Science.gov

Sample records for transverse rupture strength

  1. Stress-rupture strength of alloy 718

    SciTech Connect

    Kennedy, R.L.; Cao, W.D.; Thomas, W.M.

    1996-03-01

    Alloy 718 is the most widely used of the nickel-base superalloys in aerospace applications such as compressor and turbine disks, cases, compressor blades and fasteners in aircraft gas-turbine engines. Since the development of the superalloy by Inco Alloys International over 30 years ago, researchers have made many slight modifications in chemical composition, and have refined process techniques to achieve further improvements in performance. Relatively little information on the effects of phosphorus has been published, and the available information is contradictory. However, phosphorus in superalloys is generally considered detrimental, and by specification is controlled to a low maximum value (0.015% max, for example, in AMS5662 E). This lack of data is the basis of a study by Teledyne Allvac to determine the effects of the interaction of phosphorus, boron, and carbon on the mechanical properties, processing characteristics, and microstructure of Allvac 718. Results show that a significant improvement in stress-rupture properties over those of a commercial Alloy 718 material is possible by optimizing phosphorus, boron, and carbon additions.

  2. In Vitro Study of Transverse Strength of Fiber Reinforced Composites

    PubMed Central

    Mosharraf, R.; Hashemi, Z.; Torkan, S.

    2011-01-01

    Objective Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Materials and Methods Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey’s tests. Results There was a significant difference among the mean primary transverse strength in the three groups (P<0.001). The post-hoc (Tukey) test showed that there was a significant difference between the pre-impregnated and control groups in their primary transverse strength (P<0.001). Regarding deflection, there was also a significant difference among the three groups (P=0.001). There were significant differences among the mean deflection of the control group and two other groups (PC&N<.001 and PC&P=.004), but there was no significant difference between the non-and pre-impregnated groups (PN&P=.813). Conclusion Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples. PMID:22457836

  3. Stress-rupture strength and microstructural stability of W-HF-C wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    W-Hf-C/superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100-and 1000-hour rupture strengths obtained for 70 volume percent fiber composites tested at 1090 C were 420 and 280 MN/sq m (61,000 and 41,000 psi). The investigation indicated that with better quality fibers, composites having 100- and 1000-hour rupture strengths of 570 and 370 MN/sq m (82,000 and 54,000 psi) may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for long time applications at 1090 C for 1000 hours or more.

  4. Influence of Specimen Preparation and Specimen Size on Composite Transverse Tensile Strength and Scatter

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin; Paris, Isabelle

    2001-01-01

    The influence of specimen polishing, configuration, and size on the transverse tension strength of two glass-epoxy materials, and one carbon-epoxy material, loaded in three and four point bending was evaluated. Polishing machined edges, arid/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was typically lower for longer span lengths due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law typically over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, this scaling law was not adequate for predicting transverse tension strength of heterogeneous, fiber-reinforced, polymer matrix composites.

  5. Characterisation of Laves phase precipitation and its correlation to creep rupture strength of ferritic steels

    SciTech Connect

    Zhu, S.; Yang, M.; Song, X.L.; Tang, S.; Xiang, Z.D.

    2014-12-15

    The Laves phase precipitation process was characterised by means of field emission scanning electron microscopy to demonstrate its effect on creep rupture strength of steels with a fully ferritic matrix. To eliminate the effects of carbide and carbonitride precipitations so that the creep rupture data can be analysed exclusively in relation to the Laves phase precipitation process, an alloy Fe–9Cr–3Co–3W (wt.%) without C and N additions was used for the study. Creep rupture strengths were measured and volume fraction and particle size of Laves phase precipitates in the ruptured specimens were analysed. It was found that the creep rupture strength started to collapse (or decrease more rapidly) long before the Laves phase precipitation reached equilibrium fraction. This was related to the onset of the coarsening of Laves phase particles, which precipitated only on grain boundaries and hence contributed little to precipitation strengthening. Creep deformation had no effect either on the precipitation kinetics or on the growth kinetics of Laves phase particles. - Highlights: • Laves phase precipitation at 650 °C was characterised for Fe–9Cr–3W–3Co alloy. • Laves phase precipitated predominantly on grain boundaries. • Creep deformation had no effect on Laves phase precipitation and growth kinetics. • Creep strength started to collapse long before Laves phase precipitation is ended. • Collapse of creep strength was attributed to the coarsening of Laves phase particles.

  6. Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1996-01-01

    Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.

  7. Creep rupture strength of activated-TIG welded 316L(N) stainless steel

    NASA Astrophysics Data System (ADS)

    Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K. S.; Mathew, M. D.; Bhaduri, A. K.

    2011-06-01

    316L(N) stainless steel plates were joined using activated-tungsten inert gas (A-TIG) welding and conventional TIG welding process. Creep rupture behavior of 316L(N) base metal, and weld joints made by A-TIG and conventional TIG welding process were investigated at 923 K over a stress range of 160-280 MPa. Creep test results showed that the enhancement in creep rupture strength of weld joint fabricated by A-TIG welding process over conventional TIG welding process. Both the weld joints fractured in the weld metal. Microstructural observation showed lower ?-ferrite content, alignment of columnar grain with ?-ferrite along applied stress direction and less strength disparity between columnar and equiaxed grains of weld metal in A-TIG joint than in MP-TIG joint. These had been attributed to initiate less creep cavitation in weld metal of A-TIG joint leading to improvement in creep rupture strength.

  8. Stress-rupture strength and microstructural stability of tungsten-hafnium-carbon-wire reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1974-01-01

    Tungsten-hafnium-carbon - superalloy composites were found to be potentially useful for turbine blade applications on the basis of stress-rupture strength. The 100- and 1000-hr rupture strengths calculated for 70 vol. % fiber composites based on test data at 1090C (2000F) were 420 and 280 MN/m2 (61,000 and 41,000 psi, respectively). The investigation indicated that, with better quality fibers, composites having 100- and 1000-hr rupture strengths of 570 and 370 MN/m2 (82,000 and 54,000 psi, respectively), may be obtained. Metallographic studies indicated sufficient fiber-matrix compatibility for 1000 hr or more at 1090C (2000F).

