determined. Ex vivo evaluation of the EMH-MNA device across porcine skin demonstrated that without electro-stimulation, significantly less drug release was obtained (±0.4540mg) as compared to electro-stimulation (±2.93mg). PMID:26453791

  14. Barriers to medical device innovation

    PubMed Central

    Bergsland, Jacob; Elle, Ole Jakob; Fosse, Erik

    2014-01-01

    The US Food and Drug Administration (FDA) has defined a medical device as a health care product that does not achieve it’s purpose by chemical action or by being metabolized. This means that a vast number of products are considered medical devices. Such devices play an essential role in the practice of medicine. The FDA classifies medical devices in three classes, depending on the risk of the device. Since Class I and II devices have relatively simple requirements for getting to the market, this review will focus on “implantable devices”, which, in general, belong to Class III. The European Union and Canada use a slightly different classification system. While early generations of medical devices were introduced without much testing, either technical or clinical, the process of introducing a Class III medical device from concept to clinical practice has become strongly regulated and requires extensive technological and clinical testing. The modern era of implantable medical devices may be considered to have started in the 1920s with development of artificial hips. The implantable pacemaker was another milestone and pacemakers and cardioverters/defibrillators have since saved millions of lives and created commercial giants in the medical device industry. This review will include some examples of cardiovascular devices. Similar considerations apply to the total implantable device market, although clinical and technological applications obviously vary considerably. PMID:24966699

  15. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices

    PubMed Central

    Betancourt, Tania; Brannon-Peppas, Lisa

    2006-01-01

    Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described. PMID:17722281

  16. Implantable medical devices MRI safe.

    PubMed

    Dal Molin, Renzo; Hecker, Bertrand

    2013-01-01

    Pacemakers, ICDs, neurostimulators like deep brain stimulator electrodes, spiral cord stimulators, insulin pumps, cochlear implants, retinal implants, hearing aids, electro cardio gram (ECG) leads, or devices in interventional MRI such as vascular guide wires or catheters are affected by MRI magnetic and electromagnetic fields. Design of MRI Safe medical devices requires computer modeling, bench testing, phantom testing, and animal studies. Implanted medical devices can be MRI unsafe, MRI conditional or MRI safe (see glossary). In the following paragraphs we will investigate how to design implanted medical devices MRI safe. PMID:23739365

  17. Medical devices; device tracking. Final rule.

    PubMed

    2002-02-01

    The Food and Drug Administration (FDA) is amending the medical device tracking regulation. FDA is making substantive changes to revise the scope of the regulation and add certain patient confidentiality requirements, and nonsubstantive changes to remove outdated references and simplify terminology. These revisions are made to conform the regulation to changes made in section 519(e) of the Federal Food, Drug, and Cosmetic Act (the act) by the FDA Modernization Act of 1997 (FDAMA), and to simplify certain requirements. PMID:11838471

  18. Medical device market in China.

    PubMed

    Boyer, Philip; Morshed, Bashir I; Mussivand, Tofy

    2015-06-01

    With China's growing old-age population and economic presence on the international stage, it has become important to evaluate its domestic and foreign market contribution to medical devices. Medical devices are instruments or apparatuses used in the prevention, rehabilitation, treatment, or knowledge generation with respect to disease or other abnormal conditions. This article provides information drawn from recent publications to describe the current state of the Chinese domestic market for medical devices and to define opportunities for foreign investment potential therein. Recent healthcare reforms implemented to meet rising demand due to an aging and migrating population are having a positive effect on market growth-a global market with a projected growth of 15% per year over the next decade. PMID:25735659

  19. Price transparency for medical devices.

    PubMed

    Pauly, Mark V; Burns, Lawton R

    2008-01-01

    Hospital buyers of medical devices contract with manufacturers with market power that sell differentiated products. The medical staff strongly influences hospitals' choice of devices. Sellers have sought to limit disclosure of transaction prices. Policy-makers have proposed legislation mandating disclosure, in the interest of greater transparency. We discuss why a manufacturer might charge different prices to different hospitals, the role that secrecy plays, and the consequences of secrecy versus disclosure. We argue that hospital-physician relationships are key to understanding what manufacturers gain from price discrimination. Price disclosure can catalyze a restructuring of those relationships, which, in turn, can improve hospital bargaining. PMID:18997210

  20. Investing in medical device companies.

    PubMed

    Benson, B; Mutsch, E

    1993-11-01

    For companies seeking investors, money is available, but it is not as easy to obtain as it has been in recent years. Although the medical device industry remains an attractive proposition, several factors have contributed to the downturn in public-offering investment. This article outlines these factors and discusses the types of medical technologies that are likely to attract investment in the immediate future. PMID:10146504

  1. Selegiline Transdermal Patch

    MedlinePlus

    Transdermal selegiline is used to treat depression. Selegiline is in a class of medications called monoamine oxidase (MAO) inhibitors. It works by increasing the amounts of certain natural substances that are needed to maintain ...

  2. Selegiline Transdermal Patch

    MedlinePlus

    ... heat such as heating pads, electric blankets, heat lamps, saunas, hot tubs, and heated water beds. Do ... last took one of these medications. If you stop using transdermal selegiline, your doctor will probably tell ...

  3. [Consideration of Mobile Medical Device Regulation].

    PubMed

    Peng, Liang; Yang, Pengfei; He, Weigang

    2015-07-01

    The regulation of mobile medical devices is one of the hot topics in the industry now. The definition, regulation scope and requirements, potential risks of mobile medical devices were analyzed and discussed based on mobile computing techniques and the FDA guidance of mobile medical applications. The regulation work of mobile medical devices in China needs to adopt the risk-based method. PMID:26665948

  4. Metrological Reliability of Medical Devices

    NASA Astrophysics Data System (ADS)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  5. 75 FR 16351 - Medical Devices; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., and 1050 Medical Devices; Technical Amendment AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; technical amendment. SUMMARY: The Food and Drug Administration (FDA) is amending certain medical.... 360hh- 360ss). The Safe Medical Devices Act of 1990 (SMDA) (Public Law 101- 629), transferred...

  6. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  7. Fentanyl Transdermal Patch

    MedlinePlus

    ... pain, pain after an operation or medical or dental procedure, or pain that can be controlled by medication that is ... transdermal patch.if you are having surgery, including dental surgery, tell the ... to prevent or treat constipation while you are using fentanyl patches.

  8. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine.

    PubMed

    Anirudhan, T S; Nair, Syam S; Nair, Anoop S

    2016-11-01

    A novel efficient transdermal (TD) lidocaine (LD) delivery device based on chitosan (CS) and hyaluronic acid (HA) was successfully developed in the present investigation. CS was grafted with glycidyl methacrylate (GMA) and butyl methacrylate (BMA) to fabricate a versatile material with improved adhesion and mechanical properties. HA was hydrophobically modified by covalently conjugating 3-(dimethylamino)-1-propylamine (DMPA) to encapsulate poorly water soluble LD and was uniformly dispersed in modified CS matrix. The prepared materials were characterized through FTIR, NMR, XRD, SEM, TEM and tensile assay. The dispersion of amine functionalized HA (AHA) on modified CS matrix offered strong matrix - filler interaction, which improved the mechanical properties and drug retention behavior of the device. In vitro skin permeation study of LD was performed with modified Franz diffusion cell using rat skin and exhibited controlled release. The influence of storage time on release profile was investigated and demonstrated that after the initial burst, LD release profile of the device after 30 and 60days storage was identical to that of a device which was not stored. In vivo skin adhesion test and skin irritation assay in human subjects, water vapor permeability and environmental fitness test was performed to judge its application in biomedical field. All results displayed that the fabricated device is a potential candidate for TD LD administration to the systemic circulation. PMID:27516320

  9. Medical device labeling and advertising: an overview.

    PubMed

    Basile, E M; Armentrout, E; Reeves, K N

    1999-01-01

    The Food and Drug Administration (FDA) has the authority under the Federal Food, Drug, and Cosmetic Act (FDCA) to regulate the labeling of all medical devices. This statement, however, is not as simple as it appears. The regulation of medical device labels and labeling, closely linked to the advertisement of medical devices, is a dynamic area, and FDA is struggling to address the new issues that arise daily in this area. This article seeks to: 1) provide the background necessary to understand the current law and FDA's regulation of medical devices; 2) summarize the law and regulations governing medical devices; 3) define "intended use" and explain its importance; and 4) discuss several areas that are of particular interest to FDA, including promotion of uncleared or unapproved devices and uses, Internet promotion, press releases, and comparative claims. PMID:11824451

  10. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    NASA Astrophysics Data System (ADS)

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.

    2011-09-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  11. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement.

    PubMed

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R; Feld, Michael S

    2011-09-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761

  12. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    PubMed Central

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761

  13. Learning from adverse incidents involving medical devices.

    PubMed

    Amoore, John; Ingram, Paula

    While an adverse event involving a medical device is often ascribed to either user error or device failure, the causes are typically multifactorial. A number of incidents involving medical devices are explored using this approach to investigate the various causes of the incident and the protective barriers that minimised or prevented adverse consequences. User factors, including mistakes, omissions and lack of training, conspired with background factors--device controls and device design, storage conditions, hidden device damage and physical layout of equipment when in use--to cause the adverse events. Protective barriers that prevented or minimised the consequences included staff vigilance, operating procedures and alarms. PMID:12715578

  14. 78 FR 15877 - Taxable Medical Devices; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Internal Revenue Service 26 CFR Part 48 RIN 1545-BJ44 Taxable Medical Devices; Correction AGENCY: Internal..., 2012 (77 FR 72924). The final regulations provide guidance on the excise tax imposed on the sale of certain medical devices, enacted by the Health Care and Education Reconciliation Act of 2010...

  15. [Information safety test of digital medical device].

    PubMed

    Liu, Jiong

    2014-07-01

    According to the background of the age of big data, the medical devices are informatized, we analyze the safety and efficiency for the information and data of digital medical devices or medical systems, also discussed some test methods. Lack of a suitable standard system of digital medical devices is a big problem both for domain standard and international standard. GB25000.51 is too ambiguous and free for testing, also not very operational. So this paper suggested some test advices and some prospective method. These test methods are helpful for finding the problem and performing the standards. What's more, these methods are famous in the world and used widely in the 3C region but just start in the medical region, which can promote the development of the medical devices. PMID:25330611

  16. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic...

  17. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic...

  18. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical device data system. 880.6310 Section 880... Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system (MDDS... medical device data; (ii) The electronic storage of medical device data; (iii) The electronic...

  19. [Medical Devices Law for pain therapists].

    PubMed

    Regner, M; Sabatowski, R

    2016-08-01

    Medical Devices Law is a relatively new legal system, which has replaced the Medical Devices Regulations still well-known in Germany. German Medical Devices Law is based on European directives, which are, in turn, incorporated into national law by the Medical Devices Act. The Medical Devices Act is a framework law and covers a number of regulations that address specific topics within Medical Devices Law. In turn, in individual regulations, reference is made to guidelines, recommendations, etc. from other sources that provide detailed technical information on specific topics. Medical Devices Law is a very complex legal system, which needs to be permanently observed due to constant updating and adjustment. In the current article, the design and the structure of the system will be described, but special emphasis will be laid on important problem areas that need to be considered when applying and operating medical products, in this case by pain therapists in particular. PMID:27333770

  20. Privacy Challenges for Wireless Medical Devices

    SciTech Connect

    Lagesse, Brent J

    2010-01-01

    Implantable medical devices are becoming more pervasive as new technologies increase their reliability and safety. Furthermore, these devices are becoming increasingly reliant on wireless communication for interaction with the device. Such technologies have the potential to leak information that could be utilized by an attacker to threaten the lives of patients. Privacy of patient information is essential; however, this information is not the only privacy issue that must be considered. In this paper, we discuss why information privacy is insufficient for protecting patients from some attacks and how information regarding the presence of individual devices can leak vulnerabilities. Furthermore, we examine existing privacy enhancing algorithms and discuss their applicability to implantable medical devices.

  1. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  2. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  3. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  4. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  5. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  6. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  7. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  8. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  9. 21 CFR 892.2040 - Medical image hardcopy device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a...

  10. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  11. Anti-malware software and medical devices.

    PubMed

    2010-10-01

    Just as much as healthcare information systems, medical devices need protection against cybersecurity threats. Anti-malware software can help safeguard the devices in your facility-but it has limitations and even risks. Find out what steps you can take to manage anti-malware applications in your devices. PMID:21306047

  12. Transdermal drug delivery

    PubMed Central

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  13. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  14. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  15. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  16. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  17. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of...

  18. 21 CFR 880.6310 - Medical device data system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical device data system. 880.6310 Section 880...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6310 Medical device data system. (a) Identification. (1) A medical device data system...

  19. [Remote monitoring of active implantable medical device].

    PubMed

    Zhang, Yujing

    2013-09-01

    Active implantable medical device develops rapidly in recent years. The clinical demands and current application are introduced, the technical trends are discussed, and the safety risks are analyzed in this paper. PMID:24409793

  20. Medical devices for the anesthetist: current perspectives.

    PubMed

    Ingrande, Jerry; Lemmens, Hendrikus Jm

    2014-01-01

    Anesthesiologists are unique among most physicians in that they routinely use technology and medical devices to carry out their daily activities. Recently, there have been significant advances in medical technology. These advances have increased the number and utility of medical devices available to the anesthesiologist. There is little doubt that these new tools have improved the practice of anesthesia. Monitoring has become more comprehensive and less invasive, airway management has become easier, and placement of central venous catheters and regional nerve blockade has become faster and safer. This review focuses on key medical devices such as cardiovascular monitors, airway equipment, neuromonitoring tools, ultrasound, and target controlled drug delivery software and hardware. This review demonstrates how advances in these areas have improved the safety and efficacy of anesthesia and facilitate its administration. When applicable, indications and contraindications to the use of these novel devices will be explored as well as the controversies surrounding their use. PMID:24707188

  1. Medical devices for the anesthetist: current perspectives

    PubMed Central

    Ingrande, Jerry; Lemmens, Hendrikus JM

    2014-01-01

    Anesthesiologists are unique among most physicians in that they routinely use technology and medical devices to carry out their daily activities. Recently, there have been significant advances in medical technology. These advances have increased the number and utility of medical devices available to the anesthesiologist. There is little doubt that these new tools have improved the practice of anesthesia. Monitoring has become more comprehensive and less invasive, airway management has become easier, and placement of central venous catheters and regional nerve blockade has become faster and safer. This review focuses on key medical devices such as cardiovascular monitors, airway equipment, neuromonitoring tools, ultrasound, and target controlled drug delivery software and hardware. This review demonstrates how advances in these areas have improved the safety and efficacy of anesthesia and facilitate its administration. When applicable, indications and contraindications to the use of these novel devices will be explored as well as the controversies surrounding their use. PMID:24707188

  2. Using Zigbee to integrate medical devices.

    PubMed

    Frehill, Paul; Chambers, Desmond; Rotariu, Cosmin

    2007-01-01

    Wirelessly enabling Medical Devices such as Vital Signs Monitors, Ventilators and Infusion Pumps allows central data collection. This paper discusses how data from these types of devices can be integrated into hospital systems using wireless sensor networking technology. By integrating devices you are protecting investment and opening up the possibility of networking with similar devices. In this context we present how Zigbee meets our requirements for bandwidth, power, security and mobility. We have examined the data throughputs for various medical devices, the requirement of data frequency, security of patient data and the logistics of moving patients while connected to devices. The paper describes a new tested architecture that allows this data to be seamlessly integrated into a User Interface or Healthcare Information System (HIS). The design supports the dynamic addition of new medical devices to the system that were previously unsupported by the system. To achieve this, the hardware design is kept generic and the software interface for different types of medical devices is well defined. These devices can also share the wireless resources with other types of sensors being developed in conjunction on this project such as wireless ECG (Electrocardiogram) and Pulse-Oximetry sensors. PMID:18003568

  3. 78 FR 68853 - International Medical Device Regulators Forum; Medical Device Single Audit Program International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration International Medical Device Regulators Forum; Medical... Medical Device Regulators Forum (IMDRF) was conceived in 2011 as a forum to discuss future directions...

  4. Handheld Diagnostic Device Delivers Quick Medical Readings

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To monitor astronauts' health remotely, Glenn Research Center awarded SBIR funding to Cambridge, Massachusetts-based DNA Medical Institute, which developed a device capable of analyzing blood cell counts and a variety of medical biomarkers. The technology will prove especially useful in rural areas without easy access to labs.

  5. Use of mobile devices for medical imaging.

    PubMed

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. PMID:25467905

  6. 78 FR 18233 - Medical Devices; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    .../ MedicalDevices/ pma/. DeviceRegulationa ndGuidance/ HowtoMarketYourDe vice/ PremarketSubmissi ons/ PremarketApproval PMA/default.htm. 822.7 http://www.fda.gov/ http://www.fda.gov/ cdrh/ombudsman/...

  7. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  8. [Perspectives on the supervision of medical device software].

    PubMed

    Li, Jun; Yang, Guozhong

    2011-05-01

    Medical device software is a special kind of medical device, which is different from hardware and may introduce more risk. How to reduce the risk of software efficiently is the important thing for medical device regulation system. This article analyzes medical device software's properties, introduces the status of foreign supervision, and finally gives some advises to the related parties. PMID:21954581

  9. 77 FR 19293 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... the Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee. Submit... INFORMATION: Name of Committee: Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory... with or considering hip replacement (...

  10. 21 CFR 801.6 - Medical devices; misleading statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; misleading statements. 801.6... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.6 Medical devices; misleading statements. Among representations in the labeling of a device which render such device misbranded is a...

  11. 21 CFR 801.6 - Medical devices; misleading statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; misleading statements. 801.6... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.6 Medical devices; misleading statements. Among representations in the labeling of a device which render such device misbranded is a...

  12. 21 CFR 801.6 - Medical devices; misleading statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; misleading statements. 801.6... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.6 Medical devices; misleading statements. Among representations in the labeling of a device which render such device misbranded is a...

  13. 21 CFR 801.6 - Medical devices; misleading statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; misleading statements. 801.6... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.6 Medical devices; misleading statements. Among representations in the labeling of a device which render such device misbranded is a...

  14. 77 FR 6028 - Taxable Medical Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ...This document contains proposed regulations that provide guidance on the excise tax imposed on the sale of certain medical devices under section 4191 of the Internal Revenue Code, enacted by the Health Care and Education Reconciliation Act of 2010 in conjunction with the Patient Protection and Affordable Care Act. The proposed regulations affect manufacturers, importers, and producers of......

  15. Electron beam sterilisation of heterogeneous medical devices

    NASA Astrophysics Data System (ADS)

    Sadat, T.; Morisseau, MrD.; Ross, MissA.

    1993-07-01

    Electron beam radiation is used in the sterilisation of medical disposable devices. High energy, 10 MeV, electron beam linear accelerators are in use worldwide for this purpose. The dose distribution achieved in the products treated influences the efficiency of treatment. This paper looks at the dose distribution achieved with such machines and the methods used to define it in heterogeneous products.

  16. The grays of medical device color additives.

    PubMed

    Seidman, Brenda

    2014-01-01

    The United States' medical device color additive regulations are unknown to some, and confusing to many. This article reviews statutory language on color additives in the Federal Food, Drug, and Cosmetic Act (FFDCA), as amended, including the Delaney Clause on carcinogenicity; color additive regulatory language as it relates to medical devices in Title 21 of the Code of Federal Regulations (C.F.R.), Parts 70-82; reports on the Food and Drug Administration's (FDA's) likely current and historical practices in dealing with color additives in medical devices; and speculates on what may have given rise to decades of seemingly ad hoc color additives practices, which may now be difficult to reconstruct and satisfactorily modify. Also addressed is the Center for Devices and Radiological Health's (CDRH's) recent publicly-vetted approach to color additives in Section 7 of its April 2013 draft guidance, Use of International Standard ISO-10993, "Biological Evaluation of Medical Devices Part 1: Evaluation and Testing," which the author concludes is a change in the right direction, but which, at least in its current draft form, is not a fix to the CDRH's color additives dilemma. Lastly, the article suggests what the CDRH might consider in further developing a new approach to color additives. Such an approach would treat color additives as if they were any other potentially toxic group of chemicals, and could be fashioned in such a way that the CDRH could still satisfy the broad aspects of Congressional color additives mandates, and.yet be consistent with ISO 10993. In doing this, the CDRH would need to recommend a more directed use of its Quality System Regulation, 21 C.F.R. Part 820, for material and vendor qualification and validation in general; approach Congress for needed statutory changes; or make administrative changes. In order for any approach to be successful, whether it is a new twist on past practices, or an entirely new path forward, the FDA must, to the best of its

  17. Adhesive bonding of medical and implantable devices.

    PubMed

    Tavakoli, S M

    2002-09-01

    Although there are many commercially available medical-grade adhesives, their use for new applications requires detailed investigation. It is also important that as well as the initial joint strength, durability of the bonded components during intended use, including exposure to low and high temperatures, stress, fluids and sterilisation, are investigated. Design of accelerated ageing tests, which can simulate the service environments, is critical in providing realistic durability data. Interpretation of ageing data and lifetime prediction of the joint is essential in assessing the performance of medical devices. Emergence of new types of adhesives as well as further development of precision dispensing and rapid-curing technologies offer many exciting and commercially attractive opportunities for joining medical devices. PMID:12397833

  18. Bluetooth Communication for Battery Powered Medical Devices

    NASA Astrophysics Data System (ADS)

    Babušiak, Branko; Borik, Štefan

    2016-01-01

    wireless communication eliminates obtrusive cables associated with wearable sensors and considerably increases patient comfort during measurement and collection of medical data. Wireless communication is very popular in recent years and plays a significant role in telemedicine and homecare applications. Bluetooth technology is one of the most commonly used wireless communication types in medicine. This paper describes the design of a universal wireless communication device with excellent price/performance ratio. The said device is based on the low-cost RN4020 Bluetooth module with Microchip Low-energy Data Profile (MLDP) and due to low-power consumption is especially suitable for the transmission of biological signals (ECG, EMG, PPG, etc.) from wearable medical/personal health devices. A unique USB dongle adaptor was developed for wireless communication via UART interface and power consumption was evaluated under various conditions.

  19. Medical devices; classification for medical washer and medical washer-disinfector. Final rule.

    PubMed

    2002-11-15

    The Food and Drug Administration (FDA) is classifying the medical washer and medical washer-disinfector intended for general medical purposes to clean and dry surgical instruments, decontaminate or disinfect anesthesia equipment, hollowware, and other medical devices into class II (special controls). FDA is also identifying the guidance document entitled "Class II Special Controls Guidance Document: Medical Washers and Medical Washer-Disinfectors" (the guidance) as the special control that, in addition to general controls, the agency believes will reasonably ensure the safety and effectiveness of the device. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997 (the FDAMA). PMID:12437015

  20. Data sources: use in the epidemiologic study of medical devices.

    PubMed

    Torrence, Mary E

    2002-05-01

    Medical device epidemiology is the study of the prevalence and incidence of use, effectiveness, and adverse events associated with medical devices in a population. The identification of large data sources with medical device data provides a large population for epidemiologic studies. Two challenges in medical device epidemiology are the ability to find data on the specific device and the exposure of a patient to that device. This paper identifies data sources both from the govenment and from the private sector that can be used for epidemiologic studies of medical devices and, to a limited degree, studies of medical devices in women. Each source provides data for different types of devices and in differing specificity. The paper also discusses briefly the strengths and weaknesses of each data source. More data sources are needed to enhance the study of medical device epidemiology. Additional efforts and focus are needed to enhance the ability to study medical devices in women. PMID:12071476

  1. Power Approaches for Implantable Medical Devices

    PubMed Central

    Ben Amar, Achraf; Kouki, Ammar B.; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  2. Power Approaches for Implantable Medical Devices.

    PubMed

    Ben Amar, Achraf; Kouki, Ammar B; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  3. Medical device data systems and FDA regulation. Should medical device data systems require FDA clearance?

    PubMed

    Kelley, Peter

    2010-01-01

    It is widely understood why medical devices need to be regulated by the FDA and other governing bodies. However medical software does not typically require the same level of regulation. Currently the FDA is investigating whether one type of medical software, Medical Device Data Systems (MDDS), should require FDA clearance because of the potential risk they impose when interconnected with medical devices. Hospitals are looking to implement MDDS because the technology allows nursing staff to spend more time on direct patient care and reduces charting errors. This article will explore the FDA's proposal and will review the possible risks and provide a rationale for why MDDS should be regulated by the FDA and why MDDS vendors should have the right level of quality and risk management procedures in place to ensure that they are developing and bringing to market the safest products possible. PMID:20677470

  4. [The Requirements of Medical Device Market Access in India].

    PubMed

    Qin, Shaoyan; Cui, Tao; Yin, Haisong

    2016-01-01

    This paper introduces the premarket registration procedures and the post market regulatory requirements in India. According to Indian medical device act and related medical regulations on medical device, this is a preliminary discussion on the registration management system to provide referance for foreign medical device to enter India market. PMID:27197502

  5. 21 CFR 801.127 - Medical devices; expiration of exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; expiration of exemptions. 801.127... (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.127 Medical devices; expiration of exemptions. (a) If a shipment or delivery, or any part thereof, of a device which is...

  6. 21 CFR 801.127 - Medical devices; expiration of exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; expiration of exemptions. 801.127... (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.127 Medical devices; expiration of exemptions. (a) If a shipment or delivery, or any part thereof, of a device which is...

  7. 21 CFR 801.127 - Medical devices; expiration of exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; expiration of exemptions. 801.127... (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.127 Medical devices; expiration of exemptions. (a) If a shipment or delivery, or any part thereof, of a device which is...

  8. 21 CFR 801.127 - Medical devices; expiration of exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; expiration of exemptions. 801.127... (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.127 Medical devices; expiration of exemptions. (a) If a shipment or delivery, or any part thereof, of a device which is...

  9. 21 CFR 801.127 - Medical devices; expiration of exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; expiration of exemptions. 801.127... (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.127 Medical devices; expiration of exemptions. (a) If a shipment or delivery, or any part thereof, of a device which is...

  10. Open-source hardware for medical devices

    PubMed Central

    2016-01-01

    Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device. PMID:27158528

  11. 76 FR 12973 - Neurological Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory... Medical Devices Advisory Committee. This meeting was announced in the Federal Register of February 7, 2011... meeting of the Neurological Devices Panel of the Medical Devices Advisory Committee would be held on...

  12. 78 FR 14013 - Medical Devices; Exemption From Premarket Notification; Class II Devices; Wheelchair Elevator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    .../MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm080198.htm or by sending an email request... HUMAN SERVICES Food and Drug Administration 21 CFR Part 890 Medical Devices; Exemption From Premarket... Part 890 Medical devices, Physical medicine devices. Therefore, under the Federal Food, Drug,...

  13. Characterization of Therapeutic Coatings on Medical Devices

    NASA Astrophysics Data System (ADS)

    Wormuth, Klaus

    Therapeutic coatings on medical devices such as catheters, guide wires, and stents improve biocompatibility by favorably altering the chemical nature of the device/tissue or device/blood interface. Such coatings often minimize tissue damage (reduce friction), decrease chances for blood clot formation (prevent platelet adsorption), and improve the healing response (deliver drugs). Confocal Raman microscopy provides valuable information about biomedical coatings by, for example, facilitating the measurement of the thickness and swelling of frictionreducing hydrogel coatings on catheters and by determining the distribution of drug within a polymer-based drug-eluting coatings on stents. This chapter explores the application of Raman microscopy to the imaging of thin coatings of cross-linked poly(vinyl pyrrolidone) gels, parylene films, mixtures of dexamethasone with various polymethacrylates, and mixtures of rapamycin with hydrolysable (biodegradable) poly(lactide-co-glycolide) polymers. Raman microscopy measures the thickness and swelling of coatings, reveals the degree of mixing of drug and polymer, senses the hydrolysis of biodegradable polymers, and determines the polymorphic forms of drug present within thin therapeutic coatings on medical devices.

  14. 76 FR 12743 - Medical Device Reporting; Malfunction Reporting Frequency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Medical Device Reporting; Malfunction Reporting Frequency... continue to submit malfunction reports in full compliance with FDA's Medical Device Reporting...

  15. Transdermal selegiline.

    PubMed

    Patkar, Ashwin A; Pae, Chi-Un; Zarzar, Michael

    2007-06-01

    Although older monoamine oxidase inhibitors (MAOIs) are effective in the treatment of depressive disorders, they are underutilized in clinical practice due to main concerns about interaction with tyramine-containing food, and side effects. Efforts to address these safety issues led to the development of a transdermal formulation of selegiline, called selegiline transdermal system (STS). STS has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of major depression. Transdermal administration of selegiline bypasses gastrointestinal absorption and first-pass metabolism. Therefore, STS permits inhibition of monoamine oxidase (MAO)-A and MAO-B enzymes in the brain while preserving the activity of MAO-A in the gastrointestinal system, thereby minimizing the risk of possible interactions with tyramine-rich foods. Tyramine challenge tests have confirmed that dietary modifications are not required with the 6 mg STS. The FDA has required dietary modifications with the 9 mg and 12 mg STS. Compared to oral administration, transdermal selegiline leads to sustained (minimal peak-trough fluctuations) plasma concentrations of the parent compound, increasing the amount of drug delivered to the brain. The efficacy of STS has been established in several short-term and one long-term randomized controlled trials. In clinical trials, application site reactions and insomnia were observed more frequently with STS than placebo. Rates of orthostatic hypotension, sexual dysfunction and weight gain were comparable between STS and placebo. STS is a new generation of MAOI with superior safety profile to older MAOIs. It increases the pharmacological options available to treat depressive disorders and may benefit patients with major depression with atypical features and resistant depression. It is important for health-care professionals to be informed about the properties of STS. PMID:17612708

  16. 21 CFR 801.6 - Medical devices; misleading statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; misleading statements. 801.6 Section 801.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.6 Medical devices;...

  17. 77 FR 68788 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory... of Committee: Neurological Devices Panel of the Medical Devices Advisory Committee. General Function... intervention for patients who have failed maximal medical management. Of note, the CoAxia NeuroFlo Catheter...

