Science.gov

Sample records for transient enhanced diffusion

  1. Time scales of transient enhanced diffusion: Free and clustered interstitials

    NASA Astrophysics Data System (ADS)

    Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.

    1996-12-01

    Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.

  2. Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation

    NASA Astrophysics Data System (ADS)

    Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.

    1998-12-01

    In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.

  3. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    SciTech Connect

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  4. Transient enhanced diffusion of B at low temperatures under extrinsic conditions

    NASA Astrophysics Data System (ADS)

    Giles, L. F.; Colombeau, B.; Cowern, N.; Molzer, W.; Schaefer, H.; Bach, K. H.; Haibach, P.; Roozeboom, F.

    2005-04-01

    Transient enhanced diffusion of B in silicon is modelled at temperatures down to 500 °C, using a simplified model of self-interstitial clusters to describe the time evolution of the self-interstitial supersaturation, S. The model is highly predictive, providing an accurate description of diffusion both in the peak and tail regions of B marker layers, over a wide range of annealing conditions. The model is well adapted for implementation into existing 2D commercial simulation tools. Fundamental parameters of atomic-scale B diffusion were extracted for the first time at T = 500 °C, under both intrinsic and extrinsic conditions.

  5. Modeling the suppression of boron transient enhanced diffusion in silicon by substitutional carbon incorporation

    NASA Astrophysics Data System (ADS)

    Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.

    2001-08-01

    Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.

  6. The effect of boron implant energy on transient enhanced diffusion in silicon

    SciTech Connect

    Liu, J.; Krishnamoorthy, V.; Gossman, H.; Rubin, L.; Law, M.E.; Jones, K.S.

    1997-02-01

    Transient enhanced diffusion (TED) of boron in silica after low energy boron implantation and annealing was investigated using boron-doping superlattices (DSLs) grown by low temperature molecular beam epitaxy. Boron ions were implanted at 5, 10, 20, and 40 keV at a constant dose of 2{times}10{sup 14}/cm{sup 2}. Subsequent annealing was performed at 750{degree}C for times of 3 min, 15 min, and 2 h in a nitrogen ambient. The broadening of the boron spikes was measured by secondary ion mass spectroscopy and simulated. Boron diffusivity enhancement was quantified as a function of implant energy. Transmission electron microscopy results show that {l_angle}311{r_angle} defects are only seen for implant energies {ge}10 keV at this dose and that the density increases with energy. DSL studies indicate the point defect concentration in the background decays much slower when {l_angle}311{r_angle} defects are present. These results imply there are at least two sources of TED for boron implants (B-I): short time component that decays rapidly consistent with nonvisible B-I pairs and a longer time component consistent with interstitial release from the {l_angle}311{r_angle} defects. {copyright} {ital 1997 American Institute of Physics.}

  7. Transient enhanced diffusion in preamorphized silicon: the role of the surface

    NASA Astrophysics Data System (ADS)

    Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.

    1999-01-01

    Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.

  8. Investigation on boron transient enhanced diffusion induced by the advanced P +/N ultra-shallow junction fabrication processes

    NASA Astrophysics Data System (ADS)

    Lallement, F.; Lenoble, D.

    2005-08-01

    In this paper, we propose to characterize boron transient enhanced diffusion (TED) for processes currently used for P+/N ultra-shallow junctions (USJ) fabrication. Indeed, the fundamental understanding of boron diffusion for low energy boron implantation is mandatory to evaluate the scalability of such processes for the coming complementary metal-oxide-semiconductor (CMOS) transistor generations. In these experiments, we characterize the boron anomalous diffusion, thanks to boron buried marker-layers obtained by epitaxial growth. B+ and BF2+ ultra-low energy (ULE) implantations and plasma doping (PLAD) using BF3 as precursor gas are carried out to compare the two techniques used for advanced USJ fabrication. Boron diffusion behaviors are analyzed via secondary ion mass spectrometry for annealing at 700 °C for 5 min and 15 min. Finally this paper brings some physical insights explaining the technological benefit coming from PLAD technique over standard ion implantation that have been demonstrated in recent publications [F. Lallement et al., Proceedings of VLSI, Honolulu, Hawaii, USA, in press [1

  9. Microwave enhanced diffusion

    SciTech Connect

    Katz, J.D.; Blake, R.D. ); Kenkre, V.M. )

    1991-01-01

    The observation of more rapid reaction and/or sintering during microwave processing of ceramics has lead to speculation that microwave processing results in enhanced diffusion.'' The loss mechanisms by which microwaves interact with a crystal lattice have been reviewed. These mechanisms were evaluated with regard to the atomic theory of diffusion. The potential for these loss mechanisms to influence atomic diffusion, and thus produce enhancement will be discussed. Existing evidence, both direct and indirect, regarding microwave enhanced diffusion has been reviewed and will be discussed along with recent experimental data. 15 refs., 5 figs.

  10. Enhanced Diffusion by Reciprocal Swimming

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2011-04-01

    Purcell’s scallop theorem states that swimmers deforming their shapes in a time-reversible manner (“reciprocal” motion) cannot swim. Using numerical simulations and theoretical calculations we show here that, in a fluctuating environment, reciprocal swimmers undergo, on time scales larger than that of their rotational diffusion, diffusive dynamics with enhanced diffusivities, possibly by orders of magnitude, above normal translational diffusion. Reciprocal actuation does therefore lead to a significant advantage over nonmotile behavior for small organisms such as marine bacteria.

  11. Quenched disorder enhances chaotic diffusion

    NASA Astrophysics Data System (ADS)

    Popescu, M. N.; Braiman, Y.; Family, F.; Hentschel, H. G. E.

    1998-10-01

    We show that chaotic diffusion of a single particle moving on a one-dimensional rough surface is enhanced by a small amount of spatial quenched disorder. In addition to enhanced diffusion we also find that there is a crossover from expanding to bounded motion. The crossover time to bounded motion decreases with increasing disorder, and there exists a threshold value of disorder above which chaotic motion is completely suppressed.

  12. Enhanced diffusion welding

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J. (Inventor)

    1973-01-01

    Surfaces of unrecrystallized alloys are sanded and polished. This is followed by a two-step welding process by which the strength of the parent metal is retained at the weld joint. The first step forces the surfaces into intimate contact at a temperature where the metal still has good ductility. The second step causes diffusion, recrystallization, and grain growth across the original weld interface.

  13. Ultrasonic enhancement of battery diffusion.

    PubMed

    Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J

    2014-03-01

    It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy. PMID:24210813

  14. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    NASA Astrophysics Data System (ADS)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  15. Cavity Enhanced Ultrafast Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K.; Reber, Melanie Roberts; Chen, Yuning

    2015-06-01

    Ultrafast spectroscopy on gas phase systems is typically restricted to techniques involving photoionization, whereas solution phase experiments utilize the detection of light. At Stony Brook, we are developing new techniques for performing femtosecond time-resolved spectroscopy using frequency combs and high-finesse optical resonators. A large detection sensitivity enhancement over traditional methods enables the extension of all-optical ultrafast spectroscopies, such as broad-band transient absorption spectroscopy (TAS) and 2D spectroscopy, to dilute gas phase samples produced in molecular beams. Here, gas phase data can be directly compared to solution phase data. Initial demonstration experiments are focusing on the photodissociation of iodine in small neutral argon clusters, where cluster size strongly influences the effects solvent-caging and geminate recombination. I will discuss these initial results, our high power home-built Yb:fiber laser systems, and also extensions of the methods to the mid-IR to study the vibrational dynamics of hydrogen bonded clusters.

  16. Enhancing Rotational Diffusion Using Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai

    2013-05-01

    Taylor dispersion—shear-induced enhancement of translational diffusion—is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle’s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids.

  17. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  18. Anomalous diffusion with transient subordinators: a link to compound relaxation laws.

    PubMed

    Stanislavsky, Aleksander; Weron, Karina; Weron, Aleksander

    2014-02-01

    This paper deals with a problem of transient anomalous diffusion which is currently found to emerge from a wide range of complex processes. The nonscaling behavior of such phenomena reflects changes in time-scaling exponents of the mean-squared displacement through time domain - a more general picture of the anomalous diffusion observed in nature. Our study is based on the identification of some transient subordinators responsible for transient anomalous diffusion. We derive the corresponding fractional diffusion equation and provide links to the corresponding compound relaxation laws supported by this case generalizing many empirical dependencies well-known in relaxation investigations. PMID:24511928

  19. Diffusion-Weighted Imaging and Diagnosis of Transient Ischemic Attack

    PubMed Central

    Brazzelli, Miriam; Chappell, Francesca M; Miranda, Hector; Shuler, Kirsten; Dennis, Martin; Sandercock, Peter A G; Muir, Keith; Wardlaw, Joanna M

    2014-01-01

    Objective Magnetic resonance (MR) diffusion-weighted imaging (DWI) is sensitive to small acute ischemic lesions and might help diagnose transient ischemic attack (TIA). Reclassification of patients with TIA and a DWI lesion as “stroke” is under consideration. We assessed DWI positivity in TIA and implications for reclassification as stroke. Methods We searched multiple sources, without language restriction, from January 1995 to July 2012. We used PRISMA guidelines, and included studies that provided data on patients presenting with suspected TIA who underwent MR DWI and reported the proportion with an acute DWI lesion. We performed univariate random effects meta-analysis to determine DWI positive rates and influencing factors. Results We included 47 papers and 9,078 patients (range = 18–1,693). Diagnosis was by a stroke specialist in 26 of 47 studies (55%); all studies excluded TIA mimics. The pooled proportion of TIA patients with an acute DWI lesion was 34.3% (95% confidence interval [CI] = 30.5–38.4, range = 9–67%; I2 = 89.3%). Larger studies (n > 200) had lower DWI-positive rates (29%; 95% CI = 23.2–34.6) than smaller (n < 50) studies (40.1%; 95% CI = 33.5–46.6%; p = 0.035), but no other testable factors, including clinician speciality and time to scanning, reduced or explained the 7-fold DWI-positive variation. Interpretation The commonest DWI finding in patients with definite TIA is a negative scan. Available data do not explain why ⅔ of patients with definite specialist-confirmed TIA have negative DWI findings. Until these factors are better understood, reclassifying DWI-positive TIAs as strokes is likely to increase variance in estimates of global stroke and TIA burden of disease. ANN NEUROL 2014;75:67–76 PMID:24085376

  20. Enhancing photocurrent transient spectroscopy by electromagnetic modeling.

    PubMed

    Diesinger, H; Panahandeh-Fard, M; Wang, Z; Baillargeat, D; Soci, C

    2012-05-01

    The shape and duration of photocurrent transients generated by a photoconductive switch depend on both the intrinsic response of the active material and the geometry of the transmission line structure. The present electromagnetic model decouples both shape forming contributions. In contrast to previously published work, it accounts for the particular operating mode of transient spectroscopy. The objective is to increase the time resolution by two approaches, by optimizing structural response and by deconvolving it from experimental data. The switch structure is represented by an effective transimpedance onto which the active material acts as current generator. As proof of concept, the response of a standard microstrip switch is modeled and deconvolved from experimental data acquired in GaAs, yielding a single exponential material response and hence supporting the validity of the approach. Beyond compensating for the response deterioration by the structure, switch architectures can be a priori optimized with respect to frequency response. As an example, it is shown that a microstrip gap that can be deposited on materials incompatible with standard lithography reduces pulse broadening by an order of magnitude if it is provided with transitions to coplanar access lines. PMID:22667598

  1. A comparison of implicit numerical methods for solving the transient spherical diffusion equation

    NASA Technical Reports Server (NTRS)

    Curry, D. M.

    1977-01-01

    Comparative numerical temperature results obtained by using two implicit finite difference procedures for the solution of the transient diffusion equation in spherical coordinates are presented. The validity and accuracy of these solutions are demonstrated by comparison with exact analytical solutions.

  2. Contrast Enhancement by Nonlinear Diffusion Filtering.

    PubMed

    Liang, Zhetong; Liu, Weijian; Yao, Ruohe

    2016-02-01

    To enhance the visual quality of an image that is degraded by uneven light, an effective method is to estimate the illumination component and compress it. Some previous methods have either defects of halo artifacts or contrast loss in the enhanced image due to incorrect estimation. In this paper, we discuss this problem and propose a novel method to estimate the illumination. The illumination is obtained by iteratively solving a nonlinear diffusion equation. During the diffusion process, surround suppression is embedded in the conductance function to specially enhance the diffusive strength in textural areas of the image. The proposed estimation method has the following two merits: 1) the boundary areas are preserved in the illumination, and thus halo artifacts are prevented and 2) the textural details are preserved in the reflectance to not suffer from illumination compression, which contributes to the contrast enhancement in the result. Experimental results show that the proposed algorithm achieves excellent performance in artifact removal and local contrast enhancement. PMID:26685234

  3. Anomalous diffusion induced by enhancement of memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    2014-07-01

    We introduced simple microscopic non-Markovian walk models which describe the underlying mechanism of anomalous diffusions. In the models, we considered the competitions between randomness and memory effects of previous history by introducing the probability parameters. The memory effects were considered in two aspects: one is the perfect memory of whole history and the other is the latest memory enhanced with time. In the perfect memory model superdiffusion was induced with the relation of the Hurst exponent H to the controlling parameter p as H =p for p >1/2, while in the latest memory enhancement models, anomalous diffusions involving both superdiffusion and subdiffusion were induced with the relations H =(1+α)/2 and H =(1-α)/2 for 0≤α≤1, where α is the parameter controlling the degree of the latest memory enhancement. Also we found that, although the latest memory was only considered, the memory improved with time results in the long-range correlations between steps and the correlations increase as time goes on. Thus we suggest the memory enhancement as a key origin describing anomalous diffusions.

  4. Fission enhanced diffusion of uranium in zirconia

    NASA Astrophysics Data System (ADS)

    Bérerd, N.; Chevarier, A.; Moncoffre, N.; Sainsot, Ph.; Faust, H.; Catalette, H.

    2005-11-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin 235UO2 layer in direct contact with an oxidised zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 1011 ions cm-2 s-1 and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10-15 cm2 s-1 at 480 °C and compared to uranium thermal diffusion data in ZrO2 in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  5. Can Disorder Enhance Incoherent Exciton Diffusion?

    PubMed

    Lee, Elizabeth M Y; Tisdale, William A; Willard, Adam P

    2015-07-30

    Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we introduce a general model, based upon Förster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates, which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific hopping rates is broadened in a manner that results in a decrease in average exciton diffusivity relative to that in a perfectly ordered film. Second, since excitons prefer to make transitions that are downhill in energy, the steady state distribution of exciton energies is biased toward low-energy molecular subunits, those that exhibit reduced diffusivity relative to a perfectly ordered film. These effects combine to reduce the net diffusivity in a manner that is time dependent and grows more pronounced as disorder is increased. Notably, however, we demonstrate that the presence of energetic disorder can give rise to a population of molecular subunits with exciton transfer rates exceeding those of subunits in an energetically uniform material. Such enhancements may play an important role in processes that are sensitive to molecular-scale fluctuations in exciton density field. PMID:26106811

  6. Analysis of single particle diffusion with transient binding using particle filtering.

    PubMed

    Bernstein, Jason; Fricks, John

    2016-07-21

    Diffusion with transient binding occurs in a variety of biophysical processes, including movement of transmembrane proteins, T cell adhesion, and caging in colloidal fluids. We model diffusion with transient binding as a Brownian particle undergoing Markovian switching between free diffusion when unbound and diffusion in a quadratic potential centered around a binding site when bound. Assuming the binding site is the last position of the particle in the unbound state and Gaussian observational error obscures the true position of the particle, we use particle filtering to predict when the particle is bound and to locate the binding sites. Maximum likelihood estimators of diffusion coefficients, state transition probabilities, and the spring constant in the bound state are computed with a stochastic Expectation-Maximization (EM) algorithm. PMID:27107737

  7. Transient spatiotemporal chaos in a diffusively and synaptically coupled Morris-Lecar neuronal network

    NASA Astrophysics Data System (ADS)

    Lafranceschina, Jacopo

    Transient spatiotemporal chaos was reported in models for chemical reactions and in experiments for turbulence in shear flow. This study shows that transient spatiotemporal chaos also exists in a diffusively coupled Morris-Lecar (ML) neuronal network, with a collapse to either a global rest state or to a state of pulse propagation. Adding synaptic coupling to this network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strengths and almost all numbers of synapses. For large coupling strengths, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyapunov exponent and degree of phase coherence as the number of synaptic links increases. In contrast to the diffusive network, the pulse solution must not be asymptotic in the presence of synapses. The fact that chaos could be transient in higher dimensional systems, such as the one being explored in this study, point to its presence in every day life. Transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provide a possibility for switching between metastable states observed in information processing and brain function. Such transient dynamics have been observed experimentally by Mazor, when stimulating projection neurons in the locust antennal lobe with different odors.

  8. Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces

    NASA Astrophysics Data System (ADS)

    Peters, Gerrit W. M.; Zdravkov, Alexander N.; Meijer, Han E. H.

    2005-03-01

    We demonstrate the influence of molecular weight and molecular weight asymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broad range of interfacial properties using a pendant/sessile drop apparatus. The results show that neglecting mutual solubility, assumed to be a reasonable approximation in many cases, very often does not sustain. Instead, a diffuse interface layer develops in time with a corresponding transient interfacial tension. Depending on the specific combination of polymers, the transient interfacial tension is found to increase or decrease with time. The results are interpreted in terms of a recently proposed model [Shi et al., Macromolecules 37, 1591 (2004)], giving relative characteristic diffusion time scales in terms of molecular weight, molecular weight distribution, and viscosities. However, the time scales obtained from this theoretical approach do not give a conclusive trend. Using oscillatory dilatational interfacial experiments the viscoelastic behavior of these diffusive interfaces is demonstrated. The time evolution of the interfacial tension and the dilatational elasticity show the same trend as predicted by the theory of diffuse interfaces, supporting the idea that the polymer combinations under consideration indeed form diffuse interfaces. The dilatational elasticity and the dilatational viscosity show a frequency dependency that is described qualitatively by a simple Fickian diffusion model and quantitatively by a Maxwell model. The characteristic diffusion times provided by the latter show that the systems with thick interfaces (tens of microseconds and more) can be considered as slower diffusive systems compared to the systems with thinner interfaces (a few micrometers in thickness and less) can be considered as fast diffusive systems.

  9. ENHANCED SEVERE TRANSIENT ANALYSIS FOR PREVENTION TECHNICAL PROGRAM PLAN

    SciTech Connect

    Gougar, Hans

    2014-09-01

    This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s major emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.

  10. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    SciTech Connect

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental {sup 30}Si profiles.

  11. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    NASA Astrophysics Data System (ADS)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M.

    2015-09-01

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using natSi/28Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800-950 C. The behavior of Si self-interstitials is investigated through the 30Si self-diffusion. The experimental 30Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental 30Si profiles.

  12. Monte Carlo study of non-diffusive relaxation of a transient thermal grating in thin membranes

    NASA Astrophysics Data System (ADS)

    Zeng, Lingping; Chiloyan, Vazrik; Huberman, Samuel; Maznev, Alex A.; Peraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.; Nelson, Keith A.; Chen, Gang

    2016-02-01

    The impact of boundary scattering on non-diffusive thermal relaxation of a transient grating in thin membranes is rigorously analyzed using the multidimensional phonon Boltzmann equation. The gray Boltzmann simulation results indicate that approximating models derived from previously reported one-dimensional relaxation model and Fuchs-Sondheimer model fail to describe the thermal relaxation of membranes with thickness comparable with phonon mean free path. Effective thermal conductivities from spectral Boltzmann simulations free of any fitting parameters are shown to agree reasonably well with experimental results. These findings are important for improving our fundamental understanding of non-diffusive thermal transport in membranes and other nanostructures.

  13. Transient decrease in water diffusion observed in human occipital cortex during visual stimulation

    PubMed Central

    Darquié, Anne; Poline, Jean-Baptiste; Poupon, Cyril; Saint-Jalmes, Hervé; Le Bihan, Denis

    2001-01-01

    Using MRI, we report the observation of a transient decrease of the apparent diffusion coefficient (ADC) of water in the human brain visual cortex during activation by a black and white 8-Hz-flickering checkerboard. The ADC decrease was small (<1%), but significant and reproducible, and closely followed the time course of the activation paradigm. Based on the known sensitivity of diffusion MRI to cell size in tissues and on optical imaging studies that have revealed changes in the shape of neurons and glial cells during activation, the observed ADC findings have been tentatively ascribed to a transient swelling of cortical cells. These preliminary results suggest a new approach to produce images of brain activation with MRI from signals directly associated with neuronal activation, and not through changes in local blood flow. PMID:11459931

  14. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement.

    PubMed

    Wang, Tianyu; Xu, Shen; Hurley, David H; Yue, Yanan; Wang, Xinwei

    2016-01-01

    A new transient Raman thermal probing technique, frequency-resolved Raman (FR-Raman), is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude-modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are reconstructed and used for fitting to determine the thermal diffusivity. A microscale silicon (Si) cantilever is used to investigate the capacity of this new technique. The thermal diffusivity is determined as 9.57×10-5  m2/s, 11.00×10-5  m2/s, and 9.02×10-5  m2/s via fitting Raman intensity, wavenumber, and total Raman emission, respectively. The results agree well with literature data. The FR-Raman provides a novel way for transient thermal probing with very high temporal resolution and micrometer-scale spatial resolution. PMID:26696163

  15. Benchmarking report for WIGGLE: A one-dimensional transient diffusion theory code

    SciTech Connect

    Pevey, R.E.

    1990-11-01

    WIGGLE is a static/transient one-dimensional diffusion theory calculation written to estimate the axial power profile while safety rods are falling during a scram. The code is used in the LOCA Limits Analysis Package (LLAP), a part of the SRS system for calculating thermal-hydraulic limits. Since WIGGLE was designed to be implemented through LLAP and not as a stand-alone code, it consists entirely of subroutines; the problem data must be passed to it from a driver routine. This project concerned the verification of WIGGLE, which limited it to the determination that WIGGLE is correctly implementing the transient 1D diffusion equation. The approach was to compare the results of the code with three analytic solutions: a static homogeneous calculation of the pre-accident power profile (without end-fittings); a static heterogeneous calculation of the pre-accident power profile (includes end-fittings); and a transient calculation designed to test the time-dependent calculational ability. The results of all three calculations were essentially identical to the analytical solutions, thus giving us confidence that WIGGLE is correctly solving the one-dimensional time-dependent diffusion equation.

  16. Enhancing phosphorylation cascades by anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Hellmann, M.; Heermann, D. W.; Weiss, M.

    2012-03-01

    A key event in many cellular signaling cascades is the multiple phosphorylation of proteins by specialized kinases. A prototypical example is the mitogen-activated protein kinase (MAPK) that alters the cell's gene transcription after having been phosphorylated twice by the same kinase. Here, we show that anomalous diffusion, induced, for example, by cytoplasmic crowding, can significantly improve the activation of MAPK. Our results on anomalous diffusion with the characteristics of fractional Brownian motion and obstructed diffusion compare favorably to very recent biochemical data on MAPK activation at varying degrees of cytoplasmic crowding. Our results predict any Michaelis-Menten scheme in which a substrate is modified by the same enzyme several times to show an increased performance due to anomalous diffusion when dissociation rates of the intermediate enzyme-substrate complexes are high while the irreversible catalytic step is slow. Thus, crowding-induced anomalous diffusion can strongly alter the behavior of many cellular signaling pathways.

  17. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  18. Diffuse-charge effects on the transient response of electrochemical cells

    NASA Astrophysics Data System (ADS)

    van Soestbergen, M.; Biesheuvel, P. M.; Bazant, M. Z.

    2010-02-01

    We present theoretical models for the time-dependent voltage of an electrochemical cell in response to a current step, including effects of diffuse charge (or “space charge”) near the electrodes on Faradaic reaction kinetics. The full model is based on the classical Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions to describe electron-transfer reactions across the Stern layer at the electrode surface. In practical situations, diffuse charge is confined to thin diffuse layers (DLs), which poses numerical difficulties for the full model but allows simplification by asymptotic analysis. For a thin quasi-equilibrium DL, we derive effective boundary conditions on the quasi-neutral bulk electrolyte at the diffusion time scale, valid up to the transition time, where the bulk concentration vanishes due to diffusion limitation. We integrate the thin-DL problem analytically to obtain a set of algebraic equations, whose (numerical) solution compares favorably to the full model. In the Gouy-Chapman and Helmholtz limits, where the Stern layer is thin or thick compared to the DL, respectively, we derive simple analytical formulas for the cell voltage versus time. The full model also describes the fast initial capacitive charging of the DLs and superlimiting currents beyond the transition time, where the DL expands to a transient non-equilibrium structure. We extend the well-known Sand equation for the transition time to include all values of the superlimiting current beyond the diffusion-limiting current.

  19. Anomalous diffusion process applied to magnetic resonance image enhancement

    NASA Astrophysics Data System (ADS)

    Senra Filho, A. C. da S.; Garrido Salmon, C. E.; Murta Junior, L. O.

    2015-03-01

    Diffusion process is widely applied to digital image enhancement both directly introducing diffusion equation as in anisotropic diffusion (AD) filter, and indirectly by convolution as in Gaussian filter. Anomalous diffusion process (ADP), given by a nonlinear relationship in diffusion equation and characterized by an anomalous parameters q, is supposed to be consistent with inhomogeneous media. Although classic diffusion process is widely studied and effective in various image settings, the effectiveness of ADP as an image enhancement is still unknown. In this paper we proposed the anomalous diffusion filters in both isotropic (IAD) and anisotropic (AAD) forms for magnetic resonance imaging (MRI) enhancement. Filters based on discrete implementation of anomalous diffusion were applied to noisy MRI T2w images (brain, chest and abdominal) in order to quantify SNR gains estimating the performance for the proposed anomalous filter when realistic noise is added to those images. Results show that for images containing complex structures, e.g. brain structures, anomalous diffusion presents the highest enhancements when compared to classical diffusion approach. Furthermore, ADP presented a more effective enhancement for images containing Rayleigh and Gaussian noise. Anomalous filters showed an ability to preserve anatomic edges and a SNR improvement of 26% for brain images, compared to classical filter. In addition, AAD and IAD filters showed optimum results for noise distributions that appear on extreme situations on MRI, i.e. in low SNR images with approximate Rayleigh noise distribution, and for high SNR images with Gaussian or non central χ noise distributions. AAD and IAD filter showed the best results for the parametric range 1.2 < q < 1.6, suggesting that the anomalous diffusion regime is more suitable for MRI. This study indicates the proposed anomalous filters as promising approaches in qualitative and quantitative MRI enhancement.

  20. Coherent backscattering enhancement in refracting media: diffusion approximation.

    PubMed

    Ilyushin, Ya A

    2013-07-01

    The weak localization (coherent backscattering enhancement) phenomenon in media with graded refraction index is investigated within the diffusion approximation. The obtained analytic results are compared with numerical solutions by finite-difference and Monte Carlo calculations. PMID:24323143

  1. Rotational Diffusion of Rhodopsin-Digitonin Micelles Studied by Transient Photodichroism

    PubMed Central

    Strackee, L.

    1971-01-01

    The transient photodichroism induced by a 0.80 sec plane-polarized light flash in a rhodopsin-digitonin mixture at about -70°C was compared with a theoretical description of the effect. It was concluded that the transient dichroism is entirely due to rotational diffusion of the pigment molecules. When the rhodopsin-digitonin micelles are assumed to be rotationally symmetric it was found from the observed relaxation time that the axial ratio is probably less than 2. The initial photodichroism after each flash as a function of the number of flashes was shown to obey an equation derived for the photochemical equilibrium reaction between rhodopsin, lumirhodopsin, and isorhodopsin. The absolute quantum efficiency of the transition of rhodopsin to lumirhodopsin was found to be equal, within experimental error, to the quantum efficiency of bleaching rhodopsin at room temperature. PMID:5132498

  2. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Technical Reports Server (NTRS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    1992-01-01

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  3. Transient liquid phase diffusion bonding of Udimet 720 for Stirling power converter applications

    NASA Astrophysics Data System (ADS)

    Mittendorf, Donald L.; Baggenstoss, William G.

    Udimet 720 has been selected for use on Stirling power converters for space applications. Because Udimet 720 is generally considered susceptible to strain age cracking if traditional fusion welding is used, other joining methods are being considered. A process for transient liquid phase diffusion bonding of Udimet 720 has been theoretically developed in an effort to eliminate the strain age crack concern. This development has taken into account such variables as final grain size, joint homogenization, joint efficiency related to bonding aid material, bonding aid material application method, and thermal cycle.

  4. {l_brace}311{r_brace} Defects in ion-implanted silicon: The cause of transient diffusion, and a mechanism for dislocation formation

    SciTech Connect

    Eaglesham, D.J.; Stolk, P.A.; Cheng, J.Y.; Gossmann, H.J.; Poate, J.M.; Haynes, T.E.

    1995-04-01

    Ion implantation is used at several critical stages of Si integrated circuit manufacturing. The authors show how {l_brace}311{r_brace} defects arising after implantation are responsible for both enhanced dopant diffusion during annealing, and stable dislocations post-anneal. They observe {l_brace}311{r_brace} defects in the earliest stages of an anneal. They subsequently undergo rapid Ostwald ripening and evaporation. At low implant doses evaporation dominates, and they can quantitatively relate the interstitials emitted from these defects to the transient enhancement in diffusivity of dopants such as B and P. At higher doses Ostwald ripening is significant, and they observe the defects to undergo a series of unfaulting reactions to form both Frank loops and perfect dislocations. They demonstrate the ability to control both diffusion and dislocations by the addition of small amounts of carbon impurities.

  5. Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique

    NASA Astrophysics Data System (ADS)

    Nargelas, S.; Jarašiunas, K.; Bertulis, K.; Pačebutas, V.

    2011-02-01

    We applied a time-resolved transient grating technique for investigation of nonequilibrium carrier dynamics in GaAs1-xBix alloys with x =0.025-0.063. The observed decrease in carrier bipolar diffusivity with lowering temperature and its saturation below 80 K revealed a strong localization of nonequilibrium holes. Thermal activation energy ΔEa=46 meV of diffusivity and low hole mobility value μh=10-20 cm2/V s at room temperature confirmed the hybridization model of the localized Bi states with the valence band of GaAs. Nonlinear increase in carrier recombination rate with the Bi content, 1/τR∝Bi(x )3.2 indicated an increasing structural disorder in the alloy.

  6. Color Histogram Diffusion for Image Enhancement

    NASA Technical Reports Server (NTRS)

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  7. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    SciTech Connect

    Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  8. Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells.

    PubMed

    Ichinose, Tomomi; Shields, Colleen R; Lukasiewicz, Peter D

    2005-02-16

    Retinal bipolar cells are slow potential neurons that respond to photoreceptor inputs with graded potentials and do not fire action potentials. We found that transient ON bipolar cells recorded in retinal slices possess voltage-gated sodium channels located on either their dendrites or somas. The sodium currents in these neurons did not generate spikes but enhanced voltage responses evoked by visual stimulation, which selectively boosted transmission to transient ganglion cells. In contrast, sodium currents were not found in sustained ON bipolar cells, and light responses in sustained bipolar cells and ganglion cells were not affected by TTX. The presence of sodium channels in transient ON bipolar cells contributed to the separation of transient and sustained signals by selectively enhancing the responses of ON transient ganglion cells to light. Our results suggest that bipolar cell sodium channels augment transient signals and contribute to the temporal segregation of visual information. PMID:15716422

  9. Partial transient liquid phase diffusion bonding of Zircaloy-4 to stabilized austenitic stainless steel 321

    SciTech Connect

    Atabaki, M. Mazar; Hanzaei, A. Talebi

    2010-10-15

    An innovative method was applied for bonding Zircaloy-4 to stabilized austenitic stainless steel 321 using an active titanium interlayer. Specimens were joined by a partial transient liquid phase diffusion bonding method in a vacuum furnace at different temperatures under 1 MPa dynamic pressure of contact. The influence of different bonding temperatures on the microstructure, microindentation hardness, joint strength and interlayer thickness has been studied. The diffusion of Fe, Cr, Ni and Zr has been investigated by scanning electron microscopy and energy dispersive spectroscopy elemental analyses. Results showed that control of the heating and cooling rate and 20 min soaking at 1223 K produces a perfect joint. However, solid-state diffusion of the melting point depressant elements into the joint metal causes the solid/liquid interface to advance until the joint is solidified. The tensile strength of all the bonded specimens was found around 480-670 MPa. Energy dispersive spectroscopy studies indicated that the melting occurred along the interface of the bonded specimens as a result of the transfer of atoms between the interlayer and the matrix during bonding. This technique provides a reliable method of bonding zirconium alloy to stainless steel.

  10. Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Collins, Kimberlee C.; Maznev, Alexei A.; Tian, Zhiting; Esfarjani, Keivan; Nelson, Keith A.; Chen, Gang

    2013-09-01

    The relaxation of an one-dimensional transient thermal grating (TTG) in a medium with phonon-mediated thermal transport is analyzed within the framework of the Boltzmann transport equation (BTE), with the goal of extracting phonon mean free path (MFP) information from TTG measurements of non-diffusive phonon transport. Both gray-medium (constant MFP) and spectrally dependent MFP models are considered. In the gray-medium approximation, an analytical solution is derived. For large TTG periods compared to the MFP, the model yields an exponential decay of grating amplitude with time in agreement with Fourier's heat diffusion equation, and at shorter periods, phonon transport transitions to the ballistic regime, with the decay becoming strongly non-exponential. Spectral solutions are obtained for Si and PbSe at 300 K using phonon dispersion and lifetime data from density functional theory calculations. The spectral decay behaviors are compared to several approximate models: a single MFP solution, a frequency-integrated gray-medium model, and a "two-fluid" BTE solution. We investigate the utility of using the approximate models for the reconstruction of phonon MFP distributions from non-diffusive TTG measurements.

  11. Field-enhanced vacancy diffusion in AlGaN

    NASA Astrophysics Data System (ADS)

    Warnick, Keith H.; Puzyrev, Yevgeniy; Roy, Tania; Fleetwood, Daniel M.; Schrimpf, Ronald D.; Pantelides, Sokrates T.

    2012-02-01

    Room-temperature (RT) native defect diffusion does not generally occur in semiconductors because of high activation energies (>1.5 eV). However, recent observations of plastic deformation in AlGaN/GaN High Electron Mobility Transistors (HEMTs) have been attributed to diffusive processes. Here we report first-principles density-functional calculations of the formation and migration energies of vacancies, including the effect of strain and electric fields. We find that triply-negatively charged cation vacancies are the enablers of self-diffusion, as follows: though strain alone is insufficient, we find significant activation barrier lowering due to the applied electric field acting on charged vacancies, reducing cation vacancy barriers in AlGaN to ˜1 eV or lower where RT diffusion becomes significant. The described mechanism of electric field enhanced vacancy diffusion is relevant for other materials, including several oxides that also feature charged vacancies with low formation energy.

  12. Microperforations Significantly Enhance Diffusion Across Round Window Membrane

    PubMed Central

    Kelso, Catherine M.; Watanabe, Hirobumi; Wazen, Joseph M.; Bucher, Tizian; Qian, Zhen J.; Olson, Elizabeth S.; Kysar, Jeffrey W.; Lalwani, Anil K.

    2014-01-01

    Hypothesis Introduction of microperforations in round window membrane (RWM) will allow reliable and predictable intracochlear delivery of pharmaceutical, molecular or cellular therapeutic agents. Background Reliable delivery of medications into the inner ear remains a formidable challenge. The RWM is an attractive target for intracochlear delivery. However, simple diffusion across intact RWM is limited by what material can be delivered, size of material to be delivered, difficulty with precise dosing, timing, and precision of delivery over time. Further, absence of reliable methods for measuring diffusion across RWM in vitro is a significant experimental impediment. Methods A novel model for measuring diffusion across guinea pig RWM, with and without microperforation, was developed and tested: cochleae, sparing the RWM, were embedded in 3D-printed acrylic holders using hybrid dental composite and light cured to adapt the round window niche to 3ml Franz diffusion cells. Perforations were created with 12.5μm diameter needles and examined with light microscopy. Diffusion of 1mM Rhodamine B across RWM in static diffusion cells was measured via fluorescence microscopy. Results The diffusion cell apparatus provided reliable and replicable measurements of diffusion across RWM. The permeability of Rhodamine B across intact RWM was 5.1 × 10-9 m/s. Manual application of microperforation with a 12.5μm diameter tip produced an elliptical tear removing 0.22±0.07% of the membrane and was associated with a 35x enhancement in diffusion (p<0.05). Conclusion Diffusion cells can be applied to the study of RWM permeability in vitro. Microperforation in RWM is an effective means of increasing diffusion across the RWM. PMID:25310125

  13. Enhancing the Sensitivity of HAWC to sub-Tev Transients

    NASA Astrophysics Data System (ADS)

    Wisher, Ian

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory, currently being built 4100 meters above sea level near Pico de Orizaba, Mexico, is well-suited for observing transient phenomena above 1 TeV due to its large field of view (2 sr) and high uptime (˜100%). However, sub-TeV transient events are also of physical interest due to the overlap in energy with satellite experiments such as the Fermi gamma-ray space telescope. This presents a challenge since the sub-TeV primary particles observed with HAWC tend to be difficult to distinguish from noise. To address this problem, we propose a method in which particle arrival directions are fit to triplets of triggered PMTs in a short sliding trigger window (100 ns). The resulting arrival directions are then summed in a coarsely binned significance map of the sky with a time window of one to several seconds. This algorithm is simple enough to be applied online, and can localize the positions of transient sources to within 8 degrees. We run the method over HAWC30 detector data to estimate the noise rate and use simulated events to calculate the sensitivity to transients.

  14. Modeling ballistic effects in frequency-dependent transient thermal transport using diffusion equations

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Lundstrom, Mark

    2016-03-01

    Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.

  15. Diffusivity and Transient Localization of Filler Particles in Polymer Melts and Crosslinked Systems

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    2013-03-01

    Building on recent progress in describing the microscopic equilibrium structure of polymer nanocomposites (PRISM theory), as well as the naïve mode coupling and nonlinear Langevin equation approaches for predicting localization and activated barrier hopping, we have initiated the study of dynamical phenomena in nanocomposites at finite filler loading. A colloidal suspension perspective is adopted whereby the polymer dynamics are assumed to remain unperturbed by fillers. Both entangled polymer melts and crosslinked systems are studied. The long time behavior of a tagged nanoparticle (localization and diffusivity) is calculated for various melt (tube diameter, polymer radius of gyration) and nanoparticle (filler size and volume fraction, polymer-filler attraction strength) parameters. For transiently localized particles, a dynamic free energy is constructed and employed to compute the nanoparticle localization length, mean barrier hopping time, and self-diffusion constant. The influence of filler-filler interactions on the Stokes-Einstein violation phenomenon in entangled melts is established. In addition, the influence of nanocomposite statistical structure (e.g., in the depletion, steric stabilization, or bridging regimes) on slow dynamics and localization is investigated.

  16. Verification, validation, and benchmarking report for TRIMHX: A three dimensional hexagonal transient diffusion theory code

    SciTech Connect

    Le, T.L.

    1992-03-01

    TRIMHX is a fundamental Reactor Analysis tool in use at the Savannah River Site (SRS) and is an integral part of the Generalized Reactor Analysis Subsystem (GRASS). TRIMHX solves the time dependent multigroup neutron diffusion equation in two and three dimensional hexagonal geometry by standard and coarse mesh finite difference methods. The TRIMHX implementation assumes the solution to this equation can be discretized in space, energy, and time. These are industry accepted approaches which can be found in many nuclear engineering books. This report concerns the verification and validation of TRIMHX, a transient two and three dimensional hex-z diffusion theory code. The validation was performed to determine the accuracy of the code, and the verification was performed to determine if the code was correctly using the correct theory and that all the subroutines function as required. For TRIMHX, the validation requirement was satisfied by comparing the results of the code with experiments and benchmarking the code against other standard or validated code results. The verification requirement for TRIMHX was performed indirectly since it is impossible and not necessary to reverify a large code like TRIMHX line by line. The extensive operations history of TRIMHX in conjunction with the comparisons against many numerical experiments (exact solutions) and other diffusion theory codes is sufficient to establish that the code is functioning as intended and therefore it is verified. This report summarizes four sets of experiments performed in 1974, 1977, and 1988, two DIF3D/TRIMHX comparison problems performed in 1991, a DIF3D/FX2-TH/TRIMHX comparison problem produced for this report, and the comparison of TRIMHX/GRIMHX initial static calculations. The results of these experiments show that TRIMHX was correctly implemented and is ready to submit into SCMS production mode.

  17. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  18. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    SciTech Connect

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.

  19. Strong enhancement of surface diffusion by nonlinear surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Shugaev, Maxim V.; Manzo, Anthony J.; Wu, Chengping; Zaitsev, Vladimir Yu.; Helvajian, Henry; Zhigilei, Leonid V.

    2015-06-01

    The phenomenon of acoustic activation of surface diffusion is investigated in a combined computational and experimental study. The ability of pulsed laser-generated surface acoustic waves (SAWs) to enhance the mobility of small atomic clusters is demonstrated by directly tracking, with fluorescence microscopy, individual A u8 clusters moving on a (111) silicon substrate. A 19-fold increase in the effective diffusion coefficient is measured in room temperature experiments in the presence of SAWs generated by nanosecond pulse laser irradiation at a 100 Hz repetition rate. A strong enhancement of cluster mobility by SAWs is also observed in large-scale molecular dynamics simulations of surface diffusion of small atomic clusters. The analysis of the computational results demonstrates that the nonlinear sharpening of SAWs and the corresponding enrichment of the SAW spectra by high frequency harmonics which are capable of dynamic coupling to the cluster vibrations are responsible for the efficient acoustic activation of surface mobility in the simulations. The increase in the effective diffusion coefficient is proportional to the number of the SAW pulses passing through the diffusion region per unit time and a dramatic 4500-fold diffusion enhancement (corresponds to an equivalent temperature increase by 103K ) is predicted in the simulations for 15 GHz SAWs. The ability of SAWs to affect atomic-level surface processes has far-reaching implications for the design of new techniques where the acoustic energy serves as an effective substitution for thermal activation in applications where heating must be avoided or rapid switching of surface conditions is required.

  20. The Effect of Velocity on the Extinction Behavior of a Diffusion Flame during Transient Depressurization

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.; Urban, David L.; Tien, James

    1999-01-01

    Current fire suppression plans for the International Space Station include the use of venting (depressurization) as a method for extinguishing a fire. Until recently this process had only been examined as part of a material flammability experiment performed on Skylab in the early 1970's. Due to the low initial pressure (0.35 Atm) and high oxygen concentration (65%), the Skylab experimental results are not applicable for understanding the effects of venting on a fire in a space station environment (21%O2, 1 Atm). Recent research examined the extinction behavior of a diffusion flame over a polymethyl methacrylate (PMMA) cylinder during a transient depressurization in low-gravity. The numerical model was used to examine extinction limits as a function of depressurization rate, forced flow velocity, and initial solid phase temperature. The experimental and numerically predicted extinction data indicated that as the solid phase temperature increased the pressure required to extinguish the flame decreased. The numerical model was also used to examine conditions not obtainable in the low-gravity experiments. From these simulations, a series of extinction boundaries were generated that showed a region of increased flammability existed at a forced flow of 10 cm/s. Analysis of these extinction boundaries indicated that they were quasi-steady in nature, and that the final extinction conditions were independent of the transient process. The velocity range in the previous study was limited and thus the results did not examine the effects of velocities less than 1 cm/s or greater than 20 cm/s. This study utilized low-gravity experiments performed on NASA's Reduced-gravity Research Aircraft Laboratory and numerical simulations to examine conditions applicable to the Space Station environment. This paper extends the analysis of the previous study to a comprehensive examination of the effect of increased velocity on extinction behavior and extinction limits during a transient depressurization in low-gravity. This is achieved by examining extinction data from buoyant (normal-gravity) and low-buoyant (low-gravity) depressurization. experiments, as well as from numerical predictions of flame behavior during depressurization in a non-buoyant (zero-gravity) environment.

  1. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    NASA Astrophysics Data System (ADS)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  2. Enhanced Methanol Diffusion in Homogeneous Isotropic and Anisotropic Silica Aerogels

    NASA Astrophysics Data System (ADS)

    Lee, Jeongseop; Mounce, A. M.; Oh, Sangwon; Zimmerman, A. M.; Halperin, W. P.

    2014-03-01

    It has recently been shown that chiral superfluid 3He states can be stabilized using stretched, anisotropic, high porosity silica aerogel.[2] We present a novel approach to characterize the aerogel structure using nuclear magnetic resonance measurement of the enhanced diffusion of methanol vapor, similar to previous reports of diffusion of water in partially filled porous glass.[3] The diffusion coefficient is determined by the molecular motion in the vapor phase in fast exchange with adsorbed phase. Consequently, the diffusion is enhanced by two orders of magnitude beyond that of the bulk fluid but is limited by the elastic mean free path λ for ballistic molecular motion in the aerogel. The mean free paths in the presence of global anisotropy in a stretched (radially shrunken) aerogel, were found to be larger in the direction of strain by an amount consistent with the strain amplitude measured independently. This work was supported by the DOE BES under grants No. DE-FG02-05ER46248.

  3. Enhanced diffusion weighting generated by selective adiabatic pulse trains

    NASA Astrophysics Data System (ADS)

    Sun, Ziqi; Bartha, Robert

    2007-09-01

    A theoretical description and experimental validation of the enhanced diffusion weighting generated by selective adiabatic full passage (AFP) pulse trains is provided. Six phantoms (Ph-1-Ph-6) were studied on a 4 T Varian/Siemens whole body MRI system. Phantoms consisted of 2.8 cm diameter plastic tubes containing a mixture of 10 μm ORGASOL polymer beads and 2 mM Gd-DTPA dissolved in 5% agar (Ph-1) or nickel(II) ammonium sulphate hexahydrate doped (56.3-0.8 mM) water solutions (Ph-2-Ph-6). A customized localization by adiabatic selective refocusing (LASER) sequence containing slice selective AFP pulse trains and pulsed diffusion gradients applied in the phase encoding direction was used to measure 1H 2O diffusion. The b-value associated with the LASER sequence was derived using the Bloch-Torrey equation. The apparent diffusion coefficients measured by LASER were comparable to those measured by a conventional pulsed gradient spin-echo (PGSE) sequence for all phantoms. Image signal intensity increased in Ph-1 and decreased in Ph-2-Ph-6 as AFP pulse train length increased while maintaining a constant echo-time. These experimental results suggest that such AFP pulse trains can enhance contrast between regions containing microscopic magnetic susceptibility variations and homogeneous regions in which dynamic dephasing relaxation mechanisms are dominant.

  4. Enhanced photocoagulation with catheter-based diffusing optical device

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Kim, Jeehyun; Oh, Jungwhan

    2012-11-01

    A novel balloon catheter-based diffusing optical device was designed and evaluated to assist in treating excessive menstrual bleeding. A synthetic fused-silica fiber was micro-machined precisely to create scattering segments on a 25 mm long fiber tip for uniform light distribution. A visible wavelength (λ=532 nm) was used to specifically target the endometrium due to the high vascularity of the uterine wall. Optical simulation presented 30% wider distribution of photons along with approximately 40% higher irradiance induced by addition of a glass cap to the diffuser tip. Incorporation of the optical diffuser with a polyurethane balloon catheter considerably enhanced coagulation depth and area (i.e., 3.5 mm and 18.9 cm2 at 1 min irradiation) in tissue in vitro. The prototype device demonstrated the coagulation necrosis of 2.8±1.2 mm (n=18) and no thermal damage to myometrium in in vivo caprine models. A prototype 5 cm long balloon catheter-assisted optical diffuser was also evaluated with a cadaveric human uterus to confirm the coagulative response of the uterine tissue as well as to identify the further design improvement and clinical applicability. The proposed catheter-based diffusing optical device can be a feasible therapeutic tool to photocoagulate endometrial cell layers in an efficient and safe manner.

  5. Nanostructure Particle-Reinforced Transient Liquid Phase Diffusion Bonding: a Comparative Study

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian O.; Khan, Tahir I.; Oliver, Gossett D.

    2011-08-01

    Particle-reinforced aluminum-metal matrix composites (Al-MMCs) are used in many engineering applications, because they provide significant advantages when compared to monolithic aluminum alloys. However, there still exists the need to identify a suitable joining process for these materials, which minimizes particulate disruption and retains the strength of the MMC within the joint region. This study presents a comparison between joint qualities achieved when a monolithic interlayer is used vs when a nanoparticle-reinforced composite interlayer is used during transient liquid phase diffusion bonding of Al-6061 alloy containing 15 vol pct of Al2O3 particles. Examination of the joint region using scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD) showed the formation of eutectic phases such as Al3Ni, Al9FeNi, and Ni3Si within the joint zone. The results indicate that the addition of nanoparticle reinforcements into the interlayer can be used to improve joint strength and minimize particle segregation.

  6. Transient electron heat diffusivity obtained from trace impurity injection on TFTR

    SciTech Connect

    Kissick, M. W.; Fredrickson, E. D.; Callen, J. D.; Bush, C. E.; Chang, Z. Y.; Efthimion, P. C.; Hulse, R. A.; Mansfield, D. K.; Park, H. K.; Schivell, J.; Scott, S. D.; Synakowski, E. J.; Taylor, G.; Zarnstorff, M. C.

    1993-08-01

    A new method for obtaining a transient (``pulse``) electron heat diffusivity (χep) in the radial region 0.38 < r/a < 0.56 in TFTR L-mode discharges is presented. Small electron temperature perturbations were caused by single bursts of injected impurities which radiated and cooled the plasma edge. An iron injection case by laser ablation was found to be more definitive than a supporting helium gas puff case. In this new ``cold pulse`` method, we concentrate on modeling just the electron temperature perturbations, tracked with ECE (electron cyclotron emission) diagnostics and on being able to justify separation in space and time from the cooling source. This χep is obtained for these two cases to be χep = (6.0m²/s ± 35%) ~ 4χe(power balance) which is consistent with, but more definitive than, results from other studies that are more susceptible to ambiguities in the source profile.

  7. Enhancing chemical identification efficiency by SAW sensor transients through a data enrichment and information fusion strategy—a simulation study

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Yadava, R. D. S.

    2013-05-01

    The paper proposes a new approach for improving the odor recognition efficiency of a surface acoustic wave (SAW) transient sensor system based on a single polymer coating. The vapor identity information is hidden in transient response shapes through dependences on specific vapor solvation and diffusion parameters in the polymer coating. The variations in the vapor exposure and purge durations and the sensor operating frequency have been used to create diversity in transient shapes via termination of the vapor-polymer equilibration process up to different stages. The transient signals were analyzed by the discrete wavelet transform using Daubechies-4 mother wavelet basis. The wavelet approximation coefficients were then processed by principal component analysis for creating feature space. The set of principal components define the vapor identity information. In an attempt to enhance vapor class separability we analyze two types of information fusion methods. In one, the sensor operation frequency is fixed and the sensing and purge durations are varied, and in the second, the sensing and purge durations are fixed and the sensor operating frequency is varied. The fusion is achieved by concatenation of discrete wavelet coefficients corresponding to various transients prior to the principal component analysis. The simulation experiments with polyisobutylene SAW sensor coating for operation frequencies over [55-160] MHz and sensing durations over [5-60] s were analyzed. The target vapors are seven volatile organics: chloroform, chlorobenzene, o-dichlorobenzene, n-heptane, toluene, n-hexane and n-octane whose concentrations were varied over [10-100] ppm. The simulation data were generated using a SAW sensor transient response model that incorporates the viscoelastic effects due to polymer coating and an additive noise source in the output. The analysis reveals that: (i) in single transient analysis the class separability increases with sensing duration for a given frequency of operation, and also with frequency for a given sensing duration, and (ii) the information fusion based on both the multiple sensing cycles and the multiple sensing frequencies enhances the class separability by nearly an order of magnitude.

  8. Highly enhanced flame propagation by turbulence through differential diffusion

    NASA Astrophysics Data System (ADS)

    Yang, Sheng; Saha, Abhishek; Wu, Fujia; Law, Chung

    2015-11-01

    Turbulent flame speed is an essential parameter in turbulent combustion. The existence of turbulence significantly enhances the flame speed of a premixture, mainly through the increase in the total flame surface area and modification of the flame structure. As of now, the highest turbulent flame speed reported is around 35 times those of the laminar flames, and there is no consensus if this is the upper limit or even if there exists one. In the present experimental work, we report highly enhanced turbulent flame propagation, with the ratio of turbulent flame speed to laminar flame speed reaching 200. Moreover, we demonstrated that such enhancements occur for extremely weak mixtures, whose adiabatic flame temperatures are lower than 900 K and are commonly believed to be beyond the flammability of sustained one-dimensional laminar flame propagation. We further identified that such a strong enhancement effect occurs for mixtures with either extremely small Lewis number or large mass diffusivity of the deficient reactant and that such flames exhibit different morphology from previously observed turbulent flames, as finger-shape structures are developed on the flame fronts and local extinction and re-ignition are frequently observed. This work demonstrates the extension of flammability limit by turbulence and differential diffusion, enabling sustained flame propagation with extremely low burnt gas temperature (<1000 K), and the highest flame speed enhancement by turbulence so far.

  9. Reduction of transient diffusion from 1{endash}5 keV Si{sup +} ion implantation due to surface annihilation of interstitials

    SciTech Connect

    Agarwal, A.; Gossmann, H.-.; Eaglesham, D.J.; Pelaz, L.; Jacobson, D.C.; Haynes, T.E.; Erokhin, Y.E.