  9. Rupture Strength of Several Nickel-base Alloys in Sheet Form

    NASA Technical Reports Server (NTRS)

    Dance, James H; Clauss, Francis J

    1957-01-01

    The 100-hour rupture strengths of Inconel X, Inconel 700, Incoloy 901, Refractaloy 26, and R-235 at 1200 and 1350 F. in both the annealed and heat-treated conditions were determined. Inconel 700 had the highest rupture strength at both temperatures; Incoloy 901 was second strongest at 1200 F, and R-235 second strongest at 1350 F. With the exception of Incoloy 901, ductility was low. Photomicrographs show that fractures are through the grain boundaries. Results are compared with published data for other sheet alloys and bar stock.

  10. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.

    1999-01-01

    Tensile strength, creep strength, and rupture strength properties were measured for the following types of polymer-derived stoichiometric SiC fibers: Hi-Nicalon Type S from Nippon Carbon, Tyranno SA from Ube, and Sylramic from Dow Corning. Also included in this study were an earlier version of the SA fiber plus two recent developmental versions of the Sylramic fiber. The tensile strength measurements were made at room temperature on as-received fibers and on fibers after high-temperature inert exposure. The creep-rupture property data were obtained at 1400 deg C in air as well as, argon. Some fiber types showed strong effects of environment on their strength properties. These results are compared and discussed in terms of underlying mechanisms and implications for ceramic composites.

  11. The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2014-01-01

    Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.

  12. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  13. Composite Stress Rupture: A New Reliability Model Based on Strength Decay

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2012-01-01

    A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures

  14. Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength

    NASA Astrophysics Data System (ADS)

    Laha, Kinkar; Kyono, J.; Shinya, Norio

    2012-04-01

    Type 347 austenitic stainless steel (18Cr-12Ni-Nb) was alloyed with copper (3 wt pct), boron (0.01 to 0.06 wt pct), and cerium (0.01 wt pct) with an aim to increase the creep rupture strength of the steel through the improved deformation and cavitation resistance. Short-term creep rupture strength was found to increase with the addition of copper in the 347 steel, but the long-term strength was inferior. Extensive creep cavitation deprived the steel of the beneficial effect of creep deformation resistance induced by nano-size copper particles. Boron and cerium additions in the copper-containing steel increased its creep rupture strength and ductility, which were more for higher boron content. Creep deformation, grain boundary sliding, and creep cavity nucleation and growth in the steel were found to be suppressed by microalloying the copper-containing steel with boron and cerium, and the suppression was more for higher boron content. An auger electron spectroscopic study revealed the segregation of boron instead of sulfur on the cavity surface of the boron- and cerium-microalloyed steel. Cerium acted as a scavenger for soluble sulfur in the steels through the precipitation of cerium sulfide (CeS). This inhibited the segregation of sulfur and facilitated the segregation of boron on cavity surface. Boron segregation on the nucleated cavity surface reduced its growth rate. Microalloying the copper-containing 347 steel with boron and cerium thus enabled to use the full extent of creep deformation resistance rendered by copper nano-size particle by increase in creep rupture strength and ductility.

  15. Statistical scaling relationships and size effects in the strength and creep rupture of fibrous composites

    NASA Technical Reports Server (NTRS)

    Phoenix, S. Leigh

    1994-01-01

    In this presentation we discuss a new theoretical model and supporting experimental results for the strength and lifetime in creep rupture of unidirectional, carbon fiber/epoxy matrix composites at ambient conditions. First we review the 'standard' Weibull/power-law methodology that has been standard practice. Then we discuss features of a recent model which build on the statistical aspects of fiber strength, micromechanical aspects of stress transfer around fiber breaks, and time-dependent creep of the matrix. The model is applied to 'microcomposites' consisting of seven fibers in a matrix for which strength and creep-rupture data are available. The model yields Weibull distributions in an envelope format for both strength and lifetime. The respective shape, scale and power-law parameters depend on such parameters as the Weibull shape parameter for fiber strength, the exponent for matrix creep, the effective load transfer length (which grows in time due to matrix creep) and the critical cluster size for failed fibers. The experimental results are consistent with the theory, though time-dependent debonding appears to be part of the failure process.

  16. Transverse tensile and stress rupture properties of gamma/gamma prime-delta directionally solidified eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. H.

    1976-01-01

    Tensile and stress rupture properties were determined primarily at 760 C for specimens oriented at various angles (0 deg, 10 deg, 45 deg, and 90 deg) from the solidification direction of bars and/or slabs of the Ni-20Cb-6Cr-2.5A (gamma/gamma prime-delta) eutectic. Threaded-head specimens yielded longer rupture lives with significantly less scatter than did tapered-head specimens. Miniature specimens are suitable for determining traverse tensile and rupture properties of 1.2 centimeter diameter bar stock. The 300 hour rupture stress at 760 C for specimens oriented at 10 deg from the solidification direction was reduced from 740 to 460 MPa, and to 230 MPa for material oriented at either 45 deg or 90 deg.

  17. Determination of transverse shear strength through torsion testing

    SciTech Connect

    Marcucelli, K.T.; Fish, J.C.

    1997-12-31

    The in-plane characterization of composite materials is, in general, well understood and widely utilized throughout the aerospace industry. However, the use of composites in structural elements such as fuselage frames and rotorcraft flexbeams place large out-of-plane or through-the-thickness stresses for which there is little data. Efforts to determine the interlaminar shear strength of laminated composites have been hampered due to the nonlinear behavior of test specimens and the limitations of current analysis tools. An inexpensive rectangular torsion test specimen was designed to determine the interlaminar shear strength, s{sub 23}, of composite materials. Six different layups were fabricated of AS4/2220-3 carbon/epoxy unidirectional tape and tested in pure torsion. All of the specimens failed abruptly with well-defined shear cracks and exhibited linear load-deflection behavior. A quasi-three-dimensional (Q-3-D) finite element analysis was conducted on each of the specimen configurations to determine the interlaminar shear stress at failure. From this analysis, s{sub 23} was found to be 107 MPa for this material.

  18. Influence of Specimen Preparation and Specimen Size on the Transverse Tensile Strength and Scatter of Glass Epoxy Laminates

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin

    1999-01-01

    The influence of specimen polishing, specimen configuration, and specimen size on the transverse tension strength of two glass epoxy materials loaded in three and four point bending was evaluated. Polishing machined edges, and/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was sensitive to span length due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, the utility of this scaling law for predicting transverse tension strength is unclear.