  18. 77 FR 18829 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... HUMAN SERVICES Food and Drug Administration Gastroenterology and Urology Devices Panel of the Medical... Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide... related to medical devices intended for obese patients. The committee will provide...

  19. Hacking medical devices a review - biomed 2013.

    PubMed

    Frenger, Paul

    2013-01-01

    Programmable, implantable and external biomedical devices (such as pacemakers, defibrillators, insulin pumps, pain management pumps, vagus nerve stimulators and others) may be vulnerable to unauthorized access, commonly referred to as “hacking”. This intrusion may lead to compromise of confidential patient data or loss of control of the device itself, which may be deadly. Risks to health from unauthorized access is in addition to hazards from faulty (“buggy”) software or circuitry. Historically, this aspect of medical device design has been underemphasized by both manufacturers and regulatory bodies until recently. However, an insulin pump was employed as a murder weapon in 2001 and successful hacking of an implantable defibrillator was demonstrated in 2008. To remedy these problems, professional groups have announced a variety of design standards and the governmental agencies of several countries have enacted device regulations. In turn, manufacturers have developed new software products and hardware circuits to assist biomedical engineering firms to improve their commercial offerings. In this paper the author discusses these issues, reviewing known problems and zero-day threats, with potential solutions. He outlines his approach to secure software and hardware challenges using the Forth language. A plausible scenario is described in which hacking of an implantable defibrillator by terrorists results in a severe national security threat to the United States. PMID:23686179

  20. Integrated Microbatteries for Implantable Medical Devices

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William

    2008-01-01

    Integrated microbatteries have been proposed to satisfy an anticipated need for long-life, low-rate primary batteries, having volumes less than 1 mm3, to power electronic circuitry in implantable medical devices. In one contemplated application, such a battery would be incorporated into a tubular hearing-aid device to be installed against an eardrum. This device is based on existing tube structures that have already been approved by the FDA for use in human ears. As shown in the figure, the battery would comprise a single cell at one end of the implantable tube. A small volume of Li-based primary battery cathode material would be compacted and inserted in the tube near one end, followed by a thin porous separator, followed by a pressed powder of a Li-containing alloy. Current-collecting wires would be inserted, with suitably positioned insulators to prevent a short circuit. The battery would contain a liquid electrolyte consisting of a Li-based salt in an appropriate solvent. Hermetic seals would be created by plugging both ends with a waterproof polymer followed by deposition of parylene.

  1. Regulatory science based approach in development of novel medical devices.

    PubMed

    Sakuma, Ichiro

    2015-08-01

    For development rational evaluation method for medical devices' safety and efficacy, regulatory science studies are important. Studies on regulatory affairs related to a medical device under development should be conducted as well as its technological development. Clinical performance of a medical device is influenced by performance of the device, medical doctors' skill, pathological condition of a patient, and so on. Thus it is sometimes difficult to demonstrate superiority of the device in terms of clinical outcome although its efficacy as a medical device is accepted. Setting of appropriate end points is required to evaluate a medical device appropriately. Risk assessment and risk management are the basis of medical device safety assurance. In case of medical device software, there are difficulties in identifying the risk due to its complexity of user environment and different design and manufacturing procedure compared with conventional hardware based medical devices. Recent technological advancement such as information and communication technologies (ICT) for medical devices and wireless network has raised new issue on risk management: cybersecurity. We have to watch closely the progress of safety standard development. PMID:26736611

  2. 76 FR 21237 - Medical Devices; Obstetrical and Gynecological Devices; Classification of the Hemorrhoid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 884 Medical Devices; Obstetrical and... these specific medical devices under 21 U.S.C. 360k, even though product sponsors may have flexibility...., August 17, 2009. List of Subjects in 21 CFR Part 884 Medical devices. Therefore, under the Federal...

  3. Production of Medical Device Using MIM Technique

    NASA Astrophysics Data System (ADS)

    Omar, M. A.; Mustapha, M.; Ali, E. A. G. E.; Subuki, I.; Meh, B.

    2010-03-01

    Metal Injection moulding (MIM) is an advanced near net shape forming process. This paper presents the attempt to manufacture medical devices particularly fracture fixation plates for orthopedic applications for commercial purposes by MIM process. The stainless steel powder with the median particle size of 15 μm and a binder consisting of polyethylene, paraffin wax and stearic acid were mixed at 160° C using a sigma-blade mixer for one hour to prepare the feedstock of the fracture fixation plates. The fracture fixation plate component was injection molded using vertical injection moulding machine with the nozzle temperature of 200° C. Prior to sintering, the specimens were debound using a combination of solvent extraction and thermal pyrolysis method. The specimens were then sintered under vacuum. The properties of the fracture fixation plates such as physical and mechanical properties were presented and discussed. The in-vitro biocompatibility study on the fracture plates produced was examined.

  4. 76 FR 7220 - Medical Device Innovation Initiative; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... HUMAN SERVICES Food and Drug Administration Medical Device Innovation Initiative; Request for Comments... Innovation Initiative'' (the report). The report proposes potential actions for FDA's Center for Devices and... global leader in medical device innovation and CDRH is committed to assuring that American patients...

  5. 76 FR 14414 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: Microbiology Devices Panel of the Medical Devices Advisory...

  6. 75 FR 72832 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Neurological Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  7. 77 FR 42503 - Ophthalmic Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... HUMAN SERVICES Food and Drug Administration Ophthalmic Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Ophthalmic Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  8. 78 FR 77688 - Ophthalmic Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... HUMAN SERVICES Food and Drug Administration Ophthalmic Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Ophthalmic Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  9. 75 FR 35495 - Ophthalmic Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... HUMAN SERVICES Food and Drug Administration Ophthalmic Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Ophthalmic Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  10. 76 FR 6625 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory... Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations to... Embolization Device (PED), sponsored by Chestnut Medical. The PED is indicated for the endovascular...

  11. 77 FR 73034 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Neurological Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  12. 76 FR 71983 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide... HUMAN SERVICES Food and Drug Administration Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION:...

  13. 75 FR 44273 - Radiological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... HUMAN SERVICES Food and Drug Administration Radiological Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Radiological Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  14. 78 FR 13350 - Ophthalmic Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... HUMAN SERVICES Food and Drug Administration Ophthalmic Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Ophthalmic Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  15. An update on mobile phones interference with medical devices.

    PubMed

    Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid

    2013-10-01

    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems. PMID:23559585

  16. 76 FR 67463 - Pediatric Medical Devices; Public Workshop; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... medical devices and pediatric device approvals or clearance; the scientific and regulatory limitations and... to support pediatric effectiveness claims for medical devices and pediatric device approvals or... HUMAN SERVICES Food and Drug Administration Pediatric Medical Devices; Public Workshop; Request...

  17. 75 FR 69447 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... Collection; Comment Request; Medical Devices; Device Tracking AGENCY: Food and Drug Administration, HHS... device information is collected to facilitate identifying the current location of medical devices and... solicits comments on information collection requirements for the tracking of medical devices. DATES:...

  18. Medical devices: classification of the dental sonography device and jaw tracking device. Final rule.

    PubMed

    2003-12-01

    The Food and Drug Administration (FDA) is classifying the dental sonography device into class I, when it is used to monitor temporomandibular joint sounds, and into class II, when it is used to interpret temporomandibular joint sounds for the diagnosis of temporomandibular joint disorders and associated orofacial pain. FDA is classifying the jaw tracking device into class I, when it is used to monitor mandibular jaw positions relative to the maxilla, and into class II, when it is used to interpret mandibular jaw positions relative to the maxilla, for the diagnosis of temporomandibular joint disorders and associated orofacial pain. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document that will serve as the special control for this device. FDA is taking this action under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (the SMDA), the Food and Drug Administration Modernization Act of 1997 (FDAMA) and the Medical Device User Fee and Modernization Act of 2002 (MDUFMA). PMID:14651050

  19. Metrology and Standards Needs for Some Categories of Medical Devices

    PubMed Central

    Chiao, J. C.; Goldman, Julian M.; Heck, David A.; Kazanzides, Peter; Peine, William J.; Stiehl, James B.; Yen, Dwight; Dagalakis, Nicholas G.

    2008-01-01

    With rapid advances in meso-, micro- and nano-scale technology devices and electronics, a new generation of advanced medical devices is emerging, which promises medical treatment that is less invasive and more accurate, automated, and effective. We examined the technological and economic status of five categories of medical devices. A set of metrology needs is identified for each of these categories and suggestions are made to address them. PMID:27096115

  20. Metrology and Standards Needs for Some Categories of Medical Devices.

    PubMed

    Chiao, J C; Goldman, Julian M; Heck, David A; Kazanzides, Peter; Peine, William J; Stiehl, James B; Yen, Dwight; Dagalakis, Nicholas G

    2008-01-01

    With rapid advances in meso-, micro- and nano-scale technology devices and electronics, a new generation of advanced medical devices is emerging, which promises medical treatment that is less invasive and more accurate, automated, and effective. We examined the technological and economic status of five categories of medical devices. A set of metrology needs is identified for each of these categories and suggestions are made to address them. PMID:27096115

  1. MEDEMAS -Medical Device Management and Maintenance System Architecture

    NASA Astrophysics Data System (ADS)

    Dogan, Ülkü Balcı; Dogan, Mehmet Ugur; Ülgen, Yekta; Özkan, Mehmed

    In the proposed study, a medical device maintenance management system (MEDEMAS) is designed and implemented which provides a data pool of medical devices, the maintenance protocols and other required information for these devices. The system also contains complete repair and maintenance history of a specific device. MEDEMAS creates optimal maintenance schedule for devices and enables the service technician to carry out and report maintenance/repair processes via remote access. Thus predicted future failures are possible to prevent or minimize. Maintenance and repair is essential for patient safety and proper functioning of the medical devices, as it prevents performance decrease of the devices, deterioration of the equipment, and detrimental effects on the health of a patient, the user or other interacting people. The study aims to make the maintenance process more accurate, more efficient, faster and easier to manage and organize; and much less confusing. The accumulated history of medical devices and maintenance personnel helps efficient facility planning.

  2. Home Healthcare Medical Devices: A Checklist

    MedlinePlus

    ... your device and follow them for: - cleaning - replacing batteries, filters - protecting your device (e.g. keep food ... after-hour phone numbers. * If appropriate, keep extra batteries for your device. - Know how to replace them. ...

  3. Regulatory approval of new medical devices: cross sectional study

    PubMed Central

    Payne, Christopher J; Hughes-Hallett, Archie; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar

    2016-01-01

    Objective To investigate the regulatory approval of new medical devices. Design Cross sectional study of new medical devices reported in the biomedical literature. Data sources PubMed was searched between 1 January 2000 and 31 December 2004 to identify clinical studies of new medical devices. The search was carried out during this period to allow time for regulatory approval. Eligibility criteria for study selection Articles were included if they reported a clinical study of a new medical device and there was no evidence of a previous clinical study in the literature. We defined a medical device according to the US Food and Drug Administration as an “instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article.” Main outcome measures Type of device, target specialty, and involvement of academia or of industry for each clinical study. The FDA medical databases were then searched for clearance or approval relevant to the device. Results 5574 titles and abstracts were screened, 493 full text articles assessed for eligibility, and 218 clinical studies of new medical devices included. In all, 99/218 (45%) of the devices described in clinical studies ultimately received regulatory clearance or approval. These included 510(k) clearance for devices determined to be “substantially equivalent” to another legally marketed device (78/99; 79%), premarket approval for high risk devices (17/99; 17%), and others (4/99; 4%). Of these, 43 devices (43/99; 43%) were actually cleared or approved before a clinical study was published. Conclusions We identified a multitude of new medical devices in clinical studies, almost half of which received regulatory clearance or approval. The 510(k) pathway was most commonly used, and clearance often preceded the first published clinical study. PMID:27207165

  4. 78 FR 60291 - Investigational Device Exemptions for Early Feasibility Medical Device Clinical Studies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...The Food and Drug Administration (FDA) is announcing the availability of the guidance entitled ``Investigational Device Exemptions (IDEs) for Early Feasibility Medical Device Clinical Studies, Including Certain First in Human (FIH) Studies.'' Through the approaches announced in this guidance, FDA intends to facilitate early feasibility studies of medical devices, using appropriate risk......

  5. 75 FR 55803 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Neurological Devices Panel of the Medical... a disability, please contact AnnMarie Williams, Conference Management Staff, at 301-796-5966...

  6. The regulation of cognitive enhancement devices: extending the medical model

    PubMed Central

    Maslen, Hannah; Douglas, Thomas; Cohen Kadosh, Roi; Levy, Neil; Savulescu, Julian

    2014-01-01

    This article presents a model for regulating cognitive enhancement devices (CEDs). Recently, it has become very easy for individuals to purchase devices which directly modulate brain function. For example, transcranial direct current stimulators are increasingly being produced and marketed online as devices for cognitive enhancement. Despite posing risks in a similar way to medical devices, devices that do not make any therapeutic claims do not have to meet anything more than basic product safety standards. We present the case for extending existing medical device legislation to cover CEDs. Medical devices and CEDs operate by the same or similar mechanisms and pose the same or similar risks. This fact coupled with the arbitrariness of the line between treatment and enhancement count in favour of regulating these devices in the same way. In arguing for this regulatory model, the paper highlights potential challenges to its implementation, and suggests solutions. PMID:25243073

  7. Managing the medical device directive. A practical case study.

    PubMed

    Nielsen, M

    1995-11-01

    Through a case study of a fictional company, this article provides a guide on how to implement CE-marking procedures, as detailed in the Medical Device Directive. The overlap in transitional periods between the Medical Device and Electromagnetic Compatibility Directives is discussed, together with issues such as selection of conformity assessment routes. PMID:10158130

  8. Towards sustainable design for single-use medical devices.

    PubMed

    Hanson, Jacob J; Hitchcock, Robert W

    2009-01-01

    Despite their sophistication and value, single-use medical devices have become commodity items in the developed world. Cheap raw materials along with large scale manufacturing and distribution processes have combined to make many medical devices more expensive to resterilize, package and restock than to simply discard. This practice is not sustainable or scalable on a global basis. As the petrochemicals that provide raw materials become more expensive and the global reach of these devices continues into rapidly developing economies, there is a need for device designs that take into account the total life-cycle of these products, minimize the amount of non-renewable materials consumed and consider alternative hybrid reusable / disposable approaches. In this paper, we describe a methodology to perform life cycle and functional analyses to create additional design requirements for medical devices. These types of sustainable approaches can move the medical device industry even closer to the "triple bottom line"--people, planet, profit. PMID:19964137

  9. Medical Device Integration Model Based on the Internet of Things

    PubMed Central

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  10. Medical Device Integration Model Based on the Internet of Things.

    PubMed

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  11. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1. PMID:21142522

  12. 76 FR 36993 - Medical Devices; Neurological Devices; Clarification of Classification for Human Dura Mater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... CFR Part 882 Medical devices, Neurological devices. Therefore, under the Federal Food, Drug, and... Devices; Neurological Devices; Clarification of Classification for Human Dura Mater; Technical Amendment...). In the Federal Register of November 24, 2004 (69 FR 68612), FDA published a final rule...

  13. 78 FR 77689 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide... Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice... published a proposed rule (44 FR 50520) for classification of iontophoresis devices for specialized...

  14. Transdermal patches: history, development and pharmacology

    PubMed Central

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-01-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046

  15. Medical Devices in the Treatment of Obesity.

    PubMed

    Chang, Julietta; Brethauer, Stacy

    2016-09-01

    Obesity continues to be a growing epidemic worldwide. Although bariatric surgery remains the most effective and durable treatment of obesity and its comorbidities, there is a need for less invasive yet efficacious weight loss therapies. Currently the Food and Drug Administration has approved two endoscopically placed intragastric balloon devices and a surgically placed vagal blockade device. Another device that holds promise, particularly for the treatment of type 2 diabetes, is the endoscopically placed duodenojejunal bypass sleeve. This article reviews the indications and current data regarding results for these devices. PMID:27519137

  16. Microbial colonization of medical devices and novel preventive strategies.

    PubMed

    Shunmugaperumal, Tamilvanan

    2010-06-01

    Upon implantation or insertion into patient's body for exerting the intended purpose like salvage of normal functions of vital organs, the medical devices are unfortunately becoming the sites of competition between host cell integration and microbial adhesion. Moreover, since there is an increased use of implanted medical devices, the incidence of biofilm-and medical devices-related nosocomial infections is also increasing progressively. To control microbial colonization and subsequent biofilm formation of the medical devices, different approaches either to enhance the efficiency of certain antimicrobial agents or to disrupt the basic physiology of the pathogenic microorganisms including novel small molecules and antipathogenic drugs are being explored. In addition, the various lipid-and polymer-based drug delivery carriers are also investigated for applying antibiofilm coating of the medical devices especially over catheters. The main intention of this review is therefore to summarize the major and/breakthrough inventions disclosed in patent literature as well as in research papers related to microbial colonization of medical devices and novel preventive strategies. This review starts with an overview of the preventive strategies followed by a short description about the potential of different lipidic-and polymeric-drug delivery carriers in eradicating the biofilm-associated infections from the medical devices. PMID:20236065

  17. [Data transparency regarding medical devices - the position of the medical device industry].

    PubMed

    Soskuty, Gabriela

    2011-01-01

    The medical device industry, strongly dominated by medium-sized firms, has significant growth potential and a high number of job opportunities with 170,000 employees in more than 11,000 companies. Approximately one third of the business volume is achieved with innovative products that are less than three years old. The safety, quality and efficiency of the products is tested and approved by CE certification. Due to the heterogeneous field of devices, however, evidence requirements must be differentiated according to the type of device in question. Transparency is as important as the type of evidence, and industry is well aware of the significance of transparency for credibility in the market. Industry believes that all the stakeholders affected must collaborate to define the evidence requirements and decide which data are necessary to assess the benefits of a technology. Before a consistent level of transparency can be achieved, however, it is crucial to jointly develop a framework of requirements including invasiveness, risk potential, patient-relevant endpoints and intended use of the technology, as well as the data source. Transparency is a process that can only be achieved if all stakeholders cooperate successfully. Also, it is important to keep in mind that the development of study designs and reliable evidence needs time. In the interest of all patients it is essential to maintain an innovation-friendly climate in Germany. PMID:21530908

  18. A concept ideation framework for medical device design.

    PubMed

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar

    2015-06-01

    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. PMID:25956618

  19. NEED FOR HARMONIZATION OF LABELING OF MEDICAL DEVICES: A REVIEW

    PubMed Central

    Songara, Raiendra K.; Sharma, Ganesh N.; Gupta, Vipul K.; Gupta, Promila

    2010-01-01

    Medical device labeling is any information associated with a device targeted to the patient or lay caregiver. It is intended to help assure that the device is used safely and effectively. Medical device labeling is supplied in many formats, for example, as patient brochures, patient leaflets, user manuals, and videotapes. The European commission has discussed a series of agreements with third countries, Australia, New Zealand, USA, Canada, Japan and Eastern European countries wishing to join the EU, concerning the mutual acceptance of inspection bodies, proof of conformity in connection with medical devices. Device labeling is exceedingly difficult for manufacturers for many reasons like regulations from government bodies to ensure compliance, increased competent authority surveillance, increased audits and language requirements. PMID:22247840

  20. Medical devices; laser fluorescence caries detection device. Food and Drug Administration, HHS. Final rule.

    PubMed

    2000-04-01

    The Food and Drug Administration (FDA) is classifying the laser fluorescence caries detection device into class II (special controls). The special controls that will apply to this device are set forth below. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:11010622

  1. Standalone medical device software: The evolving regulatory framework.

    PubMed

    McCarthy, Avril D; Lawford, Patricia V

    2014-01-01

    The paper provides an introduction to the regulatory landscape affecting a particular category of medical technology, namely standalone software-sometimes referred to as 'software as a medical device'. To aid the reader's comprehension of an often complex area, six case studies are outlined and discussed before the paper continues to provide detail of how software with a medical purpose in its own right can potentially be classified as a medical device. The reader is provided an appreciation of how to go about classifying such software and references to support the developer new to the field in locating detailed regulatory support documents and contact points for advice. PMID:26415828

  2. 77 FR 72924 - Taxable Medical Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... rulemaking (REG-113770-10) (the proposed regulations) in the Federal Register (77 FR 6028). The IRS and the... ``Intended for Humans'' A number of commenters suggested that certain devices, such as sterilization...

  3. Medical devices; gastroenterology-urology devices; nonimplanted, peripheral electrical continence device. Food and Drug Administration, HHS. Final rule.

    PubMed

    2000-04-01

    The Food and Drug Administration (FDA) is classifying the nonimplanted, peripheral electrical continence device into class II (special controls). The special controls that will apply to this device are set forth below. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:11010624

  4. Medical Devices that Treat Obesity: What to Know

    MedlinePlus

    ... For Consumers Consumer Updates Medical Devices that Treat Obesity: What to Know Share Tweet Linkedin Pin it ... be less invasive.” back to top How is obesity measured? Obesity is typically measured by calculating body ...

  5. Medical devices; medical device distributor reporting--FDA. Final rule; notification of status under the Safe Medical Devices Act; confirmation of effective date.

    PubMed

    1993-09-01

    The Food and Drug Administration (FDA) is announcing that the tentative final rule on medical device distributor reporting that appeared in the Federal Register of November 26, 1991 (56 FR 60024), is now a final rule by operation of law. This final rule requires distributors to submit reports to FDA and to manufacturers, of deaths, serious illnesses, and serious injuries related to medical devices and to submit reports to manufacturers of certain malfunctions that may cause a death, serious illness, or serious injury, if the malfunction were to recur. The final rule also changes the reporting standard for certain distributors that are importers, and changes the definition of the term "serious injury" to conform to a recent statutory amendment. In issuing this final rule, FDA is announcing that the tentative final rule relating to adverse event reporting requirements for distributors, including importers, has the status of a final rule, as of May 28, 1992, by operation of law under the Safe Medical Devices Act of 1990 (the SMDA), as amended by the Medical Device Amendments of 1992 (the 1992 amendments), and is setting forth the regulations reflecting those requirements. FDA is also amending the regulations, based on consideration of comments on the November 26, 1991, tentative final rule, to require distributors to register their facilities and to list their devices with FDA. PMID:10128335

  6. When medical devices fail: Lessons learned in a hemodialysis unit.

    PubMed

    Phillips, J Matthew; Mossop, Paula; Bartol, Carolyn; Hodgson, Barbara

    2015-01-01

    Technology and medical equipment devices have become integrated in the delivery of health care. These technologies and devices can introduce new risks, either through user error or malfunction. When these incidents occur, it is important they are reported so that learning and improvements are possible. A just culture encourages reporting of incidents by not blaming individuals, but rather by seeking to understand incidents in relation to how they occurred because of the systems in place. These concepts are explored through a case study in a dialysis unit where a malfunction of a medical equipment device (central venous catheter) was identified. The process for addressing the issue is defined and includes reviewing applicable data, reporting incidents, and evaluating devices that malfunctioned. Finally, the role of the frontline health care professional is identified as an important stakeholder in identifying issues with technology and medical devices, reporting these incidents, and participating in the process that resolves the issues. PMID:26901981

  7. Post-approval studies in France, challenges facing medical devices.

    PubMed

    Levesque, Karine; Coqueblin, Claire; Guillot, Bernard; Aubourg, Lucie; Avouac, Bernard; Carbonneil, Cédric; Cucherat, Michel; Descamps-Mandine, Patricia; Hanoka, Serge; Goldberg, Marcel; Josseran, Anne; Parquin, François; Pitel, Séverine; Ratignier, Christelle; Sechoy, Odile; Szwarcenstein, Karine; Tanti, André; Teiger, Emmanuel; Thevenet, Nicolas

    2014-01-01

    Medical devices are characterized notably by a wide heterogeneity (from tongue depressors to hip prostheses, and from non-implantable to invasive devices), a short life cycle with recurrent incremental innovations (from 18 months to 5 years), and an operator-dependent nature. The objective of the current round table was to develop proposals and recommendations concerning the prerequisites needed in order to meet the French health authorities expectations concerning requests for post-approval studies for medical devices, required in cases where short and long-term consequences are unknown. These studies, which are the responsibility of the manufacturer or the distributor of the medical device, are designed to confirm the role of the medical device in the therapeutic management strategy in a real-life setting. There are currently approximately 150 post-approval studies underway, mainly concerning class III devices, and the majority face difficulties implementing the study or meeting the study objectives. In light of this, the round table endeavored to clearly identify the conditions for implementation of post-approval studies specific to the characteristics of medical devices. Various areas of progress have been envisaged to improve the performance of these studies, and by consequence, the efficiency of reimbursement of medical devices by the national health insurance. These include providing manufacturers with the opportunity to better anticipate post-approval requirements, defining a study-specific primary objective, integrating a phase allowing dialogue between the manufacturer, the health authorities and the scientific committee, and increasing awareness and training of health professionals on the impact of post-approval clinical studies in terms of the reimbursement of medical devices by the national insurance. PMID:25230354

  8. Development of Implantable Medical Devices: From an Engineering Perspective

    PubMed Central

    2013-01-01

    From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287

  9. Development of implantable medical devices: from an engineering perspective.

    PubMed

    Joung, Yeun-Ho

    2013-09-01

    From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind. PMID:24143287

  10. 78 FR 26786 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Microbiology Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Microbiology Devices Panel of the...

  11. 78 FR 13347 - Clinical Chemistry and Clinical Toxicology Devices Panel of the Medical Devices Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Clinical Chemistry and Clinical Toxicology Devices Panel of... Chemistry and Clinical Toxicology Devices Panel of the Medical Devices Advisory Committee. General...

  12. 76 FR 50485 - Obstetrics and Gynecology Devices Panel of the Medical Devices Advisory Committee; Amendment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Obstetrics and Gynecology Devices Panel of the Medical Devices Advisory Committee. This meeting was announced in the Federal Register of July 14, 2011 (76 FR 41507). The amendment is being made to reflect a... HUMAN SERVICES Food and Drug Administration Obstetrics and Gynecology Devices Panel of the...

  13. 77 FR 12064 - Radiological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... HUMAN SERVICES Food and Drug Administration Radiological Devices Panel of the Medical Devices Advisory... Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations to... April 9, 2009 (74 FR 16214), for breast transilluminators, one of the remaining preamendments class...

  14. 77 FR 71195 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide... Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice... July 6, 2012 (77 FR 39953), FDA issued a proposed rule which, if made final, would make...

  15. 78 FR 20328 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee scheduled for April 5, 2013. The meeting was announced in the Federal Register of November 29, 2012 (77 FR 71195). The meeting... Devices Advisory Committee: Notice of Postponement of Meeting AGENCY: Food and Drug Administration,...

  16. 76 FR 55398 - Immunology Devices Panel of the Medical Devices Advisory Committee: Notice of Postponement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... in the Federal Register of August 9, 2011 (76 FR 48871). The meeting is postponed so that FDA can... HUMAN SERVICES Food and Drug Administration Immunology Devices Panel of the Medical Devices Advisory.... SUMMARY: The Food and Drug Administration (FDA) is postponing the meeting of the Immunology Devices...

  17. 76 FR 48871 - Immunology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Immunology Devices Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Immunology Devices Panel of the...

  18. 76 FR 58019 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... HUMAN SERVICES Food and Drug Administration Circulatory System Devices Panel of the Medical Devices... (FDA). The meeting will be open to the public. Name of Committee: Circulatory System Devices Panel of... sponsored by AtriCure, Inc., for the AtriCure Synergy Ablation System to be used for the treatment of...

  19. 77 FR 18829 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Circulatory System Devices Panel of the Medical Devices... (FDA). The meeting will be open to the public. Name of Committee: Circulatory System Devices Panel...

  20. 78 FR 11208 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... HUMAN SERVICES Food and Drug Administration Circulatory System Devices Panel of the Medical Devices... (FDA). The meeting will be open to the public. Name of Committee: Circulatory System Devices Panel of... approval application for the MitraClip Delivery System sponsored by Abbott Vascular. The system consists...

  1. The medical information bus: overview of the medical device data language.

    PubMed

    Gottschalk, H W

    1991-01-01

    The Medical Information Bus (MIB) reference model defines a new, object-oriented Medical Device Data Language (MDDL), under development by the Institute of Electrical and Electronic Engineers Society (IEEE) P1073 MIB Standard Committee. The MDDL treats medical devices, host computers, humans and device parameters as objects, and provides a flexible and extensible language for describing and passing messages between objects. This paper describes the MDDL semantic reference model and presents an overview of the MDDL structure, within the framework of the International Standards Organization (ISO) System Management Overview (SMO) model. A simple example of how the MDDL can be used to construct a device event report is also described. PMID:10114051

  2. 77 FR 8260 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Collection; Comment Request; Medical Device Reporting: Manufacturer, Importer, User Facility, and Distributor... solicits comments on medical device reporting (MDR); manufacturer, importer, user facility, and distributor... appropriate, and other forms of information technology. Medical Device Reporting: Manufacturer, Importer,...

  3. 76 FR 71041 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Collection; Comment Request; Medical Device Recall Authority AGENCY: Food and Drug Administration, HHS... on the information collection requirements for medical device recall authority. DATES: Submit either... of information technology. Medical Device Recall Authority--21 CFR Part 810 (OMB Control Number...

  4. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. (c) U.S. financial institutions are authorized to conduct all... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false In-kind donations of medicine, medical... § 597.511 In-kind donations of medicine, medical devices, and medical services. (a) Effective July...

  5. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false In-kind donations of medicine, medical...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6,...

  6. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false In-kind donations of medicine, medical... donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006,...

  7. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. (c) U.S. financial institutions are authorized to conduct all... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false In-kind donations of medicine, medical... § 597.511 In-kind donations of medicine, medical devices, and medical services. (a) Effective July...

  8. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. (c) U.S. financial institutions are authorized to conduct all... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false In-kind donations of medicine, medical... § 597.511 In-kind donations of medicine, medical devices, and medical services. (a) Effective July...

  9. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false In-kind donations of medicine, medical... donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006,...