    1997-11-01

    The reduction of transient enhanced diffusion (TED) with reduced implantation energy has been investigated and quantified. A fixed dose of 1{times}10{sup 14} cm{sup {minus}2} Si{sup +} was implanted at energies ranging from 0.5 to 20 keV into boron doping superlattices and enhanced diffusion of the buried boron marker layers was measured for anneals at 810, 950, and 1050{degree}C. A linearly decreasing dependence of diffusivity enhancement on decreasing Si{sup +} ion range is observed at all temperatures, extrapolating to {approximately}1 for 0 keV. This is consistent with our expectation that at zero implantation energy there would be no excess interstitials from the implantation and hence no TED. Monte Carlo modeling and continuum simulations are used to fit the experimental data. The results are consistent with a surface recombination length for interstitials of {lt}10 nm. The data presented here demonstrate that in the range of annealing temperatures of interest for p-n junction formation, TED is reduced at smaller ion implantation energies and that this is due to increased interstitial annihilation at the surface. {copyright} {ital 1997 American Institute of Physics.}

  10. The heat released during catalytic turnover enhances the diffusion of an enzyme.

    PubMed

    Riedel, Clement; Gabizon, Ronen; Wilson, Christian A M; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos

    2015-01-01

    Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme. PMID:25487146

  11. The heat released during catalytic turnover enhances the diffusion of an enzyme

    PubMed Central

    Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos

    2015-01-01

    Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis1,2. Although this observation has been reported and characterized for several different systems3–10, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms11,12. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein–solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme. PMID:25487146

  12. Radiation enhanced diffusion of Nd in UO2

    NASA Astrophysics Data System (ADS)

    Han, Xiaochun; Heuser, Brent J.

    2015-11-01

    Single crystal UO2 thin films with Nd as tracer elements in the film mid-plane have been grown on yttria-stabilized zirconia (YSZ) substrates. The films were irradiated with 1.8 MeV Kr+ ions in the temperature range from 400 °C to 1113 °C, where an evident enhanced diffusion was found in UO2. The temperature dependent measurements have shown an activation energy of 0.56 ± 0.04 eV below 800 °C, and 1.9 ± 0.3 eV above 900 °C. The rate-dependent measurements have shown a linear dependence on the radiation flux, which indicates radiation enhanced diffusion (RED) is in the sink limited kinetics regime. Comparison of the RED results between UO2 and CeO2 has shown significant differences, which indicates that CeO2 used as UO2 surrogate may be questioned in terms of cation diffusion.

  13. Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma

    PubMed Central

    Esaki, Shinichi; Rabkin, Samuel D; Martuza, Robert L; Wakimoto, Hiroaki

    2016-01-01

    Short-term nutritional restriction (fasting) has been shown to enhance the efficacy of chemotherapy by sensitizing cancer cells and protecting normal cells in a variety of cancer models, including glioblastoma (GBM). Cancer cells, unlike normal cells, respond to fasting by promoting oncogenic signaling and protein synthesis. We hypothesized that fasting would increase the replication of oncolytic herpes simplex virus (oHSV) in GBM. Patient-derived GBM cell lines were fasted by growth in glucose and fetal calf serum restricted culture medium. “Transient fasting”, 24-hour fasting followed by 24-hour recovery in complete medium, increased late virus gene expression and G47Δ yields about 2-fold in GBM cells, but not in human astrocytes, and enhanced G47Δ killing of GBM cells. Mechanistically, “transient fasting” suppressed phosphorylation of the subunit of eukaryotic initiation factor 2α (eIF2α) and c-Jun N-terminal kinases (JNK) in GBM cells, but not in astrocytes. Pharmacological inhibition of JNK also increased G47Δ yield. In vivo, transient fasting (48-hour food restriction and 24-hour recovery) doubled luciferase activity after intratumoral G47Δ-US11fluc injection into orthotopic GBM xenografts. Thus, “transient fasting” increases G47Δ replication and oncolytic activity in human GBM cells. These results suggest that “transient fasting” may be effectively combined to enhance oncolytic HSV therapy of GBM. PMID:27186404

  14. Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation

    PubMed Central

    Lu, Hongyun; Gao, Zhanguo; Zhao, Zhiyun; Weng, Jianping; Ye, Jianping

    2015-01-01

    Objective To investigate the impact of transient (2-4 h) hypoxia on metabolic reprogramming of adipocytes. Methods The impact of transient hypoxia on metabolic reprogramming was investigated in 3T3-L1 cells before and after differentiation. Glucose uptake, fatty acid oxidation, lipolysis, and mitochondria were examined to determine the hypoxia effects. Preadipocytes were exposed to transient hypoxia (4h/day) in the course of differentiation. Insulin sensitivity and TG accumulation was examined in the cells at the end of differentiation to determine the reprogramming effects. AMPK activity and gene expression were determined by quantitative RT-PCR and Western blotting in search for mechanism of the reprogramming. Results In acute response to hypoxia, adipocytes exhibited an increase in insulin-dependent and -independent glucose uptake. Fatty acid β-oxidation and pyruvate dehydrogenase (PDH) activity were decreased. Multiple exposures of differentiating adipocytes to transient hypoxia enhanced insulin signaling, TG accumulation, expression of antioxidant genes in differentiated adipocytes in the absence of hypoxia. The metabolic memory was associated with elevated AMPK activity and gene expression (GLUT1, PGC-1α, PPARγ, SREBP, NRF-1, ESRRα, LPL). The enhanced insulin sensitivity was blocked by an AMPK inhibitor. Conclusions Repeated exposure of differentiating adipocytes to transient hypoxia is able to reprogram the cells for increased TG accumulation and enhanced insulin sensitivity. The metabolic alterations were observed in post-differentiated cells under normoxia. The reprogramming involves AMPK activation and gene expression in the metabolic pathways in cytosol and mitochondria. PMID:26219415

  15. Transient Density Enhancements of the Martian Orbiting Dust Torus

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Horanyi, M.

    2014-12-01

    The moons Phobos and Deimos have been suggested to be responsible for sustaining a permanently present dust cloud around Mars. The equilibrium size and spatial distribution of this dust torus has been the subject of numerous theoretical studies. However, no observational evidence has been found as of yet. Because of the renewed interest in Phobos and Deimos as potential targets for human precursor mission to Mars, there is a new opportunity for the detection of the putative Martian dust clouds using in situ measurements. Both Phobos and Deimos, as all airless bodies in the solar system, are continually bombarded by interplanetary dust grains, generating secondary ejecta particles. The surface gravity escape of these objects are low, hence most secondary particles escapethem, but remain in orbit about Mars. Subsequent perturbations by solar radiation pressure, electromagnetic forces acting on charged grains, and collisions with the moons or Mars itself limit the lifetime of the produced particles. The size dependent production rates and lifetimes set the most abundant particle size range of 10 - 30 micron in radius. Large, but short-lived, dust density enhancements can be predicted during periods of meteor showers. Also, comet Siding Spring will flyby Mars in October, 2014. Its dust tail can 'sand-blast' both Phobos and Deimos, dramatically increasing their dust production for a few hours. We present the results of our numerical studies on the temporal and spatial evolution of the dust clouds raised during highly enhanced production rates that last only hours-to-days.

  16. Enhanced self-diffusion of adsorbed methanol in silica aerogel

    NASA Astrophysics Data System (ADS)

    Lee, Jeongseop A.; Mounce, A. M.; Oh, Sangwon; Zimmerman, A. M.; Halperin, W. P.

    2014-11-01

    Molecular transport of a two-component system of liquid and vapor in a porous medium can be anomalously increased owing to fast exchange between the two phases [Phys. Rev. Lett. 63, 43 (1989), 10.1103/PhysRevLett.63.43]. We have investigated this phenomenon measuring the self-diffusion coefficient of methanol adsorbed in a 98% porosity aerogel using nuclear magnetic resonance field gradient techniques. We found enhancement of several orders of magnitude from which we determined the ballistic mean-free path in the vapor phase. We have grown globally uniform anisotropic aerogels and applied the diffusion measurements to characterize the anisotropy. Our results are important for understanding the novel properties of superfluid 3He confined within an aerogel framework and for application to other physical systems.

  17. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    SciTech Connect

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  18. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    SciTech Connect

    R. L. Williamson

    2011-08-01

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  19. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement

    NASA Astrophysics Data System (ADS)

    Brask, Jonatan Bohr; Brunner, Nicolas

    2015-12-01

    A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.

  20. A review of porous media enhanced vapor-phase diffusion mechanisms, models, and data: Does enhanced vapor-phase diffusion exist?

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1996-05-01

    A review of mechanisms, models, and data relevant to the postulated phenomenon of enhanced vapor-phase diffusion in porous media is presented. Information is obtained from literature spanning two different disciplines (soil science and engineering) to gain a diverse perspective on this topic. Findings indicate that while enhanced vapor diffusion tends to correct the discrepancies observed between past theory and experiments, no direct evidence exists to support the postulated processes causing enhanced vapor diffusion. Numerical modeling analyses of experiments representative of the two disciplines are presented in this paper to assess the sensitivity of different systems to enhanced vapor diffusion. Pore-scale modeling is also performed to evaluate the relative significance of enhanced vapor diffusion mechanisms when compared to Fickian diffusion. The results demonstrate the need for additional experiments so that more discerning analyses can be performed.

  1. Boron doping of diamond powder by enhanced diffusion and forced diffusion: Diffusion concentrations, mechanical, chemical and optical properties

    NASA Astrophysics Data System (ADS)

    Golshani, Fariborz

    Diamond, with its unique mechanical properties, is an excellent material for a wide range of applications. However, there exist some problems. One such problem is integration of diamond of diamond into tool's (usually tungsten-carbide) lattice matrix for the purpose of increasing its performance. The presence of cobalt in the matrix, which acts as a poison for diamond, causes graphitization and degradation of diamond. In addition, diamond graphitizes at sintering temperatures (1770 K). The results of this work suggest that boron has produced a protective layer for diamond, thus reducing the effects of annealing at high temperatures. Boron has been introduced into single crystal high pressure, high temperature diamond powder by enhanced diffusion and forced diffusion techniques. Enhanced diffusion resulted in higher concentrations of boron in diamond powder. Total boron concentrations of 500 to 600 ppm, and 10sp{20} cmsp{-3} at a depth of 0.5 micrometer, have been achieved. Hardness tests performed on doped samples reveal that diamond did not lose its strength due to diffusion at elevated temperatures. Raman spectroscopy and X-ray diffraction analysis did not show any change in the "quality" of diamond due to doping. Oxidation experiments performed on doped and undoped samples revealed that the samples with the highest boron concentrations had superior performance and resistance to oxidation. Final weight loss in these samples was much less than in undoped samples and samples with low boron concentrations. Scanning electron microscopy of these samples showed that degradation due to oxidation of heavily doped diamond samples was significantly less than other samples.

  2. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion

    PubMed Central

    Das, Tanmay; Kulkarni, Prabhanjan D.; Purandare, S. C.; Barshilia, Harish C.; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-01-01

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks. PMID:24937637

  3. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion.

    PubMed

    Das, Tanmay; Kulkarni, Prabhanjan D; Purandare, S C; Barshilia, Harish C; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-01-01

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks. PMID:24937637

  4. An enhanced finite element technique for diffuse phase transition

    NASA Astrophysics Data System (ADS)

    Münch, I.; Krauß, M.

    2015-10-01

    We propose a finite element technique to enhance phase-field simulations. As adaptive p-method it and can be generally applied to finite element formulations. However, diffuse interfaces have non-linear gradients within regions typically smaller compared to the size of the overall model. Thus, enhanced field interpolation with higher polynomial functions on demand allows for coarser meshing or lower regularization length for the phase transition. Our method preserves continuity of finite elements and is particularly advantageous in the context of parallelized computing. An analytical solution for the evolution of a phase-field variable governed by the Allen-Cahn equation is used to define an error measure and to investigate the proposed method. Several examples demonstrate the capability of this finite element technique.

  5. Non-Gaussian Diffusion Imaging for Enhanced Contrast of Brain Tissue Affected by Ischemic Stroke

    PubMed Central

    Geffroy, Françoise; Le Bihan, Denis; Shah, N. Jon

    2014-01-01

    Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent diffusion coefficient (ADC) considered so far as the “gold standard”. The observed changes exceeded that of the ADC by a remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). As shown in our previous work investigating the animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information. In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution function (GDF), the stretched exponential model (SEM), and the biexponential model. The main goal was to compare the sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a better performance than the conventional method and allow for a significantly enhanced visualization of lesions. Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently affected by ischemic processes. PMID:24586610

  6. Direction implantation and radiation enhanced diffusion of tin into iron

    NASA Astrophysics Data System (ADS)

    Dionisio, P. H.; Scherer, C.; Teixeira, S. R.; Baumvol, I. J. R.

    1986-06-01

    The surface layers of pure iron samples treated by both direct ion implantation of Sn + and radiation enhanced diffusion of tin are analyzed by means of Rutherford backscattering and 119Sn conversion electron Mössbauer scattering. It is argued that both processes produce amorphous alloys of iron and tin on the treated surfaces. The presence of amorphous phases is more pronounced on the directly implanted samples, while on the radiation enhanced diffused samples there is a marked tendency for the formation of intermetallic compounds. These results are consistent with some empirical rules currently developed for predicting the formation of amorphous intermetallic phases by ion beam mixing. The thermal evolution of the phases formed on the treated surfaces is consistent with the equilibrium phase diagram for the Fe-Sn system, in spite of a certain tendency for precocious decomposition. One unifying aspect is the fact that all the samples here studied show a similar CEMS spectrum after annealing in vacuum at 550°C, when only an unidentified singlet ( δ = 1.60 mm·s -1) is observed; this is interpreted as being due to tin segregation at the grain boundaries of th substrate.

  7. ATC Enhancement Considering Transient Stability by Optimal Power Flow Control Using UPFC

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Motoki, Hiroaki; Yokoyama, Akihiko

    With recent development of power electronics technology, power system stability enhancement and optimal power flow control by using Flexible AC Transmission System (FACTS) devices have so far been studied. The FACTS devices to relieve multiple constraints can also make it possible to enhance Available Transfer Capability (ATC) without construction of new transmission lines. In this paper, a new method for improving transient stability by Unified Power Flow Controller (UPFC) is proposed. Then the proposed method is applied to an OPF control method by using UPFC for relieving multiple constraints. The new OPF method is used for enhancement of ATC taking into account Transient stability constraints as well as overload and steady-state stability constraints. The OPF problem is formulated to minimize total capacity of inverters of UPFC. Effectiveness of the proposed method is shown by numerical examples for IEEJ East-10-machine test system.

  8. Diffuse dispersive delay and the time convolution/attenuation of transients

    NASA Technical Reports Server (NTRS)

    Bittner, Burt J.

    1991-01-01

    Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.

  9. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave.

    PubMed

    Rettig, L; Cortés, R; Chu, J-H; Fisher, I R; Schmitt, F; Moore, R G; Shen, Z-X; Kirchmann, P S; Wolf, M; Bovensiepen, U

    2016-01-01

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order. PMID:26804717

  10. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  11. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    PubMed Central

    Rettig, L.; Cortés, R.; Chu, J.-H.; Fisher, I. R.; Schmitt, F.; Moore, R. G.; Shen, Z.-X.; Kirchmann, P. S.; Wolf, M.; Bovensiepen, U.

    2016-01-01

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order. PMID:26804717

  12. A Nonlinear Excitation Controller Design Method for Terminal Voltage Regulation and Transient Stability Enhancement

    NASA Astrophysics Data System (ADS)

    Huang, Chongxin; Zhang, Kaifeng; Dai, Xianzhong; Zang, Qiang

    2014-06-01

    This paper proposes a cascade control method to design a nonlinear excitation controller to guarantee the terminal voltage regulation and the transient stability. Firstly, a nonlinear automatic voltage regulator (NAVR) in the inner loop is designed to control the terminal voltage exactly. Secondly, the generator model including the NAVR is transformed to be a reduced one. Subsequently, based on the reduced generator model, the nonlinear power system stabilizer in the external loop is designed to enhance the transient stability of the power systems. Furthermore, a coordination strategy is presented to improve the performances of the terminal voltage regulation in the steady state and the stability in the transient state. Finally, the proposed method is verified by numerous simulation results.

  13. Improved antibiotic-free plasmid vector design by incorporation of transient expression enhancers.

    PubMed

    Luke, J M; Vincent, J M; Du, S X; Gerdemann, U; Leen, A M; Whalen, R G; Hodgson, C P; Williams, J A

    2011-04-01

    Methods to improve plasmid-mediated transgene expression are needed for gene medicine and gene vaccination applications. To maintain a low risk of insertional mutagenesis-mediated gene activation, expression-augmenting sequences would ideally function to improve transgene expression from transiently transfected intact plasmid, but not from spurious genomically integrated vectors. We report herein the development of potent minimal, antibiotic-free, high-manufacturing-yield mammalian expression vectors incorporating rationally designed additive combinations of expression enhancers. The SV40 72 bp enhancer incorporated upstream of the cytomegalovirus (CMV) enhancer selectively improved extrachromosomal transgene expression. The human T-lymphotropic virus type I (HTLV-I) R region, incorporated downstream of the CMV promoter, dramatically increased mRNA translation efficiency, but not overall mRNA levels, after transient transfection. A similar mRNA translation efficiency increase was observed with plasmid vectors incorporating and expressing the protein kinase R-inhibiting adenoviral viral associated (VA)1 RNA. Strikingly, HTLV-I R and VA1 did not increase transgene expression or mRNA translation efficiency from plasmid DNA after genomic integration. The vector platform, when combined with electroporation delivery, further increased transgene expression and improved HIV-1 gp120 DNA vaccine-induced neutralizing antibody titers in rabbits. These antibiotic-free vectors incorporating transient expression enhancers are safer, more potent alternatives to improve transgene expression for DNA therapy or vaccination. PMID:21107439

  14. On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Fabre, Antoine; Hristov, Jordan

    2016-04-01

    Closed form approximate solutions to nonlinear transient heat conduction with linearly temperature-dependent thermal diffusivity have been developed by the integral-balance integral method under transient conditions. The solutions uses improved direct approaches of the integral method and avoid the commonly used linearization by the Kirchhoff transformation. The main steps in the new solutions are improvements in the integration technique of the double-integration technique and the optimization of the exponent of the approximate parabolic profile with unspecified exponent. Solutions to Dirichlet and Neumann boundary condition problems have been developed as examples by the classical Heat-balance integral method (HBIM) and the Double-integration method (DIM). Additional examples with HBIM and DIM solutions to cases when the Kirchhoff transform is initially applied have been developed.

  15. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  16. A transient-enhanced NMOS low dropout voltage regulator with parallel feedback compensation

    NASA Astrophysics Data System (ADS)

    Han, Wang; Lin, Tan

    2016-02-01

    This paper presents a transient-enhanced NMOS low-dropout regulator (LDO) for portable applications with parallel feedback compensation. The parallel feedback structure adds a dynamic zero to get an adequate phase margin with a load current variation from 0 to 1 A. A class-AB error amplifier and a fast charging/discharging unit are adopted to enhance the transient performance. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 150 mV at a maximum 1 A load and IQ of 165 μA. Under the full range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 38 mV and 27 mV respectively.

  17. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

    2015-04-01

    This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

  18. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    SciTech Connect

    Weber, Christopher P.

    2005-12-15

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  19. Transmission-grating-photomasked transient spin grating and its application to measurement of electron-spin ambipolar diffusion in (110) GaAs quantum wells.

    PubMed

    Chen, Ke; Wang, Wenfang; Wu, Jingda; Schuh, D; Wegscheider, W; Korn, T; Lai, Tianshu

    2012-03-26

    A circular dichromatic transient absorption difference spectroscopy of transmission-grating-photomasked transient spin grating is developed and formularized. It is very simple in experimental setup and operation, and has high detection sensitivity. It is applied to measure spin diffusion dynamics and excited electron density dependence of spin ambipolar diffusion coefficient in (110) GaAs quantum wells. It is found that the spin ambipolar diffusion coefficient of (110) and (001) GaAs quantum wells is close to each other, but has an opposite dependence tendency on excited electron density. This spectroscopy is expected to have extensive applicability in the measurement of spin transport. PMID:22453489

  20. A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels

    NASA Astrophysics Data System (ADS)

    Bouklas, Nikolaos; Landis, Chad M.; Huang, Rui

    2015-06-01

    Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson's ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.

  1. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    NASA Astrophysics Data System (ADS)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  2. Effects of arsenic deactivation on arsenic-implant induced enhanced diffusion in silicon

    SciTech Connect

    Dokumaci, O.; Law, M.E.; Krishnamoorthy, V.; Jones, K.S.

    1996-12-31

    The enhanced diffusion of boron due to high dose arsenic implantation into silicon is studied as a function of arsenic dose. The behavior of both the type-V and end-of-range loops is investigated by transmission electron microscopy (TEM). The role of arsenic deactivation induced interstitials and type-V loops on enhanced diffusion is assessed. Reduction of the boron diffusivity is observed with increasing arsenic dose at three different temperatures. The possible explanations for this reduction are discussed.

  3. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    DOE PAGESBeta

    Rettig, L.; Cortés, R.; Chu, J. -H.; Fisher, I. R.; Schmitt, F.; Moore, R. G.; Shen, Z. -X.; Kirchmann, P. S.; Wolf, M.; Bovensiepen, U.

    2016-01-25

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less

  4. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.

    PubMed

    Leonardi, Erminia; Angeli, Celestino

    2010-01-14

    The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients. PMID:20000727

  5. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    NASA Astrophysics Data System (ADS)

    Shestakov, Aleksei I.; Offner, Stella S. R.

    2008-01-01

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate "level-solve" packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (?tc). We analyze the magnitude of the ?tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the "partial temperature" scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of ?tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the inadequacy of gray diffusion.

  6. Transient Evolution of a Planar Diffusion Flame Aft of a Translating Flat Plate

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    2003-01-01

    The high degree of spatial symmetry of a planar diffusion flame affords great simplifications for experimental and modeling studies of gaseous fuel combustion. Particularly, in a microgravity environment, where buoyancy effects are negligible, an effectively strain-rate-free, vigorous flame may be obtained. Such a flame can also provide long residence times and large length scales for practical probing of flame structures and soot processes. This 2-D numerical study explores the feasibility of establishing such a planar diffusion flame in an enclosed container utilizing a realistic test protocol for a microgravity experiment. Fuel and oxygen mixtures, initially segregated into two half-volumes of a squat rectangular container by a thin separator, are ignited as soon as a flammable mixture is formed in the wake of the separator withdrawn in the centerplane. A triple-flame ensues that propagates behind the trailing edge of the separator. The results of calculations show that the mechanically- and thermally-induced convection decays in about two seconds. The establishment of a planar diffusion flame after this period seems feasible in the central region of the container with sufficient quantities of reactants left over for subsequent studies. An analysis of the flame initiation and formation process suggests how the feasibility of creating such a flame can be further improved.

  7. Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel

    2014-06-01

    A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

  8. Opto-Thermal Transient Emission Radiometry (OTTER) to image diffusion in nails in vivo.

    PubMed

    Xiao, P; Zheng, X; Imhof, R E; Hirata, K; McAuley, W J; Mateus, R; Hadgraft, J; Lane, M E

    2011-03-15

    This work describes the first application of Opto-Thermal Transient Emission Radiometry (OTTER), an infrared remote sensing technique, to probe the extent to which solvents permeate the human nail in vivo. Decanol, glycerol and butyl acetate were selected as model solvents. After application of the solvents, individually, to human volunteers, OTTER was used to depth profile the solvents. The permeation rate of the solvents was ranked as glycerol>decanol>butyl acetate. It is possible that some of the butyl acetate may have evaporated during the experiment. The ability of decanol to extract lipids from biological tissue is also considered. These preliminary results demonstrate the potential of OTTER as a tool to identify optimal excipients with which to target drugs to the nail. PMID:21251961

  9. Power Supply Reliability Assessment in UPFC-installed Transmission System for ATC Enhancement Considering Transient Stability

    NASA Astrophysics Data System (ADS)

    Masuta, Taisuke; Yokoyama, Akihiko

    With recent development of power electronics technology, power system stability enhancement and optimal power flow control by using Flexible AC Transmission System (FACTS) devices have so far been studied. The FACTS devices to relieve multiple constraints can also make it possible to enhance Available Transfer Capability (ATC) without construction of new transmission lines. The previous research revealed that ATC is expanded by avoiding multiple constraints in OPF using Unified Power Flow Controller (UPFC). For long-term operation of such ATC-expanded power system, it is necessary to evaluate power system reliability. In this paper, the evaluation method of supply reliability for UPFC-installed power system is proposed. Both thermal capacity and transient stability constraints are considered. The effectiveness of the proposed method is shown by numerical examples for IEEJ East10-machine test system.

  10. Enhanced diffusion of oxygen depending on Fermi level position in heavily boron-doped silicon

    SciTech Connect

    Torigoe, Kazuhisa Fujise, Jun; Ono, Toshiaki; Nakamura, Kozo

    2014-11-21

    The enhanced diffusivity of oxygen in heavily boron doped silicon was obtained by analyzing oxygen out-diffusion profile changes found at the interface between a lightly boron-doped silicon epitaxial layer and a heavily boron-doped silicon substrate by secondary ion mass spectrometry. It was found that the diffusivity is proportional to the square root of boron concentration in the range of 10{sup 18 }cm{sup −3}–10{sup 19 }cm{sup −3} at temperatures from 750 °C to 950 °C. The model based on the diffusion of oxygen dimers in double positive charge state could explain the enhanced diffusion. We have concluded that oxygen diffusion enhanced in heavily boron-doped silicon is attributed to oxygen dimers ionized depending on Fermi level position.

  11. Enhanced magnetospheric/boundary layer plasma flows observed during transient magnetopause crossings

    NASA Astrophysics Data System (ADS)

    Kim, K.-H.; Lin, N.; Cattell, C. A.; Lee, D.-H.; Kokubun, S.; Mukai, T.; Tsuruda, K.

    We observed enhanced plasma flows inside the magnetopause while the Geotail satellite briefly crossed the magnetopause. The enhanced flows were mainly in the MN plane of the LMN coordinates. Some of them showed a bipolar signature, i.e., inward flow before the outbound (from the magnetosphere to the magnetosheath) crossing and then outward flow after the inbound (from the magnetosheath to the magnetosphere) crossing, in the component normal to the nominal magnetopause. We found two different types of the bipolar flow: one is roughly symmetric with respect to the center of the event, that is, the peak amplitudes of the inward and outward flows are comparable, and the other is strongly asymmetric, that is, the outward flow speed is much larger than the inward flow speed. Using a simple qualitative model, we show that the symmetric bipolar flow is consistent with a vortical plasma motion from the E×B drift. The source of the electric field E may be attributed to briefly compressed magnetopause moving tailward, which is induced by a transient external (solar wind/foreshock) pressure pulse. In the asymmetric case, the strong outward flows were accompanied by a depressed magnetic field strength. This suggests that the strong outward plasma motion is associated with transient magnetospheric expansion driven by external pressure pulse variations.

  12. Transient diffusion-weighted imaging changes in a patient with reversible leukoencephalopathy syndrome.

    PubMed

    Wartenberg, K E; Patsalides, A D; Yepes, M

    2004-10-01

    A 66-year-old man developed a focal status epilepticus and left hemiparesis 4 days after an orthotopic liver transplantation and administration of FK 506. The magnetic resonance image revealed areas of increased signal on diffusion-weighted imaging (DWI) equally distributed to all vascular territories, most of which resolved completely within 2 weeks after discontinuation of FK 506. We conclude that DWI cannot reliably distinguish between reversible and irreversible lesions and that the presence of hyperintense lesions on DWI is not a definitive predictor of poor prognosis in reversible leukoencephalopathy patients. PMID:15587428

  13. Measurement of thermal diffusivity at high pressure using a transient heating technique

    NASA Astrophysics Data System (ADS)

    Beck, Pierre; Goncharov, Alexander F.; Struzhkin, Viktor V.; Militzer, Burkhard; Mao, Ho-kwang; Hemley, Russell J.

    2007-10-01

    We describe a flash-heating procedure designed to measure thermal diffusivity of materials at high pressure and temperature in diamond anvil cells. This technique involves time-resolved radiometry combined with a pulsed IR laser source. Results for MgO, NaCl, and KCl are presented (to P =32GPa and T =2600K). These measurements agree with previous studies at low pressure and high temperature and enable to test models for the combined P-T dependence of thermal conductivity. This technique can be extended to a broader range of pressures and can be used to address a variety of problems in geoscience, planetary sciences, and materials science.

  14. Interface- and diffusion-limited capillary rise of reactive melts with a transient contact angle

    NASA Astrophysics Data System (ADS)

    Asthana, Rajiv

    2002-07-01

    The kinetics of unidirectional capillary penetration by a reactive fluid under the limiting cases of diffusion control and interface control has been derived for the reactive infiltration phenomenon characterized by a shrinking capillary radius due to interphase formation and an exponentially decaying contact angle. The computational outcomes for the reactive penetration of Si3N4 capillaries by AgCuTi brazes and of carbon capillaries by Si show that greater lengths are attained at lower values of the parabolic rate constant (under diffusion control), and the limiting length is reached earlier at larger values of the linear rate constant (under interface control). A capillary-driven flow analysis (Washburn equation) overestimates the infiltration kinetics, whereas an analysis that considers pore shrinkage but assumes the contact angle and the capillary pressure to be constant during flow underestimates the kinetics. The penetration lengths predicted by the analysis at pore closure due to reaction choking exhibit a slightly better agreement with the recent measurements in the Si/C system than the models of reactive flows currently in vogue.

  15. Deciphering mechanisms of enhanced-retarded oxygen diffusion in doped Si

    NASA Astrophysics Data System (ADS)

    Timerkaeva, Dilyara; Caliste, Damien; Pochet, Pascal

    2013-12-01

    We study enhanced/retarded diffusion of oxygen in doped silicon by means of first principle calculations. We evidence that the migration energy of oxygen dimers cannot be significantly affected by strain, doping type, or concentration. We attribute the enhanced oxygen diffusion in p-doped silicon to reduced monomer migration energy and the retarded oxygen diffusion in Sb-doped to monomer trapping close to a dopant site. These two mechanisms can appear simultaneously for a given dopant leading to contradictory experimental results. More generally, our findings cast a new light on phenomena involving oxygen diffusion: precipitation, thermal donors formation, and light induced degradation.

  16. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation

    PubMed Central

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M.; Fotaki, Nikoletta; Mrsny, Randall J.

    2015-01-01

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein–protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4 kDa fluorescent dextran but not 70 kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70 kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3–4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal epithelium to dynamically regulate its paracellular permeability properties and better define the potential to enhance the oral delivery of biopharmaceuticals via a transient regulation of an endogenous mechanism controlling the intestinal paracellular barrier. PMID:25980620

  17. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    SciTech Connect

    Maassen, Jesse Lundstrom, Mark

    2015-04-07

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.

  18. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Lundstrom, Mark

    2015-04-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.

  19. Enhancement of flow-like structures in hyperspectral imagery using tensor nonlinear anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Marin-McGee, Maider; Velez-Reyes, Miguel

    2011-06-01

    Analyzing flow-like patterns in images for image understanding is an active research area but there have been much less attention paid to the process of enhancement of those structures. The completion of interrupted lines or the enhancement of flow-like structures is known as Coherence-Enhancement (CE). In this work, we are studying nonlinear anisotropic diffusion filtering for coherence enhancement. Anisotropic diffusion is commonly used for edge enhancement by inhibiting diffusion in the direction of highest spatial fluctuation. For CE, diffusion is promoted along the direction of lowest spatial fluctuation in a neighborhood thereby taking into account how strongly the local gradient of the structures in the image is biased towards that direction. Results of CE applied multispectral and hyperspectral images are presented.

  20. Electric Field Enhanced Diffusion of Salicylic Acid through Polyacrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Niamlang, Sumonman; Sirivat, Anuvat

    2008-03-01

    The release mechanisms and the diffusion coefficients of salicylic acid -loaded polyacrylamide hydrogels were investigated experimentally by using a modified Franz-diffusion cell at 37 ^oC to determine the effects of crosslinking ratio and electric field strength. A significant amount of salicylic acid is released within 48 hours from the hydrogels of various crosslinking ratios, with and without electric field. The release characteristic follows the Q vs. t^1/2 linear relationship. Diffusion coefficient initially increases with increasing electric field strength and reaches the maximum value at electric field strength of 0.1 V; beyond that it decreases with electric field strength and becomes saturated at electric field strength of 5 V. The diffusion coefficient increases at low electric field strength (less 0.1 V) as a result of the electrophoresis of the salicylic acid, the expansion of pore size, and the induced pathway in pigskin. For electric field strength higher than 0.1 V, the decrease in the diffusion coefficient is due to the reduction of the polyacrylamide pore size. The diffusion coefficient obeys the scaling behavior D/Do=(drug size/pore size)^m, with the scaling exponent m equal to 0.93 and 0.42 at electric fields of 0 and 0.1 V, respectively.

  1. Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation

    PubMed Central

    Wang, Cuicui; Shen, Jie; Yukata, Kiminori; Inzana, Jason A.; O'Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.

    2014-01-01

    Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development. We previously demonstrated that permanent loss of gamma-secretase activity and Notch signaling accelerates bone and cartilage formation from MSC progenitors during skeletal development, leading to pathologic acquisition of bone and depletion of bone marrow derived MSCs. Here, we investigated whether transient and systemic gamma-secretase and Notch inhibition is capable of accelerating and enhancing fracture repair by promoting controlled MSC differentiation near the fracture site. Our radiographic, microCT, histological, cell and molecular analyses reveal that single and intermittent gamma-secretase inhibitor (GSI) treatments significantly enhance cartilage and bone callus formation via the promotion of MSC differentiation, resulting in only a moderate reduction of local MSCs. Biomechanical testing further demonstrates that GSI treated fractures exhibit superior strength earlier in the healing process, with single dose GSI treated fractures exhibiting bone strength approaching that of un-fractured tibiae. These data further establish that transient inhibition of gamma-secretase activity and Notch signaling temporarily increases osteoclastogenesis and accelerates bone remodeling, which coupled with the effects on MSCs likely explains the accelerated and enhanced fracture repair. Therefore, we propose that the Notch pathway serves as an important therapeutic target during skeletal fracture repair. PMID:25527421

  2. Axial dispersion via shear-enhanced diffusion in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Griffiths, I. M.; Stone, H. A.

    2012-03-01

    The familiar example of Taylor dispersion of molecular solutes is extended to describe colloidal suspensions, where the fluctuations that contribute to dispersion arise from hydrodynamic interactions. The generic scheme is illustrated for a suspension of particles in a pressure-driven pipe flow, with a concentration-dependent diffusivity that captures both the shear-induced and Brownian contributions. The effect of the cross-stream migration via shear-induced diffusion is shown to dramatically reduce the axial dispersion predicted by classical Taylor dispersion for a molecular solute. Analytic and numerical solutions are presented that illustrate the effect of the concentration dependence of this nonlinear hydrodynamic mechanism.

  3. A Multigroup diffusion Solver Using Pseudo Transient Continuation for a Radiaiton-Hydrodynamic Code with Patch-Based AMR

    SciTech Connect

    Shestakov, A I; Offner, S R

    2007-03-02

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the inadequacy of gray diffusion.

  4. A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    SciTech Connect

    Shestakov, A I; Offner, S R

    2006-09-21

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the inadequacy of gray diffusion.

  5. Enhancing the Social Capital of Learning Communities by Using an Ad Hoc Transient Communities Service

    NASA Astrophysics Data System (ADS)

    Fetter, Sibren; Berlanga, Adriana J.; Sloep, Peter

    In online learning, communities can help to enhance learning. However, because of the dynamic nature of communities, attaining and sustaining these communities can be difficult. One aspect that has an influence on, and is influenced by these dynamics is the social capital of a community. Features of social capital are the social network structure, the sense of belonging and, the support received and provided. It is hypothesized that these features can be improved by using Ad Hoc Transient Communities (AHTCs). Through an AHTC learners are brought together for a specific, learning-related goal (‘ad hoc’) and for only a limited amount of time (‘transience’). To test whether the use of AHTCs has a positive influence on the social capital, a learner support service which enables the use of AHTCs is proposed. Furthermore, requirements, prerequisites, and future research are discussed.

  6. Parametric study of diffusion-enhancement networks for spatiotemporal grouping in real-time artificial vision

    NASA Astrophysics Data System (ADS)

    Cunningham, Robert K.; Waxman, Allen M.

    1991-06-01

    This is the first Annual Technical Summary of the MIT Lincoln Laboratory effort into the parametric study of diffusion-enhancement networks for spatiotemporal grouping in real-time artificial vision. Spatiotemporal grouping phenomena are examined in the context of static and time-varying imagery. Dynamics that exhibit static feature grouping on multiple scales as a function of time and long-range apparent motion between time-varying inputs are developed for a biologically plausible diffusion-enhancement bilayer. The architecture consists of a diffusion and a contrast-enhancement layer coupled by feedforward and feedback connections: input is provided by a separate feature extracting layer. The model is cast as an analog circuit that is realizable in VLSI, the parameters of which are selected to satisfy a psychophysical database on apparent motion. Specific topics include: neural networks, astrocyte glial networks, diffusion enhancement, long-range apparent motion, spatiotemporal grouping dynamics, and interference suppression.

  7. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits

    NASA Astrophysics Data System (ADS)

    Shibata, Masaaki; Uno, Tadashi; Riedel, Walter; Nishimaki, Michiyo; Watanabe, Kaori

    2005-11-01

    Hyperthermia has been shown to induce an enhanced febrile response to the bacterial-derived endotoxin lipopolysaccharide (LPS). The aim of the present study was to test the hypothesis that the enhanced LPS-induced fever seen in heat stressed (HS) animals is caused by leakage of intestinal bacterial LPS into the circulation. Male rabbits were rendered transiently hyperthermic (a maximum rectal temperature of 43°C) and divided into three groups. They were then allowed to recover in a room at 24°C for 1, 2 or 3 days post-HS. One day after injection with LPS, the post-HS rabbits exhibited significantly higher fevers than the controls, though this was not seen in rabbits at either 2 or 3 days post-HS. The plasma levels of endogenous LPS were significantly increased during the HS as compared to those seen in normothermic rabbits prior to HS. LPS fevers were not induced in these animals. One day post-HS, rabbits that had been pretreated with oral antibiotics exhibited significantly attenuated LPS levels. When challenged with human recombinant interleukin-1β instead of LPS, the 1-day post-HS rabbits did not respond with enhanced fevers. The plasma levels of TNFα increased similarly during LPS-induced fevers in both the control and 1-day post-HS rabbits, while the plasma levels of corticosterone and the osmolality of the 1-day post-HS rabbits showed no significant differences to those seen prior to the HS. These results suggest that the enhanced fever in the 1-day post-HS rabbits is LPS specific, and may be caused by increased leakage of intestinal endotoxin into blood circulation.

  8. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation

    PubMed Central

    Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A

    2014-01-01

    Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282

  9. Enhanced lifetime hybrid-diffuser cesium reservoir photocathode

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Riddick, Blake C.; O'Shea, Patrick G.; Feldman, Donald W.; Jensen, Kevin L.; Ives, R. Lawrence; Falce, Louis R.

    2013-01-01

    A novel self-healing hybrid-diffuser cesium reservoir photocathode is demonstrated. The model-driven design optimizes operating temperature to match diffusion and evaporation rates and maximize quantum efficiency of the cesiated tungsten surface. A sintered-wire tungsten emitter promotes surface uniformity. Cesium loss is less than 0.023 µg/cm2/hr at 125°C, and conservatively extrapolated reservoir lifetime exceeds 30,000 hours. Contamination robustness to a direct atmospheric leak with room-temperature contamination by over 200 Langmuirs of oxidizing gases is excellent, with 90% of maximum QE repeatedly restored via in situ self-healing recesiation under gentle 90°C heating.

  10. Enhanced lifetime hybrid-diffuser cesium reservoir photocathode

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.; Pan, Zhigang; Riddick, Blake C.; O'Shea, Patrick G.; Feldman, Donald W.; Jensen, Kevin L.; Ives, R. Lawrence; Falce, Louis R.

    2012-12-01

    A novel self-healing hybrid-diffuser cesium reservoir photocathode is demonstrated. The model-driven design optimizes operating temperature to match diffusion and evaporation rates and maximize quantum efficiency of the cesiated tungsten surface. A sintered-wire tungsten emitter promotes surface uniformity. Cesium loss is less than 0.023 µg/cm2/hr at 125°C, and conservatively extrapolated reservoir lifetime exceeds 30,000 hours. Contamination robustness to a direct atmospheric leak with room-temperature contamination by over 200 Langmuirs of oxidizing gases is excellent, with 90% of maximum QE repeatedly restored via in situ self-healing recesiation under gentle 90°C heating.

  11. Coupled glide-climb diffusion-enhanced crystal plasticity

    NASA Astrophysics Data System (ADS)

    Geers, M. G. D.; Cottura, M.; Appolaire, B.; Busso, E. P.; Forest, S.; Villani, A.

    2014-10-01

    This paper presents a fully coupled glide-climb crystal plasticity model, whereby climb is controlled by the diffusion of vacancies. An extended strain gradient crystal plasticity model is therefore proposed, which incorporates the climbing of dislocations in the governing transport equations. A global-local approach is adopted to separate the scales and assess the influence of local diffusion on the global plasticity problem. The kinematics of the crystal plasticity model is enriched by incorporating the climb kinematics in the crystallographic split of the plastic strain rate tensor. The potential of the fully coupled theory is illustrated by means of two single slip examples that illustrate the interaction between glide and climb in either bypassing a precipitate or destroying a dislocation pile-up.

  12. Cholesterol enhances surface water diffusion of phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Olijve, Luuk L. C.; Kausik, Ravinath; Han, Songi

    2014-12-01

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed 1H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.

  13. Cholesterol enhances surface water diffusion of phospholipid bilayers

    SciTech Connect

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi; Olijve, Luuk L. C.

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.

  14. Study of the translational diffusion of the benzophenone ketyl radical in comparison with stable molecules in room temperature ionic liquids by transient grating spectroscopy

    SciTech Connect

    Nishiyama, Y.; Fukuda, M.; Terazima, M.; Kimura, Y.

    2008-04-28

    Transient grating (TG) spectroscopy has been applied to the photoinduced hydrogen-abstraction reaction of benzophenone (BP) in various kinds of room temperature ionic liquids (RTILs). After the photoexcitation of BP in RTILs, the formation of a benzophenone ketyl radical (BPK) was confirmed by the transient absorption method, and the TG signal was analyzed to determine the diffusion coefficients of BPK and BP. For comparison, diffusion coefficients of carbon monoxide (CO), diphenylacetylene (DPA), and diphenylcyclopropenone (DPCP) in various RTILs were determined by the TG method using the photodissociation reaction of DPCP. While the diffusion coefficients of the stable molecules BP, DPA, and DPCP were always larger than those predicted by the Stokes-Einstein (SE) relation in RTILs, that of BPK was much smaller than those of the stable molecules and relatively close to that predicted by the SE relation in all solvents. For the smallest molecule CO, the deviation from the SE relation was evident. The diffusion coefficients of stable molecules are better represented by a power law of the inverse of the viscosity when the exponent was less than unity. The ratios of the diffusion coefficient of BP to that of BPK were larger in RTILs (2.7-4.0) than those (1.4-2.3) in conventional organic solvents. The slow diffusion of BPK in RTILs was discussed in terms of the fluctuation of the local electric field produced by the surrounding solvent ions.

  15. Experimental investigation of the elastic enhancement factor in a transient region between regular and chaotic dynamics

    NASA Astrophysics Data System (ADS)

    Ławniczak, Michał; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Sirko, Leszek

    2015-03-01

    We present the results of an experimental study of the elastic enhancement factor W for a microwave rectangular cavity simulating a two-dimensional quantum billiard in a transient region between regular and chaotic dynamics. The cavity was coupled to a vector network analyzer via two microwave antennas. The departure of the system from an integrable one due to the presence of antennas acting as scatterers is characterized by the parameter of chaoticity κ =2.8 . The experimental results for the rectangular cavity are compared with those obtained for a microwave rough cavity simulating a chaotic quantum billiard. The experimental results were obtained for the frequency range ν =16 -18.5 GHz and moderate absorption strength γ =5.2 -7.4 . We show that the elastic enhancement factor for the rectangular cavity lies below the theoretical value W =3 predicted for integrable systems, and it is significantly higher than that obtained for the rough cavity. The results obtained for the microwave rough cavity are smaller than those obtained within the framework of random matrix theory, and they lie between them and those predicted within a recently introduced model of the two-channel coupling [V. V. Sokolov and O. V. Zhirov, arXiv:1411.6211 [nucl-th

  16. Discrimination Enhancement with Transient Feature Analysis of a Graphene Chemical Sensor.

    PubMed

    Nallon, Eric C; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Li, Qiliang

    2016-01-19

    A graphene chemical sensor is subjected to a set of structurally and chemically similar hydrocarbon compounds consisting of toluene, o-xylene, p-xylene, and mesitylene. The fractional change in resistance of the sensor upon exposure to these compounds exhibits a similar response magnitude among compounds, whereas large variation is observed within repetitions for each compound, causing a response overlap. Therefore, traditional features depending on maximum response change will cause confusion during further discrimination and classification analysis. More robust features that are less sensitive to concentration, sampling, and drift variability would provide higher quality information. In this work, we have explored the advantage of using transient-based exponential fitting coefficients to enhance the discrimination of similar compounds. The advantages of such feature analysis to discriminate each compound is evaluated using principle component analysis (PCA). In addition, machine learning-based classification algorithms were used to compare the prediction accuracies when using fitting coefficients as features. The additional features greatly enhanced the discrimination between compounds while performing PCA and also improved the prediction accuracy by 34% when using linear discrimination analysis. PMID:26674670

  17. Experimental investigation of the elastic enhancement factor in a transient region between regular and chaotic dynamics.

    PubMed

    Ławniczak, Michał; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Sirko, Leszek

    2015-03-01

    We present the results of an experimental study of the elastic enhancement factor W for a microwave rectangular cavity simulating a two-dimensional quantum billiard in a transient region between regular and chaotic dynamics. The cavity was coupled to a vector network analyzer via two microwave antennas. The departure of the system from an integrable one due to the presence of antennas acting as scatterers is characterized by the parameter of chaoticity κ=2.8. The experimental results for the rectangular cavity are compared with those obtained for a microwave rough cavity simulating a chaotic quantum billiard. The experimental results were obtained for the frequency range ν=16-18.5 GHz and moderate absorption strength γ=5.2-7.4. We show that the elastic enhancement factor for the rectangular cavity lies below the theoretical value W=3 predicted for integrable systems, and it is significantly higher than that obtained for the rough cavity. The results obtained for the microwave rough cavity are smaller than those obtained within the framework of random matrix theory, and they lie between them and those predicted within a recently introduced model of the two-channel coupling [V. V. Sokolov and O. V. Zhirov, arXiv:1411.6211 [nucl-th

  18. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    SciTech Connect

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.; Haynes, T.E.; Erokhin, Y.E.

    1998-05-03

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B{sup +}, the threshold implantation dose which leads to BED lies between 3 {times} 10{sup 14} and of 1 {times} 10{sup 15}/cm{sup {minus}2}. Formation of the shallowest possible junctions by 0.5 keV B{sup +} requires that the implant dose be kept lower than this threshold.

  19. Revisiting Taylor Dispersion: Differential enhancement of rotational and translational diffusion under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Ong, Desmond; Cheng, Xiang; Cohen, Itai

    2013-03-01

    The idea of Taylor dispersion - enhancement of translational diffusion under shear - has found applications in fields from pharmacology to chemical engineering. Here, in a combination of experiment and simulations, we study the translational and rotational diffusion of colloidal dimers under triangle-wave oscillatory shear. We find that the rotational diffusion is enhanced, in addition to the enhanced translational diffusion. This ``rotational Taylor dispersion'' depends strongly on the strain rate (Peclet number), aspect ratio, and the shear strain, in contradistinction to translational Taylor dispersion in a shear flow, which depends only weakly on strain rate and aspect ratio. This separate tunability of translations and orientations promises important applications in mixing and self-assembly of solutions of anisometric colloids. We discuss the corresponding effect on the structure and rheology of denser suspensions of rod-like particles. B. L. acknowledges supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  20. Enhancing scattering images for orientation recovery with diffusion map.

    PubMed

    Winter, Martin; Saalmann, Ulf; Rost, Jan M

    2016-02-22

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. We introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. PMID:26907024

  1. Diffuse Infantile Hepatic Hemangioendothelioma With Early Central Enhancement in an Adult

    PubMed Central

    Dong, Aisheng; Dong, Hui; Zuo, Changjing; He, Tianlin

    2015-01-01

    Abstract Infantile hepatic hemangioendothelioma (IHH) is the most common vascular tumor of the liver in infancy. Adult with IHH is extremely rare. We presented a diffuse IHH in an adult patient with computed tomography (CT) and magnetic resonance image (MRI) findings. A 39-year-old man was admitted to our hospital because of a 2-year history of abnormal liver function tests and a 7-day history of jaundice. Physical examination revealed enlarged liver. Unenhanced abdominal CT showed enlargement of the liver with diffuse hypodensity. Enhanced CT on the arterial phase revealed multiple centrally enhanced lesions diffusely involved the enlarged liver. The enhanced areas of the lesions became larger on the portal phase and all the lesions became homogeneous enhanced on the delayed phase. These lesions showed heterogeneously hyperintense on T2-weighted image, hypointense on T1-weighted image, and early centrally enhanced on dynamic gadolinium-enhanced MRI, with complete tumor enhancement after 180?s. The patient underwent orthotopic liver transplantation. IHH type 2 was confirmed by pathology. The patient died of tumor recurrence in the liver 4 months after transplantation. Unlike the previously described imaging appearances of IHH, this case showed diffuse nodules with early central enhancement on CT and MRI. Considering the importance of the ability to differentiate IHH from other hepatic tumors, radiologists should be aware of these imaging appearances to establish knowledge of the entire spectrum of IHH. PMID:26705232

  2. Rapid acquisition of high-affinity DNA aptamer motifs recognizing microbial cell surfaces using polymer-enhanced capillary transient isotachophoresis.

    PubMed

    Saito, Shingo; Hirose, Kazuki; Tsuchida, Maho; Wakui, Koji; Yoshimoto, Keitaro; Nishiyama, Yoshitaka; Shibukawa, Masami

    2016-01-11

    We present a polymer-enhanced capillary transient isotachophoresis (PectI) selection methodology for acquisition of high-affinity (kinetically inert) DNA aptamers capable of recognizing distinct microbial cell surfaces, which requires only a single electrophoretic separation between particles (free cells and cells bound with aptamers) and molecules (unbound or dissociated DNA) in free solution. PMID:26525483

  3. Cardiac Amyloidosis: Typical Imaging Findings and Diffuse Myocardial Damage Demonstrated by Delayed Contrast-Enhanced MRI

    SciTech Connect

    Sueyoshi, Eijun Sakamoto, Ichiro; Okimoto, Tomoaki; Hayashi, Kuniaki; Tanaka, Kyouei; Toda, Genji

    2006-08-15

    Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.

  4. A hybrid preprocessing method using geometry based diffusion and elective enhancement filtering for pulmonary nodule detection

    NASA Astrophysics Data System (ADS)

    Dhara, Ashis K.; Mukhopadhyay, Sudipta

    2012-03-01

    The computer aided diagnostic (CAD) system has been developed to assist radiologist for early detection and analysis of lung nodules. For pulmonary nodule detection, image preprocessing is required to remove the anatomical structure of lung parenchyma and to enhance the visibility of pulmonary nodules. In this paper a hybrid preprocessing technique using geometry based diffusion and selective enhancement filtering have been proposed. This technique provides a unified preprocessing framework for solid nodule as well as ground glass opacity (GGO) nodules. Geometry based diffusion is applied to smooth the images by preserving the boundary. In order to improve the sensitivity of pulmonary nodule detection, selective enhancement filter is used to highlight blob like structure. But selective enhancement filter sometimes enhances the structures like blood vessel and airways other than nodule and results in large number of false positive. In first step, geometry based diffusion (GBD) is applied for reduction of false positive and in second step, selective enhancement filtering is used for further reduction of false negative. Geometry based diffusion and selective enhancement filtering has been used as preprocessing step separately but their combined effect was not investigated earlier. This hybrid preprocessing approach is suitable for accurate calculation of voxel based features. The proposed method has been validated on one public database named Lung Image Database Consortium (LIDC) containing 50 nodules (30 solid and 20 GGO nodule) from 30 subjects and one private database containing 40 nodules (25 solid and 15 GGO nodule) from 30 subjects.

  5. Development of a Fully Coupled Transient Double-Diffusive Convective Model: Application to a Salinity-Gradient Solar Pond

    NASA Astrophysics Data System (ADS)

    Suarez, F.; Tyler, S. W.; Childress, A. E.

    2008-12-01

    A solar pond is a water body which is heated by absorption of solar radiation and which can provide long- term thermal storage for collected energy. To avoid large heat losses, convection must be suppressed close to the top of the pond. A salinity-gradient solar pond (SGSP) is an artificially stratified solar pond consisting of three thermally distinctive layers: the upper convective zone (UCZ), the non-convective zone (NCZ), and the lower convective zone (LCZ). The UCZ is a relatively thin layer of "cold" and "fresh" water. In the NCZ, the salt gradient suppresses convection within the pond, and thus, the NCZ acts as insulation for the LCZ. The LCZ is the layer where the salt concentration and temperature are the highest. The solar radiation that penetrates the pond's upper layers reaches the LCZ, which can approach temperatures greater than 90°C. Modeling the fluid dynamics of this system is difficult because it requires solution of a set of three second- order non-linear partial differential equations. In order to evaluate the thermal performance and stability of an SGSP, numerical simulation of both heat and mass are required but challenging as double-diffusive convection is likely to occur. Previous approaches have typically assumed no convective transport of solutes, which led to static salinity boundaries of the layers within the SGSP. A 2-D fully coupled numerical model that evaluates the transient performance of an SGSP is introduced. The model simulates the coupled momentum, heat, and mass transfer within the pond. The model can evaluate the influence of meteorological conditions on pond performance by properly describing the heat fluxes through the surface and the solar radiation absorption within the pond, which are typically not well included. Preliminary results show that in a one-week period, for a 1.0 m depth SGSP under summer conditions and without heat extraction, the thicknesses of the UCZ and LCZ increases from 0.1 to 0.2 m, and from 0.5 to 0.6 m, respectively; while the NCZ decreases from 0.4 to 0.2 m, showing that the assumption of static salinity boundaries within the pond is not correct. Double-diffusive processes were successfully simulated during this time period, in which the temperature of the LCZ increased from 20°C to more than 50°C, showing that an SGSP is a promising technology for renewable energy.