  19. Scale effects on the transverse tensile strength of graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Salpekar, Satish A.

    1992-01-01

    The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.

  20. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    SciTech Connect

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-12-04

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation.

  1. Development of high strength nickel-base cast superalloy with superior creep rupture life

    SciTech Connect

    Yao, X.; Kim, H.; Choi, J.

    1996-10-15

    Elevating the operating temperature is considered to be the most effective for increasing the thermal efficiency of power generators or chemical plants. For this reason, the development of materials exhibiting superior creep strength and corrosion resistance is required. Directionally solidification (DS) and single crystal (SC) superalloys have been developed for advanced commercial and military applications. Owing to the difficulties to produce DS and SC alloys and the high casting cost, it is necessary to develop conventional casting superalloys with excellent properties similar to those of DS and SC alloys. For this purpose, a program to design and develop cast nickel-base superalloys was initiated in this investigation. Some methods, so called PHACOMP-Nv or NEW-PHACOMP-Md, allow one to estimate the phase stability of alloys, and eventually to improve it by modification of the composition. In fact these methods do not have a strong physical basis but are rather based on empirical correlations. In this paper, six compositions were calculated according to the conventional PHACOMP parameter calculation and based on the inventions Ni-Cr-W-Al-Ti-Ta system. Among them an alloy with high strength and superior creep rupture properties was determined. The phase stability was discussed using NEW-PHACOMP-Md concept.

  2. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  3. Prolapsed cord after external cephalic version in a patient with premature rupture of membranes and transverse lie.

    PubMed

    Berghella, V

    2001-12-01

    A 29-year-old G6 P3023 woman presented at 37 weeks' gestation with rupture of membranes and oligohydramnios. After informed consent was obtained, a successful external cephalic version (ECV) was performed. The patient went into spontaneous labor, but about 2h after the ECV, the umbilical cord prolapsed, necessitating cesarean section. Umbilical cord prolapse is a possible complication of ECV in patients with rupture of membranes and oligohydramnios. PMID:11788188

  4. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  5. Weathering effects on tensile and stress rupture strength of glass fiber reinforced vinylester and epoxy thermoset pipes

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Syed

    Glass fiber reinforced vinylester (GFRE) and epoxy (GFRE) pipes have been used for more than three decades to mitigate corrosion problems in oil fields, chemical and industrial plants. In these services, both GFRV and GFRE pipes are exposed to various environmental conditions. Long-term mechanical durability of these pipes after exposure to environmental conditions, which include natural weathering exposure to seasonal temperature variation, sea water, humidity and other corrosive fluids like crude oil, should be well known. Although extensive research has been undertaken, several major issues pertaining to the performance of these pipes under a number of environmental conditions still remain unresolved. The main objective of this study is to investigate the effects of natural weathering, combined natural weathering with seawater and crude oil exposure, for time periods ranging from 3 to 36 months respectively, on the tensile and stress rupture behavior of GFRV and GFRE pipes. Ring specimens are machined from GFRV and GFRE pipes and tested before and after exposure to different weathering conditions prevalent in the eastern region (Dhahran) of Saudi Arabia and present under service conditions. The natural weathering and combined natural weathering with crude oil exposure of GFRV specimens revealed increased tensile strength even after 36 months of exposure when compared with that of the as received samples. However, the combined natural weathering with seawater exposure of GFRV samples revealed better tensile behavior till 24 months of exposure, and after 36 months their tensile strength was seen to be below that of the as received GFRV samples. The stress rupture behavior of natural weather exposed GFRV samples showed an improvement after 12 months of exposure and it decreased after 24 and 36 months of exposure when compared with the as received GFRV samples. The combined natural weathering with crude oil and seawater exposure of GFRV sample revealed improved stress rupture behavior after 12 months of exposure. The as received GFRE pipe specimens revealed higher average tensile strength when compared to the as received GFRV sample, whereas the stress rupture behavior was comparatively low. The seawater exposure of the GFRE specimens resulted in drastic reduction in both tensile and stress rupture properties. Fractographic analysis was performed using an optical microscope and SEM in order to explain the possible controlling mechanisms of failure.

  6. Techniques for Strength Measurement at High Pressures and Strain-Rates Using Transverse Waves

    NASA Astrophysics Data System (ADS)

    Richmond, Victoria Stolyar

    The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem. The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations. The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.

  7. Effects on stress rupture life and tensile strength of tin additions to Inconel 718

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Johnson, W.

    1982-01-01

    Because Inconel 718 represents a major use of columbium and a large potential source of columbium for aerospace alloys could be that of columbium derived from tin slags, the effects of tin additions to Inconel 718 at levels which might be typical of or exceed those anticipated if tin slag derived columbium were used as a melting stock were investigated. Tin was added to 15 pound Inconel 718 heats at levels varying from none added to approximately 10,000 ppm (1 wt%). Limited 1200 F stress rupture testing was performed at stresses from 68,000 to 115,000 psi and a few tensile tests were performed at room temperature, 800 and 1200 F. Additions of tin in excess of 800 ppm were detrimental to ductility and stress rupture life.

  8. The effect of woven, chopped and longitudinal glass fibers reinforcement on the transverse strength of a repair resin.

    PubMed

    Uzun, G; Keyf, F

    2001-04-01

    Fracture resistance of prosthesis is an important clinical concern. This property is directly related to transverse strength. Strengthening of prostheses may result from reinforcement with various fiber types. This study evaluated the effect of fiber type on the transverse strength of a commercially available autopolymerizing resin that is used for repairing prosthesis. The resin was reinforced with woven form, chopped form and longitudinal form, and no reinforcement was used. Uniform samples were made from autopolymerizing resin. In total, twenty-four bar-shaped specimens (60 x 10 x 4 mm) were reinforced with glass fibers. Nine specimens were prepared without fiber. A three-point loading test was used to measure transverse strength, maximal deflection, and modulus of elasticity. The Kruskal-Wallis analysis of variance was used to examine differences between the four groups. Although the results of the analysis between these groups showed no statistical significances, the transverse strength, maximal deflection and modulus of elasticity increased more with fiber than without the fiber group. This finding may be of clinical significance. Because the addition of fiber reinforcement enhanced the physical properties of the processed material, specially woven form glass fiber was superior to the other forms. PMID:11336388

  9. Effects of Heterogeneities in Strength and Initial Shear Stress on Large Ruptures in a Fast Multi-cycle Earthquake Simulator (RSQSim) and DYNA3D

    NASA Astrophysics Data System (ADS)

    Stevens, J.; Richards-Dinger, K.; Dieterich, J.; Oglesby, D.