  10. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false In-kind donations of medicine, medical...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6,...

  11. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false In-kind donations of medicine, medical... donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006,...

  12. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false In-kind donations of medicine, medical...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6,...

  13. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false In-kind donations of medicine, medical... donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006,...

  14. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false In-kind donations of medicine, medical...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6,...

  15. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. (c) U.S. financial institutions are authorized to conduct all... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false In-kind donations of medicine, medical... § 597.511 In-kind donations of medicine, medical devices, and medical services. (a) Effective July...

  16. Medical device specificities: opportunities for a dedicated product development methodology.

    PubMed

    Santos, Isa C T; Gazelle, G Scott; Rocha, Luís A; Tavares, João Manuel R S

    2012-05-01

    The medical sector, similarly to other industries such as the aviation industry, has to comply with multiple regulations, guidelines and standards. In addition, there are multiple definitions for the expression 'medical device', and before entering the market, manufacturers must demonstrate their product's safety and effectiveness. In such a complex and demanding environment, it is crucial to know the particularities surrounding the product being developed in order to minimize the chances of a commercial flop. Thus, in this paper, medical device specificities are identified, and the most relevant legislation is reviewed providing the foundations for a dedicated product development methodology. PMID:22702261

  17. Evaluation of Measuring Devices Packaged With Prescription Oral Liquid Medications

    PubMed Central

    Johnson, Anthony

    2016-01-01

    OBJECTIVES: The US Food and Drug Administration industry guidelines for manufacturers of oral, over-the-counter, liquid medications recommend that these products be packaged with dosage-delivery devices. This study describes the prevalence of these devices and instructions packaged with prescription, oral, liquid medications. METHODS: This was a descriptive study of prescription oral-liquid medications dispensed during a 6-month period at a community pharmacy. Product information was obtained from the National Library of Medicine's DailyMed database and from the products themselves. Endpoints included provision of a measuring device, the type of device, the maximum dose measurable and intervals on the provided device, and inclusion of instructions to the pharmacist. RESULTS: A total of 382 liquid prescription medications were included in the study. Forty-nine of the 382 products (12.8%) were packaged with a measuring device. The most commonly provided device was a calibrated dropper (n = 18; 36.7%), followed by an oral syringe with a bottle adaptor (n = 9, 18.4%). Specific instructions on proper use of the provided measuring device were included with 20 products (40.8%). Among the products that did not provide a measuring device, only 70 of the 333 package inserts (21%) included instructions to the pharmacist regarding counseling the patient on proper administration. CONCLUSIONS: Packaging of prescription oral-liquid medications is inconsistent and leaves room for vast variability in patient or parent administration practices. In the future, patterns of actual dispensing practices among pharmacies and pharmacists would help determine the true incidence of dispensing of measuring devices. PMID:26997931

  18. Medical devices in dermatology using DLP technology from Texas Instruments

    NASA Astrophysics Data System (ADS)

    Kock, M.; Lüllau, F.

    2012-03-01

    The market of medical devices is growing continuously worldwide. With the DLP™ technology from Texas Instruments Lüllau Engineering GmbH in Germany has realized different applications in the medical discipline of dermatology. Especially a new digital phototherapy device named skintrek™ PT5 is revolutionizing the treatment of skin diseases like psoriasis , Vitiligo and other Eczema. The functions of the new phototherapy device can only be realized through DLP™ technology which is not only be used for the selective irradiation process. In combination with other optical systems DLP™ technology undertakes also other functionalities like 3D-topology calculation und patient movement compensation.

  19. 78 FR 12329 - Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... HUMAN SERVICES Food and Drug Administration Distinguishing Medical Device Recalls From Product... Device Recalls From Product Enhancements; Reporting Requirements.'' This draft guidance intends to clarify for industry when a potential change to a device is a medical device recall, distinguish...

  20. Medical device integration using mobile telecommunications infrastructure.

    PubMed

    Moorman, Bridget A; Cockle, Richard A

    2013-01-01

    Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment. PMID:23692108

  1. Quality management for the processing of medical devices

    PubMed Central

    Klosz, Kerstin

    2008-01-01

    Rules on the reprocessing of medical devices were put into place in Germany in 2001. The present article explains the background situation and the provisions that are currently in force. The implementation of these statutory requirements is described using the example of the quality management system of Germany’s market leader, Vanguard AG. This quality management system was successfully certified pursuant to DIN EN ISO 13485:2003 for the scope "reprocessing of medical devices", including class “critical C”, in accordance with the recommendation of the Commission for Hospital Hygiene and the Prevention of Infection at the Robert-Koch-Institute (RKI) and the German Federal Institute for Drugs and Medical Devices (BfArM) on the “Hygiene requirements for reprocessing of medical devices”. PMID:20204094

  2. Providing Context: Medical Device Litigation and Inferior Vena Cava Filters.

    PubMed

    Keller, Eric J; Vogelzang, Robert L

    2016-06-01

    Over the last few years, an increasing number of lawsuits have been filed involving inferior vena cava filters. This has prompted the U.S. Judicial Panel on Multidistrict Litigation to centralize these lawsuits into two multidistrict litigations: one for Cook's filters and one for Bard's. Both sets of cases share similar questions of facts, in particular whether these filters' design and manufacturing practices made them unreasonably prone to serious complications. The resolution of these cases will add to a larger legal debate concerning how much legal protection the 1976 Medical Device Amendments should offer firms from tort liability. As a specialty that often relies on medical devices, it is not only important for interventional radiologists to have a general understanding of medical device litigation but also to reflect upon the approaches to informed consent regarding these devices. PMID:27247482

  3. Medical devices; immunology and microbiology devices; classification of the endotoxin assay. Final rule.

    PubMed

    2003-10-31

    The Food and Drug Administration (FDA) is classifying the endotoxin assay into class II (special controls). The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990 (SMDA), the Food and Drug Administration Modernization Act of 1997 (FDAMA), and the Medical Device User Fee and Modernization Act of 2002 (MDUFMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document that will serve as the special control for the device. PMID:14594019

  4. Medical device development: managing conflicts of interest encountered by physicians.

    PubMed

    Baim, Donald S; Donovan, Aine; Smith, John J; Briefs, Nancy; Geoffrion, Richard; Feigal, David; Kaplan, Aaron V

    2007-04-01

    New technologies introduced over the past three decades have transformed medical diagnosis and treatment, and significantly improved patient outcomes. These changes have been mediated by the introduction of new medical devices, particularly for the treatment of cardiovascular, orthopedic, and ophthalmic disorders. These devices, in turn, have created large markets and spawned a burgeoning medical device industry, including six Fortune 500 companies whose combined market capitalization now exceeds 400 billion dollars. This success story, which has unquestionably benefited patients and society alike, has been dependent upon an intense collaboration among industry, clinicians, and regulatory authorities. However, when physicians actively involved in patient care participate in such collaborations, they are increasingly vulnerable to creating potential conflicts between these two (clinical and device development) roles. Such conflicts, which may ultimately erode public trust, have important consequences not only for the individual physicians, but also for their parent institutions, their patients, sponsoring companies, and the entire clinical research enterprise that makes the development and introduction of new devices possible. The third Dartmouth Device Development Symposium held in October 2005 brought together thought leaders within the medical device community, including academicians, clinical investigators, regulators from the Food and Drug Administration and Centers for Medicare and Medicaid Services (CMS), large and small device manufacturers and the financial (venture capital and investment banks) community. The Symposium examined the conflicts of interest encountered during the early development and commercialization of a medical device. The goal of these discussions was to (1) identify and characterize the conflicts that arise and (2) provide strategies to address these conflicts. This manuscript was prepared by a writing committee to provide a summary

  5. Implantable photonic devices for improved medical treatments.

    PubMed

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-01-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient’s body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment. PMID:25279540

  6. Implantable photonic devices for improved medical treatments

    NASA Astrophysics Data System (ADS)

    Sheinman, Victor; Rudnitsky, Arkady; Toichuev, Rakhmanbek; Eshiev, Abdyrakhman; Abdullaeva, Svetlana; Egemkulov, Talantbek; Zalevsky, Zeev

    2014-10-01

    An evolving area of biomedical research is related to the creation of implantable units that provide various possibilities for imaging, measurement, and the monitoring of a wide range of diseases and intrabody phototherapy. The units can be autonomic or built-in in some kind of clinically applicable implants. Because of specific working conditions in the live body, such implants must have a number of features requiring further development. This topic can cause wide interest among developers of optical, mechanical, and electronic solutions in biomedicine. We introduce preliminary clinical trials obtained with an implantable pill and devices that we have developed. The pill and devices are capable of applying in-body phototherapy, low-level laser therapy, blue light (450 nm) for sterilization, and controlled injection of chemicals. The pill is also capable of communicating with an external control box, including the transmission of images from inside the patient's body. In this work, our pill was utilized for illumination of the sinus-carotid zone in dog and red light influence on arterial pressure and heart rate was demonstrated. Intrabody liver tissue laser ablation and nanoparticle-assisted laser ablation was investigated. Sterilization effect of intrabody blue light illumination was applied during a maxillofacial phlegmon treatment.

  7. Transdermal clonidine in patients with swallowing dysfunction.

    PubMed

    Goldenberg, Gregory; Bharathan, Thayyullathil; Shifrin, Inna

    2014-09-01

    Patients with swallowing dysfunction are usually very ill and have a constellation of challenging issues requiring palliation. Accumulation of oropharyngeal secretions leads to a substantial effort of medical teams including doctors, nurses, respiratory therapists, and ancillary staff. We present 10 patients successfully treated with application of transdermal clonidine film. It was well tolerated, provided quick control of secretions, and reduced staff labor. We suggest that transdermal clonidine can be used as antisialogogue in patients with swallowing dysfunction. Clonidine pharmacology is physiologic grounds for this clinical application. PMID:24813023

  8. Enhancing medical device training with hybrid physical-virtual simulators: smart peripherals for virtual devices.

    PubMed

    Samosky, Joseph T; Thornburg, Andrew; Karkhanis, Tushar; Petraglia, Frank; Strickler, Elise; Nelson, Douglas A; Weaver, Robert A; Robinson, Evan

    2013-01-01

    We introduce a novel platform for medical device training: hybrid physical-virtual simulators of medical devices, combining touchscreen-enabled virtual emulations of real devices with sensorized physical peripherals to enable tactile, hands-on interaction between the trainee, simulated device and standardized patients or mannequins. The system enables objective measurement and recording of trainee performance, including interactions with both the virtual device elements and the physical components, and can include metrics and feedback not available in the real device. The system also includes an integrated wireless signaling device for use with standardized patients. We present the implementation of an example system, a virtual defibrillator with sensorized paddles and wireless signaling of successful defibrillator operation. PMID:23400187

  9. Effectively utilizing device maintenance data to optimize a medical device maintenance program.

    PubMed

    Brewin, D; Leung, J; Easty, T

    2001-01-01

    Methods developed by the clinical engineering community and the principles outlined by ISO regulations for the application of risk management to medical devices were integrated to provide a basis for the unique optimization system implemented into the University Health Network medical device maintenance program. Device maintenance history data stored in the database is used to conduct a risk analysis and to compute predefined benchmarks to highlight groups of equipment for which the current maintenance regime is not optimal. Using a software data research tool we are able to investigate device history data and support alterations in maintenance intervals, user training, maintenance procedures, and/or device purchasing. These alterations are justified, documented, and monitored for risk in a continuous management cycle. The predicted benefits are an overall improvement in the reliability of the devices maintained, coupled with a drop in repetitive device checks that result in no measurable benefits. PMID:11765697

  10. Transdermal Photopolymerization for Minimally Invasive Implantation

    NASA Astrophysics Data System (ADS)

    Elisseeff, J.; Anseth, K.; Sims, D.; McIntosh, W.; Randolph, M.; Langer, R.

    1999-03-01

    Photopolymerizations are widely used in medicine to create polymer networks for use in applications such as bone restorations and coatings for artificial implants. These photopolymerizations occur by directly exposing materials to light in "open" environments such as the oral cavity or during invasive procedures such as surgery. We hypothesized that light, which penetrates tissue including skin, could cause a photopolymerization indirectly. Liquid materials then could be injected s.c. and solidified by exposing the exterior surface of the skin to light. To test this hypothesis, the penetration of UVA and visible light through skin was studied. Modeling predicted the feasibility of transdermal polymerization with only 2 min of light exposure required to photopolymerize an implant underneath human skin. To establish the validity of these modeling studies, transdermal photopolymerization first was applied to tissue engineering by using "injectable" cartilage as a model system. Polymer/chondrocyte constructs were injected s.c. and transdermally photopolymerized. Implants harvested at 2, 4, and 7 weeks demonstrated collagen and proteoglycan production and histology with tissue structure comparable to native neocartilage. To further examine this phenomenon and test the applicability of transdermal photopolymerization for drug release devices, albumin, a model protein, was released for 1 week from photopolymerized hydrogels. With further study, transdermal photpolymerization potentially could be used to create a variety of new, minimally invasive surgical procedures in applications ranging from plastic and orthopedic surgery to tissue engineering and drug delivery.

  11. Risk management in the design of medical device software systems.

    PubMed

    Jones, Paul L; Jorgens, Joseph; Taylor, Alford R; Weber, Markus

    2002-01-01

    The safety of any medical device system is dependent on the application of a disciplined, well-defined, risk management process throughout the product life cycle. Hardware, software, human, and environmental interactions must be assessed in terms of intended use, risk, and cost/benefit criteria. This article addresses these issues in the context of medical devices that incorporate software. The article explains the principles of risk management, using terminology and examples from the domain of software engineering. It may serve as a guide to those new to the concepts of risk management and as an aide-memoire for medical device system/software engineers who are more familiar with the topic. PMID:12162111

  12. Facilitating Virtual Health Management Using Medical Device Integration.

    PubMed

    Zaleski, John R

    2015-01-01

    Data from connected medical devices (CMDS) provides an objective and rich source of information to augment patient care management and clinical decision making. A principal reason is measurements of patient properties made through bedside CMDs are not typically subject to errors associated with misinterpretation, incorrect recording, and incorrect time stamping. Furthermore, data from CMDs can be collected regularly, ensuring a dense and robust data record on a given patient. The ability to remotely manage and monitor patients is greatly facilitated by access to data, as measurements represent an objective source of information that facilitate clinical decision making. In my recent book, Connected Medical Devices: Integrating Patient Care Data in Healthcare System, I discuss the topic of medical device integration (MDI) in relation to implementing CMDs in healthcare settings as a guide to assist hospitals in this undertaking. The following discussion about MDI are the opening paragraphs from this text, followed by a discussion of MDI architectures. PMID:26571635

  13. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    PubMed

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. PMID:26867696

  14. Medical devices transition to information systems: lessons learned.

    PubMed

    Charters, Kathleen G

    2012-01-01

    Medical devices designed to network can share data with a Clinical Information System (CIS), making that data available within clinician workflow. Some lessons learned by transitioning anesthesia reporting and monitoring devices (ARMDs) on a local area network (LAN) to integration of anesthesia documentation within a CIS include the following categories: access, contracting, deployment, implementation, planning, security, support, training and workflow integration. Areas identified for improvement include: Vendor requirements for access reconciled with the organizations' security policies and procedures. Include clauses supporting transition from stand-alone devices to information integrated into clinical workflow in the medical device procurement contract. Resolve deployment and implementation barriers that make the process less efficient and more costly. Include effective field communication and creative alternatives in planning. Build training on the baseline knowledge of trainees. Include effective help desk processes and metrics. Have a process for determining where problems originate when systems share information. PMID:24199054

  15. 77 FR 61768 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a...

  16. 75 FR 70112 - Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered Suction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 878 Medical Devices; General and Plastic Surgery...--GENERAL AND PLASTIC SURGERY DEVICES 0 1. The authority citation for 21 CFR part 878 continues to read...

  17. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 882 Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is classifying the Near Infrared (NIR)...

  18. 77 FR 25183 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a...

  19. 76 FR 36548 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a...

  20. 78 FR 67365 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a...

  1. A Review of Simulators with Haptic Devices for Medical Training.

    PubMed

    Escobar-Castillejos, David; Noguez, Julieta; Neri, Luis; Magana, Alejandra; Benes, Bedrich

    2016-04-01

    Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided. PMID:26888655

  2. Medical devices; obstetrical and gynecological devices; classification of the breast lesion documentation system. Final rule.

    PubMed

    2003-07-28

    The Food and Drug Administration (FDA) is classifying the breast lesion documentation system into class II (special controls). The special controls that will apply to this device are discussed later in this document. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is the special control for this device. PMID:12884877

  3. Battery power comparison to charge medical devices in developing countries.

    PubMed

    Casanova, Alesia M; Bray, Andrew S; Powers, Taylor A; Nimunkar, Amit J; Webster, John G

    2009-01-01

    Many people in developing countries cannot afford or rely on certain modes of electricity. We establish the reasonability of relying on lead-acid batteries, 9 V alkaline batteries, and lithium-ion batteries for charging low-voltage medical equipment. Based on the research and tests we conducted, we determined that using these battery types to charge medical devices truly is a reasonable solution. PMID:19964250

  4. Bulk Metallic Glasses for Implantable Medical Devices and Surgical Tools.

    PubMed

    Meagher, Philip; O'Cearbhaill, Eoin D; Byrne, James H; Browne, David J

    2016-07-01

    With increasing knowledge of the materials science of bulk metallic glasses (BMGs) and improvements in their properties and processing, they have started to become candidate materials for biomedical devices. A dichotomy in the types of medical applications has also emerged, in which some families of BMGs are being developed for permanent devices whilst another family - of Mg-based alloys - is showing promise in bioabsorbable implants. The current status of these metallurgical and technological developments is summarized. PMID:27031058

  5. Medical devices and procedures in the hyperbaric chamber.

    PubMed

    Kot, Jacek

    2014-12-01

    The aim of this paper is to present current controversies concerning the safety of medical devices and procedures under pressure in a hyperbaric chamber including: defibrillation in a multiplace chamber; implantable devices during hyperbaric oxygen treatment (HBOT) and the results of a recent European questionnaire on medical devices used inside hyperbaric chambers. Early electrical defibrillation is the only effective therapy for cardiac arrest caused by ventricular fibrillation or pulseless ventricular tachycardia. The procedure of defibrillation under hyperbaric conditions is inherently dangerous owing to the risk of fire, but it can be conducted safely if certain precautions are taken. Recently, new defibrillators have been introduced for hyperbaric medicine, which makes the procedure easier technically, but it must be noted that sparks and fire have been observed during defibrillation, even under normobaric conditions. Therefore, delivery of defibrillation shock in a hyperbaric environment must still be perceived as a hazardous procedure. Implantable devices are being seen with increasing frequency in patients referred for HBOT. These devices create a risk of malfunction when exposed to hyperbaric conditions. Some manufacturers support patients and medical practitioners with information on how their devices behave under increased pressure, but in some cases an individual risk-benefit analysis should be conducted on the patient and the specific implanted device, taking into consideration the patient's clinical condition, the indication for HBOT and the capability of the HBOT facility for monitoring and intervention in the chamber. The results of the recent survey on use of medical devices inside European hyperbaric chambers are also presented. A wide range of non-CE-certified equipment is used in European chambers. PMID:25596835

  6. Medical Devices Assess, Treat Balance Disorders

    NASA Technical Reports Server (NTRS)

    2009-01-01

    series of dynamic protocols to isolate and assess balance function deficiencies. The technology was based on Nashner s novel, engineering-inspired concept of balance as an adaptable collaboration between multiple sensory and motor systems. CDP proved useful not only for examining astronauts, but for anyone suffering from balance problems. Today, CDP is the standard medical tool for objectively evaluating balance control.

  7. 42 CFR 419.66 - Transitional pass-through payments: Medical devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Medical devices. (a) General rule. CMS makes a pass-through payment for a medical device that meets the... 42 Public Health 3 2013-10-01 2013-10-01 false Transitional pass-through payments: Medical devices.... (3) Except for medical devices identified in paragraph (e) of this section, CMS determines the...

  8. 42 CFR 419.66 - Transitional pass-through payments: Medical devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Medical devices. (a) General rule. CMS makes a pass-through payment for a medical device that meets the... 42 Public Health 3 2014-10-01 2014-10-01 false Transitional pass-through payments: Medical devices.... (3) Except for medical devices identified in paragraph (e) of this section, CMS determines the...

  9. 42 CFR 419.66 - Transitional pass-through payments: Medical devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Medical devices. (a) General rule. CMS makes a pass-through payment for a medical device that meets the... 42 Public Health 3 2012-10-01 2012-10-01 false Transitional pass-through payments: Medical devices.... (3) Except for medical devices identified in paragraph (e) of this section, CMS determines the...

  10. 21 CFR 801.18 - Format of dates provided on a medical device label.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.18 Format of dates provided on a medical device label. (a) In general. Whenever the label of a medical device includes a printed... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Format of dates provided on a medical device...

  11. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6,...

  12. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. Note to paragraph (b): Nongovernmental organizations that are... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine....515 In-kind donations of medicine, medical devices, and medical services. (a) Effective July 6,...

  13. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations, 15 CFR part 774, supplement no. 1. (c) U.S. financial institutions are authorized to conduct all... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine... Licensing Policy § 597.511 In-kind donations of medicine, medical devices, and medical services....

  14. 77 FR 3781 - Pediatric Medical Devices; Public Workshop; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... data can be used to support pediatric effectiveness claims for medical devices and pediatric device... support pediatric effectiveness claims for medical devices and pediatric device approvals or clearance, 2... HUMAN SERVICES Food and Drug Administration Pediatric Medical Devices; Public Workshop; Reopening...

  15. 76 FR 55394 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... Collection; Comment Request; Medical Devices: Humanitarian Use Devices AGENCY: Food and Drug Administration... of information technology. Medical Devices: Humanitarian Use Devices--21 CFR Part 814 (OMB Control... to grant HUD designation of a medical device; (2) exempt an HUD from the effectiveness...

  16. Development of wearable medical device for Bio-MEMS

    NASA Astrophysics Data System (ADS)

    Nakanishi, Naoyuki; Yamamoto, Hidetake; Tsuchiya, Kazuyoshi; Uetsuji, Yasutomo; Nakamachi, Eiji

    2006-01-01

    Biomedical Micro Electro Mechanical Systems (Bio-MEMS) have been applied to the development of a variety of health care related products including health Monitoring Systems (HMS) and Drug Delivery Systems (DDS). We focus on research to develop the new type compact medical device used for blood sugar control. The new type compact medical device comprises (1) a micropump system to extract blood using a pressure change occurred by electrolysis, (2) a platinum (Pt) electrode as a blood sugar sensor immobilized Glucose Oxidase (GOx) and attached to the gate electrode of Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) to detect the amount of glucose in extracted blood, and (3) a micropump system to inject insulin using a pressure change occurred by electrolysis. The device can extract blood in a few microliter through a painless microneedle with the micropump, which used the pressure change occurred by electrolysis. The liquid extraction ability of the micropump system through a microneedle, which is 3.8 mm in length and 100 μm in internal diameter, was measured. The wearable medical device with using the micropump controlled by electrolysis could extract human blood at the speed of 0.15 μl/sec. If the wearable medical device extracts human blood for 6 seconds, it is enough human blood volume to measure a glucose level, compared to the amount of commercial based glucose level monitor. The compact medical device with the air bubble that occurred by electrolysis could inject insulin at the speed of 6.15μl/sec.

  17. Risk evaluation of medical and industrial radiation devices

    SciTech Connect

    Jones, E.D.; Cunningham, R.E.; Rathbun, P.A.

    1994-03-01

    In 1991, the NRC, Division of Industrial and Medical Nuclear Safety, began a program to evaluate the use of probabilistic risk assessment (PRA) in regulating medical devices. This program represents an initial step in an overall plant to evaluate the use of PRA in regulating the use of nuclear by-product materials. The NRC envisioned that the use of risk analysis techniques could assist staff in ensuring that the regulatory approach was standardized, understandable, and effective. Traditional methods of assessing risk in nuclear power plants may be inappropriate to use in assessing the use of by-product devices. The approaches used in assessing nuclear reactor risks are equipment-oriented. Secondary attention is paid to the human component, for the most part after critical system failure events have been identified. This paper describes the risk methodology developed by Lawrence Livermore National Laboratory (LLNL), initially intended to assess risks associated with the use of the Gamma Knife, a gamma stereotactic radiosurgical device. For relatively new medical devices such as the Gamma Knife, the challenge is to perform a risk analysis with very little quantitative data but with an important human factor component. The method described below provides a basic approach for identifying the most likely risk contributors and evaluating their relative importance. The risk analysis approach developed for the Gamma Knife and described in this paper should be applicable to a broader class of devices in which the human interaction with the device is a prominent factor. In this sense, the method could be a prototypical model of nuclear medical or industrial device risk analysis.

  18. Lessons learned: mobile device encryption in the academic medical center.

    PubMed

    Kusche, Kristopher P

    2009-01-01

    The academic medical center is faced with the unique challenge of meeting the multi-faceted needs of both a modern healthcare organization and an academic institution, The need for security to protect patient information must be balanced by the academic freedoms expected in the college setting. The Albany Medical Center, consisting of the Albany Medical College and the Albany Medical Center Hospital, was challenged with implementing a solution that would preserve the availability, integrity and confidentiality of business, patient and research data stored on mobile devices. To solve this problem, Albany Medical Center implemented a mobile encryption suite across the enterprise. Such an implementation comes with complexities, from performance across multiple generations of computers and operating systems, to diversity of application use mode and end user adoption, all of which requires thoughtful policy and standards creation, understanding of regulations, and a willingness and ability to work through such diverse needs. PMID:19382736

  19. 76 FR 48169 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Microbiology/ Medical Countermeasure Devices; Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION... following public meeting: ``Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical... multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application and public...

  20. MRI compatibility and visibility assessment of implantable medical devices.

    PubMed

    Schueler, B A; Parrish, T B; Lin, J C; Hammer, B E; Pangrle, B J; Ritenour, E R; Kucharczyk, J; Truwit, C L

    1999-04-01

    We have developed a protocol to evaluate the magnetic resonance (MR) compatibility of implantable medical devices. The testing protocol consists of the evaluation of magnetic field-induced movement, electric current, heating, image distortion, and device operation. In addition, current induction is evaluated with a finite element analysis simulation technique that models the effect of radiofrequency fields on each device. The protocol has been applied to several implantable infusion pumps and neurostimulators with associated attachments. Experiments were performed using a 1.5-T whole-body MR system with parameters selected to approximate the intended clinical and worst case configuration. The devices exhibited moderate magnetic field-induced deflection and torque but had significant image artifacts. No heating was detected for any of the devices. Pump operation was halted in the magnetic field, but resumed after removed. Exposure to the magnetic field activated some of the neurostimulators. PMID:10232520

  1. 78 FR 46347 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Collection; Comment Request; Medical Devices Current Good Manufacturing Practice Quality System Regulation... devices current good manufacturing practice (CGMP) quality system (QS) regulation (CGMP/QS regulation... appropriate, and other forms of information technology. Medical Devices Current Good Manufacturing...

  2. 75 FR 36092 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Collection; Comment Request; Medical Devices: Current Good Manufacturing Practice Quality System Regulations... devices current good manufacturing practice (CGMP) quality system (QS) regulation (CGMP/QS regulation... of information technology. Medical Devices: Current Good Manufacturing Practice Quality...

  3. Transdermal delivery of contraceptives.

    PubMed

    Friend, D R

    1990-01-01

    Contraceptive agents are administered to the body through a variety of routes. Research has recently been directed at examining the transdermal route for systemic delivery of contraceptive agents, including estrogens and progestins. The transdermal route has several potential advantages over the other routes of administration: (1) improved compliance, (2) once-weekly administration, (3) delivery is easily terminated, and (4) some side effects can be alleviated based on more constant delivery rates. This article reviews the permeability of skin toward contraceptive steroids and how skin permeability is evaluated. The metabolism of contraceptive steroids is also considered. Transdermal delivery systems used to deliver contraceptives are presented, followed by a detailed discussion of several delivery systems for specific contraceptive agents such as levonorgestrel and estradiol. The potential problem of skin irritation is presented as it relates to transdermal contraceptive delivery systems, all of which will be worn chronically. PMID:2272099

  4. Diclofenac Transdermal Patch

    MedlinePlus

    ... transdermal diclofenac may cause swelling, ulcers, bleeding, or holes in the stomach or intestines. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  5. Rotigotine Transdermal Patch

    MedlinePlus

    ... that causes difficulties with movement, muscle control, and balance) including shaking of parts of the body, stiffness, slowed movements, and problems with balance. Rotigotine transdermal patches are also used to treat ...

  6. Transdermal delivery of testosterone.

    PubMed

    Hadgraft, Jonathan; Lane, Majella E

    2015-05-01

    Male hypogonadism has been treated with exogenous testosterone since the 1930s. The early transdermal patches of testosterone became available in the 1980s with gel and solution preparations following subsequent decades. This review focusses on the skin permeation characteristics of testosterone, pharmacokinetics following application of transdermal formulations and formulations currently available. At present, gels dominate the market for transdermal testosterone replacement therapy, presumably because of their greater patient acceptability and non-occlusive nature compared with patches. However, specific incidences of secondary transfer of gels to children with consequent unwanted effects such as precocious puberty have been reported. A regulatory review of all testosterone replacement therapies is currently underway which may have implications for future prescribing practices of transdermal testosterone products. PMID:25709060

  7. Perinatal Staff Nurse Medical Device Use and Education.

    ERIC Educational Resources Information Center

    McConnell, Edwina A.

    1998-01-01

    Survey responses from 48 perinatal nurses found that most learned about medical devices by reading manuals; 75% had received inservice training; and 95% learned from other staff. Inadequate knowledge was related to fear of causing patient harm. Initial learning method influenced what was learned, and hands-on experience was considered efficacious.…

  8. 76 FR 24495 - Reprocessing of Reusable Medical Devices; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... beginning at 7:30 a.m. Non-U.S. citizens are subject to additional security screening, and they should... in the retention of blood, tissue, and other biological debris (soil) in reusable medical devices. This soil can allow microbes to survive the high level disinfection or sterilization...