  6. Radiation enhanced diffusion of cesium, strontium, and europium in silicon carbide

    NASA Astrophysics Data System (ADS)

    Dwaraknath, S. S.; Was, G. S.

    2016-06-01

    The radiation enhanced diffusion (RED) of three key fission products in SiC: cesium, europium, and strontium was investigated following ion irradiation at a damage rate of 4.6 × 10-4 dpa s-1 at temperatures between 900° C and 1100° C. The radiation enhancement of diffusion was as large as 107 at 900° C, and dropped to a value of 1 by 1300° C for all but cesium grain boundary diffusion. Strontium and cesium exhibited several orders of magnitude enhancement for both mechanisms. Europium enhancement was greatest at 900° C, but dropped to the thermal rates at 1100° C for both mechanisms. The trends in the RED mechanism correlated well with the point defect concentrations suggesting that both carbon and silicon vacancy concentrations are important for fission product diffusion. These constitute the first radiation-enhanced diffusion measurements of strontium, cesium and europium in SiC.

  7. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    PubMed Central

    Li, T.; Heuvelink, E.; Dueck, T. A.; Janse, J.; Gort, G.; Marcelis, L. F. M.

    2014-01-01

    Background and Aims Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Methods Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. Key Results The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when global irradiance was high. Conclusions Diffuse light enhanced crop photosynthesis. A more uniform horizontal PPFD distribution played the most important role in this enhancement, and a more uniform vertical PPFD distribution and higher leaf photosynthetic capacity contributed more to the enhancement of crop photosynthesis than did higher values of LAI. PMID:24782436

  8. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures

    SciTech Connect

    Hirsch, Cordula; Campano, Louise M.; Woehrle, Simon; Hecht, Andreas . E-mail: andreas.hecht@mol-med.uni-freiburg.de

    2007-02-01

    Canonical Wnt signaling triggers the formation of heterodimeric transcription factor complexes consisting of {beta}-catenin and T cell factors, and thereby controls the execution of specific genetic programs. During the expansion and neurogenic phases of embryonic neural development canonical Wnt signaling initially controls proliferation of neural progenitor cells, and later neuronal differentiation. Whether Wnt growth factors affect neural progenitor cells postnatally is not known. Therefore, we have analyzed the impact of Wnt signaling on neural progenitors isolated from cerebral cortices of newborn mice. Expression profiling of pathway components revealed that these cells are fully equipped to respond to Wnt signals. However, Wnt pathway activation affected only a subset of neonatal progenitors and elicited a limited increase in proliferation and neuronal differentiation in distinct subsets of cells. Moreover, Wnt pathway activation only transiently stimulated S-phase entry but did not support long-term proliferation of progenitor cultures. The dampened nature of the Wnt response correlates with the predominant expression of inhibitory pathway components and the rapid actuation of negative feedback mechanisms. Interestingly, in differentiating cell cultures activation of canonical Wnt signaling reduced Hes1 and Hes5 expression suggesting that during postnatal neural development, Wnt/{beta}-catenin signaling enhances neurogenesis from progenitor cells by interfering with Notch pathway activity.

  9. Transient Stability Enhancement of Power Systems by Lyapunov-Based Recurrent Neural Networks UPFC Controllers

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Chi; Tsai, Hung-Chi; Chang, Wei-Neng

    A Lyapunov-based recurrent neural networks unified power flow controller (UPFC) is developed for improving transient stability of power systems. First, a simple UPFC dynamical model, composed of a controllable shunt susceptance on the shunt side and an ideal complex transformer on the series side, is utilized to analyze UPFC dynamical characteristics. Secondly, we study the control configuration of the UPFC with two major blocks: the primary control, and the supplementary control. The primary control is implemented by standard PI techniques when the power system is operated in a normal condition. The supplementary control will be effective only when the power system is subjected by large disturbances. We propose a new Lyapunov-based UPFC controller of the classical single-machine-infinite-bus system for damping enhancement. In order to consider more complicated detailed generator models, we also propose a Lyapunov-based adaptive recurrent neural network controller to deal with such model uncertainties. This controller can be treated as neural network approximations of Lyapunov control actions. In addition, this controller also provides online learning ability to adjust the corresponding weights with the back propagation algorithm built in the hidden layer. The proposed control scheme has been tested on two simple power systems. Simulation results demonstrate that the proposed control strategy is very effective for suppressing power swing even under severe system conditions.

  10. Hepatocellular carcinoma: IVIM diffusion quantification for prediction of tumor necrosis compared to enhancement ratios

    PubMed Central

    Kakite, Suguru; Dyvorne, Hadrien A.; Lee, Karen M.; Jajamovich, Guido H.; Knight-Greenfield, Ashley; Taouli, Bachir

    2015-01-01

    Purpose To correlate intra voxel incoherent motion (IVIM) diffusion parameters of liver parenchyma and hepatocellular carcinoma (HCC) with degree of liver/tumor enhancement and necrosis; and to assess the diagnostic performance of diffusion parameters vs. enhancement ratios (ER) for prediction of complete tumor necrosis. Patients and methods In this IRB approved HIPAA compliant study, we included 46 patients with HCC who underwent IVIM diffusion-weighted (DW) MRI in addition to routine sequences at 3.0 T. True diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (PF) and apparent diffusion coefficient (ADC) were quantified in tumors and liver parenchyma. Tumor ER were calculated using contrast-enhanced imaging, and degree of tumor necrosis was assessed using post-contrast image subtraction. IVIM parameters and ER were compared between HCC and background liver and between necrotic and viable tumor components. ROC analysis for prediction of complete tumor necrosis was performed. Results 79 HCCs were assessed (mean size 2.5 cm). D, PF and ADC were significantly higher in HCC vs. liver (p < 0.0001). There were weak significant negative/positive correlations between D/PF and ER, and significant correlations between D/PF/ADC and tumor necrosis (for D, r 0.452, p < 0.001). Among diffusion parameters, D had the highest area under the curve (AUC 0.811) for predicting complete tumor necrosis. ER outperformed diffusion parameters for prediction of complete tumor necrosis (AUC > 0.95, p < 0.002). Conclusion D has a reasonable diagnostic performance for predicting complete tumor necrosis, however lower than that of contrast-enhanced imaging. PMID:27069971

  11. Enhanced ionic diffusion in ionomer-filled nanopores.

    PubMed

    Allahyarov, Elshad; Taylor, Philip L; Löwen, Hartmut

    2015-12-28

    Coarse-grained simulations in the united-atom-model approximation are used to investigate confinement-induced morphological changes in Nafion-like ionomers. The system we study models a cylindrical pore in a hydrophobic matrix of supporting material with pore diameters that vary from 0.7 to 3.96 nm. Simulation results indicate a strong dependence of the equilibrium ionomer structures both on the pore diameter and on the sulfonate concentration in the pore. In the case of larger pores, the ionic clustering has the shape of a branched wire-like network oriented parallel to the pore axis. In the case of narrow pores, the ionic clusters occupy the pore center and exhibit strong density modulations both along the pore axis and across the pore diameter. The calculated diffusion coefficients for the ions indicate a sharp increase within the narrow pores. This finding is explained by ballistic-type ionic motion at shorter times and by the collective motion of ions in hydrophilic clusters. The influence of the hydrophobic walls on the distribution of ions and solvent molecules is discussed. PMID:26723611

  12. Enhanced ionic diffusion in ionomer-filled nanopores

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2015-12-01

    Coarse-grained simulations in the united-atom-model approximation are used to investigate confinement-induced morphological changes in Nafion-like ionomers. The system we study models a cylindrical pore in a hydrophobic matrix of supporting material with pore diameters that vary from 0.7 to 3.96 nm. Simulation results indicate a strong dependence of the equilibrium ionomer structures both on the pore diameter and on the sulfonate concentration in the pore. In the case of larger pores, the ionic clustering has the shape of a branched wire-like network oriented parallel to the pore axis. In the case of narrow pores, the ionic clusters occupy the pore center and exhibit strong density modulations both along the pore axis and across the pore diameter. The calculated diffusion coefficients for the ions indicate a sharp increase within the narrow pores. This finding is explained by ballistic-type ionic motion at shorter times and by the collective motion of ions in hydrophilic clusters. The influence of the hydrophobic walls on the distribution of ions and solvent molecules is discussed.

  13. Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens

    PubMed Central

    Nixon, M. R.; Orr, A. G.; Vukusic, P.

    2015-01-01

    The dorsal surfaces of the hindwings of the dragonfly Rhyothemis resplendens (Odonata: Libellulidae) reflect a deep blue from the multilayer structure in its wing membrane. The layers within this structure are not flat, but distinctly ‘wrinkled’, with a thickness of several hundred nanometres and interwrinkle crest distances of 5 µm and greater. A comparison between the backscattered light from R. resplendens and a similar, but un-‘wrinkled’ multilayer in the damselfly Matronoides cyaneipennis (Odonata: Calopterygidae) shows that the angle over which incident light is backscattered is increased by the wrinkling in the R. resplendens structure. Whereas the reflection from the flat multilayer of M. cyaneipennis is effectively specular, the reflection from the wrinkled R. resplendens multilayer spans 1.47 steradians (equivalent to ±40° for all azimuthal angles). This property enhances the visibility of the static wing over a broader angle range than is normally associated with a smooth multilayer, thereby markedly increasing its conspicuousness. PMID:25540236

  14. Buffer scheme with battery energy storage capability for enhancement of network transient stability and load ride-through

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Vilathgamuwa, D. M.; Choi, S. S.

    2008-05-01

    This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.

  15. X-ray angiogram images enhancement by facet-based adaptive anisotropic diffusion.

    PubMed

    Wang, Guodong; Sang, Nong; Yan, Luxin; Shen, Xubang

    2009-03-01

    The paper presents a versatile nonlinear diffusion method to visually enhance the angiogram images for improving the clinical diagnosis. Traditional nonlinear diffusion has been shown very effective in edge-preserved smoothing of images. However, the existing nonlinear diffusion models suffer several drawbacks: sensitivity to the choice of the conductance parameter, limited range of edge enhancement, and the sensitivity to the selection of evolution time. The new anisotropic diffusion we proposed is based on facet model which can solve the issues mentioned above adaptively according to the image content. This method uses facet model for fitting the image to reduce noise, and uses the sum square of eigenvalues of Hessian as the standard of the conductance parameter selection synchronously. The capability of dealing with noise and conductance parameter can also change adaptively in the whole diffusion process. Moreover, our method is not sensitive to the choice of evolution time. Experimental results show that our new method is more effective than the original anisotropic diffusion. PMID:19095408

  16. The role of diffusion in ferritin-induced relaxation enhancement of protons.

    PubMed

    Boss, Michael A; Chris Hammel, P

    2012-04-01

    The influence of proton diffusion on nuclear magnetic resonance (NMR) relaxation was investigated in the presence of horse spleen ferritin at 7 T. Binary mixtures of water and glycerol were used to control diffusion within the range of 0.6-2.0 × 10(-9)m(2)/s, which was confirmed by pulsed gradient techniques. The effect of chemical exchange by hydrolysis between water and glycerol on relaxation was characterized with Carr-Purcell-Meiboom-Gill (CPMG) dispersion experiments. The relaxation rate enhancement of the protons due to ferritin was found to be inversely proportional to the diffusion coefficient. The enhancement increased by a factor of 3.6 over the range of diffusion coefficients, while the hydroxyl proton concentration decreased by a factor of 1.3. This result is in disagreement with the proton exchange dephasing model, which is independent of diffusion but predicts an inverse dependence on the hydroxyl concentration. Our data indicate that the role of diffusion dominates and must be considered when relaxation rates are used to determine iron concentration in vivo. PMID:22410189

  17. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    SciTech Connect

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.

  18. A scale-based forward-and-backward diffusion process for adaptive image enhancement and denoising

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Niu, Ruiqing; Zhang, Liangpei; Wu, Ke; Sahli, Hichem

    2011-12-01

    This work presents a scale-based forward-and-backward diffusion (SFABD) scheme. The main idea of this scheme is to perform local adaptive diffusion using local scale information. To this end, we propose a diffusivity function based on the Minimum Reliable Scale (MRS) of Elder and Zucker (IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699-716, 1998) to detect the details of local structures. The magnitude of the diffusion coefficient at each pixel is determined by taking into account the local property of the image through the scales. A scale-based variable weight is incorporated into the diffusivity function for balancing the forward and backward diffusion. Furthermore, as numerical scheme, we propose a modification of the Perona-Malik scheme (IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629-639, 1990) by incorporating edge orientations. The article describes the main principles of our method and illustrates image enhancement results on a set of standard images as well as simulated medical images, together with qualitative and quantitative comparisons with a variety of anisotropic diffusion schemes.

  19. A New Transient Two-Wire Method for Measuring the Thermal Diffusivity of Electrically Conducting and Highly Corrosive Liquids Using Small Samples

    NASA Astrophysics Data System (ADS)

    Kadjo, A.; Garnier, J.-P.; Maye, J. P.; Martemianov, S.

    2008-08-01

    The transient hot-wire (THW) technique is widely used for measurements of the thermal conductivity of most fluids, and some attempts have also been carried out for simultaneous measurements of the thermal diffusivity with the same hot wire. However, for some particular liquids like concentrated nitric acid solutions or similar nitric mixtures, for which the thermal properties are important for industrial or security applications, this technique may be difficult to use, because of possible technological incompatibilities between measurement probe materials and highly electrically conducting and corrosive liquids. Moreover, the possible highly energetic (explosive) character of these liquids requires minimum volume liquid samples and safety measurement devices and processes. It is the purpose of this paper to report on a modified THW technique (previously used for thermal-diffusivity measurements in soils), which is associated with a specific patented double-wire probe and is shown to be valid for direct thermal-diffusivity measurements in liquids. This method responds to the previous requirements and allows automatic and quasi-simultaneous thermal-conductivity and thermal-diffusivity measurements to be made safely on liquids compatible with the tantalum technology, with liquid sample volumes < 2 cm3. Low uncertainties are found for the thermal-diffusivity data when relative measurements are carried out with reference liquids like water or toluene.

  20. Short-Term Increases in Transient Receptor Potential Vanilloid-1 Mediate Stress-Induced Enhancement of Neuronal Excitation

    PubMed Central

    Weitlauf, Carl; Ward, Nicholas J.; Lambert, Wendi S.; Sidorova, Tatiana N.; Ho, Karen W.; Sappington, Rebecca M.

    2014-01-01

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1−/− retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca2+. These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. PMID:25392504

  1. Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.

    PubMed

    Weitlauf, Carl; Ward, Nicholas J; Lambert, Wendi S; Sidorova, Tatiana N; Ho, Karen W; Sappington, Rebecca M; Calkins, David J

    2014-11-12

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. PMID:25392504

  2. POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers.

    PubMed

    Mansfield, Edward D H; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2015-08-28

    The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery. PMID:26214263

  3. POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers

    NASA Astrophysics Data System (ADS)

    Mansfield, Edward D. H.; Sillence, Katy; Hole, Patrick; Williams, Adrian C.; Khutoryanskiy, Vitaliy V.

    2015-08-01

    The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery.The increasing use of nanoparticles in the pharmaceutical industry is generating concomitant interest in developing nanomaterials that can rapidly penetrate into, and permeate through, biological membranes to facilitate drug delivery and improve the bioavailability of active pharmaceutical ingredients. Here, we demonstrate that the permeation of thiolated silica nanoparticles through porcine gastric mucosa can be significantly enhanced by their functionalization with either 5 kDa poly(2-ethyl-2-oxazoline) or poly(ethylene glycol). Nanoparticle diffusion was assessed using two independent techniques; Nanoparticle Tracking Analysis, and fluorescence microscopy. Our results show that poly(2-ethyl-2-oxazoline) and poly(ethylene glycol) have comparable abilities to enhance diffusion of silica nanoparticles in mucin dispersions and through the gastric mucosa. These findings provide a new strategy in the design of nanomedicines, by surface modification or nanoparticle core construction, for enhanced transmucosal drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03178h

  4. Complementary tensor-driven image coherence diffusion for oriented structure enhancement

    NASA Astrophysics Data System (ADS)

    Hong-mei, Zhang; Ming-xi, Wan; Zheng-zhong, Bian

    2011-12-01

    Oriented structure enhancement plays important role in computer vision tasks, where the diffusion is encouraged along the preferred direction instead of perpendicular to it. By analyzing the differential geometric property of the oriented structure, a complementary tensor is proposed by combining the first and the second-order structure tensors as complementary descriptors, which can precisely analyze not only the step edges, but also the weak edges such as narrow peak or ridge-like structures. Complementary diffusion tensor is constructed from the new structure tensor, which steers coherence diffusion for oriented structure enhancement. Furthermore, fast algorithm based on additive operator splitting scheme is used for numerical solution, which is much faster than usual approach. The experimental results on several images are provided. Experiments show that the image diffusion process steered by the new complementary tensor can strengthen the oriented structures and also close the interrupted lines as well. Both strong and weak edges are enhanced while noise is removed. Our approach is very promising and could be applied to many other images.

  5. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    NASA Astrophysics Data System (ADS)

    Mahdad, Belkacem; Srairi, K.

    2013-12-01

    Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  6. Differentiation of Reactive and Tumor Metastatic Lymph Nodes with Diffusion-weighted and SPIO Enhanced MRI

    PubMed Central

    Zhang, Fan; Zhu, Lei; Huang, Xinglu; Niu, Gang; Chen, Siouan

    2012-01-01

    Objectives Determination of lymphatic metastasis is of great importance for both treatment planning and patient prognosis. We aim to distinguish tumor metastatic lymph nodes (TLNs) and reactive lymph nodes (RLNs) with diffusion-weighted and superparamagnetic iron oxide (SPIO) enhanced magnetic resonance imaging (MRI). Materials and methods Ipsilateral popliteal lymph node metastasis or lymphadenitis model was established by hock injection of either luciferase-expressing 4T1 murine breast cancer cells or Complete Freund Adjuvant (CFA) in male Balb/C mice. At different time points after inoculation, bioluminescence imaging, T2-weighted, diffusion-weighted and SPIO enhanced MRI were performed. Imaging findings were confirmed by histopathological staining. Results Size enlargement was observed in both TLNs and RLNs. At day 28, TLNs showed strong bioluminescence signal and bigger size than RLNs (p < 0.01). At early stages up to day 21, both TLNs and RLNs appeared homogeneous on diffusion-weighted imaging (DWI). At day 28, TLNs showed heterogeneous apparent diffusion coefficient (ADC) map with significantly higher average ADC value of 0.41 ± 0.03 × 10−3 mm2/s than that of RLNs (0.34 ± 0.02 10−3 mm2/s, p < 0.05). On SPIO enhanced MRI, both TLNs and RLNs showed distinct T2 signal reduction at day 21 after inoculation. At day 28, TLNs demonstrated partial uptake of the iron oxide particles, which was confirmed by Prussian blue staining. Conclusions Both diffusion-weighted and SPIO enhanced MRI can distinguish tumor metastatic lymph nodes from reactive lymph nodes. However, neither method is able to detect tumor metastasis to the draining lymph nodes at early stages. PMID:22588595

  7. Long-Term Monitoring of Post-Stroke Plasticity After Transient Cerebral Ischemia in Mice Using In Vivo and Ex Vivo Diffusion Tensor MRI

    PubMed Central

    Granziera, C; DArceuil, H; Zai, L; Magistretti, P.J; Sorensen, A.G; de Crespigny, A.J

    2007-01-01

    We used a murine model of transient focal cerebral ischemia to study: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus. Our data demonstrate that DTI changes parallel histological remodeling and recovery of function. PMID:19018310

  8. Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Hristov, Jordan

    2016-03-01

    Closed form approximate solutions to nonlinear heat (mass) diffusion equation with power-law nonlinearity of the thermal (mass) diffusivity have been developed by the integral-balance method avoiding the commonly used linearization by the Kirchhoff transformation. The main improvement of the solution is based on the double-integration technique and a new approach to the space derivative. Solutions to Dirichlet and Neumann boundary condition problems have been developed and benchmarked against exact numerical and approximate analytical solutions available in the literature.

  9. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    SciTech Connect

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The plant experiments indicate a Pu-DFOB velocity in the corn xylem of at least 174 cm/hr, much higher than ionic Pu in soil. Thus, Pu complexation with chelating agents is probably what led to the observed enhanced uptake and mobility in grasses. (7) Plant experiments show that the uptake of Fe-DFOB, Pu-DFOB and the resulting distributions are very similar. This supports the hypothesis that plant and bacterial iron-seeking chemistry mistakes Pu for Fe.

  10. Enhanced diffusion self-stimulated by micro-algae in an active, aerotactic bacterial suspension

    NASA Astrophysics Data System (ADS)

    Peaudecerf, François; Goldstein, Raymond E.

    2014-11-01

    Suspensions of swimming bacteria form a new class of active fluids that generate complex phenomena. An ``active bath'' of bacteria for instance produces fluid flows which move passive colloids in a random-like walk, associated with an effective diffusion coefficient higher than for Brownian motion. The value of this enhanced diffusion coefficient depends on the local density of bacteria and their swimming behavior. However, with aerotactic, obligate aerobic bacteria such as B. subtilis, the local oxygen concentration impacts on the distribution of cells and their swimming behavior. We consider the specific case in which non-motile photosynthetic algal cells interacting with a B. subtilis suspension not only play the role of passive colloids, but also produce oxygen under light. We demonstrate that this new kind of active suspension, under heterogeneous illumination, can induce an effective negative phototaxis of the passive algal cells. We explain the origin of this novel phenomenon as the combination of algal oxygen production, diffusion, chemotaxis and motility switching in bacteria resulting in an heterogeneous enhanced diffusion. Finally, we present potential applications for algal cell mixing and sorting, that can inspire new methods for bioengineering. Supported by ERC, Raymond and Beverly Sackler Foundation, and Mines ParisTech.

  11. Enhancement of hyperspectral imagery using spectrally weighted tensor anisotropic nonlinear diffusion for classification

    NASA Astrophysics Data System (ADS)

    Marin-Mcgee, Maider J.; Velez-Reyes, Miguel

    2013-05-01

    Tensor Anisotropic Nonlinear Diffusion (TAND) is a divergence PDE-based diffusion technique that is "guided" by an edge descriptor, such as the structure tensor, to stir the diffusion. The structure tensor for vector valued images such as HSI is most often defined as the average of the scalar structure tensors for each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened resulting in poor performance by processes that depend on the structure tensor. Iterative processes such as TAND, in particular, are vulnerable to this phenomenon. Recently a weighted structure tensor based on the heat operator has been proposed [1]. The weights are based on the heat operator. This tensor takes advantage of the fact that, in HSI, neighboring spectral bands are highly correlated, as are the bands of its gradient. By taking advantage of local spectral information, the proposed scheme gives higher weighting to local spectral features that could be related to edge information allowing the diffusion process to better enhance edges while smoothing out uniform regions facilitating the process of classification. This article present how classification results are affected by using TAND based on the heat weighted structure tensor as an image enhancement step in a classification system.

  12. Enhanced diffusion of high-temperature implanted aluminum in silicon carbide

    SciTech Connect

    Suvorov, A.V.; Usov, I.O.; Sokolov, V.V.; Suvorova, A.A.

    1996-12-31

    The diffusion of aluminum in silicon carbide during high-temperature Al{sup +} ion implantation was studied using secondary ion mass spectrometry (SIMS). Transmission electron microscopy (TEM) has been used to determine the microstructure of the implanted sample. A 6H-SiC wafer was implanted at a temperature of 1,800 C with 40 keV Al ions to a dose of 2 {times} 10{sup 16} cm{sup {minus}2}. It was established that an Al step-like profile starts at the interface between the crystal region and the damaged layer. The radiation enhanced diffusion coefficient of Al at the interface was determined to be D{sub i} = 2.8 {times} 10{sup {minus}12} cm{sup 2}/s, about two orders of magnitude higher than the thermally activated diffusion coefficient. The Si vacancy-rich near-surface layer formed by this implantation condition is believed to play a significant role in enhanced Al diffusion.

  13. Anxiety enhances threat processing without competition among multiple inputs: a diffusion model analysis.

    PubMed

    White, Corey N; Ratcliff, Roger; Vasey, Michael W; McKoon, Gail

    2010-10-01

    Enhanced processing of threatening information is a well established phenomenon among high-anxious individuals. This effect is most reliably shown in situations where 2 or more items compete for processing resources, suggesting that input competition is a critical component of the effect. However, it could be that there are small effects in situations without input competition, but the dependent measures typically used are not sensitive enough to detect them. The present study analyzed data from a noncompetition task, single-string lexical decision, with the diffusion model, a decision process model that provides a more direct measure of performance differences than either response times or accuracy alone. The diffusion model analysis showed a consistent processing advantage for threatening words in high-anxious individuals, whereas traditional comparisons showed no significant differences. These results challenge the view that input competition is necessary for enhanced threat processing. Implications for theories of anxiety are discussed. PMID:21038949

  14. Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension

    NASA Astrophysics Data System (ADS)

    Nagai, Takeyoshi; Inoue, Ryuichiro; Tandon, Amit; Yamazaki, Hidekatsu

    2015-12-01

    In this study, a Navis-MicroRider microstructure float and an EM-APEX float were deployed along the Kuroshio Extension Front. The observations deeper than 150 m reveal widespread interleaving thermohaline structures for at least 900 km along the front, presumably generated through mesoscale stirring and near-inertial oscillations. In these interleaving structures, microscale thermal dissipation rates χ are very high O(>10-7 K2s-1), while turbulent kinetic energy dissipation rates ɛ are relatively low O(10-10-10-9 Wkg-1), with effective thermal diffusivity Kθ of O(10-3 m2s-1) consistent with the previous parameterizations for double-diffusion, and, Kθ is two orders of magnitude larger than the turbulent eddy diffusivity for density Kρ. The average observed dissipation ratio Γ in salt finger and diffusive convection favorable conditions are 1.2 and 4.0, respectively, and are larger than that for turbulence. Our results suggest that mesoscale subduction/obduction and near-inertial motions could catalyze double-diffusive favorable conditions, and thereby enhancing the diapycnal tracer fluxes below the Kuroshio Extension Front.

  15. Laser with feedback: an optical implementation of competing instabilities, Shil'nikov chaos, and transient fluctuation enhancement

    SciTech Connect

    Arecchi, F.T.; Gadomski, W.; Lapucci, A.; Mancini, H.; Meucci, R.; Roversi, J.A.

    1988-05-01

    A CO/sub 2/ laser with feedback shows different dynamic regimes depending on the dominant role of one or two of three coexisting unstable stationary points. These regimes have been characterized by statistical distributions of return times to a Poincare section at constant intensity. In particular, in the regime of Shil'nikov chaos the iteration maps of return times display a statistical spread owing to a transient fluctuation enhancement phenomenon peculiar to macroscopic systems, which is absent in low-dimensional chaotic dynamics.

  16. Investigation of NO interaction on Rh/doped TiO2-based automotive catalyst using combined transient diffuse reflectance Fourier transform infrared and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chafik, T.; Ouassini, A.; Verykios, X. E.

    1998-07-01

    The interaction of NO with Rh supported on W+6 doped TiO2 has been investigated by coupling transient diffuse reflectance Fourier transform Infrared spectroscopy and mass spectrometry. The experiments were carried out in dynamic conditions (under reactant flow and at temperature reaction) at atmospheric pressure. By comparing the results obtained with undoped Rh/TiO2 and Rh/TiO2(W6+) catalysts, the analytical approach used permitted to emphasis the effect of carrier doping, with respect to the elementary steps and surface intermediates involved in NO interaction process. It was found that W6+-doping of TiO2 promotes significantly the formation of Rh-NO- species and enhances the thermal stability of Rh-NO+ on Rh/TiO2 (W6+) surfaces. This leads to a drastic increase in the selectivity of NO decomposition reaction towards N2 formation, whereas the N2O yield decreases significantly. L'intéraction de NO sur un catalyseur à base de rhodium supporté sur TiO2 dopé par le tungstène W6+ a été étudiée en régime transitoire par couplage de la spectroscopie Infrarouge Diffuse à Transformée de Fourier (DRIFT) et la spectrométrie de masse. Ces études ont été effectuées dans des conditions dynamiques (sous flux de réactifs gazeux et à la température de la réaction) à la pression atmosphérique. La comparaison des études menées avec des catalyseurs non dopé (Rh/TiO2) et dopé (Rh/TiO2(W6+)) a permis de mettre en évidence l'influence du dopage du support catalytique sur la nature des intermédiaires superficiels et les étapes élémentaires intervenant dans le processus d'interaction de NO avec ces solides. Il a été montré que le dopage de TiO2 par W6+ accroît la formation des espèces Rh-NO- et la stabilité thermique des espèces Rh-NO+ sur Rh/TiO2(W6+). Ceci est à l'origine de l'augmentation de la sélectivité de la conversion de NO en N2 suite à la diminution considérable de la quantité N2O formée.

  17. Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network

    SciTech Connect

    Lafranceschina, Jacopo Wackerbauer, Renate

    2015-01-15

    Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.

  18. Enhanced Vapor-Phase Diffusion in Porous Media - LDRD Final Report

    SciTech Connect

    Ho, C.K.; Webb, S.W.

    1999-01-01

    As part of the Laboratory-Directed Research and Development (LDRD) Program at Sandia National Laboratories, an investigation into the existence of enhanced vapor-phase diffusion (EVD) in porous media has been conducted. A thorough literature review was initially performed across multiple disciplines (soil science and engineering), and based on this review, the existence of EVD was found to be questionable. As a result, modeling and experiments were initiated to investigate the existence of EVD. In this LDRD, the first mechanistic model of EVD was developed which demonstrated the mechanisms responsible for EVD. The first direct measurements of EVD have also been conducted at multiple scales. Measurements have been made at the pore scale, in a two- dimensional network as represented by a fracture aperture, and in a porous medium. Significant enhancement of vapor-phase transport relative to Fickian diffusion was measured in all cases. The modeling and experimental results provide additional mechanisms for EVD beyond those presented by the generally accepted model of Philip and deVries (1957), which required a thermal gradient for EVD to exist. Modeling and experimental results show significant enhancement under isothermal conditions. Application of EVD to vapor transport in the near-surface vadose zone show a significant variation between no enhancement, the model of Philip and deVries, and the present results. Based on this information, the model of Philip and deVries may need to be modified, and additional studies are recommended.

  19. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  20. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  1. An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes

    NASA Astrophysics Data System (ADS)

    Hund, S. J.; Antaki, J. F.

    2009-10-01

    Transport phenomena of platelets and white blood cells (WBCs) are fundamental to the processes of vascular disease and thrombosis. Unfortunately, the dilute volume occupied by these cells is not amenable to fluid-continuum modeling, and yet the cell count is large enough that modeling each individual cell is impractical for most applications. The most feasible option is to treat them as dilute species governed by convection and diffusion; however, this is further complicated by the role of the red blood cell (RBC) phase on the transport of these cells. We therefore propose an extended convection-diffusion (ECD) model based on the diffusive balance of a fictitious field potential, Ψ, that accounts for the gradients of both the dilute phase and the local hematocrit. The ECD model was applied to the flow of blood in a tube and between parallel plates in which a profile for the RBC concentration field was imposed and the resulting platelet concentration field predicted. Compared to prevailing enhanced-diffusion models that dispersed the platelet concentration field, the ECD model was able to simulate a near-wall platelet excess, as observed experimentally. The extension of the ECD model depends only on the ability to prescribe the hematocrit distribution, and therefore may be applied to a wide variety of geometries to investigate platelet-mediated vascular disease and device-related thrombosis.

  2. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.

    PubMed

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency. PMID:26465553

  3. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation

    NASA Astrophysics Data System (ADS)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J =0.89 ) at the beginning of the downstroke, and a decrease to a minimum (J =0.17 ) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  4. Impurity-trapped excitons and electron traps in CaF2:Yb2+ and SrF2:Yb2+ probed by transient photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Senanayake, P. S.; Wells, J. P. R.; Reid, M. F.; Berden, G.; Meijerink, A.; Reeves, R. J.

    2013-01-01

    CaF$_2$:Yb$^{2+}$ and SrF$_2$:Yb$^{2+}$ crystals have been investigated by a two-color UV + IR transient photoluminescence enhancement technique. The enhancement gives information about both changes in internal energy levels of the excitons and liberation of electrons from traps in the crystals.

  5. Entropy-Driven Enhanced Self-Diffusion in Confined Reentrant Supernematics

    NASA Astrophysics Data System (ADS)

    Mazza, Marco G.; Greschek, Manuel; Valiullin, Rustem; Kärger, Jörg; Schoen, Martin

    2010-11-01

    We present a molecular dynamics study of reentrant nematic phases using the Gay-Berne-Kihara model of a liquid crystal in nanoconfinement. At densities above those characteristic of smectic A phases, reentrant nematic phases form that are characterized by a large value of the nematic order parameter S≃1. Along the nematic director these “supernematic” phases exhibit a remarkably high self-diffusivity, which exceeds that for ordinary, lower-density nematic phases by an order of magnitude. Enhancement of self-diffusivity is attributed to a decrease of rotational configurational entropy in confinement. Recent developments in the pulsed field gradient NMR technique are shown to provide favorable conditions for an experimental confirmation of our simulations.

  6. Enhanced diffusion, chemotaxis, and pumping by active enzymes: progress toward an organizing principle of molecular machines.

    PubMed

    Astumian, R Dean

    2014-12-23

    Active enzymes diffuse more rapidly than inactive enzymes. This phenomenon may be due to catalysis-driven conformational changes that result in "swimming" through the aqueous solution. Recent additional work has demonstrated that active enzymes can undergo chemotaxis toward regions of high substrate concentration, whereas inactive enzymes do not, and, further, that active enzymes immobilized at surfaces can directionally pump liquids. In this Perspective, I will discuss these phenomena in light of Purcell's work on directed motion at low Reynold's number and in the context of microscopic reversibility. The conclusions suggest that a deep understanding of catalytically driven enhanced diffusion of enzymes and related phenomena can lead toward a general organizing principle for the design, characterization, and operation of molecular machines. PMID:25533171

  7. Analytical resolution of the reactive diffusion equation for transient electronics including materials whose porosity value changes in terms of their thickness

    NASA Astrophysics Data System (ADS)

    Vargas Toro, Agustín.

    2014-05-01

    Transient electronic devices are a new technology development whose main characteristic is that its components can disappear in a programmed and controlled way, which means such devices have a pre-engineered service life. Nowadays, transient electronics have a large application field, involving from the reduction of e-waste in the planet until the development of medical instruments and implants that can be discarded when the patients do not need it anymore, avoiding the trouble of having an extra procedure for them. These devices must be made from biocompatible materials avoiding long-term adverse effects in the environment and patients. It is fundamental to develop an analytical model that allows describing the behavior of these materials considering cases which its porosity may be constant or not, in presence of water or any other biofluid. In order to accomplish this analysis was solve the reactive diffusion equation based on Bromwich's integral and the Residue theorem for two material cases, those whose porosity is constant, and those whose porosity increases linearly in terms of its thickness, where was found a general expression. This allows to the analysis of the relation of the electric resistance (per unit length) and the rate of dissolution of the material.

  8. Force enhancement in lengthening contractions of cat soleus muscle in situ: transient and steady-state aspects.

    PubMed

    Koppes, Ryan A; Herzog, Walter; Corr, David T

    2013-07-01

    Force enhancement (FE) associated with lengthening is a well-accepted phenomenon of active skeletal muscle, but the underlying mechanism(s) remain unknown. Similar to force depression (FD) following active shortening, the mechanism of FE may be attributed, at least in part, to cross-bridge kinetics. To examine this relationship, a post hoc analysis was performed on the transient force relaxation phase of previous in-situ FE experiments in soleus muscle-tendon units of anesthetized cats. For each muscle (n = 8), nine eccentric lengthenings (3 amplitudes, 3 velocities) were performed while tetanically stimulated (3T at 30 Hz, 3× α motorneuron, 35 ± 1°C). To determine transient aspects of FE, the period immediately following stretching was fit with an exponential decay function (R (2) > 0.95). Statistical analyses revealed that total steady-state FE (FESS) increased with stretching amplitude and applied mechanical work. A positive relationship was observed between the active FESS and rate of force decay (k), indicating that a kinetic mechanism may explain active FE. However, for all muscles and stretch conditions, there was no correlation between the total amount of FESS and rate of decay. Therefore, FE cannot be explained solely by an active FE mechanism involving the interaction of actin and myosin. Rather, these findings suggest a combination of underlying mechanisms, including a kinetic mechanism for active FE, contributions of a passive elastic element, and possibly an activatable passive component operating outside of actin-myosin cross-bridging. Moreover, this transient analysis identifies that FE is not simply the opposite of FD, and its underlying mechanism(s) cannot simply be the opposite in nature. PMID:24303106

  9. Stress enhanced self-diffusion in Si: Entropy effect in anisotropic elastic environment

    NASA Astrophysics Data System (ADS)

    Rushchanskii, Konstantin Z.; Pochet, Pascal; Lançon, Frédéric

    2008-04-01

    We present a multiscale analysis on stress enhanced vacancy-mediated diffusion in strained Si that explicitly includes the Jahn-Teller structural distortion around vacancies. The resulting anisotropy combined with biaxial deformations applied to (100)-oriented films lead to an orientational dependency of the vacancy formation energy. At finite temperatures, it results in a strong entropy effect when thermal activation allows occupancy of high energy defect states. Kinetic Lattice Monte Carlo simulations reveal that the effective activation energy is a strongly nonlinear function of strain at small deformations. At larger deformations, it becomes linear where as the occupancy of the excited states becomes insignificant.

  10. Absorption enhancement and carrier diffusion in single lead sulfide nanowire Schottky solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Yiming; Peng, Xingyue; Hyatt, Steven; Yu, Dong

    2015-08-01

    Semiconductor nanowire (NW) solar cells have promising potentials in solar energy conversion, benefiting from their low fabrication cost and enhanced optical absorption through light confinement. Recently, we have shown that the absorption efficiency can be significantly improved in lead sulfide (PbS) NWs with high refractive indices, by a direct observation of 350% external quantum efficiency (EQE). In this proceeding paper, we further examine the optical resonance mechanism in this promising nanomaterial. Particularly, we will present our recent results on resonance modes calculation, polarization and substrate effects on optical resonance, and intensity dependent minority carrier diffusion lengths in single PbS NW Schottky junction solar cells.

  11. Transient Electrochemical Surface-Enhanced Raman Spectroscopy: A Millisecond Time-Resolved Study of an Electrochemical Redox Process.

    PubMed

    Zong, Cheng; Chen, Chan-Juan; Zhang, Meng; Wu, De-Yin; Ren, Bin

    2015-09-16

    The pursuit of techniques with a high time resolution together with molecular signature information at the electrochemical interfaces has never stopped in order to explicitly monitor and understand the dynamic electrochemical processes. Here, we developed a transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to monitor the structural evolution of surface species at a time resolution that equals the transient electrochemical methods (e.g., cyclic voltammetry and chronoamperometry), so that the Raman signal with the molecular signature information and the electrochemical current signal can be precisely correlated. The technique was employed to study the redox process of nile blue on Ag surfaces. We revealed an interesting two-rate constant process and a peculiar increase of the absolute intensity during the reduction of nile blue on the Ag surface, which both related to the dissociation of nile blue aggregates and the follow-up reduction. Therefore, we were able to uncover the processes that are impossible to observe by conventional steady state SERS methods. The ability to provide a time resolution shorter than the charging time of the double layer capacitance with molecular fingerprint information has unprecedented significance for investigation of both reversible and irreversible electrochemical processes. PMID:26325244

  12. Coronary Plaque Boundary Enhancement in IVUS Image by Using a Modified Perona-Malik Diffusion Filter.

    PubMed

    Anam, S; Uchino, E; Suetake, N

    2014-01-01

    We propose a modified Perona-Malik diffusion (PMD) filter to enhance a coronary plaque boundary by considering the conditions peculiar to an intravascular ultrasound (IVUS) image. The IVUS image is commonly used for a diagnosis of acute coronary syndrome (ACS). The IVUS image is however very grainy due to heavy speckle noise. When the normal PMD filter is applied for speckle noise reduction in the IVUS image, the coronary plaque boundary becomes vague. For this problem, we propose a modified PMD filter which is designed in special reference to the coronary plaque boundary detection. It can then not only reduce the speckle noise but also enhance clearly the coronary plaque boundary. After applying the modified PMD filter to the IVUS image, the coronary plaque boundaries are successfully detected further by applying the Takagi-Sugeno fuzzy model. The accuracy of the proposed method has been confirmed numerically by the experiments. PMID:25506357

  13. Coronary Plaque Boundary Enhancement in IVUS Image by Using a Modified Perona-Malik Diffusion Filter

    PubMed Central

    Anam, S.; Uchino, E.; Suetake, N.

    2014-01-01

    We propose a modified Perona-Malik diffusion (PMD) filter to enhance a coronary plaque boundary by considering the conditions peculiar to an intravascular ultrasound (IVUS) image. The IVUS image is commonly used for a diagnosis of acute coronary syndrome (ACS). The IVUS image is however very grainy due to heavy speckle noise. When the normal PMD filter is applied for speckle noise reduction in the IVUS image, the coronary plaque boundary becomes vague. For this problem, we propose a modified PMD filter which is designed in special reference to the coronary plaque boundary detection. It can then not only reduce the speckle noise but also enhance clearly the coronary plaque boundary. After applying the modified PMD filter to the IVUS image, the coronary plaque boundaries are successfully detected further by applying the Takagi-Sugeno fuzzy model. The accuracy of the proposed method has been confirmed numerically by the experiments. PMID:25506357

  14. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  15. Enhanced Li adsorption and diffusion in single-walled silicon nanotubes: an ab initio study.

    PubMed

    Kulish, Vadym V; Ng, Man-Fai; Malyi, Oleksandr I; Wu, Ping; Chen, Zhong

    2013-04-15

    We report a first-principles investigation of Li adsorption and diffusion in single-walled Si nanotubes (SWSiNTs) of interest to Li-ion battery anodes. We calculate Li insertion characteristics in SWSiNTs and compare them with the respective ones in carbon nanotubes (CNTs) and other silicon nanostructures. From our calculations, SWSiNTs show higher reactivity toward the adsorption of Li adatoms than CNTs and Si nanoclusters. Considering the importance of Li kinetics, we demonstrate that the interior of SWSiNTs may serve as a fast Li diffusion channel. The important advantage of SWSiNTs over their carbon analogues is a sevenfold reduction in the energy barrier for the penetration of the Li atoms into the nanotube interior through the sidewalls. This prepossesses easier Li diffusion inside the tube and subsequent utilization of the interior sites, which enhances Li storage capacity of the system. The improvements in both Li uptake and Li mobility over their analogues support the great potential of SWSiNTs as Li-ion battery anodes. PMID:23564742

  16. Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT): experimental validation with a dynamic phantom

    PubMed Central

    Unlu, Mehmet Burcin; Lin, Yuting; Gulsen, Gultekin

    2010-01-01

    Dynamic contrast-enhanced diffuse optical tomography (DCE-DOT) can provide spatially resolved enhancement kinetics of an optical contrast agent. We undertook a systematic phantom study to evaluate the effects of the geometrical parameters such as the depth and size of the inclusion as well as the optical parameters of the background on the recovered enhancement kinetics of the most commonly used optical contrast agent, indocyanine green (ICG). For this purpose a computer-controlled dynamic phantom was constructed. An ICG–intralipid–water mixture was circulated through the inclusions while the DCE-DOT measurements were acquired with a temporal resolution of 16 s. The same dynamic study was repeated using inclusions of different sizes located at different depths. In addition to this, the effect of non-scattering regions was investigated by placing a second inclusion filled with water in the background. The phantom studies confirmed that although the peak enhancement varied substantially for each case, the recovered injection and dilution rates obtained from the percentage enhancement maps agreed within 15% independent of not only the depth and the size of the inclusion but also the presence of a non-scattering region in the background. Although no internal structural information was used in these phantom studies, it may be necessary to use it for small objects buried deep in tissue. However, the different contrast mechanisms of optical and other imaging modalities as well as imperfect co-registration between both modalities may lead to potential errors in the structural a priori. Therefore, the effect of erroneous selection of structural priors was investigated as the final step. Again, the injection and dilution rates obtained from the percentage enhancement maps were also immune to the systematic errors introduced by erroneous selection of the structural priors, e.g. choosing the diameter of the inclusion 20% smaller increased the peak enhancement 60% but changed the injection and dilution rates only less than 10%. PMID:19841515

  17. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy.

    PubMed

    Bos, Paula D; Plitas, George; Rudra, Dipayan; Lee, Sue Y; Rudensky, Alexander Y

    2013-10-21

    Rational combinatorial therapeutic strategies have proven beneficial for the management of cancer. Recent success of checkpoint blockade in highly immunogenic tumors has renewed interest in immunotherapy. Regulatory T (T reg) cells densely populate solid tumors, which may promote progression through suppressing anti-tumor immune responses. We investigated the role of T reg cells in murine mammary carcinogenesis using an orthotopic, polyoma middle-T antigen-driven model in Foxp3(DTR) knockin mice. T reg cell ablation resulted in significant determent of primary and metastatic tumor progression. Importantly, short-term ablation of T reg cells in advanced spontaneous tumors led to extensive apoptotic tumor cell death. This anti-tumor activity was dependent on IFN-γ and CD4(+) T cells but not on NK or CD8(+) T cells. Combination of T reg cell ablation with CTLA-4 or PD-1/PD-L1 blockade did not affect tumor growth or improve the therapeutic effect attained by T reg cell ablation alone. However, T reg cell targeting jointly with tumor irradiation significantly reduced tumor burden and improved overall survival. Together, our results demonstrate a major tumor-promoting role of T reg cells in an autochthonous model of tumorigenesis, and they reveal the potential therapeutic value of combining transient T reg cell ablation with radiotherapy for the management of poorly immunogenic, aggressive malignancies. PMID:24127486

  18. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    SciTech Connect

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-07-01

    Chlorine is present as an impurity in the UO{sub 2} nuclear fuel. {sup 35}Cl is activated into {sup 36}Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragments or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the {sup 36}Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, {sup 37}Cl has been implanted into sintered depleted UO{sub 2} pellets (mean grain size around 18 {mu}m). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of {sup 37}Cl implanted UO{sub 2} pellets (implantation fluence of 10{sup 13} ions.cm{sup -2}) show that it is mobile from temperatures as low as 1273 K (E{sub a}=4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E{sub a}=0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10{sup -14} cm{sup 2}.s{sup -1}). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by : L=(Dt)1/2, the diffusion distance after 3 years is L=17 {mu}m. It results that there is a great probability for the chlorine contained in the UO{sub 2} grains to have reached the grain boundaries after 3 years, in the core of the fuel rod as well as at its periphery. Moreover, diffusion and concentration of chlorine at grain boundaries has been evidenced using SIMS mapping. Our results indicate therefore, that, during reactor operation and after, the majority of {sup 36}Cl is likely to have moved to grain boundaries, rim and gap. This fraction might then significantly contribute to the rapid or instant release of chlorine. This could have important consequences for safety assessment. During reactor operation, chlorine ({sup 35}Cl), an impurity of the nuclear fuel, is activated into {sup 36}Cl, a long lived mobile isotope. Because of its long half life and its mobility, this isotope may contribute significantly to the instant release fraction under disposal conditions. Thermal annealing of Cl implanted UO{sub 2} sintered pellets show that it is mobile from temperatures as low as 1273 K (E{sub a} = 4.3 eV). Chlorine diffusion induced by irradiation with fission products preserves a thermally activated contribution. The radiation induced defects significantly enhance chlorine migration. (authors)

  19. Diffusion-weighted MRI monitoring of pancreatic cancer response to radiofrequency heat-enhanced intratumor chemotherapy.

    PubMed

    Zhang, Tong; Zhang, Feng; Meng, Yanfeng; Wang, Han; Le, Thomas; Wei, Baojie; Lee, Donghoon; Willis, Patrick; Shen, Baozhong; Yang, Xiaoming

    2013-12-01

    The aim of this study was to evaluate the feasibility of using diffusion-weighted MRI to monitor the early response of pancreatic cancers to radiofrequency heat (RFH)-enhanced chemotherapy. Human pancreatic carcinoma cells (PANC-1) in different groups and 24 mice with pancreatic cancer xenografts in four groups were treated with phosphate-buffered saline (PBS) as a control, RFH at 42 °C, gemcitabine and gemcitabine plus RFH at 42 °C. One day before and 1, 7 and 14 days after treatment, diffusion-weighted MRI and T2 -weighted imaging were applied to monitor the apparent diffusion coefficients (ADCs) of tumors and tumor growth. MRI findings were correlated with the results of tumor apoptosis analysis. In the in vitro experiments, the quantitative viability assay showed lower relative cell viabilities for treatment with gemcitabine plus RFH at 42 °C relative to treatment with RFH only and gemcitabine only (37 ± 5% versus 65 ± 4% and 58 ± 8%, respectively, p < 0.05). In the in vivo experiments, the combination therapy resulted in smaller relative tumor volumes than RFH only and chemotherapy only (0.82 ± 0.17 versus 2.23 ± 0.90 and 1.64 ± 0.44, respectively, p = 0.003). In vivo, 14-T MRI demonstrated a remarkable decrease in ADCs at day 1 and increased ADCs at days 7 and 14 in the combination therapy group. The apoptosis index in the combination therapy group was significantly higher than those in the chemotherapy-only, RFH-only and PBS treatment groups (37 ± 6% versus 20 ± 5%, 8 ± 2% and 3 ± 1%, respectively, p < 0.05). This study confirms that it is feasible to use MRI to monitor RFH-enhanced chemotherapy in pancreatic cancers, which may present new options for the efficient treatment of pancreatic malignancies using MRI/RFH-integrated local chemotherapy. PMID:24038282

  20. Enhanced activation of the transient receptor potential channel TRPA1 by ajoene, an allicin derivative.

    PubMed

    Yassaka, Ricardo Tsuneo; Inagaki, Hidetoshi; Fujino, Tsuchiyoshi; Nakatani, Kei; Kubo, Tai

    2010-01-01

    TRPA1 is a calcium-permeable, nonselective cation channel expressed in the dorsal root ganglion and trigeminal ganglia nociceptive neurons. It is activated by the pungent compounds in mustard oil (AITC, allyl isothiocyanate), cinnamon (cinnamaldehyde), garlic (allicin), and is believed to mediate the inflammatory actions of environmental irritants and proalgesic agents. Thiosulfinate (allicin) and isothiocyanate (AITC) compounds contain reactive electrophilic chemical groups that react with cysteine residues within the TRPA1 channel N terminus, leading to channel activation. Ajoene also contains reactive electrophilic chemical groups likely to target TRPA1 channel. Here, we have used voltage-clamp recordings to show that TRPA1-responses are enhanced by ajoene application in a Xenopus oocyte expression system. Though ajoene alone did not activate TRPA1, subsequent application of ajoene enhanced the AITC-, allicin- and depolarization-induced responses of TRPA1. Moreover, when increasing concentrations of ajoene were applied along with constant concentrations of allicin or AITC, stronger responses were elicited. These findings suggest that ajoene is a novel TRPA1 channel enhancer, operating in a channel-opening-dependent manner. PMID:19808063

  1. Photon enhanced diffusion model for α-Si:H photo-degradation

    NASA Astrophysics Data System (ADS)

    Phelps, G. J.

    2006-01-01

    A photon enhanced diffusion (PED) model to describe hydrogenated amorphous silicon (α-Si:H) photo-degradation is proposed in this paper. The model utilizes the hydrogen content naturally incorporated into plasma-enhanced chemical vapour deposition (PECVD) silane (SiH4) produced α-Si:H structures (or films) as an ionized diffusing dopant within the modelled structure. In this model, the mobile carrier charge state contribution of the electrically active included hydrogen at a given physical location is determined dynamically with respect to the position of the Fermi level. In this paper, hydrogenated α-Si:H fabricated without additional doping is defined as h-type, to represent the hydrogen content of the α-Si:H within the modelled structure. A modelled α-Si:H structure (or device) consisting of n-type, h-type (included hydrogen dopant only) and p-type layers of widths 50 nm, 400 nm and 50 nm, respectively, having a 4 Ω external series resistance is considered in this paper. The physical diffusion of the ionized included hydrogen across dopant boundaries with differing Fermi levels provides mobile dopant compensation for the charge carrier concentration within the simulated α-Si:H structure. A hydrogen mobile charge state transition energy term for the diffusion of hydrogen across dopant boundaries within the deposited α-Si:H structure is included in this model as a variable combination of the α-Si:H structure's thermal and incident absorbed photon energy. In this model, the included hydrogen diffusion process and ionic charge state are directly related to the modelled dopant profile, temperature and cumulative adsorbed incident photon radiation. The total dopant charge distribution within the modelled α-Si:H structure is used to dynamically calculate the internal electrostatic potential and field profiles within the structure, with the changing charge compensation effects of the diffusing electrically active included hydrogen. High electric fields calculated to be within the modelled α-Si:H structure are used to enable incident photons to assist in a quantum-mechanical tunnelling mechanism, producing PED of the included hydrogen. The PED model calculates the open-circuit terminal potential (voltage) and resistance profile character across the modelled α-Si:H structure to provide a representative output of the photo-degradation process in time, temperature and incident photon exposure. Results generated by the proposed PED model closely follow the character of observed photo-degradation effects in α-Si:H photo-voltaic structures due to cumulative illumination, annealing and thermal cycling reported in the literature. Extracted values for the diffusion coefficient and proportion of electrically activated included hydrogen within the simulated α-Si:H structure of 1.38 × 10-16 cm-2 s-1 and 2 × 10-8, respectively, were obtained from the PED model simulations.