    2008-12-01

    RSQSim is a fast earthquake simulator that produces long (~ 106 event and ~ 104 year) synthetic seismicity catalogs in complex fault systems. It treats the interseismic and nucleation phases of the seismic cycle quasi-statically with an approximate version of rate- and state-dependent friction. The ruptures themselves are quasi-dynamic with slip speeds determined by shear impedance considerations. Validation of coseismic final slip (and therefore stress change) distributions is important for the generation of long catalogs because subsequent events in such simulators need to inherit the proper stress fields. Also, the heterogeneous evolved stress states from long simulations in complex fault systems (resulting from complex large ruptures, ongoing smaller seismicity, and stress interactions within the fault system) may be useful as more realistic inputs to dynamic rupture modelling. If the time evolution of ruptures in RSQSim is also realistic, they may be useful as kinematic sources for seismic hazard ground motion calculations. As part of an effort to validate the quasi-dynamic ruptures in RSQSim, we compare rupture propagation on a variable-strength planar fault in RSQSim to that on a similar fault in DYNA3D (a fully dynamic finite element model employing slip-weakening friction) for single, large, artificially nucleated ruptures. Previous work has shown that on homogeneous planar faults the RSQSim results agreed quantitatively very well with those of DYNA3D. For this comparison, our asperity model consists of multiple rectangular zones of increased normal stress of varying size, location, and amplitude. The heterogeneities produce complex ruptures - the rupture front tends to wrap itself around the barriers and create a burst of energy once it propagates across a barrier. Both codes allow rupture propagation over significant zones of negative stress drop in these asperity regions. Rupture durations, average rupture propagation speeds, and overall slip pattern are quite similar with both methods. However, ruptures in DYNA3D propagate more rapidly through the barriers and generate less high-frequency variations of slip than ruptures in RSQSim. The qualitative agreement of these two very different methods is good and may improve with further tuning of quasi-dynamic computational parameters. Using the same heterogeneous strength distribution as in the single-event examples, we use RSQSim to simulate several thousand years of additional seismicity. The effects of the asperities along the fault become much more subtle over multiple earthquake cycles as the shear stress adjusts to the higher normal stress in the asperities. Subsequent large spontaneous events rupture at much more variable and significantly slower velocities through the evolved stress states than through the uniform initial shear stress state of the first, artificially nucleated event. Indeed, the ruptures occasionally nearly come to a halt before continuing. These complex ruptures will produce very different ground motions than the more coherent ruptures seen in ruptures through smoother initial stress states.

  10. High-frequency spectral falloff of earthquakes, fractal dimension of complex rupture, b value, and the scaling of strength on faults

    USGS Publications Warehouse

    Frankel, A.

    1991-01-01

    The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author

  11. Assessment of an improved multiaxial strength theory based on creep-rupture data for type 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Huddleston, R. L.

    1992-03-01

    A new multiaxial strength theory incorporating three independent stress parameters was developed and reported by the author in 1984. It was formally incorporated into ASME Code Case N47-29 in 1990. In the earlier paper, the new model was shown to provide significantly more accurate stress-rupture life predictions, than the classical theories of von Mises, Tresca, and Rankine, for the type 304 stainless steel tested at 593 C under different biaxial stress states. Further assessments for other alloys are showing similar results. The current paper provides additional results for type 316 stainless steel specimens tested at 600 C under tension-tension and tension-compression stress states and shows 2 to 3 orders of magnitude reduction in the scatter in predicted versus observed lives. A key feature of the new theory, which incorporates the maximum deviatoric stress, the first invariant of the stress tensor, and the second invariant of the deviatoric stress tensor, is its ability to distinguish between life under tensile versus compressive stress states.

  12. Glass rupture disk

    DOEpatents

    Glass, S. Jill (Albuquerque, NM); Nicolaysen, Scott D. (Albuquerque, NM); Beauchamp, Edwin K. (Albuquerque, NM)

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  13. Method of Estimating the Long-term Rupture Strength of 11Cr-2W-0.4Mo-1Cu-Nb-V Steel

    NASA Astrophysics Data System (ADS)

    Tamura, Manabu

    2015-05-01

    Long-term rupture data of 11Cr-2W-0.4Mo-1Cu-Nb-V steel were analyzed using an exponential equation for stress regarding time to rupture as a thermal activation process. The fitness was compared with the usually employed method assuming power-law creep. In the exponential method, rupture data are classified into several groups according to the thermal activation process; the activation energy, Q; the activation volume, V; then, the Larson-Miller constant, C, values are calculated, and a regression equation is obtained for each data group. The fitness level of the equation was satisfactorily high for each group. The values of Q, V, and C were unusually small for a data group where an unexpected drop in rupture strength was observed. The critical issue is how to comprehend signs of degradation within the short term. We can observe several signs at a creep time of approximately one-tenth of the times of the degradation events. The small values of Q and V indicate that completely softened regions form and creep locally, which is consistent with previous observations. From both metallurgical considerations and the variations of Q and V, it is suggested that the rate of the unexpected drop in strength is mitigated after further long-term creep.

  14. Temperature Dependence on the Strength and Stress Rupture Behavior of a Carbon-Fiber Reinforced Silicon Carbide (C/SiC) Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Calomino, Anthony

    2002-01-01

    Tensile strengths and stress rupture lives of carbon-fiber reinforced silicon carbide (C/SiC) specimens were measured at 800 C and are compared to previously reported 1200 C data. All tests were conducted in an environmental chamber containing 1000 ppm of oxygen in argon. The average 800 C tensile strength of 610 MPa is 10% greater than at 1200 C. Average stress rupture lives at 800 C were 2.5 times longer than those obtained at 1200 C. The difference in the 800 and 1200 C lives is related to the oxidation rate of the reinforcing carbon fibers, which is the primary damage mode of C/SiC composites in oxygen-containing environments.