  9. [Understanding and Thinking on America Clinical Evaluation of Medical Devices].

    PubMed

    Yuan, Fuqiang; Yuan, Peng; Deng, Gang

    2015-09-01

    This paper introduces the risk classification and listing way of medical devices in the United States, and according to the contents in various situations, FDA provides the requirements for clinical evaluation. At the same time, through the comparative study on the similarities and differences between USA and our country of the clinical evaluation, the paper puts forward some suggestions. PMID:26904887

  10. In vitro biocompatibility testing of biomaterials and medical devices.

    PubMed

    Müller, U

    2008-01-01

    Biomaterials used for medical devices must be thoroughly tested according to ISO 10993 before their introduction so that any negative effects on the body are known about and prevented. By using in vitro laboratory tests, dangers for patients and unnecessary animal experiments can be avoided. Here, in vitro tests for cell compatibility (cytotoxicity) and blood compatibility (haemocompatibility) are described. PMID:18605289

  11. Medical devices; immunology and microbiology devices; classification of the beta-glucan serological assay. Final rule.

    PubMed

    2004-09-23

    The Food and Drug Administration (FDA) is classifying the beta-glucan serological reagent device into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Serological Assays for the Detection of Beta-Glucan." The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990, the Food and Drug Administration Modernization Act of 1997, and the Medical Device User Fee and Modernization Act of 2002. The agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is the special control for this device. PMID:15386877

  12. [Transdermal Delivery of NSAIDs].

    PubMed

    Nakajima, Takehisa; Makino, Kimiko

    2015-11-01

    Skin has been studied as administration site of drug for its systemic effects, since systemic therapeutic agents can be delivered for long time with a controlled ratio, escaping from the first pass effect by liver by the transdermal delivery, which can decrease the dosage form. The low permeability of drug molecules through stratum corneum has been the limiting factor for developing transdermal delivery system of therapeutic agents. To enhance the permeability of drug molecules, many studies have been reported. PMID:26689064

  13. Regulation of medicines and medical devices: contrasts and similarities.

    PubMed

    Parvizi, Nassim; Woods, Kent

    2014-02-01

    In recent times, there has been an unprecedented level of public interest and active debate regarding the regulation of medical devices. This is in light of the topical, rather dissimilar, incidents involving poly-implant-prothèse (PIP) breast and metal-on-metal hip implants. Although medicines and devices are regulated under European Union (EU) law, the regulatory regimes are very different and some have argued that features of the pharmaceutical regime should be applied to medical devices in the current review of the medical devices directives. Both medicines and certain devices need to have an assessment of their risks and benefits before being used in patients, and undergo subsequent monitoring for adverse events. However, there are significant differences between these two groups in terms of the number of products, the pattern of innovation and development, and the types of adverse events that arise from their use. This review will summarise the key issues through a comparison of how both are regulated and monitored. PMID:24532735

  14. Improving acute care through use of medical device data.

    PubMed

    Kennelly, R J

    1998-02-01

    The Medical Information Bus (MIB) is a data communications standard for bedside patient connected medical devices. It is formally titled IEEE 1073 Standard for Medical Device Communications. MIB defines a complete seven layer communications stack for devices in acute care settings. All of the design trade-offs in writing the standard were taken to optimize performance in acute care settings. The key clinician based constraints on network performance are: (1) the network must be able to withstand multiple daily reconfigurations due to patient movement and condition changes; (2) the network must be 'plug-and-play' to allow clinicians to set up the network by simply plugging in a connector, taking no other actions; (3) the network must allow for unambiguous associations of devices with specific patients. A network of this type will be used by clinicians, thus giving complete, accurate, real time data from patient connected devices. This capability leads to many possible improvements in patient care and hospital cost reduction. The possible uses for comprehensive automatic data capture are only limited by imagination and creativity of clinicians adapting to the new hospital business paradigm. PMID:9600414

  15. Medical Device Risk Management For Performance Assurance Optimization and Prioritization.

    PubMed

    Gaamangwe, Tidimogo; Babbar, Vishvek; Krivoy, Agustina; Moore, Michael; Kresta, Petr

    2015-01-01

    Performance assurance (PA) is an integral component of clinical engineering medical device risk management. For that reason, the clinical engineering (CE) community has made concerted efforts to define appropriate risk factors and develop quantitative risk models for efficient data processing and improved PA program operational decision making. However, a common framework that relates the various processes of a quantitative risk system does not exist. This article provides a perspective that focuses on medical device quality and risk-based elements of the PA program, which include device inclusion/exclusion, schedule optimization, and inspection prioritization. A PA risk management framework is provided, and previous quantitative models that have contributed to the advancement of PA risk management are examined. A general model for quantitative risk systems is proposed, and further perspective on possible future directions in the area of PA technology is also provided. PMID:26618842

  16. 76 FR 41507 - Obstetrics and Gynecology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide... HUMAN SERVICES Food and Drug Administration Obstetrics and Gynecology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION:...

  17. French Sizing of Medical Devices is not Fit for Purpose

    SciTech Connect

    Kibriya, Nabil Hall, Rebecca; Powell, Steven; How, Thien; McWilliams, Richard G.

    2013-08-01

    PurposeThe purpose of the study is to quantify the variation in the metric equivalent of French size in a range of medical devices, from various manufacturers, used in interventional radiology.MethodsThe labelling of a range of catheters, introducers, drains, balloons, stents, and endografts was examined. Products were chosen to achieve a broad range of French sizes from several manufacturers. To assess manufacturing accuracy, eight devices were selected for measurement using a laser micrometer. The external diameters of three specimens of each device were measured at centimeter intervals along the length of the device to ensure uniformity.ResultsA total of 200 labels of interventional radiology equipment were scrutinized. The results demonstrate a wide variation in the metric equivalent of French sizing. Labelled products can vary in diameter across the product range by up to 0.79 mm.The devices selected for measurement with the non-contact laser micrometer demonstrate acceptable manufacturing consistency. The external diameter differed by 0.05 mm on average.ConclusionsOur results demonstrate wide variation in the interpretation of the French scale by different manufacturers of medical devices. This has the potential to lead to problems using coaxial systems especially when the products are from different manufacturers. It is recommended that standard labelling should be employed by all manufacturers conveying specific details of the equipment. Given the wide variation in the interpretation of the French scale, our opinion is that this scale either needs to be abandoned or be strictly defined and followed.

  18. Medical Devices; Cardiovascular Devices; Classification of the Coronary Vascular Physiologic Simulation Software Device. Final order.

    PubMed

    2015-10-21

    The Food and Drug Administration (FDA) is classifying the coronary vascular physiologic simulation software device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the coronary vascular physiologic simulation software device's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:26495515

  19. Medical devices; hematology and pathology devices; classification of the Factor V Leiden DNA mutation detection systems devices. Final rule.

    PubMed

    2004-03-16

    The Food and Drug Administration (FDA) is classifying the Factor V Leiden deoxyribonucleic acid (DNA) mutation detections systems device into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Factor V Leiden DNA Mutation Detection Systems." The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (SMDA), the Food and Drug Administration Modernization Act of 1997 (FDAMA), and the Medical Device User Fee and Modernization Act of 2002. The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is the special control for this device. PMID:15025053

  20. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  1. Establishing a National Medical Device Registry in Saudi Arabia: Lessons Learned and Future Work.

    PubMed

    Al-Surimi, Khaled; Househ, Mowafa; Almohandis, Essam; Alshagathrh, Fahd

    2015-01-01

    Medical device evaluation presents several unique challenges due to the great diversity and complexity of medical devices and their rapid technological evolution. There has been a variety of work conducted on the development of disease based registries and health surveillance systems in Saudi Arabia. However, the progress of medical device registry systems and post-market medical device surveillance systems remains in its infancy in Saudi Arabia and within the region. In 2007, a royal decree assigned the responsibility for regulating medical devices to the Saudi Food and Drug Authority (SFDA). Soon afterwards, the SFDA established the Medical Devices National Registry (MDNR) to house medical device information relating to manufacturers, agents, suppliers and end-users. The aim of this paper is to provide an overview on the Medical Device National Registry (MDNR) in Saudi Arabia and describe the current experience and future work of establishing a comprehensive medical device registry and post-market surveillance system in Saudi Arabia. PMID:26152943

  2. Management information system of medical equipment using mobile devices

    NASA Astrophysics Data System (ADS)

    Núñez, C.; Castro, D.

    2011-09-01

    The large numbers of technologies currently incorporated into mobile devices transform them into excellent tools for capture and to manage the information, because of the increasing computing power and storage that allow to add many miscellaneous applications. In order to obtain benefits of these technologies, in the biomedical engineering field, it was developed a mobile information system for medical equipment management. The central platform for the system it's a mobile phone, which by a connection with a web server, it's capable to send and receive information relative to any medical equipment. Decoding a type of barcodes, known as QR-Codes, the management process is simplified and improved. These barcodes identified the medical equipments in a database, when these codes are photographed and decoded with the mobile device, you can access to relevant information about the medical equipment in question. This Project in it's actual state is a basic support tool for the maintenance of medical equipment. It is also a modern alternative, competitive and economic in the actual market.

  3. Use of transdermal drug formulations in the elderly.

    PubMed

    Kaestli, Laure-Zoé; Wasilewski-Rasca, Anne-Florence; Bonnabry, Pascal; Vogt-Ferrier, Nicole

    2008-01-01

    Transdermal drug delivery systems are pharmaceutical forms designed to administer a drug through the skin to obtain a systemic effect. They ensure a constant rate of drug administration and a prolonged action. Several different types of transdermal delivery devices are available on the market. They are either matrix or reservoir systems and their main current uses are to treat neurological disorders, pain and coronary artery disease, and as hormone replacement therapy. Transdermal drug administration has a number of advantages compared with the oral route: it avoids gastrointestinal absorption and hepatic first-pass metabolism, minimizes adverse effects arising from peak plasma drug concentrations and improves patient compliance. Compared with the parenteral route, transdermal administration entails no risk of infection. For elderly people, who are often polymedicated, transdermal drug delivery can be a good alternative route of administration. Transdermal absorption depends on passive diffusion through the different layers of the skin. As skin undergoes many structural and functional changes with increasing age, it would be useful to know whether these alterations affect the transdermal diffusion of drugs. Studies have shown that age-related changes in hydration and lipidic structure result in an increased barrier function of the stratum corneum only for relatively hydrophilic compounds. In practice, no significant differences in absorption of drugs from transdermal delivery systems have been demonstrated between young and old individuals. The need for dose adaptation in elderly patients using transdermal drug delivery systems is therefore not related to differences in skin absorption but rather to age-related cardiovascular, cerebral, hepatic and/or renal compromise, and to ensuing geriatric pharmacokinetic and pharmacodynamic changes. PMID:18361538

  4. 21 CFR 801.15 - Medical devices; prominence of required label statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; prominence of required label... SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.15 Medical devices... information, resulting from the use of label space for any word, statement, design, or device which is...

  5. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... devices. (a) In addition to labeling requirements in subchapter H of this chapter, when a medical device... medical devices. 610.42 Section 610.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... reactivity of the human blood or blood component in the medical device presents no significant health...

  6. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  7. 21 CFR 801.16 - Medical devices; Spanish-language version of certain required statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; Spanish-language version of... OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.16 Medical devices; Spanish-language version of certain required statements. If devices restricted...

  8. 21 CFR 801.15 - Medical devices; prominence of required label statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; prominence of required label... SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.15 Medical devices... information, resulting from the use of label space for any word, statement, design, or device which is...

  9. 21 CFR 801.116 - Medical devices having commonly known directions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices having commonly known directions... SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.116 Medical devices having commonly known directions. A device shall be exempt from section 502(f)(1) of the...

  10. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  11. 21 CFR 801.116 - Medical devices having commonly known directions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices having commonly known directions... SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.116 Medical devices having commonly known directions. A device shall be exempt from section 502(f)(1) of the...

  12. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; processing, labeling, or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Other Exemptions § 801.150 Medical devices... shipment or other delivery of a device which is, in accordance with the practice of the trade, to...

  13. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking,...

  14. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... devices. (a) In addition to labeling requirements in subchapter H of this chapter, when a medical device... medical devices. 610.42 Section 610.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... reactivity of the human blood or blood component in the medical device presents no significant health...

  15. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices for processing, repacking,...

  16. 21 CFR 801.15 - Medical devices; prominence of required label statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; prominence of required label... SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.15 Medical devices... information, resulting from the use of label space for any word, statement, design, or device which is...

  17. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; processing, labeling, or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Other Exemptions § 801.150 Medical devices... shipment or other delivery of a device which is, in accordance with the practice of the trade, to...

  18. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  19. 21 CFR 801.116 - Medical devices having commonly known directions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices having commonly known directions... SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.116 Medical devices having commonly known directions. A device shall be exempt from section 502(f)(1) of the...

  20. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  1. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; processing, labeling, or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Other Exemptions § 801.150 Medical devices... shipment or other delivery of a device which is, in accordance with the practice of the trade, to...

  2. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... devices. (a) In addition to labeling requirements in subchapter H of this chapter, when a medical device... medical devices. 610.42 Section 610.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... reactivity of the human blood or blood component in the medical device presents no significant health...

  3. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; processing, labeling, or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Other Exemptions § 801.150 Medical devices... shipment or other delivery of a device which is, in accordance with the practice of the trade, to...

  4. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... devices. (a) In addition to labeling requirements in subchapter H of this chapter, when a medical device... medical devices. 610.42 Section 610.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... reactivity of the human blood or blood component in the medical device presents no significant health...

  5. 21 CFR 801.16 - Medical devices; Spanish-language version of certain required statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; Spanish-language version of... OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.16 Medical devices; Spanish-language version of certain required statements. If devices restricted...

  6. 21 CFR 801.116 - Medical devices having commonly known directions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices having commonly known directions... SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.116 Medical devices having commonly known directions. A device shall be exempt from section 502(f)(1) of the...

  7. 21 CFR 801.16 - Medical devices; Spanish-language version of certain required statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; Spanish-language version of... OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.16 Medical devices; Spanish-language version of certain required statements. If devices restricted...

  8. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  9. 21 CFR 801.16 - Medical devices; Spanish-language version of certain required statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; Spanish-language version of... OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.16 Medical devices; Spanish-language version of certain required statements. If devices restricted...

  10. 21 CFR 610.42 - Restrictions on use for further manufacture of medical devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... devices. (a) In addition to labeling requirements in subchapter H of this chapter, when a medical device... medical devices. 610.42 Section 610.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... reactivity of the human blood or blood component in the medical device presents no significant health...

  11. 21 CFR 801.15 - Medical devices; prominence of required label statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; prominence of required label... SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.15 Medical devices... information, resulting from the use of label space for any word, statement, design, or device which is...

  12. 21 CFR 801.15 - Medical devices; prominence of required label statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; prominence of required label... SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.15 Medical devices... information, resulting from the use of label space for any word, statement, design, or device which is...

  13. 21 CFR 801.116 - Medical devices having commonly known directions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices having commonly known directions... SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.116 Medical devices having commonly known directions. A device shall be exempt from section 502(f)(1) of the...

  14. Medical Devices; Ophthalmic Devices; Classification of Nasolacrimal Compression Device. Final order.

    PubMed

    2016-06-10

    The Food and Drug Administration (FDA) is classifying the nasolacrimal compression device into class I (general controls). The Agency is classifying the device into class I (general controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:27295735

  15. Micro Computer Tomography for medical device and pharmaceutical packaging analysis.

    PubMed

    Hindelang, Florine; Zurbach, Raphael; Roggo, Yves

    2015-04-10

    Biomedical device and medicine product manufacturing are long processes facing global competition. As technology evolves with time, the level of quality, safety and reliability increases simultaneously. Micro Computer Tomography (Micro CT) is a tool allowing a deep investigation of products: it can contribute to quality improvement. This article presents the numerous applications of Micro CT for medical device and pharmaceutical packaging analysis. The samples investigated confirmed CT suitability for verification of integrity, measurements and defect detections in a non-destructive manner. PMID:25710902

  16. Validation of medical modeling & simulation training devices and systems.

    PubMed

    Magee, J Harvey

    2003-01-01

    For almost a decade, research has been conducted in many areas of science to develop medical simulation training devices and even comprehensive training systems. To propel the field, the Telemedicine and Advanced Technology Research Center (TATRC), an agency of the United States Army Medical Research Materiel Command (USAMRMC), has been managing a portfolio of research projects in the area of Medical Modeling and Simulation (MM&S) since 1999. Significant progress has made to identify and harness enabling technologies. Generally, these developments can be categorized in four areas: (1) PC-based interactive multimedia, (2) Digitally Enhanced Mannequins, (3) Virtual Workbench, or "part-task", simulators, and (4) Total Immersion Virtual Reality (TIVR). Many medical simulation-training systems have shown great potential to improve medical training, but the potential shown has been based largely on anecdotal feedback from informal user studies. Formal assessment is needed to determine the degree to which simulator(s) train medical skills and the degree to which skills learned on a simulator transfer to the practice of care. A robust methodology is required as a basis for these assessments. Several scientific workshops sponsored in 2001 focused on algorithm and metrics development in support of surgical simulation. Also in 2001, TATRC chartered a Simulation Working Group (SWG) to develop a robust methodology upon which to base an assessment of the effectiveness of simulation training devices and systems. After the terrorist attacks of September 11, 2001, attention was redirected for a period, and progress was delayed. In the summer of 2002, TATRC chartered a follow-on group called the Validation, Metrics and Simulation (VMAS) Committee. The poster will highlight and summarize the development of the methodology and identify validation studies to be conducted (supported by various funding sources and research programs). The interaction between TATRC and the National Capital

  17. Ethics considerations for medical device R&D.

    PubMed

    Citron, Paul

    2012-01-01

    Medical devices have emerged as an important clinical option to treat certain serious diseases for which there are no equivalently effective surgical or pharmaceutical alternatives. Although all clinical activities impose high ethical standards of comportment to protect patients, medical device R&D and product application have a number of relatively unique aspects that distinguish them from other technologies such as pharmaceuticals. These include the following: R&D project selection; regulatory requirements, and their intended and unintended effects; when is a new product design sufficiently safe and effective for routine use in patients; and, physician-industry relationships in the innovation process in the context of real or perceived conflict of interest (COI). Each of these factors has implications for the delivery of care, health care leadership, and patient well-being. PMID:23217435

  18. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power. PMID:19964948

  19. The medical device data language for the P1073 medical information bus standard.

    PubMed

    Wittenber, J; Shabot, M M

    1990-04-01

    A new object-oriented Medical Device Data Language (MDDL) has been developed by the P1073 Medical Information Bus (MIB) Standard Committee, under the auspices of the Engineering in Biology and Medicine Society (EMBS) of the Institute of Electronic and Electrical Engineers (IEEE). The MDDL treats devices, host computers, persons and parameters as objects, and provides methods for describing and passing messages between objects. An elegant method of specifying parameter attributes incorporates the inheritance and encapsulation qualities common to object-oriented languages. Existing standards for device, parameter and attribute nomenclatures are used to represent MDDL components whenever possible. The MDDL provides a rich and extensible method for standardized host-device communications. PMID:2373946

  20. Developing an equivalent to the National Medicines Policy for medical devices.

    PubMed

    Smith, Matthew W; Faunce, Thomas A

    2009-12-01

    While Australia has enjoyed the benefits of a National Medicines Policy (NMP) for many years, there is no equivalent national policy for medical devices. This is despite an established medical device legal framework that spans multiple departments across the Australian Government. The existing NMP offers an effective and proven benchmark for the development of a national medical devices policy. The four NMP principles of industry, standards, access and use are applicable to all phases of the medical device life-cycle and align with existing medical devices policy. This article proposes that Australia's approach to medical devices stands to benefit from an equivalent whole-of-government policy. PMID:20169801

  1. Perspectives on transdermal ultrasound mediated drug delivery

    PubMed Central

    Smith, Nadine Barrie

    2007-01-01

    The use of needles for multiple injection of drugs, such as insulin for diabetes, can be painful. As a result, prescribed drug noncompliance can result in severe medical complications. Several noninvasive methods exist for transdermal drug delivery. These include chemical mediation using liposomes and chemical enhancers or physical mechanisms such as microneedles, iontophoresis, electroporation, and ultrasound. Ultrasound enhanced transdermal drug delivery offers advantages over traditional drug delivery methods which are often invasive and painful. A broad review of the transdermal ultrasound drug delivery literature has shown that this technology offers promising potential for noninvasive drug administration. From a clinical perspective, few drugs, proteins or peptides have been successfully administered transdermally because of the low skin permeability to these relatively large molecules, although much work is underway to resolve this problem. The proposed mechanism of ultrasound has been suggested to be the result of cavitation, which is discussed along with the bioeffects from therapeutic ultrasound. For low frequencies, potential transducers which can be used for drug delivery are discussed, along with cautions regarding ultrasound safety versus efficacy. PMID:18203426

  2. Medical devices; reclassification of three anesthesiology preamendments class III devices into class II. Final rule.

    PubMed

    2001-11-15

    The Food and Drug Administration (FDA) is reclassifying three anesthesiology preamendments devices from class III (premarket approval) into class II (special controls). FDA is also identifying the special controls that the agency believes will reasonably ensure the safety and effectiveness of the devices. This reclassification is being undertaken on the agency's own initiative based on new information under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Safe Medical Devices Act of 1990 and the FDA Modernization Act of 1997. PMID:11776278

  3. Antimicrobial selenium nanoparticle coatings on polymeric medical devices

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; Webster, Thomas J.

    2013-04-01

    Bacteria colonization on medical devices remains one of the most serious complications following implantation. Traditional antibiotic treatment has proven ineffective, creating an increasingly high number of drug-resistant bacteria. Polymeric medical devices represent a significant portion of the total medical devices used today due to their excellent mechanical properties (such as durability, flexibility, etc). However, many polymers (such as polyvinyl chloride (PVC), polyurethane (PU) and silicone) become readily colonized and infected by bacteria immediately after use. Therefore, in this study, a novel antimicrobial coating was developed to inhibit bacterial growth on PVC, PU and silicone. Specifically, here, the aforementioned polymeric substrates were coated with selenium (Se) nanoparticles in situ. The Se-coated substrates were characterized using scanning electron microscopy, energy dispersive x-ray spectroscopy and bacteria assays. Most importantly, bacterial growth was significantly inhibited on the Se-coated substrates compared to their uncoated counterparts. The reduction of bacteria growth directly correlated with the density of Se nanoparticles on the coated substrate surfaces. In summary, these results demonstrate that Se should be further studied as a novel anti-bacterial polymeric coating material which can decrease bacteria functions without the use of antibiotics.

  4. Printable thermoelectric devices and conductive patterns for medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Kim, Hyunjung; Chen, Linfeng; Choi, Sang H.; Varadan, Vijay K.

    2012-10-01

    Remote point-of-care is expected to revolutionize the modern medical practice, and many efforts have been made for the development of wireless health monitoring systems for continuously detecting the physiological signals of patients. To make the remote point-of-care generally accepted and widely used, it is necessary to develop cost-effective and durable wireless health monitoring systems. Printing technique will be helpful for the fabrication of high-quality and low-cost medical devices and systems because it allows high-resolution and high-speed fabrication, low material consumption and nano-sized patterning on both flexible and rigid substrates. Furthermore, application of thermoelectric generators can replace conventional batteries as the power sources for wireless health monitoring systems because thermoelectric generators can convert the wasted heat or the heat from nature into electricity which is required for the operation of the wireless health monitoring systems. In this research, we propose the concept of printable thermoelectric devices and conductive patterns for the realization of more portable and cost-effective medical devices. To print thermoelectric generators and conductive patterns on substrates, printing inks with special characteristics should be developed. For the development of thermoelectric inks, nano-structured thermoelectric materials are synthesized and characterized; and for the development of conductive inks, two kinds of surface treated carbon nanotubes are used as active materials.

  5. Antimicrobial selenium nanoparticle coatings on polymeric medical devices.

    PubMed

    Tran, Phong A; Webster, Thomas J

    2013-04-19

    Bacteria colonization on medical devices remains one of the most serious complications following implantation. Traditional antibiotic treatment has proven ineffective, creating an increasingly high number of drug-resistant bacteria. Polymeric medical devices represent a significant portion of the total medical devices used today due to their excellent mechanical properties (such as durability, flexibility, etc). However, many polymers (such as polyvinyl chloride (PVC), polyurethane (PU) and silicone) become readily colonized and infected by bacteria immediately after use. Therefore, in this study, a novel antimicrobial coating was developed to inhibit bacterial growth on PVC, PU and silicone. Specifically, here, the aforementioned polymeric substrates were coated with selenium (Se) nanoparticles in situ. The Se-coated substrates were characterized using scanning electron microscopy, energy dispersive x-ray spectroscopy and bacteria assays. Most importantly, bacterial growth was significantly inhibited on the Se-coated substrates compared to their uncoated counterparts. The reduction of bacteria growth directly correlated with the density of Se nanoparticles on the coated substrate surfaces. In summary, these results demonstrate that Se should be further studied as a novel anti-bacterial polymeric coating material which can decrease bacteria functions without the use of antibiotics. PMID:23519147

  6. Medical devices; physical medicine devices; classification of the powered lower extremity exoskeleton; republication. Final order; republication.

    PubMed

    2015-05-01

    The Food and Drug Administration (FDA or the Agency) is republishing in its entirety a final order entitled ``Medical Devices; Physical Medicine Devices; Classification of the Powered Lower Extremity Exoskeleton'' that published in the Federal Register on February 24, 2015. FDA is republishing to correct an inadvertent omission of information. FDA is classifying the powered lower extremity exoskeleton into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the powered lower extremity exoskeleton's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:25985478

  7. 76 FR 16292 - Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 Medical Devices; Immunology and Microbiology... delegated to the Commissioner of Food and Drugs, 21 CFR part 866 is amended as follows: PART...

  8. 77 FR 19534 - Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ..., HHS. ACTION: Final rule; correction. SUMMARY: In the Federal Register of March 9, 2012 (76 FR 14272..., 301- 796-6694. SUPPLEMENTARY INFORMATION: In FR Doc. 2012-5675 appearing on page 14272 in the Federal... HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 Medical Devices; Immunology and...

  9. 76 FR 22322 - Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... (FDA) is correcting a final rule that appeared in the Federal Register of March 23, 2011 (76 FR 16292..., Rm. 3208, Silver Spring, MD 20993-0002, 301-796-9148. SUPPLEMENTARY INFORMATION: In FR Doc. 2011-6620... HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 Medical Devices; Immunology and...

  10. 77 FR 14272 - Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 Medical Devices; Immunology and Microbiology... delegated to the Commissioner of Food and Drugs, 21 CFR part 866 is amended as follows: PART...

  11. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. PMID:26403162

  12. Orthopedic medical devices: ethical questions, implant recalls and responsibility.

    PubMed

    Racine, Jennifer

    2013-06-01

    The hip replacement is a surgical procedure to replace the femoral head and acetabulum with prosthetic implants to improve function, increase mobility, and relieve pain caused by damage from disorders such as osteoarthritis and fractures. In recent years, we have seen several recalls of poorly functioning implant systems, most recently, the Johnson and Johnson (J&J) Articular Surface Replacement device. Product recalls are often the results of premature failure of implants requiring additional surgery to exchange the failed device. This raises many questions - technical, medical, regulatory, ethical, and legal - that ultimately put patients at risk, compromise confidence in medicine and regulatory agencies, and important relationships including those between the physician-patient and physician-industry. Where do the responsibilities lie for the patients' suffering, morbidity, and costs of removing the failed device? This article discusses the current recall of the J&J implant, the responsibilities of the manufacturer, surgeons, and the regulatory agency. PMID:23741723

  13. Transmitting patient and device data via GSM--central management for decentral mobile medical devices.

    PubMed

    Bachmor, T; Schöchlin, J; Bolz, A

    2002-01-01

    Equipping medical devices with long range telemetry opens completely new possibilities for emergency response, home care and remote diagnosis. Mobile communications nowadays seem to be a generally accepted part of our modern world, but bridging the gap between new (consumer-) technologies and medical devices still is a challenge today. Providing a telemetry link (GSM) is just the trivial part--ensuring security, reliability and service management are the more critical tasks that need to be addressed. Therefore, a complete system concept consists of an automatic fleet management (e.g. periodic device-initiated service calls) as well as customer relationship management (CRM), including technical service and a trouble-ticket system. PMID:12451860

  14. 75 FR 51829 - Public Workshop on Medical Devices and Nanotechnology: Manufacturing, Characterization, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... HUMAN SERVICES Food and Drug Administration Public Workshop on Medical Devices and Nanotechnology...) is announcing a public workshop entitled ``Medical Devices & Nanotechnology: Manufacturing... brief statement that describes your experience or expertise with nanotechnology. There will be a...

  15. 75 FR 391 - Medical Device Quality System Regulation Educational Forum on Risk Management Through the Product...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Medical Device Quality System Regulation Educational Forum... ``Medical Device Quality System Regulation Educational Forum on Risk Management through the Product...

  16. Improvised explosive devices: pathophysiology, injury profiles and current medical management.

    PubMed

    Ramasamy, A; Hill, A M; Clasper, J C

    2009-12-01

    The improvised explosive device (IED), in all its forms, has become the most significant threat to troops operating in Afghanistan and Iraq. These devices range from rudimentary home made explosives to sophisticated weapon systems containing high-grade explosives. Within this broad definition they may be classified as roadside explosives and blast mines, explosive formed pojectile (EFP) devices and suicide bombings. Each of these groups causeinjury through a number of different mechanisms and can result in vastly different injury profiles. The "Global War on Terror" has meant that incidents which were previously exclusively seen in conflict areas, can occur anywhere, and clinicians who are involved in emergency trauma care may be required to manage casualties from similar terrorist attacks. An understanding of the types of devices and their pathophysiological effects is necessary to allow proper planning of mass casualty events and to allow appropriate management of the complex poly-trauma casualties they invariably cause. The aim of this review article is to firstly describe the physics and injury profile from these different devices and secondly to present the current clinical evidence that underpins their medical management. PMID:20397601

  17. [The current situation and suggestions on the institutes for medical devices test in China].