  2. 1,25 (OH)2D3 enhances PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Li, W.; Duncan, R. L.; Karin, N. J.; Farach-Carson, M. C.

    1997-01-01

    We previously demonstrated electrophysiologically that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] shifts the activation threshold of L-type Ca2+ channels in osteoblasts toward the resting potential and prolongs mean open time. Presently, we used single-cell Ca2+ imaging to study the combined effects of 1,25(OH)2D3 and parathyroid hormone (PTH) during generation of Ca2+ transients in fura 2-loaded MC3T3-E1 cells. Pretreatment with 1,25(OH)2D3 concentrations, which alone did not produce Ca2+ transients, consistently enhanced Ca2+ responses to PTH. Enhancement was dose dependent over the range of 1 to 10 nM and was blocked by pretreatment with 5 microM nitrendipine during pretreatment. A 1,25(OH)2D3 analog that activates L-type channels and shifts their activation threshold also enhanced PTH responses. In contrast, an analog devoid of membrane Ca2+ effects did not enhance PTH-induced Ca2+ transients. The PTH-induced Ca2+ transient involved activation of a dihydropyridine-insensitive cation channel that was inhibited by Gd3+. Together, these data suggest that 1,25(OH)2D3 increases osteoblast responsiveness to PTH through rapid modification of L-type Ca2+ channel gating properties, whose activation enhances Ca2+ entry through other channels such as the PTH-responsive, Gd(3+)-sensitive cation channel.

  3. Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign

    NASA Astrophysics Data System (ADS)

    Israelevich, P. L.; Yair, Y.; Devir, A. D.; Joseph, J. H.; Levin, Z.; Mayo, I.; Moalem, M.; Price, C.; Ziv, B.; Sternlieb, A.

    2004-03-01

    First results of observations of ELVES during the last mission of the space shuttle Columbia by the MEIDEX (Mediterranean Israeli Dust Experiment) instrument are reported. During the eclipse parts of 25 orbits, there were observations toward the Earth's limb above the areas of active thunderstorms. Strong enhancements of the brightness of the airglow layer above lightning flashes were observed, with lateral dimensions exceeding 400 km. This phenomenon, known as ELVES, is a clear manifestation of the interaction between the electromagnetic pulse from the lightning stroke and the lower ionosphere. The observed ELVES have been produced both by vertical and horizontal discharges.

  4. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-11-01

    Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid's operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid's fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL's contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  5. An Investigation of Transient Severe Motion Related to Gadoxetic Acid-enhanced MR Imaging.

    PubMed

    Motosugi, Utaroh; Bannas, Peter; Bookwalter, Candice A; Sano, Katsuhiro; Reeder, Scott B

    2016-04-01

    Purpose To investigate the cause of imaging artifacts observed during gadoxetic acid-enhanced arterial phase imaging of the liver. Materials and Methods This HIPAA-compliant study was approved by the institutional review board. Data were collected prospectively at two sites (site A, United States; site B, Japan) from patients undergoing contrast material-enhanced MR imaging with gadoxetic acid (site A, n = 154, dose = 0.05 mmol/kg; site B, n = 130, 0.025 mmol/kg) or gadobenate dimeglumine (only site A, n = 1666) from January 2014 to September 2014 at site A and from November 2014 to January 2015 at site B. Detailed comparisons between the two agents were made in the patients with dynamic liver acquisitions (n = 372) and age-, sex-, and baseline oxygen saturation (Spo2)-matched pairs (n = 130) at site A. Acquired data included self-reported dyspnea after contrast agent injection, Spo2, and breath-hold fidelity monitored with respiratory bellows. Results Self-reported dyspnea was more frequent with gadoxetic acid than with gadobenate dimeglumine (site A, 6.5% [10 of 154] vs 0.1% [two of 1666], P < .001; site B, 1.5% [two of 130]). In the matched-pair comparison, gadoxetic acid, as compared with gadobenate dimeglumine, had higher breath-hold failure rates (site A, 34.6% [45 of 130] vs 11.7% [15 of 130], P < .0001; site B, 16.2% [21 of 130]) and more severe artifacts during arterial phase imaging (site A, 7.7% [10 of 130] vs 0% [none of 130], P < .001; site B, 2.3% [three of 130]). Severe imaging artifacts in patients who received gadoxetic acid were significantly associated with male sex (P = .023), body mass index (P = .021), and breath-hold failure (P < .001) but not with dyspnea or Spo2 decrease. Conclusion Severe motion-related artifacts in the arterial phase of gadoxetic acid-enhanced liver MR imaging are associated with breath-hold failure but not with subjective feelings of dyspnea or a substantial decrease in blood Spo2. Subjective feelings of dyspnea are not necessarily associated with imaging artifacts. The phenomenon, albeit at a lower rate, was confirmed at a second site in Japan. (©) RSNA, 2015 Online supplemental material is available for this article. PMID:26473642

  6. Chronic oleoylethanolamide treatment improves spatial cognitive deficits through enhancing hippocampal neurogenesis after transient focal cerebral ischemia.

    PubMed

    Yang, Li-Chao; Guo, Han; Zhou, Hao; Suo, Da-Qin; Li, Wen-Jun; Zhou, Yu; Zhao, Yun; Yang, Wu-Shuang; Jin, Xin

    2015-04-15

    Oleoylethanolamide (OEA) has been shown to have neuroprotective effects after acute cerebral ischemic injury. The aim of this study was to investigate the effects of chronic OEA treatment on ischemia-induced spatial cognitive impairments, electrophysiology behavior and hippocampal neurogenesis. Daily treatments of 30 mg/kg OEA significantly ameliorated spatial cognitive deficits and attenuated the inhibition of long-term potentiation (LTP) in the middle cerebral artery occlusion (MCAO) rat model. Moreover, OEA administration improved cognitive function in a manner associated with enhanced neurogenesis in the hippocampus. Further study demonstrated that treatment with OEA markedly increased the expressions of brain-derived neurotrophic factor (BDNF) and peroxisome proliferator-activated receptors α (PPARα). Our data suggest that chronic OEA treatment can exert functional recovery of cognitive impairments and neuroprotective effects against cerebral ischemic insult in rats via triggering of neurogenesis in the hippocampus, which supports the therapeutic use of OEA for cerebral ischemia. PMID:25748831

  7. Performance Enhancement of Pharmacokinetic Diffuse Fluorescence Tomography by Use of Adaptive Extended Kalman Filtering

    PubMed Central

    Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2015-01-01

    Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems. PMID:26089975

  8. A new experimental model for force enhancement: steady-state and transient observations of the Drosophila jump muscle.

    PubMed

    Koppes, Ryan A; Swank, Douglas M; Corr, David T

    2015-10-15

    The increase in steady-state force after active lengthening in skeletal muscle, termed force enhancement (FE), has been observed for nearly one century. Although demonstrated experimentally at various structural levels, the underlying mechanism(s) remain unknown. We recently showed that the Drosophila jump muscle is an ideal model for investigating mechanisms behind muscle physiological properties, because its mechanical characteristics, tested thus far, duplicate those of fast mammalian skeletal muscles, and Drosophila has the advantage that it can be more easily genetically modified. To determine if Drosophila would be appropriate to investigate FE, we performed classic FE experiments on this muscle. Steady-state FE (FESS), following active lengthening, increased by 3, 7, and 12% of maximum isometric force, with increasing stretch amplitudes of 5, 10, and 20% of optimal fiber length (FLOPT), yet was similar for stretches across increasing stretch velocities of 4, 20, and 200% FLOPT/s. These FESS characteristics of the Drosophila jump muscle closely mimic those observed previously. Jump muscles also displayed typical transient FE characteristics. The transient force relaxation following active stretch was fit with a double exponential, yielding two phases of force relaxation: a fast initial relaxation of force, followed by a slower recovery toward steady state. Our analyses identified a negative correlation between the slow relaxation rate and FESS, indicating that there is likely an active component contributing to FE, in addition to a passive component. Herein, we have established the Drosophila jump muscle as a new and genetically powerful experimental model to investigate the underlying mechanism(s) of FE. PMID:26289752

  9. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications

    PubMed Central

    Mohammadzadeh, Sara; Khabiri, Alireza; Roohvand, Farzin; Memarnejadian, Arash; Salmanian, Ali Hatef; Ajdary, Soheila; Ehsani, Parastoo

    2014-01-01

    Background: Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for “transient-expression” that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. Objectives: The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. Materials and Methods: A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. Results: The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of “GGTAAG” splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. Conclusions: By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible. PMID:25598788

  10. Solutions of Simultaneous Equations for Oxidation Enhanced and Retarded Diffusions and Oxidation Stacking Fault in Silicon

    NASA Astrophysics Data System (ADS)

    Yoshida, Masayuki; Matsumoto, Satoru; Ishikawa, Yutaka

    1986-07-01

    Equations for oxidation enhanced and retarded diffusions (OED and ORD) and oxidation stacking faults (OSF) in silicon have been solved simultaneously, using experimental results at 1100°C for 1.0× 104--2.4× 105 s. A simple relation between the concentrations of self-interstitials and vacancies was assumed in order to obtain the solutions. It is concluded that the product of the concentrations of the self-interstitials and vacancies, CICV, is nearly equal to the value for thermal equilibrium, CI0CV0, and that the fractional components of the interstitialcy mechanism for self-, Sb and P diffusions are smaller than 0.5, smaller than 0.5 and larger than 0.5, respectively. This shows that the growth of OSF is caused mainly by the undersaturation of a vacancy, and that the ORD of Sb and the OED of P occur. The time dependences of the supersaturation ratios of the self-interstitials and vacancies were also obtained.

  11. Dramatic performance enhancement of evanescent-wave multimode fiber fluorometer using non-Lambertian light diffuser.

    PubMed

    Ma, Jianjun; Bock, Wojtek J

    2007-12-10

    To enhance the performance of an evanescent-wave (EW) based sensor, efforts are usually made to modify the sensor architecture rather than the excitation source. In this paper, we theoretically examine the role of meridian and skew rays under total internal reflection (TIR) as well as tunneling rays with the emphasis on sensor performance. Our further investigation indicates that the intensity profile of the light source enormously influences the EW power, and thus the collectable fluorescent emission level as well. A non-Lambertian fiber-optic side-emitting diffuser (FOSED) is proposed and experimentally verified, revealing that a proper alignment of this FOSED can dramatically improve the signal quality and reduce the level of stray excitation light. In particular, the adoption of a FOSED or other light diffusers with similar output profiles will ensure that the excitation power is used more efficiently, suggesting a lower demand on the excitation source power level, and the performance of the stray light filter and detector. The superiority of this innovation is further addressed by comparing it with a long period grating (LPG) fiber-optic sensor, which claims highly efficient core to cladding mode coupling. This study presents a new concept for the construction of a high-performance and cost-effective EW-based sensor system. PMID:19550936

  12. Wavelet-based multiscale anisotropic diffusion for speckle reduction and edge enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Niu, Ruiqing; Wu, Ke; Yu, Xin

    2009-10-01

    In order to improve signal-to-noise ratio (SNR) and image quality, this paper introduces a wavelet-based multiscale anisotropic diffusion algorithm to remove speckle noise and enhance edges. In our algorithm, we use the tool of wavelet to construct a linear scale-space for the speckle image. Due to the smoothing functionality of the scaling function, the wavelet-based multiscale representation of the speckle image is much more stationary than the raw speckle image. Noise is mostly located in the finest scale and tends to decrease as the scale increases. Furthermore, a robust speckle reduction anisotropic diffusion (SRAD) is to be proposed and we perform the improved SRAD on the stationary scale-space rather than on the rough speckle image domain. Qualitative experiments based on a speckle Synthetic aperture radar (SAR) image show the elegant characteristics of edge-preserving filtering versus the traditional adaptive filters. Quantitative analyses, based on the first order statistics and Equivalent Number of Looks, confirm the validity and effectiveness of the proposed algorithm.

  13. Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes.

    PubMed

    Thomas, Franziska A; Visco, Ilaria; Petrášek, Zdeněk; Heinemann, Fabian; Schwille, Petra

    2015-12-01

    Recently, a new and versatile assay to determine the partitioning coefficient [Formula: see text] as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, "Introducing a fluorescence-based standard to quantify protein partitioning into membranes" [1]. Here, the well-characterized binding of hexahistidine-tag (His6) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient [Formula: see text] of His6-tagged enhanced green fluorescent protein (eGFP-His6) and the fluorescent lipid analog ATTO-647N-DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants [Formula: see text] of the NTA(Ni)/eGFP-His6 system are reported. Further, a conversion between [Formula: see text] and [Formula: see text] is provided. PMID:26587560

  14. Shape-parameterized diffuse optical tomography holds promise for sensitivity enhancement of fluorescence molecular tomography

    PubMed Central

    Wu, Linhui; Wan, Wenbo; Wang, Xin; Zhou, Zhongxing; Li, Jiao; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2014-01-01

    A fundamental approach to enhancing the sensitivity of the fluorescence molecular tomography (FMT) is to incorporate diffuse optical tomography (DOT) to modify the light propagation modeling. However, the traditional voxel-based DOT has been involving a severely ill-posed inverse problem and cannot retrieve the optical property distributions with the acceptable quantitative accuracy and spatial resolution. Although, with the aid of an anatomical imaging modality, the structural-prior-based DOT method with either the hard- or soft-prior scheme holds promise for in vivo acquiring the optical background of tissues, the low robustness of the hard-prior scheme to the segmentation error and inferior performance of the soft-prior one in the quantitative accuracy limit its further application. We propose in this paper a shape-parameterized DOT method for not only effectively determining the regional optical properties but potentially achieving reasonable structural amelioration, lending itself to FMT for comparably improved recovery of fluorescence distribution. PMID:25360379

  15. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  16. {sup 1}H relaxation enhancement induced by nanoparticles in solutions: Influence of magnetic properties and diffusion

    SciTech Connect

    Kruk, D.; Korpała, A.; Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków ; Taheri, S. Mehdizadeh; Förster, S.; Kozłowski, A.; Rössler, E. A.

    2014-05-07

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance {sup 1}H spin-lattice relaxation for decalin and toluene solutions of various Fe{sub 2}O{sub 3} nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz–20 MHz by applying Field Cycling method, and in the temperature range of 257–298 K, using nanoparticles differing in size and shape: spherical – 5 nm diameter, cubic – 6.5 nm diameter, and cubic – 9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall {sup 1}H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the {sup 1}H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.

  17. Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction

    SciTech Connect

    Lu Yao; Chan, Heang-Ping; Wei Jun; Hadjiiski, Lubomir M.

    2010-11-15

    Purpose: Digital breast tomosynthesis (DBT) has been shown to improve mass detection. Detection of microcalcifications is more challenging because of the large breast volume to be searched for subtle signals. The simultaneous algebraic reconstruction technique (SART) was found to provide good image quality for DBT, but the image noise is amplified with an increasing number of iterations. In this study, the authors developed a selective-diffusion (SD) method for noise regularization with SART to improve the contrast-to-noise ratio (CNR) of microcalcifications in the DBT slices for human or machine detection. Methods: The SD method regularizes SART reconstruction during updating with each projection view. Potential microcalcifications are differentiated from the noisy background by estimating the local gradient information. Different degrees of regularization are applied to the signal or noise classes, such that the microcalcifications will be enhanced while the noise is suppressed. The new SD method was compared to several current methods, including the quadratic Laplacian (QL) method, the total variation (TV) method, and the nonconvex total p-variation (TpV) method for noise regularization with SART. A GE GEN2 prototype DBT system with a stationary digital detector was used for the acquisition of DBT scans at 21 angles in 3 deg. increments over a {+-}30 deg. range. The reconstruction image quality without regularization and that with the different regularization methods were compared using the DBT scans of an American College of Radiology phantom and a human subject. The CNR and the full width at half maximum (FWHM) of the line profiles of microcalcifications within the in-focus DBT slices were used as image quality measures. Results: For the comparison of large microcalcifications in the DBT data of the subject, the SD method resulted in comparable CNR to the nonconvex TpV method. Both of them performed better than the other two methods. For subtle microcalcifications, the SD method was superior to other methods in terms of CNR. In both the subject and phantom DBT data, for large microcalcifications, the FWHM of the SD method was comparable to that without regularization, which was wider than that of the TV type methods. For subtle microcalcifications, the SD method had comparable FWHM values to the TV type methods. All three regularization methods were superior to the QL method in terms of FWHM. Conclusions: The SART regularized by the selective-diffusion method enhanced the CNR and preserved the sharpness of microcalcifications. In comparison with three existing regularization methods, the selective-diffusion regularization was superior to the other methods for subtle microcalcifications.

  18. Microstructures and Mechanical Properties of Transient Liquid-Phase Diffusion-Bonded Ti3Al/TiAl Joints with TiZrCuNi Interlayer

    NASA Astrophysics Data System (ADS)

    Ren, H. S.; Xiong, H. P.; Pang, S. J.; Chen, B.; Wu, X.; Cheng, Y. Y.; Chen, B. Q.

    2016-04-01

    Transient liquid-phase diffusion bonding of Ti3Al-based alloy to TiAl intermetallics was conducted using Ti-13Zr-21Cu-9Ni (wt pct) interlayer foil. The joint microstructures were examined using a scanning electron microscope (SEM) equipped with an electron probe micro-analyzer (EPMA). The microhardness across the joint was measured and joint strengths were tested. The results show that the Ti3Al/TiAl joint mainly consists of Ti-rich phase, Ti2Al layer, α 2-Ti3Al band, and residual interlayer alloy dissolved with Al. The amount of residual interlayer at the central part of the joint is decreased with the increase of the bonding temperature, and meantime the Ti2Al and α 2-Ti3Al reaction bands close to the joined Ti3Al-based alloy become thickened gradually. Furthermore, the central part of the joint exhibits the maximum microhardness across the whole joint. The joints bonded at 1193 K (920 °C) for 600 seconds with a pressure of 2 MPa presented the maximum shear strength of 417 MPa at room temperature, and the strength of 234 MPa was maintained at 773 K (500 °C).

  19. Structure enhancement diffusion and contour extraction for electron tomography of mitochondria

    PubMed Central

    Miller, Michelle; Blomgren, Peter

    2009-01-01

    The interpretation and measurement of the architectural organization of mitochondria depend heavily upon the availability of good software tools for filtering, segmenting, extracting, measuring, and classifying the features of interest. Images of mitochondria contain many flow-like patterns and they are usually corrupted by large amounts of noise. Thus, it is necessary to enhance them by denoising and closing interrupted structures. We introduce a new approach based on anisotropic nonlinear diffusion and bilateral filtering for electron tomography of mitochondria. It allows noise removal and structure closure at certain scales, while preserving both the orientation and magnitude of discontinuities without the need for threshold switches. This technique facilitates image enhancement for subsequent segmentation, contour extraction, and improved visualization of the complex and intricate mitochondrial morphology. We perform the extraction of the structure-defining contours by employing a variational level set formulation. The propagating front for this approach is an approximate signed distance function which does not require expensive re-initialization. The behavior of the combined approach is tested for visualizing the structure of a HeLa cell mitochondrion and the results we obtain are very promising. PMID:19254765

  20. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances.

    PubMed

    Cabrol, Léa; Poly, Franck; Malhautier, Luc; Pommier, Thomas; Lerondelle, Catherine; Verstraete, Willy; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis; Le Roux, Xavier

    2016-01-01

    Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation. PMID:26651080

  1. Enhanced plasmid DNA utilization in transiently transfected CHO-DG44 cells in the presence of polar solvents.

    PubMed

    Rajendra, Yashas; Balasubramanian, Sowmya; Kiseljak, Divor; Baldi, Lucia; Wurm, Florian M; Hacker, David L

    2015-11-01

    Although the protein yields from transient gene expression (TGE) with Chinese hamster ovary (CHO) cells have recently improved, the amount of plasmid DNA (pDNA) needed for transfection remains relatively high. We describe a strategy to reduce the pDNA amount by transfecting CHO-DG44 cells with 0.06 μg pDNA/10(6) cells (10% of the optimal amount) in the presence of nonspecific (filler) DNA and various polar solvents including dimethylsufoxide, dimethyl formamide, acetonitrile, dimethyl acetamide (DMA), and hexamethyl phosphoramide (HMP). All of the polar solvents with the exception of HMP increased the production of a recombinant antibody in comparison to the untreated control transfection. In the presence of 0.25% DMA, the antibody yield in a 7-day batch culture was 500 mg/L. This was fourfold higher than the yield from the untreated control transfection. Mechanistic studies revealed that the polar solvents did not affect polyethylenimine-mediated pDNA delivery into cells or nuclei. The steady-state transgene mRNA level was elevated in the presence of each of the polar solvents tested, while the transgene mRNA half-life remained the same. These results indicated that the polar solvents enhanced transgene transcription. When screening a panel of recombinant antibodies and Fc-fusion proteins for production in the presence of the polar solvents, the highest increase in yield was observed following DMA addition for 11 of the 12 proteins. These results are expected to enhance the applicability of high-yielding TGE processes with CHO-DG44 cells by decreasing the amount of pDNA required for transfection. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1571-1578, 2015. PMID:26260195

  2. Application of 17% EDTA Enhances Diffusion of (45)Ca-labeled OH(-) and Ca(2+) in Primary Tooth Root Canal.

    PubMed

    Ximenes, Marcos; Cavalcanti Taguchi, Carolina Mayumi; Triches, Thaisa Cezaria; Sartori, Neimar; Pereira Dias, Luis Alberto; de Araujo, Elaine Bortoleti; Cardoso, Mariane

    2016-01-01

    Proper cleaning of the root canal is key to the success of endodontic treatment as it allows more effective diffusion of medication throughout the dentinal tubules. The aim of this in vitro study was to investigate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA) in enhancing diffusion of hydroxyl (OH(-)) and calcium ions (Ca(2+)) throughout the root canal in primary teeth. The canals of 25 primary tooth roots were cleaned with endodontic files and 1% sodium hypochlorite. Three groups (G) were then established: GI, in which final irrigation was performed with 1% sodium hypochlorite; GII, in which 17% EDTA was used; and GIII, in which no irrigation was performed. The roots canals in GI and GII were filled with a calcium hydroxide-based paste labeled with the radioisotope calcium-45. Diffusion of OH(-) was detected with pH strips and Ca(2+) analyzed by measuring radioactivity in counts per min. Group II differed statistically from the other groups in diffusion of OH(-) at 24 hr (p<0.05), but no significant difference among groups was found at the day 7 evaluation; GII also differed statistically from the other groups in diffusion of Ca(2+) at 24 hr (p<0.05). These results suggest that application of 17% EDTA in primary tooth enhances diffusion of OH(-) and Ca(2+). PMID:26961333

  3. Radiation-enhanced diffusion and defect production during ion irradiation of MgO and Al

    NASA Astrophysics Data System (ADS)

    van Sambeek, Andrew I.

    1997-12-01

    Point defect production and radiation enhanced diffusion measurements have been conducted on single crystal oxides MgO and Al2O3. Point defect concentrations are obtained from measurements of the in-plane strain on cantilevered beam samples using bending analysis. The deflection of the sample is proportional to the stress in the irradiated layer, and is measured by the change in capacitance between the free end of the irradiated sample and a reference electrode. Elasticity theory is used to calculate the strain from the measured in-plane stress. Point defect concentrations are obtained by dividing the volumetric strain by the Frenkel pair relaxation volume. Saturation values of 0.8 to 1.2% were obtained for 1.0 MeV Ne, Ar and Kr irradiations of MgO. Defect production efficiencies of 0.26, 0.24, 0.19 and 0.44 were obtained for low fluence Kr, Ar, Ne, and He irradiation of MgO. Defect production efficiencies for low fluence 1.0 MeV Kr and Ne irradiation of Al2O3 were 0.17 and 0.24. Radiation enhanced diffusion of O18, Ca and Zn buried tracer layers in MBE grown MgO was measured following irradiation with either 2.0 MeV Kr or 1.0 MeV Ne, He or H from 30 to 1500oC. This represents the first reported RED measurements on an oxide system. Ion beam mixing at 30oC on both sublattices was approximately 1.0 to 5.0 A5/ev indicating the temperature independent mixing (ballistic mixing) is produced only by direct recoil and cascade events and that thermal spikes are not significant. D red was proportional to the square root of the irradiation flux with an activation enthalpy of 1.2 eV for diffusion on the anion sublattice from 1350 to 1500oC. The flux dependence is characteristic of kinetics in the recombination limited regime; accordingly, the measured activation enthalpy of 1.2 eV is identified as one-half the migration enthalpy of the anion vacancy. This assignment agrees with the predicted anion vacancy migration enthalpy of 2.1 to 2.4 eV. Between 1150oC and 1350oC an apparent activation enthalpy of 4.1 eV was measured. This enthalpy was attributed to vacancy clustering reactions. Measurements on the cation sublattice were conducted at temperatures below 900oC. At higher temperatures excessive thermal diffusion from extrinsic vacancies stemming from trivalent impurities prevented measurements of RED.

  4. Prediction of background parenchymal enhancement on breast MRI using mammography, ultrasonography, and diffusion-weighted imaging.

    PubMed

    Kawamura, Akiko; Satake, Hiroko; Ishigaki, Satoko; Ikeda, Mitsuru; Kimura, Reiko; Shimamoto, Kazuhiro; Naganawa, Shinji

    2015-08-01

    This retrospective study assessed the effects of menopausal status and menstrual cycle on background parenchymal enhancement (BPE) of breast magnetic resonance imaging (MRI), and investigated whether the degree of BPE can be predicted by findings of mammography, ultrasonography (US), and diffusion-weighted MR imaging (DWI). There were 160 study patients (80 premenopausal, 80 postmenopausal). Degree of BPE was classified into minimal, mild, moderate, or marked. Mammographic density was classified into fatty, scattered, heterogeneously dense, and extremely dense. BP echotexture on US and BP intensity on DWI were visually classified as homogeneous or heterogeneous. Apparent diffusion coefficient (ADC) values of normal breast tissue were measured. Associations of the degree of BPE with menopausal status, menstrual cycle, or imaging features were evaluated by univariate and multivariate analyses. No significant correlation was found between mammographic density and BPE (p=0.085), whereas menopausal status (p=0.000), BP echotexture (p=0.000), and BP intensity on DWI (p= 0.000), and ADC values (p=0.000) showed significant correlations with BPE. Multivariate analysis showed that postmenopausal status was an independent predictor of minimal BPE (p=0.002, OR=3.743). In premenopausal women, there was no significant correlation between menstrual cycle and BPE, whereas BP echotexture was an independent predictor of whether BPE was less than mild or greater than moderate (p=0.001, OR=26.575). BPE on breast MRI is associated with menopausal status and the findings of US and DWI. Because premenopausal women with heterogeneous BP echotexture may be predicted to show moderate or marked BPE, scheduling of breast MRI should preferentially be adjusted to the menstrual cycle. PMID:26412889

  5. The heat released in single catalytic events locally enhances enzyme diffusion

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Riedel, Clement; Wilson, Christian; Hamadani, Kambiz; Marqusee, Susan; Presse, Steve; Bustamante, Carlos

    2014-03-01

    Recent experiments have shown that some enzymes catalyzing highly exothermic reactions exhibit increased diffusion with rising substrate concentration. We present a stochastic theory linking increased enzyme diffusion to reaction rate, discuss other possible origins for diffusion coefficient increases and finally provide a mechanistic interpretation showing how the heat released by the reaction perturbs the enzyme.

  6. Transient Overexpression of α-Ca2+/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell Enhances Behavioral Responding to Amphetamine

    PubMed Central

    Loweth, Jessica A.; Singer, Bryan F.; Baker, Lorinda K.; Wilke, Georgia; Inamine, Hidetoshi; Bubula, Nancy; Alexander, John K.; Carlezon, William A.; Neve, Rachael L.; Vezina, Paul

    2010-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to contribute to the expression of psychostimulant sensitization by regulating dopamine (DA) overflow from DA neuron terminals in the nucleus accumbens (NAcc). The present experiments explored the contribution of CaMKII in NAcc neurons postsynaptic to these terminals where it is known to participate in a number of signaling pathways that regulate responding to psychostimulant drugs. Exposure to amphetamine transiently increased αCaMKII levels in the shell but not the core of the NAcc. Thus, HSV (herpes simplex viral) vectors were used to transiently overexpress αCaMKII in NAcc neurons in drug-naive rats, and behavioral responding to amphetamine was assessed. Transiently overexpressing αCaMKII in the NAcc shell led to long-lasting enhancement of amphetamine-induced locomotion and self-administration manifested when αCaMKII levels were elevated and persisting long after they had returned to baseline. Enhanced locomotion was not observed after infection in the NAcc core or sites adjacent to the NAcc. Transient elevation of NAcc shell αCaMKII levels also enhanced locomotor responding to NAcc AMPA and increased phosphorylation levels of GluR1 (Ser831), a CaMKII site, both soon and long after infection. Similar increases in pGluR1 (Ser831) were observed both soon and long after exposure to amphetamine. These results indicate that the transient increase in αCaMKII observed in neurons of the NAcc shell after viral-mediated gene transfer and likely exposure to amphetamine leads to neuroadaptations in AMPA receptor signaling in this site that may contribute to the long-lasting maintenance of behavioral and incentive sensitization by psychostimulant drugs like amphetamine. PMID:20089902

  7. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    SciTech Connect

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.

  8. “Occult” post-contrast signal enhancement in pediatric diffuse intrinsic pontine glioma is the MRI marker of angiogenesis?

    PubMed Central

    Conway, Ashley E.; Reddick, Wilburn E.; Li, Yimei; Yuan, Ying; Glass, John O.; Baker, Justin N.; Kun, Larry; Broniscer, Alberto; Patay, Zoltan

    2014-01-01

    PURPOSE In diffuse intrinsic pontine gliomas (DIPG), subtracting precontrast from postcontrast T1-weighted images (T1WI) occasionally reveals subtle, “occult” enhancement. We hypothesized that this represents intravascular enhancement related to angiogenesis and hence that these tumors should have greater blood volume fractions than do non-enhancing tumors. METHODS We retrospectively screened MR images of 66 patients initially diagnosed with DIPG and analyzed pretreatment conventional and dynamic susceptibility contrast (DSC) perfusion-MRI studies of 61.patients. To determine the incidence of occult enhancement, cerebral blood volume values were compared in areas of occult enhancement (OcE), no enhancement (NE), and normal-appearing deep cerebellar white matter (DCWM). RESULTS Tumors of 10 patients (16.4%) had occult enhancement; those of 6 patients (9.8%) had no enhancement at all. The average cerebral blood volume in areas of occult enhancement was significantly higher than that in non-enhancing areas of the same tumor (P=.03), within DCWM in the same patient (P=.03), and when compared to anatomically paired/similar regions of interest (ROI)s in patients with non-enhancing tumors (P=.005). CONCLUSIONS Areas of OcE correspond to areas of higher CBV in DIPG, which may be an MRI marker for angiogenesis,, but larger scale studies may be needed to determine its potential relevance to grading by imaging, treatment stratification, biopsy guidance, and evaluation of response to targeted therapy. PMID:24626721

  9. Levy diffusion in a force field, Huber relaxation kinetics, and nonequilibrium thermodynamics: H theorem for enhanced diffusion with Levy white noise

    SciTech Connect

    Vlad, Marcel O.; Center of Mathematical Statistics, Casa Academiei Romane, Calea Septembrie 13, Bucharest 5, ; Ross, John; Schneider, Friedemann W.

    2000-08-01

    A characteristic functional approach is suggested for Levy diffusion in disordered systems with external force fields. We study the overdamped motion of an ensemble of independent particles and assume that the force acting upon one particle is made up of two additive components: a linear term generated by a harmonic potential and a second term generated by the interaction with the disordered system. The stochastic properties of the second term are evaluated by using Huber's approach to complex relaxation [Phys. Rev. B 31, 6070 (1985)]. We assume that the interaction between a moving particle and the environment can be expressed by the contribution of a large number of relaxation channels, each channel having a very small probability of being open and obeying Poisson statistics. Two types of processes are investigated: (a) Levy diffusion with static disorder for which the fluctuations of the random force are frozen and last forever and (b) diffusion with strong dynamic disorder and independent Levy fluctuations (Levy white noise). In both cases we show that the probability distribution of the position of a diffusing particle tends towards a stationary nonequilibrium form. The characteristic functional of concentration fluctuations is evaluated in both cases by using the theory of random point processes. For large times the fluctuations of the concentration field are stationary and the corresponding probability density functional can be evaluated analytically. In this limit the fluctuations depend on the distribution of the total number of particles but are independent of the initial positions of the particles. We show that the logarithm of the stationary probability functional plays the role of a nonequilibrium thermodynamic potential, which has a structure similar to the Helmholtz free energy in equilibrium thermodynamics: it is made up of the sum of an energetic component, depending on the external mechanical potential, and of an entropic component, depending on the concentration field. We show that the conditions for the existence and stability of the nonequilibrium steady state, which emerges for large times, can be expressed in terms of the stochastic potential. For Levy white noise the average concentration field can be expressed as the solution of a fractional Fokker-Planck equation. We show that the stochastic potential is a Lyapunov function of the fractional Fokker-Planck equation, which ensures that all transient solutions for the average concentration field tend towards a unique stationary form. (c) 2000 The American Physical Society.

  10. Numerical Simulations of Transverse Beam Diffusion Enhancement by the Use of Electron Lens in the Tevatron Collider

    SciTech Connect

    Previtali, V.; Stancari, G.; Valishev, A.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    Transverse beam diffusion for the Tevatron machine has been calculated using the Lifetrac code. The following effects were included: random noise (representing residual gas scattering, voltage noise in the accelerating cavities) lattice nonlinearities and beam-beam interactions. The time evolution of particle distributions with different initial amplitudes in Hamiltonian action has been simulated for 6 million turns, corresponding to a time of about 2 minutes. For each particle distribution, several cases have been considered: a single beam in storage ring mode, the collider case and the effects of a hollow electron beam collimator. The diffusion coefficient for some representative points in the amplitude space has been calculated by fitting the time evolution of delta-like particle distributions using the diffusion equation, for different machine conditions. The results confirm a strong efficiency of the electron lens as an halo diffusive enhancer, leading to diffusion coefficients which are at least a factor 10K higher than the values obtained for the collision case. This result is confirmed by the Frequency Map Analysis, which shows a clear intensification of resonance lines for particle amplitudes larger than the electron lens inner radius. If compared with past experiments, the simulations successfully reproduce the diffusion coefficients for the beam core, but still present a large discrepancy for halo particles, still under investigation.

  11. Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon

    PubMed Central

    Timms, Nicholas E; Kinny, Peter D; Reddy, Steven M

    2006-01-01

    The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD) mapping reveals a c.18° variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (<4°) boundaries. These microstructural data are consistent with crystal-plastic deformation of zircon associated with the formation and migration of dislocations. A heterogeneous pattern of dark cathodoluminescence, with the darkest domains coinciding with low-angle boundaries, mimics the deformation microstructure identified by EBSD. Geochemical data collected using the Sensitive High Resolution Ion MicroProbe (SHRIMP) shows a positive correlation between concentrations of the elements U, Th and Pb (ranging from 20–60 ppm, 30–110 ppm, and 14–36 ppm, respectively) and Th/U ratio (1.13 – 1.8) with the deformation microstructure. The highest measured concentrations and Th/U coincide with low-angle boundaries. This enrichment is interpreted to reflect enhanced bulk diffusion of U and Th due to the formation and migration of high-diffusivity dislocations. 207Pb/206Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 ± 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent 207Pb/206Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data. PMID:17181855

  12. Enhanced diffusion of uranium and thorium linked to crystal plasticity in zircon.

    PubMed

    Timms, Nicholas E; Kinny, Peter D; Reddy, Steven M

    2006-01-01

    The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD) mapping reveals a c.18 degree variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (<4 degrees) boundaries. These microstructural data are consistent with crystal-plastic deformation of zircon associated with the formation and migration of dislocations. A heterogeneous pattern of dark cathodoluminescence, with the darkest domains coinciding with low-angle boundaries, mimics the deformation microstructure identified by EBSD. Geochemical data collected using the Sensitive High Resolution Ion MicroProbe (SHRIMP) shows a positive correlation between concentrations of the elements U, Th and Pb (ranging from 20-60 ppm, 30-110 ppm, and 14-36 ppm, respectively) and Th/U ratio (1.13-1.8) with the deformation microstructure. The highest measured concentrations and Th/U coincide with low-angle boundaries. This enrichment is interpreted to reflect enhanced bulk diffusion of U and Th due to the formation and migration of high-diffusivity dislocations. 207Pb/206Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 +/- 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent 207Pb/206Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data. PMID:17181855

  13. Diffusion of innovation: enhancing the dissemination of the Ponseti method in Latin America through virtual forums.

    PubMed

    Jayawardena, Asitha; Boardman, Allison; Cook, Thomas; Oprescu, Florin; Morcuende, Jose A

    2011-01-01

    This ethnographic study evaluated the use of low-bandwidth web-conferencing to enhance diffusion of a specific best practice, the Ponseti method to treat clubfoot, in three economically diverse countries in Latin America. A "Ponseti Virtual Forum" (PVF) was organized in Guatemala, Peru and Chile to examine the influences of economic level and telecommunication infrastructure on the effectiveness of tins approach. Across the three countries, a total of 14 different sites participated in the PVFs. Thirty-three Ponseti-trained practitioners were interviewed before and after each PVF, which included interactions with a Spanish-speaking Ponseti method expert. Semi-structured interviews, observations, and IP address data were triangulated and analyzed. The results demonstrated that 100% of the practitioners rated the sessions as very useful and that they would use this approach again. The largest obstacles to using PVFs were financial (7 out of 9 practitioners) in Guatemala; a lack of equipment and network access (6 out of 11) in Peru; and the organization and implementation of the conferences themselves (7 out of 9) in Chile. This study illustrates the usefulness of Ponseti Virtual Forums in Latin America. Health officials in Peru are currently developing a large-scale information session for traumatologists about the Ponseti method, while practitioners in Guatemala and Chile are organizing monthly scholarly meetings for physicians in remote areas. This initial feedback suggests that low-bandwidth web-conferencing can be an important vehicle for the dissemination of best practices, such as the Ponseti method, in developing countries. PMID:22096417

  14. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus

    PubMed Central

    Cu, Yen; Saltzman, W. Mark

    2009-01-01

    Drug delivery to mucosal epithelia is severely limited by the mucus gel, which is a physical diffusion barrier as well as an enzymatic barrier in some sites. Loading of drug into polymer particles can protect drugs from degradation and enhance their stability. To improve efficacy of nanoparticulate drug carriers, it has been speculated that polymers such as poly(ethylene)glycol (PEG) incorporated on the particle surface will enhance transport in mucus. In the present study, we demonstrate the direct influence of PEG on surface properties of poly(lactic-co-glycolic)acid (PLGA) nanoparticles (d = 170 ± 57 nm). PEG of various molecular weights (MW = 2, 5, 10 kDa) were incorporated at a range of densities from 5 – 100% on the particle surface. Our results indicate PEG addition improves dispersion, neutralize charge, and enhance particle diffusion in cervical mucus in a manner strongly dependent on polymer MW and density. Diffusion of PEGylated particles was 3 – 10× higher than unmodified PLGA particles. These findings improve the understanding of, and confirm a possible direction for, the rational design of effective carriers for mucosal drug/vaccine delivery. PMID:19053536

  15. Investigation of radiation enhanced diffusion of magnesium in substrates flown on the NASA genesis mission.

    SciTech Connect

    King, B. V.; Pellin, M. J.; Burnett, D. S.

    2008-12-01

    The thermal diffusion of an Mg implant in Si has been measured with SIMS and compared to RIMS (resonant ionisation mass spectrometry) measurements of Mg implantation and diffusion in Si wafers exposed to solar wind irradiation in the NASA Genesis mission. The Genesis samples show much more surface segregation that the samples annealed in the laboratory, due to diffusion and segregation of the implanted Mg to the heavily damaged near surface regions of the Genesis wafers. This Mg transport has been modeled by solving a set of stiff differential equations and found to agree with RIMS measurements for a Mg interstitial migration energy of 0.7 eV.

  16. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    NASA Astrophysics Data System (ADS)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  17. Semi-permeable Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline.

    PubMed

    Cinquin, Amanda; Zheng, Likun; Taylor, Pete H; Paz, Adrian; Zhang, Lei; Chiang, Michael; Snow, Joshua J; Nie, Qing; Cinquin, Olivier

    2015-11-23

    Positional information derived from local morphogen concentration plays an important role in patterning. A key question is how morphogen diffusion and gene expression regulation shape positional information into an appropriate profile with suitably low noise. We address this question using a model system--the C. elegans germline--whose regulatory network has been well characterized genetically but whose spatiotemporal dynamics are poorly understood. We show that diffusion within the germline syncytium is a critical control of stem cell differentiation and that semi-permeable diffusion barriers present at key locations make it possible--in combination with a feedback loop in the germline regulatory network--for mitotic zone size to be robust against spatial noise in Notch signaling. Spatial averaging within compartments defined by diffusion barriers is an advantageous patterning strategy, which attenuates noise while still allowing for sharp transitions between compartments. This strategy could apply to other organs. PMID:26609956

  18. Enhancement of Lateral Diffusion in Catanionic Vesicles during Multilamellar-to-Unilamellar Transition.

    PubMed

    Mitra, S; Sharma, V K; Garcia-Sakai, V; Orecchini, A; Seydel, T; Johnson, M; Mukhopadhyay, R

    2016-04-21

    Catanionic vesicles are formed spontaneously by mixing cationic and anionic dispersions in aqueous solution in suitable conditions. Because of spontaneity in formation, long-term stability, and easy modulation of size and charge, they have numerous advantages over conventional lipid-based vesicles. The dynamics of such vesicles is of interest in the field of biomedicine, as they can be used to deliver drug molecules into the cell membrane. Dynamics of catanionic vesicles based on sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) have been studied using incoherent elastic and quasielastic neutron scattering (QENS) techniques. Neutron scattering experiments have been carried out on two backscattering spectrometers, IRIS and IN16B, which have different energy resolutions and energy transfer windows. An elastic fixed-window scan carried out using IN16B shows a phase transition at ∼307 K during the heating cycle, whereas on cooling the transition occurred at ∼294 K. DSC results are found to be in close agreement with the elastic scan data. This transition is ascribed to a structural rearrangement from a multilamellar to a unilamellar phase [ Andreozzi J. Phys. Chem. B 2010 , 114 , 8056 - 8060 ]. It is found that a model in which the surfactant molecules undergo both lateral and internal motions can describe the QENS data quite well. While the data from IRIS have contributions from both dynamical processes, the data from IN16B probe only lateral motions, as the internal motions are too fast for the energy window of the spectrometer. It is found that, through the transition, the fraction of surfactant molecules undergoing lateral motion increases of a factor of 2 from the multilamellar to the unilamellar phase, indicating an enhanced fluidity of the latter. The lateral motion is found to be Fickian in nature, while the internal motion has been described by a localized translational diffusion model. The results reported here could have direct interest for a number of applications, such as molecular transport, and the effect of specific drug molecules or hormones through the membrane. PMID:27029782

  19. A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens.

    PubMed

    Zhang, L H; Kerr, A

    1991-03-01

    Several octopine strains of Agrobacterium tumefaciens were tested for Ti plasmid (pTi) transfer after induction by 400 micrograms of octopine per ml for 24 h. The strains could be divided into two groups, transfer efficient (Trae) and transfer inefficient (Traie); the respective rates of transfer were 0.77 x 10(-2) to 1.14 x 10(-2) and 0.33 x 10(-6) to 9.8 x 10(-6) plasmid transconjugant per donor cell. Transfer efficiencies of Traie strains were greatly increased when the time of induction was 72 h. A diffusible conjugation factor (CF) that can enhance conjugal transfer of pTi in A. tumefaciens was discovered when both Trae and Traie donor strains were induced in the same plate. The evidence indicates that CF is a key factor affecting transfer efficiency of pTi but is not sufficient by itself to induce transfer. Trac mutants can produce CF constitutively, and Trae strains can produce it after induction by low octopine concentrations. The transfer efficiency of Traie strains was greatly increased by adding CF to the induction medium. The thermosensitive strain B6S, which normally cannot conjugate at temperatures above 30 degrees C, could transfer pTi efficiently at 32 and 34 degrees C in the presence of CF. Production of CF is dependent on the presence of pTi but appears to be common for different opine strains; it was first detected in octopine strains, but nopaline strains also produced the same or a similar compound. CF is very biologically active, affecting donor but not recipient bacterial cells, but CF does not promote aggregation. Data suggest that CF might be an activator or derepressor in the conjugation system of A. tumefaciens. CF is a dialyzable small molecule and is resistant to DNase, RNase, protease, and heating to 100 degrees C for 10 min, but autoclaving (121 degrees C for 15 min) and alkaline treatment removed all activity. PMID:2001991

  20. Ultrasonographic and non-enhanced CT features of acute transient thyroid swelling following fine-needle aspiration biopsy: report of four cases.

    PubMed

    Yamada, Keiko; Toda, Kazuhisa; Ebina, Aya; Motoi, Noriko; Sugitani, Iwao

    2015-07-01

    We report four cases of acute transient thyroid swelling following fine-needle aspiration biopsy, a rare complication of still unknown origin. The ultrasonographic pattern was fairly similar to that in previous reports: swelling of the thyroid with a patchy and heterogeneous appearance and diffusely scattered hypoechoic "cracks" that showed no blood flow signals with color Doppler ultrasound. There were also some features that differed from those in previous reports. Though thyroid swelling is typically diffuse and bilateral, it was unilateral or asymmetrical in some of our cases. While thyroid swelling is said to resolve spontaneously within 1-20 h, abnormal ultrasonographic findings persisted for more than 48 h in one case. Unlike previous reports, we have experienced cases with ultrasonographic findings of concomitant minor subcapsular hematomas. In one case, CT demonstrated not only thyroid swelling but also abnormal attenuation in perithyroid tissue extending to the retro-hypopharyngeal space and to the paraesophageal mediastinum. Although vasodilatation and diffuse vascular leakage are speculated to be the underlying mechanisms, our ultrasonograms at the time of the complication failed to demonstrate enlarged intrathyroidal vessels or hypervascularity with color Doppler ultrasound. More awareness and a description of the cases may help to clarify the pathogenesis of this self-limited complication. PMID:26576797

  1. Thaumatin Crystallization Aboard the International Space Station Using Liquid-Liquid Diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN)

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig; Barnes, Cindy L.; Snell, Edward H.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    This paper reports results from the first biological crystal growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different Volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from -196 C to 0 C in about four days, about the same time it took to warm from 0 C to 20 C. The temperature within the EGN was 20 - 24 C for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space grown crystal extended to 1.28 Angstroms, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground control crystal was only 1.47 Angstroms. It is not clear if the difference in diffraction limit is due to factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that EGN on the ISS can be used to produce space grown crystals that diffract to high resolution.

  2. Evidence of enhanced self-organized criticality (SOC) dynamics during the radially non-local transient transport in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Pan, O.; Xu, Y.; Hidalgo, C.; Zhong, W. L.; Shi, Z. B.; Ji, X. Q.; Jiang, M.; Feng, B. B.; Zhou, Y.; Cheng, J.; Liu, Y.; Xu, M.; Chen, W.; Ding, X. T.; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong; the HL-2A Team

    2015-09-01

    Self-organized criticality (SOC) dynamics have been investigated in non-local transport regimes induced by the supersonic molecular beam injection in the HL-2A tokamak. Experimental evidence shows that the SOC or avalanche behaviors, such as the Hurst parameter, self-similarity and large-scale radial correlations in turbulence, are remarkably enhanced during the prompt non-local phase, together with an increase of inward propagation of turbulent events. These results highlight the importance of SOC paradigm during the transient non-local thermal transport in magnetically confined plasmas.

  3. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    SciTech Connect

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  4. A Study of the Effect of Nanosized Particles on Transient Liquid Phase Diffusion Bonding Al6061 Metal-Matrix Composite (MMC) Using Ni/Al2O3 Nanocomposite Interlayer

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian O.

    2012-06-01

    Transient liquid phase (TLP) diffusion bonding of Al-6061 containing 15 vol pct alumina particles was carried out at 873 K (600 °C) using electrodeposited nanocomposite coatings as the interlayer. Joint formation was attributed to the solid-state diffusion of Ni into the Al-6061 alloy followed by eutectic formation and isothermal solidification of the joint region. An examination of the joint region using an electron probe microanalyzer (EPMA), transmission electron microscopy (TEM), wavelength-dispersive spectroscopy (WDS), and X-ray diffraction (XRD) showed the formation of intermetallic phases such as Al3Ni, Al9FeNi, and Ni3Si within the joint zone. The result indicated that the incorporation of 50 nm Al2O3 dispersions into the interlayer can be used to improve the joint significantly.

  5. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C-NMR spectroscopy (SIE-DOSY 13C-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable Isotope-Enhanced Diffusion Ordered (SIE-DOSY) 13C-NMR has been applied to 13C-enriched carbohydrates and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, a disaccharide and a trisaccharide. These 2D spectra were obtained with as little as 8 min of acq...

  6. ICG enhanced co-registered diffuse optical tomography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Kumavor, Patrick D.; Xu, Yan; Zhu, Quing

    2013-03-01

    To overcome the intensive light scattering in the biological tissue, diffuse optical tomography (DOT) in the near infrared range for breast lesion detection usually is combined with other imaging modalities such as ultrasound, X-ray, and MRI, to provide guidance. However, the guided imaging modalities may depend on different contrast mechanics compared to the optical contrast in the DOT. As a result, they can't provide reliable guidance for diffuse optical tomography because some lesions may not be detectable by a non-optical modality but yet have high optical contrast. An imaging modality which can provide the guidance from optical contrast is desirable for DOT. In this paper, we present a system that combines diffuse optical tomography and photoacoustic tomography (PAT), to detect and characterize the deeply-seated targets embedded in a turbid medium. Photoacoustic tomography utilizes a short-pulsed laser beam to penetrate into tissue diffusively. Upon absorption of the light by the target, photoacoustic waves are generated and used to reconstruct, at ultrasound resolution, the optical absorption distribution that reveals optical contrast. The combined system used in the experiment combines a 64-channel photoacoustic system with a frequency-domain diffused optical system. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG) is used. Our experiment results show that the combined system can detect a tumormimicking phantom up to 2.5 cm in depth and 10 μM in concentration. Mice experiments also confirmed that the combined system can detect the tumor region and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect the small breast lesions or any lesions which are sensitive to the reference change, such as the lesions located on the chest wall.

  7. Enhanced diffusion and anomalous transport of magnetic colloids driven above a two-state flashing potential.

    PubMed

    Tierno, Pietro; Shaebani, M Reza

    2016-04-14

    We combine experiments and theory to investigate the diffusive and the subdiffusive dynamics of paramagnetic colloids driven above a two-state flashing potential. The magnetic potential was realized by periodically modulating the stray field of a magnetic bubble lattice in a uniaxial ferrite garnet film. At large amplitudes H0 of the driving field, the dynamics of the particle resemble an ordinary random walk with a frequency-dependent diffusion coefficient. However, subdiffusive and oscillatory dynamics at short time scales are observed when decreasing H0. We present a persistent random walk model to elucidate the underlying mechanism of motion, and perform numerical simulations to demonstrate that the anomalous motion originates from the dynamic disorder in the structure of the magnetic lattice, induced by the slightly irregular shape of bubbles. PMID:26936328

  8. Enhanced Acid Diffusion Control by Using Photoacid Generator Bound Polymer Resist.

    PubMed

    Jung, Jin Hyuck; Kim, Min Jeong; Sohn, Kyung Hwa; Kang, Ha Na; Kang, Man Kyu; Lee, Haiwon

    2015-02-01

    Photoacid generators (PAGs) have been widely used as a key component for improving photoresist performance. The acid diffusion influences on the photoresist characteristics of resolution and line edge roughness (LER). The PAG bound polymer resist has been a key component for solving the problems of PAG aggregation and acid diffusion control. A triphenyl sulfonium salt methacrylate as PAG was synthesized and copolymerized with crosslinkable glycidyl methacrylate and methyl methacrylate by radical reaction for a new PAG bound polymer resist. The characterization of resist polymers was carried out by 1H NMR. The lithographic performance of photoresists was investigated by ArF lithography. Both PAG bound resist and the PAG blended resist were employed to demonstrate the effect of PAG unit in a resist system. The polymer bound PAG resist improved the LER and showed a higher resolution than the PAG blend resist. PMID:26353729

  9. Diffusion-enhanced lanthanide energy transfer studies of protein prosthetic groups

    SciTech Connect

    Meares, C.F.; Yeh, S.M.; Rice, L.S.

    1980-10-01

    A long-lived luminescent solute in aqueous solution (e.g., /sup 5/D/sub 4/ terbium, tau approx. =10/sup -3/s) can donate its excitation energy to a chromophore such as a protein prosthetic group by, e.g., the radiationless dipolar mechanism of Foerster. However, in contrast to the usual energy-transfer experiment, a donor with a 10/sup -3/s lifetime can diffuse extensively through the solution and, in a time scale short compared to its excited lifetime, sample all permitted locations with respect to chromophoric acceptors. As recently indicated by Thomas et al. energy transfer in this rapid-diffusion limit can permit direct measurement of the allowed distance of closest approach of small solute molecules to chromophores which may be buried within proteins or membranes.

  10. Flow range enhancement by secondary flow effect in low solidity circular cascade diffusers

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Tun, Min Thaw; Mizokoshi, Kanata; Kishikawa, Daiki

    2014-08-01

    High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confirm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.

  11. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    PubMed

    Hadad, Ielham; Veithen, Alex; Springael, Jean-Yves; Sotiropoulou, Panagiota A; Mendes Da Costa, Agnès; Miot, Françoise; Naeije, Robert; De Deken, Xavier; Entee, Kathleen Mc

    2013-01-01

    Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect. PMID:23460790

  12. Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug-Coformer Interactions.

    PubMed

    Sanphui, Palash; Devi, V Kusum; Clara, Deepa; Malviya, Nidhi; Ganguly, Somnath; Desiraju, Gautam R

    2015-05-01

    Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux. This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions. PMID:25800383

  13. Enhanced Organic Solar Cell Stability through the Effective Blocking of Oxygen Diffusion using a Self-Passivating Metal Electrode.