  15. Strength Tests of Thin-walled Duralumin Cylinders in Combined Transverse Shear and Bending

    NASA Technical Reports Server (NTRS)

    Lundquiest, Eugene E

    1935-01-01

    This report is the fourth of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptic section; it includes the results on 100 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The tests show that as the ratio of moment to shear varies from small to large values the failure changes from a shear to a bending type. In the report a chart is presented that shows the corresponding changes in strength.

  16. The effects of glass fiber reinforcement at different concentrations on the transverse strength, deflection and modulus of elasticity of a provisional fixed partial denture resin.

    PubMed

    Keyf, F; Uzun, G

    2001-10-01

    This study focused on some mechanical properties such as the transverse strength, maximal deflection and modulus of elasticity of a resin reinforced with untreated, chopped form glass fibers at different concentrations. A Teflon mould was used to prepare four groups of specimens. The specimens were prepared with different concentrations of the glass fiber to the mass of the powder/liquid mix (0.5, 1, 1.5%), and a mix without fiber was used as the control group. All the specimens were subjected to transverse testing with a cross-head speed of 5 mm/min. The load to fracture for each specimen with the maximum deflection at the point of loading in a three-point load test was recorded. The transverse strength of 0.5% fiber concentration was 54.45 MPa. The lowest value was 49.67 MPa for the 1% fiber concentration. The highest mean strength was for the specimens reinforced with 0.5% glass fiber. This mean was higher than for the mean of the control "without fiber" specimens. The specimens demonstrated an insignificant decrease in the transverse strength and the maximum deflection when the fiber concentration was increased. The inclusion of 1% glass fiber reduced the transverse strength, although the result was not statistically significant. PMID:11794724

  17. Effect of the fiber-matrix interphase on the transverse tensile strength of the unidirectional composite material

    NASA Technical Reports Server (NTRS)

    Tsai, H. C.; Arocho, A. M.

    1992-01-01

    A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.

  18. Three-Dimensional Gait Analysis Following Achilles Tendon Rupture With Nonsurgical Treatment Reveals Long-Term Deficiencies in Muscle Strength and Function

    PubMed Central

    Tengman, Tine; Riad, Jacques

    2013-01-01

    Background: Precise long-term assessment of movement and physical function following Achilles tendon rupture is required for the development and evaluation of treatment, including different regimens of physical therapy. Purpose: To assess intermediate-term (<10 years by conventional thinking) objective measures of physical function following Achilles tendon rupture treated nonsurgically and to compare these with self-reported measures of physical function. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Two to 5 years after Achilles tendon rupture, 9 women and 43 men (mean age, 49.2 years; range, 26-68 years) were assessed by physical examination, performance of 1-legged jumps, and 3-dimensional gait analysis (including calculation of muscle work). Self-reported scores for foot function (Achilles tendon rupture score) and level of physical activity were collected. Twenty age- and sex-matched controls were assessed in the same manner. Results: Physical examination of patients with the knee extended revealed 11.1 of dorsiflexion on the injured side and 9.2 on the uninjured side (P = .020), indicating gastrocnemius muscle lengthening. The 1-legged jump distance was shorter on the injured side (89.5 vs 96.2 cm; P < .001). Gait analysis showed higher peak dorsiflexion (14.3 vs 13.3; P = .016) and lower concentric (positive) plantar flexor work (16.6 vs 19.9 J/kg; P = .001) in the ankle on the uninjured side. At the same time, eccentric (negative) dorsiflexor work was higher on the injured side (13.2 vs 11.9 J/kg; P = .010). Self-perceived foot function and physical activity were lower in patients than in healthy controls (mean Achilles tendon rupture score, 78.6 and 99.8, respectively). Conclusion: Nonsurgically treated patients with Achilles tendon rupture showed signs of both anatomic and functional lengthening of the tendon. Attenuated muscle strength and function were present during walking as long as 2 to 5 years after rupture, as determined by 3-dimensional gait analysis. More extensive future studies involving patients having both surgical and nonsurgical treatment could provide additional valuable information. PMID:26535245

  19. Improved concept of lithospheric strength and earthquake activity at shallow depths based upon the fan-head dynamic shear rupture mechanism

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris G.; Randolph, Mark F.

    2016-01-01

    The typical depth-frequency distribution of earthquake hypocentres (DFDE) demonstrates that, below an upper cutoff, the earthquake frequency increases with depth up to a maximum value and then decreases and ceases at a lower cutoff. Such regular behaviour of earthquakes implies the existence of some fundamental mechanisms responsible for the distribution. Conventional models of lithospheric strength based upon the assumption that the frictional strength along pre-existing faults represents a lower limit on the rock shear strength do not provide any intrinsic logic for the observed DFDE. The paper shows that these models ignore the specific properties of intact hard rocks which can exhibit extremely low transient strength (significantly lower than the frictional strength) during failure under the high confining stresses corresponding to seismogenic depths. The low transient strength is provided by a recently identified fan-head shear rupture mechanism which can be initiated in intact rocks in the proximity of pre-existing faults. The low transient shear strength of intact rock determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The efficiency of the fan-mechanism within the seismogenic layer is variable, with maximum efficiency at the middle range between the upper and lower cutoffs, thus providing minimum transient strength of the lithosphere and maximum earthquake frequency at that depth. We believe that this intrinsic property of hard rocks is responsible for the observed DFDE. Importantly, the formation of new faults in intact rock generated by the fan-mechanism can be accompanied by very small stress-drops (similar to, or lower than, stress-drops for frictional stick-slip instability) combined with abnormally high energy release. The paper proposes an improved concept of lithospheric strength and earthquake activity at seismogenic depths.

  20. A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, Sunil; Mathew, M. D.

    2012-04-01

    Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.