    PubMed

    Yang, Xiaofang; Li, Xiaoliang; Mu, Ruihong; Wang, Chunren; Li, Jingli

    2014-01-01

    This paper introduces the current status of Chinese medical device testing and inspection institutes. There are 53 such institutions, including 10 national institutions. Medical device testing and inspection institutions service in government regulation and supervision of medical devices, playing a technique support role for medical devices from registration before appear on market to monitor and supervision after listing. Meanwhile, they are important practitioners of medical devices standardization work. Finally, put forward the current problems and countermeasures of the inspection institutes in order to facilitate the sustainable development of our national medical equipment. PMID:24839853

  18. [The management of implantable medical device and the application of the internet of things in hospitals].

    PubMed

    Zhou, Li; Xu, Liang

    2011-11-01

    Implantable medical device is a special product which belongs to medical devices. It not only possesses product characteristics in common, but also has specificity for safety and effectiveness. Implantable medical device must be managed by the relevant laws and regulations of the State Food and Drug Administration. In this paper, we have used cardiac pacemakers as an example to describe the significance of the management of implantable medical device products and the application of the internet of things in hospitals. PMID:22379772

  19. Medical devices; reclassification of six cardiovascular preamendments class III devices into class II. Final rule.

    PubMed

    2001-04-10

    The Food and Drug Administration (FDA) is reclassifying six cardiovascular pre amendments devices from class III (pre market approval) into class II (special controls). FDA is also identifying the special controls that the agency believes will reasonably ensure the safety and effectiveness of the devices. This reclassification is being undertaken on the agency's own initiative based on new information under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Safe Medical Devices Act of 1990 and the Food and Drug Administration Modernization Act of 1997. The agency is also revising the identification of one of the devices subject to this rule to simplify the classification regulation and is correcting a typographical error that was incorporated into the regulations. PMID:11721689

  20. Organisational impact: Definition and assessment methods for medical devices.

    PubMed

    Roussel, Christophe; Carbonneil, Cédric; Audry, Antoine

    2016-02-01

    Health technology assessment (HTA) is a rapidly developing area and the value of taking non-clinical fields into consideration is growing. Although the health-economic aspect is commonly recognised, evaluating organisational impact has not been studied nearly as much. The goal of this work was to provide a definition of organisational impact in the sector of medical devices by defining its contours and exploring the evaluation methods specific to this field. Following an analysis of the literature concerning the impact of technologies on organisations as well as the medical literature, and also after reviewing the regulatory texts in this respect, the group of experts identified 12 types of organisational impact. A number of medical devices were carefully screened using the criteria grid, which proved to be operational and to differentiate properly. From the analysis of the practice and of the methods described, the group was then able to derive a few guidelines to successfully evaluate organisational impact. This work shows that taking organisational impact into consideration may be critical alongside of the other criteria currently in favour (clinically and economically). What remains is to confer a role in the decision-making process on this factor and one that meets the economic efficiency principle. PMID:27080633

  1. 31 CFR 560.533 - Brokering sales of agricultural commodities, medicine, and medical devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commodities, medicine, and medical devices. 560.533 Section 560.533 Money and Finance: Treasury Regulations... Policy § 560.533 Brokering sales of agricultural commodities, medicine, and medical devices. (a) General... of agricultural commodities, medicine, and medical devices, provided that the sale and exportation...

  2. 31 CFR 560.533 - Brokering sales of agricultural commodities, medicine, and medical devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commodities, medicine, and medical devices. 560.533 Section 560.533 Money and Finance: Treasury Regulations... Policy § 560.533 Brokering sales of agricultural commodities, medicine, and medical devices. (a) General... agricultural commodities, medicine, and medical devices, provided that the sale and exportation...

  3. 37 CFR 1.777 - Calculation of patent term extension for a medical device.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension for a medical device. 1.777 Section 1.777 Patents, Trademarks, and Copyrights UNITED STATES PATENT... term extension for a medical device. (a) If a determination is made pursuant to § 1.750 that a patent for a medical device is eligible for extension, the term shall be extended by the time as...

  4. 37 CFR 1.777 - Calculation of patent term extension for a medical device.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension for a medical device. 1.777 Section 1.777 Patents, Trademarks, and Copyrights UNITED STATES PATENT... term extension for a medical device. (a) If a determination is made pursuant to § 1.750 that a patent for a medical device is eligible for extension, the term shall be extended by the time as...

  5. 77 FR 33469 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Collection; Comment Request; Medical Device User Fee Cover Sheet, Form FDA 3601 AGENCY: Food and Drug... notice solicits comments on Form FDA 3601, entitled ``Medical Device User Fee Cover Sheet,'' which must be submitted along with certain medical device product applications, supplements, and fee payment...

  6. 76 FR 7222 - Medical Device Innovation Initiative; Public Meeting; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... HUMAN SERVICES Food and Drug Administration Medical Device Innovation Initiative; Public Meeting... ``CDRH's Medical Device Innovation Initiative Public Workshop.'' The purpose of the public meeting is to...) document, ``Medical Device Innovation Initiative'' (report). FDA is seeking input on a number of...

  7. 76 FR 36989 - Medical Devices; Exception From General Requirements for Informed Consent

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 50 Medical Devices; Exception From General... interim final rule (IFR) entitled ``Medical Devices; Exception From General Requirements for Informed... medical devices under 21 U.S.C. 360k. Papike v. Tambrands, Inc., 107 F.3d 737, 740-42 (9th Cir. 1997)....

  8. 21 CFR 801.125 - Medical devices for use in teaching, law enforcement, research, and analysis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for use in teaching, law..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.125 Medical devices for use in teaching, law enforcement, research, and analysis....

  9. 75 FR 58414 - Dental Products Panel of the Medical Devices Advisory Committee; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... HUMAN SERVICES Food and Drug Administration Dental Products Panel of the Medical Devices Advisory... Medical Devices Advisory Committee. This meeting was announced in the Federal Register of June 11, 2010... announced that a meeting of the Dental Products Panel of the Medical Devices Advisory Committee would...

  10. 21 CFR 801.125 - Medical devices for use in teaching, law enforcement, research, and analysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices for use in teaching, law..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING Exemptions From Adequate Directions for Use § 801.125 Medical devices for use in teaching, law enforcement, research, and analysis....

  11. 37 CFR 1.777 - Calculation of patent term extension for a medical device.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extension for a medical device. 1.777 Section 1.777 Patents, Trademarks, and Copyrights UNITED STATES PATENT... term extension for a medical device. (a) If a determination is made pursuant to § 1.750 that a patent... patent for a medical device will be extended by the length of the regulatory review period for...

  12. 37 CFR 1.777 - Calculation of patent term extension for a medical device.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extension for a medical device. 1.777 Section 1.777 Patents, Trademarks, and Copyrights UNITED STATES PATENT... term extension for a medical device. (a) If a determination is made pursuant to § 1.750 that a patent... patent for a medical device will be extended by the length of the regulatory review period for...

  13. 78 FR 12067 - Extreme Weather Effects on Medical Device Safety and Quality

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... HUMAN SERVICES Food and Drug Administration Extreme Weather Effects on Medical Device Safety and Quality... medical device safety and quality. FDA is announcing at this time its request for comments on the topic of extreme weather effects on medical device safety and quality. DATES: Submit either electronic or...

  14. Assessment and non-clinical impact of medical devices.

    PubMed

    Dervaux, Benoît; Szwarcensztein, Karine; Josseran, Anne; Barna, Alexandre; Carbonneil, Cédric; Chevrie, Karine; Debroucker, Frédérique; Grumblat, Anne; Grumel, Olivier; Massol, Jacques; Maugendre, Philippe; Méchin, Hubert; Orlikowski, David; Roussel, Christophe; Rumeau-Pichon, Catherine; Sales, Jean-Patrick; Vicaut, Eric

    2015-01-01

    Medical devices (MDs) cover a wide variety of products. They accompany changes in medical practice in step with technology innovations. Innovations in the field of MDs can improve the conditions of use of health technology and/or modify the organisation of care beyond the strict diagnostic or therapeutic benefit for the patients. However, these non purely clinical criteria seem to be only rarely documented or taken into account in the assessment of MDs during reimbursement decisions at national level or for formulary listing by hospitals even though multidimensional models for the assessment of health technologies have been developed that take into account the views of all stakeholders in the healthcare system In this article, after summarising the background concerning the assessment of health technologies in France, a definition of non-clinical criteria for the assessment of MDs is proposed and a decision tree for the assessment of MDs is described. Future lines of approach are proposed as a conclusion. PMID:25747839

  15. Development of medical electronic devices in the APL space department

    NASA Technical Reports Server (NTRS)

    Newman, A. L.

    1985-01-01

    Several electronic devices for automatically correcting specific defects in a body's physiologic regulation and allowing approximately normal functioning are described. A self-injurious behavior inhibiting system (SIBIS) is fastened to the arm of a person with chronic self-injurious behavior patterns. An electric shock is delivered into the arm whenever the device senses above-threshold acceleration of the head such as occur with head-bangers. Sounding a buzzer tone with the shock eventually allows transference of the aversive stimulus to the buzzer so shocks are no longer necessary. A programmable implantable medication system features a solenoid pump placed beneath the skin and refueled by hypodermic needle. The pump functions are programmable and can deliver insulin, chemotherapy mixes and/or pain killers according to a preset schedule or on patient demand. Finally, an automatic implantible defibrillator has four electrodes attached directly to the heart for sensing electrical impulses or emitting them in response to cardiac fibrillation.

  16. Navigating conflicts of interest for the medical device entrepreneur.

    PubMed

    Donovan, Aine; Kaplan, Aaron V

    2012-01-01

    The past fifty years has witnessed dramatic progress in the understanding and treatment of patients suffering from cardiovascular disease leading to symptomatic relief and impressive increases in longevity. These advances have been due in large part to the development, study and implementation of new technology. Within interventional cardiology in particular, these advances have been driven by the availability of new technology in the form of medical devices. Successful device development efforts require close collaboration among basic scientist, clinician-inventors/entrepreneurs, clinician-investigators and corporations. Though the role of the clinician is central to this process, these activities present important conflicts-of-interest (COIs). The purpose of this paper is to 1) characterize these conflicts, 2) provide a context from which to approach their management and 3) recommend management strategies. PMID:23217436

  17. Perspectives on Transdermal Electroporation.

    PubMed

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  18. Perspectives on Transdermal Electroporation

    PubMed Central

    Ita, Kevin

    2016-01-01

    Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases. PMID:26999191

  19. Challenges to validation of a complex nonsterile medical device tray.

    PubMed

    Prince, Daniel; Mastej, Jozef; Hoverman, Isabel; Chatterjee, Raja; Easton, Diana; Behzad, Daniela

    2014-01-01

    Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers. PMID:25046511

  20. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  1. 78 FR 21612 - Medical Device Classification Product Codes; Guidance for Industry and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ...The Food and Drug Administration (FDA) is announcing the availability of the guidance entitled ``Medical Device Classification Product Codes.'' This document describes how device product codes are used in a variety of FDA program areas to regulate and track medical devices regulated by the Center for Devices and Radiological Health (CDRH) and the Center for Biologics Evaluation and Research......

  2. Safety and cleaning of medical materials and devices.

    PubMed

    Merritt, K; Hitchins, V M; Brown, S A

    2000-01-01

    A study was undertaken to evaluate different procedures to safely remove microorganisms, protein, and mammalian cells from materials and provide a suitable method for cleaning and assessing effectiveness of cleaning medical devices for reuse or for analysis of failure. Safety considerations for the personnel performing the cleaning or handling the device after cleaning are important issues. Polystyrene plates (96 well) were used to simulate device surfaces not amenable to manual scrubbing. Staphylococcus epidermidis, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and oral flora were grown in the plates. The plates were stained with crystal violet and the optical densities recorded. The results indicated that E. coli did not adhere well and Pseudomonas formed clumps that were easily detached from the surface of the plates. However, S. epi, C. albicans, and the oral organisms formed adherent biofilms that were difficult to remove from the plates. Detergents with enzymes and sodium hypochlorite (NaOCl) bleach were both effective in removing the biofilm. Other detergents and surfactants were not effective. The aldehyde agents did not remove the organisms and made further cleaning difficult. Allowing the biofilm to dry first made cleaning very difficult. Only the NaOCl bleach could subsequently remove the dried or aldehyde fixed organisms from the wells. The same 96-well polystyrene plate format was used to measure the amount of protein and cell adherence as well as the effectiveness of subsequent cleaning. Bradford reagent was used to detect protein as a measure of the cleaning efficacy. As with the bacteria, NaOCl bleach was effective at removing the protein and cells that had been dried or fixed by formalin or alcohol, whereas detergent with enzymes was not very effective. This study confirmed that used medical devices, contaminated with microorganisms, protein, and/or mammalian cells, should not be allowed to dry before cleaning and that a thorough

  3. Medical devices; gastroenterology-urology devices; classification of the ingestible telemetric gastrointestinal capsule imaging system. Final rule.

    PubMed

    2002-01-24

    The Food and Drug Administration (FDA) is classifying the ingestible telemetric gastrointestinal capsule imaging system device into class II (special controls). The special controls that will apply to this device are set forth below. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:11820252

  4. Effectiveness of adverse effects search filters: drugs versus medical devices

    PubMed Central

    Farrah, Kelly; Mierzwinski-Urban, Monika; Cimon, Karen

    2016-01-01

    Objective The study tested the performance of adverse effects search filters when searching for safety information on medical devices, procedures, and diagnostic tests in MEDLINE and Embase. Methods The sensitivity of 3 filters was determined using a sample of 631 references from 131 rapid reviews related to the safety of health technologies. The references were divided into 2 sets by type of intervention: drugs and nondrug health technologies. Keyword and indexing analysis were performed on references from the nondrug testing set that 1 or more of the filters did not retrieve. Results For all 3 filters, sensitivity was lower for nondrug health technologies (ranging from 53%–87%) than for drugs (88%–93%) in both databases. When tested on the nondrug health technologies set, sensitivity was lower in Embase (ranging from 53%–81%) than in MEDLINE (67%–87%) for all filters. Of the nondrug records that 1 or more of the filters missed, 39% of the missed MEDLINE records and 18% of the missed Embase records did not contain any indexing terms related to adverse events. Analyzing the titles and abstracts of nondrug records that were missed by any 1 filter, the most commonly used keywords related to adverse effects were: risk, complications, mortality, contamination, hemorrhage, and failure. Conclusions In this study, adverse effects filters were less effective at finding information about the safety of medical devices, procedures, and tests compared to information about the safety of drugs. PMID:27366123

  5. Monitoring biofilm attachment on medical devices surfaces using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Hitchins, Victoria M.; Ilev, Ilko K.; Kim, Do-Hyun

    2014-02-01

    Microbial biofilm is a colony of single bacteria cells (planktonic) that attached to surfaces, attract other microorganisms to attach and grow, and together they build an extracellular matrix composed of polysaccharides, protein, and DNA. Eventually, some cells will detach and spread to other surface. Biofilm on medical devices can cause severe infection to all age ranges from infant to adult. Therefore, it is important to detect biofilm in a fast and efficient manner. Hyperspectral imaging was utilized for distinguishing wide area of biofilm coverage on various materials and on different textures of stainless steeltest coupons. Not only is the coverage of biofilm important, but also the shear stress of biofilm on the attached surfaces is significant. This study investigates the effects of shear stress on the adhesion of biofilms on common medical device surfaces such as glass, polycarbonate, polytetrafluoroethylene, and stainless steel with different textures. Biofilm was grown using Ps. aeruginosa and growth was monitored after 24 and 48 hours at 37° C. The coupons covered with biofilm were tilted at 45 degrees and 90 degrees for 30 seconds to induce shear stress and Hyperspectral images were taken. We hypothesize that stronger attachment on rough surface would be able to withstand greater shear stress compared to smooth surface.

  6. Thermally Stable and Sterilizable Polymer Transistors for Reusable Medical Devices.

    PubMed

    Kyaw, Aung Ko Ko; Jamalullah, Feroz; Vaithieswari, Loga; Tan, Mein Jin; Zhang, Lian; Zhang, Jie

    2016-04-20

    We realize a thermally stable polymer thin film transistor (TFT) that is able to endure the standard autoclave sterilization for reusable medical devices. A thermally stable semiconducting polymer poly[4-(4,4-dihexadecyl-4Hcyclopenta[1,2-b:5,4-b]dithiophen-2-yl)-alt[1,2,5]thiadiazolo [3,4c] pyridine], which is stable up to 350 °C in N2 and 200 °C in air, is used as channel layer, whereas the biocompatible SU-8 polymer is used as a flexible dielectric layer, in addition to conventional SiO2 dielectric layer. Encapsulating with in-house designed composite film laminates as moisture barrier, both TFTs using either SiO2 or SU-8 dielectric layer exhibit good stability in sterilized conditions without significant change in mobility and threshold voltage. After sterilization for 30 min in autoclave, the mobility drops only 15%; from as-fabricated mobility of 1.4 and 1.3 cm(2) V(-1) s(-1) to 1.2 and 1.1 cm(2) V(-1) s(-1) for TFTs with SiO2 and SU-8 dielectric layer, respectively. Our TFT design along with experimental results reveal the opportunity on organic/polymer flexible TFTs in sterilizable/reusable medical device application. PMID:27039992

  7. Practical pathology perspectives for minimally invasive hyperthermic medical devices

    NASA Astrophysics Data System (ADS)

    Coad, James E.

    2011-03-01

    Currently, hyperthermic-based minimally invasive medical devices are available for the treatment of dysfunctional and neoplastic tissues in a variety of organ systems. These therapies employ a spectrum of modalities for delivering heat energy to the targeted tissue, including radiofrequency/microwave, high intensity focused ultrasound, conductive/convective sources and others. While differences in energy transfer and organ systems exist, hyperthermic treatment sites show a spectrum of changes that intimately correlate with the thermal history generated in the tissue (temperature-time dependence). As a result, these hyperthermic medical technologies can be viewed using a "gradient" approach. First, the thermal applications themselves can be globally categorized along a high-dose ablation to low-dose ablation to lowdose non-ablative rejuvenating slope. Second, the resultant tissue changes can be viewed along a decreasing thermal dose gradient from thermally/heat-fixed tissue necrosis to coagulative tissue necrosis to partial tissue necrosis (transition zone) to subtle non-necrotizing tissue changes. Finally, a gradient of cellular and structural protein denaturation is present, especially within the transition zone and adjacent viable tissue region. A hyperthermic treatment's location along these gradients depends more on the overall thermal history it generates than the amount of energy it deposits into the tissue. The features of these gradients are highlighted to provide a better understanding of hyperthermic device associated tissue changes and their associated healing responses.

  8. [Industry regulation and its relationship to the rapid marketing of medical devices].

    PubMed

    Matsuoka, Atsuko

    2012-01-01

    In the market of medical devices, non-Japanese products hold a large part even in Japan. To overcome this situation, the Japanese government has been announcing policies to encourage the medical devices industry, such as the 5-year strategy for medical innovation (June 6, 2012). The Division of Medical Devices has been contributing to rapid marketing of medical devices by working out the standards for approval review and accreditation of medical devices, guidances on evaluation of medical devices with emerging technology, and test methods for biological safety evaluation of medical devices, as a part of practice in the field of regulatory science. The recent outcomes are 822 standards of accreditation for Class II medical devices, 14 guidances on safety evaluation of medical devices with emerging technology, and the revised test methods for biological safety evaluation (MHLW Notification by Director, OMDE, Yakushokuki-hatsu 0301 No. 20 "Basic Principles of Biological Safety Evaluation Required for Application for Approval to Market Medical Devices"). PMID:23243983

  9. Transdermal Diagnosis of Malaria Using Vapor Nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina; Bezek, Sarah; Szigeti, Reka; Khodarev, Alexander; Kelley, Thomas; Hurrell, Andrew; Berba, Michail; Kumar, Nirbhay; D'Alessandro, Umberto; Lapotko, Dmitri

    2015-07-01

    A fast, precise, noninvasive, high-throughput, and simple approach for detecting malaria in humans and mosquitoes is not possible with current techniques that depend on blood sampling, reagents, facilities, tedious procedures, and trained personnel. We designed a device for rapid (20-second) noninvasive diagnosis of Plasmodium falciparum infection in a malaria patient without drawing blood or using any reagent. This method uses transdermal optical excitation and acoustic detection of vapor nanobubbles around intraparasite hemozoin. The same device also identified individual malaria parasite-infected Anopheles mosquitoes in a few seconds and can be realized as a low-cost universal tool for clinical and field diagnoses. PMID:26079141

  10. Transdermal Diagnosis of Malaria Using Vapor Nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Bezek, Sarah; Szigeti, Reka; Khodarev, Alexander; Kelley, Thomas; Hurrell, Andrew; Berba, Michail; Kumar, Nirbhay; D’Alessandro, Umberto

    2015-01-01

    A fast, precise, noninvasive, high-throughput, and simple approach for detecting malaria in humans and mosquitoes is not possible with current techniques that depend on blood sampling, reagents, facilities, tedious procedures, and trained personnel. We designed a device for rapid (20-second) noninvasive diagnosis of Plasmodium falciparum infection in a malaria patient without drawing blood or using any reagent. This method uses transdermal optical excitation and acoustic detection of vapor nanobubbles around intraparasite hemozoin. The same device also identified individual malaria parasite–infected Anopheles mosquitoes in a few seconds and can be realized as a low-cost universal tool for clinical and field diagnoses. PMID:26079141

  11. 76 FR 42713 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee. This meeting was announced in the Federal Register of July 7, 2011 (76 FR 39882). The amendment is being made to reflect a... HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the...

  12. 75 FR 61507 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee. This meeting was announced in the Federal Register of August 16, 2010 (75 FR 49940). The amendment is being made to reflect a... HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the...

  13. 76 FR 65200 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee scheduled for December 1, 2011. The meeting was announced in the Federal Register of Friday, October 7, 2011 (76 FR 62419). The... HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the...

  14. EDI system definition for a European medical device vigilance system.

    PubMed

    Doukidis, G; Pallikarakis, N; Pangalos, G; Vassilacopoulos, G; Pramataris, K

    1996-01-01

    EDI is expected to be the dominant form of business communication between organizations moving to the Electronic Commerce era of 2000. The healthcare sector is already using EDI in the hospital supply function as well as in the clinical area and the reimbursement process. In this paper, we examine the use of EDI in the healthcare administration sector and more specifically its application to the Medical Device Vigilance System. Firstly, the potential of this approach is examined, followed by the definition of the EDI System Reference Model and the specification of the required system architecture. Each of the architecture's components are then explained in more detail, followed by the most important implementation options relating to them. PMID:9062886

  15. Large Eddy Simulation of FDA's Idealized Medical Device.

    PubMed

    Delorme, Yann T; Anupindi, Kameswararao; Frankel, Steven H

    2013-12-01

    A hybrid large eddy simulation (LES) and immersed boundary method (IBM) computational approach is used to make quantitative predictions of flow field statistics within the Food and Drug Administration's (FDA) idealized medical device. An in-house code is used, hereafter (W enoHemo(™) ), that combines high-order finite-difference schemes on structured staggered Cartesian grids with an IBM to facilitate flow over or through complex stationary or rotating geometries and employs a subgrid-scale (SGS) turbulence model that more naturally handles transitional flows [2]. Predictions of velocity and wall shear stress statistics are compared with previously published experimental measurements from Hariharan et al. [6] for the four Reynolds numbers considered. PMID:24187599

  16. Pediatric medical devices: a look at significant US legislation to address unmet needs.

    PubMed

    Samuels-Reid, Joy H; Blake, Erica D

    2014-03-01

    There are many barriers to the availability of medical devices intended for the pediatric population causing healthcare providers to use creative measures to address pediatric unmet device needs. The USA has taken significant legislative measures to spur medical device development and address the unmet needs in all pediatric subpopulations. For example, the Medical Device User Fee and Modernization Act of 2002 amended the Federal Food Drug and Cosmetic Act by adding new provisions intended to promote the development of safe and effective pediatric devices, and to protect the pediatric population during clinical trials. In 2004, the Medical Devices Technical Corrections Act was added to address potential difficulties in bringing pediatric devices to the market. Further, the Pediatric Medical Device Safety and Improvement Act of 2007 and the Food and Drug Administration Amendments Act of 2007 provided the FDA significant new responsibilities and authorities regarding pediatric use. PMID:24387679

  17. 78 FR 41069 - Medical Device Reporting for Manufacturers; Draft Guidance for Industry and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ...The Food and Drug Administration (FDA) is announcing the availability of the draft guidance entitled ``Medical Device Reporting for Manufacturers.'' This draft guidance describes and explains the current FDA regulation that addresses reporting and recordkeeping requirements applicable to manufacturers of medical devices for certain device-related adverse events. This draft guidance is intended......

  18. 76 FR 14028 - Center for Devices and Radiological Health 510(k) Implementation: Online Repository of Medical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND...) Implementation: Online Repository of Medical Device Labeling, Including Photographs; Public Meeting AGENCY: Food... of an Online Repository of Medical Device Labeling and of Making Device Photographs Available in...

  19. 21 CFR 801.16 - Medical devices; Spanish-language version of certain required statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; Spanish-language version of....16 Medical devices; Spanish-language version of certain required statements. If devices restricted to... Spanish is the predominant language, such labeling is authorized under § 801.15(c)....

  20. 21 CFR 803.15 - How will I know if you require more information about my medical device report?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... about my medical device report? 803.15 Section 803.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING General Provisions § 803.15 How will I know if you require more information about my medical device report? (a)...

  1. 21 CFR 803.15 - How will I know if you require more information about my medical device report?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... about my medical device report? 803.15 Section 803.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING General Provisions § 803.15 How will I know if you require more information about my medical device report? (a)...

  2. 21 CFR 803.15 - How will I know if you require more information about my medical device report?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... about my medical device report? 803.15 Section 803.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING; (Eff. Until 8... public health requires additional or clarifying information for medical device reports submitted to...

  3. Safe Medical Devices Act: management guidance for hospital compliance with the new FDA requirements.

    PubMed

    Alder, H C

    1993-10-01

    The Safe Medical Devices Act of 1990 (Public Law 101-629) was signed by President George Bush almost three years ago on November 28, 1990. The law expanded the Food and Drug Administration's (FDA) authority to regulate medical devices and grew out of congressional concerns about the FDA's ability to quickly learn when a medical device caused an adverse patient event, and to ensure that hazardous devices are removed from hospitals and other health care facilities in a timely manner. The Safe Medical Devices Act is an extension of the Medical Device Amendments of 1976, which imposed production, distribution, and sales rules on medical device manufacturers. It gives the FDA the legal authority to directly regulate the use of medical devices in health care facilities. Among the Safe Medical Devices Act's provisions are specific requirements for hospitals, health professionals, and other users of medical devices to report patient incidents involving medical devices to the manufacturer and to the FDA if a device caused or contributed to a serious injury, death, or other "adverse experience." Adverse experiences are defined by the FDA to include concussions, fractures, burns, temporary paralysis, and temporary loss of sight, hearing, or smell. Hospitals have been required to comply with this provision of the law, called user reporting, since 1991. Hospitals are also required to participate in tracking certain medical devices whose failure could result in a serious adverse health outcome. The law requires distributors and manufacturers of specific devices to adopt a method for device tracking. Hospitals are required to cooperate with and provide device manufacturers with information about patients with permanently implantable devices and life-sustaining and life-supporting devices used outside device user facilities. The law also gives the FDA the authority to designate other devices subject to tracking if the agency determines such tracking is warranted to preserve the

  4. 78 FR 46970 - Medical Device User Fee Rates for Fiscal Year 2014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ...The Food and Drug Administration (FDA) is announcing the fee rates and payment procedures for medical device user fees for fiscal year (FY) 2014. The Federal Food, Drug, and Cosmetic Act (the FD&C Act), as amended by the Medical Device User Fee Amendments of 2012, which was signed by the President on July 9, 2012 (MDUFA III), authorizes FDA to collect user fees for certain medical device......

  5. Varying the Wear Time of the Methylphenidate Transdermal System in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Wilens, Timothy E.; Boellner, Samuel W.; Lopez, Frank A.; Turnbow, John M.; Wigal, Sharon B.; Childress, Ann C.; Abikoff, Howard B.; Manos, Michael J.

    2008-01-01

    A study investigated the impact of variable wear times of the methylphenidate transdermal system in children with attention-deficit/hyperactivity disorder (ADHD). It was concluded that duration of medication effect was directly related to the wear time of the methylphenidate transdermal system patch.

  6. 77 FR 26769 - Educational Forum on Medical Device Reporting, Complaint Files, and Recalls, Corrections, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Educational Forum on Medical Device Reporting, Complaint... Device Industry Coalition (FMDIC), is announcing a public workshop entitled ``Educational Forum...

  7. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges

    PubMed Central

    Ita, Kevin

    2015-01-01

    Transdermal drug delivery offers a number of advantages including improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. However, only few medications can be delivered through the transdermal route in therapeutic amounts. Microneedles can be used to enhance transdermal drug delivery. In this review, different types of microneedles are described and their methods of fabrication highlighted. Microneedles can be fabricated in different forms: hollow, solid, and dissolving. There are also hydrogel-forming microneedles. A special attention is paid to hydrogel-forming microneedles. These are innovative microneedles which do not contain drugs but imbibe interstitial fluid to form continuous conduits between dermal microcirculation and an attached patch-type reservoir. Several microneedles approved by regulatory authorities for clinical use are also examined. The last part of this review discusses concerns and challenges regarding microneedle use. PMID:26131647

  8. [The German Medical Devices Information System containing over 100,000 documents].