    PubMed

    Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon

    2016-03-01

    A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments. PMID:26791576

  14. Proton conduction and hydrogen diffusion in olivine: an attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.

    2016-02-01

    Proton conduction in olivine is directly related to the diffusion rate of hydrogen by the Nernst-Einstein equation, but prior attempts to use this relationship have always invoked additional terms to try to reconcile laboratory measurements of proton conduction and hydrogen diffusion data. New diffusion experiments on olivine demonstrate that lattice diffusion associated with vacancies is indeed highly dependent on the defect site where hydrogen is bonded, but from none of the sites is diffusion fast enough to explain the observed laboratory proton conduction experiments. Hydrogen diffusion associated with polarons (redox-exchange) is significantly faster but still cannot explain the low activation energy typical of electrical conductivity measurements. A process of bulk diffusion, which combines lattice diffusion (either associated with redox-exchange or vacancies) with the far faster grain boundary diffusion, explains the laboratory results, but does not explain the field observations with an average grain size of 0.5-2 cm at 100 km below the Jagersfontein kimberlite field on the Kaapvaal craton. Either conduction is dominantly along well-interconnected grain boundaries of very fine-grained (0.01 mm) damp (80 wt ppm) olivine grains or fine-grained (0.05 mm), wet (400 wt ppm) pyroxene grains, or another conduction mechanism must be primarily responsible for the field observations. If diffusion is the correct explanation, the conductivity below the Gibeon kimberlite field in Namibia is too high to be explained by increased thermal state alone of a diffusion process, even for such fine-grained pyroxenes.

  15. Proton conduction and hydrogen diffusion in olivine: an attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.

    2016-04-01

    Proton conduction in olivine is directly related to the diffusion rate of hydrogen by the Nernst-Einstein equation, but prior attempts to use this relationship have always invoked additional terms to try to reconcile laboratory measurements of proton conduction and hydrogen diffusion data. New diffusion experiments on olivine demonstrate that lattice diffusion associated with vacancies is indeed highly dependent on the defect site where hydrogen is bonded, but from none of the sites is diffusion fast enough to explain the observed laboratory proton conduction experiments. Hydrogen diffusion associated with polarons (redox-exchange) is significantly faster but still cannot explain the low activation energy typical of electrical conductivity measurements. A process of bulk diffusion, which combines lattice diffusion (either associated with redox-exchange or vacancies) with the far faster grain boundary diffusion, explains the laboratory results, but does not explain the field observations with an average grain size of 0.5-2 cm at 100 km below the Jagersfontein kimberlite field on the Kaapvaal craton. Either conduction is dominantly along well-interconnected grain boundaries of very fine-grained (0.01 mm) damp (80 wt ppm) olivine grains or fine-grained (0.05 mm), wet (400 wt ppm) pyroxene grains, or another conduction mechanism must be primarily responsible for the field observations. If diffusion is the correct explanation, the conductivity below the Gibeon kimberlite field in Namibia is too high to be explained by increased thermal state alone of a diffusion process, even for such fine-grained pyroxenes.

  16. Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering

    NASA Astrophysics Data System (ADS)

    Sánchez-Reales, J. M.; Andersen, O. B.; Vigo, M. I.

    2015-02-01

    With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean's mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the oceańs MDT and a new approach based on edge-enhancing diffusion (EED) filtering is presented. EED filters enable controlling the direction and magnitude of the filtering, with subsequent enhancement of computations of the associated surface geostrophic currents (SGCs). Applying this method to a smooth MDT and to a noisy MDT, both for a region in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering preserves all the advantages that the Perona and Malik filter have over the standard linear isotropic Gaussian filters. Moreover, EED is shown to be more stable and less influenced by outliers. This suggests that the EED filtering strategy would be preferred given its capabilities in controlling/preserving the SGCs.

  17. Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering

    NASA Astrophysics Data System (ADS)

    Sánchez-Reales, J. M.; Andersen, O. B.; Vigo, M. I.

    2016-03-01

    With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean's mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the oceańs MDT and a new approach based on edge-enhancing diffusion (EED) filtering is presented. EED filters enable controlling the direction and magnitude of the filtering, with subsequent enhancement of computations of the associated surface geostrophic currents (SGCs). Applying this method to a smooth MDT and to a noisy MDT, both for a region in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering preserves all the advantages that the Perona and Malik filter have over the standard linear isotropic Gaussian filters. Moreover, EED is shown to be more stable and less influenced by outliers. This suggests that the EED filtering strategy would be preferred given its capabilities in controlling/preserving the SGCs.

  18. Experimental Assessment and Enhancement of Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Partridge, William P.; Laurendeau, Normand M.

    1997-01-01

    We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.

  19. Enhancing tumor apparent diffusion coefficient histogram skewness stratifies the postoperative survival in recurrent glioblastoma multiforme patients undergoing salvage surgery.

    PubMed

    Zolal, Amir; Juratli, Tareq A; Linn, Jennifer; Podlesek, Dino; Sitoci Ficici, Kerim Hakan; Kitzler, Hagen H; Schackert, Gabriele; Sobottka, Stephan B; Rieger, Bernhard; Krex, Dietmar

    2016-05-01

    Objective To determine the value of apparent diffusion coefficient (ADC) histogram parameters for the prediction of individual survival in patients undergoing surgery for recurrent glioblastoma (GBM) in a retrospective cohort study. Methods Thirty-one patients who underwent surgery for first recurrence of a known GBM between 2008 and 2012 were included. The following parameters were collected: age, sex, enhancing tumor size, mean ADC, median ADC, ADC skewness, ADC kurtosis and fifth percentile of the ADC histogram, initial progression free survival (PFS), extent of second resection and further adjuvant treatment. The association of these parameters with survival and PFS after second surgery was analyzed using log-rank test and Cox regression. Results Using log-rank test, ADC histogram skewness of the enhancing tumor was significantly associated with both survival (p = 0.001) and PFS after second surgery (p = 0.005). Further parameters associated with prolonged survival after second surgery were: gross total resection at second surgery (p = 0.026), tumor size (0.040) and third surgery (p = 0.003). In the multivariate Cox analysis, ADC histogram skewness was shown to be an independent prognostic factor for survival after second surgery. Conclusion ADC histogram skewness of the enhancing lesion, enhancing lesion size, third surgery, as well as gross total resection have been shown to be associated with survival following the second surgery. ADC histogram skewness was an independent prognostic factor for survival in the multivariate analysis. PMID:26830088

  20. Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion

    SciTech Connect

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2015-06-01

    An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.

  1. Multistability and spin diffusion enhanced lifetimes in dynamic nuclear polarization in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; Giedke, G.; Ludwig, S.

    2015-12-01

    The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD) exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which significantly stabilizes the nuclear spins inside the DQD.

  2. Proton conduction and hydrogen diffusion in olivine: Reconciling laboratory and field observations and implications for the role of grain boundary diffusion in enhanced conductivity

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.

    2015-04-01

    Proton conduction is directly related to the diffusion of hydrogen through the Nernst-Einstein equation, but prior attempts to use this relationship have always invoked additional terms to try to reconcile proton conduction and hydrogen diffusion data. However, experimental data on hydrogen diffusion through the mineral lattice only constrain the rate of proton migration coupled with defects (such as vacancies) or coupled to polarons (electron holes mostly associated to ferric iron) and not the diffusion of uncoupled free protons. New diffusion experiments on olivine demonstrate that lattice diffusion associated to vacancies is indeed highly dependent on the defect site where hydrogen is bonded, but in any case is not fast enough to explain the observed laboratory proton conduction experiments. Hydrogen diffusion associated to polarons (redox-exchange) is significantly faster but still cannot explain the low activation energy typical of electrical conductivity measurements. A process of bulk diffusion, which combines lattice diffusion (either associated to redox-exchange or vacancies) with the far faster grain boundary diffusion, explains both the laboratory results and also field observations, and infers an average grain size of 0.5-2 cm at 100 km below the Jagersfontein kimberlite field on the Kaapvaal craton, which is consistent with petrological observations on xenolith material. Beneath the Gibeon kimberlite field on the nearby Rehoboth terrane, the higher conductivity observed cannot solely be explained by elevated temperature; either there is more water in the lithosphere (approx. double), or the average grain size is smaller (approx. half), or a combination of the two.

  3. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  4. Non-random walk diffusion enhances the sink strength of semicoherent interfaces

    PubMed Central

    Vattré, A.; Jourdan, T.; Ding, H.; Marinica, M.-C.; Demkowicz, M. J.

    2016-01-01

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migration barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink' interfaces may be designed by optimizing interface stress fields. Such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage. PMID:26822632

  5. Non-random walk diffusion enhances the sink strength of semicoherent interfaces

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Jourdan, T.; Ding, H.; Marinica, M.-C.; Demkowicz, M. J.

    2016-01-01

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migration barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that `super-sink' interfaces may be designed by optimizing interface stress fields. Such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.

  6. Non-random walk diffusion enhances the sink strength of semicoherent interfaces.

    PubMed

    Vattré, A; Jourdan, T; Ding, H; Marinica, M-C; Demkowicz, M J

    2016-01-01

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migration barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that 'super-sink' interfaces may be designed by optimizing interface stress fields. Such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage. PMID:26822632

  7. Risk Factors for Femoral Head Deformity in the Early Stage of Legg-Calvé-Perthes Disease: MR Contrast Enhancement and Diffusion Indexes.

    PubMed

    Yoo, Won Joon; Choi, In Ho; Cho, Tae-Joon; Jang, Wooyoung; Chung, Chin Youb; Park, Moon Seok; Choi, Eun-Seok; Cheon, Jung-Eun

    2016-05-01

    Purpose To determine whether changes in diffusion and/or contrast enhancement are of prognostic value in the early stage of Legg-Calvé-Perthes disease (LCPD). Materials and Methods This study was approved by the institutional review board, and written informed consent was obtained from patient parents. Diffusion and contrast agent-enhanced magnetic resonance (MR) imaging studies were performed in 46 children (37 boys and nine girls; mean age, 7.5 years [age range, 3.3-11.9 years]) with unilateral LCPD at the early stage before development of extensive femoral head deformity. The degree of contrast enhancement was measured on the contrast-enhanced MR images, and the apparent diffusion coefficient (ADC) value was measured on the ADC map at various regions of interest in the proximal femur. The association of the MR imaging parameters that compared the affected side with the contralateral normal side with the femoral head deformity index value above 0.3 at 2 years was investigated. Results Increased diffusion in the metaphysis (P = .003) and decreased contrast enhancement in the central epiphysis (P = .034) were the significant prognostic indicators of subsequent femoral head deformation. ADC in the metaphysis 45% higher and a contrast enhancement in the central epiphysis 37% lower than those of the contralateral normal side are associated with a nonfavorable prognosis. For diffusion MR imaging, sensitivity was 83% (15 of 18), specificity was 86% (24 of 28), positive predictive value was 79% (15 of 19), negative predictive value was 89% (24 of 27), and accuracy was 85% (39 of 46). For contrast-enhanced MR imaging, sensitivity was 78% (14 of 18), specificity was 64% (18 of 28), positive predictive value was 58% (14 of 24), negative predictive value was 82% (18 of 22), and accuracy was 70% (32 of 46). Conclusion Diffusion and contrast-enhanced MR imaging are potentially useful to assess risk of later development of femoral head deformity. (©) RSNA, 2015. PMID:26606039

  8. Enhanced anisotropic ionic diffusion in layered electrolyte structures from density functional theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, J. A.; Lustfeld, H.

    2014-01-01

    Electrolytes with high ionic diffusivity at temperatures distinctively lower than the presently used ones are the prerequisite for the success of, e.g., solid oxide fuel cells. We have found a promising structure having an asymmetric but superior ionic mobility in the direction of the oxygen-ion current. Using a layering of zirconium and yttrium in the fluorite structure of zirconia, a high vacancy concentration and a low migration barrier in two dimensions are obtained, while the mobility in the third direction is basically sacrificed. According to our density functional theory calculations an electrolyte made of this structure could operate at a temperature reduced by ≈200∘C. Thus a window to a different class of electrolytes has been flung open. In our structure the price paid is a more complicated manufacturing method.

  9. Using high-Tc superconducting resonator for enhancement of diffusion tensor imaging

    NASA Astrophysics Data System (ADS)

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2011-06-01

    Here, a report on diffusion tensor imaging (DTI) using a 125.3 MHz high-temperature superconducting (HTS) surface resonator for magnetic resonance imaging (MRI) is presented. A 40 mm in diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) tape surface resonator was built. Using a HTS surface resonator at 77 K than a similar copper surface resonator at 300 K, the capacity to save the accuracy of DTI in a reduced scan time (11 min) was demonstrated. The standard deviation of deviation angles of DTI fiber tracking was also improved by 2.5 gains. The use of HTS surface resonator may improve the reliability of fiber tracking experiments.

  10. Double depth-enhanced 3D integral imaging in projection-type system without diffuser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jiao, Xiao-xue; Sun, Yu; Xie, Yan; Liu, Shao-peng

    2015-05-01

    Integral imaging is a three dimensional (3D) display technology without any additional equipment. A new system is proposed in this paper which consists of the elemental images of real images in real mode (RIRM) and the ones of virtual images in real mode (VIRM). The real images in real mode are the same as the conventional integral images. The virtual images in real mode are obtained by changing the coordinates of the corresponding points in elemental images which can be reconstructed by the lens array in virtual space. In order to reduce the spot size of the reconstructed images, the diffuser in conventional integral imaging is given up in the proposed method. Then the spot size is nearly 1/20 of that in the conventional system. And an optical integral imaging system is constructed to confirm that our proposed method opens a new way for the application of the passive 3D display technology.

  11. Contrast-enhanced diffuse optical tomography of brain perfusion in humans using ICG

    NASA Astrophysics Data System (ADS)

    Habermehl, Christina; Schmitz, Christoph; Steinbrink, Jens

    2012-02-01

    Regular monitoring of brain perfusion at the bedside in neurointensive care is desirable. Currently used imaging modalities are not suited for constant monitoring and often require a transport of the patient. Noninvasive near infrared spectroscopy (NIRS) in combination with an injection of a safe dye (indocyanine green, ICG) could serve as a quasi-continuous brain perfusion monitor. In this work, we evaluate prerequisites for the development of a brain perfusion monitor using continuous wave (cw) NIRS technique. We present results from a high-resolution diffuse optical tomography (HR-DOT) experiment in humans demonstrating the separation of signals from skin from the brain. This technique can help to monitor neurointensive care patients on a regular basis, detecting changes in cortical perfusion in time.

  12. Dislocation Enhancement of Seismic-Frequency Attenuation: Subgrain Boundary Diffusion and Triggered, Critical Emission of Dislocations

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; McCarthy, C.

    2012-12-01

    Combined compressional creep and (Young's-modulus) attenuation experiments on polycrystalline ice-I (200 ≤ T[K] ≤ 260; 3 ≤ d[μm] ≤ 500; σmean = 1MPa and Δσ = 0.16MPa applied in a frequency range 10-4 ≤ ν[Hz] ≤ 10-1) demonstrate the attenuation behavior associated with the seismic attenuation band and the "high-temperature background," i.e., a power-law response Q-1 ∝ ν-m with m ~ 0.33. This response has, in general, been associated with grain boundary sliding rate-limited by atomic diffusion [e.g., 1-3], a mechanism that is very sensitive to grain size. In our experiments, however, with a grain size variation ~102, the attenuation response is independent of grain size, to first order. Scrutiny of the physics suggests that the attenuation is effected primarily by diffusive relaxation of subgrain boundaries [4, 5], the size of which, in materials deforming by a dislocation mechanism (as is the ice in our experiments), is set by the deviatoric stress [6, 7]. Applying the diffusion-effected physics to the subgrain size matches the universal scaling [e.g., 3] for materials that are linear-viscoelastic. Our ice specimens, however, demonstrate modest non-linearity, resulting in greater attenuation than that associated with the diffusion process [cf. 8] and yet retain the power-law form for attenuation, including the same slope m. The result is consistent with "self-organized critical" behavior in dislocation emission [9, 10] and the physics overall can be understood via models of self-similar scaling of crystalline (effective) viscosity [e.g., 11]. The potential application to seismic studies is profound: for example, if the upper mantle of Earth is convecting via a dislocation-creep or dislocation-accommodated grain-boundary-sliding mechanism, then the attenuation response is related not to the grain size, but rather to the subgrain structure associated with the creep of the rock. Thus, seismic attenuation measurements may well be useful for interpreting flow behavior in the mantle. [1] T.T. Gribb and R.F. Cooper, J. Geophys. Res. 103, doi:10.1029/98JB02786 (1998). [2] I. Jackson and U.H. Faul, Phys. Earth Planet. Inter. 183, doi:10.1016/j.pepi.2010.09.005 (2010). [3] C. McCarthy et al., J. Geophys. Res. 116, doi:10.1029/2011JB008384 (2011). [4] D.S. Stone et al., J. Geophys. Res. 109, doi:10.1029/2004JB003064 (2004). [5] Y. Gueguen et al., Phys. Earth Planet. Interior. 55, 254-258 (1989). [6] R.J. Twiss, Pure Appl. Geophys. 115, 227-244 (1977). [7] S.V. Raj and G.M. Pharr, Mater. Sci. Engr. 81, 217-237 (1986). [8] R.J.M. Farla et al., Science 336, 332-335 (2012). [9] T. Richeton et al., Nature Mater. 4, 465-469 (2005). [10] J. Puthoff, M.Sc. Thesis, University of Wisconsin-Madison (2005). [11] D.S. Stone, Acta Metall. Mater. 31, 599-608 (1991).

  13. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. PMID:24518820

  14. Role of transient receptor potential C3 in TNF-alpha-enhanced calcium influx in human airway myocytes.

    PubMed

    White, Thomas A; Xue, Ailing; Chini, Eduardo N; Thompson, Michael; Sieck, Gary C; Wylam, Mark E

    2006-08-01

    Previous studies have suggested that the proinflammatory cytokine, TNF-alpha, contributes to airway hyperresponsivness by altering airway smooth muscle (ASM) Ca(2+) responses to agonist stimulation. The present study examined the effects of TNF-alpha on Ca(2+) influx pathways in cultured human ASM cells (HASMCs). Proteins encoded by the transient receptor potential (TRP) gene family function as channels through which receptor-operated and store-operated Ca(2+) entry (SOCE) occur. In the present study, the presence of TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 mRNA and protein expression was confirmed in cultured HASMCs using RT-PCR and Western blot analysis. TNF-alpha treatment significantly increased TRPC3 mRNA and protein levels in HASMCs as well as SOCE. TNF-alpha treatment also increased both the peak and plateau intracellular Ca(2+) concentration responses in HASMCs elicited by acetylcholine and bradykinin. The effects of TNF-alpha treatment on SOCE and agonist-induced intracellular Ca(2+) concentration responses were attenuated using small interfering RNA transfection, which knocked down TRPC3 expression. Thus, in inflammatory airway diseases, TNF-alpha treatment may result in increased myocyte activation due to altered Ca(2+) influx pathways. These results suggest that TRPC3 may be an important therapeutic target in inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease. PMID:16574942

  15. Non-random walk diffusion enhances the sink strength of semicoherent interfaces

    DOE PAGESBeta

    Vattré, A.; Jourdan, T.; Ding, H.; Marinica, M. -C.; Demkowicz, M. J.

    2016-01-29

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migrationmore » barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Lastly, such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.« less

  16. A Transient Diffusion Model Yields Unitary Gap Junctional Permeabilities from Images of Cell-to-Cell Fluorescent Dye Transfer Between Xenopus Oocytes

    PubMed Central

    Nitsche, Johannes M.; Chang, Hou-Chien; Weber, Paul A.; Nicholson, Bruce J.

    2004-01-01

    As ubiquitous conduits for intercellular transport and communication, gap junctional pores have been the subject of numerous investigations aimed at elucidating the molecular mechanisms underlying permeability and selectivity. Dye transfer studies provide a broadly useful means of detecting coupling and assessing these properties. However, given evidence for selective permeability of gap junctions and some anomalous correlations between junctional electrical conductance and dye permeability by passive diffusion, the need exists to give such studies a more quantitative basis. This article develops a detailed diffusion model describing experiments (reported separately) involving transport of fluorescent dye from a “donor” region to an “acceptor” region within a pair of Xenopus oocytes coupled by gap junctions. Analysis of transport within a single oocyte is used to determine the diffusion and binding characteristics of the cellular cytoplasm. Subsequent double-cell calculations then yield the intercellular junction permeability, which is translated into a single-channel permeability using concomitant measurements of intercellular conductance, and known single-channel conductances of gap junctions made up of specific connexins, to count channels. The preceding strategy, combined with use of a graded size series of Alexa dyes, permits a determination of absolute values of gap junctional permeability as a function of dye size and connexin type. Interpretation of the results in terms of pore theory suggests significant levels of dye-pore affinity consistent with the expected order of magnitude of typical (e.g., van der Waals) intermolecular attractions. PMID:15041648

  17. Loss of the Tectorial Membrane Protein CEACAM16 Enhances Spontaneous, Stimulus-Frequency, and Transiently Evoked Otoacoustic Emissions

    PubMed Central

    Goodyear, Richard J.; Homma, Kazuaki; Legan, P. Kevin; Korchagina, Julia; Naskar, Souvik; Siegel, Jonathan H.; Dallos, Peter; Zheng, Jing

    2014-01-01

    ?-Tectorin (TECTA), ?-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable. PMID:25080593

  18. High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li(+) Diffusion Pathway.

    PubMed

    Tian, Jun; Su, Yuefeng; Wu, Feng; Xu, Shaoyu; Chen, Fen; Chen, Renjie; Li, Qing; Li, Jinghui; Sun, Fengchun; Chen, Shi

    2016-01-13

    The nickel-rich LiNi0.7Co0.15Mn0.15O2 material was sintered by Li source with the Ni0.7Co0.15Mn0.15(OH)2 precursor, which was prepared via hydrothermal treatment after coprecipitation. The intensity ratio of I(110)/I(108) obtained from X-ray diffraction patterns and high-resolution transmission electronmicroscopy confirm that the particles have enhanced growth of (110), (100), and (010) surface planes, which supply superior inherent Li(+) deintercalation/intercalation. The electrochemical measurement shows that the LiNi0.7Co0.15Mn0.15O2 material has high cycling stability and rate capability, along with fast charge and discharge ability. Li(+) diffusion coefficient at the oxidation peaks obtained by cyclic voltammogram measurement is as large as 10(-11) (cm(2) s(-1)) orders of magnitude, implying that the nickel-rich material has high Li(+) diffusion capability. PMID:26601895

  19. Robust Anisotropic Diffusion Based Edge Enhancement for Level Set Segmentation and Asymmetry Analysis of Breast Thermograms using Zernike Moments.

    PubMed

    Prabha, S; Sujatha, C M; Ramakrishnan, S

    2015-01-01

    Breast thermography plays a major role in early detection of breast cancer in which the thermal variations are associated with precancerous state of breast. The distribution of asymmetrical thermal patterns indicates the pathological condition in breast thermal images. In this work, asymmetry analysis of breast thermal images is carried out using level set segmentation and Zernike moments. The breast tissues are subjected to Tukey’s biweight robust anisotropic diffusion filtering (TBRAD) for the generation of edge map. Reaction diffusion level set method is employed for segmentation in which TBRAD edge map is used as stopping criterion during the level set evolution. Zernike moments are extracted from the segmented breast tissues to perform asymmetry analysis. Results show that the TBRAD filter is able to enhance the edges near infra mammary folds and lower breast boundaries effectively. It is observed that segmented breast tissues are found to be continuous and has sharper boundary. This method yields high degree of correlation (98%) between the segmented output and the ground truth images. Among the extracted Zernike features, higher order moments are found to be significant in demarcating normal and carcinoma breast tissues by 9%. It appears that, the methodology adopted here is useful in accurate segmentation and differentiation of normal and carcinoma breast tissues for automated diagnosis of breast abnormalities. PMID:25996737

  20. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer

    NASA Astrophysics Data System (ADS)

    Wang, Qinian; Dong, Heng; Yu, Han; Yu, Hongbing

    2015-04-01

    Gas diffusion electrode (GDE) with Nafion bonded catalyst layer (CL) for electrochemical reduction of CO2 to formate (ERCF) suffers from CO2 mass transfer limitation. In this work, polytetrafluoroethylene (PTFE) with contents of 5.9 wt%, 7.7 wt%, 11.1 wt% and 20 wt% are added into the CL of the GDE with Sn catalyst (P-SGDE) for ERCF. The morphologies and porous structures of the P-SGDEs are examined by scanning electron microscope and mercury intrusion measurement, respectively. The electrochemical performances of the P-SGDEs are investigated by linear sweep voltammetry, electrochemical impedance spectroscopy and constant potential electrolysis. The results show that the Faraday efficiency (86.75 ± 2.89%) and current density (21.67 ± 1.29 mA cm-2) for ERCF were improved by 25.4% and 25.8% respectively when the content of PTFE is 11.1 wt%, probably owing to the enhancement in the catalyst active surface area and CO2 diffusion. This Faraday efficiency is the highest one found for ERCF with Sn GDE under similar conductions.

  1. Fabrication and evaluation of enhanced diffusion bonded titanium honeycomb core sandwich panels with titanium aluminide face sheets

    NASA Technical Reports Server (NTRS)

    Hoffmann, E. K.; Bird, R. K.; Bales, T. T.

    1989-01-01

    A joining process was developed for fabricating lightweight, high temperature sandwich panels for aerospace applications using Ti-14Al-21Nb face sheets and Ti-3Al-2.5V honeycomb core. The process, termed Enhanced Diffusion Bonding (EDB), relies on the formation of a eutectic liquid through solid-state diffusion at elevated temperatures and isothermal solidification to produce joints in thin-gage titanium and titanium aluminide structural components. A technique employing a maskant on the honeycomb core was developed which permitted electroplating a controlled amount of EDB material only on the edges of the honeycomb core in order to minimize the structural weight and metallurgical interaction effects. Metallurgical analyses were conducted to determine the interaction effects between the EDB materials and the constituents of the sandwich structure following EDB processing. The initial mechanical evaluation was conducted with butt joint specimens tested at temperatures from 1400 - 1700 F. Further mechanical evaluation was conducted with EDB sandwich specimens using flatwise tension tests at temperatures from 70 - 1100 F and edgewise compression tests at ambient temperature.

  2. Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Holmes, Russell J.

    2013-03-01

    Organic photovoltaic cells (OPVs) have the potential to become a low-cost source of renewable energy due to their compatibility with high throughput processing techniques and the demonstration of power conversion efficiencies exceeding 10%. In the simplest planar heterojunction OPVs, photoconversion is limited by a short exciton diffusion length (LD) that restricts migration to the dissociating electron donor-acceptor (D-A) interface. Consequently, bulk heterojunctions are often used to realize high efficiency as these structures reduce the distance an exciton must travel to be dissociated. Here, we present an alternate approach that seeks to directly engineer LD by optimizing the intermolecular separation and consequently, the photophysical parameters responsible for excitonic energy transfer. By diluting the electron donor boron subphthalocyanine chloride (SubPc) into a wide energy gap host material, we optimize the degree of interaction between donor molecules and observe a nearly 50% increase in LD. Using this approach, we construct planar heterojunction OPVs with a power conversion efficiency of 4.4%, >30% larger than the case of optimized devices containing an undiluted donor layer. It is worth noting that this efficiency also rivals those realized in optimized, bulk heterojunction OPVs based on SubPc and C60. The underlying correlation between LD and the degree of molecular interaction has wide implications for the design of both OPV active materials and device architectures.

  3. Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography

    PubMed Central

    Kumavor, Patrick D.; Alqasemi, Umar; Li, Hai; Xu, Yan; Zanganeh, Saeid; Zhu, Quing

    2013-01-01

    Abstract. To overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast. An imaging modality that relies on optical contrast to provide guidance is desirable for DOT. We present a system that combines a frequency-domain DOT and real-time photoacoustic tomography (PAT) systems to detect and characterize deeply seated targets embedded in a turbid medium. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG), is used. Our experimental results show that the combined system can detect a tumor-mimicking phantom, which is immersed in intralipid solution with the concentrations ranging from 100 to 10 μM and with the dimensions of 0.8  cm×0.8  cm×0.6  cm, up to 2.5 cm in depth. Mice experiments also confirmed that the combined system can detect tumors and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect small breast lesions as well as lesions that are sensitive to background tissue changes, such as the lesions located just above the chest wall. PMID:24343437

  4. Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography.

    PubMed

    Xu, Chen; Kumavor, Patrick D; Alqasemi, Umar; Li, Hai; Xu, Yan; Zanganeh, Saeid; Zhu, Quing

    2013-12-01

    To overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast. An imaging modality that relies on optical contrast to provide guidance is desirable for DOT. We present a system that combines a frequency-domain DOT and real-time photoacoustic tomography (PAT) systems to detect and characterize deeply seated targets embedded in a turbid medium. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG), is used. Our experimental results show that the combined system can detect a tumor-mimicking phantom, which is immersed in intralipid solution with the concentrations ranging from 100 to 10 μM and with the dimensions of 0.8 cm × 0.8 cm × 0.6 cm, up to 2.5 cm in depth. Mice experiments also confirmed that the combined system can detect tumors and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect small breast lesions as well as lesions that are sensitive to background tissue changes, such as the lesions located just above the chest wall. PMID:24343437

  5. Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Kumavor, Patrick D.; Alqasemi, Umar; Li, Hai; Xu, Yan; Zanganeh, Saeid; Zhu, Quing

    2013-12-01

    To overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast. An imaging modality that relies on optical contrast to provide guidance is desirable for DOT. We present a system that combines a frequency-domain DOT and real-time photoacoustic tomography (PAT) systems to detect and characterize deeply seated targets embedded in a turbid medium. To further improve the contrast, the exogenous contrast agent, indocyanine green (ICG), is used. Our experimental results show that the combined system can detect a tumor-mimicking phantom, which is immersed in intralipid solution with the concentrations ranging from 100 to 10 μM and with the dimensions of 0.8 cm×0.8 cm×0.6 cm, up to 2.5 cm in depth. Mice experiments also confirmed that the combined system can detect tumors and monitor the ICG uptake and washout in the tumor region. This method can potentially improve the accuracy to detect small breast lesions as well as lesions that are sensitive to background tissue changes, such as the lesions located just above the chest wall.

  6. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals. PMID:25817999

  7. Transient performance

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    Gas turbine engine transient behavior, that which is concerned with the changes in engine parameters during acceleration or decceleration of an engine from one steady state point to a different steady state point, is considered. An engine can also experience cyclic aerodynamic phenomena which occur at a nominally steady condition; examples are compressor rotator stall and intake or afterburner buzz. The following are discussed: certification requirements; mechanism of acceleration; compressor working lines and surge; and some important factors (pressure level, moment of inertia, heat soakage, clearances, measurement of transients, thrust reversal, and transient maneuvers which involve significant changes to the shaft speeds of the engine). A set of graphics illustrating transient performance is presented.

  8. Transient Intervals of Hyper-Gravity Enhance Endothelial Barrier Integrity: Impact of Mechanical and Gravitational Forces Measured Electrically

    PubMed Central

    Szulcek, Robert; van Bezu, Jan; Boonstra, Johannes; van Loon, Jack J. W. A.; van Nieuw Amerongen, Geerten P.

    2015-01-01

    Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion. PMID:26637177

  9. Enhancing effects of indirubin on the arsenic disulfide-induced apoptosis of human diffuse large B-cell lymphoma cells

    PubMed Central

    WANG, LING; LI, XIANGLU; LIU, XINYU; LU, KANG; CHEN, NA; LI, PEIPEI; LV, XIAO; WANG, XIN

    2015-01-01

    The aim of the present study was to investigate the indirubin-enhanced effects of arsenic disulfide (As2S2) on the proliferation and apoptosis of diffuse large B-cell lymphoma (DLBCL) cells in order to identify an optimum combination therapy. The human DLBCL cells, LY1 and LY8, were treated with different concentrations of indirubin for 24, 48 and 72 h. Next, the cells were treated with 10 μM As2S2 or a combination of 10 μM As2S2 and 20 μM indirubin for 48 h. Cell proliferation inhibition was detected using cell counting kit-8 and cell apoptosis was determined using flow cytometry. The expression levels of Bcl-2, Bcl-2-associated X protein (Bax) and caspase-3 were analyzed by quantitative polymerase chain reaction (qPCR) and western blotting. The DLBCL cell viability exhibited no significant changes at 24, 48 or 72 h with increasing indirubin concentration. In addition, the apoptotic rates of the LY1 and LY8 cells demonstrated no noticeable effects at 48 h with increasing indirubin concentration. Following treatment with the combination of indirubin and As2S2, the inhibitory and apoptotic rates of the cells were notably increased compared with those of the As2S2-treated group. The qPCR results revealed that indirubin alone had no enhancing effect upon the Bax/Bcl-2 mRNA expression ratio and caspase-3 mRNA expression. Western blot analysis revealed that indirubin alone had an enhancing effect upon the Bax/Bcl-2 protein ratio and procaspase-3 protein expression. In addition, the results demonstrated that the 21-KDa Bax protein was proteolytically cleaved into an 18-KDa Bax in the DLBCL cells treated with the combination of indirubin and As2S2. Indirubin alone did not inhibit proliferation or induce the apoptosis of the LY1 and LY8 cells. However, the combination of indirubin and As2S2 yielded enhancing effects. Therefore, the results of the present study demonstrated that with regard to antitumor activities, As2S2 served as the principal drug, whereas indirubin served as the adjuvant drug. The enhancing effect was due, in part, to the induction of the mitochondrial apoptotic pathway, which involves the cleavage of Bax. PMID:25789073

  10. Magnetofection Mediated Transient NANOG Overexpression Enhances Proliferation and Myogenic Differentiation of Human Hair Follicle Derived Mesenchymal Stem Cells.

    PubMed

    Son, Seoyoung; Liang, Mao-Shih; Lei, Pedro; Xue, Xiaozheng; Furlani, Edward P; Andreadis, Stelios T

    2015-07-15

    We used magnetofection (MF) to achieve high transfection efficiency into human mesenchymal stem cells (MSCs). A custom-made magnet array, matching well-to-well to a 24-well plate, was generated and characterized. Theoretical predictions of magnetic force distribution within each well demonstrated that there was no magnetic field interference among magnets in adjacent wells. An optimized protocol for efficient gene delivery to human hair follicle derived MSCs (hHF-MSCs) was established using an egfp-encoding plasmid, reaching approximately ∼50% transfection efficiency without significant cytotoxicity. Then we applied the optimized MF protocol to express the pluripotency-associated transcription factor NANOG, which was previously shown to reverse the effects of organismal aging on MSC proliferation and myogenic differentiation capacity. Indeed, MF-mediated NANOG delivery increased proliferation and enhanced the differentiation of hHF-MSCs into smooth muscle cells (SMCs). Collectively, our results show that MF can achieve high levels of gene delivery to MSCs and, therefore, may be employed to moderate or reverse the effects of cellular senescence or reprogram cells to the pluripotent state without permanent genetic modification. PMID:25685943

  11. The potential of theragnostic 124I-8H9 convection-enhanced delivery in diffuse intrinsic pontine glioma

    PubMed Central

    Luther, Neal; Zhou, Zhiping; Zanzonico, Pat; Cheung, Nai-Kong; Humm, John; Edgar, Mark A.; Souweidane, Mark M.

    2014-01-01

    Background Reasons for failure in prior human glioma convection-enhanced delivery (CED) clinical trials remain unclear. Concentration-dependent volume of distribution (Vd) measurement of CED-infused agents in the human brain is challenging and highlights a potential technical shortcoming. Activity of iodine isotope 124 (124I ) in tissue can be directly measured in vivo with high resolution via PET. With the potential therapeutic utility of radioimmunotherapy, we postulate 124I conjugated to the antiglioma monoclonal antibody 8H9 may serve as a “theragnostic” agent delivered via CED to diffuse intrinsic pontine glioma. Methods Fifteen rats underwent CED of 0.1–1.0 mCi of 131I-8H9 to the pons for toxicity evaluation. Six additional rats underwent CED of 10 µCi of 124I-8H9 to the pons for dosimetry, with serial microPET performed for 1 week. Two primates underwent CED of gadolinium-albumin and 1.0 mCi of 124I-8H9 to the pons for safety and dosimetry analysis. Serial postoperative PET, blood, and CSF radioactivity counts were performed. Results One rat (1.0 mCi 131I-8H9 infusion) suffered toxicity necessitating early sacrifice. PET analysis in rats yielded a pontine absorbed dose of 37 Gy/mCi. In primates, no toxicity was observed, and absorbed pontine dose was 3.8 Gy/mCi. Activity decreased 10-fold with 48 h following CED in both animal models. Mean Vd was 0.14 cc3 (volume of infusion [Vi] to Vd ratio = 14) in the rat and 6.2 cc3 (Vd/Vi = 9.5) in primate. Conclusion The safety and feasibility of 124I dosimetry following CED via PET is demonstrated, establishing a preclinical framework for a trial evaluating CED of 124I-8H9 for diffuse intrinsic pontine glioma. PMID:24526309

  12. Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error

    PubMed Central

    Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.

    2013-01-01

    When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186

  13. Capability of plasma-enhanced chemical-vapor-deposited SiO2 films as diffusion barriers on InGaAs

    NASA Astrophysics Data System (ADS)

    Ambree, P.; Wandel, K.

    1994-07-01

    Results on the diffusion behavior of InGaAs host atoms as well as Zn and Cd atoms in plasma-enhanced chemical-vapor-depsoited SiO2 layers are reported. The group-III elements In and Ga diffuse very fast in SiO2 at annealing temperatures from 400 to 600 C. A mobilization of these species by OH groups is proposed. An As diffusion can only be observed in the case of semiconductor samples etched in a H2SO4 solution before SiO2 deposition. An As-rich interface layer produced by this etchant is assumed to act as exhausting source for mobile As-O complexes. The InGaAs host atoms could be detected up to a concentration level of about 10(exp 18)/cu cm by secondary-ion-mass spectroscopy in the SiO2 fims after annealing. Their effective diffusion coefficients were estimated to be in the order of 10(exp -15)-10(exp -13) sq cm/s in the investigated temperature range. Activation energies of about 0.6 eV (In), 0.3 eV (Ga), and 0.8 eV (As) could be determined. The In/Ga out-diffusion was accompanied by the occurrence of two new peaks in the phtoluminescence spectra of the InGaAs layers. Binding energies of abouy 11 and 18 meV were obtained, respectively. Possible crystal; defects as well as results of numerical simulations on base of simple diffusion models are discussed. The capability of plasma-enhanced chemical-vapor-deposited SiO2 layers as a diffusion mask during Zn as well as Cd acceptor diffusion at 500 and 600 C was proved.

  14. TU-A-9A-11: Gold Nanoparticles Enhanced Diffuse Optical Tomography: A Proof of Concept Study

    SciTech Connect

    Yang, Y; Dogan, N

    2014-06-15

    Purpose: To investigate the feasibility and potential of gold nanoparticles (GNP) enhanced diffuse optical tomography (DOT) as a novel imaging strategy for tumor detection. Methods: Simulation was performed on a digital homogeneous cylindrical phantom of 30mm×30mm. Gold nanorods (GNR) with aspect ratio 3.9 and effective radius 21.86nm were used as contrast agent. The peak light absorption for these GNR occurs at 842nm within the near-infrared region, with the absorption cross-section of 1.97×10{sup -14}m{sup -2} and scatter cross-section of 1.07×10{sup -14}m{sup -2}. A 6mmdiameter sphere of GNR solution was positioned inside the tissue-simulating phantom. Simulations were performed at the GNR concentration level of 1nM, 100pM and 10pM, respectively. The points representing laser sources and light detectors were around the phantom with 30o apart tangentially and 1mm apart axially for 9 rows. As one point being source, all the other points within the current row and nearby four rows become detectors. Hence there are 108 source points in total and 55 detector points corresponding to each source. Forward light transport at 842nm wavelength was run on a three-dimensional mesh of 33186 nodes (∼0.5mm resolution) to acquire the light emission data. Reconstruction was performed on a coarse mesh of 19408 nodes (∼1mm resolution) with ∼20minutes on a 2.4GHz CPU and 8GB RAM computer. Results: The position of the GNR solution at 1nM, 100pM and 10pM concentration was reconstructed, respectively, with <1mm error. The GNR concentration was interpreted from the reconstructed absorption coefficient within the enhanced volume. The reconstructed maximum concentrations were 0.3nM, 120.0pM, and 5.3pM, respectively. Conclusion: To the best of our knowledge, this is the first time to apply GNP to enhance DOT. The simulation results showed the high sensitivity of GNP enhanced DOT, which is in pM concentration level, compared to the μM level for MRI agents and nM level for PET agents.

  15. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres

    PubMed Central

    Raffelt, David A.; Smith, Robert E.; Ridgway, Gerard R.; Tournier, J-Donald; Vaughan, David N.; Rose, Stephen; Henderson, Robert; Connelly, Alan

    2015-01-01

    In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres. PMID:26004503

  16. Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres.

    PubMed

    Raffelt, David A; Smith, Robert E; Ridgway, Gerard R; Tournier, J-Donald; Vaughan, David N; Rose, Stephen; Henderson, Robert; Connelly, Alan

    2015-08-15

    In brain regions containing crossing fibre bundles, voxel-average diffusion MRI measures such as fractional anisotropy (FA) are difficult to interpret, and lack within-voxel single fibre population specificity. Recent work has focused on the development of more interpretable quantitative measures that can be associated with a specific fibre population within a voxel containing crossing fibres (herein we use fixel to refer to a specific fibre population within a single voxel). Unfortunately, traditional 3D methods for smoothing and cluster-based statistical inference cannot be used for voxel-based analysis of these measures, since the local neighbourhood for smoothing and cluster formation can be ambiguous when adjacent voxels may have different numbers of fixels, or ill-defined when they belong to different tracts. Here we introduce a novel statistical method to perform whole-brain fixel-based analysis called connectivity-based fixel enhancement (CFE). CFE uses probabilistic tractography to identify structurally connected fixels that are likely to share underlying anatomy and pathology. Probabilistic connectivity information is then used for tract-specific smoothing (prior to the statistical analysis) and enhancement of the statistical map (using a threshold-free cluster enhancement-like approach). To investigate the characteristics of the CFE method, we assessed sensitivity and specificity using a large number of combinations of CFE enhancement parameters and smoothing extents, using simulated pathology generated with a range of test-statistic signal-to-noise ratios in five different white matter regions (chosen to cover a broad range of fibre bundle features). The results suggest that CFE input parameters are relatively insensitive to the characteristics of the simulated pathology. We therefore recommend a single set of CFE parameters that should give near optimal results in future studies where the group effect is unknown. We then demonstrate the proposed method by comparing apparent fibre density between motor neurone disease (MND) patients with control subjects. The MND results illustrate the benefit of fixel-specific statistical inference in white matter regions that contain crossing fibres. PMID:26004503

  17. Transient-mode liquid phase epitaxial growth of GaAs on GaAs-coated Si substrates prepared by migration-enhanced molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Nakamura, Shuji; Sakai, Shiro; Chang, Shi S.; Ramaswamy, Ramu V.; Kim, Jae-Hoon; Radhakrishnan, Gouri; Liu, John K.; Katz, Joseph

    1989-01-01

    Planar oxide-maskless growth of GaAs was demonstrated by transient-mode liquid phase epitaxy (TMLPE) on GaAs-coated Si substrates that were prepared by migration-enhanced molecular beam epitaxy (MEMBE). In TMLPE, the cool substrate was brought into contact with hot melts for a short time. A GaAs layer as thick as 30 microns was grown in 10 sec. The etch pits observed in TMLPE-grown layers became longer in one direction and decreased in density with increasing the TMLPE epilayer thickness. The density of etch pits in a 20 micron-thick layer was approximately 5 x 10 the 6th/sq cm. Strong bandgap emission elliptically polarized with a major axis perpendicular to the surface was observed at about 910 nm, while deep-level emission from the TMLPE/MEMBE GaAs interface was detected at 980 nm. The photoluminescence intensity divided by the carrier concentration of the TMLPE-grown layer was about 270 times larger than that of the MEMBE-grown layer used as a substrate.

  18. Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca(2+) influx through transient receptor potential V1 (TRPV1) channels.

    PubMed

    Murakami, Satoshi; Sudo, Yuka; Miyano, Kanako; Nishimura, Hitomi; Matoba, Motohiro; Shiraishi, Seiji; Konno, Hiroki; Uezono, Yasuhito

    2016-02-01

    Non-selective transient receptor potential vanilloid (TRPV) cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM) is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1) and the Ca(2+)-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM) and pH 6.5 buffer elicited steep increases in the intracellular Ca(2+) concentration ([Ca(2+)]i), while treatment with THAM (pH 8.5) alone had no effect. However, treatment with THAM (pH 8.5) following capsaicin application elicited a profound, long-lasting increase in [Ca(2+)]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca(2+)]i increases, which could be a mechanism underlying pain induced by basic pH. PMID:26738986

  19. Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats

    PubMed Central

    Baunez, Christelle; Christakou, Anastasia; Chudasama, Yogita; Forni, Claude; Robbins, Trevor W.

    2007-01-01

    It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation. PMID:17331214

  20. Analysis of model equations for stress-enhanced diffusion in coal layers. Part I: existence of a weak solution

    SciTech Connect

    Mikelic, A.; Bruining, H.

    2008-07-01

    This paper is motivated by the study of the sorption processes in the coal. They are modeled by a nonlinear degenerate pseudoparabolic equation for stress-enhanced diffusion of carbon dioxide (CO{sub 2}) in coal. These types of equations arise in a number of cases when nonequilibrium thermodynamics or extended nonequilibrium thermodynamics is used to compute the flux. For the given equation, existence of the travelling wave-type solutions was extensively studied. Nevertheless, the existence seems to be known only for a sufficiently short time. We use the corresponding entropy functional in order to get existence, for any time interval, of an appropriate weak solution with square integrable first derivatives and satisfying uniform L-infinity-bounds. Due to the degeneracy, we obtain square integrability of the mixed second order derivative only in the region where the concentration phi is strictly positive. In obtaining the existence result it was crucial to have the regularized entropy as unknown for the approximate problem and not the original unknown (the concentration).

  1. Control of surface plasmon resonance in out-diffused silver nanoislands for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Piliugina, E. S.; Heisler, F.; Chervinskii, S. D.; Samusev, A. K.; Lipovskii, A. A.

    2015-12-01

    We present the studies of self-assembled silver nanoislands on the surface of silver ion-exchanged glasses. The nanoislands were formed by out-diffusion of reduced silver atoms from the bulk of the glass to its surface. Control of silver ions distribution in the glass by thermal poling after the ion exchange allowed formation of relatively big, up to 250 nm, isolated silver nanoislands while without the poling an ensemble of silver nanoislands with average size from several to tens of nanometers with random size distribution was formed. The nanoislands were characterized using atomic force microscopy and spectral measurements. We used optical absorption spectroscopy for “random” nanoislands and dark field scattering spectroscopy for isolated ones, corresponding spectra showed peaks in the vicinity of 450 nm and 600 nm, respectively. The “random” nanoislands significantly enhanced Raman scattering from Rhodamine 6G, also the modification of Raman signal from deposited on the surface of the samples bacteriorhodopsin in purple membranes was registered.

  2. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.

    PubMed

    Wu, Donghai; Lu, Guanghua; Zhang, Ran; Lin, Qiuhong; Yan, Zhenhua; Liu, Jianchao; Li, Yi

    2015-10-01

    Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater. PMID:26036588

  3. Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy With Bromodomain Inhibition.

    PubMed

    Taylor, Isabella C; Hütt-Cabezas, Marianne; Brandt, William D; Kambhampati, Madhuri; Nazarian, Javad; Chang, Howard T; Warren, Katherine E; Eberhart, Charles G; Raabe, Eric H

    2015-08-01

    NOTCH regulates stem cells during normal development and stemlike cells in cancer, but the roles of NOTCH in the lethal pediatric brain tumor diffuse intrinsic pontine glioma (DIPG) remain unknown. Because DIPGs express stem cell factors such as SOX2 and MYCN, we hypothesized that NOTCH activity would be critical for DIPG growth. We determined that primary DIPGs expressed high levels of NOTCH receptors, ligands, and downstream effectors. Treatment of the DIPG cell lines JHH-DIPG1 and SF7761 with the γ-secretase inhibitor MRK003 suppressed the level of the NOTCH effectors HES1, HES4, and HES5; inhibited DIPG growth by 75%; and caused a 3-fold induction of apoptosis. Short hairpin RNAs targeting the canonical NOTCH pathway caused similar effects. Pretreatment of DIPG cells with MRK003 suppressed clonogenic growth by more than 90% and enhanced the efficacy of radiation therapy. The high level of MYCN in DIPG led us to test sequential therapy with the bromodomain inhibitor JQ1 and MRK003, and we found that JQ1 and MRK003 inhibited DIPG growth and induced apoptosis. Together, these results suggest that dual targeting of NOTCH and MYCN in DIPG may be an effective therapeutic strategy in DIPG and that adding a γ-secretase inhibitor during radiation therapy may be efficacious initially or during reirradiation. PMID:26115193

  4. Enhanced dissolution rate of felodipine using spherical agglomeration with Inutec SP1 by quasi emulsion solvent diffusion method

    PubMed Central

    Tapas, A.R.; Kawtikwar, P.S.; Sakarkar, D.M.

    2009-01-01

    Felodipine is a second generation calcium channel blocker widely used as antihypertensive and antianginal drug which belongs to BCS class II category. Hence, its low water solubility limits the pharmacological effect. The aim of this study was to improve the dissolution rate of felodipine using spherical agglomeration technique with acetone, water and dichloromethane as good solvent, poor solvent and bridging liquid, respectively. The quasi emulsion solvent diffusion technique was used as a method for spherical agglomeration. Inutec SP1 was used as an emulsion stabilizer and as hydrophilic polymer in agglomeration process. The FTIR and DSC results showed no change in the drug after crystallization process. PXRD studies showed sharp peaks in the diffractograms of spherical agglomerates with minor reduction in height of the peaks. The particle size of spherical agglomerates (FI-2) was about 134.33 ± 13.57 µm, n=3 and the dissolution efficiency of felodipine up to 120 min increased to about 4-fold in phosphate buffer containing 1.8% Tween 80 (pH 6.8). Spherical agglomerates showed enhanced solubility compared to untreated powder possibly due to the partial conversion to amorphous form. PMID:21589802

  5. SUB-ALFVENIC NON-IDEAL MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS WITH AMBIPOLAR DIFFUSION. III. IMPLICATIONS FOR OBSERVATIONS AND TURBULENT ENHANCEMENT

    SciTech Connect

    Li, Pak Shing; Klein, Richard I.; McKee, Christopher F. E-mail: cmckee@astro.berkeley.edu

    2012-01-01

    Ambipolar diffusion (AD) is believed to be a crucial process for redistributing magnetic flux in the dense molecular gas that occurs in regions of star formation. We carry out numerical simulations of this process in regions of low ionization using the heavy-ion approximation. The simulations are for regions of strong field (plasma {beta} = 0.1) and mildly supersonic turbulence (M=3, corresponding to an Alfven Mach number of 0.67). The velocity power spectrum of the neutral gas changes from an Iroshnikov-Kraichnan spectrum in the case of ideal MHD to a Burgers spectrum in the case of a shock-dominated hydrodynamic system. The magnetic power spectrum shows a similar behavior. We use a one-dimensional radiative transfer code to post-process our simulation results; the simulated emission from the CS J = 2-1 and H{sup 13}CO{sup +} J = 1-0 lines shows that the effects of AD are observable in principle. Linewidths of ions are observed to be less than those of neutrals, and we confirm previous suggestions that this is due to AD. We show that AD is unlikely to affect the Chandrasekhar-Fermi method for inferring field strengths unless the AD is stronger than generally observed. Finally, we present a study of the enhancement of AD by turbulence, finding that AD is accelerated by factor 2-4.5 for non-self-gravitating systems with the level of turbulence we consider.

  6. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies.

    PubMed

    Hameeduddin, Ayshea; Sahdev, Anju

    2015-01-01

    Magnetic resonance imaging (MRI) has an established role in imaging pelvic gynaecological malignancies. It is routinely used in staging endometrial and cervical cancer, characterizing adnexal masses, selecting optimal treatment, monitoring treatment and detecting recurrent disease. MRI has also been shown to have an excellent performance and an evolving role in surveillance of patients after chemoradiotherapy in cervical cancer, post-trachelectomy, detecting early recurrence and planning exenterative surgery in isolated central recurrences in both cervical and endometrial cancer and in young patients on surveillance for medically managed endometrial cancer. However, conventional MRI still has limitations when the morphological appearance of early recurrent or residual disease overlaps with normal pelvic anatomy or treatment effects in the pelvis. In particular, after chemoradiotherapy for cervical cancer, distinguishing between radiotherapy changes and residual or early recurrent disease within the cervix or the vaginal vault can be challenging on conventional MRI alone. Therefore, there is an emerging need for functional imaging to overcome these limitations. The purpose of this paper is to discuss the emerging functional MRI techniques and their applications in predicting treatment response, detecting residual disease and early recurrent disease to optimize the treatment options available using diffusion-weighted imaging and dynamic contrast enhancement particularly in cervical and endometrial cancer. PMID:25889065

  7. Virtual-source diffusion approximation for enhanced near-field modeling of photon-migration in low-albedo medium.

    PubMed

    Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng

    2015-01-26

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties. PMID:25835892

  8. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the scar identified in ADC maps, whereas the BZ had R2 = 0.95 for the correlation between LGE and histology compared to R2 = 0.91 obtained for ADC). This novel study represents an intermediate step in translating such research to the in vivo stages, as well as in establishing the best and most accurate MR method to help identify arrhythmia substrate in patients with structural heart disease.