  1. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    PubMed Central

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-01-01

    Background: Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Results: Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins. PMID:23946739

  2. Numerical analysis of stress distribution in Cu-stabilized GdBCO CC tapes during anvil tests for the evaluation of transverse delamination strength

    NASA Astrophysics Data System (ADS)

    Dizon, John Ryan C.; Gorospe, Alking B.; Shin, Hyung-Seop

    2014-05-01

    Rare-earth-Ba-Cu-O (REBCO) based coated conductors (CCs) are now being used for electric device applications. For coil-based applications such as motors, generators and magnets, the CC tape needs to have robust mechanical strength along both the longitudinal and transverse directions. The CC tape in these coils is subjected to transverse tensile stresses during cool-down and operation, which results in delamination within and between constituent layers. In this study, in order to explain the behaviour observed in the evaluation of c-axis delamination strength in Cu-stabilized GdBCO CC tapes by anvil tests, numerical analysis of the mechanical stress distribution within the CC tape has been performed. The upper anvil size was varied in the analysis to understand the effect of anvil size on stress distribution within the multilayered CC tape, which is closely related to the delamination strength, delamination mode and delamination sites that were experimentally observed. The numerical simulation results showed that, when an anvil size covering the whole tape width was used, the REBCO coating film was subjected to the largest stress, which could result in low mechanical delamination and electromechanical delamination strengths. Meanwhile, when smaller-sized anvils were used, the copper stabilizer layer would experience the largest stress among all the constituent layers of the CC tape, which could result in higher mechanical and electromechanical delamination strengths, as well as high scattering of both of these delamination strengths. As a whole, the numerical simulation results could explain the damage evolution observed in CC tapes tested under transverse tensile stress, as well as the transverse tensile stress response of the critical current, Ic.

  3. In-vitro Evaluation of Transverse Strength of Repaired Heat Cured Denture Base Resins without Surface Treatment and with Chemical and Mechanical Surface Treatment

    PubMed Central

    Yadav, Naveen S; Khare, Shilpi; Mishra, Sunil Kumar; Vyas, Rajesh; Mahajan, Harsh; Chitumalla, Rajkiran

    2015-01-01

    Background: Denture repair involves joining two parts of a fractured denture with a denture repair material. Hence, a substantial repairing system for denture base fracture should be there to elude frequent fracture. Materials and Methods: Surface treatment of conventional heat cure denture base resin with different surface treatments (chemical ethyl acetate, and mechanical roughening with bur), with control group formed without surface treatment. Specimens were repaired with auto polymerizing acrylic resin using sprinkle on technique. The testing of the transverse strength of the repaired specimens was evaluated with three-point bending test on universal testing machine. Results: The study revealed that surface chemical treatment with ethyl acetate improved the transverse strength of repaired heat cure denture base when compared with mechanical and control group. A two-way analysis of variance revealed that there was statistically significant difference in mean strengths of the three groups. Conclusion: Surface chemical treatment with ethyl acetate improved the transverse strength of the repaired heat cure denture base when compared with mechanical roughening with bur and group without surface treatment. PMID:26464547

  4. Densification, microstructure and strength evolution in sintering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoping

    2000-10-01

    Powder metallurgy has the ability to fabricate high quality, complex components to close tolerances in an economical manner. In many applications, a high sintered density is desirable for an improved performance. However, sintering to a high density demands a large shrinkage, often resulting in difficulties with dimensional control. Recent studies indicate the occurrence of a sufficient densification requires a low in situ strength at high sintering temperatures. On the other hand, the low in situ strength often leads to component's distortion in response to the external forces, such as gravity. Unfortunately, lack of knowledge on strength evolution in sintering has been a major challenge to achieve an optimized combination of densification and shape retention. Therefore, the present study investigates strength evolution in sintering and the effects of processing factors. Experiments are performed on prealloyed bronze and elemental mixture of Fe-2Ni powders. For the bronze, a loose casting method is used to fabricate transverse rupture bars, while bars are injection molded for the Fe-2Ni. The in situ transverse rupture strength is measured using the Penn State Flaming Tensile Tester. Experimental results indicate a dependence of densification and strength on sintering temperature. High temperatures enhance densification and interparticle bonding, resulting in strong sintered structures. However, a low in situ strength at high test temperatures indicates the dominance of thermal softening. A strength model combining sintering theories and microstructural parameters is developed to predict both the in situ strength and the post-sintering strength. The model demonstrates the strength of the sintered materials depends on the inherent material strength, the square of neck size ratio, sintered density, and thermal softening. The model is verified by comparison of model predictions with experimental data of the bronze and Fe-2Ni. Compared to prior strength models, this model has certain advantages. It is a predictive model for both the in situ strength and post-sintering strength, and can be extended to other systems.

  5. Rupture disc

    DOEpatents

    Newton, Robert G.

    1977-01-01

    The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.

  6. Stress field associated with the rupture of the 1992 Landers, California, earthquake and its implications concerning the fault strength at the onset of the earthquake

    NASA Astrophysics Data System (ADS)

    Bouchon, Michel; Campillo, Michel; Cotton, Fabrice

    1998-09-01

    We investigate the space and time history of the shear stress produced on the fault during the 1992 Landers earthquake. The stress is directly calculated from the tomographic image of slip on the fault derived from near-source strong motion data. The results obtained shed some light on why the earthquake rupture cascaded along a series of previously distinct fault segments to produce the largest earthquake in California in over 40 years. Rupture on the 30 km long northernmost segment of the fault was triggered by a large dynamic increase of the stress field, of the order of 20 to 30 MPa, produced by the rupturing of the adjacent fault segments. Such a large increase was necessary to overcome the static friction on this strand of the fault, unfavorably oriented in today's tectonic stress field. This misorientation eventually led to the arrest of rupture. The same mechanism explains why rupture broke only a small portion of the Johnson Valley fault on which the earthquake originally started, before jumping to an adjacent fault more favorably oriented. We conclude from these results that the dynamic stress field could not sustain and drive the rupture along the strongly misoriented NW-SE strands of the preexisting fault system. Instead, the dynamic stress field produced new fractures favorably oriented in a N-S direction and connecting parts of the old fault system.

  7. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  8. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and

  9. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.