    PubMed

    Laby, R; Hummel, P

    2009-06-01

    The legal foundations, the aims, and the set up of the German Medical Devices Information System are presented. The functioning of the online registration system is demonstrated on hand of the electronic reports relating to certification with respect to section sign 18 Medical Devices Act (MPG). Using the email-based message system, the electronic routes for information are explained. The large amount of data in the medical devices database illustrates the high performance of the continuously developing information system. The future national and European perspectives of the German Medical Devices Information System are described. PMID:19458914

  9. Designing medical devices for conformance with harmonized standards: a case study of non-active implants.

    PubMed

    Gogins, J A

    1995-01-01

    The European Community's Medical Devices Directives represent an ambitious effort to streamline the regulation of medical devices within the European Economic Area, an area comprising more than 380 million people. In this, the second of two special reports, Jean A. Goggins uses a case study format to demonstrate the process that would be used to gain European approval for a hypothetical medical device. In the first report, appearing on page 284, Richard C. Fries and Mark D. Graber describe the Medical Devices Directives and their effect on the product-development process. PMID:7550496

  10. Medical devices; exemption from premarket notification and reserved devices; class I. Food and Drug Administration, HHS. Final rule.

    PubMed

    2000-01-14

    The Food and Drug Administration (FDA) is amending its classification regulations to designate class I devices that are exempt from the premarket notification requirements, subject to certain limitations, and to designate those class I devices that remain subject to premarket notification requirements under the new statutory criteria for premarket notification requirements. The devices FDA is designating as exempt do not include class I devices that have been previously exempted by regulation from the premarket notification requirements. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (SMDA), and the FDA Modernization Act of 1997 (FDAMA). FDA is taking this action in order to implement a requirement of FDAMA. Elsewhere in this issue of the Federal Register, FDA is announcing that it is withdrawing proposed rules to revoke existing exemptions from premarket notification for two devices. PMID:11010655

  11. Effective use of transdermal drug delivery in children.

    PubMed

    Delgado-Charro, M Begoña; Guy, Richard H

    2014-06-01

    Transdermal administration offers a non-invasive and convenient method for paediatric drug delivery. The competent skin barrier function in term infants and older children limits both water loss and the percutaneous entry of chemicals including drugs; but the smaller doses required by children eases the attainment of therapeutic concentrations. Transdermal patches used in paediatrics include fentanyl, buprenorphine, clonidine, scopolamine, methylphenidate, oestrogens, nicotine and tulobuterol. Some patches have paediatric labelling supported by clinical trials whereas others are used unlicensed. Innovative drug delivery methods, such as microneedles and sonophoresis are being tested for their safety and efficacy; needleless injectors are primarily used to administer growth hormone; and two iontophoretic devices were approved for paediatrics. In contrast, the immature and rapidly evolving skin barrier function in premature neonates represents a significant formulation challenge. Unfortunately, this population group suffers from an absence of approved transdermal formulations, a shortcoming exacerbated by the significant risk of excessive drug exposure via the incompletely formed skin barrier. PMID:24333231

  12. Devices for medical diagnosis with GaN lasers

    NASA Astrophysics Data System (ADS)

    Kwasny, Miroslaw; Mierczyk, Zygmunt

    2003-10-01

    This paper presents laser-induced fluroescence method (LIF) employing endogenous ("autofluroescence") and exogenous fluorophores. LIF is applied for clinical diagnosis in dermatology, gynaecology, urology, lung tumors as well as for early dentin caries. We describe the analysers with He-Ne, He-Cd, and SHG Nd:YAG lasers and new generation systems based on blue semiconductor GaN lasers that have been implemented into clinical practice till now. The LIF method, fundamental one for many medical applications, with excitation radiation of wavelength 400 nm could be appl,ied only using tunable dye lasers or titanium lasers adequte for laboratory investigations. Development of GaN laser shows possibility to design portable, compact diagnostic devices as multi-channel analysers of fluorescence spectra and surface imaging devoted to clinical application. The designed systems used for spectra measurement and registration of fluorescence images include lasers of power 5-30 mW and generate wavelengths of 405-407 nm. They are widely used in PDT method for investigation of superficial distribution of accumulation kinetics of all known photosensitizers, their elimination, and degradation as well as for treatment of superficial lesions of mucosa and skin. Excitation of exogenous porphrins in Soret band makes possible to estimate their concentration and a period of healthy skin photosensitivity that occurs after photosensitiser injections. Due to high sensitivity of spectrum analysers, properties of photosensitisers can be investigated in vitro (e.g. their aggregation, purity, chromatographic distributions) when their concentrations are 2-3 times lower in comparison to concentrations investigated with typical spectrofluorescence methods. Dentistry diagnosis is a new field in which GaN laser devices can be applied. After induction with blue light, decreased autofluorescence intensity can be observed when dentin caries occur and strong characteristic bands of endogenous porphyrines

  13. Older Adults’ Satisfaction with a Medication Dispensing Device in Home Care

    PubMed Central

    Demiris, George; Marek, Karen D.

    2014-01-01

    Introduction Older adults with multiple chronic conditions face the complex task of medication management involving multiple medications of varying doses at different times. Advances in telehealth technologies have resulted in home-based devices for medication management and health monitoring of older adults. We examined older adults’ perceptions of a telehealth medication dispensing device as part of a clinical trial involving home health care clients, nurse coordination and use of the medication dispensing device. Methods Ninety-six frail older adult participants who used the medication dispensing device for 12 months completed a satisfaction survey related to perceived usefulness and reliability. Results were analyzed and grouped by themes in the following areas: Ease of Use, Reliability, Medication Management Assistance, Routine Task Performance and Acceptability. Results Nearly all participants perceived the medication dispensing device as very easy to use, very reliable and helpful in management of their medications. Eighty-four percent of participants expressed a desire to use the machine in the future. Conclusion The technology-enhanced medication management device in this study is an acceptable tool for older adults to manage medication in collaboration with home care nurses. Improved usability and cost models for medication dispensers are areas for future research. Trial Registration clinicaltrials.gov identifier: NCT01321853 PMID:23323721

  14. The potential of medical device industry in technological and economical context.

    PubMed

    Maresova, Petra; Penhaker, Marek; Selamat, Ali; Kuca, Kamil

    2015-01-01

    The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union's macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow. PMID:26491337

  15. The potential of medical device industry in technological and economical context

    PubMed Central

    Maresova, Petra; Penhaker, Marek; Selamat, Ali; Kuca, Kamil

    2015-01-01

    The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union’s macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow. PMID:26491337

  16. Innovative delivery systems for migraine: the clinical utility of a transdermal patch for the acute treatment of migraine.

    PubMed

    Rapoport, Alan M; Freitag, Fred; Pearlman, Starr H

    2010-11-01

    . These studies also suggest that, by avoiding patient exposure to a rapid rise in and high plasma concentrations of sumatriptan as seen with injectable sumatriptan, transdermal delivery using iontophoresis may significantly reduce typical triptan-related adverse events. A large, randomized, double-blind, placebo-controlled, multicentre clinical trial showed statistically significant efficacy, good tolerability and virtually no triptan-related adverse events. Iontophoretic delivery of sumatriptan, with a novel transdermal patch device, offers patients a migraine-specific medication that is non-invasive and non-oral. Clinically, transdermal delivery provides rapid and effective relief of migraine while bypassing the gastrointestinal tract, with minimal classic triptan-related adverse effects. This unique approach facilitates the rapid absorption of this migraine-specific triptan, which should improve the chances of consistently achieving a therapeutic plasma concentration of sumatriptan, resulting in effective migraine relief. PMID:20932065

  17. Online Medical Device Use Prediction: Assessment of Accuracy.

    PubMed

    Maktabi, Marianne; Neumuth, Thomas

    2016-01-01

    Cost-intensive units in the hospital such as the operating room require effective resource management to improve surgical workflow and patient care. To maximize efficiency, online management systems should accurately forecast the use of technical resources (medical instruments and devices). We compare several surgical activities like using the coagulator based on spectral analysis and application of a linear time variant system to obtain future technical resource usage. In our study we examine the influence of the duration of usage and total usage rate of the technical equipment to the prediction performance in several time intervals. A cross validation was conducted with sixty-two neck dissections to evaluate the prediction performance. The performance of a use-state-forecast does not change whether duration is considered or not, but decreases with lower total usage rates of the observed instruments. A minimum number of surgical workflow recordings (here: 62) and >5 minute time intervals for use-state forecast are required for applying our described method to surgical practice. The work presented here might support the reduction of resource conflicts when resources are shared among different operating rooms. PMID:27577445

  18. Optimize Use of Space Research and Technology for Medical Devices

    NASA Technical Reports Server (NTRS)

    Minnifield, Nona K.

    2012-01-01

    systems, and cutting-edge component technologies to conduct a wide range of scientific observations and measurements. These technologies are also considered for practical applications that benefit society in remarkable ways. At NASA Goddard, the technology transfer initiative promotes matching technologies from Earth and space science needs to targeted industry sectors. This requires clear knowledge of industry needs and priorities and social demands. The process entails matching mature technologies where there are known innovation challenges and good opportunities for matching technology needs. This requires creative thinking and takes commitment of time and resources. Additionally, we also look at applications for known hot industry or societal needs. Doing so has given us occasion to host discussions with representatives from industry, academia, government organizations, and societal special interest groups about the application of NASA Goddard technologies for devices used in medical monitoring and detection tools. As a result, partnerships have been established. Innovation transpired when new products were enabled because of NASA Goddard research and technology programs.

  19. Medical device design for adolescent adherence and developmental goals: a case study of a cystic fibrosis physiotherapy device

    PubMed Central

    Lang, Alexandra R; Martin, Jennifer L; Sharples, Sarah; Crowe, John A

    2014-01-01

    Purpose This study investigates the psychosocial aspects of adolescent medical device use and the impact on adolescent adherence and goals for the transitional years between child and adulthood. Patients and methods Interviews were carried out with 20 adolescents with cystic fibrosis, investigating adolescent medical device use and experiences in relation to their personal and social lives and development through the adolescent years. The qualitative dataset was thematically examined using a content analysis method. Results The results show that adolescent users of medical technologies want their independence and capabilities to be respected. Adolescent adherence to medical device use was associated with short- and long-term motivations, where older adolescents were able to comprehend the longer-term benefits of use against short-term inconvenience more acutely than younger adolescents. It was suggested that medical devices could provide a tool for communication with families and clinicians and could support adolescents as they take responsibility for managing their condition. Themes of “fitting into teenage life” and “use in the community” were associated with adolescents’ needs to form their own identity and have autonomy. Conclusion This study shows that adolescent needs regarding medical device use are complex. It provides evidence to suggest that devices designed inclusively for adolescents may lead to improved adherence and also facilitate transition through the adolescent years and achievement of adolescent goals. PMID:24669187

  20. Scouting For Approval: Lessons on Medical Device Regulation in an Era of Crowdfunding from Scanadu's "Scout".

    PubMed

    Smith, Colleen

    2015-01-01

    Internet crowdfunding, a new and increasingly popular method of raising capital to develop products and businesses, has recently come into conflict with the Food and Drug Administration's (FDA's) regulation of medical devices. This Article examines the issues that arise when companies pre-sell medical devices via crowdfunding campaigns before gaining FDA approval of the devices. Because Internet crowdfunding has only been in use for a few years, little has been written about it academically, particularly about its interaction with FDA regulations. The rising interest in crowdfunding, coupled with the downturn in investment in the American medical device industry, make this a salient issue that is ripe for FDA review. This Article uses the crowdfunding campaign Scanadu, a medical device company, conducted in 2013 to raise money to develop its in-home diagnostic device, the "Scout," as a starting point for this analysis. Because it is extremely costly to develop a device and obtain FDA approval, medical device companies should be able to utilize crowdfunding to raise the necessary capital. However, because of the possible dangers medical devices pose, FDA needs to review the risks created by allowing companies to crowdfund medical devices and should issue guidance to help companies comply with FDA regulations while still allowing them to take advantage of the benefits of crowdfunding. This guidance should ensure the continued commitment to consumer safety that is at the core of FDA regulation. PMID:26292478

  1. 75 FR 18219 - Drug and Medical Device Forum on Food and Drug Administration Drug and Device Requirements and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... HUMAN SERVICES Food and Drug Administration Drug and Medical Device Forum on Food and Drug Administration Drug and Device Requirements and Supplier Controls; Public Educational Forum AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public educational forum. SUMMARY: The Food and Drug Administration...

  2. 75 FR 47606 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Federal Register of June 24, 2010 (75 FR 36102). The meeting is postponed so that FDA can review and... HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical.... ACTION: Notice. SUMMARY: The meeting of the General and Plastic Surgery Devices Panel of the...

  3. Medical devices; general and plastic surgery devices; classification of the low energy ultrasound wound cleaner. Final rule.

    PubMed

    2005-11-01

    The Food and Drug Administration (FDA) is classifying the low energy ultrasound wound cleaner into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Low Energy Ultrasound Wound Cleaner." The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for the class II device. PMID:16273747

  4. 76 FR 45826 - Medical Device User Fee Rates for Fiscal Year 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... HUMAN SERVICES Food and Drug Administration Medical Device User Fee Rates for Fiscal Year 2012 AGENCY... announcing the fee rates and payment procedures for medical device user fees for fiscal year (FY) 2012. The... 30, 2010 Fees Fiscal year appropriated Fees collected Difference 2008 Actual $48,431,000...

  5. 75 FR 45641 - Medical Device User Fee Rates for Fiscal Year 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... HUMAN SERVICES Food and Drug Administration Medical Device User Fee Rates for Fiscal Year 2011 AGENCY... announcing the ] fee rates and payment procedures for medical device user fees for fiscal year (FY) 2011. The... Commissioner for Policy. BILLING CODE 4160-01-S...

  6. 77 FR 32644 - Medical Devices; Exemption From Premarket Notification: Wheelchair Elevator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... HUMAN SERVICES Food and Drug Administration Medical Devices; Exemption From Premarket Notification... (1976 amendments) (Pub. L. 94-295)), as amended by the Safe Medical Devices Act of 1990 (SMDA) (Pub. L....'' That guidance is available through the Internet at http://www.fda. ]...

  7. 78 FR 27971 - Dental Products Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... HUMAN SERVICES Food and Drug Administration Dental Products Panel of the Medical Devices Advisory...). The meeting will be open to the public. Name of Committee: Dental Products Panel of the Medical Devices Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  8. A Review of the Design Process for Implantable Orthopedic Medical Devices

    PubMed Central

    Aitchison, G.A; Hukins, D.W.L; Parry, J.J; Shepherd, D.E.T; Trotman, S.G

    2009-01-01

    The design process for medical devices is highly regulated to ensure the safety of patients. This paper will present a review of the design process for implantable orthopedic medical devices. It will cover the main stages of feasibility, design reviews, design, design verification, manufacture, design validation, design transfer and design changes. PMID:19662153

  9. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially life-threatening infections. Other types of medical devices such as bronchoscopes and duod...

  10. Medical device registration, agreements on mutual recognition — a step forward to global harmonization?

    NASA Astrophysics Data System (ADS)

    Eidenberger, Reiner

    2000-03-01

    The purpose of this article is to give a short overview of some different regulations in Europe and the United States with regard to the clearance of medical devices and to give an outlook of what the Agreements on Mutual Recognition will bring in terms of Global Harmonization. Recent European legislation, the Council Directive 93/42/EEC of 14 June 1993 concerning medical devices (Medical Device Directive, MDD), requires that all medical devices placed on the European market bear the CE marking. From 14 June 1998, medical devices fall under the scope of this European Medical Device Directive and there is a harmonization within the European market. Similar to this, but for another market, are the USA FDA requirements, Premarket Approval (PMA) and Premarket notification (510(k)). The same medical device, the same goal — a safe product — but different legislation and thus duplication of registration procedures. The European Commission is presently discussing a series of agreements with third countries, Australia, New Zealand, USA, Canada, Japan and Eastern European countries wishing to join the EU, concerning the mutual acceptance of inspection bodies and, ultimately, proof of conformity (for example reports on examination, certificates, licenses and marks of conformity) in connection with medical devices. Meanwhile agreements with Australia, New Zealand, USA and Canada came into force.

  11. 78 FR 33849 - Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... HUMAN SERVICES Food and Drug Administration Battery-Powered Medical Devices Workshop: Challenges and... following public workshop entitled ``Battery-Powered Medical Devices Workshop: Challenges and Opportunities''. The purpose of this workshop is to create awareness of the challenges related to...

  12. 77 FR 4252 - Additional Spectrum for the Medical Device Radiocommunication Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... other functions to paralyzed limbs and organs. These medical devices hold enormous promise to advance... sensation, mobility, and other functions to paralyzed limbs and organs. These medical devices hold enormous... other functions to nonfunctioning limbs and organs. 5. The work that AMF has done with the...

  13. Pressure-sensitive adhesives for transdermal drug delivery systems.

    PubMed

    Tan; Pfister

    1999-02-01

    Adhesives are a critical component in transdermal drug delivery (TDD) devices. In addition to the usual requirements of functional adhesive properties, adhesives for TDD applications must have good biocompatibility with the skin, chemical compatibility with the drug, various components of the formulation, and provide consistent, effective delivery of the drug. This review discusses the three most commonly used adhesives (polyisobutylenes, polyacrylates and silicones) in TDD devices, and provides an update on recently introduced TDD products and recent developments of new adhesives. PMID:10234208

  14. Medical devices; immunology and microbiology devices; classification of the West Nile Virus IgM capture Elisa assay. Final rule.

    PubMed

    2003-10-30

    The Food and Drug Administration (FDA) is classifying the West Nile Virus IgM Capture Elisa assay into class II (special controls). The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document that will serve as the special control for the device. PMID:14587527

  15. Medical devices; clinical chemistry and clinical toxicology devices; classification of the breath nitric oxide test system. Final rule.

    PubMed

    2003-07-01

    The Food and Drug Administration (FDA) is classifying the breath nitric oxide test system into class II (special controls). The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document that will serve as the special control for the device. PMID:12858842

  16. Medical devices; ear, nose, and throat devices; classification of the transcutaneous air conduction hearing aid system. Final rule.

    PubMed

    2002-11-01

    The Food and Drug Administration (FDA) is classifying the transcutaneous air conduction hearing aid system (TACHAS) into class II (special controls). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document that will serve as the special control for the device. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:12422884

  17. Medical devices; immunology and microbiology devices; classification of the immunomagnetic circulating cancer cell selection and enumeration system. Final rule.

    PubMed

    2004-05-11

    The Food and Drug Administration (FDA) is classifying the Immunomagnetic Circulating Cancer Cell Selection and Enumeration System device into class II (special controls). The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Immunomagnetic Circulating Cancer Cell Selection and Enumeration System." The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the amendments), the Safe Medical Devices Act of 1990 (the SMDA), the Food and Drug Administration Modernization Act of 1997 (FDAMA), and the Medical Device User Fee and Modernization Act of 2002 (MDUFMA). The agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is the special control for this device. PMID:15137395

  18. 42 CFR 410.36 - Medical supplies, appliances, and devices: Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Medical supplies, appliances, and devices: Scope. 410.36 Section 410.36 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM SUPPLEMENTARY MEDICAL INSURANCE (SMI) BENEFITS Medical and Other...

  19. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    PubMed

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices. PMID:24473551

  20. [Medical devices. Regulatory framework and contribution of the German Federal Institute for Drugs and Medical Devices (BfArM) to the safe application].

    PubMed

    Lauer, Wolfgang; Stößlein, E; Brinker, A; Broich, K

    2014-12-01

    Medical devices are of great importance for the prevention, diagnosis and treatment of many diseases. With their broad range and interdisciplinarity, they represent both a very dynamic field of innovation and a significant sector of the economy. The European and thus the German Medical Devices Act aim in this context to make new medical devices for patients and users rapidly available while ensuring safety and performance at the same time. The main responsibility for this lies with the manufacturer. In addition, others are involved in a complex collaboration in the conformity assessment and also later in the marketing phase for the early identification, assessment and minimization of potential risks. This paper presents the legal framework for medical devices and the related roles and responsibilities of various stakeholders, especially the two federal agencies the German Federal Institute for Drugs and Medical Devices (BfArM) and the Paul Ehrlich Institute (PEI). From the perspective of the BfArM the procedure and criteria for risk assessment of incident reports are explained and the experiences and wishes from regulatory practice are described. The active engagement of the BfArM to contribute knowledge from the incident report assessment within the relevant standards organisations and the medical profession is described using examples of medical devices from the field of out-of-hospital ventilation. The paper concludes with a look at future challenges, e.g. in combination products, IT networks and automatization, as well as on current developments to improve risk identification and assessment in a European context. PMID:25370170

  1. An update on the use of transdermal oxybutynin in the management of overactive bladder disorder

    PubMed Central

    Cohn, Joshua A.; Brown, Elizabeth T.; Reynolds, W. Stuart; Kaufman, Melissa R.; Milam, Douglas F.; Dmochowski, Roger R.

    2016-01-01

    Antimuscarinic medications are used to treat nonneurogenic overactive bladder refractory to nonpharmacologic therapy. Side effects such as dry mouth, constipation, blurred vision, dizziness, and impaired cognition limit the tolerability of therapy and are largely responsible for high discontinuation rates. Oxybutynin is a potent muscarinic receptor antagonist whose primary metabolite after first-pass hepatic metabolism is considered largely responsible for its associated anticholinergic side effects. Transdermal administration of medications bypasses hepatic processing. Specifically with oxybutynin, whose low molecular weight permits transdermal administration, bioavailability of the parent drug with oral administration is less than 10%, whereas with transdermal delivery is a minimum of 80%. The result has been an improved side effect profile in multiple clinical trials with maintained efficacy relative to placebo; however, the drug may still be discontinued by patients due to anticholinergic side effects and application site reactions. Transdermal oxybutynin is available as a patch that is changed every 3–4 days, a gel available in individual sachets, or via a metered-dose pump that is applied daily. The transdermal patch was briefly available as an over-the-counter medication for adult women, although at this time all transdermal formulations are available by prescription only. PMID:27034721

  2. Dosing considerations with transdermal formulations of fentanyl and buprenorphine for the treatment of cancer pain

    PubMed Central

    Skaer, Tracy L

    2014-01-01

    Opioids continue to be first-line pharmacotherapy for patients suffering from cancer pain. Unfortunately, subtherapeutic dosage prescribing of pain medications remains common, and many cancer patients continue to suffer and experience diminished quality of life. A large variety of therapeutic options are available for cancer pain patients. Analgesic pharmacotherapy is based on the patient’s self-report of pain intensity and should be tailored to meet the requirements of each individual. Most, if not all, cancer pain patients will ultimately require modifications in their opioid pharmacotherapy. When changes in a patient’s medication regimen are needed, adequate pain control is best maintained through appropriate dosage conversion, scheduling immediate release medication for withdrawal prevention, and providing as needed dosing for breakthrough pain. Transdermal opioids are noninvasive, cause less constipation and sedation when compared to oral opioids, and may improve patient compliance. A relative potency of 100:1 is recommended when converting the patient from oral morphine to transdermal fentanyl. Based on the limited data available, there is significant interpatient variability with transdermal buprenorphine and equipotency recommendations from oral morphine of 75:1–110:1 have been suggested. Cancer patients may require larger transdermal buprenorphine doses to control their pain and may respond better to a more aggressive 75–100:1 potency ratio. This review outlines the prescribing of transdermal fentanyl and transdermal buprenorphine including how to safely and effectively convert to and use them for those with cancer pain. PMID:25170278

  3. Medical devices; immunology and microbiology devices; classification of reagents for detection of specific novel influenza A viruses. Final rule.

    PubMed

    2006-03-22

    The Food and Drug Administration (FDA) is classifying Reagents for detection of specific novel influenza A viruses into class II (special controls). Special controls that will apply to the device are the guidance document entitled, "Class II Special Controls Guidance Document: Reagents for Detection of Specific Novel Influenza A Viruses" and limitations of distribution of these reagents. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, the Food and Drug Administration Modernization Act of 1997, and the Medical Device User Fee and Modernization Act of 2002. The agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is publishing a notice of availability of a guidance document that is a special control for this device. PMID:16562353

  4. Medical Devices; hematology and pathology devices; reclassification of automated blood cell separator device operating by filtration principle from class III to class II. Final rule.

    PubMed

    2003-02-28

    The Food and Drug Administration (FDA) is reclassifying the automated blood cell separator (ABCS) device operating by filtration principle, intended for routine collection of blood and blood components, from class III to class II (special controls). The special control requirement for this device is an annual report with emphasis on adverse reactions to be filed by the manufacturer for a minimum of 3 years. The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is reclassifying the automated blood cell separator devices operating by filtration principle into class II (special controls) because special controls, in addition to general controls, are capable of providing a reasonable assurance of safety and effectiveness of the device. PMID:12617085

  5. 31 CFR 561.327 - Food, medicine, and medical devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 15 CFR part 774, supplement no. 1 (excluding items classified as EAR 99). (c) The term medical... Administration Regulations, 15 CFR part 774, supplement no. 1 (excluding items classified as EAR 99). ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Food, medicine, and medical...

  6. 26 CFR 48.4191-2 - Taxable medical device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... servicing” as defined in 42 CFR 414.222. Thus, the snake bite suction kits have multiple factors under...) of the FFDCA and 21 CFR part 807, pursuant to FDA requirements. (2) Devices that should have been... classified by the FDA under Subpart D of 21 CFR part 890 (Physical Medicine Devices). (ii) Primarily for...

  7. Development and Implementation of a Medical Device Course.

    ERIC Educational Resources Information Center

    Mendel, Philip A.

    1982-01-01

    A course for fifth-year baccalaureate students provides a structured introduction to many of the devices with which pharmacists are involved (contraceptives, convalescent aids, surgical appliances, etc.), and includes assigned readings, lectures, and hands-on experience with industry representatives. Lists of the lecture material, devices, reading…

  8. Design of tactile device for medical application using magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Oh, J. S.; Kim, J. K.; Lee, S. R.; Choi, S. B.; Song, B. K.

    2013-02-01

    For the tactile recognition of human organ in minimally invasive surgery (MIS), this paper presents a novel tactile device that incorporates with magnetorheological (MR fluid). The MR fluid is contained by diaphragm and several pins. The operator for MIS can feel different force (or stiffness) from the proposed tactile device by applying different magnetic field or current. In order to generate required force from the device, the repulsive force from the human body is measured as reference data and an appropriate size of tactile device is designed and manufactured. It has been demonstrated via experiment that the repulsive force corresponding to the human body can be achieved by applying proper control input current. In addition, it has been shown that we can control the repulsive force by dividing the tactile device by several sections.

  9. Use-related risk analysis for medical devices based on improved FMEA.

    PubMed

    Liu, Long; Shuai, Ma; Wang, Zhu; Li, Ping

    2012-01-01

    In order to effectively analyze and control use-related risk of medical devices, quantitative methodologies must be applied. Failure Mode and Effects Analysis (FMEA) is a proactive technique for error detection and risk reduction. In this article, an improved FMEA based on Fuzzy Mathematics and Grey Relational Theory is developed to better carry out user-related risk analysis for medical devices. As an example, the analysis process using this improved FMEA method for a certain medical device (C-arm X-ray machine) is described. PMID:22317712

  10. [Wearable Medical Devices' MCU Selection Analysis Based on the ARM Cortex-MO+ Architecture].

    PubMed

    Wu, Zaoquan; Liu, Mengxing; Qin, Liping; Ye, Shuming; Chen, Hang

    2015-03-01

    According to the characteristics of low cost, high performance, high integration and long battery life of wearable medical devices, the mainstream low-power microcontroller(MCU) series were compared, and came to the conclusion that the MCU series based on ARM Cortex-M0+ architecture were suitable for the development of wearable medical devices. In aspects of power consumption, operational performance, integrated peripherals and cost, the MCU series based on Cortex-M0+ architecture of primary semiconductor companies were compared, aimed at providing the guides of MCU selection for wearable medical devices. PMID:26524785

  11. Medical devices for restless legs syndrome – clinical utility of the Relaxis pad

    PubMed Central

    Mitchell, Ulrike H

    2015-01-01

    Restless Legs Syndrome or Willis–Ekbom Disease, a neurosensory disorder, can be treated with pharmaceuticals or conservatively. This review focuses on conservative treatments, more specifically on treatments with medical devices. Two modes of action, enhancement of circulation and counter stimulation, are introduced. Medical devices that use enhancement of circulation as their mechanism of action are whole body vibration, pneumatic compression, and near-infrared light. Medical devices that use counter stimulation include transcutaneous electrical nerve stimulation and the vibration Relaxis pad. The clinical utility of the Relaxis pad and its place in therapy is proposed. PMID:26664128

  12. UbiMMS: an ubiquitous medication monitoring system based on remote device management methods.

    PubMed

    Pak, JuGeon; Park, KeeHyun

    2012-01-01

    Medication adherence is one of the most important factors in treating chronic diseases. However, current medication dispensers, which are devices that deliver medication to chronic disease patients according to predetermined schedules, are not equipped with internal remote management functions. Here, we propose a ubiquitous medication monitoring system (UbiMMS) that provides remote functions for medication status transmission, configuration management, software management, and real-time error management. We provide an overview and performance evaluation of the UbiMMS, and show that the proposed system is adequate for remotely monitoring and managing a medication dispenser in real time. PMID:22754967

  13. A proposed framework to improve the safety of medical devices in a Canadian hospital context

    PubMed Central

    Polisena, Julie; Jutai, Jeffrey; Chreyh, Rana

    2014-01-01

    Purpose Medical devices are used to monitor, replace, or modify anatomy or physiological processes. They are important health care innovations that enable effective treatment using less invasive techniques, and they improve health care delivery and patient outcomes. Devices can also introduce risk of harm to patients. Our objective was to propose a surveillance system framework to improve the safety associated with the use of medical devices in a hospital. Materials and methods The proposed medical device surveillance system incorporates multiple components to accurately document and assess the appropriate actions to reduce the risk of incidents, adverse events, and patient harm. The assumptions on which the framework is based are highlighted. The surveillance system was designed from the perspective of a tertiary teaching hospital that includes dedicated hospital staff whose mandate is to provide safe patient care to inpatients and outpatients and biomedical engineering services. Results The main components of the surveillance system would include an adverse medical device events database, a medical device/equipment library, education and training, and an open communication and feedback strategy. Close linkages among these components and with external medical device/equipment networks to the hospital must be established and maintained. A feedback mechanism on medical device-related incidents, as well as implementation and evaluation strategies for the surveillance system are described to ensure a seamless transition and a high satisfactory level among the hospital staff. The direct cost items of the proposed surveillance system for consideration, and its potential benefits are outlined. Conclusion The effectiveness of the proposed medical device surveillance system framework can be measured after it has been implemented in a Canadian hospital facility. PMID:24876796

  14. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    PubMed Central

    Rajan, Reshmy; Jose, Shoma; Mukund, V. P. Biju; Vasudevan, Deepa T.