  9. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implications for nuclear fuel performance modeling

    NASA Astrophysics Data System (ADS)

    Andersson, D. A.; Garcia, P.; Liu, X.-Y.; Pastore, G.; Tonks, M.; Millett, P.; Dorado, B.; Gaston, D. R.; Andrs, D.; Williamson, R. L.; Martineau, R. C.; Uberuaga, B. P.; Stanek, C. R.

    2014-08-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2±x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2±x non-stoichiometry were used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2±x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated.

  10. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2 +/- x: Implications for nuclear fuel performance modeling

    SciTech Connect

    Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau

    2014-03-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights

  11. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes.

    PubMed

    Musa-Aziz, Raif; Occhipinti, Rossana; Boron, Walter F

    2014-11-01

    The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3 (-). Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3 (-)/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ~9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS ). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi . Using higher CO2/HCO3 (-) levels, i.e., 5%/33 mM HCO3 (-) or 10%/66 mM HCO3 (-), increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA-consuming entering CO2 or replenishing exiting CO2-increases CO2 fluxes across the cell membrane. PMID:24965587

  12. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2014-01-01

    The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3−. Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3−/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ∼9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi. Using higher CO2/HCO3− levels, i.e., 5%/33 mM HCO3− or 10%/66 mM HCO3−, increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA—consuming entering CO2 or replenishing exiting CO2—increases CO2 fluxes across the cell membrane. PMID:24965587

  13. Preoperative diagnosis and staging of rectal cancer using diffusion-weighted and water imaging combined with dynamic contrast-enhanced scanning

    PubMed Central

    ZHAO, QILI; LIU, LIJIAN; WANG, QIUYAN; LIANG, ZEXIA; SHI, GAOFENG

    2014-01-01

    The aim of the present study was to evaluate the value of diffusion-weighted imaging (DWI) and water imaging combined with dynamic contrast-enhanced scanning for the preoperative diagnosis and staging of rectal cancer. In total, 72 patients with pathologically confirmed rectal cancer were selected for examination using magnetic resonance imaging (MRI) with phased-array coils, DWI, water imaging and dynamic contrast-enhanced scanning. The patients were divided into two groups, experimental (simple enhanced scanning plus diffusion combined with water imaging) and control (simple enhanced scanning), for the pathological observations. The sensitivity, specificity and accuracy for the T staging of the carcinomas using scan enhancement with DWI and the evaluation of cancer using water imaging were 98.5% (65/66), 66.7% (4/6) and 95.8% (69/72), respectively, and the accuracy for N staging was 89%. Whereas, the sensitivity, specificity and accuracy for the T staging of the carcinomas using simple scan enhancement were 85.7% (42/49), 78.3% (18/23) and 83.3% (60/72), respectively, and the accuracy for N staging was 61%. Therefore, the combination of multiple MRI techniques may be of high value for the early diagnosis and exact staging of rectal cancer. PMID:25360178

  14. Diffusion bonding of superplastic aluminum alloys

    SciTech Connect

    Sunwoo, A.J.

    1993-12-01

    Ability to diffusion bond aluminum alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Concurrent diffusion bonding (DB)-SPF is considered to be an energy-saving manufacturing process since it simplifies the production of complex components. Moreover, because of increased design flexibility, overall manufacturing cost and component weight are significantly reduced. Diffusion bonding is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is imperative in the bond area. The process utilizes either the solid state or transient liquid phase (TLP) bonding to produce a bond with microstructure continuity in the joint. In addition, there is no localized thermal gradient present to induce distortion or to create residual stresses in the component, thereby increasing structural integrity.

  15. Data optimization for enhancing robustness of time-resolved reflectance diffuse optical tomography to optode position uncertainty

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Zhao, Huijuan; Tanikawa, Yukari; Yamada, Yukio

    2005-04-01

    The absolute diffuse optical tomography (DOT) has been rather difficult to achieve due to the problems arising upon the robustness of the algorithm to uncertainties in measuring conditions. Alternatively, the differential imaging scheme was applied to reconstruct a difference image between a target and a baseline reference from the difference data. Nevertheless, the absolute imaging scheme is desirable for unavailability of the reference in many situations. The absolute imaging usually uses intensity-independent data-type, which has been popularly the mean time of flight (TOF) in time-resolved (TR) detection, to avoid absolute instrument scaling. A problem with the mean TOF is its is insufficient sensitivity to deep absorption change to cope with the measuring noises, such as uncertainty of the optode positions. Therefore seeking for more robust data-type has been a key task in the community. We have previously developed an image reconstruction algorithm for TR-DOT, based on the modified generalized pulse spectrum technique (GPST), where the ratio between the Laplace-transformed TR re-emissions at two real-domain frequencies is used as the data-type. It is computationally the same efficient as the mean TOF but offers a potentiality to enhance noise-robustness by optimizing the working frequencies. We demonstrate here that the robustness of this data-type to optode position uncertainty can be substantially increased by enlarge the difference between the two working frequencies. We optimize the working frequencies within the range of physical sense and numerically validate the method for brain-simulating two-layer geometry using the TR reflected light.

  16. Diffusion-Weighted and Gd-EOB-DTPA–Contrast-Enhanced Magnetic Resonance Imaging for Characterization of Tumor Necrosis in an Animal Model

    PubMed Central

    Vossen, Josephina A.; Buijs, Manon; Geschwind, Jean-Francois H.; Liap, Eleni; Ventura, Veronica Prieto; Lee, Kwang Hun; Bluemke, David A; Kamel, Ihab R

    2009-01-01

    Purpose To evaluate the role of diffusion-weighted magnetic resonance imaging (MRI) in determining tumor necrosis and contrast-enhanced MRI using gadoxetic acid disodium (Gd-EOB-DTPA) in determining maximum tumor size measurement and tumor delineation compared with criterion-standard histologic measurements in the rabbit VX2 liver tumor model. Materials and Methods VX2 tumors were implanted in the livers of 13 rabbits. Magnetic resonance imaging was performed using a 1.5-T MRI scanner and an extremity coil. The imaging protocol included T2-weighted fast spin-echo images, 3-dimensional T1-weighted spoiled gradient-echo with and without fat suppression after administration of Gd-EOB-DTPA, and diffusion-weighted echo planar images. Rabbits were killed, and the tumor was harvested and sliced at 4-mm intervals in the axial plane. The MRI parameters evaluated were tumor size, tumor delineation, and tumor apparent diffusion coefficient (ADC) values. Histologic sections were evaluated to quantify tumor necrosis. Results On contrast-enhanced MRI (obtained from 11 rabbits), the mean tumor sizes were 20, 19, and 20 mm in the arterial, portal venous, and delayed phases, respectively. Tumor delineation was most distinguishable in the delayed phase. On diffusion-weighted MRI (acquired in 13 rabbits), the mean tumor ADC value was 1.84 × 10−3 mm2/s. The mean tumor size at pathology was 16 mm. The mean percent necrosis at the tumor’s pathologic condition was 36%. The correlation between ADC value and percent necrosis showed an R value of 0.68. Conclusions Contrast-enhanced MRI using Gd-EOB-DTPA may provide additional information about tumor outline in the liver. More-over, we showed a remarkable correlation between ADC values and tumor necrosis. Thus, diffusion-weighted imaging may be useful to assess tumor necrosis; nevertheless, the search for new modalities remains important. PMID:19638862

  17. Modeling the Effect of Intra-Voxel Diffusion of Contrast Agent on the Quantitative Analysis of Dynamic Contrast Enhanced Magnetic Resonance Imaging

    PubMed Central

    Barnes, Stephanie L.; Quarles, C. Chad; Yankeelov, Thomas E.

    2014-01-01

    Quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides estimates of physiologically relevant parameters related to tissue blood flow, vascular permeability, and tissue volume fractions which can then be used for prognostic and diagnostic reasons. However, standard techniques for DCE-MRI analysis ignore intra-voxel diffusion, which may play an important role in contrast agent distribution and voxel signal intensity and, thus, will affect quantification of the aforementioned parameters. To investigate the effect of intra-voxel diffusion on quantitative DCE-MRI, we developed a finite element model of contrast enhancement at the voxel level. For diffusion in the range of that expected for gadolinium chelates in tissue (i.e., 110?4 to 410?4 mm2/s), parameterization errors range from ?58% to 12% for Ktrans, ?9% to 8% for ve, and ?60% to 213% for vp over the range of Ktrans, ve, vp, and temporal resolutions investigated. Thus the results show that diffusion has a significant effect on parameterization using standard techniques. PMID:25275536

  18. Coercivity enhancement of recycled Nd-Fe-B sintered magnets by grain boundary diffusion with DyH3 nano-particles

    NASA Astrophysics Data System (ADS)

    Ji, Weixiao; Liu, Weiqiang; Yue, Ming; Zhang, Dongtao; Zhang, Jiuxing

    2015-11-01

    The waste VCM magnets were disassembled from hard disk. After removing the coating of nickel by electrochemical method, the waste VCM magnets were recycled by grain boundary diffusion with DyH3 nano-particles. Compared to that of the original magnet, the coercivity of recycled magnets increases by 11.81 kOe, while the remanence keeps almost invariant. Investigation shows that Dy is preferentially enriched as (Nd,Dy)2Fe14B phase in the surface region of the Nd2Fe14B matrix grains indicated by the remarkable enhancement of the magneto-crystalline anisotropy field of the magnet. As a result, the magnet diffused with a small amount of DyH3 nano-particles possesses enhanced coercivity without remarkably sacrificing its magnetization.

  19. Insights into the Li Diffusion Dynamics and Nanostructuring of H2Ti12O25 To Enhance Its Li Storage Performance.

    PubMed

    Park, Soomin; Yoo, Young Geun; Nam, Inho; Bae, Seongjun; Park, Jongseok; Han, Jeong Woo; Yi, Jongheop

    2016-05-18

    Dodecatitanate H2Ti12O25 crystal has a condensed layered structure and exhibits noteworthy Li storage performance that makes it an anode material with great potential for use in Li-ion batteries. However, an unknown Li diffusion mechanism and a sluggish level of Li dynamics through elongated diffusion paths inside this crystal has impeded any forward development in resolving its limited rate capability and cyclic stability. In this study, we investigated the Li diffusion dynamics inside the H2Ti12O25 crystal that play an essential role in Li storage performance. A study of density functional theory combined with experimental evaluation confirmed a strong dependence of Li storage performance on its diffusion. In addition, a nanostructured H2Ti12O25 containing a bundle of nanorods is developed via the introduction of a kinetic gap during the structural transformation, which conferred a significantly shortened diffusion time/length for Li in H2Ti12O25. The nanostructured H2Ti12O25 has high specific capacity (∼230 mAh g(-1)) and exhibits enhanced cyclic stability and rate capability compared with conventional bulky H2Ti12O25. The H2Ti12O25 proposed in this study has high potential for use as an anode material with excellent safety and stability. PMID:27135549

  20. Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2⋅Y2O3

    PubMed Central

    Knöner, Gregor; Reimann, Klaus; Röwer, Ralf; Södervall, Ulf; Schaefer, Hans-Eckhardt

    2003-01-01

    First measurements of oxygen grain boundary diffusion coefficients in nanocrystalline yttria-doped ZrO2 (n-ZrO2⋅6.9 mol % Y2O3) are presented. The 18O diffusion profiles measured by secondary ion mass spectroscopy are much deeper in the nanocrystalline specimens than in single crystals. An oxygen diffusivity, DB, in the grain boundaries can be deduced, which is ≈3 orders of magnitude higher than in single crystals. From the present data the temperature variation of the oxygen grain boundary diffusivity, DB = 2.0 × 10−5 exp (−0.91 eV/kBT) m2/s, and the oxygen surface exchange coefficient, k = 1.4 × 10−2 exp (−1.13 eV/kBT) m/s, are derived. PMID:12655074

  1. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  2. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Stewart, Derek A.

    2016-04-01

    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  3. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch.

    PubMed

    Ishikawa, Ryo; Mishra, Rohan; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pantelides, Sokrates T; Pennycook, Stephen J

    2014-10-10

    Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials. PMID:25375721

  4. Hydrodynamic enhancement of the diffusion rate in the region between two fluctuating membranes in close opposition: a theoretical and computational study.

    PubMed

    Pannuzzo, Martina; Grassi, Antonio; Raudino, Antonio

    2014-07-24

    Periodic variation of the distance between two weakly adhering bodies gives rise to a huge tangential motions of the sandwiched solvent layer (squeezing flow). Oscillations either can be induced by an external applied field or can spontaneously arise from the coupling with the solvent heat bath. First we calculated by the Navier-Stokes equation the components of the fluid velocity near two oscillating juxtaposed plates. Then we evaluated the influence of plate oscillations on the transport properties of a trace diffusant dissolved at t = 0 in the outer medium for both deterministic and stochastic excitations. By employing both analytical (Fokker-Planck) and coarse-grained molecular dynamics (MD) simulations, we proved that the entry and migration rates of the diffusant sharply increases with the oscillation amplitudes. Enhancement was related to relevant parameters like oscillation frequency, fluid layer thickness, fluid viscosity, and temperature. An extension to the case of oscillating multistacked lamellae has been also made. Theoretical and MD results suggest a significant enhancement of the diffusant flux even in the worse situation of thermally excited small amplitude fluctuations. Excitation arising from other sources (e.g., microwave or ultrasound irradiation of solid-fluid layered systems) could have a dramatic effect on the transport phenomena. Possible implications to relevant biological problems have been discussed. PMID:24992344

  5. A study of enhanced diffusion during high dose high flux pulsed metal ion implantation into steel and aluminium

    NASA Astrophysics Data System (ADS)

    Tonghe, Zhang; Chengzhou, Ji; Jinghua, Shen; Jun, Chen

    1992-04-01

    The depth profiles of metal ions implanted into steel and aluminium were measured by Rutherford backscattering (RBS). The ions of Mo, W and Y, produced by a metal vapour vacuum arc ion source (MEVVA) were implanted at an energy range from 25 to 50 keV for doses of (2-5)×10 17 cm -2 into H13 steel and aluminium. Beam currents were from 0.5 to 1.0 A. The beam flux is in the range of 25 to 75 μAcm -2. In order to simulate the profiles, a formula which includes the sputtering yield, diffusion coefficients and reaction rate was obtained. The results demonstrate that the penetration depth and retained dose increase with increasing beam flux for Mo implanted into aluminum. The peak concentration of Mo implanted H13 steel increases with increasing ion flux. In contrast to this for Y implantation into steel, the peak concentration of Y decreases with increasing ion flux. For an ion flux of 25 μA cm -2 for Mo, Y and W implantation into steel, the penetration depth and retained dose are 3-5 times greater than the theoretical values. The diffusion coefficients are about 10 -16 to 10 -15 s -1. If the ion flux is greater than 47 μA cm -2, the penetration depth and retained dose are 5 to 10 times greater than the theoretical values for Mo implanted aluminium. The diffusion coefficients increase with increasing ion flux for Mo implanted aluminium. The diffusion coefficients hardly change with increasing ion flux for Y and Mo implanted H13 steel. The retained dose increases 0.43 to 1.16 times for Y implanted steel for an ion flux of 25 μA cm -2. Finally, the influence of phases precipitates, reaction rate and diffusion on retained dose, diffusion coefficient and penetration depth are discussed.

  6. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-01

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the ?1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the ?1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent ?1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+). PMID:26958887

  7. Step-wise transient method

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár

    2016-03-01

    The step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of solid materials. A theoretical model, design of the experimental apparatus and sources of error are presented. Methods of experiment optimization and evaluation are illustrated by charts. The experiment is verified for polymethylmethacrylate (PMMA), yielding the thermal diffusivity 0.112 mm2 s-1 and thermal conductivity 0.197 W.m-1 K-1 with the coefficient of variation around 0.7% for various values of input heat power and specimen thicknesses.

  8. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  9. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  10. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  11. Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Sun, Z.; Chao, B. H.; Sunderland, P. B.; Axelbaum, R. I.; Urban, D. L.; Stocker, D. P.

    2007-01-01

    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%.

  12. Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis

    PubMed Central

    Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.

    2014-01-01

    Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual standard error [RSEresidual standard error] = 6.38 and 6.33 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively), when compared with non-3Dthree-dimensional techniques (RSEresidual standard error = 12.18 for visual assessment). Conclusion This radiologic-pathologic correlation study demonstrates the diagnostic accuracy of 3Dthree-dimensional quantitative MR imaging techniques in identifying pathologically measured tumor necrosis in HCChepatocellular carcinoma lesions treated with TACEtransarterial chemoembolization. © RSNA, 2014 Online supplemental material is available for this article. PMID:25028783

  13. Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite

    NASA Astrophysics Data System (ADS)

    Glaus, M. A.; Aertsens, M.; Appelo, C. A. J.; Kupcik, T.; Maes, N.; Van Laer, L.; Van Loon, L. R.

    2015-09-01

    Enhanced mass transfer rates have been frequently observed in diffusion studies with alkaline and earth alkaline elements in compacted clay minerals and clay rocks. Whether this phenomenon - often termed surface diffusion - is also relevant for more strongly sorbing species is an open question. We therefore investigated the diffusion of Sr2+, Co2+ and Zn2+ in compacted illite with respect to variations of the concentration of the background electrolyte, pH and carbonate. New experimental techniques were developed in order to avoid artefacts stemming from the confinement of the clay sample. A distinct dependence of the effective diffusion coefficients on the concentration of the background electrolyte was observed for all three elements. A similar correlation was found for the sorption distribution ratio (Rd) derived from tracer breakthrough in the case of Sr2+, while this dependence was much weaker for Co2+ and Zn2+. Model calculations using Phreeqc resulted in a good agreement with the experimental data when it was assumed that the cationic species, present in the electrical double layer (EDL) of the charged clay surface, are mobile. Species bound to the specific surface complexation sites at the clay edges were assumed to be immobile. An assessment of the mobility of the type of cationic elements studied here in argillaceous media thus requires an analysis of their distribution among specifically sorbed surface species and species in the EDL. The normal approach of deriving unknown effective diffusion coefficients from reference values of an uncharged water tracer may significantly underestimate the mobility of metal cations in argillaceous media.

  14. Qualitative and quantitative diffusion-weighted imaging of the breast at 3T - A useful adjunct to contrast-enhanced MRI in characterization of breast lesions

    PubMed Central

    Bansal, Richa; Shah, Viral; Aggarwal, Bharat

    2015-01-01

    Objective: To distinguish between benign and malignant breast lesions on the basis of their signal intensity on diffusion-weighted imaging and their apparent diffusion coefficient (ADC) values at 3 T MRI, along with histopathological correlation. Materials and Methods: A retrospective analysis of 500 patients who underwent 3 T MRI between August 2011 and May 2013 was done. Of these, 226 patients with 232 lesions that were proved by histopathology were included in the study. ADC values were calculated at b values of 0, 1000, and 1500 s/mm2 after identification on contrast-enhanced images and appropriate ROI(Region of interest) placement. ADC value and histopathology correlation was analyzed. Results: Out of 232 lesions, 168 lesions were histologically malignant and 64 were histologically benign. With an ADC cut-off value of 1.1 ×10−3 mm2/s for malignant lesions, a sensitivity of 92.80% and specificity of 80.23% was obtained. Out of 12/232 false-negative lesions, 6 were mucinous carcinoma in which a high ADC value of 1.8-1.9 ×10−3 mm2/s was obtained. Purely DCIS (Ductal carcinoma in situ) lesions presenting as non-mass-like enhancement had a high ADC value of 1.2-1.5 ×10−3 mm2/s, thereby reducing specificity. Conclusion: Diffusion-weighted Imaging and quantitative assessment by ADC values may act as an effective parameter in increasing the diagnostic accuracy and specificity of contrast-enhanced breast MRI in characterization of breast lesions. PMID:26751011

  15. Transient thermal imaging of a vertical cavity surface-emitting laser using thermoreflectance microscopy

    NASA Astrophysics Data System (ADS)

    Garcia, V. G.; Farzaneh, M.

    2016-01-01

    Thermal transient response at the surface of a Vertical Cavity Surface-emitting Laser (VCSEL) is measured under operating conditions using a thermoreflectance imaging technique. From the transient curve, a thermal time constant of (9.7 ± 0.5) μs is obtained for the device surface in response to a 40 μs heating pulse. A cross-plane thermal diffusivity of the order of 2 × 10-6 m2/s has been deduced from both the experimental data and heat transfer modeling. This reduced thermal diffusivity compared to the bulk is attributed to the enhanced phonon scattering at the boundaries of the VCSEL's multi-layered structure.

  16. Transient heliosheath modulation

    NASA Astrophysics Data System (ADS)

    Quenby, J. J.; Webber, W. R.

    2015-10-01

    Voyager 1 has explored the solar wind-interstellar medium interaction region between the terminal shock and heliopause, following the intensity distribution of Galactic cosmic ray protons above 200 MeV energy. Before this component reached the expected galactic flux level at 121.7 au from the Sun, four episodes of rapid intensity change occurred with a behaviour similar to that found in Forbush Decreases in the inner Solar system, rather than that expected from a mechanism related to models for the long-term modulation found closer to the Sun. Because the mean solar wind flow is both expected and observed to be perpendicular to the radial direction close to the heliopause, an explanation is suggested in terms of transient radial flows related to possible heliopause boundary flapping. It is necessary that the radial flows are of the order either of the sound speed found for conditions downstream of the terminal shock or of the fluctuations found near the boundary by the Voyager 1 Low Energy Charged Particle detector and that the relevant cosmic ray diffusion perpendicular to the mean field is controlled by `slab' fluctuations accounting for about 20 per cent of the total power in the field variance. However, additional radial drift motion related to possible north to south gradients in the magnetic field may allow the inclusion of some diffusion according to the predictions of a theory based upon the presence of 2D turbulence. The required field gradients may arise due to field variation in the field carried by solar plasma flow deflected away from the solar equatorial plane. Modulation amounting to a total 30 per cent drop in galactic intensity requires explanation by a combination of transient effects.

  17. Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser.

    PubMed

    Almoro, Percival F; Pham, Quang Duc; Serrano-Garcia, David Ignacio; Hasegawa, Satoshi; Hayasaki, Yoshio; Takeda, Mitsuo; Yatagai, Toyohiko

    2016-05-15

    In the multiple-plane phase retrieval method, a tedious-to-fabricate phase diffuser plate is used to increase the axial intensity variation for a nonstagnating iterative reconstruction of a smooth object wavefront. Here we show that a spatial light modulator (SLM) can be used as an easily controllable diffuser for phase retrieval. The polarization modulation at the SLM facilitates independent formation of orthogonally polarized scattered and specularly reflected beams. Through an analyzer, the polarization states are filtered enabling beam interference, thereby efficiently encoding the phase information in the axially diverse speckle intensity measurements. The technique is described using wave propagation and Jones calculus, and demonstrated experimentally on technical and biological samples. PMID:27176952

  18. Measurement of radiation-enhanced diffusion of La in single crystal thin film CeO 2

    NASA Astrophysics Data System (ADS)

    Pappas, Harrison K.; Heuser, Brent J.; Strehle, Melissa M.

    2010-10-01

    The diffusion of La, a trivalent cation dopant, actinide surrogate, and high-yield fission product, in CeO 2, a UO 2 nuclear fuel surrogate, during 1.8 MeV Kr + ion bombardment over a temperature range from 673 K to 1206 K has been measured with secondary ion mass spectroscopy. The diffusivity under these irradiation conditions has been analyzed with a model based on a combination of sink-limited and recombination-limited kinetics. This analysis yielded a cation vacancy migration energy of Emv ˜ 0.4 eV below ˜800 K, were recombination-limited kinetics dominated the behavior. The thermal diffusivity of La in the same system was measured over a range of 873-1073 K and was characterized by an activation enthalpy of Ea=Efv+Emv˜1.4 eV. The measurement of both the migration enthalpy and total activation enthalpy separately allows the vacancy formation enthalpy on the cation sublattice to be determined; Efv ˜ 1 eV. The mixing parameter under energetic heavy-ion bombardment at room temperature was measured as well and found to be ˜4 × 10 -5 nm 5/eV.

  19. Anisotropic diffusion filter based edge enhancement for the segmentation of carotid intima-media layer in ultrasound images using variational level set method without re-initialisation.

    PubMed

    Sumathi, K; Anandh, K R; Mahesh, V; Ramakrishnan, S

    2014-01-01

    In this work an attempt has been made to enhance the edges and segment the boundary of intima-media layer of Common Carotid Artery (CCA) using anisotropic diffusion filter and level set method. Ultrasound B mode longitudinal images of normal and abnormal images of common carotid arteries are used in this study. The images are subjected to anisotropic diffusion filter to generate edge map. This edge map is used as a stopping boundary in variational level set method without re-initialisation to segment the intima-media layer. Geometric features are extracted from this layer and analyzed statistically. Results show that anisotropic diffusion filtering is able to extract the edges in both normal and abnormal images. The obtained edge maps are found to have high contrast and sharp edges. The edge based variational level set method is able to segment the intima-media layer precisely from common carotid artery. The extracted geometrical features such as major axis and extent are found to be statistically significant in differentiating normal and abnormal images. Thus this study seems to be clinically useful in diagnosis of cardiovascular disease. PMID:25569941

  20. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR)

    NASA Astrophysics Data System (ADS)

    Vermillion, Karl; Price, Neil P. J.

    2009-06-01

    The feasibility of obtaining high quality homonuclear or heteronuclear diffusion-ordered 13C NMR data is shown to be greatly improved by using 13C isotopically-enriched samples. Stable isotope-enhanced diffusion ordered (SIE-DOSY) 13C NMR has been applied to 13C-enriched carbohydrates, and has been used to determine diffusion coefficients for pentose and hexose monosaccharides, and a disaccharide and trisaccharide. These 2D spectra were obtained with as little as 8 min of acquisition time. Fully resolved 3D DOSY-HMQC NMR spectra of [U- 13C]xylose, [U- 13C]glucose, and [1- 13C gal]lactose were obtained in 5 h. Sample derivatization with [ carbonyl- 13C]acetate (peracetylation) extends the usefulness of the technique to included non-labeled sugars; the 13C-carbonyl - carbohydrate ring proton 1H- 13C correlations also provide additional structural information, as shown for the 3-D DOSY-HMQC analysis of a mixture of maltotriose and lactose per-[ carbonyl- 13C]acetates.

  1. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    PubMed Central

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795

  2. Microgravity Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  3. Plasma-Enhanced Atomic Layer Deposition of Ruthenium-Titanium Nitride Mixed-Phase Layers for Direct-Plate Liner and Copper Diffusion Barrier Applications

    NASA Astrophysics Data System (ADS)

    Gildea, Adam James

    Current interconnect networks in semiconductor processing utilize a sputtered TaN diffusion barrier, Ta liner, and Cu seed to improve the adhesion, microstructure, and electromigration resistance of electrochemically deposited copper that fills interconnect wires and vias. However, as wire/via widths shrink due to device scaling, it becomes increasingly difficult to have the volume of a wire/via be occupied with ECD Cu which increases line resistance and increases the delay in signal propagation in IC chips. A single layer that could serve the purpose of a Cu diffusion barrier and ECD Cu adhesion promoter could allow ECD Cu to occupy a larger volume of a wire/via, leading to a decrease in line resistance and decrease in signal delay. Previous work has shown RuTaN, RuWCN, and RuCo films can act as Cu diffusion barriers and be directly platable to thickness of 2-3nm. However, other material selections may prove as effective or possibly better. Mixed-phase films of ruthenium titanium nitride grown by atomic layer deposition (ALD) were investigated for their performance as a Cu diffusion barrier and as a surface for the direct plating of ECD Cu. All Ru was deposited by plasma-enhanced atomic layer deposition (PEALD) while TiN was deposited by either thermal ALD or PEALD. RuTiN, films with thermal ALD TiN and a Ru:Ti of 20:1 showed barrier performance comparable to PVD TaN at 3-4 nm thickness and 15 nm planar films were directly platable. Follow up work is certainly needed for this material set, yet initial results indicate RuTiN could serve as an effective direct plate liner for Cu interconnects.

  4. Transient global amnesia mimics: Transient epileptic amnesia.

    PubMed

    Nicastro, Nicolas; Picard, Fabienne; Assal, Frederic

    2014-01-01

    We describe the case of a 79-year-old patient referred for suspected transient global amnesia, after an episode of anterograde amnesia which lasted 90 min. An EEG, performed after the episode, showed bilateral temporal electrographic seizures, orienting the diagnosis toward a transient epileptic amnesia. Transient epileptic amnesia is defined by temporal lobe epilepsy characterized by recurrent transient amnestic episodes of 30-90 min in duration, sometimes associated with olfactory hallucinations or oral automatisms. Response to antiepileptic drugs is excellent. We would like to raise awareness toward this epileptic amnesia when facing atypical or recurrent transient amnestic episodes. PMID:25667881

  5. Water vapor exchange system using a hydrophilic microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells without cathode humidification

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Morishita, Masashi

    2012-09-01

    Polymer electrolyte fuel cells (PEFCs) generally have external humidifiers to supply humidified hydrogen and oxidant gases, which prevents dehydration of the membrane. If a PEFC could be operated without humidification, then external humidifiers could be removed, which would result in a simplified PEFC system with increased total efficiency and reduced cost. A water vapor exchange system installed in the PEFC was developed to enhance the performance without cathode humidification. A gas diffusion layer (GDL) coated with a hydrophobic microporous layer (MPL) was used at the active reaction area. A GDL coated with a hydrophilic MPL consisting of polyvinyl alcohol (PVA) and carbon black was used at the cathode water vapor exchange area to promote water transport from the cathode outlet wet gas to the anode inlet dry gas. This is effective for reducing the IR overpotential, which enhances the PEFC performance. Appropriate enhancement of hydrophilicity by increasing the PVA content in the MPL to 20 mass% is effective to increase water transport from the cathode to anode. At the anode water exchange area, a GDL without the hydrophilic MPL is effective to promote water transport from the water exchange area to the active reaction area, which enhances the PEFC performance.

  6. Enhanced localization, energy anomalous diffusion and resonant mode in harmonic chains with correlated mass-spring disorder.

    PubMed

    de Albuquerque, S S; dos Santos, J L L; de Moura, F A B F; Lyra, M L

    2015-05-01

    In this work, we study the vibrational modes and energy spreading in a harmonic chain model with diluted second-neighbors couplings and correlated mass-spring disorder. While all nearest neighbor masses are coupled by an elastic spring, second neighbors springs are introduced with a probability pD. The masses are randomly distributed according to the site connectivity mi = m0 (1 + 1/n(?)(I), where ni is the connectivity of the site i and ? is a tunable exponent. We show that maximum localization of the vibrational modes is achieved for ? ? 3/4. The time-evolution of the energy wave-packet is followed after an initial localized excitation. While the participation number remains finite, the energy spread is shown to be sub-diffusive after a displacement and super-diffusive after an impulse excitation. These features are related to the development of a power-law tail in the wave-packet distribution. Further, we unveil that the spring dilution leads to the emergence of a resonant localized state which is signaled by a van Hove singularity in the density of states. PMID:25836635

  7. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation.

    PubMed Central

    Wardlaw, Joanna; Brazzelli, Miriam; Miranda, Hector; Chappell, Francesca; McNamee, Paul; Scotland, Graham; Quayyum, Zahid; Martin, Duncan; Shuler, Kirsten; Sandercock, Peter; Dennis, Martin

    2014-01-01

    BACKGROUND Patients with transient ischaemic attack (TIA) or minor stroke need rapid treatment of risk factors to prevent recurrent stroke. ABCD2 score or magnetic resonance diffusion-weighted brain imaging (MR DWI) may help assessment and treatment. OBJECTIVES Is MR with DWI cost-effective in stroke prevention compared with computed tomography (CT) brain scanning in all patients, in specific subgroups or as 'one-stop' brain-carotid imaging? What is the current UK availability of services for stroke prevention? DATA SOURCES Published literature; stroke registries, audit and randomised clinical trials; national databases; survey of UK clinical and imaging services for stroke; expert opinion. REVIEW METHODS Systematic reviews and meta-analyses of published/unpublished data. Decision-analytic model of stroke prevention including on a 20-year time horizon including nine representative imaging scenarios. RESULTS The pooled recurrent stroke rate after TIA (53 studies, 30,558 patients) is 5.2% [95% confidence interval (CI) 3.9% to 5.9%] by 7 days, and 6.7% (5.2% to 8.7%) at 90 days. ABCD2 score does not identify patients with key stroke causes or identify mimics: 66% of specialist-diagnosed true TIAs and 35-41% of mimics had an ABCD2 score of ≥ 4; 20% of true TIAs with ABCD2 score of < 4 had key risk factors. MR DWI (45 studies, 9078 patients) showed an acute ischaemic lesion in 34.3% (95% CI 30.5% to 38.4%) of TIA, 69% of minor stroke patients, i.e. two-thirds of TIA patients are DWI negative. TIA mimics (16 studies, 14,542 patients) make up 40-45% of patients attending clinics. UK survey (45% response) showed most secondary prevention started prior to clinic, 85% of primary brain imaging was same-day CT; 51-54% of patients had MR, mostly additional to CT, on average 1 week later; 55% omitted blood-sensitive MR sequences. Compared with 'CT scan all patients' MR was more expensive and no more cost-effective, except for patients presenting at > 1 week after symptoms to diagnose haemorrhage; strategies that triaged patients with low ABCD2 scores for slow investigation or treated DWI-negative patients as non-TIA/minor stroke prevented fewer strokes and increased costs. 'One-stop' CT/MR angiographic-plus-brain imaging was not cost-effective. LIMITATIONS Data on sensitivity/specificity of MR in TIA/minor stroke, stroke costs, prognosis of TIA mimics and accuracy of ABCD2 score by non-specialists are sparse or absent; all analysis had substantial heterogeneity. CONCLUSIONS Magnetic resonance with DWI is not cost-effective for secondary stroke prevention. MR was most helpful in patients presenting at > 1 week after symptoms if blood-sensitive sequences were used. ABCD2 score is unlikely to facilitate patient triage by non-stroke specialists. Rapid specialist assessment, CT brain scanning and identification of serious underlying stroke causes is the most cost-effective stroke prevention strategy. FUNDING The National Institute for Health Research Health Technology Assessment programme. PMID:24791949

  8. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    SciTech Connect

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe; Blasco, Nicolas

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  9. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  10. Label-Free In Situ Detection of Individual Macromolecular Assemblies by Surface Enhanced Raman Scattering

    PubMed Central

    Asiala, Steven M.; Schultz, Zachary D.

    2012-01-01

    We demonstrate label-free detection of lipid vesicles and polystyrene beads freely diffusing in aqueous solution using surface enhanced Raman scattering (SERS). The signals observed enable real-time identification and monitoring of individual particles interacting with the SERS substrate. SERS is demonstrated as a label-free method capable of monitoring transient species in solution on the millisecond time scale. PMID:23103901

  11. Coherent interactions in femtosecond transient grating

    NASA Astrophysics Data System (ADS)

    Park, June-Sik; Joo, Taiha

    2004-03-01

    Transient grating of a dye in liquid has been measured as a function of the electronic coherence period. A diffractive beam splitter and a pair of wedge prisms are implemented to achieve precise spatial phase overlap and interferometrically accurate control of the time delay between the pump pulses. As the electronic coherence period is varied, coherent interactions lead to an enhancement or loss of the sharp feature in the transient grating signal near time zero, which is usually called coherent spike. Sensitivity of the transient grating signal to the solvation process also changes by the coherence time delay. All the features can be accounted for by invoking third-order nonlinear response functions. Numerical simulations have been performed to corroborate our description. This work identifies a major source of the coherent spike in the transient grating and transient absorption experiments. In addition, it allows us to propose a method that measures the solvation function more efficiently than conventional transient grating technique does.

  12. Transient Faults in Computer Systems

    NASA Technical Reports Server (NTRS)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  13. Transient Expression of Secretory IgA In Planta is Optimal Using a Multi-Gene Vector and may be Further Enhanced by Improving Joining Chain Incorporation

    PubMed Central

    Westerhof, Lotte B.; Wilbers, Ruud H. P.; van Raaij, Debbie R.; van Wijk, Christina Z.; Goverse, Aska; Bakker, Jaap; Schots, Arjen

    2016-01-01

    Secretory IgA (sIgA) is a crucial antibody in host defense at mucosal surfaces. It is a promising antibody isotype in a variety of therapeutic settings such as passive vaccination and treatment of inflammatory disorders. However, heterologous production of this heteromultimeric protein complex is still suboptimal. The challenge is the coordinate expression of the four required polypeptides; the alpha heavy chain, the light chain, the joining chain, and part of the polymeric-Ig-receptor called the secretory component, in a 4:4:1:1 ratio. We evaluated the transient expression of three sIgAκ variants, harboring the heavy chain isotype α1, α2m1, or α2m2, of the clinical antibody Ustekinumab in planta. Ustekinumab is directed against the p40 subunit that is shared by the pro-inflammatory cytokines interleukin (IL)-12 and IL-23. A sIgA variant of this antibody may enable localized treatment of inflammatory bowel disease. Of the three different sIgA variants we obtained the highest yield with sIgA1κ reaching up to 373 μg sIgA/mg total soluble protein. The use of a multi-cassette vector containing all four expression cassettes was most efficient. However, not the expression strategy, but the incorporation of the joining chain turned out to be the limiting step for sIgA production. Our data demonstrate that transient expression in planta is suitable for the economic production of heteromultimeric protein complexes such as sIgA. PMID:26793201

  14. Radio transients: an antediluvian review

    NASA Astrophysics Data System (ADS)

    Fender, R. P.; Bell, M. E.

    2011-09-01

    We are at the dawn of a new golden age for radio astronomy, with a new generation of facilities under construction and the global community focused on the Square Kilometre Array as its goal for the next decade. These new facilities offer orders of magnitude improvements in survey speed compared to existing radio telescopes and arrays. Furthermore, the study of transient and variable radio sources, and what they can tell us about the extremes of astrophysics as well as the state of the diffuse intervening media, have been embraced as key science projects for these new facilities. In this paper we review the studies of the populations of radio transients made to date, largely based upon archival surveys. Many of these radio transients and variables have been found in the image plane, and their astrophysical origin remains unclear. We take this population and combine it with sensitivity estimates for the next generation arrays to demonstrate that in the coming decade we may find ourselves detecting 10^5 image plane radio transients per year, providing a vast and rich field of research and an almost limitless set of targets for multi-wavelength follow up.

  15. Enhancing the electron lifetime and diffusion coefficient in dye-sensitized solar cells by patterning the layer of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sajedi Alvar, Mohammad; Javadi, Mohammad; Abdi, Yaser; Arzi, Ezatollah

    2016-03-01

    In order to fulfill fast electron transport and low recombination rate in dye-sensitized solar cells, we propose to utilize a micro-patterned anode based on TiO2 nanoparticles. The micro-structures of the mesoporous TiO2 films were patterned by Si molds (microimprint technique). A series of measurements including the time of flight, open circuit voltage decay, and charge extraction is carried out to investigate the electron transport in these structures. Our measurement confirms the fast electron transport and high electron lifetime in the micro-patterned structures, which is in agreement with the previously reported simulations. The results have shown that for columnar 20 × 20 μm2 micro-structures, the electron diffusion coefficient is increased by 60% from 3.9 × 10-5 cm 2 / s to 6.3 × 10-5 cm 2 / s . In addition, the electron lifetime has considerably (about one order of magnitude) increased in the cells based on TiO2 micro-structures. These enhancements in the electron transport have significantly improved the power conversion efficiency of dye-sensitized solar cells, which is increased by 69% from 5.16% to 8.73%. The results are explained in terms of directional diffusion and extra trap states in the micro-structures of porous TiO2 films.

  16. Fluorescence-guided bone resection by using Visually Enhanced Lesion Scope in diffuse chronic sclerosingosteomyelitis of the mandible: Clinical and pathological evaluation

    PubMed Central

    Sasaguri, Masaaki; Matsuo, Kou; Yoshida, Sei; Uehara, Masataka; Habu, Manabu; Haraguchi, Kazuya; Tanaka, Tatsurou; Morimoto, Yasuhiro; Yoshioka, Izumi; Tominaga, Kazuhiro

    2015-01-01

    Diffuse chronic sclerosingosteomyelitis (DCSO) is a refractory disease, becausethe etiology and pathogenesis remain poorly understood and to determine the border betweenunhealthy boneandhealthybone is difficult. However, progressive inflammation, clinical symptoms and a high recurrence rate of DCSO were the reasons for surgical treatment. We report a case of a 66-year old woman with DCSO of the right side of mandible who was treated with hemimandibulectomy and simultaneous reconstruction by vascularized free fibula flap. After preoperative administration of minocycline for 1 month, the bone fluorescence was successfully monitored by using a Visually Enhanced Lesion Scope (VELscope®). Intraoperatively, we could determine the resection boundaries. We investigated the clinical and histopathological findings. The fluorescence findings were well correlated with histopathological findings. Using a VELscope®was handy and useful to determine the border between DCSO lesion andhealthybone.The free fibula flap under the minocycline-derived bone fluorescence by using a VELscope®offered a good quality of mandibular bone and the successful management of an advanced and refractory DCSO. Key words:Fluorescence-guided bone resection, fibular free flap, osteomyelitis of the mandible, diffuse chronicosteomyelitis, VELscope®. PMID:26535106

  17. Influence of high-intensity turbulence on laminar boundary layer development on a cylindrical leading edge: Enhancement to eddy diffusivity

    NASA Astrophysics Data System (ADS)

    Pearson, Juli K.

    The growing demand for increased efficiency in turbine engine designs has sparked a growing interest for research of air flow around curved surfaces. The turbine's operating conditions result in material property constraints, especially in the first stage turbine vanes and blades. These turbine vane components experience extreme loading conditions of both high temperature and high turbulence intensities exiting the combustor. The surface of the turbine blades has cylindrical leading edges that promote stabilizing flow accelerations. These convex surfaces can cause a reduced eddy diffusivity across the boundary layer. This thesis reviews measurements of velocity and turbulence intensities taken just shy of the thirty degrees offset from the stagnation line of a two-dimensional cylindrical leading edge under a wide range of turbulence and flow conditions flow conditions. Flow conditions and velocity measurements were gathered with respect to the distance to the surface. The length of the measurements extended from the surface to beyond the boundary layer's edge. The instrumentation used to collect data was a single wire driven by a constant temperature anemometer bridge. The hot wire is specially modified to measure data near the cylindrical leading edges curved surface. The traversing system allowed the acquisition of high-resolution boundary layer data. The traversing system was installed internally to the cylindrical leading edge to reduce probe blockage.

  18. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.

    PubMed

    Tian, Fenghua; Liu, Hanli

    2014-01-15

    One of the main challenges in functional diffuse optical tomography (DOT) is to accurately recover the depth of brain activation, which is even more essential when differentiating true brain signals from task-evoked artifacts in the scalp. Recently, we developed a depth-compensated algorithm (DCA) to minimize the depth localization error in DOT. However, the semi-infinite model that was used in DCA deviated significantly from the realistic human head anatomy. In the present work, we incorporated depth-compensated DOT (DC-DOT) with a standard anatomical atlas of human head. Computer simulations and human measurements of sensorimotor activation were conducted to examine and prove the depth specificity and quantification accuracy of brain atlas-based DC-DOT. In addition, node-wise statistical analysis based on the general linear model (GLM) was also implemented and performed in this study, showing the robustness of DC-DOT that can accurately identify brain activation at the correct depth for functional brain imaging, even when co-existing with superficial artifacts. PMID:23859922

  19. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head

    PubMed Central

    Tian, Fenghua; Liu, Hanli

    2013-01-01

    One of the main challenges in functional diffuse optical tomography (DOT) is to accurately recover the depth of brain activation, which is even more essential when differentiating true brain signals from task-evoked artifacts in the scalp. Recently, we developed a depth-compensated algorithm (DCA) to minimize the depth localization error in DOT. However, the semi-infinite model that was used in DCA deviated significantly from the realistic human head anatomy. In the present work, we incorporated depth-compensated DOT (DC-DOT) with a standard anatomical atlas of human head. Computer simulations and human measurements of sensorimotor activation were conducted to examine and prove the depth specificity and quantification accuracy of brain atlas-based DC-DOT. In addition, node-wise statistical analysis based on the general linear model (GLM) was also implemented and performed in this study, showing the robustness of DC-DOT that can accurately identify brain activation at the correct depth for functional brain imaging, even when co-existing with superficial artifacts. PMID:23859922

  20. Enhanced blue light shielding property of light-diffusion polycarbonate composites by CeO2-coated silicate microspheres

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Shi, Liyi; Tang, Anjie; Song, Na; Tang, Shengfu; Ding, Peng

    2015-07-01

    The CeO2 coated silicate microspheres (SMSs) core-shell particles (SMS-CeO2) were synthesized for enhancing blue light shielding property of polycarbonate (PC) composites. The structure analysis showed that CeO2 particles were homogenously coated on SMS by Ce-O-Si bonds. The optical analysis indicated that the transmittance of PC/SMS-CeO2 composites were enhanced to 63.2% from 42.9% for PC/SMS/CeO2 composites when 0.6 wt.% fillers were loaded, while there was no obvious influence on the haze of the composites. UV-Vis analysis showed that the absorbance at 450-nm wavelength of blue-light increased from 24% of PC/SMS to 50% of PC/SMS-CeO2 composites, while the absorbance at 650-nm wavelength of red-light was unchanged. These results indicated that the PC/SMS-CeO2 composites had blue light shielding property and better performance on transmitting other visible lights.

  1. Improved Performance in Differentiating Benign from Malignant Sinonasal Tumors Using Diffusion-weighted Combined with Dynamic Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Wang, Xin-Yan; Yan, Fei; Hao, Hui; Wu, Jian-Xing; Chen, Qing-Hua; Xian, Jun-Fang

    2015-01-01

    Background: Differentiating benign from malignant sinonsal lesions is essential for treatment planning as well as determining the patient's prognosis, but the differentiation is often difficult in clinical practice. The study aimed to determine whether the combination of diffusion-weighted (DW) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can improve the performance in differentiating benign from malignant sinonasal tumors. Methods: This retrospective study included 197 consecutive patients with sinonasal tumors (116 malignant tumors and 81 benign tumors). All patients underwent both DW and DCE-MRI in a 3-T magnetic resonance scanner. Two different settings of b values (0,700 and 0,1000 s/mm2) and two different strategies of region of interest (ROI) including whole slice (WS) and partial slice (PS) were used to calculate apparent diffusion coefficients (ADCs). A DW parameter with WS ADCsb0,1000 and two DCE-MRI parameters (time intensity curve [TIC] and time to peak enhancement [Tpeak]) were finally combined to use in differentiating the benign from the malignant tumors in this study. Results: The mean ADCs of malignant sinonasal tumors (WS ADCsb0,1000 = 1.084 × 10−3 mm2/s) were significantly lower than those of benign tumors (WS ADCsb0,1000 = 1.617 × 10−3 mm2/s, P < 0.001). The accuracy using WS ADCsb0,1000 alone was 83.7% in differentiating the benign from the malignant tumors (85.3% sensitivity, 81.2% specificity, 86.4% positive predictive value [PPV], and 79.5% negative predictive value [NPV]). The accuracy using DCE with Tpeak and TIC alone was 72.1% (69.1% sensitivity, 74.1% specificity, 77.5% PPV, and 65.1% NPV). Using DW-MRI parameter was superior than using DCE parameters in differentiation between benign and malignant sinonasal tumors (P < 0.001). The accuracy was 87.3% (90.5% sensitivity, 82.7% specificity, 88.2% PPV, and 85.9% NPV) using DW-MRI combined with DCE-MRI, which was superior than that using DCE-MRI alone or using DW-MRI alone (both P < 0.001) in differentiating the benign from the malignant tumors. Conclusions: Diffusion-weighted combined with DCE-MRI can improve imaging performance in differentiating benign from malignant sinonasal tumors, which has the potential to improve diagnostic accuracy and to provide added value in the management for these tumors. PMID:25698188

  2. Enteric bacterial invasion of intestinal epithelial cells in vitro is dramatically enhanced using a vertical diffusion chamber model.

    PubMed

    Naz, Neveda; Mills, Dominic C; Wren, Brendan W; Dorrell, Nick

    2013-01-01

    The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells. PMID:24192850

  3. Intermetallic diffusion coatings for enhanced hot-salt oxidation resistance of nitrogen-containing austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mudali, U. Kamachi; Bhuvaneswaran, N.; Shankar, P.; Khatak, H. S.; Raj, B.

    2004-06-01

    This article presents the preparation, characterization, and hot-salt oxidation behavior of nitrogen-containing type 316L stainless steel (SS), surface modified with intermetallic coatings. Three different types of intermetallic coating systems, containing aluminum, titanium, and titanium/aluminum multilayers, were formed by diffusion annealing of type 316L austenitic SS containing 0.015, 0.1, 0.2, and 0.56 pct nitrogen. Analysis by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and secondary ion mass spectroscopy (SIMS) confirmed the formation of various intermetallic phases such as AIN, Al13Fe4, FeAl2, FeTi, Ti2N, and Ti3Al in the coatings. Hot salt oxidation behavior of the uncoated and surface-modified stainless steels was assessed by periodic monitoring of the weight changes of NaCl salt-applied alloys kept in an air furnace at 1023 K up to 250 hours. The oxide scales formed were examined by XRD and stereomicroscopy. Among the various surface modifications investigated in the present study, the results indicate that the titanium-modified alloys show the best hot-salt oxidation resistance with the formation of an adherent, protective, thin, and continuous oxide layer. Among the four N-containing alloys investigated, the titanium and Ti/Al multilayer modified 0.56 pct N alloy showed the best hot-salt oxidation resistance as compared to uncoated alloys. The slower corrosion kinetics and adherent scale morphology indicate that the surface-modified titanium intermetallic coatings could provide high-temperature service applications up to 1073 K, particularly in chloride containing atmospheres, for austenitic stainless steels.

  4. Transient Wellbore Fluid Flow Model

    Energy Science and Technology Software Center (ESTSC)

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  5. Estimating Atomic Diffusivity in Metallic Multilayered Systems

    NASA Astrophysics Data System (ADS)

    Vohra, Manav; Knio, Omar; Weihs Group Collaboration; Mao'S Group Collaboration

    2014-03-01

    Nanostructured multilayered systems can support self-propagating reactions due to exothermic intermixing and small atomic diffusion distances. In the Zr-Al system under stoichiometric and adiabatic conditions, the temperature increases by about 1500 K over ambient as a result of the formation reaction. This usually results in melting in the individual Al layers, and consequently to enhanced rates of intermixing. In order to characterize this phenomenon, and accordingly quantify the associated heat release rates, we rely on transient temperature measurements of homogeneous ignition, as well as measurements of the velocity of self-propagating fronts. The former enables us to infer averaged intermixing rates in a temperature range falling below the melting point of Al, whereas the latter yield estimates at high temperatures. Implementation of the formalism leads to correlations of the atomic diffusivity that exhibit two Arrhenius branches, with a jump across the melting temperature of Al. The resulting composite Arrhenius relation can be readily incorporated into reduced reaction models, and thus exploited to predict transient, multidimensional reaction phenomena. DTRA Basic Research Award #HDTRA1-11-1-00630.

  6. Transient IL-10 receptor blockade can enhance CD8+ T cell responses to a simian adenovirus-vectored HIV-1 conserved region immunogen

    PubMed Central

    Clutton, Genevieve; Bridgeman, Anne; Reyes-Sandoval, Arturo; Hanke, Tomas; Dorrell, Lucy

    2015-01-01

    Viral vector vaccines designed to elicit CD8+ T cells in non-human primates exert potent control of immunodeficiency virus infections; however, similar approaches have been unsuccessful in humans. Adenoviral vectors elicit potent T cell responses but also induce production of immunosuppressive interleukin-10 (IL-10), which can limit the expansion of T cell responses. We investigated whether inhibiting IL-10 signaling prior to immunization with a candidate adenovirus vectored-HIV-1 vaccine, ChAdV63.HIVconsv, could modulate innate and adaptive immune responses in BALB/c mice. Transient IL-10 receptor blockade led to a modest but significant increase in the total magnitude CD8+ T cell response to HIVconsv, but did not affect T cell responses to immunodominant epitopes. Anti-IL-10R-treated animals also exhibited greater expression of CD86 on CD11c+ dendritic cells. Our data support further investigation and optimization of IL-10 blocking strategies to improve the immunogenicity of vaccines based on replication-defective adenoviruses. PMID:25751015

  7. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons.

    PubMed

    Cohen, Matthew R; Johnson, William M; Pilat, Jennifer M; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E; Moiseenkova-Bell, Vera Y

    2015-12-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  8. Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells.

    PubMed

    Prasad, Tulika; Chandra, Aparna; Mukhopadhyay, Chinmay K; Prasad, Rajendra

    2006-11-01

    Inthis study, we show that iron depletion in Candida albicans with bathophenanthrolene disulfonic acid and ferrozine as chelators enhanced its sensitivity to several drugs, including the most common antifungal, fluconazole (FLC). Several other species of Candida also displayed increased sensitivity to FLC because of iron restriction. Iron uptake mutations, namely, Deltaftr1 and Deltaftr2, as well as the copper transporter mutation Deltaccc2, which affects high-affinity iron uptake in Candida, produced increased sensitivity to FLC compared to that of the wild type. The effect of iron depletion on drug sensitivity appeared to be independent of the efflux pump proteins Cdr1p and Cdr2p. We found that iron deprivation led to lowering of membrane ergosterol by 15 to 30%. Subsequently, fluorescence polarization measurements also revealed that iron-restricted Candida cells displayed a 29 to 40% increase in membrane fluidity, resulting in enhanced passive diffusion of the drugs. Northern blot assays revealed that the ERG11 gene was considerably down regulated in iron-deprived cells, which might account for the lowered ergosterol content. Our results show a close relationship between cellular iron and drug susceptibilities of C. albicans. Considering that multidrug resistance is a manifestation of multifactorial phenomena, the influence of cellular iron on the drug susceptibilities of Candida suggests iron as yet another novel determinant of multidrug resistance. PMID:16954314

  9. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier

    PubMed Central

    Sun, Zhizhi; Worden, Matthew; Wroczynskyj, Yaroslav; Yathindranath, Vinith; van Lierop, Johan; Hegmann, Torsten; Miller, Donald W

    2014-01-01

    Purpose The present study examines the use of an external magnetic field in combination with the disruption of tight junctions to enhance the permeability of iron oxide nanoparticles (IONPs) across an in vitro model of the blood–brain barrier (BBB). The feasibility of such an approach, termed magnetic field enhanced convective diffusion (MFECD), along with the effect of IONP surface charge on permeability, was examined. Methods The effect of magnetic field on the permeability of positively (aminosilane-coated [AmS]-IONPs) and negatively (N-(trimethoxysilylpropyl)ethylenediaminetriacetate [EDT]-IONPs) charged IONPs was evaluated in confluent monolayers of mouse brain endothelial cells under normal and osmotically disrupted conditions. Results Neither IONP formulation was permeable across an intact cell monolayer. However, when tight junctions were disrupted using D-mannitol, flux of EDT-IONPs across the bEnd.3 monolayers was 28%, increasing to 44% when a magnetic field was present. In contrast, the permeability of AmS-IONPs after osmotic disruption was less than 5%. The cellular uptake profile of both IONPs was not altered by the presence of mannitol. Conclusions MFECD improved the permeability of EDT-IONPs through the paracellular route. The MFECD approach favors negatively charged IONPs that have low affinity for the brain endothelial cells and high colloidal stability. This suggests that MFECD may improve IONP-based drug delivery to the brain. PMID:25018630

  10. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era.