    2010-10-15

    Purpose: The main focus of this work is to continue investigations into the Monte Carlo predicted skin doses seen in MRI-guided radiotherapy. In particular, the authors aim to characterize the 70 {mu}m skin doses over a larger range of magnetic field strength and x-ray field size than in the current literature. The effect of surface orientation on both the entry and exit sides is also studied. Finally, the use of exit bolus is also investigated for minimizing the negative effects of the electron return effect (ERE) on the exit skin dose. Methods: High resolution GEANT4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam (Varian 2100C) have been performed. Transverse magnetic fields of strengths between 0 and 3 T have been applied to a 30x30x20 cm{sup 3} phantom. This phantom is also altered to have variable entry and exit surfaces with respect to the beam central axis and they range from -75 deg. to +75 deg. The exit bolus simulated is a 1 cm thick (water equivalent) slab located on the beam exit side. Results: On the entry side, significant skin doses at the beam central axis are reported for large positive surface angles and strong magnetic fields. However, over the entry surface angle range of -30 deg. to -60 deg., the entry skin dose is comparable to or less than the zero magnetic field skin dose, regardless of magnetic field strength and field size. On the exit side, moderate to high central axis skin dose increases are expected except at large positive surface angles. For exit bolus of 1 cm thickness, the central axis exit skin dose becomes an almost consistent value regardless of magnetic field strength or exit surface angle. This is due to the almost complete absorption of the ERE electrons by the bolus. Conclusions: There is an ideal entry angle range of -30 deg. to -60 deg. where entry skin dose is comparable to or less than the zero magnetic field skin dose. Other than this, the entry skin dose increases are significant, especially at higher magnetic fields. On the exit side there is mostly moderate to high skin dose increases for 0.2-3 T with the only exception being large positive angles. Exit bolus of 1 cm thickness will have a significant impact on lowering such exit skin dose increases that occur as a result of the ERE.

  10. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index.

    PubMed

    Polzer, Stanislav; Gasser, T Christian

    2015-12-01

    A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach. PMID:26631334

  11. Transverse Myelitis

    MedlinePLUS

    ... NINDS Funding Information Research Programs Training & Career Awards Enhancing Diversity Find People About NINDS NINDS Transverse Myelitis ... Funding | News From NINDS | Find People | Training | Research | Enhancing Diversity Careers@NINDS | FOIA | Accessibility Policy | Contact Us | ...

  12. Transverse Myelitis

    MedlinePLUS

    ... have not yet identified the precise mechanisms of spinal cord injury in these cases, stimulation of the immune system ... resulting from transverse myelitis or other forms of spinal cord injury. But it can help people, even those with ...

  13. Ruptured abdominal aortic aneurysm.

    PubMed

    Sachs, T; Schermerhorn, M

    2010-06-01

    Ruptured abdominal aortic aneurysm (AAA) continues to be one of the most lethal vascular pathologies we encounter. Its management demands prompt and efficient evaluation and repair. Open repair has traditionally been the mainstay of treatment. However, the introduction of endovascular techniques has altered the treatment algorithm for ruptured AAA in most major medical centers. We present recent literature and techniques for ruptured AAA and its surgical management. PMID:20668419

  14. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  15. Spontaneous ruptured hepatocellular carcinoma.

    PubMed

    Yoshida, Hiroshi; Mamada, Yasuhiro; Taniai, Nobuhiko; Uchida, Eiji

    2016-01-01

    The incidence of hepatocellular carcinoma (HCC) is rising worldwide. Spontaneous rupture of HCC occasionally occurs, and ruptured HCC with intraperitoneal hemorrhage is potentially life-threatening. The most common symptom of ruptured HCC is acute abdominal pain. The tumor size in ruptured HCC is significantly greater than that in non-ruptured HCC, and HCC protrudes beyond the original liver margin. In the acute phase, hemostasis is the primary concern and tumor treatment is secondary. Transcatheter arterial embolization (TAE) can effectively induce hemostasis. The hemostatic success rate of TAE ranges 53-100%. A one-stage surgical operation is a treatment modality for selected patients. Conservative treatment is usually given to patients in a moribund state with inoperable tumors and thus has poor outcomes. Patients with severe ruptures of advanced HCC and poor liver function have high mortality rates. Liver failure occurs in 12-42% of patients during the acute phase. In the stable phase, tumor treatment, such as transarterial chemoembolization or hepatic resection should be concerned. The combination of acute hemorrhage and cancer in patients with ruptured HCC requires a two-step therapeutic approach. TAE followed by elective hepatectomy is considered an effective strategy for patients with ruptured HCC. PMID:25631290

  16. Surgical Treatment of Distal Biceps Ruptures.

    PubMed

    Stoll, Laura E; Huang, Jerry I

    2016-01-01

    Distal biceps ruptures occur from eccentric loading of a flexed elbow. Patients treated nonoperatively have substantial loss of strength in elbow flexion and forearm supination. Surgical approaches include 1-incision and 2-incision techniques. Advances in surgical technology have facilitated the popularity of single-incision techniques through a small anterior incision. Recently, there is increased focus on the detailed anatomy of the distal biceps insertion and the importance of anatomic repair in restoring forearm supination strength. Excellent outcomes are expected with early repair of the distal biceps, with restoration of strength and endurance to near-normal levels with minimal to no loss of motion. PMID:26614933

  17. Triple cardiac rupture.

    PubMed

    Vazquez, Alejandro; Osa, Ana; Vicente, Rosario; Montero, Jose A

    2014-09-01

    Left ventricular free wall rupture and acute ischaemic mitral regurgitation are nowadays rare, but still potentially lethal mechanical complications after acute myocardial infarction. We report a case of a sequential left ventricular free wall rupture, anterolateral papillary muscle disruption, secondary severe mitral regurgitation and subsequent posteromedial papillary muscle head rupture in a single patient during the same ischaemic episode after myocardial infarction, and their related successful surgical procedures and management until discharge. Prompt bedside diagnosis and emergent consecutive surgical procedures, as well as temporary left ventricular assistance, were crucial in the survival of this patient. PMID:24876216

  18. Ruptured visceral artery aneurysms.

    PubMed

    Chiaradia, M; Novelli, L; Deux, J-F; Tacher, V; Mayer, J; You, K; Djabbari, M; Luciani, A; Rahmouni, A; Kobeiter, H

    2015-01-01

    Visceral artery aneurysms are rare but their estimated mortality due to rupture ranges between 25 and 70%. Treatment of visceral artery aneurysm rupture is usually managed by interventional radiology. Specific embolization techniques depend on the location, affected organ, locoregional arterial anatomy, and interventional radiologist skill. The success rate following treatment by interventional radiology is greater than 90%. The main complication is recanalization of the aneurysm, showing the importance of post-therapeutic monitoring, which should preferably be performed using MR imaging. PMID:26054246

  19. [Iatrogenic postintubation tracheal rupture].