    2011-01-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era. PMID:22171309

  15. Practice guidelines for transdermal opioids in malignant pain.

    PubMed

    Skaer, Tracy L

    2004-01-01

    Patients with moderate-to-severe malignancy-related pain require opioid pharmacotherapy. Many cancer patients continue to be prescribed subtherapeutic doses of pain medications resulting in undue suffering and diminished quality of life. Pain associated with malignancy and its treatment may exacerbate other symptoms associated with cancer, including nausea, fatigue, weakness, dyspnoea, constipation and impaired cognition. The choice of analgesic pharmacotherapy should be individualised and based on the intensity of pain reported by the patient, rather than its specific aetiology. When selecting pain management pharmacotherapy, the healthcare provider should consider the patient's pain level, activity level and any comorbid illness. Intolerable adverse effects, ineffective pain relief or a change in the patient's clinical status can dictate the need for a new pain management regimen. Healthcare providers must be able to readily quantify the relative analgesic potency when converting from one opioid to another or from one route of administration to another. Transdermal formulations of fentanyl and buprenorphine are effective pharmacotherapy that can be safely used for cancer patients with pain. However, clinicians need to be cognisant that the US/UK manufacturer's recommendations for equianalgesic dose administration of transdermal fentanyl may result in initial doses that produce subtherapeutic concentrations and unrelieved pain in some patients. A less conservative dose administration algorithm for transdermal fentanyl using a 2:1 (mg/day of oral morphine : microg/h of transdermal fentanyl) conversion ratio that considers both a review of the literature and clinical experience should help clinicians individualise cancer pain pharmacotherapy. PMID:15537367

  16. Sumatriptan iontophoretic transdermal system for the acute treatment of migraine.

    PubMed

    Vikelis, Michail; Mitsikostas, Dimos D; Rapoport, Alan M

    2014-03-01

    SUMMARY We will describe the pharmacokinetic profile, clinical efficacy and safety data of the sumatriptan iontophoretic transdermal system (Zecuity®, NuPathe Inc., PA, USA), recently approved for the acute treatment of migraine with or without aura in adults, by the US FDA. This transdermal system utilizes a low-level electrical current to deliver sumatriptan transdermally and circumvents the GI tract. Pharmacokinetic studies have shown that iontophoretic delivery of sumatriptan achieves detectable plasma concentrations 15 min after activation with a maximum mean serum concentration of 22 ng/ml. A randomized, double-blind, controlled clinical trial demonstrated minimal triptan-related side effects and superior efficacy versus placebo. The pain-free rate at 2 h postdose was 18% of patients applying the sumatriptan patch versus 9% using the placebo (p = 0.0092). This sumatriptan transdermal system may be a good choice for migraineurs with severe nausea or vomiting, those with intolerable triptan-related adverse events and/or those not responding optimally to oral medications. PMID:24641436

  17. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.

    PubMed

    Rajan, Reshmy; Jose, Shoma; Mukund, V P Biju; Vasudevan, Deepa T

    2011-07-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era. PMID:22171309

  18. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    PubMed

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events. PMID:25868677

  19. Current challenges for clinical trials of cardiovascular medical devices.

    PubMed

    Zannad, Faiez; Stough, Wendy Gattis; Piña, Ileana L; Mehran, Roxana; Abraham, William T; Anker, Stefan D; De Ferrari, Gaetano M; Farb, Andrew; Geller, Nancy L; Kieval, Robert S; Linde, Cecilia; Redberg, Rita F; Stein, Kenneth; Vincent, Alphons; Woehrle, Holger; Pocock, Stuart J

    2014-07-15

    Several features of cardiovascular devices raise considerations for clinical trial conduct. Prospective, randomized, controlled trials remain the highest quality evidence for safety and effectiveness assessments, but, for instance, blinding may be challenging. In order to avoid bias and not confound data interpretation, the use of objective endpoints and blinding patients, study staff, core labs, and clinical endpoint committees to treatment assignment are helpful approaches. Anticipation of potential bias should be considered and planned for prospectively in a cardiovascular device trial. Prospective, single-arm studies (often referred to as registry studies) can provide additional data in some cases. They are subject to selection bias even when carefully designed; thus, they are generally not acceptable as the sole basis for pre-market approval of high risk cardiovascular devices. However, they complement the evidence base and fill the gaps unanswered by randomized trials. Registry studies present device safety and effectiveness in day-to-day clinical practice settings and detect rare adverse events in the post-market period. No single research design will be appropriate for every cardiovascular device or target patient population. The type of trial, appropriate control group, and optimal length of follow-up will depend on the specific device, its potential clinical benefits, the target patient population and the existence (or lack) of effective therapies, and its anticipated risks. Continued efforts on the part of investigators, the device industry, and government regulators are needed to reach the optimal approach for evaluating the safety and performance of innovative devices for the treatment of cardiovascular disease. PMID:24861254

  20. On-line integration of computer controlled diagnostic devices and medical information systems in undergraduate medical physics education for physicians.

    PubMed

    Hanus, Josef; Nosek, Tomas; Zahora, Jiri; Bezrouk, Ales; Masin, Vladimir

    2013-01-01

    We designed and evaluated an innovative computer-aided-learning environment based on the on-line integration of computer controlled medical diagnostic devices and a medical information system for use in the preclinical medical physics education of medical students. Our learning system simulates the actual clinical environment in a hospital or primary care unit. It uses a commercial medical information system for on-line storage and processing of clinical type data acquired during physics laboratory classes. Every student adopts two roles, the role of 'patient' and the role of 'physician'. As a 'physician' the student operates the medical devices to clinically assess 'patient' colleagues and records all results in an electronic 'patient' record. We also introduced an innovative approach to the use of supportive education materials, based on the methods of adaptive e-learning. A survey of student feedback is included and statistically evaluated. The results from the student feedback confirm the positive response of the latter to this novel implementation of medical physics and informatics in preclinical education. This approach not only significantly improves learning of medical physics and informatics skills but has the added advantage that it facilitates students' transition from preclinical to clinical subjects. PMID:22200603

  1. Medical Devices; General Hospital and Personal Use Devices; Classification of the Ultraviolet Radiation Chamber Disinfection Device. Final order.

    PubMed

    2015-11-20

    The Food and Drug Administration (FDA or the Agency) is classifying the ultraviolet (UV) radiation chamber disinfection device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the UV radiation chamber disinfection device classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:26595943

  2. Using off-the-shelf medical devices for biomedical signal monitoring in a telemedicine system for emergency medical services.

    PubMed

    Thelen, Sebastian; Czaplik, Michael; Meisen, Philipp; Schilberg, Daniel; Jeschke, Sabina

    2015-01-01

    In order to study new methods of telemedicine usage in the context of emergency medical services, researchers need to prototype integrated telemedicine systems. To conduct a one-year trial phase-intended to study a new application of telemedicine in German emergency medical services-we used off-the-shelf medical devices and software to realize real-time patient monitoring within an integrated telemedicine system prototype. We demonstrate its feasibility by presenting the integrated real-time patient monitoring solution, by studying signal delay and transmission robustness regarding changing communication channel characteristics, and by evaluating issues reported by the physicians during the trial phase. Where standards like HL7 and the IEEE 11073 family are intended to enable interoperability of product grade medical devices, we show that research prototypes benefit from the use of web technologies and simple device interfaces, as they simplify product development for a manufacturer and ease integration efforts for research teams. Embracing this approach for the development of new medical devices eases the constraint to use off-the-shelf products for research trials investigating innovative use of telemedicine. PMID:25312967

  3. 78 FR 951 - Accessible Medical Device Labeling in a Standard Content and Format Public Workshop; Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... HUMAN SERVICES Food and Drug Administration Accessible Medical Device Labeling in a Standard Content and... content and format for medical device labeling and the use of a repository containing medical device... session. Standard content and format of full labeling and a shortened version of labeling will...

  4. 21 CFR 801.128 - Exceptions or alternatives to labeling requirements for medical devices held by the Strategic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements for medical devices held by the Strategic National Stockpile. 801.128 Section 801.128 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... requirements for medical devices held by the Strategic National Stockpile. (a) The appropriate FDA...

  5. 21 CFR 801.1 - Medical devices; name and place of business of manufacturer, packer or distributor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; name and place of business of..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.1 Medical devices; name and place of business of manufacturer, packer or distributor. (a)...

  6. 21 CFR 801.128 - Exceptions or alternatives to labeling requirements for medical devices held by the Strategic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements for medical devices held by the Strategic National Stockpile. 801.128 Section 801.128 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... requirements for medical devices held by the Strategic National Stockpile. (a) The appropriate FDA...

  7. 21 CFR 801.1 - Medical devices; name and place of business of manufacturer, packer or distributor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; name and place of business of..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.1 Medical devices; name and place of business of manufacturer, packer or distributor. (a)...

  8. 21 CFR 801.1 - Medical devices; name and place of business of manufacturer, packer or distributor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; name and place of business of..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.1 Medical devices; name and place of business of manufacturer, packer or distributor. (a)...

  9. 21 CFR 801.1 - Medical devices; name and place of business of manufacturer, packer or distributor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; name and place of business of..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.1 Medical devices; name and place of business of manufacturer, packer or distributor. (a)...

  10. 21 CFR 801.128 - Exceptions or alternatives to labeling requirements for medical devices held by the Strategic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements for medical devices held by the Strategic National Stockpile. 801.128 Section 801.128 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... requirements for medical devices held by the Strategic National Stockpile. (a) The appropriate FDA...

  11. 21 CFR 801.128 - Exceptions or alternatives to labeling requirements for medical devices held by the Strategic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requirements for medical devices held by the Strategic National Stockpile. 801.128 Section 801.128 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... requirements for medical devices held by the Strategic National Stockpile. (a) The appropriate FDA...

  12. 21 CFR 801.128 - Exceptions or alternatives to labeling requirements for medical devices held by the Strategic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements for medical devices held by the Strategic National Stockpile. 801.128 Section 801.128 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... requirements for medical devices held by the Strategic National Stockpile. (a) The appropriate FDA...

  13. 21 CFR 801.1 - Medical devices; name and place of business of manufacturer, packer or distributor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; name and place of business of..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.1 Medical devices; name and place of business of manufacturer, packer or distributor. (a)...

  14. 76 FR 24494 - Draft Guidance for Industry and FDA Staff: Processing/Reprocessing Medical Devices in Health Care...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    .../ Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling; Availability AGENCY... Staff: Processing/Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling... ``Draft Guidance for Industry and FDA Staff: Processing/Reprocessing Medical Devices in Health...

  15. 21 CFR 803.15 - How will I know if you require more information about my medical device report?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false How will I know if you require more information about my medical device report? 803.15 Section 803.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING...

  16. [Recommendation for validation and routine monitoring of sterilization processes with ethylene oxide for medical devices].

    PubMed

    Jakimiak, B; Röhm-Rodowald, E

    1999-01-01

    The European Medical Device Directives specifically address sterilization issues in a number of instances. The European Standards for sterilization of medical devices, especially EN 550, EN 554, EN 556 regulate the manufacture, installation and operation of sterilizers as well as the validation of sterilization processes, on using ethylene oxide (EN 550) or moist heat (EN 554) for sterilization. This recommendation is intended as a source of information for conducting validation according to EN 550 and concomitantly for ensuring that the medical devices reprocessed (cleaned, disinfected, packed, sterilized, stored) in the hospital setting or in other healthcare establishments are endowed with the same level of safety with respect to sterility as that of industrially produced and marketed sterile medical devices. PMID:10474298

  17. 78 FR 56719 - Challenging Regulatory and Reimbursement Paradigms for Medical Devices in the Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Medical Devices in the Treatment of Metabolic Diseases: How to Estimate and Reward True Patient-Centric... Estimate and Reward True Patient-Centric Value in Innovation.'' FDA is cosponsoring the workshop with...

  18. Assessment of total silver and silver nanoparticle extraction from medical devices.

    PubMed

    Sussman, Eric M; Jayanti, Priyanka; Dair, Benita J; Casey, Brendan J

    2015-11-01

    There is concern over the release of silver nanoparticles (AgNPs) from medical devices due to their potential toxicological consequences inside the body. Towards developing the exposure component of a risk assessment model, the purpose of this study was to determine the amount and physical form of silver released from medical devices. Scanning electron microscopy was used to confirm that three of five marketed medical devices contained nanosilver coatings (mean feature sizes 115-341 nm). Aqueous device extracts (water, saline and human plasma) were analyzed with inductively coupled plasma mass spectrometry, ultraviolet-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and nanoparticle tracking analysis. The amount of silver extracted from the devices ranged from 1 × 10(-1) to 1 × 10(6) ng/cm(2) (conditions ranged from 37 to 50 °C, over one hour to seven days). The results further indicated that one of the five devices (labeled MD1) released significantly more AgNPs than the other devices. This data suggests that some but not all devices that are formulated with nanosilver may release detectable levels of AgNPs upon extraction. Further work is underway to quantitate the proportion of silver released as AgNPs and to incorporate this data into a risk assessment for AgNP exposure from medical devices. PMID:26282371

  19. 75 FR 9422 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... appropriate advisory committee hot line/phone line to learn about possible modifications before coming to the... to FDA's reevaluation of the ReGen Collagen Scaffold (CS) device (marketed as the Menaflex ), which... use statement for this device states that the device is intended for use in surgical procedures...

  20. An Effective Design Process for the Successful Development of Medical Devices

    NASA Astrophysics Data System (ADS)

    Colvin, Mike

    The most important point in the successful development of a medical device is the proper overall design. The quality, safety, and effectiveness of a device are established during the design phase. The design process is the foundation of the medical device and will be the basis for the device from its inception till the end of its lifetime. There are domestic and international guidelines on the proper steps to develop a medical device. However, these are guides; they do not specify when and how to implement each phase of design control. The guides also do not specify to what depth an organization must go as it progresses in the overall developmental process. The challenge that faces development organizations is to create a design process plan that is simple, straightforward, and not overburdening.

  1. 76 FR 39882 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  2. 76 FR 14415 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  3. 78 FR 16684 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  4. 77 FR 20642 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  5. 75 FR 36102 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  6. 78 FR 30928 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  7. 75 FR 49940 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration General and Plastic Surgery Devices Panel of the Medical... Administration (FDA). The meeting will be open to the public. Name of Committee: General and Plastic...

  8. Transdermal methylphenidate, behavioral, and combined treatment for children with ADHD.

    PubMed

    Pelham, William E; Burrows-Maclean, Lisa; Gnagy, Elizabeth M; Fabiano, Gregory A; Coles, Erika K; Tresco, Katy E; Chacko, Anil; Wymbs, Brian T; Wienke, Amber L; Walker, Kathryn S; Hoffman, Martin T

    2005-05-01

    Stimulant medication and behavioral treatments are evidence-based for children with attention-deficit/hyperactivity disorder, but the combination of the 2 treatments has been understudied. In this investigation, methylphenidate (MPH) was crossed with 2 levels of behavior modification (BMOD) in a summer treatment program. Twenty-seven children with attention-deficit/hyperactivity disorder, aged 6-12, participated. Children received placebo and 3 doses of transdermal MPH (12.5 cm(2), 25.0 cm(2), and 37.5 cm(2)). BMOD was implemented on alternating weeks. Both treatments produced large and significant effects. Combined treatment was superior to either treatment alone. The effects of transdermal MPH were comparable to those found in this setting in previous studies with multiple stimulant medications and formulations. Consistent with other research, low doses of MPH--even lower than in previous studies--yielded enhanced effects in combination with behavior modification. PMID:15943544

  9. The transdermal delivery of fentanyl.

    PubMed

    Lane, Majella E

    2013-08-01

    The fentanyl patch is one of the great commercial successes in transdermal drug delivery. The suitability of this molecule for delivery through skin had been identified in the 1970s, and subsequently, a number of transdermal formulations became available on the market. This article reviews the development of fentanyl patch technology with particular emphasis on the pharmacokinetics and disposition of the drug when delivered through the skin. The various patch designs are considered as well as the bioequivalence of the different designs. The influence of heat on fentanyl permeation is highlighted. Post-mortem redistribution of fentanyl is discussed in light of the reported discrepancies in serum levels reported in patients after death compared with therapeutic levels in living subjects. Finally, alternatives to patch technology are considered, and recent novel transdermal formulations are highlighted. PMID:23419814

  10. Salespeople in the Surgical Suite: Relationships between Surgeons and Medical Device Representatives

    PubMed Central

    O’Connor, Bonnie; Pollner, Fran; Fugh-Berman, Adriane

    2016-01-01

    Background Industry payments to surgeons have received public attention, but little is known about the relationships between surgeons and medical device representatives. Medical device representatives ("device reps") have become an integral part of operating room personnel. The effect of their presence on patient care deserves discussion. Study Design We conducted a qualitative, ethnographic study to explore relationships between surgeons and medical device representatives, and characterize industry involvement in the training of surgeons. We used group and individual open-ended interviews to gain insight into the beliefs, values, and perspectives of surgeons and device reps. We conducted two focus groups, one with ear, nose, and throat surgeons, and one with hospital-based attending orthopedic surgeons. We also conducted individual interviews with three former or current medical device representatives, a director of a surgical residency program at an academic medical center, and a medical assistant for a multi-physician orthopedic practice. Results While surgeons view themselves as indisputably in charge, device reps work hard to make themselves unobtrusively indispensable in order to establish and maintain influence, and to imbue the products they provide with personalized services that foster a surgeon's loyalty to the reps and their companies. Surgeons view industry-funded training opportunities as a necessary service. Device reps and some surgeons believe that reps benefit patient care, by increasing efficiency and mitigating deficiencies among operating room personnel (including the surgeons themselves). Conclusions Our study raises ethical questions about the reliance of surgeons on device reps and device companies for education and surgical assistance and practical concerns regarding existing levels of competence among OR personnel. PMID:27486992

  11. Clinical use of medical devices in the 'Bermuda Triangle'.

    PubMed

    Kessler, Larry; Ramsey, Scott D; Tunis, Sean; Sullivan, Sean D

    2004-01-01

    The pace of medical technological development shows no sign of abating. Analyzing the effect of major federal health agencies on the availability of such technology is critical. This paper describes functions of three government health agencies: the Centers for Medicare and Medicaid Services (CMS), the Food and Drug Administration (FDA), and the National Institutes of Health (NIH). Certain medical technologies fall into gaps between these agencies, which pose challenges in today's era of demand for evidence-based medicine. We suggest new policy and pragmatic strategies that can close the gaps and move decision making relevant to technology forward more rapidly than is now the case. PMID:15002643

  12. Medical devices; exemptions from premarket notification; class II devices. Final rule.

    PubMed

    2001-11-15

    The Food and Drug Administration (FDA) is publishing a final rule exempting from the premarket notification requirements the fluoroscopic compression device, a manual compression device that allows a radiologist to press on the abdomen during a fluoroscopic procedure without exposing his or her hand to the x-ray beam. The device is classified as an accessory to the image-intensified fluoroscopic x-ray system. FDA received a petition requesting an exemption for the F-Spoon device, a type of fluoroscopic manual compression device. FDA is expanding the exemption for this type of generic device to include other fluoroscopic compression devices. FDA is publishing this order in accordance with the Food and Drug Administration Modernization Act of 1997 (FDAMA). PMID:11776279

  13. Transdermal innovations in diabetes management.

    PubMed

    Rao, Rekha; Mahant, Sheefali; Chhabra, Lovely; Nanda, Sanju

    2014-01-01

    Diabetes mellitus, an endocrine disorder affecting glucose metabolism, has been crippling mankind for the past two centuries. Despite the advancements in the understanding pertaining to its pathogenesis and treatment, the currently available therapeutic options are far from satisfactory. The growing diabetic population increases the gravity of the situation. The shortcomings of the conventional drug delivery systems necessitate the need to delve into other routes. On account of its merits over other routes, the transdermal approach has drawn the interest of the researchers around the world. The transdermal drug delivery systems are aimed to achieve therapeutic concentrations of the drug through skin. These systems are designed so that the drug can be delivered at a pre-determined and controlled rate. This makes it particularly conducive to treat chronic disorders like diabetes. Correspondingly, the adverse effects and inconvenience concomitant with oral and parentral route are circumvented. This article attempts to outline the development of transdermal drug delivery systems to optimize diabetes pharmacotherapy. It not only covers the transdermal approaches adopted to fine-tune insulin delivery, but also, discusses various transdermal drug delivery systems fabricated to improve the therapeutic performance of oral hypoglycaemic agents. Such formulations include the advanced drug delivery systems, namely, transferosomal gels, microemulsions, self-dissolving micropiles, nanoparticles, insulin pumps, biphasic lipid systems, calcium carbonate nanoparticles, lecithin nanoparticles; physical techniques such as iontophoresis and microneedles and, drugs formulated as transdermal patches. In addition to this, the authors have also shed light on the future prospects and patented and commercial formulations of antidiabetic agents. PMID:25418713

  14. 75 FR 53702 - Medical Device User Fee Act; Public Meeting; Request for Comments; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... August 13, 2010 (75 FR 49502). The amendment is being made to include the exact meeting location... INFORMATION CONTACT: James Swink, Center for Devices and Radiological Health, Food and Drug Administration... (75 FR 49502), FDA announced that a public meeting on the reauthorization of the medical device...

  15. 75 FR 44267 - Draft Guidance for Industry and Food and Drug Administration Staff; Medical Devices; Neurological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... April 5, 2010 (75 FR 17093), FDA published a notice announcing the availability of draft special... for the notice that appeared in the Federal Register of April 5, 2010 (75 FR 17143). In the notice... Staff; Medical Devices; Neurological and Physical Medicine Device Guidance Document; Reopening...

  16. 75 FR 47604 - Draft Guidance for Industry and Food and Drug Administration Staff; Medical Devices; Neurological...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... July 28, 2010 (75 FR 44267). The document reopened the comment period for a notice of availability of..., Silver Spring, MD 20993, 301-796-9148. SUPPLEMENTARY INFORMATION: In FR Doc. 2010-18406, appearing on... Staff; Medical Devices; Neurological and Physical Medicine Device Guidance Document; Reopening...

  17. BioInnovate Ireland--fostering entrepreneurial activity through medical device innovation training.

    PubMed

    Bruzzi, M S; Linehan, J H

    2013-09-01

    In the midst of a rich environment for medical device development and manufacturing, universities can play a critical role by developing relevant training programs to produce entrepreneurs who can be efficient and successful in creating early stage companies by understanding deeply the issues involved in creating a useful device, how to raise money, designing early clinical studies and locating manufacturing partners. PMID:23494126

  18. 76 FR 16350 - Medical Devices; Ovarian Adnexal Mass Assessment Score Test System; Labeling; Black Box Restrictions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 Medical Devices; Ovarian Adnexal Mass... regulation classifying ovarian adnexal mass assessment score test systems to restrict these devices so that a... mass assessment score test system into class II (special controls). DATES: Submit either electronic...

  19. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  20. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  1. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... manufacturing. 801.122 Section 801.122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”....

  2. Use of wound dressings to enhance prevention of pressure ulcers caused by medical devices.

    PubMed

    Black, Joyce; Alves, Paulo; Brindle, Christopher Tod; Dealey, Carol; Santamaria, Nick; Call, Evan; Clark, Michael

    2015-06-01

    Medical device related pressure ulcers (MDR PUs) are defined as pressure injuries associated with the use of devices applied for diagnostic or therapeutic purposes wherein the PU that develops has the same configuration as the device. Many institutions have reduced the incidence of traditional PUs (sacral, buttock and heel) and therefore the significance of MDR PU has become more apparent. The highest risk of MDR PU has been reported to be patients with impaired sensory perception, such as neuropathy, and an impaired ability for the patient to communicate discomfort, for example, oral intubation, language barriers, unconsciousness or non-verbal state. Patients in critical care units typify the high-risk patient and they often require more devices for monitoring and therapeutic purposes. An expert panel met to review the evidence on the prevention of MDR PUs and arrived at these conclusions: (i) consider applying dressings that demonstrate pressure redistribution and absorb moisture from body areas in contact with medical devices, tubing and fixators, (ii) in addition to dressings applied beneath medical devices, continue to lift and/or move the medical device to examine the skin beneath it and reposition for pressure relief and (iii) when simple repositioning does not relieve pressure, it is important not to create more pressure by placing dressings beneath tight devices. PMID:23809279

  3. Dip molding to form intricately-shaped medical elastomer devices

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.

    1975-01-01

    Preshaped mandrel mounted on rotating mechanism is partically immersed in tank filled with liquid elastomer. While mandrel rotates, elastomer film forms om mandrel surface due to surface tension and capillary behavior of liquid. Devices with well-defined flanges can be made using process.

  4. Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors

    NASA Astrophysics Data System (ADS)

    Cadei, Andrea; Dionisi, Alessandro; Sardini, Emilio; Serpelloni, Mauro

    2014-01-01

    Implantable medical devices usually require a battery to operate and this can represent a severe restriction. In most cases, the implantable medical devices must be surgically replaced because of the dead batteries; therefore, the longevity of the whole implantable medical device is determined by the battery lifespan. For this reason, researchers have been studying energy harvesting techniques from the human body in order to obtain batteryless implantable medical devices. The human body is a rich source of energy and this energy can be harvested from body heat, breathing, arm motion, leg motion or the motion of other body parts produced during walking or any other activity. In particular, the main human-body energy sources are kinetic energy and thermal energy. This paper reviews the state-of-art in kinetic and thermoelectric energy harvesters for powering implantable medical devices. Kinetic energy harvesters are based on electromagnetic, electrostatic and piezoelectric conversion. The different energy harvesters are analyzed highlighting their sizes, energy or power they produce and their relative applications. As they must be implanted, energy harvesting devices must be limited in size, typically about 1 cm3. The available energy depends on human-body positions; therefore, some positions are more advantageous than others. For example, favorable positions for piezoelectric harvesters are hip, knee and ankle where forces are significant. The energy harvesters here reported produce a power between 6 nW and 7.2 mW; these values are comparable with the supply requirements of the most common implantable medical devices; this demonstrates that energy harvesting techniques is a valid solution to design batteryless implantable medical devices.

  5. Improving Medical Device Regulation: The United States and Europe in Perspective

    PubMed Central

    SORENSON, CORINNA; DRUMMOND, MICHAEL

    2014-01-01

    Context: Recent debates and events have brought into question the effectiveness of existing regulatory frameworks for medical devices in the United States and Europe to ensure their performance, safety, and quality. This article provides a comparative analysis of medical device regulation in the two jurisdictions, explores current reforms to improve the existing systems, and discusses additional actions that should be considered to fully meet this aim. Medical device regulation must be improved to safeguard public health and ensure that high-quality and effective technologies reach patients. Methods: We explored and analyzed medical device regulatory systems in the United States and Europe in accordance with the available gray and peer-reviewed literature and legislative documents. Findings: The two regulatory systems differ in their mandate and orientation, organization, pre-and postmarket evidence requirements, and transparency of process. Despite these differences, both jurisdictions face similar challenges for ensuring that only safe and effective devices reach the market, monitoring real-world use, and exchanging pertinent information on devices with key users such as clinicians and patients. To address these issues, reforms have recently been introduced or debated in the United States and Europe that are principally focused on strengthening regulatory processes, enhancing postmarket regulation through more robust surveillance systems, and improving the traceability and monitoring of devices. Some changes in premarket requirements for devices are being considered. Conclusions: Although the current reforms address some of the outstanding challenges in device regulation, additional steps are needed to improve existing policy. We examine a number of actions to be considered, such as requiring high-quality evidence of benefit for medium-and high-risk devices; moving toward greater centralization and coordination of regulatory approval in Europe; creating

  6. Medical Devices; General and Plastic Surgery Devices; Classification of the Internal Tissue Marker. Final order.

    PubMed

    2015-08-01

    The Food and Drug Administration (FDA) is classifying the internal tissue marker into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the internal tissue marker's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:26245004

  7. Medical Devices; Obstetrical and Gynecological Devices; Classification of the Intravaginal Culture System. Final order.

    PubMed

    2016-01-01

    The Food and Drug Administration (FDA) is classifying the intravaginal culture system into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the intravaginal culture system's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:26742184

  8. Medical Devices; Ophthalmic Devices; Classification of the Diurnal Pattern Recorder System. Final order.

    PubMed

    2016-05-31

    The Food and Drug Administration (FDA) is classifying the diurnal pattern recorder system into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the diurnal pattern recorder system's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:27236873

  9. Medical Devices; Neurological Devices; Classification of the Thermal System for Insomnia. Final order.

    PubMed

    2016-07-11

    The Food and Drug Administration (FDA) is classifying the thermal system for insomnia into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the thermal system for insomnia's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:27400464

  10. Medical Devices; Gastroenterology-Urology Devices; Classification of the Prostate Lesion Documentation System. Final order.

    PubMed

    2015-11-23

    The Food and Drug Administration (FDA) is classifying the prostate lesion documentation system into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the prostate lesion documentation system classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:26595945

  11. Medical devices; physical medicine devices; classification of the powered exoskeleton. Final order.

    PubMed

    2014-02-24

    : The Food and Drug Administration (FDA) is classifying the powered exoskeleton into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the powered exoskeleton's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:25735053

  12. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to

  13. Approval of High-Risk Medical Devices in the US: Implications for Clinical Cardiology

    PubMed Central

    Rome, Benjamin N.; Kramer, Daniel B.