    PubMed

    Zhou, Zheng; Sehn, Laurie H; Rademaker, Alfred W; Gordon, Leo I; Lacasce, Ann S; Crosby-Thompson, Allison; Vanderplas, Ann; Zelenetz, Andrew D; Abel, Gregory A; Rodriguez, Maria A; Nademanee, Auayporn; Kaminski, Mark S; Czuczman, Myron S; Millenson, Michael; Niland, Joyce; Gascoyne, Randy D; Connors, Joseph M; Friedberg, Jonathan W; Winter, Jane N

    2014-02-01

    The International Prognostic Index (IPI) has been the basis for determining prognosis in patients with aggressive non-Hodgkin lymphoma (NHL) for the past 20 years. Using raw clinical data from the National Comprehensive Cancer Network (NCCN) database collected during the rituximab era, we built an enhanced IPI with the goal of improving risk stratification. Clinical features from 1650 adults with de novo diffuse large B-cell lymphoma (DLBCL) diagnosed from 2000-2010 at 7 NCCN cancer centers were assessed for their prognostic significance, with statistical efforts to further refine the categorization of age and normalized LDH. Five predictors (age, lactate dehydrogenase (LDH), sites of involvement, Ann Arbor stage, ECOG performance status) were identified and a maximum of 8 points assigned. Four risk groups were formed: low (0-1), low-intermediate (2-3), high-intermediate (4-5), and high (6-8). Compared with the IPI, the NCCN-IPI better discriminated low- and high-risk subgroups (5-year overall survival [OS]: 96% vs 33%) than the IPI (5 year OS: 90% vs 54%), respectively. When validated using an independent cohort from the British Columbia Cancer Agency (n = 1138), it also demonstrated enhanced discrimination for both low- and high-risk patients. The NCCN-IPI is easy to apply and more powerful than the IPI for predicting survival in the rituximab era. PMID:24264230

  11. Out-diffused silver island films for surface-enhanced Raman scattering protected with TiO2 films using atomic layer deposition

    PubMed Central

    2014-01-01

    We fabricated self-assembled silver nanoisland films using a recently developed technique based on out-diffusion of silver from an ion-exchanged glass substrate in reducing atmosphere. We demonstrate that the position of the surface plasmon resonance of the films depends on the conditions of the film growth. The resonance can be gradually shifted up to 100 nm towards longer wavelengths by using atomic layer deposition of titania, from 3 to 100 nm in thickness, upon the film. Examination of the nanoisland films in surface-enhanced Raman spectrometry showed that, in spite of a drop of the surface-enhanced Raman spectroscopy (SERS) signal after the titania spacer deposition, the Raman signal can be observed with spacers up to 7 nm in thickness. Denser nanoisland films show slower decay of the SERS signal with the increase in spacer thickness. PACS 78.67.Sc (nanoaggregates; nanocomposites); 81.16.Dn (self-assembly); 74.25.nd (Raman and optical spectroscopy) PMID:25170333

  12. Reduced boron diffusion under interstitial injection in fluorine implanted silicon

    SciTech Connect

    Kham, M. N.; Matko, I.; Chenevier, B.; Ashburn, P.

    2007-12-01

    Point defect injection studies are performed to investigate how fluorine implantation influences the diffusion of boron marker layers in both the vacancy-rich and interstitial-rich regions of the fluorine damage profile. A 185 keV, 2.3x10{sup 15} cm{sup -2} F{sup +} implant is made into silicon samples containing multiple boron marker layers and rapid thermal annealing is performed at 1000 deg. C for times of 15-120 s. The boron and fluorine profiles are characterized by secondary ion mass spectroscopy and the defect structures by transmission electron microscopy (TEM). Fluorine implanted samples surprisingly show less boron diffusion under interstitial injection than those under inert anneal. This effect is particularly noticeable for boron marker layers located in the interstitial-rich region of the fluorine damage profile and for short anneal times (15 s). TEM images show a band of dislocation loops around the range of the fluorine implant and the density of dislocation loops is lower under interstitial injection than under inert anneal. It is proposed that interstitial injection accelerates the evolution of interstitial defects into dislocation loops, thereby giving transient enhanced boron diffusion over a shorter period of time. The effect of the fluorine implant on boron diffusion is found to be the opposite for boron marker layers in the interstitial-rich and vacancy-rich regions of the fluorine damage profile. For marker layers in the interstitial-rich region of the fluorine damage profile, the boron diffusion coefficient decreases with anneal time, as is typically seen for transient enhanced diffusion. The boron diffusion under interstitial injection is enhanced by the fluorine implant at short anneal times but suppressed at longer anneal times. It is proposed that this behavior is due to trapping of interstitials at the dislocation loops introduced by the fluorine implant. For boron marker layers in the vacancy-rich region of the fluorine damage profile, suppression of boron diffusion is seen for short anneals and then increased diffusion after a critical time, which is longer for inert anneal than interstitial injection. This behavior is explained by the annealing of vacancy-fluorine clusters, which anneal quicker under interstitial injection because the injected interstitials annihilate vacancies in the clusters.

  13. Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report

    SciTech Connect

    Spitz, H. B.; Usman, S.

    2005-07-07

    The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that includes effects of molecular diffusion and convection to describe the transport of radon in water. The effective diffusion coefficients measured in these experiments are 6.8 x 10{sup -4} {+-} 28% and 3.5 x 10{sup -4} {+-} 34% cm{sup 2} sec{sup -1} for the steady-state and transient diffusion conditions, respectively. Water barriers ranging in thickness from 30-50 cm reduce the amount of radon released from the radium-bearing source material by a factor of 0.3-0.1, respectively.

  14. TIA (Transient Ischemic Attack)

    MedlinePlus

    ... Know About Stroke TIA (Transient Ischemic Attack) Updated:Mar 28,2016 Excerpted from “ Why Rush? ”, Stroke Connection January/February 2009 (Science update October 2012) While transient ischemic attack (TIA) ...

  15. An Uncommon Cause of Transient Neurological Dysfunction

    PubMed Central

    Bhatt, Archit; Chang, Howard T.

    2014-01-01

    Transient neurological dysfunction may be associated with uncommon disorders and should prompt consideration of a broad differential diagnosis when assessing patients with episodic symptoms. The most common causes of transient neurological dysfunction include transient ischemic attack (TIA), seizure disorder, and migraine and its variants. However, underlying unusual pathophysiological processes such as brain tumors can also cause transient neurological dysfunction. Here we present a case of a 68-year-old male with oligodendroglial gliomatosis cerebri (OGC) who presented with TIA-like symptoms. Brain magnetic resonance imaging revealed multiple diffuse T2 hyperintensities within the white and gray matter. Magnetic resonance spectroscopy was suggestive of gliomatosis cerebri and was particularly helpful in this case. The diagnosis of OGC was confirmed by histopathology and molecular genetic studies on brain biopsy tissue. In this report, we discuss the clinical and radiological characteristics of OGC and highlight the unusual presentation of this case. PMID:24982718

  16. An uncommon cause of transient neurological dysfunction.

    PubMed

    Farooq, Muhammad U; Bhatt, Archit; Chang, Howard T

    2014-07-01

    Transient neurological dysfunction may be associated with uncommon disorders and should prompt consideration of a broad differential diagnosis when assessing patients with episodic symptoms. The most common causes of transient neurological dysfunction include transient ischemic attack (TIA), seizure disorder, and migraine and its variants. However, underlying unusual pathophysiological processes such as brain tumors can also cause transient neurological dysfunction. Here we present a case of a 68-year-old male with oligodendroglial gliomatosis cerebri (OGC) who presented with TIA-like symptoms. Brain magnetic resonance imaging revealed multiple diffuse T2 hyperintensities within the white and gray matter. Magnetic resonance spectroscopy was suggestive of gliomatosis cerebri and was particularly helpful in this case. The diagnosis of OGC was confirmed by histopathology and molecular genetic studies on brain biopsy tissue. In this report, we discuss the clinical and radiological characteristics of OGC and highlight the unusual presentation of this case. PMID:24982718

  17. Nanoparticle dispersion in polymer nanocomposites by spin-diffusion-averaged paramagnetic enhanced NMR relaxometry: scaling relations and applications.

    PubMed

    Xu, Bo; Leisen, Johannes; Beckham, Haskell W

    2014-08-21

    Scaling relationships are identified between NMR longitudinal relaxation times and clay dispersion quality in polymer-paramagnetic clay nanocomposites. Derived from a previously published analytical relationship developed from a lamella-based model, the scaling relationships are based on the enhancement of NMR relaxation rates with increasing exfoliation and dispersion homogeneity. The paramagnetic contribution to the NMR relaxation rate is inversely proportional to the square of the clay interparticle spacing, and directly proportional to the square of the clay weight fraction. These scaling relationships allow the prediction of relative exfoliation of clay particles for a given series of polymer-clay nanocomposites. With independent knowledge of clay exfoliation in a single sample (e.g., from transmission electron microscopy), NMR relaxometry data may be converted into absolute measures of exfoliation. These scaling relations are confirmed with samples of fully exfoliated poly(vinyl alcohol)-montmorillonite nanocomposites, and then used to reveal exfoliation and dispersion quality in a series of nylon-6-montmorillonite nanocomposites. This characterization route is advantageous because NMR relaxometry can more rapidly provide clay dispersion information that is averaged over larger sample volumes than transmission electron microscopy. PMID:25000915

  18. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  19. Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Guckenberger, Achim; Gekle, Stephan

    2016-01-01

    The physical approach of a small particle (virus, medical drug) to the cell membrane represents the crucial first step before active internalization and is governed by thermal diffusion. Using a fully analytical theory we show that the stretching and bending of the elastic membrane by the approaching particle induces a memory in the system, which leads to anomalous diffusion, even though the particle is immersed in a purely Newtonian liquid. For typical cell membranes the transient subdiffusive regime extends beyond 10 ms and can enhance residence times and possibly binding rates up to 50%. Our analytical predictions are validated by numerical simulations.

  20. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    PubMed

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. PMID:26970556

  1. {ital Ab Initio} Pseudopotential calculations of dopant diffusion in Si

    SciTech Connect

    Zhu, J., LLNL

    1997-04-28

    The ab initio pseudopotential method is used to study transient-enhanced-diffusion (TED) related processes. The electronic degrees of freedom are included explicitly, together with the fully self-consistent treatment of the electron charge density. A large supercell and a fine k-point mesh are used to ensure numerical convergence. Such method has been demonstrated to give quantitative description of defect energetic. We will show that boron diffusion is significantly enhanced in the presence of the Si interstitial due to the substantial lowering of the migrational barrier through a kick-out mechanism. The resulting mobile boron can also be trapped by another substitutional boron, forming an immobile and elect rically inactive two-boron pair. Similarly, carbon diffusion is also enhanced significantly due to the pairing with Si interstitial. However, carbon binds to Si interstitial much more strongly than boron does, taking away most Si interstitial from boron at sufficiently large carbon concentration, which causes the suppression of the boron TED. We will also show that Fermi level effect plays an important role in both Si interstitial and boron diffusion.

  2. Quantitative Evaluation of Diffusion and Dynamic Contrast-Enhanced MR in Tumor Parenchyma and Peritumoral Area for Distinction of Brain Tumors

    PubMed Central

    Zhao, Jing; Yang, Zhi-yun; Luo, Bo-ning; Yang, Jian-yong; Chu, Jian-ping

    2015-01-01

    Purpose To quantitatively evaluate the diagnostic efficiency of parameters from diffusion and dynamic contrast-enhanced MR which based on tumor parenchyma (TP) and peritumoral (PT) area in classification of brain tumors. Methods 45 patients (male: 23, female: 22; mean age: 46 y) were prospectively recruited and they underwent conventional, DCE-MR and DWI examination. With each tumor, 10–15 regions of interest (ROIs) were manually placed on TP and PT area. ADC and permeability parameters (Ktrans, Ve, Kep and iAUC) were calculated and their diagnostic efficiency was assessed. Results In TP, all permeability parameters and ADC value could significantly discriminate Low- from High grade gliomas (HGG) (p<0.001); among theses parameters, Ve demonstrated the highest diagnostic power (iAUC: 0.79, cut-off point: 0.15); the most sensitive and specific index for gliomas grading were Ktrans (84%) and Kep (89%). While, in PT area, only Ktrans could help in gliomas grading (P = 0.009, cut-off point: 0.03 min-1). Moreover, in TP, mean Ve and iAUC of primary central nervous system lymphoma (PCNSL) and metastases were significantly higher than that in HGG (p<0.003). Further, in PT area, mean Ktrans (p≤0.004) could discriminate PCNSL from HGG and ADC (p≤0.003) could differentiate metastases with HGG. Conclusions Quantitative ADC and permeability parameters from Diffusion and DCE-MR in TP and PT area, especially DCE-MR, can aid in gliomas grading and brain tumors discrimination. Their combined application is strongly recommended in the differential diagnosis of these tumor entities. PMID:26384329

  3. Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI.

    PubMed

    Budde, Matthew D; Gold, Eric; Jordan, E Kay; Frank, Joseph A

    2012-01-01

    Pharmacological approaches to treat breast cancer metastases in the brain have been met with limited success. In part, the impermeability of the blood brain barrier (BBB) has hindered delivery of chemotherapeutic agents to metastatic tumors in the brain. BBB-permeable chemotherapeutic drugs are being developed, and noninvasively assessing the efficacy of these agents will be important in both preclinical and clinical settings. In this regard, dynamic contrast enhanced (DCE) and diffusion weighted imaging (DWI) are magnetic resonance imaging (MRI) techniques to monitor tumor vascular permeability and cellularity, respectively. In a rat model of metastatic breast cancer, we demonstrate that brain and bone metastases develop with distinct physiological characteristics as measured with MRI. Specifically, brain metastases have limited permeability of the BBB as assessed with DCE and an increased apparent diffusion coefficient (ADC) measured with DWI compared to the surrounding brain. Microscopically, brain metastases were highly infiltrative, grew through vessel co-option, and caused extensive edema and injury to the surrounding neurons and their dendrites. By comparison, metastases situated in the leptomenengies or in the bone had high vascular permeability and significantly lower ADC values suggestive of hypercellularity. On histological examination, tumors in the bone and leptomenengies were solid masses with distinct tumor margins. The different characteristics of these tissue sites highlight the influence of the microenvironment on metastatic tumor growth. In light of these results, the suitability of DWI and DCE to evaluate the response of chemotherapeutic and anti-angiogenic agents used to treat co-opted brain metastases, respectively, remains a formidable challenge. PMID:22042553

  4. Secondary porosity in a transient vadose zone

    SciTech Connect

    Frederick, W.T.; Grasso, T.X. Jr. )

    1993-03-01

    The Western New York Nuclear Service Center is the site of low and high level radioactive waster buried in a series of trenches excavated in a 28 m thick, Lavery-age silty clay diamicton that exhibits a 6 meter thick transient vadoes zone where exposed at the surface. Hydrostratigraphy of this till includes a 0.25 m thick poorly developed macroporous soil, a 3.5 m thick weathered zone of densely spaced and randomly orientated horizontal and vertical fractures, a 2 m thick unweathered zone of intermittently spaced fractures exhibiting east-west orientations, and a massive 23 m thick unweathered till zone that exhibits isolated, east-west orientated fractures. Bulk hydraulic conductivity of this active flow zone decreases with depth from 10[sup [minus]5] to 10[sup [minus]8] cm/s. The specific discharge of vertically flowing groundwater in the massive till zone is 1.25 cm/yr. A water surplus in the recharge season saturates the fractured zone to grade with up to 7.37 cm/yr of net infiltration. Tritium and radionuclides from the waste trenches and surrounding soil matrix hydrodynamically disperse into the field-saturated fracture network that contains meteoric recharge water. A soil moisture deficit in discharge season produces a vadose zone of widened fractures that via capillarity enhances the diffusion of contaminants into the soil matrix. These enlarged connecting conduits laterally channel the excess infiltration from the recharge season and diffused contaminants to local lowlands and incised streams that truncate the unweathered till. The current vadose and phreatic zone flow study will be used in numeric simulations that will delineate the areal extend and temporal duration of these seepage faces and the time frame of possible surfaces water contamination.

  5. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

    NASA Astrophysics Data System (ADS)

    Gulsoy, Gokce; Was, Gary S.

    2015-04-01

    Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

  6. Titan's Magic Island: Transient features in a Titan sea

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Hayes, A. G., Jr.; Lunine, J. I.; Zebker, H. A.; Stiles, B. W.; Sotin, C.; Barnes, J. W.; Turtle, E. P.; Baines, K. H.; Brown, R. H.; Buratti, B. J.; Clark, R. N.; Encrenaz, P.; Kirk, R. L.; Le Gall, A. A.; Lopes, R. M. C.; Lorenz, R. D.; Malaska, M. J.; Mitchell, K. L.; Nicholson, P. D.; Paillou, P.; Radebaugh, J.; Wall, S. D.; Wood, C. A.

    2014-12-01

    Transient bright features, popularly referred to as Titan's Magic Island, were observed in Cassini Synthetic Aperture Radar (SAR) images of the northern sea, Ligeia Mare, in July 2013 (Hofgartner et al., 2014, Nature Geosci. 7, 493). Images obtained prior and subsequent to the July 2013 detection do not include these bright features. The features are not consistent with ambiguities, scalloping, gain control or edge effects and are not considered to be standard SAR image artifacts. We compared the measured radar cross-sections from the region of the anomalies to a suite of quasi-specular plus diffuse backscatter models and found that this class of models for a permanent structure can be ruled out to 88% confidence. Thus we conclude that the appearance of the features is the result of a transformation and the subsequent non-detections indicate that they were transient. The observational constraints do not permit tides and/or sea level change to be the dominant cause of the transient expression. We suggest that ephemeral phenomena such as surface waves, rising bubbles, and suspended or floating solids best explain these features. Local meteorology could stimulate or enhance these phenomena, but we are unable to constrain its role in the appearance of these transients. These enigmatic features and the waves reportedly detected in Punga Mare (Barnes et al., 2014, Planetary Science, accepted) are likely the first glimpses of dynamic processes that are commencing in the northern lakes and seas as summer nears in the northern hemisphere. It is plausible that they are an expression of the changing seasons and as Titan's northern hemisphere continues transitioning toward summer they may occur with increased frequency. Ligeia Mare, including the region of the transients, will be observed again during the Cassini Titan flyby on August 21, 2014 and this observation could be diagnostic of the nature of these features. For example, if the transients are waves and waves are detectable at the 12 degrees incidence of the upcoming radar measurements, the predicted increase in wind speeds should result in a higher spatial density of these features.

  7. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong

    2014-12-01

    To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.

  8. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Okamura, Kosuke

    2015-06-01

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) composed of carbon black and polytetrafluoroethylene (PTFE) have been commonly used to improve the water management characteristics of polymer electrolyte fuel cells (PEFCs). However, the hydrophobic MPL coated GDL designed to prevent dehydration of the membrane under low humidity conditions is generally inferior at reducing flooding under high humidity conditions. It is therefore important to develop a robust MPL coated GDL that can enhance the PEFC performance regardless of the humidity conditions. In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed. The less hydrophobic pores incorporating CNTs are effective at conserving the membrane humidity under low humidity conditions. The MPL with CNTs is also effective at expelling excess water from the catalyst layer while maintaining oxygen flow pathways from the GDL substrate, allowing the mean flow pore diameter to be decreased to 2 μm without reducing the ability of the MPL to prevent flooding under high humidity conditions. An MPL coated GDL with a CNT content of 4 mass% exhibits significantly higher performance under both low and high humidity conditions than a hydrophobic MPL coated GDL.

  9. Transient global amnesia.

    PubMed

    Szabo, Kristina

    2014-01-01

    Transient global amnesia (TGA) is a sudden and severe anterograde memory disturbance accompanied by various degrees of retrograde amnesia and sometimes executive dysfunction. TGA affects elderly individuals and men and women equally. During the episode, patients cannot recall novel episodic information and therefore repeatedly ask the same questions. They are not fully oriented to space and time. Diagnostic criteria first established in 1985, and elaborated in 1990, demand that there is no clouding of consciousness, other impairments of cognition, or a history of epilepsy or head trauma. An episode of TGA resolves within 24 h leaving a memory gap for the length of the attack. While in rare cases TGA might happen repeatedly, it mostly occurs as a single attack. TGA is considered a benign disorder as memory deficits resolve completely and do not lead to long-term sequelae. In up to 90% of reported TGA cases, a precipitating event - mainly described as physical or emotional stress - is present. The cause of TGA has been a matter of long-standing debate among researchers. In search of an answer, several possible causes (ischemia, migraine, epileptic seizures, or, more recently, a disturbance of venous hemodynamics) have been hypothesized. However, to date there is no scientific proof of any of these mechanisms. By using diffusion-weighted MRI 24-48 h after a TGA episode, small dot-like lesions have been detected in the hippocampus. This has led to the implication that the selective vulnerability of CA1 neurons to metabolic stress might play a role in the pathophysiology of TGA. PMID:24777137

  10. Transient Voltage Recorder

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro J.; Simpson, Howard J.

    2002-09-01

    A voltage transient recorder can detect lightning induced transient voltages. The recorder detects a lightning induced transient voltage and adjusts input amplifiers to accurately record transient voltage magnitudes. The recorder stores voltage data from numerous monitored channels, or devices. The data is time stamped and can be output in real time, or stored for later retrieval. The transient recorder, in one embodiment, includes an analog-to-digital converter and a voltage threshold detector. When an input voltage exceeds a pre-determined voltage threshold, the recorder stores the incoming voltage magnitude and time of arrival. The recorder also determines if its input amplifier circuits clip the incoming signal or if the incoming signal is too low. If the input data is clipped or too low, the recorder adjusts the gain of the amplifier circuits to accurately acquire subsequent components of the lightning induced transients.

  11. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?

    PubMed

    Xue, Yi; Skrynnikov, Nikolai R

    2011-09-21

    Molecular dynamics (MD) simulations have been widely used to analyze dynamic conformational equilibria of folded proteins, especially in relation to NMR observables. However, this approach found little use in the studies of disordered proteins, where the sampling of vast conformational space presents a serious problem. In this paper, we demonstrate that the latest advances in computation technology make it possible to overcome this limitation. The experimentally validated (calibrated) MD models allow for new insights into structure/dynamics of disordered proteins. As a test system, we have chosen denatured ubiquitin in solution with 8 M urea at pH 2. High-temperature MD simulations in implicit solvent have been carried out for the wild-type ubiquitin as well as MTSL-tagged Q2C, D32C, and R74C mutants. To recalibrate the MD data (500 K) in relation to the experimental conditions (278 K, 8 M urea), the time axes of the MD trajectories were rescaled. The scaling factor was adjusted such as to maximize the agreement between the simulated and experimental (15)N relaxation rates. The resulting effective length of the trajectories, 311 μs, ensures good convergence properties of the MD model. The constructed MD model was validated against the array of experimental data, including additional (15)N relaxation parameters, multiple sets of paramagnetic relaxation enhancements (PREs), and the radius of gyration. In each case, a near-quantitative agreement has been obtained, suggesting that the model is successful. Of note, the MD-based approach rigorously predicts the quantities that are inherently dynamic, i.e., dependent on the motional correlation times. This cannot be accomplished, other than in empirical fashion, on the basis of static structural models (conformational ensembles). The MD model was further used to investigate the relative translational motion of the MTSL label and the individual H(N) atoms. The derived segmental diffusion coefficients proved to be nearly uniform along the peptide chain, averaging to D = 0.49-0.55 × 10(-6) cm(2)/s. This result was verified by direct analysis of the experimental PRE data using the recently proposed Ullman-Podkorytov model. In this model, MTSL and H(N) moieties are treated as two tethered spheres undergoing mutual diffusion in a harmonic potential. The fitting of the experimental data involving D as a single adjustable parameter leads to D = 0.45 × 10(-6) cm(2)/s, in good agreement with the MD-based analyses. This result can be compared with the range of estimates obtained from the resonance energy transfer experiments, D = 0.2-6.0 × 10(-6) cm(2)/s. PMID:21819149

  12. Detection of false transients

    NASA Astrophysics Data System (ADS)

    Galleani, Lorenzo; Cohen, Leon; Nelson, Douglas J.

    2005-08-01

    When one calculates a time-frequency distribution of white noise there sometimes appear transients of short duration. Superficially, these transients appear to be real signals but they are not. This comes about by random chance in the noise and also because particular types of distributions do not resolve components well in time. These fictitious signals can be misclassified by detectors and hence it is important to understand their origin and statistical properties. We present experimental studies regarding these false transients, and by simulation we statistically quantify their duration for various distributions. We compare the number and duration of the false transients when different distributions are used.

  13. Transient isotachophoresis focusing of DNA and DNA-protein complexes is essentially enhanced by spontaneously dissolved aerial carbon dioxide in electrolytes.

    PubMed

    Liu, Shengquan; Zhang, Dapeng; Wang, Hailin

    2015-01-01

    The formation of a highly adapted high-E zone is critical to isotachophoresis separation and focusing. Recently, we discovered that the high-E zone is present only in a small portion of electrophoresis channel in the presence of EOF (Liu, S. Q. et al. J. Am. Chem. Soc. 2013, 135, 4644-4647). Accordingly, a much narrower high-E zone is presumably present in t-ITP. If so, it is hard to achieve efficient t-ITP focusing. Indeed, by online coupling t-ITP with CE-LIF immunoassay, the immunocomplexes of carcinogenic BPDE-dG adducts are not efficiently focused using a freshly prepared background electrolyte. Intriguingly, we observed that 20-day stored background electrolyte displays a 10-fold better focusing efficiency. We hypothesize that the unexpected phenomenon is associated with the dissolution of aerial carbon dioxide, which is mainly converted to ionic HCO3(-) in the weak alkaline background electrolyte. Consequently, HCO3(-) of high electrophoretic mobility will be continuously injected into the capillary along with the background electrolyte and act as an alternative leading ion to improve the focusing. By addition of dry ice (without causing significant pH decrease, ΔpH < 0.4) to freshly prepared background electrolytes, we immediately observed the enhanced focusing of immunocomplexes of the DNA adducts. NH4HCO3 and Na2CO3, included in the background electrolyte, also improve the focusing efficiency and reproducibility. All these consistently support our hypothesis. To understand the underlying mechanism, an advanced CE-SMFI was exploited to monitor in real time the motion of single DNA molecules and the E change throughout t-ITP. We uncovered that t-ITP can induce a local high-E zone, but the presence of HCO3(-) in the background electrolyte could greatly increase the E value in the high-E zone, which allows more DNA molecules to rapidly move backward and to be efficiently stacked at LE/TE boundary. This study provides new insight into nonuniform electric field-induced electrophoresis focusing. PMID:25437902

  14. Nocistatin excites rostral agranular insular cortex-periaqueductal gray projection neurons by enhancing transient receptor potential cation conductance via G(alphaq/11)-PLC-protein kinase C pathway.

    PubMed

    Chen, Y L; Li, A H; Yeh, T H; Chou, A H; Weng, Y S; Wang, H L

    2010-06-16

    Rostral agranular insular cortex (RAIC) projects to periaqueductal gray (PAG) and inhibits spinal nociceptive transmission by activating PAG-rostral ventromedial medulla (RVM) descending antinociceptive circuitry. Despite being generated from the same precursor prepronociceptin, nocistatin (NST) and nociceptin/orphanin FQ (N/OFQ) produce supraspinal analgesic and hyperalgesic effects, respectively. Prepronociceptin is highly expressed in the RAIC. In the present study, we hypothesized that NST and N/OFQ modulate spinal pain transmission by regulating the activity of RAIC neurons projecting to ventrolateral PAG (RAIC-PAG). This hypothesis was tested by investigating electrophysiological effects of N/OFQ and NST on RAIC-PAG projection neurons in brain slice. Retrogradely labeled RAIC-PAG projection neurons are layer V pyramidal cells and express mRNA of vesicular glutamate transporter subtype 1, a marker for glutamatergic neurons. N/OFQ hyperpolarized 25% of RAIC-PAG pyramidal neurons by enhancing inwardly rectifying potassium conductance via pertussis toxin-sensitive G(alphai/o). In contrast, NST depolarized 33% of RAIC-PAG glutamatergic neurons by causing the opening of canonical transient receptor potential (TRPC) cation channels through G(alphaq/11)-phospholipase C-protein kinase C pathway. There were two separate populations of RAIC-PAG pyramidal neurons, one responding to NST and the other one to N/OFQ. Our results suggest that G(alphaq/11)-coupled NST receptor mediates NST excitation of RAIC-PAG glutamatergic neurons, which is expected to cause the supraspinal analgesia by enhancing the activity of RAIC-PAG-RVM antinociceptive pathway. Opposite effects of NST and N/OFQ on supraspinal pain regulation are likely to result from their opposing effects on RAIC-PAG pyramidal neurons. PMID:20359524

  15. Transient surface tension in miscible liquids.

    PubMed

    Lacaze, Laurent; Guenoun, Patrick; Beysens, Daniel; Delsanti, Michel; Petitjeans, Philippe; Kurowski, Pascal

    2010-10-01

    Evidence of the existence of a transient surface tension between two miscible fluid phases is given. This is done by making use of a density matched free of gravity perturbations, binary liquid of isobutyric acid and water, which presents a miscibility gap and is studied by light scattering. The experiment is performed very near the critical point of the binary liquid, where the diffusion of phases is extremely slow. The surface tension is deduced from the evolution of the structure factor obtained from low angle light scattering. The latter evolution is successfully analyzed in terms of a local equilibrium diffusive approach that makes explicit how the surface tension decreases with time. PMID:21230286

  16. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate.

    PubMed

    Levoye, Angélique; Zwier, Jurriaan M; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z'-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization. PMID:26617570

  17. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences

    PubMed Central

    Lucas, Rita; Dias, João Lopes; Cunha, Teresa Margarida

    2015-01-01

    PURPOSE We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. METHODS Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. RESULTS Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. CONCLUSION The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases. PMID:26200480

  18. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate

    PubMed Central

    Levoye, Angélique; Zwier, Jurriaan M.; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z′-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization. PMID:26617570

  19. Gamma Ray Transients

    NASA Astrophysics Data System (ADS)

    Gehrels, N.

    Almost every source in the gamma-ray sky is variable. Transient classification therefore depends on the definition of ``transient'' and on instrument sensitivity thresholds. The sources that most clearly fall in the transient category are those that have large intensity differences between their low (or off) states and their high states and have well defined high states with durations less than about a year. Examples are gamma-ray bursts, solar flares, X-ray novae, jet transients, bursting pulsars and Be binary pulsars. Generally, most accreting neutron stars, galactic black holes and AGN are variable with periods of high intensity that can be labeled as transient outbursts. Supernovae and novae form another class of gamma-ray transient driven by explosive nucleosynthesis. The Compton Gamma Ray Observatory (CGRO) has been observing the gamma-ray sky for 6 years. Many of the scientific discoveries from the mission have related to transient observations. The BATSE instrument onboard is a powerful all-sky monitor with 50 m Crab detection sensitivity above 20 keV. The OSSE instrument has a narrow field-of-view with limited sky coverage, but has excellent sensitivities above 50 keV for specific objects. At higher MeV and GeV energies the COMPTEL and EGRET instruments have wide fields-of-view that give reasonable coverage of the sky. In this talk I will review the different classes of gamma-ray transient and present results from CGRO observations.

  20. Perception of acoustic transients

    NASA Astrophysics Data System (ADS)

    Howard, J. H., Jr.

    1984-01-01

    The research investigates the role of knowledge based or top-down processing in the perception of nonlinguistic, transient signals. The experiments address issues in transient pattern classification, target observation, attentional focusing, auditory induction, and computer based performance aids. The theoretical significance and naval relevance of the research is considered.

  1. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  2. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  3. Hyperintense Acute Reperfusion Marker on FLAIR in a Patient with Transient Ischemic Attack

    PubMed Central

    Förster, Alex; Wenz, Holger; Groden, Christoph

    2016-01-01

    The hyperintense acute reperfusion marker (HARM) has initially been described in acute ischemic stroke. The phenomenon is caused by blood-brain barrier disruption following acute reperfusion and consecutive delayed gadolinium enhancement in the subarachnoid space on fluid attenuated inversion recovery (FLAIR) images. Here we report the case of an 80-year-old man who presented with transient paresis and sensory loss in the right arm. Initial routine stroke MRI including diffusion- and perfusion-weighted imaging demonstrated no acute pathology. Follow-up MRI after three hours demonstrated subarachnoid gadolinium enhancement in the left middle cerebral artery territory consistent with HARM that completely resolved on follow-up MRI three days later. This case illustrates that even in transient ischemic attack patients disturbances of the blood-brain barrier may be present which significantly exceed the extent of acute ischemic lesions on diffusion-weighted imaging. Inclusion of FLAIR images with delayed acquisition after intravenous contrast agent application in MRI stroke protocols might facilitate the diagnosis of a recent acute ischemic stroke.

  4. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion.

    PubMed

    Malhi, Moolchand; Gui, Hongbing; Yao, Lei; Aschenbach, Jörg R; Gäbel, Gotthold; Shen, Zanming

    2013-01-01

    We tested the hypothesis that the proliferative effects of intraruminal butyrate infusions on the ruminal epithelium are linked to upregulation in cyclin D1 (CCND1), the cyclin-dependent kinase 4 (CDK4), and their possible association with enhanced absorption of short-chain fatty acids (SCFA). Goats (n=23) in 2 experiments (Exp.) were fed 200 g/d concentrate and hay ad libitum. In Exp. 1, goats received an intraruminal infusion of sodium butyrate at 0.3 (group B, n=8) or 0 (group C, n=7) g/kg of body weight (BW) per day before morning feeding for 28 d and were slaughtered 8 h after the butyrate infusion. In Exp. 2, goats (n=8) received butyrate infusion and feeding as in Exp. 1. On d 28, epithelial samples were biopsied from the antrium ruminis at 0, 3, and 7 h after the last butyrate infusion. In Exp. 1, the ruminal molar proportional concentration of butyrate increased in group B by about 110% after butyrate infusion and remained elevated for 1.5 h; thereafter, it gradually returned to the baseline (preinfusion) level. In group C, the molar proportional concentration of butyrate was unchanged over the time points. The length and width of papillae increased in B compared with C; this was associated with increased numbers of cells and cell layers in the epithelial strata and an increase in the surface area of 82%. The mRNA expression of CCND1 increased transiently at 3 h but returned to the preinfusion level at 7 h following butyrate infusion in Exp. 2. However, it did not differ between B and C in Exp. 1, in which the ruminal epithelium was sampled at 8 h after butyrate infusion. The mRNA expression of the monocarboxylate transporter MCT4, but not MCT1, was stably upregulated in B compared with C. The estimated absorption rate of total SCFA (%/h) increased in B compared with C. We conclude that transient increases in cyclin D1 transcription contribute to butyrate-induced papillae growth and subsequently to the increased absorption of SCFA in the ruminal epithelium of goats. PMID:24119813

  5. Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads

    NASA Astrophysics Data System (ADS)

    Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.

    2016-02-01

    The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.

  6. Plasmapause diffusion

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.

    1983-01-01

    The Bohm diffusion coefficient and observed electrostatic wave scattering are used as the bases of estimates of the smoothing effect that diffusion may have on steep plasmapause density gradients. The estimate for diffusion resulting from scattering by observed electrostatic waves is found to be much lower than that of the perpendicular Bohm diffusion coefficient for characteristic plasma temperatures and magnetic fields. This diffusion rate estimate may be too small, however, if the wave amplitudes are significantly higher for steep plasmapauses. The effects are therefore negligible for most considerations of macroscopic plasmapause dynamics, but may be significant in limiting drift wave instabilities and similar phenomena driven by the steepness of the plasmapause density gradient.

  7. Coronal transient--eruptive prominence of 1980 August 5

    SciTech Connect

    Fisher, R.; Garcia, C.J.; Seagraves, P.

    1981-06-15

    A coronal transient was observed in association with an eruptive prominence event using the Mauna Loa experiment system. The transient, a rarefaction, formed before the acceleration of the eruptive prominence. Upward velocities of various features, as seen in the plane of the sky, show a marked difference as a function of time between the transient and the eruptive prominence. A region of enhanced electron density formed slowly in front of the rarefaction.

  8. Luminous Extragalactic Transients

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Jonker, Peter; Athena Explosive Transients Working Group

    2015-09-01

    The ESA Athena X-ray observatory mission will combine exceptionally high throughout with high spectral-energy resolution and will revolutionise many aspects of high-energy astrophysics. Many of the most powerful transient sources, including gamma-ray bursts and tidal disruptions events, are bright X-ray sources. Athena will be designed to have a fast-response capability permitting efficient observations of many transients. We will summarise the proposed capability of the mission and illustrate science programs to study transients ranging from the most distant GRBs to nuclear activity in nearby galaxies.

  9. [Transient epileptic amnesia].

    PubMed

    Muramatsu, Kazuhiro; Yoshizaki, Takahito

    2016-03-01

    Transient amnesia is one of common clinical phenomenon of epilepsy that are encountered by physicians. The amnestic attacks are often associated with persistent memory disturbances. Epilepsy is common among the elderly, with amnesia as a common symptom and convulsions relatively uncommon. Therefore, amnesia due to epilepsy can easily be misdiagnosed as dementia. The term 'transient epileptic amnesia (TEA)' was introduced in the early 1990s by Kapur, who highlighted that amnestic attacks caused by epilepsy can be similar to those occurring in 'transient global amnesia', but are distinguished by features brevity and recurrence. In 1998, Zeman et al. proposed diagnostic criteria for TEA. PMID:27025088

  10. Transient nucleation in glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.

    1991-01-01

    Nucleation rates in condensed systems are frequently not at their steady state values. Such time dependent (or transient) nucleation is most clearly observed in devitrification studies of metallic and silicate glasses. The origin of transient nucleation and its role in the formation and stability of desired phases and microstructures are discussed. Numerical models of nucleation in isothermal and nonisothermal situations, based on the coupled differential equations describing cluster evolution within the classical theory, are presented. The importance of transient nucleation in glass formation and crystallization is discussed.

  11. Increased diffusivity in acute multiple sclerosis lesions predicts risk of black hole

    PubMed Central

    Naismith, R.T.; Xu, J.; Tutlam, N.T.; Scully, P.T.; Trinkaus, K.; Snyder, A.Z.; Song, S.-K.; Cross, A.H.

    2010-01-01

    Objective: Diffusion tensor imaging (DTI) quantifies Brownian motion of water within tissue. Inflammation leads to tissue injury, resulting in increased diffusivity and decreased directionality. We hypothesize that DTI can quantify the damage within acute multiple sclerosis (MS) white matter lesions to predict gadolinium (Gd)-enhancing lesions that will persist 12 months later as T1 hypointensities. Methods: A cohort of 22 individuals underwent 7 brain MRI scans over 15 months. DTI parameters were temporally quantified within regions of Gd enhancement. Comparison to the homologous region in the hemisphere contralateral to the Gd-enhancing lesion was also performed to standardize individual lesion DTI parameters. Results: After classifying each Gd-enhancing region as to black hole outcome, radial diffusivity, mean diffusivity, and fractional anisotropy, along with their standardized values, were significantly altered for persistent black holes (PBHs), and remained elevated throughout the study. A Gd-enhancing region with a 40% elevation in radial diffusivity had a 5.4-fold (95% confidence interval [CI]: 2.1, 13.8) increased risk of becoming a PBH, with 70% (95% CI: 51%, 85%) sensitivity and 69% (95% CI: 57%, 80%) specificity. A model of radial diffusivity, with volume and length of Gd enhancement, was associated with a risk of becoming a PBH of 5.0 (95% CI: 2.6, 9.9). Altered DTI parameters displayed a dose relationship to duration of black hole persistence. Conclusions: Elevated radial diffusivity during gadolinium enhancement was associated with increased risk for development of a persistent black hole, a surrogate of severe demyelination and axonal injury. An elevated radial diffusivity within active multiple sclerosis lesions may be indicative of more severe tissue injury. GLOSSARY ABH = acute black hole; CBH = chronic black hole; DTI = diffusion tensor imaging; FLAIR = fluid-attenuated inversion recovery; Gd = gadolinium; MS = multiple sclerosis; NAWM = normal-appearing white matter; PBH = persistent black hole; RD = radial diffusivity; ROI = region of interest; T1H = chronic T1 hypointensity; TBH = transient black hole. PMID:20498437

  12. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs : Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs.

    PubMed

    Rajasekaran, S; Venkatadass, K; Naresh Babu, J; Ganesh, K; Shetty, Ajoy P

    2008-05-01

    Degenerative disc disease (DDD) is still a poorly understood phenomenon because of the lack of availability of precise definition of healthy, ageing and degenerated discs. Decreased nutrition is the final common pathway for DDD and the status of the endplate (EP) plays a crucial role in controlling the extent of diffusion, which is the only source of nutrition. The vascular channels in the subchondral plate have muscarinic receptors but the possibility of enhancing diffusion pharmacologically by dilation of these vessels has not been probed. Although it is well accepted that EP damage will affect diffusion and thereby nutrition, there is no described method to quantify the extent of EP damage. Precise definitions with an objective method of differentiating healthy, ageing and degenerated discs on the basis of anatomical integrity of the disc and physiological basis of altered nutrition will be useful. This information is an urgent necessity for better understanding of DDD and also strategizing prevention and treatment. Seven hundred and thirty endplates of 365 lumbar discs from 73 individuals (26 healthy volunteers and 47 patients) with age ranging from 10-64 years were evaluated by pre-contrast and 10 min, 2, 4, 6 and 12 h post contrast MRI after IV injection of 0.3 mmol/kg of Gadodiamide. End plates were classified according to the extent of damage into six grades and an incremental score was given for each category. A total endplate score (TEPS) was derived by adding the EP score of the two endplates for each concerned disc. The base line value (SI(base)) and the signal intensity at particular time periods were used to derive the enhancement percentage for each time period (Enhancement (%) = SI(tp) - SI(base)/SI(base) x 100). The enhancement percentage for each time period, the time for peak enhancement (T-max) and the time intensity curve (TIC) over 12 h were used to study and compare the diffusion characteristics. The differences in pattern of diffusion were obvious visually at 4 h which was categorized into five patterns-Pattern A representing normal diffusion to Pattern E representing a total abnormality in diffusion. Degeneration was classified according to Pfirrmann's grading and this was correlated to the TEPS and the alterations in diffusion patterns. The relationship of TEPS on the increase in DDD was evaluated by a logistic curve and the cut point for severe DDD was found by ROC curve. The influence of the variables of age, level, Modic changes, instability, annulus fibrosis defect (DEBIT), TEPS and diffusion patterns on DDD was analyzed by multiple and stepwise regression analysis. Oral nimodipine study: Additional forty lumbar end-plates from four young healthy volunteers were studied to document the effect of oral nimodipine. Pre-drug diffusion levels were studied by pre and post contrast MRI (0.3 mmol/kg of gadodiamide) at 10 min, 2, 4, 6, 12 and 24 h. Oral nimodipine was administered (30 mg QID) for 5 days and post-contrast MRI studies were performed similarly. Enhancement was calculated at vertebral body-VB; subchondral bone-SCB; Endplate Zone-EPZ and at superior and inferior peripheral nucleus pulposus-PNP and central nucleus pulposus-CNP, using appropriate cursors by a blinded investigator. Paired sample t test and area under curve (AUC) measurements were done.The incidence of disc degeneration had a significant correlation with increasing TEPS (Trend Chi-square, P < 0.01). Only one out of 83 (1.2%) disc had either Pfirrmann Grade IV or V when the score was 4 or below when compared to 34/190 (17.9%) for scores 5-7; 41 of 72 (56.9%) for scores 8-10 and 18 of 20 (90%) for scores 11 and 12 (P < 0.001 for all groups). Pearson's correlation between TEPS and DDD was statistically significant, irrespective of the level of disc or different age groups (r value was above 0.6 and P < 0.01 for all age groups). Logistic curve fit analysis and ROC curve analysis showed that the incidence of DDD increased abruptly when the TEPS crossed six. With a progressive increase of end plate damage, five different patterns of diffusion were visualized. Pattern D and E represented totally altered diffusion pattern questioning the application of biological method of treatment in such situations. Four types of time intensity curves (TIC) were noted which helped to differentiate between healthy, aged and degenerated discs. Multiple and stepwise regression analysis indicated that pattern of disc diffusion and TEPS to be the most significant factors influencing DDD, irrespective of age. Nimodipine increased the average signal intensity for all regions-by 7.6% for VB, 8% for SCB and EPZ and 11% for CNP at all time intervals (P < 0.01 for all cases). Although the increase was high at all time intervals, the maximum increase was at 2 h for VB, SCB and EPZ; 4 h for PNP and 12 h for CNP. It was also interesting that post-nimodipine, the peak signal intensity was attained early, was higher and maintained longer compared to pre-nimodipine values. Our study has helped to establish that EP damage as a crucial event leading to structural failure thereby precipitating DDD. An EP damage score has been devised which had a good correlation to DDD and discs with a score of six and above can be considered 'at risk' for severe DDD. New data on disc diffusion patterns were obtained which may help to differentiate healthy, ageing and degenerated discs in in-vivo conditions. This is also the first study to document an increase in diffusion of human lumbar discs by oral nimodipine and poses interesting possibility of pharmacological enhancement of lumbar disc nutrition. PMID:18357472

  13. Diffusion-weighted MR imaging of acute stroke: Correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats

    SciTech Connect

    Moseley, M.E.; Kucharczyk, J.; Mintorovitch, J.; Cohen, Y.; Kurhanewicz, J.; Derugin, N.; Asgari, H.; Norman, D. )

    1990-05-01

    We evaluated the temporal and anatomic relationships between changes in diffusion-weighted MR image signal intensity, induced by unilateral occlusion of the middle cerebral artery in cats, and tissue perfusion deficits observed in the same animals on T2-weighted MR images after administration of a nonionic intravascular T2 shortening agent. Diffusion-weighted images obtained with strong diffusion-sensitizing gradient strengths (5.6 gauss/cm, corresponding to gradient attenuation factor, b, values of 1413 sec/mm2) displayed increased signal intensity in the ischemic middle cerebral artery territory less than 1 hr after occlusion, whereas T2-weighted images without contrast usually failed to detect injury for 2-3 hr after stroke. After contrast administration (0.5-1.0 mmol/kg by Dy-DTPA-BMA, IV), however, T2-weighted images revealed perfusion deficits (relative hyperintensity) within 1 hr after middle cerebral artery occlusion that corresponded closely to the anatomic regions of ischemic injury shown on diffusion-weighted MR images. Close correlations were also found between early increases in diffusion-weighted MR image signal intensity and disrupted phosphorus-31 and proton metabolite levels evaluated with surface coil MR spectroscopy, as well as with postmortem histopathology. These data indicate that diffusion-weighted MR images more accurately reflect early-onset pathophysiologic changes induced by acute cerebral ischemia than do T2-weighted spin-echo images.

  14. Transient Ischemic Attack

    MedlinePlus

    A transient ischemic attack (TIA) is a stroke that comes and goes quickly. It happens when the blood supply to part of the brain stops briefly. ... surgery. NIH: National Institute of Neurological Disorders and Stroke

  15. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  16. Osmosis and Diffusion

    ERIC Educational Resources Information Center

    Sack, Jeff

    2005-01-01

    OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.

  17. The interstitial fraction of diffusivity of common dopants in Si

    NASA Astrophysics Data System (ADS)

    Gossmann, H.-J.; Haynes, T. E.; Stolk, P. A.; Jacobson, D. C.; Gilmer, G. H.; Poate, J. M.; Luftman, H. S.; Mogi, T. K.; Thompson, M. O.

    1997-12-01

    The relative contributions of interstitials and vacancies to diffusion of a dopant A in silicon are specified by the interstitial fraction of diffusivity, fA. Accurate knowledge of fA is required for predictive simulations of Si processing during which the point defect population is perturbed, such as transient enhanced diffusion. While experimental determination of fA is traditionally based on an underdetermined system of equations, we show here that it is actually possible to derive expressions that give meaningful bounds on fA without any further assumptions but that of local equilibrium. By employing a pair of dopants under the same point-defect perturbance, and by utilizing perturbances very far from equilibrium, we obtain experimentally fSb⩽0.012 and fB⩾0.98 at temperatures of ˜800 °C, which are the strictest bounds reported to date. Our results are in agreement with a theoretical expectation that a substitutional dopant in Si should either be a pure vacancy, or a pure interstitial(cy) diffuser.

  18. Diffusion-tensor imaging as an adjunct to dynamic contrast-enhanced MRI for improved accuracy of differential diagnosis between breast ductal carcinoma in situ and invasive breast carcinoma

    PubMed Central

    Wang, Yuan; Cao, Kun; Li, Yanling; Li, Xiaoting; Qi, Liping; Tang, Lei; Wang, Zhilong; Gao, Shunyu

    2015-01-01

    Objective To determine the value of diffusion-tensor imaging (DTI) as an adjunct to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for improved accuracy of differential diagnosis between breast ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). Methods The MRI data of 63 patients pathologically confirmed as breast cancer were analyzed. The conventional MRI analysis metrics included enhancement style, initial enhancement characteristic, maximum slope of increase, time to peak, time signal intensity curve (TIC) pattern, and signal intensity on FS-T2WI. The values of apparent diffusion coefficient (ADC), directionally-averaged mean diffusivity (Davg), exponential attenuation (EA), fractional anisotropy (FA), volume ratio (VR) and relative anisotropy (RA) were calculated and compared between DCIS and IBC. Multivariate logistic regression was used to identify independent factors for distinguishing IBC and DCIS. The diagnostic performance of the diagnosis equation was evaluated using the receiver operating characteristic (ROC) curve. The diagnostic efficacies of DCE-MRI, DWI and DTI were compared independently or combined. Results EA value, lesion enhancement style and TIC pattern were identified as independent factor for differential diagnosis of IBC and DCIS. The combination diagnosis showed higher diagnostic efficacy than a single use of DCE-MRI (P=0.02), and the area of the curve was improved from 0.84 (95% CI, 0.67-0.99) to 0.94 (95% CI, 0.85-1.00). Conclusions Quantitative DTI measurement as an adjunct to DCE-MRI could improve the diagnostic performance of differential diagnosis between DCIS and IBC compared to a single use of DCE-MRI. PMID:25937784

  19. Designing Au Surface-Modified Nanoporous-Single-Crystalline SrTiO3 to Optimize Diffusion of Surface Plasmon Resonance-Induce Photoelectron toward Enhanced Visible-Light Photoactivity.

    PubMed

    Lu, Da; Ouyang, Shuxin; Xu, Hua; Li, Dewang; Zhang, Xueliang; Li, Yunxiang; Ye, Jinhua

    2016-04-13

    Nanoporous single-crystalline SrTiO3 is fabricated at a low temperature of 60 °C via a novel approach of sol-gel alkali-dissolution-exothermal reaction. The plasmon-active metal Au is loaded on the nanoporous single-crystalline SrTiO3 material to construct a new kind of plasmonic photocatalyst. Due to the single-crystalline nature and the space confinement effect of pores for Au growing, not only the promoted diffusion efficiency of surface plasmon resonance (SPR)-induce photoelectron is achieved, but also the diffusion region are well optimized via changing the loading amount of Au. Therefore, an optimal sample with 4.8 wt % Au loading exhibits a more than 40-fold photoactivity enhancement under visible-light irradiation compared to the common nanosized SrTiO3 (a commercially available sample) loaded with 5.3 wt % Au which was prepared under the same condition. Furthermore, combining the special nanostructure of Au surface-modified nanoporous-single-crystalline SrTiO3 with photocatalytic properties, estimation of the diffusion mean free path of SPR-induce photoelectron can be achieved. This study proposes an alternative approach to enhance the photoactivity of plasmonic photocatalyst via fine designing the semiconductor substrate. PMID:27007490

  20. Uphill diffusion in multicomponent mixtures.

    PubMed

    Krishna, Rajamani

    2015-05-21

    Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentration gradient. The major objective of this review is to highlight a very wide variety of situations that cause the uphill transport of one constituent in the mixture. Uphill diffusion may occur in multicomponent mixtures in which the diffusion flux of any species is strongly coupled to that of its partner species. Such coupling effects often arise from strong thermodynamic non-idealities. For a quantitative description we need to use chemical potential gradients as driving forces. The transport of ionic species in aqueous solutions is coupled with its partner ions because of the electro-neutrality constraints; such constraints may accelerate or decelerate a specific ion. When uphill diffusion occurs, we observe transient overshoots during equilibration; the equilibration process follows serpentine trajectories in composition space. For mixtures of liquids, alloys, ceramics and glasses the serpentine trajectories could cause entry into meta-stable composition zones; such entry could result in phenomena such as spinodal decomposition, spontaneous emulsification, and the Ouzo effect. For distillation of multicomponent mixtures that form azeotropes, uphill diffusion may allow crossing of distillation boundaries that are normally forbidden. For mixture separations with microporous adsorbents, uphill diffusion can cause supra-equilibrium loadings to be achieved during transient uptake within crystals; this allows the possibility of over-riding adsorption equilibrium for achieving difficult separations. PMID:25761383

  1. Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.; Quimby, R.