    2014-01-01

    Since 1976, the US Food and Drug Administration (FDA) has used the premarket approval (PMA) process to approve high-risk medical devices, including implantable cardioverter defibrillators (ICDs), coronary stents, and artificial heart valves. The PMA process is widely viewed as a rigorous evaluation of device safety and effectiveness, though recent recalls—most notably related to underperforming ICD leads—have raised concerns about whether physicians and patients should sometimes be more wary about devices approved via this pathway. The FDA must utilize a “least burdensome” approach to approve new medical devices, and many widely used device models have been approved as supplements to existing PMA-approved devices with limited clinical testing. A recent Supreme Court ruling has made it difficult for patients harmed by unsafe PMA-approved devices to seek damages in court. Cardiologists who utilize high-risk medical devices should be aware that FDA approval of new devices relies on variable levels of evidence and does not necessarily indicate improved effectiveness over existing models. Clinician and patient engagement in post-market surveillance and comparative effectiveness research remains imperative. PMID:24760423

  14. IEC80001 and Future Ramifications for Health Systems not currently classed as Medical Devices

    NASA Astrophysics Data System (ADS)

    Harrison, Ian

    Traditionally a medical device is viewed as a standalone hospital system with a carefully segregated private network running on specialist bespoke equipment, managed by highly skilled medical technicians. The regulations in force implementing the Medical Devices Directive support this view. The emerging reality in the modern health organisation is a patient-centric shared electronic record, networked over the organisation's local area network, with medical devices hanging as endpoints off that shared network and contributing to the central pool of patient data - all the time reliant on the shared network services. The IEC80001 standard has been developed to provide guidance on the measures that the medical devices community considers are required best practice in order to ensure that the integrity and safety of the interconnected medical device is not compromised. This in itself is both a laudable and pragmatic action. The question that it immediately prompts for those left with the new and very real task of 'compliance' with the new standards - primarily the over worked health organisation's IT department, is 'what impact does this have on me?'. A number of papers exist prepared from a health-system-supplier standpoint. This paper is principally focused on examining the ramifications of IEC80001 from a health organisation stand point. This paper seeks to identify the areas where a health organisation may expect to have their business-as-usual IT processes impacted, and offers a simple framework to address these challenges.

  15. Using a Handheld Device for Patient Data Collection: A Pilot for Medical Countermeasures Surveillance.

    PubMed

    Daley, Matthew F; Goddard, Kristin; McClung, Melissa; Davidson, Arthur; Weiss, Gretchen; Palen, Ted; Nyirenda, Carsie; Platt, Richard; Courtney, Brooke; Reichman, Marsha E

    2016-01-01

    Medical countermeasures (MCMs) are medical products used during public health emergencies. This study, conducted within the Mini-Sentinel Initiative, sought to develop the patient identification and matching processes necessary to assess safety outcomes for MCMs. A handheld device was used to collect identifying information (e.g., name, birthdate, and sex) from the driver's licenses of 421 individuals presenting for routine care at their primary care medical office. Overall, 374 individuals (88.8%) could be linked to their electronic health data using driver's license information. The device was also pilot-tested at a seasonal influenza immunization clinic: detailed vaccine information (e.g., lot number and manufacturer) was captured with a high degree of accuracy. This investigation demonstrated that a handheld device is a feasible means of collecting patient identity and medical product receipt data. This capacity should be useful for safety surveillance of MCMs, particularly when dispensed in settings outside the traditional health-care delivery system. PMID:26843667

  16. Laser direct writing of micro- and nano-scale medical devices.

    PubMed

    Gittard, Shaun D; Narayan, Roger J

    2010-05-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  17. Laser direct writing of micro- and nano-scale medical devices

    PubMed Central

    Gittard, Shaun D; Narayan, Roger J

    2010-01-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  18. 78 FR 66942 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... device is intended to climb stairs. On June 12, 2013 (78 FR 35173), FDA issued a proposed order which, if... FR 19834). The committee's discussion will include recommendations regarding the regulatory... Class I devices that are subject to premarket notification (510(k)) requirements (48 FR 53041)....

  19. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... FR 31040), FDA issued a proposed rule to reclassify the device, full-field digital mammography system... discussed in the preamble to the proposed rule (73 FR 31040) and comments on the proposed rule and draft... controls). The device type is intended to produce planar digital x-ray images of the entire breast;...

  20. 75 FR 4407 - The Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... System for Epilepsy sponsored by Medtronic, Inc. This device is indicated as adjunctive therapy for reducing the frequency of seizures in individuals diagnosed with epilepsy. For this device, a patient's epilepsy should be characterized by partial-onset seizures (affecting only a part of the brain when...

  1. 78 FR 68714 - Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... stainless steel with or without a gold, silver, or titanium coating. II. Regulatory History of the Device In the Federal Register of January 25, 2013 (78 FR 5327), FDA proposed to classify scleral plug devices... coating in gold, silver, or titanium) from premarket notification (510(k)) and continuing to...

  2. 78 FR 49272 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... depth of compressions for the duration of CPR. On January 8, 2013 (78 FR 1162), FDA issued a proposed... regulatory history of ECC devices has been discussed as part of the proposed rule (77 FR 36951, June 20, 2012... surgery or a myocardial infarction. The device may have adjustments for impulse strength, duration,...

  3. 75 FR 68972 - Medical Devices; General and Plastic Surgery Devices; Classification of Tissue Adhesive With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... premarket notification prior to marketing the ] device, which contains information about the tissue adhesive..., 2010. FOR FURTHER INFORMATION CONTACT: George J. Mattamal, Center for Devices and Radiological Health...-0002, 301-796- 6396. SUPPLEMENTARY INFORMATION: I. What is the background of this rulemaking?...

  4. 76 FR 20840 - Medical Devices; General and Plastic Surgery Devices; Classification of the Low Level Laser...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Devices; Classification of the Low Level Laser System for Aesthetic Use AGENCY: Food and Drug... level laser system for aesthetic use into class II (special controls). The special control(s) that will apply to the device is entitled ``Class II Special Controls Guidance Document: Low Level Laser...

  5. 21 CFR 803.21 - Where can I find the reporting codes for adverse events that I use with medical device reports?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... events that I use with medical device reports? 803.21 Section 803.21 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING... reporting codes for adverse events that I use with medical device reports? (a) The MEDWATCH Medical...

  6. 21 CFR 803.21 - Where can I find the reporting codes for adverse events that I use with medical device reports?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... events that I use with medical device reports? 803.21 Section 803.21 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE REPORTING... reporting codes for adverse events that I use with medical device reports? (a) The MEDWATCH Medical...

  7. Oxybutynin Transdermal Patch

    MedlinePlus

    ... can use baby oil or a medical adhesive removal pad to remove residue that will not come ... room temperature and away from excess heat and moisture (not in the bathroom).Unneeded medications should be ...

  8. Estradiol Transdermal Patch

    MedlinePlus

    ... can benefit most from the medication. Women whose only bothersome symptoms are vaginal dryness, itching, or burning ... is applied topically to the vagina. Women who only need a medication to prevent osteoporosis may benefit ...

  9. New molecular strategies for reducing implantable medical devices associated infections.

    PubMed

    Holban, Alina Maria; Gestal, Monica Cartelle; Grumezescu, Alexandru Mihai

    2014-01-01

    Due to the great prevalence of persistent and recurrent implanted device associated-infections novel and alternative therapeutic approaches are intensely investigated. For reducing complications and antibiotic resistance development, one major strategy is using natural or synthetic modulators for targeting microbial molecular pathways which are not related with cell multiplication and death, as Quorum Sensing, virulence and biofilm formation. The purpose of this review paper is to discuss the most recent in vitro approaches, investigating the efficiency of some novel antimicrobial products and the nano-technologic progress performed in order to increase their effect and stability. PMID:24606502

  10. Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices

    NASA Astrophysics Data System (ADS)

    Rokicki, Ryszard; Hryniewicz, Tadeusz; Pulletikurthi, Chandan; Rokosz, Krzysztof; Munroe, Norman

    2015-04-01

    Haemocompatibility of Nitinol implantable devices and their corrosion resistance as well as resistance to fracture are very important features of advanced medical implants. The authors of the paper present some novel methods capable to improve Nitinol implantable devices to some marked degree beyond currently used electropolishing (EP) processes. Instead, a magnetoelectropolishing process should be advised. The polarization study shows that magnetoelectropolished Nitinol surface is more corrosion resistant than that obtained after a standard EP and has a unique ability to repassivate the surface. Currently used sterilization processes of Nitinol implantable devices can dramatically change physicochemical properties of medical device and by this influence its biocompatibility. The Authors' experimental results clearly show the way to improve biocompatibility of NiTi alloy surface. The final sodium hypochlorite treatment should replace currently used Nitinol implantable devices sterilization methods which rationale was also given in our previous study.

  11. 78 FR 24426 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Kineflex/C is a metal-on-metal (cobalt chrome molybdenum alloy) cervical total disc replacement device. The... SpinalMotion. The Kineflex Lumbar Artificial Disc is a metal-on-metal (cobalt chrome molybdenum...

  12. 76 FR 17422 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... approval application (PMA) for the Augment Bone Graft, sponsored by Biomimetic Therapeutics, Inc. The intended use of the device is as an alternative bone grafting substitute to autologous bone graft...

  13. Opportunities and challenges for the development of polymer-based biomaterials and medical devices

    PubMed Central

    Yin, Jinghua

    2016-01-01

    Biomaterials and medical devices are broadly used in the diagnosis, treatment, repair, replacement or enhancing functions of human tissues or organs. Although the living conditions of human beings have been steadily improved in most parts of the world, the incidence of major human’s diseases is still rapidly growing mainly because of the growth and aging of population. The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10% in the next 10 years; and the global market sale of biomaterials and medical devices is estimated to reach $400 billion in 2020. In particular, the annual consumption of polymeric biomaterials is tremendous, more than 8000 kilotons. The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15–30%. As a result, it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices. Our group has been actively worked in this direction for the past two decades. In this review, some key research results will be highlighted. PMID:27047681

  14. Opportunities and challenges for the development of polymer-based biomaterials and medical devices.

    PubMed

    Yin, Jinghua; Luan, Shifang

    2016-06-01

    Biomaterials and medical devices are broadly used in the diagnosis, treatment, repair, replacement or enhancing functions of human tissues or organs. Although the living conditions of human beings have been steadily improved in most parts of the world, the incidence of major human's diseases is still rapidly growing mainly because of the growth and aging of population. The compound annual growth rate of biomaterials and medical devices is projected to maintain around 10% in the next 10 years; and the global market sale of biomaterials and medical devices is estimated to reach $400 billion in 2020. In particular, the annual consumption of polymeric biomaterials is tremendous, more than 8000 kilotons. The compound annual growth rate of polymeric biomaterials and medical devices will be up to 15-30%. As a result, it is critical to address some widespread concerns that are associated with the biosafety of the polymer-based biomaterials and medical devices. Our group has been actively worked in this direction for the past two decades. In this review, some key research results will be highlighted. PMID:27047681

  15. Value driven innovation in medical device design: a process for balancing stakeholder voices.

    PubMed

    de Ana, F J; Umstead, K A; Phillips, G J; Conner, C P

    2013-09-01

    The innovation process has often been represented as a linear process which funnels customer needs through various business and process filters. This method may be appropriate for some consumer products, but in the medical device industry there are some inherent limitations to the traditional innovation funnel approach. In the medical device industry, there are a number of stakeholders who need to have their voices heard throughout the innovation process. Each stakeholder has diverse and unique needs relating to the medical device, the needs of one may highly affect the needs of another, and the relationships between stakeholders may be tenuous. This paper describes the application of a spiral innovation process to the development of a medical device which considers three distinct stakeholder voices: the Voice of the Customer, the Voice of the Business and the Voice of the Technology. The process is presented as a case study focusing on the front-end redesign of a class III medical device for an orthopedics company. Starting from project initiation and scope alignment, the process describes four phases, Discover, Envision, Create, and Refine, and concludes with value assessment of the final design features. PMID:23483372

  16. New IEEE 11073 Standards for interoperable, networked Point-of-Care Medical Devices.

    PubMed

    Kasparick, Martin; Schlichting, Stefan; Golatowski, Frank; Timmermann, Dirk

    2015-08-01

    Surgical procedures become more and more complex and the number of medical devices in an operating room (OR) increases continuously. Today's vendor-dependent solutions for integrated ORs are not able to handle this complexity. They can only form isolated solutions. Furthermore, high costs are a result of vendor-dependent approaches. Thus we present a service-oriented device communication for distributed medical systems that enables the integration and interconnection between medical devices among each other and to (medical) information systems, including plug-and-play functionality. This system will improve patient's safety by making technical complexity of a comprehensive integration manageable. It will be available as open standards that are part of the IEEE 11073 family of standards. The solution consists of a service-oriented communication technology, the so called Medical Devices Profile for Web Services (MDPWS), a Domain Information & Service Model, and a binding between the first two mechanisms. A proof of this concept has been done with demonstrators of real world OR devices. PMID:26736609

  17. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    NASA Astrophysics Data System (ADS)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  18. Clinical pharmacokinetics of transdermal opioids: focus on transdermal fentanyl.

    PubMed

    Grond, S; Radbruch, L; Lehmann, K A

    2000-01-01

    Transdermal delivery allows continuous systemic application of opioids through the intact skin. This review analyses the pharmacokinetic properties of transdermal opioid administration in the context of clinical experience, with a focus on fentanyl. A transdermal therapeutic system (TTS) for fentanyl has been developed. The amount of fentanyl released is proportional to the surface area of the TTS, which is available in different sizes. After the first application of a TTS, a fentanyl depot concentrates in the upper skin layers and it takes several hours until clinical effects are observed. The time from application to minimal effective and maximum serum concentrations is 1.2 to 40 hours and 12 to 48 hours, respectively. Steady state is reached on the third day, and can be maintained as long as patches are renewed. Within each 72-hour period, serum concentrations decrease gradually over the second and third days. When a TTS is removed, fentanyl continues to be absorbed into the systemic circulation from the cutaneous depot. The terminal half-life for TTS fentanyl is approximately 13 to 25 hours. The interindividual variability of serum concentrations, partly caused by different clearance rates, is markedly larger than the intraindividual variability. The effectiveness of TTS fentanyl was first demonstrated in acute postoperative pain. However, the slow pharmacokinetics and large variability of TTS fentanyl, together with the relatively short duration of postoperative pain, precluded adequate dose finding and led to inadequate pain relief or, especially, a high incidence of respiratory depression; such use is now contraindicated. Conversely, in cancer pain, TTS fentanyl offers an interesting alternative to oral morphine, and its effectiveness and tolerability in this indication has been demonstrated by a number of trials. Its usefulness in chronic pain of nonmalignant origin remains to be confirmed in controlled trials. In general, TTS fentanyl produces the same

  19. Current state of medical device nomenclature and taxonomy systems in the UK: spotlight on GMDN and SNOMED CT

    PubMed Central

    White, Judith; Carolan-Rees, Grace

    2013-01-01

    A standardised terminology for describing medical devices can enable safe and unambiguous exchange of information. Proposed changes to EU-wide medical devices regulations mandate the use of such a system. This article reviews two important classification systems for medical devices in the UK. The Global Medical Device Nomenclature (GMDN) provides a classification system specifically for medical devices and diagnostics, and facilitates data exchange between manufacturers and regulators. SNOMED CT is the terminology of choice in the NHS for communicating, sharing and storing information about patients’ healthcare episodes. Harmonisation of GMDN and SNOMED CT will encourage use of single terminology throughout the lifetime of a device; from regulatory approval through clinical use and post-marketing surveillance. Manufacturers will be required to register medical devices with a European device database (Eudamed) and to fit certain devices with a Unique Device Identifier; both are efforts to improve transparency and traceability of medical devices. Successful implementation of these elements depends on having a consistent nomenclature for medical devices. PMID:23885299

  20. 77 FR 41413 - Draft Guidance for Industry and Food and Drug Administration Staff; Medical Devices: The Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... the pre- Investigational Device Exemption (IDE) program) for medical devices reviewed in the Center... establishment in 1995, the pre-IDE program has been a successful resource for both medical device applicants and... feedback on future IDE applications prior to their submission. Over time, the pre-IDE program evolved...

  1. Josephson junction devices: Model quantum mechanical systems and medical applications

    NASA Astrophysics Data System (ADS)

    Chen, Josephine

    In this dissertation, three experiments using Josephson junction devices are described. In Part I, the effect of dissipation on tunneling between charge states in a superconducting single-electron transistor (sSET) was studied. The sSET was fabricated on top of a semi-conductor heterostructure with a two-dimensional electron gas (2DEG) imbedded beneath the surface. The 2DEG acted as a dissipative ground plane. The sheet resistance of the 2DEG could be varied in situ by applying a large voltage to a gate on the back of the substrate. The zero-bias conductance of the sSET was observed to increase with increasing temperature and 2DEG resistance. Some qualitative but not quantitative agreement was found with theoretical calculations of the functional dependence of the conductance on temperature and 2DEG resistance. Part II describes a series of experiments performed on magnesium diboride point-contact junctions. The pressure between the MgB2 tip and base pieces could be adjusted to form junctions with different characteristics. With light pressure applied between the two pieces, quasiparticle tunneling in superconductor-insulator-superconductor junctions was measured. From these data, a superconducting gap of approximately 2 meV and a critical temperature of 29 K were estimated. Increasing the pressure between the MgB2 pieces formed junctions with superconductor-normal metal-superconductor characteristics. We used these junctions to form MgB2 superconducting quantum interference devices (SQUIDS). Noise levels as low as 35 fT/Hz1/2 and 4 muphi 0/Hz1/2 at 1 kHz were measured. In Part III, we used a SQUID-based instrument to acquire magnetocardiograms (MCG), the magnetic field signal measured from the human heart. We measured 51 healthy volunteers and 11 cardiac patients both at rest and after treadmill exercise. We found age and sex related differences in the MCG of the healthy volunteers that suggest that these factors should be considered when evaluating the MCG for

  2. Medical devices; ear, nose and throat devices; reclassification of the endolymphatic shunt tube with valve. Final rule.

    PubMed

    2002-04-29

    The Food and Drug Administration (FDA) is reclassifying the endolymphatic shunt tube with valve from class III (premarket approval) into class II (special controls). The device is intended to be implanted in the inner ear to relieve the symptoms of vertigo and hearing loss due to endolymphatic hydrops (increase in endolymphatic fluid) of Meniere's disease. FDA is also identifying the guidance document entitled "Class II Special Controls Guidance Document: Endolymphatic Shunt Tube With Valve; Guidance for Industry and FDA" (the guidance) as the special control that the agency believes will reasonably ensure the safety and effectiveness of the device. This reclassification is based on new information submitted in are classification petition by E. Benson Hood Laboratories, Inc. (Hood Laboratories). FDA is taking this action under the Federal Food, Drug, and Cosmetic Act (the act), as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. Elsewhere in this issue of the Federal Register, FDA is publishing a notice announcing the guidance. PMID:11980454

  3. Medical devices and conflict of interest: unique issues and an industry code to address them.

    PubMed

    LaViolette, Paul A

    2007-03-01

    Development of medical devices requires interaction between physicians and industry that is considerably more intimate than that in pharmaceutical development. Progress in procedure-based medicine would be stalled if this collaboration were eliminated. This degree of interaction, however, creates conflicts of interest that must be managed to avoid compromising trust, credibility, and patient care. AdvaMed, a trade association for the medical device industry, has developed a code of ethics to manage many of these conflicts and to guide its members' interactions with health care professionals. This article reviews the rationale for the AdvaMed code and provides a brief in terms of c overview of the code itself.onflict-of-interest cons iderations, the world of medical devices is significantly dif- PMID:17469470

  4. Transdermal fentanyl patches in small animals.

    PubMed

    Hofmeister, Erik H; Egger, Christine M

    2004-01-01

    Fentanyl citrate is a potent opioid that can be delivered by the transdermal route in cats and dogs. Publications regarding transdermal fentanyl patches were obtained and systematically reviewed. Seven studies in cats and seven studies in dogs met the criteria for inclusion in this review. Dogs achieved effective plasma concentrations approximately 24 hours after patch application. Cats achieved effective plasma concentrations 7 hours after patch application. In dogs, transdermal fentanyl produced analgesia for up to 72 hours, except for the immediate 0- to 6-hour postoperative period. In cats, transdermal fentanyl produced analgesia equivalent to intermittent butorphanol administration for up to 72 hours following patch application. PMID:15533967

  5. Developing a Commercial Air Ultrasonic Ceramic Transducer to Transdermal Insulin Delivery.

    PubMed

    Jabbari, Nasrollah; Asghari, Mohammad Hossein; Ahmadian, Hassan; Mikaili, Peyman

    2015-01-01

    The application of low-frequency ultrasound for transdermal delivery of insulin is of particular public interest due to the increasing problem of diabetes. The purpose of this research was to develop an air ultrasonic ceramic transducer for transdermal insulin delivery and evaluate the possibility of applying a new portable and low-cost device for transdermal insulin delivery. Twenty-four rats were divided into four groups with six rats in each group: one control group and three experimental groups. Control group (C) did not receive any ultrasound exposure or insulin (untreated group). The second group (T1) was treated with subcutaneous insulin (Humulin(®) R, rDNA U-100, Eli Lilly and Co., Indianapolis, IN) injection (0.25 U/Kg). The third group (T2) topically received insulin, and the fourth group (T3) received insulin with ultrasound waves. All the rats were anesthetized by intraperitoneal injection of ketamin hydrochloride and xylazine hydrochloride. Blood samples were collected after anesthesia to obtain a baseline glucose level. Additional blood samples were taken every 15 min in the whole 90 min experiment. In order for comparison the changes in blood glucose levels" to " In order to compare the changes in blood glucose levels. The statistical multiple comparison (two-sided Tukey) test showed a significant difference between transdermal insulin delivery group (T2) and subcutaneous insulin injection group (T1) during 90 min experiment (P = 0.018). In addition, the difference between transdermal insulin delivery group (T2) and ultrasonic transdermal insulin delivery group (T3) was significant (P = 0.001). Results of this study demonstrated that the produced low-frequency ultrasound from this device enhanced the transdermal delivery of insulin across hairless rat skin. PMID:26120571

  6. A system for ultrasonic beacon-guidance of catheters and other minimally-invasive medical devices.

    PubMed

    Vilkomerson, D; Lyons, D

    1997-01-01

    Catheters and other interventional medical devices are presently guided by X-ray imaging, despite the advantages of ultrasound imaging over X-ray imaging in cost, safety, and availability. X-ray imaging is used because ultrasound reflects specularly from catheters and similar devices; their visibility is highly angle-dependent. With an omni-directional receiver mounted on a device, the receiver's location in the ultrasound image can be deduced from knowing which acoustic ray struck the receiver and the time from transmission of the imaging pulse to its reception by the receiver. This information is independent of specular reflection. The location of the device can then be indicated in the ultrasound image by an arrow pointing to the sensor, making possible ultrasound guidance of these devices. This paper describes the technical and practical considerations in the design and construction of the device-mounted receiver and associated electronics, and describes some clinical uses. PMID:18244147

  7. Medical Device Regulation: A Comparison of the United States and the European Union.

    PubMed

    Maak, Travis G; Wylie, James D

    2016-08-01

    Medical device regulation is a controversial topic in both the United States and the European Union. Many physicians and innovators in the United States cite a restrictive US FDA regulatory process as the reason for earlier and more rapid clinical advances in Europe. The FDA approval process mandates that a device be proved efficacious compared with a control or be substantially equivalent to a predicate device, whereas the European Union approval process mandates that the device perform its intended function. Stringent, peer-reviewed safety data have not been reported. However, after recent high-profile device failures, political pressure in both the United States and the European Union has favored more restrictive approval processes. Substantial reforms of the European Union process within the next 5 to 10 years will result in a more stringent approach to device regulation, similar to that of the FDA. Changes in the FDA regulatory process have been suggested but are not imminent. PMID:27195383

  8. Application of a Temporal Reasoning Framework Tool in Analysis of Medical Device Adverse Events

    PubMed Central

    Clark, Kimberly K.; Sharma, Deepak K.; Chute, Christopher G.; Tao, Cui

    2011-01-01

    The Clinical Narrative Temporal Relation Ontology (CNTRO)1 project offers a semantic-web based reasoning framework, which represents temporal events and relationships within clinical narrative texts, and infer new knowledge over them. In this paper, the CNTRO reasoning framework is applied to temporal analysis of medical device adverse event files. One specific adverse event was used as a test case: late stent thrombosis. Adverse event narratives were obtained from the Food and Drug Administration’s (FDA) Manufacturing and User Facility Device Experience (MAUDE) database2. 15 adverse event files in which late stent thrombosis was confirmed were randomly selected across multiple drug eluting stent devices. From these files, 81 events and 72 temporal relations were annotated. 73 temporal questions were generated, of which 65 were correctly answered by the CNTRO system. This results in an overall accuracy of 89%. This system should be pursued further to continue assessing its potential benefits in temporal analysis of medical device adverse events. PMID:22195199

  9. Medical devices; reclassification of the topical oxygen chamber for extremities. Final rule.

    PubMed

    2011-04-25

    The Food and Drug Administration (FDA) is reclassifying the topical oxygen chamber for extremities (TOCE) from class III to class II. This device is intended to surround a patient's limb and apply humidified oxygen topically at a pressure slightly greater than atmospheric pressure to aid healing of chronic skin ulcers, such as bedsores. This reclassification is on the Secretary of Health and Human Services's own initiative based on new information. This action is being taken under the Federal Food, Drug, and Cosmetic Act (the FD&C Act) as amended by the Medical Device Amendments of 1976 (the 1976 Amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document entitled ``Class II Special Controls Guidance Document: Topical Oxygen Chamber for Extremities,'' which will serve as the special control for this device. PMID:21516875

  10. Wireless communication with implanted medical devices using the conductive properties of the body

    PubMed Central

    Ferguson, John E; Redish, A David

    2013-01-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications. PMID:21728728

  11. Innovating in the medical device industry - challenges & opportunities ESB 2015 translational research symposium.

    PubMed

    Bayon, Y; Bohner, M; Eglin, D; Procter, P; Richards, R G; Weber, J; Zeugolis, D I

    2016-09-01

    The European Society for Biomaterials 2015 Translational Research Symposium focused on 'Innovating in the Medical Device Industry - Challenges & Opportunities' from different perspectives, i.e., from a non-profit research organisation to a syndicate of small and medium-sized companies and large companies. Lecturers from regulatory consultants, industry and research institutions described the innovation process and regulatory processes (e.g., 510K, PMA, combination product) towards market approval. The aim of the present article is to summarise and explain the main statements made during the symposium, in terms of challenges and opportunities for medical device industries, in a constantly changing customer and regulatory environment. PMID:27552808

  12. [Study on restriction factors and countermeasures of influence of China medical devices competitiveness].

    PubMed

    Zhang, Zhijun

    2012-07-01

    Recent years, China medical devices industry has been a sunrise industry with widely-ranged products, high-tech innovation, and booming market demands. But with the globalization of market economy, China industry is still in the inferior position of competition. How to promote the industrial structure transition, increase scientific and technological level, speed up the updating of products, enhance the international competitiveness is one of the major tasks to maintain the healthy development of industry. This article makes a study on current situation of China medical devices industry, analyses the new opportunities, challenges and restriction factors, provides the countermeasures of strengthening industry competitiveness as well. PMID:23189649

  13. 77 FR 66847 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... releasing external pressure during systole to reduce left ventricular workload. On March 9, 1979 (44 FR... class III after receiving no comments on the proposed rule (45 FR 7966, February 5, 1980). In 1987, FDA... been established for the requirement for premarket approval for ECP devices (52 FR 17737, May 11,...

  14. 78 FR 41803 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Register of April 25, 2013 (78 FR 24426). FOR FURTHER INFORMATION CONTACT: Sara J. Anderson, Center for Devices and Radiological Health, Food and Drug Administration,10903 New Hampshire Ave., Bldg. 66, rm. 1611... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH...

  15. 75 FR 41986 - Medical Devices; Pediatric Uses of Devices; Requirements for Submission of Information on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Food and Drugs, the direct final rule published on April 1, 2010, at 75 FR 16347 is withdrawn. Dated.... DATES: The direct final rule published at 75 FR 16347, April 1, 2010, is withdrawn on July 19, 2010. FOR FURTHER INFORMATION CONTACT: Robert Gatling, Center for Devices and Radiological Health, Food and...

  16. 76 FR 71045 - Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... reclassification of cranial electrotherapy stimulator (CES) devices. On August 8, 2011 (76 FR 48062), FDA issued a... Perry Pkwy., Gaithersburg, MD 20877. The hotel telephone number is (301) 977-8900. Contact Person: Avena...., Bldg. 66, Rm. 1535, Silver Spring, MD 20993-0002, Avena.Russell@fda.hhs.gov , (301) 796-3805, or...

  17. 77 FR 32125 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... announced in the Federal Register of March 30, 2012 (77 FR 19293). The amendment is being made to reflect a...: Avena Russell, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 66, rm. 1535, Silver Spring, MD 20993-0002, 301-796-3805,...

  18. 78 FR 14015 - Medical Devices; Exemption From Premarket Notification; Class II Devices; Powered Patient Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ..., 1998 (63 FR 3142). Section 510(m)(2) of the FD&C Act provides that FDA may exempt a device from..., p. 3.) In the Federal Register of June 1, 2012 (77 FR 32642), FDA published a notice announcing that... against the criteria laid out in the Class II 510(k) Exemption Guidance and in 63 FR 3142, and agrees...

  19. 78 FR 19717 - Clinical Chemistry and Clinical Toxicology Devices Panel of the Medical Devices Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... notice that appeared in the Federal Register of Wednesday, February 27, 2013 (78 FR 13347). The meeting... for up-to-date information on this meeting. SUPPLEMENTARY INFORMATION: In FR doc. 2013-04543... HUMAN SERVICES Food and Drug Administration Clinical Chemistry and Clinical Toxicology Devices Panel...

  20. 76 FR 6551 - Medical Devices; General and Plastic Surgery Devices; Classification of Contact Cooling System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... Devices; Classification of Contact Cooling System for Aesthetic Use AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is classifying the contact... Controls Guidance Document: Contact Cooling System for Aesthetic Use.'' The Agency is classifying...