    2010-12-01

    The Palomar Transient Factory (PTF) was designed to explicitly to chart the transient sky with a particular focus on events which lie in the nova-supernova gap. With its innovative two-telescope architecture it achieves both high cadence and large areal rate of coverage. PTF was commissioned during the summer of 2009. PTF is now finding an extragalactic transient every 20 minutes and a Galactic (strong) variable every 10 minutes. Spectroscopy undertaken at Keck and Palomar has allowed us: identify an emerging class of ultra-luminous supernovae, discover luminous red novae, undertake UV spectroscopy of Ia supernovae, discover supernovae powered by something other than Nickel-56, clarification of sub-classes of core collapse and thermo-nuclear explosions, map the systematics of core collapse supernovae, a trove of eclipsing binaries and many others.

  2. Transient growth of Ekman-Couette flow.

    PubMed

    Shi, Liang; Hof, Björn; Tilgner, Andreas

    2014-01-01

    Coriolis force effects on shear flows are important in geophysical and astrophysical contexts. We report a study on the linear stability and the transient energy growth of the plane Couette flow with system rotation perpendicular to the shear direction. External rotation causes linear instability. At small rotation rates, the onset of linear instability scales inversely with the rotation rate and the optimal transient growth in the linearly stable region is slightly enhanced ∼Re2. The corresponding optimal initial perturbations are characterized by roll structures inclined in the streamwise direction and are twisted under external rotation. At large rotation rates, the transient growth is significantly inhibited and hence linear stability analysis is a reliable indicator for instability. PMID:24580314

  3. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  4. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  5. Rotor transient analysis

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Choy, K. C.; Gunter, E. J.

    1980-01-01

    Undamped modes approximate dynamic behavior of rotors and bearings. Application of modal analysis to uncouple equations of motion simplifies stability, steady-state unbalance response, and transient response analysis of system; nonlinear stability is predicted from calculated frequency spectra. Analysis provides designers with complete information without involving large-scale computational costs. Programs are written in FORTRAN IV for use on CDC 6600 computer.

  6. Inhomogeneous Forcing and Transient Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2014-01-01

    Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during which forcing has increased markedly. In contrast, comparisons of modelled feedback processes with observations indicate that the most realistic models have higher sensitivities. Here I analyse results from recent climate modelling intercomparison projects to demonstrate that transient climate sensitivity to historical aerosols and ozone is substantially greater than the transient climate sensitivity to CO2. This enhanced sensitivity is primarily caused by more of the forcing being located at Northern Hemisphere middle to high latitudes where it triggers more rapid land responses and stronger feedbacks. I find that accounting for this enhancement largely reconciles the two sets of results, and I conclude that the lowest end of the range of transient climate response to CO2 in present models and assessments (less than 1.3 C) is very unlikely.

  7. Continuous Processing of Multi-Walled Carbon Nanotube-Studded Carbon Fiber Tapes for Enhanced Through-Thickness Thermal Diffusivity Composites.

    PubMed

    Craddock, John D; Qian, Dali; Lester, Catherine; Matthews, JohnJ; Mansfield, J Patrick W; Foedinger, Richard; Weisenberger, Matthew C

    2015-09-01

    Carbon fiber reinforced polymer (CFRP) composites offer advantages over traditional metallic structures, particularly specific strength and stiffness, but at much reduced thermal conductivity. Moreover, fiber-to-fiber heat conduction in the composite transverse directions is significantly lower. When these structures contain electronics (heat generators), shortfalls in heat transport can be problematic. Here we report the achievement of a continuous, reel-to-reel process for growing short multiwalled carbon nanotubes (MWCNT) on the surfaces of spread-tow carbon fiber tapes. These tapes were subsequently prepregged with an epoxy matrix, and laid up into multi-ply laminate panels, cured and tested for through-thickness thermal diffusivity. The results showed up to a 57% increase in through thickness thermal diffusivity compared to the baseline composite with no MWCNT. PMID:26716256

  8. Diffusion in silicon isotope heterostructures

    SciTech Connect

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P species. Additionally, the temperature dependence of the diffusion coefficient of Si in Ge was measured over the temperature range of 550 C to 900 C using a buried Si layer in an epitaxially grown Ge layer.

  9. Diffusion of Hydrogen in Silica under Transient Conditions

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Development of hydrogen in sealed silica glass ampoules during annealing at elevated temperatures was investigated. The dependence of hydrogen pressure in the ampoules as a function of time, for different temperatures and ampoule parameters was measured. The process was modeled assuming chemical solution of hydrogen according to the reaction: silica + H2 = H- Si= + H-O-Si=. The equilibrium constant of the reaction was determined by fitting the theoretical curves to the experimental data. The Gibbs function for this reaction was estimated at deltaG = -25.8 + 54T.

  10. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  11. Lunar transient phenomena

    NASA Astrophysics Data System (ADS)

    Cameron, W. S.

    1991-03-01

    Lunar transient phenomena (LTP) sightings are classified into five categories: brightenings, darkenings, reddish colorations, bluish colorations, and obscurations. There is evidence that the remaining LTP's are of lunar origin. A substantial number of sightings are independently confirmed. They have been recorded on film and spectrograms, as well as with photoelectric photometers and polarization equipment. It suggested that the LTP's may be gentle outgassings of less-than-volcanic proportions.

  12. Bright Transients discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-03-01

    Seven bright transients have been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  13. Bright Transients discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-04-01

    Seven bright transients have been discovered as part of the Pan-STARRS Survey for Transients (PSST). Information on all objects discovered by the Pan-STARRS Survey for Transients is available at http://star.pst.qub.ac.uk/ps1threepi/ (see Huber et al. ATel #7153).

  14. Transient global amnesia.

    PubMed

    Arena, Julieta E; Rabinstein, Alejandro A

    2015-02-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the sudden onset of anterograde amnesia (the inability to encode new memories), accompanied by repetitive questioning, sometimes with a retrograde component, lasting up to 24 hours, without compromise of other neurologic functions. Herein, we review current knowledge on the epidemiology, pathophysiology, clinical diagnosis, and prognosis of TGA. For this review, we conducted a literature search of PubMed, with no date limitations, using the following search terms (or combinations of them): transient global amnesia, etiology, pathophysiology, venous hypertension, migraine, magnetic resonance imaging, computed tomography, electroencephalography, prognosis, and outcome. We also reviewed the bibliography cited in the retrieved articles. Transient global amnesia is a clinical diagnosis, and recognition of its characteristic features can avoid unnecessary testing. Several pathophysiologic mechanisms have been proposed (venous insufficiency, arterial ischemia, and migrainous or epileptic phenomena), but none of them has been proved to consistently explain cases of TGA. Brain imaging may be considered and electroencephalography is recommended when episodes are brief and recurrent, but otherwise no investigations are necessary in most cases. Data on long-term prognosis are limited, but available information suggests that the relapse rate is low, the risk of stroke and seizures is not considerably increased, and cognitive outcome is generally good. PMID:25659242

  15. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  16. Tailoring of electron diffusion through TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Jose, R.; Yusoff, M. M.

    2012-11-01

    Charge transport through a random network of onedimensional TiO2 nanostructures such as nanorods, nanowires, and nanofibers developed by electrospinning technique has been studied in the presence of an electrolyte by electrochemical impedance spectroscopy and transient photocurrent measurements. The results have been compared with the charge transport parameters of random TiO2 nanoparticle (25 nm) network. The charge transport was discussed under the framework of hopping transport. Continuous nanofibers had longer charge collecting times and short nanorods have enhanced scattering losses. The TiO2 films containing random network of nanowires of aspect ratio 10:1 can have an order of magnitude higher diffusion coefficient than other morphologies. Furthermore, charge transport through Nb-doped anatase TiO2 nanofibers was studied. It was observed that the Fermi level of TiO2 rise close to its conduction band and result in a band-edge type diffusion mechanism even at low bias voltages when 2 wt% Nb atoms replaces the Ti atoms in the anatase lattice. The Nb-doped anatase electrospun nanofibers showed high chemical capacitance, high effective diffusion coefficient, and lower transport resistance compared to the undoped samples and conventional nanoparticles.

  17. Influence of defects on excess charge carrier kinetics studied by transient PC and transient PA

    SciTech Connect

    Feist, H.; Kunst, M.; Swiatkowski, C.

    1997-07-01

    By comparison of transient photoconductivity (TPC) and transient photoinduced absorption (PA) the influence of the density of states in the bandgap on excess charge carrier kinetics is studied for a-Si:H films deposited at different temperatures and for state of the art a-Si:H films in two different states of light soaking. In both series the rising deep defect density leads to an enhancement of electron trapping rather than recombination via deep defects. The samples deposited at temperatures lower than 250 C additionally show a lower effective electron mobility, i.e., a broader conduction band tail.

  18. Transient lesion in the splenium of the corpus callosum due to rotavirus infection.

    PubMed

    Mazur-Melewska, Katarzyna; Jonczyk-Potoczna, Katarzyna; Szpura, Krystyna; Biega?ski, Grzegorz; Mania, Anna; Kemnitz, Pawe?; S?u?ewski, Wojciech; Figlerowicz, Magdalena

    2015-06-01

    Transient signal changes in magnetic resonance imaging (MRI) of the splenium of the corpus callosum (SCC) can result from many different reasons, including encephalitis and encephalopathy caused by infection, seizures, metabolic disorders and asphyxia. We report a case of a 6-year-old Polish girl with rotavirus infection demonstrating a reversible SCC lesion on diffusion-weighted MRI images. She presented six episodes of generalized tonic seizures with mild acute gastroenteritis. Stool test for rotavirus antigen was positive. At the time of admission imaging showed the hyperintense region in T2-weighted and fluid-attenuated inversion-recovery MRI, a well-defined lesion in the splenium of the corpus callosum with restricted diffusion in diffusion-weighted MRI and no enhancement in post contrast T1-weighted imaging. Her first EEG showed slow brain activity in the posterior occipitotemporal portion, consisting mainly of theta waves with a frequency of 4.5-5.5 Hz and amplitude of 40 uV. The lesion had completely disappeared on follow-up MRI 10 days later. The patient recovered fully without any sequelae. PMID:25686898

  19. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  20. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  1. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion

  2. Transient electrochemistry: beyond simply temporal resolution.

    PubMed

    Zhou, X-S; Mao, B-W; Amatore, C; Compton, R G; Marignier, J-L; Mostafavi, M; Nierengarten, J-F; Maisonhaute, E

    2016-01-01

    Some physicochemical intrigues for which transient electrochemistry was necessary to solve the problem are summarized in this feature article. First, we highlight the main constraints to be aware of to access to low time scales, and particularly focus on the effects of stray capacitances. Then, the electron transfer rate constant measured for redox molecules in a self-assembled monolayer configuration is compared to the conductance measured through the same systems, but at the single molecule level. This evidences strong conformational changes when molecules are trapped in the nanogap created between both electrodes. We also report about dendrimers, for which a short electrochemical perturbation induces creation of a diffusion layer within the molecule, allowing the electron hopping rate to be measured and analyzed in terms of molecular motions of the redox centers. Finally, we show that transient electrochemistry provides also useful information when coupled to other methodologies. For example, when an ultrasonic field drives very fast movements of a bubble situated above the electrode surface, the motion can be detected indirectly through a modification of the diffusion flux. Another field concerns pulse radiolysis, and we describe how the reactivity (at the electrode or within the solution) of radicals created by a radiolytic pulse can be quantified, widening the possibilities of electrochemistry to operate in biological media. PMID:26561921

  3. DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE

    EPA Science Inventory


    An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...

  4. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.

  5. Magnetic Diffusion in Star Formation

    NASA Astrophysics Data System (ADS)

    Basu, Shantanu; Dapp, Wolf B.

    2011-04-01

    Magnetic diffusion plays a vital role in star formation. We trace its influence from interstellar cloud scales down to star-disk scales. On both scales, we find that magnetic diffusion can be significantly enhanced by the buildup of strong gradients in magnetic field structure. Large scale nonlinear flows can create compressed cloud layers within which ambipolar diffusion occurs rapidly. However, in the flux-freezing limit that may be applicable to photoionized molecular cloud envelopes, supersonic motions can persist for long times if driven by an externally generated magnetic field that corresponds to a subcritical mass-to-flux ratio. In the case of protostellar accretion, rapid magnetic diffusion (through Ohmic dissipation with additional support from ambipolar diffusion) near the protostar causes dramatic magnetic flux loss. By doing so, it also allows the formation of a centrifugal disk, thereby avoiding the magnetic braking catastrophe.

  6. Shock Wave and EUV Transient During a Flare

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Kaiser, M. L.; Sato, J.; Pick, Monique

    2000-01-01

    A metric type II burst and a 'brow' type enhancement in EUV were observed during the hard X-ray flare of 1997 April 15 from a newly emerging region, AR 8032. The position of the type II burst obtained from the Nancay radioheliograph coincided with the EUV transient. The type II burst and the EUV transient were in the equatorial streamer region to the north of the flaring region. This observation suggests that the EUV transient may be the manifestation of the MHD shock responsible for the type II burst.

  7. Analysis of transient hydrogen uptake by metal alloy particles

    SciTech Connect

    Zhang, W.; Srinivasan, S.; Ploehn, H.J.

    1996-12-01

    This paper describes a new approach to solving the equations comprising the shrinking core model for diffusion and reaction of a chemical species in a solid spherical particle. The reactant adsorbs on the particle surface, diffuses into the particle`s interior, and reacts with the particle to form a solid product. The shrinking core model assumes a fast reaction rate compared to reactant diffusion so that the reaction is localized in the interfacial zone between the unreacted solid core and the surrounding shell of reacted product. Analytical solutions of the governing conservation equations usually invoke the pseudo-steady state (PSS) approximation which neglects the transient mass accumulation and diffusion-induced convection terms in the continuity equation for the diffusing reactant. However, small particle radii and slow reactant diffusion cast doubt on the validity of the PSS approximation. Dimensional analysis reveals an approximation that is less restrictive than PSS, yet enables a semi-analytical solution for the diffusing reactant distribution and interface velocity. For sufficiently large values of the surface mass fraction of the diffusing reactant, the PSS approximation leads to serious errors in the time dependence of the interface position and fractional conversion. However, the estimate of the surface mass fraction of hydrogen in LaNi{sub 5} particles suggests the validity of the PSS approximation for hydriding of metal alloy particles. The shrinking core model thus enables an estimate of hydrogen diffusivity in metal alloy particles.

  8. Workshop on Radio Transients

    NASA Astrophysics Data System (ADS)

    Croft, Steve; Gaensler, Bryan

    2012-04-01

    abstract-type="normal">SummaryWe are entering a new era in the study of variable and transient radio sources. This workshop discussed the instruments and the strategies employed to study those sources, how they are identified and classified, how results from different surveys can be compared, and how radio observations tie in with those at other wavelengths. The emphasis was on learning what common ground there is between the plethora of on-going projects, how methods and code can be shared, and how best practices regarding survey strategy could be adopted. The workshop featured the four topics below. Each topic commenced with a fairly brief introductory talk, which then developed into discussion. By way of preparation, participants had been invited to upload and discuss one slide per topic to a wiki ahead of the workshop. 1. Telescopes, instrumentation and survey strategy. New radio facilities and on-going projects (including upgrades) are both studying the variability of the radio sky, and searching for transients. The discussion first centred on the status of those facilities, and on projects with a time-domain focus, both ongoing and planned, before turning to factors driving choices of instrumentation, such as phased array versus single pixel feeds, the field of view, spatial and time resolution, frequency and bandwidth, depth, area, and cadence of the surveys. 2. Detection, pipelines, and classification. The workshop debated (a) the factors that influence decisions to study variability in the (u,v) plane, in images, or in catalogues, (b) whether, and how much, pipeline code could potentially be shared between one project and another, and which software packages are best for different approaches, (c) how data are stored and later accessed, and (d) how transients and variables are defined and classified. 3. Statistics, interpretation, and synthesis. It then discussed how (i) the choice of facility and strategy and (ii) detection and classification schemes influence what is seen (in terms of types of object and rates) by different surveys, (iii) how results from different surveys could be compared, and (iv) how what we know from existing surveys drives choices (i) and (ii), particularly as regards finding new classes of object. 4. Multiwavelength approaches. The workshop concluded by discussing what information is needed from wavelengths other than radio in order to classify transients and variables adequately and predict their rates as a function of topics (1), (2) and (3). It asked what the constraints are on responding to, and issuing triggers for, follow-up observations, and how that might feed back into considerations for designing our telescopes and surveys.

  9. [Transient removable dentures].

    PubMed

    Kouadio, A A; Jordana, F; N'Goran, J K; Le Bars, P

    2015-09-01

    Removable dentures are always transient current. The epidemiology and causes of tooth gaps demonstrate the need to master the different prosthetic treatment. This made whether to propose treatment plans that take into account psychological, physiological and technical support for this patient. Different situations may arise. A gradual transition may be considered or immediate passage to the total edentulous according to general criteria, local and desiderata of patients. After tooth extraction, the transitional prosthesis can control bone lysis thereby it is part of a complete treatment before prosthesis. It also facilitates a good psychological and physiological integration before the prosthesis use. PMID:26930772

  10. The Rapid Transient Surveyor

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Tonry, John; Wright, Shelley; Tully, R. Brent; Lu, Jessica R.; Takamiya, Marianne Y.; Hunter, Lisa

    2016-01-01

    The next decade of astronomy will be dominated by large area surveys (see the detailed discussion in the Astro-2010 Decadal survey and NRC's recent OIR System Report). Ground-based optical transient surveys, e.g., LSST, ZTF and ATLAS and space-based exoplanet, supernova, and lensing surveys such as TESS and WFIRST will join the Gaia all-sky astrometric survey in producing a flood of data that will enable leaps in our understanding of the universe. There is a critical need for further characterization of these discoveries through high angular resolution images, deeper images, spectra, or observations at different cadences or periods than the main surveys. Such follow-up characterization must be well matched to the particular surveys, and requires sufficient additional observing resources and time to cover the extensive number of targets.We describe plans for the Rapid Transient Surveyor (RTS), a permanently mounted, rapid-response, high-cadence facility for follow-up characterization of transient objects on the U. of Hawai'i 2.2-m telescope on Maunakea. RTS will comprise an improved robotic laser adaptive optics system, based on the prototype Robo-AO system (formerly at the Palomar 1.5-m and now at the Kitt Peak 2.2-m telescope), with simultaneous visible and near-infrared imagers as well as a near-infrared integral field spectrograph (R~100, λ = 850 - 1830 nm, 0.15″ spaxels, 8.7″×6.0″ FoV). RTS will achieve an acuity of ~0.07″ in visible wavelengths and < 0.16″ in the near infrared leading to an increase of the infrared point-source sensitivity against the sky background by a factor of ~9, crucial for efficient near-infrared spectroscopy.RTS will allow us to map the dark matter distribution in the z < 0.1 local universe with ten times better accuracy and precision than previous experiments. ATLAS will discover several thousand SNIae per year, measuring SNIa peak brightness, and decline rates, while RTS will measure reddening by dust, confirm SN type and confirm redshifts of the host galaxies. This unique combination of automated detection and characterization of astrophysical transients during a sustained observing campaign will yield the necessary statistics to precisely map dark matter in the local universe.

  11. Thermal transient anemometer

    DOEpatents

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  12. Transient detection using wavelets

    NASA Astrophysics Data System (ADS)

    Carter, Patricia H.

    1994-05-01

    We describe the implementation of a wavelet based transient detection algorithm and compare its performance with that of traditional Fourier techniques via a numerical simulation. The wavelet algorithm is a filter-then-detect algorithm; the filtering is accomplished in the wavelet transform domain by thresholding. The context is established by comparing the Fourier and wavelet transform in the signal processing setting. The performance of the wavelet filtering and Fourier-based filtering as a part of the detection process on two simulated detection problems is compared using ROC curves.

  13. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  14. Diffusion of Ellipsoids in Bacterial Suspensions

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Lai, Lipeng; Tai, Yi-Shu; Zhang, Kechun; Xu, Xinliang; Cheng, Xiang

    2016-02-01

    Active fluids such as swarming bacteria and motile colloids exhibit exotic properties different from conventional equilibrium materials. As a peculiar example, a spherical tracer immersed inside active fluids shows an enhanced translational diffusion, orders of magnitude stronger than its intrinsic Brownian motion. Here, rather than spherical tracers, we investigate the diffusion of isolated ellipsoids in a quasi-two-dimensional bacterial bath. Our study shows a nonlinear enhancement of both translational and rotational diffusions of ellipsoids. More importantly, we uncover an anomalous coupling between particles' translation and rotation that is strictly prohibited in Brownian diffusion. The coupling reveals a counterintuitive anisotropic particle diffusion, where an ellipsoid diffuses fastest along its minor axis in its body frame. Combining experiments with theoretical modeling, we show that such an anomalous diffusive behavior arises from the generic straining flow of swimming bacteria. Our work illustrates an unexpected feature of active fluids and deepens our understanding of transport processes in microbiological systems.

  15. Diffusion of Ellipsoids in Bacterial Suspensions.

    PubMed

    Peng, Yi; Lai, Lipeng; Tai, Yi-Shu; Zhang, Kechun; Xu, Xinliang; Cheng, Xiang

    2016-02-12

    Active fluids such as swarming bacteria and motile colloids exhibit exotic properties different from conventional equilibrium materials. As a peculiar example, a spherical tracer immersed inside active fluids shows an enhanced translational diffusion, orders of magnitude stronger than its intrinsic Brownian motion. Here, rather than spherical tracers, we investigate the diffusion of isolated ellipsoids in a quasi-two-dimensional bacterial bath. Our study shows a nonlinear enhancement of both translational and rotational diffusions of ellipsoids. More importantly, we uncover an anomalous coupling between particles' translation and rotation that is strictly prohibited in Brownian diffusion. The coupling reveals a counterintuitive anisotropic particle diffusion, where an ellipsoid diffuses fastest along its minor axis in its body frame. Combining experiments with theoretical modeling, we show that such an anomalous diffusive behavior arises from the generic straining flow of swimming bacteria. Our work illustrates an unexpected feature of active fluids and deepens our understanding of transport processes in microbiological systems. PMID:26919019

  16. How are Forbush decreases related to interplanetary magnetic field enhancements?

    NASA Astrophysics Data System (ADS)

    Arunbabu, K. P.; Antia, H. M.; Dugad, S. R.; Gupta, S. K.; Hayashi, Y.; Kawakami, S.; Mohanty, P. K.; Oshima, A.; Subramanian, P.

    2015-08-01

    Aims: A Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods: We used muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We selected those FD events that have a reasonably clean profile, and magnitude >0.25%. We used IMF data from ACE/WIND spacecrafts. We looked for correlations between the FD profile and that of the one-hour averaged IMF. We wanted to find out whether if the diffusion of high-energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results: The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag behind the IMF enhancement by a few hours. The lag corresponds to the time taken by high-energy protons to diffuse into the magnetic field enhancement via cross-field diffusion. Conclusions: Our findings show that high-rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME. Appendices are available in electronic form at http://www.aanda.org

  17. Measurand transient signal suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  18. Enhanced Ca²+ influx through cardiac L-type Ca²+ channels maintains the systolic Ca²+ transient in early cardiac atrophy induced by mechanical unloading.

    PubMed

    Schwoerer, A P; Neef, S; Broichhausen, I; Jacubeit, J; Tiburcy, M; Wagner, M; Biermann, D; Didié, M; Vettel, C; Maier, L S; Zimmermann, W H; Carrier, L; Eschenhagen, T; Volk, T; El-Armouche, A; Ehmke, H

    2013-12-01

    Cardiac atrophy as a consequence of mechanical unloading develops following exposure to microgravity or prolonged bed rest. It also plays a central role in the reverse remodelling induced by left ventricular unloading in patients with heart failure. Surprisingly, the intracellular Ca(2+) transients which are pivotal to electromechanical coupling and to cardiac plasticity were repeatedly found to remain unaffected in early cardiac atrophy. To elucidate the mechanisms underlying the preservation of the Ca(2+) transients, we investigated Ca(2+) cycling in cardiomyocytes from mechanically unloaded (heterotopic abdominal heart transplantation) and control (orthotopic) hearts in syngeneic Lewis rats. Following 2 weeks of unloading, sarcoplasmic reticulum (SR) Ca(2+) content was reduced by ~55 %. Atrophic cardiac myocytes also showed a much lower frequency of spontaneous diastolic Ca(2+) sparks and a diminished systolic Ca(2+) release, even though the expression of ryanodine receptors was increased by ~30 %. In contrast, current clamp recordings revealed prolonged action potentials in endocardial as well as epicardial myocytes which were associated with a two to fourfold higher sarcolemmal Ca(2+) influx under action potential clamp. In addition, Cav1.2 subunits which form the pore of L-type Ca(2+) channels (LTCC) were upregulated in atrophic myocardium. These data suggest that in early cardiac atrophy induced by mechanical unloading, an augmented sarcolemmal Ca(2+) influx through LTCC fully compensates for a reduced systolic SR Ca(2+) release to preserve the Ca(2+) transient. This interplay involves an electrophysiological remodelling as well as changes in the expression of cardiac ion channels. PMID:23842739

  19. Differences between thermal and laser-induced diffusion.

    PubMed

    Zaum, Ch; Meyer-Auf-der-Heide, K M; Mehlhorn, M; McDonough, S; Schneider, W F; Morgenstern, K

    2015-04-10

    A combination of femtosecond laser excitation with a low-temperature scanning tunneling microscope is used to study long-range interaction during diffusion of CO on Cu(111). Both thermal and laser-driven diffusion show an oscillatory energy dependence on the distance to neighboring molecules. Surprisingly, the phase is inverted; i.e., at distances at which thermal diffusion is most difficult, it is easiest for laser-driven diffusion and vice versa. We explain this unexpected behavior by a transient stabilization of the negative ion during diffusion as corroborated by ab initio calculations. PMID:25910140

  20. Differences Between Thermal and Laser-Induced Diffusion

    NASA Astrophysics Data System (ADS)

    Zaum, Ch.; Meyer-auf-der-Heide, K. M.; Mehlhorn, M.; McDonough, S.; Schneider, W. F.; Morgenstern, K.

    2015-04-01

    A combination of femtosecond laser excitation with a low-temperature scanning tunneling microscope is used to study long-range interaction during diffusion of CO on Cu(111). Both thermal and laser-driven diffusion show an oscillatory energy dependence on the distance to neighboring molecules. Surprisingly, the phase is inverted; i.e., at distances at which thermal diffusion is most difficult, it is easiest for laser-driven diffusion and vice versa. We explain this unexpected behavior by a transient stabilization of the negative ion during diffusion as corroborated by ab initio calculations.

  1. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens

    PubMed Central

    2014-01-01

    Background Extensive use of antibiotics has fostered the emergence of superbugs that are resistant to multidrugs, which becomes a great healthcare and public concern. Previous studies showed that quorum sensing signal DSF (diffusible signal factor) not only modulates bacterial antibiotic resistance through intraspecies signaling, but also affects bacterial antibiotic tolerance through interspecies communication. These findings motivate us to exploit the possibility of using DSF and its structurally related molecules as adjuvants to influence antibiotic susceptibility of bacterial pathogens. Results In this study, we have demonstrated that DSF signal and its structurally related molecules could be used to induce bacterial antibiotic susceptibility. Exogenous addition of DSF signal (cis-11-methyl-2-dodecenoic acid) and its structural analogues could significantly increase the antibiotic susceptibility of Bacillus cereus, possibly through reducing drug-resistant activity, biofilm formation and bacterial fitness. The synergistic effect of DSF and its structurally related molecules with antibiotics on B. cereus is dosage-dependent. Combination of DSF with gentamicin showed an obviously synergistic effect on B. cereus pathogenicity in an in vitro model. We also found that DSF could increase the antibiotic susceptibility of other bacterial species, including Bacillus thuringiensis, Staphylococcus aureus, Mycobacterium smegmatis, Neisseria subflava and Pseudomonas aeruginosa. Conclusion The results indicate a promising potential of using DSF and its structurally related molecules as novel adjuvants to conventional antibiotics for treatment of infectious diseases caused by bacterial pathogens. PMID:24575808

  2. The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Murad, Sohail

    2011-03-01

    Molecular simulations have been carried out using the method of molecular dynamics to investigate the role of external electric fields on the ion mobility, drift velocity, and drift-diffusion rate of ions in aqueous electrolyte solutions. These properties are critical for a range of processes including electrodialysis, electro-deionization, electrophoresis, and electroosmosis. Our results show that external electric fields relax the hydrated ion structure at significantly larger time scales (between 300 and 800 ps), than most other relaxation processes in solutions (generally of the order of 1 ps). Previous studies that did not account for the much longer relaxation times did not observe this behavior for ions even with very high electric fields. External electric fields must also overcome several (at least two or more) activation energy barriers to significantly change the structure of hydrated ions. As a result, the dynamic behavior changes almost in bands as a function of electric field strengths, rather than linearly. Finally, the effect of the field is much less dramatic on water than the ions. Thus electric fields will be of more significance in processes that involve the transport of ions (such as electro-deionization) than the transport of water (electroosmosis).

  3. The joy of transient chaos.

    PubMed

    Tél, Tamás

    2015-09-01

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion. PMID:26428572

  4. The Zwicky Transient Facility

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shrinivas R.

    2016-01-01

    The Zwicky Transient Facility (ZTF) has been designed with a singular focus: a systematic exploration of the night sky at a magnitude level well suited for spectral classification and follow up with the existing class of 4-m to 10-m class telescopes. ZTF is the successor to the Palomar Transient Factory (PTF). The discovery engine for ZTF is a 47 square degree camera (realized through 16 e2V monolithic CCDs) that fills the entire focal plane of the 48-inch Oschin telescope of the Palomar Observatory. Single 30-s epoch sensitivity is about 20.5 in g and R bands. The Infarared Processing & Analysis Center (IPAC) is the data center for ZTF. ZTF is a public-private partnership with equal contributions from a consortium of world-wide partners and an NSF MSIP grant. Forty percent of ZTF time is set aside for two major community surveys: a 3-day cadence survey of high latitudes (to mimic LSST) and a time domain survey of the entire Northern Galactic plane. We expect first light in February 2017 and begin a 3-year survey starting summer of 2017. The first year will be spent on building up deep reference images of the sky (a must for transient surveys). During the second year IPAC will deliver near archival quality photometric products within 12 hours of observations. By comparison to reference images photometric alerts will be sent out. Year 3 will see the near real-time release of image differencing products. A Community Science Advisory Committee (CSAC), chaired by S. Ridgway (NOAO), has been set up to both advise the PI and to ensure that the US community's interests are well served. Astronomers interested in getting a head start on ZTF may wish to peruse the data releases from PTF. Young people (or young at heart) may wish to attend the annual summer school on PTF/ZTF (August, Caltech campus). The Principal Investigator (PI) for the project is S. Kulkarni and the Project Scientist is Eric Bellm.For further details please consult http://www.ptf.caltech.edu/ztf

  5. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers. PMID:24346856

  6. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V.; Backer, Marina V.; Backer, Joseph M.; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t of ˜20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t of ˜30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t of ˜90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  7. Black hole transients

    NASA Astrophysics Data System (ADS)

    Belloni, T. M.; Motta, S. E.; Muñoz-Darias, T.

    2011-09-01

    Sixteen years of observations of black hole transients with the Rossi X-ray Timing Explorer, complemented by other X-ray observatories and ground-based optical/infrared/radio telescopes have given us a clear view of the complex phenomenology associated with their bright outbursts. This has led to the definition of a small number of spectral/timing states which are separated by marked transitions in observables. The association of these states and their transitions to changes in the radio emission from relativistic radio jets completes the picture and have led to the study of the connection between accretion and ejection. A good number of fundamental questions are still unanswered, but the existing picture provides a good framework on which to base theoretical studies. We discuss the current observational standpoint, with emphasis onto the spectral and timing evolution during outbursts, as well as the prospects for future missions such as ASTROSAT (2012) and LOFT (>2020 if selected).

  8. 100-liter transient transfection.

    PubMed

    Girard, Philippe; Derouazi, Madiha; Baumgartner, Gwendoline; Bourgeois, Michaela; Jordan, Martin; Jacko, Barbara; Wurm, Florian M

    2002-01-01

    This is the first report of two successful 100 l scale transienttransfections in a standard stirred bioreactor. More than half a gram of a monoclonal antibody (IgG) were produced in less than 10 days using a technology called large-scale transient gene expression(LS-TGE). Suspension adapted HEK 293 EBNA SF cells were transfectedwithin a 150 l (nominal) bioreactor by a modified calcium phosphateco-precipitation method with more than 75 mg of plasmid DNA per run.A mixture of three different plasmids, one encoding for the heavychain of a human recombinant immunoglobulin, the other for the corresponding light chain and a third one for the green fluorescent protein (GFP, 2-4% of DNA in transfection cocktail)were co-transfected. The GFP vector was chosen to monitor transfection efficiency. Expression of GFP could be registered asearly as 20 h after DNA addition, using fluorescence microscopy. We demonstrate that transient transfection can be done at the100 l scale, thus providing a new tool to produce hundreds of milligrams or even gram amounts of recombinant protein. Akey advantage of LS-TGE resides in its speed. In the presentedcases, the entire production process for the synthesis of halfa gram of a recombinant antibody, including DNA preparationand necessary expansion of cells prior to transfection, wasexecuted in less than a month. Having an established transfection/expression process allows to run productioncampaigns for any given protein, within one facility, with onesingle host cell line and therefore only one single seed train. Without any need to create and maintain stable cell lines, expression of new r-proteins is not only faster and more economical but also more flexible. PMID:19003082

  9. Diffusive acceleration

    NASA Astrophysics Data System (ADS)

    Scholer, Manfred

    This paper reviews the properties of diffuse energetic ions observed at the quasi-parallel bow shock and at quasi-parallel interplanetary shocks. The first-order Fermi or diffusive acceleration mechanism can consistently explain the many detailed observational facts. In this model, it is assumed that particles are scattered approximately elastically in the solar wind frame, and gain energy by repeated scattering between the converging upstream and downstream flows or between the upstream flow and the shock. An essential feature at both the bow shock and at interplanetary shocks are self-excited low-frequency waves representing the scattering irregularities. The seed particles for the acceleration process at the bow shock are most probably solar wind ions. However, how and with what efficiency a certain fraction of the thermal solar wind population is injected into the acceleration process is at present only poorly understood. Whether the seed particles for the acceleration at interplanetary shocks are solar wind ions or more energetic ions is an open question.

  10. Formation of Magnetized Prestellar Cores with Ambipolar Diffusion and Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Ostriker, Eve

    2014-07-01

    We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds (GMCs), using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging flow within a GMC, and survey varying ionization and angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M~0.04-2.5 solar-mass and sizes L~0.015-0.07 pc, consistent with observations of the peak of the core mass function (CMF). Median values are M=0.47 solar-mass and L=0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-magnetic flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are 1-2 orders of magnitude lower than the value that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument which suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.

  11. Formation of Magnetized Prestellar Cores with Ambipolar Diffusion and Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Ostriker, Eve C.

    2014-04-01

    We investigate the roles of magnetic fields and ambipolar diffusion during prestellar core formation in turbulent giant molecular clouds, using three-dimensional numerical simulations. Our simulations focus on the shocked layer produced by a converging large-scale flow and survey varying ionization and the angle between the upstream flow and magnetic field. We also include ideal magnetohydrodynamic (MHD) and hydrodynamic models. From our simulations, we identify hundreds of self-gravitating cores that form within 1 Myr, with masses M ~ 0.04-2.5 M ⊙ and sizes L ~ 0.015-0.07 pc, consistent with observations of the peak of the core mass function. Median values are M = 0.47 M ⊙ and L = 0.03 pc. Core masses and sizes do not depend on either the ionization or upstream magnetic field direction. In contrast, the mass-to-flux ratio does increase with lower ionization, from twice to four times the critical value. The higher mass-to-flux ratio for low ionization is the result of enhanced transient ambipolar diffusion when the shocked layer first forms. However, ambipolar diffusion is not necessary to form low-mass supercritical cores. For ideal MHD, we find similar masses to other cases. These masses are one to two orders of magnitude lower than the value M mag, sph = 0.007B 3/(G 3/2ρ2) that defines a magnetically supercritical sphere under post-shock ambient conditions. This discrepancy is the result of anisotropic contraction along field lines, which is clearly evident in both ideal MHD and diffusive simulations. We interpret our numerical findings using a simple scaling argument that suggests that gravitationally critical core masses will depend on the sound speed and mean turbulent pressure in a cloud, regardless of magnetic effects.

  12. Opto-Thermal Transient Emission Radiometry

    NASA Astrophysics Data System (ADS)

    Gilchrist, John Robert

    Available from UMI in association with The British Library. Requires signed TDF. The underlying theory behind the technique and the design criteria for the radiometer are extensively discussed. The theory has been analysed for the cases of: (a) a semi-infinite homogeneous solid with finite transparency to the optical excitation and the emitted thermal infrared signal, (b) a semi-infinite homogeneous solid which is opaque to both the optical excitation and infrared signal, (c) a thin insulating film which is transparent to both the optical excitation and the emitted infrared signal and is also in intimate contact with a substrate of large thermal conductance, (d) the effect on opto-thermal signals of transient changes in sample emissivity, and (e) the effect on the signal of a spectral distribution of infrared absorption coefficients. The noise performance of the apparatus was evaluated in terms of Johnson, shot, l/f, and amplifier noise processes. The radiometer was limited by noise from the amplifier and the temperature sensitivity estimated to be ca. 0.16K. With an ideal amplifier the background noise limited temperature sensitivity would be ca. 0.013K. The radiometer has been used for the following studies. (i) To monitor the effect of accelerated weathering exposure in white paint films. Measurements indicate a significant decrease in optothermal decay time, tau, within the early stagles of film weathering. Additional measurements using absorption and infrared spectrometry show an increase in both optical and infrared absorption coefficients indicating that the accelerated weathering process causes photo-chemical degradation of the film. (ii) To study the thermal diffusivity of thin thermally insulating films on substrates of large thermal conductance. It was found that either the thermal diffusivity of the film or the film thickness could be monitored by the shape of the opto-thermal transient. Soft and hard anodic films on aluminium substrates were found to have a thermal diffusivity ratio of 1.28. (iii) To measure changes in opto-thermal decay time over a range of sample temperatures including the melting transition temperature of a sample of Benzophenone. Close to, but below, the transition temperature the additional energy of the laser pulse was found to cause transient melting and re-solidification. The effect of this on the decay curves was studied. (Abstract shortened by UMI.).

  13. An Upregulation in the Expression of Vanilloid Transient Potential Channels 2 Enhances Hypotonicity-Induced Cytosolic Ca2+ Rise in Human Induced Pluripotent Stem Cell Model of Hutchinson Gillford Progeria

    PubMed Central

    Ho, Jenny Chung-Yee; Siu, Chung-Wah; Cheung, Sin-Ying; Tang, Nelson L.; Yu, Shan; Tse, Hung-Fat; Yao, Xiaoqiang

    2014-01-01

    Hutchinson-Gillford Progeria Syndrome (HGPS) is a fatal genetic disorder characterized by premature aging in multiple organs including the skin, musculoskeletal and cardiovascular systems. It is believed that an increased mechanosensitivity of HGPS cells is a causative factor for vascular cell death and vascular diseases in HGPS patients. However, the exact mechanism is unknown. Transient receptor potential (TRP) channels are cationic channels that can act as cellular sensors for mechanical stimuli. The aim of this present study was to examine the expression and functional role of TRP channels in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from the patients with HGPS. The mRNA and protein expression of TRP channels in HGPS and control (IMR90) iPSC-ECs were examined by semi-quantitative RT-PCRs and immunoblots, respectively. Hypotonicity-induced cytosolic Ca2+ ([Ca2+]i) rise in iPSC-ECs was measured by confocal microscopy. RT-PCRs and immunoblots showed higher expressional levels of TRPV2 in iPSC-ECs from HGPS patients than those from normal individuals. In functional studies, hypotonicity induced a transient [Ca2+]i rise in iPSC-ECs from normal individuals but a sustained [Ca2+]i elevation in iPSC-ECs from HGPS patients. A nonselective TRPV inhibitor, ruthenium red (RuR, 20 µM), and a specific TRPV2 channel inhibitor, tranilast (100 µM), abolished the sustained phase of hypotonicity-induced [Ca2+]i rise in iPSC-ECs from HGPS patients, and also markedly attenuated the transient phase of the [Ca2+]i rise in these cells. Importantly, a short 10 min hypotonicity treatment caused a substantial increase in caspase 8 activity in iPSC-ECs from HGPS patients but not in cells from normal individuals. Tranilast could also inhibit the hypotonicity-induced increase in caspase 8 activity. Taken together, our data suggest that an up-regulation in TRPV2 expression causes a sustained [Ca2+]i elevation in HGPS-iPSC-ECs under hypotonicity, consequently resulting in apoptotic cell death. This mechanism may contribute to the pathogenesis of vascular diseases in HGPS patients. PMID:24475260

  14. Diffusion in membranes: Toward a two-dimensional diffusion map

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Garcia-Sakai, Victoria; Bewley, Robert; Dalgliesh, Robert; Perring, Toby; Rheinstädter, Maikel C.

    2015-01-01

    For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  15. Transient ion-drift-induced capacitance signals in semiconductors

    SciTech Connect

    Heiser, T.; Weber, E.R.

    1998-08-01

    A theoretical model is developed that describes capacitance signals induced by drift of mobile ions in the space charge region of a Schottky diode. Pairing between the diffusing ion and the doping impurities is taken into account. The coupled partial differential equations are resolved numerically and the influence of key parameters on the signal shape is analyzed. Special emphasis is put on those features that enable transient ion-drift- (TID-) induced signals to be distinguished from capacitance transients caused by deep-level carrier emission processes. Relaxation kinetics and reverse bias dependence of the signal shape represent two reliable tools to verify the ion-drift nature of the signals. Methods for extracting quantitative information on both diffusion and pairing properties of the mobile ions are described. The question of whether pairing or diffusion is limiting the process is addressed. The influence of the doping level on the signal time constant is used to evaluate whether or not the diffusion is trap limited. A semiempirical model is described that permits the estimation of diffusion and pairing coefficients without resolving numerically the differential equations. Experiments are performed on interstitial copper in {ital p}-type silicon to test the predictions of the theoretical model. An overall agreement is found between theory and experiments. {copyright} {ital 1998} {ital The American Physical Society}

  16. Oxygen Diffusion Measurements in Unsaturated Porous Media on the International Space Station

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Or, D.; Topham, T. S.; Podolskiy, I. G.; Bingham, G. E.

    2007-12-01

    Oxygen supply to plant roots in unsaturated porous media is regulated by the amount of water and its distribution pattern. The design of optimal plant growth media must strike a balance between the retention of sufficient amounts of water in pore spaces by capillarity and maintenance of sufficient air-filled pore connectivity for gaseous diffusion. The challenges presented by microgravity conditions aboard spacecraft require novel management approaches to ensure optimal conditions for plant roots. We developed and tested a system for measurement of oxygen diffusion in partially saturated porous media under microgravity conditions. A sealed dual-chamber diffusion cell was constructed and controlled by an automated measurement system capable of controlling porous media water content using a metered pumping system through a porous membrane, and tensiometers to measure matric potentials concurrently. Continuous measurements of oxygen concentrations in the cells were conducted with Galvanic-based sensors providing transient response data for estimating water content-dependent diffusion coefficients. Gas diffusion was modeled as a function of air-filled porosity in mm- sized aggregated particles. Data were collected on the International Space Station between July and September 2007 as part of the ORZS-MIS experimental flight package (http://www.sdl.usu.edu/programs/orzs). Oxygen diffusion measurements in microgravity were compared with earth-based data using triplicate cell measurements in three different porous media. Preliminary results point to enhanced hysteresis in oxygen diffusion dependency on air-filled porosity in microgravity, indicating altered water distribution patterns relative to earth-based measurements. Considering air invasion during drainage, we hypothesize that a critical air-filled pathway forms at lower saturation in microgravity due to the absence of hydrostatic water distribution. A shift in the critical air-filled in microgravity would require adjustment in plant growth system management protocols and possible model development for reliable prediction of microgravity systems response.

  17. Peach Bottom Transients Analysis with TRAC/BF1-VALKIN

    SciTech Connect

    Verdu, G.; Miro, R.; Sanchez, A.M.; Rosello, O.; Ginestar, D.; Vidal, V.

    2004-10-15

    The TRAC/BF1-VALKIN code is a new time domain analysis code for studying transients in a boiling water reactor. This code uses the best-estimate code TRAC/BF1 to give an account of the heat transfer and thermal-hydraulic processes and a three-dimensional neutronics module. This module has two options: the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. To check the performance of the TRAC/BF1-VALKIN code, the Peach Bottom turbine trip transient has been simulated, because this transient is a dynamically complex event where neutron kinetics is coupled with thermal hydraulics in the reactor primary system, and reactor variables change very rapidly.

  18. Bright Transient discovered by PSST

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2015-06-01

    A bright transient has been discovered as part of the Pan-STARRS Survey for Transients (PSST) at g=16.82. The object lies in the Galactic Bulge at l=7.03, b=9.50, and a faint object is visible at that location in the reference image.

  19. Single file diffusion in microtubules

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew; Farrell, Spencer; Brown, Aidan

    2015-03-01

    We investigate the single file diffusion (SFD) of large particles entering a confined tubular geometry, such as luminal diffusion of proteins inside microtubules or flagella. While single-file effects have no effect on particle density, we report significant single-file effects for individually-tracked tracer particle motion. Both exact and approximate ordering statistics of particles entering semi-infinite tubes agree well with our stochastic simulations. Considering initially empty semi-infinite tubes, with particles entering at one end starting from an initial time t = 0 , tracked particles display super-diffusive effective exponents just after they enter the system and trends towards diffusive exponents at later times. Equivalently, if diffusive exponents are assumed the effective diffusivity is reduced at early times and enhanced at later times through a logarithmic factor logN , where N is the number of particles in the tube. When we number each particle from the first (n = 1) to the most recent (n = N), we find good scaling collapse of the effective diffusivity for all n. Techniques that track individual particles, or local groups of particles, such as photo-activation or photobleaching, will exhibit single-file effects.

  20. Inferring transient particle transport dynamics in live cells

    PubMed Central

    Monnier, Nilah; Barry, Zachary; Park, Hye Yoon; Su, Kuan-Chung; Katz, Zachary; English, Brian P; Dey, Arkajit; Pan, Keyao; Cheeseman, Iain M; Singer, Robert H; Bathe, Mark

    2016-01-01

    Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. however, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied bayesian model selection to hidden markov modeling to infer transient transport states from trajectories of mrna-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. the software is available at http://hmm-bayes.org/. PMID:26192083

  1. Inferring transient particle transport dynamics in live cells.

    PubMed

    Monnier, Nilah; Barry, Zachary; Park, Hye Yoon; Su, Kuan-Chung; Katz, Zachary; English, Brian P; Dey, Arkajit; Pan, Keyao; Cheeseman, Iain M; Singer, Robert H; Bathe, Mark

    2015-09-01

    Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/. PMID:26192083

  2. Double-diffusive layer formation

    NASA Astrophysics Data System (ADS)

    Zaussinger, Florian; Kupka, Friedrich; Hücker, Sebastian; Egbers, Christoph

    2015-04-01

    Double-diffusive convection plays an important role in geo- and astrophysical applications. The special case, where a destabilising temperature gradient counteracts a stabilising solute gradient leads to layering phenomena under certain conditions. Convectively mixed layers sandwiched in diffusive interfaces form a so-called stack. Well-known double-diffusive systems are observed in rift lakes in Africa and even from the coffee drink Latte Macciatto. Stacks of layers are also predicted to occur inside massive stars and inside giant planets. Their dynamics depend on the thermal, the solute and the momentum diffusivities, as well on the ratio of the gradients of the opposing stratifications. Since the layering process cannot be derived from linear stability analysis, the full nonlinear set of equations has to be investigated. Numerical simulations have become feasible for this task, despite the physical processes operate on a vast range of length and time scales, which is challenging for numerical hydrodynamical modelling. The oceanographically relevant case of fresh and salty water is investigated here in further details. The heat and mass transfer is compared with theoretical results and experimental measurements. Additionally, the initial dynamic of layering, the transient behaviour of a stack and the long time evolution are presented using the example of Lake Kivu and the interior of a giant planet.

  3. Transient and steady-state selection in the striatal microcircuit

    PubMed Central

    Tomkins, Adam; Vasilaki, Eleni; Beste, Christian; Gurney, Kevin; Humphries, Mark D.

    2014-01-01

    Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients. PMID:24478684

  4. Perspectives of transient tracer applications and limiting cases

    NASA Astrophysics Data System (ADS)

    Stöven, T.; Tanhua, T.; Hoppema, M.; Bullister, J. L.

    2015-09-01

    Currently available transient tracers have different application ranges that are defined by their temporal input (chronological transient tracers) or their decay rate (radioactive transient tracers). Transient tracers range from tracers for highly ventilated water masses such as sulfur hexafluoride (SF6) through tritium (3H) and chlorofluorocarbons (CFCs) up to tracers for less ventilated deep ocean basins such as argon-39 (39Ar) and radiocarbon (14C). In this context, highly ventilated water masses are defined as water masses that have been in contact with the atmosphere during the last decade. Transient tracers can be used to empirically constrain the transit time distribution (TTD), which can often be approximated with an inverse Gaussian (IG) distribution. The IG-TTD provides information about ventilation and the advective/diffusive characteristics of a water parcel. Here we provide an overview of commonly used transient tracer couples and the corresponding application range of the IG-TTD by using the new concept of validity areas. CFC-12, CFC-11 and SF6 data from three different cruises in the South Atlantic Ocean and Southern Ocean as well as 39Ar data from the 1980s and early 1990s in the eastern Atlantic Ocean and the Weddell Sea are used to demonstrate this method. We found that the IG-TTD can be constrained along the Greenwich Meridian south to 46° S, which corresponds to the Subantarctic Front (SAF) denoting the application limit. The Antarctic Intermediate Water (AAIW) describes the limiting water layer in the vertical. Conspicuous high or lower ratios between the advective and diffusive components describe the transition between the validity area and the application limit of the IG-TTD model rather than describing the physical properties of the water parcel. The combination of 39Ar and CFC data places constraints on the IG-TTD in the deep water north of the SAF, but not beyond this limit.

  5. The Growth of Steroidobacter agariperforans sp. nov., a Novel Agar-Degrading Bacterium Isolated from Soil, is Enhanced by the Diffusible Metabolites Produced by Bacteria Belonging to Rhizobiales

    PubMed Central

    Sakai, Masao; Hosoda, Akifumi; Ogura, Kenjiro; Ikenaga, Makoto

    2014-01-01

    An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5–BT, belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FST, at the species level with 96.5% similarity. Strain KA5–BT was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15–37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0–8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso–C15:0, C16:1ω7c, and iso–C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FST was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5–BT (JCM 18477T = KCTC 32107T) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed. PMID:24621511

  6. Transient thermoelectric effect in bismuth single crystals

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Tai, G. X.; Inoue, M.; Bidadi, H.

    1994-05-01

    The photo-induced transient thermoelectric effect (TTE) has been measured for bismuth single crystals along nearly the X and Y axes over the temperature range 6-300 K and time range 50 ns-2 ms. The decay curves of the TTE voltages are characterized by multiple relaxation processes for thermal diffusions of photogenerated electrons and holes. From the analysis of the relaxation times, we have evaluated the carrier mobilities and their effective masses of each carrier pocket at the L and T points based on the existing band model; in particular, we have found an additional hole pocket at the L point lying below the Fermi energy. This TTE technique is shown to be useful for understanding electronic properties of a multicarrier system.

  7. Measurement of transient deformation by color encoding.

    PubMed

    Mares, C; Barrientos, B; Blanco, A

    2011-12-01

    We present a method based on color encoding for measurement of transient 3D deformation in diffuse objects. The object is illuminated by structured light that consists of a fringe pattern with cyan fringes embedded in a white background. Color images are registered and information on each color channel is then separated. Surface features appear on the blue channel while fringes on the red channel. The in-plane components of displacement are calculated via digital correlation of the texture images. Likewise, the resulting fringes serve for the measuring of the out-of-plane component. As crossing of information between signals is avoided, the accuracy of the method is high. This is confirmed by a series of displacement measurements of an aluminum plate. PMID:22273963

  8. Observations of large transient magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Heppner, J. P.

    1977-01-01

    Transient electric field events were observed with the long, double probe instrumentation carried by the IMP-6 satellite. Nine, clearly defined, exceptionally large amplitude events are presented here. The events are observed in the midnight sector at geocentric distances 3.5 to .5.5 R sub e at middle latitudes within a magnetic L-shell range of 4.8 to 7.5. They usually have a total duration of one to several minutes, with peak power spectra amplitudes occurring at a frequency of about 0.3 Hz. The events occur under magnetically disturbed conditions, and in most cases they can be associated with negative dH/dt excursions at magnetic observatories located near the foot of the magnetic field line intersecting IMP-6. The magnetospheric motions calculated for these electric fields indicated a quasi-stochastical diffusive process rather than the general inward magnetospheric collapsing motion expected during the expansive phases of auroral substorm activity.

  9. MULTIMOMENT RADIO TRANSIENT DETECTION

    SciTech Connect

    Spitler, L. G.; Cordes, J. M.; Chatterjee, S.; Stone, J.

    2012-04-01

    We present a multimoment technique for signal classification and apply it to the detection of fast radio transients in incoherently dedispersed data. Specifically, we define a spectral modulation index in terms of the fractional variation in