    PubMed

    Parshin, V D; Pogodina, A N; Vyzhigina, M A; Rusakov, M A

    2006-01-01

    Iatrogenic damage to the trachea in its intubation and during artificial lung ventilation ,is a rare, severe and commonly fatal complication in resuscitative care. The risk for tracheal damage increases in emergency, time shortage and hypoxia in a patient, while intubating with a double-lumen tube, using rigid mandrin guides without a safety limit stop, and having difficulties in intubating the patient due to his/her anatomic features. Fibrotracheoscopy is the principal diagnostic techniques that may cause tracheal rupture, which may be transformed to a therapeutic measure, by placing an intubation tube caudally at the site of tracheal rupture. Among 33 patients, only 6 underwent surgical defect suturing. When the trachea is ruptured, surgery is indicated for respiratory hemorrhage unstopped by inflating the cuff of an intubation tube and, perhaps, associated with the damage to a large vessel; for progressive gas syndrome, extensive rupture of the membranous part with the involvement of the tracheal bifurcation and main bronchus or with the interposition of paratracheal tissues; for a concomitant damage to the esophagus; for rupture of the tracheal membranous part during intubation before thoracotomy or for rupture detected during thoracotomy for another cause. Correct and timely care may eliminate this life-threatening iatrogenic complication, by yielding a good effect. PMID:16758936

  20. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  1. Modeling rupture segmentations on the Cascadia megathrust

    NASA Astrophysics Data System (ADS)

    Yang, H.; Liu, Y.; McGuire, J. J.

    2012-12-01

    The Cascadia subduction zone has produced a series of large to great earthquakes, most recently in 1700 AD. Paleoseismological studies of submarine turbidites suggest a significant difference in recurrence interval between Northern (~500 year) and Southern (~200-300 year) Cascadia. Whether future large ruptures are segmented is very important for estimating hazard in Pacific Northwest, but remains enigmatic from the interpretations of current locking maps. Our approach is to develop rupture scenarios of Cascadia earthquakes by performing numerical simulations using the finite element software, PyLith. Based on the USGS plate interface model of Cascadia, we have constructed a realistic three-dimensional subduction fault model that stretches from Northern California to Central Vancouver Island. We have performed a number of dynamic rupture simulations using a set of artificial friction parameters and uniform stress distributions on the fault governed by a slip-weakening friction law. Preliminary results show that ruptures have initiated from the nucleation zone with higher shear stress than the ambient fault and have propagated on the realistic three-dimensional fault surface. The increase of dip angle with depth has little effect on the rupture propagation because that is governed mostly by the fault strength. The along-strike bend of the fault beneath Washington state and Vancouver Island has not impeded the rupture propagation given the uniform fault strength. To estimate the possible rupture segmentation, we have converted a slip-deficit rate model derived from GPS data into stress change distributions on the fault assuming the entire slip deficit would be released in the next great earthquake. We are also constructing another initial stress map derived from tidal and leveling data, which shows a significant difference in the locking depth beneath Central Oregon. The other important variable, the spatial variation of frictional parameters, however, has to be determined under certain assumptions. We assume the critical distance, Dc, is proportional to the final slip, thus will be obtained from the slip deficit distribution. By combining the estimated stresses and Dc for the slip-weakening relation, we will investigate how the different interseismic locking profiles could influence possible segmentation for future ruptures on the Cascadia megathrust. This work is supported by FM Global.

  2. Achilles Tendon Rupture

    PubMed Central

    Wertz, Jess; Galli, Melissa; Borchers, James R.

    2013-01-01

    Context: Achilles tendon (AT) rupture in athletes is increasing in incidence and accounts for one of the most devastating sports injuries because of the threat to alter or end a career. Despite the magnitude of this injury, reliable risk assessment has not been clearly defined, and prevention strategies have been limited. The purpose of this review is to identify potential intrinsic and extrinsic risk factors for AT rupture in aerial and ground athletes stated in the current literature. Evidence Acquisition: A MEDLINE search was conducted on AT rupture, or injury and risk factors and athletes from 1980 to 2011. Emphasis was placed on epidemiology, etiology, and review articles focusing on the risk for lower extremity injury in runners and gymnasts. Thirty articles were reviewed, and 22 were included in this assessment. Results: Aerial and ground athletes share many intrinsic risk factors for AT rupture, including overuse and degeneration of the tendon as well as anatomical variations that mechanically put an athlete at risk. Older athletes, athletes atypical in size for their sport, high tensile loads, leg dominance, and fatigue also may increase risk. Aerial athletes tend to have more extrinsic factors that play a role in this injury due to the varying landing surfaces from heights and technical maneuvers performed at various skill levels. Conclusion: Risk assessment for AT rupture in aerial and ground athletes is multivariable and difficult in terms of developing prevention strategies. Quantitative measures of individual risk factors may help identify major contributors to injury. PMID:24427410

  3. Animal models for plaque rupture: a biomechanical assessment.

    PubMed

    van der Heiden, Kim; Hoogendoorn, Ayla; Daemen, Mat J; Gijsen, Frank J H

    2016-02-29

    Rupture of atherosclerotic plaques is the main cause of acute cardiovascular events. Animal models of plaque rupture are rare but essential for testing new imaging modalities to enable diagnosis of the patient at risk. Moreover, they enable the design of new treatment strategies to prevent plaque rupture. Several animal models for the study of atherosclerosis are available. Plaque rupture in these models only occurs following severe surgical or pharmaceutical intervention. In the process of plaque rupture, composition, biology and mechanics each play a role, but the latter has been disregarded in many animal studies. The biomechanical environment for atherosclerotic plaques is comprised of two parts, the pressure-induced stress distribution, mainly - but not exclusively - influenced by plaque composition, and the strength distribution throughout the plaque, largely determined by the inflammatory state. This environment differs considerably between humans and most animals, resulting in suboptimal conditions for plaque rupture. In this review we describe the role of the biomechanical environment in plaque rupture and assess this environment in animal models that present with plaque rupture. PMID:26607378

  4. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  5. Blunt traumatic pericardial rupture.

    PubMed Central

    Levine, A J; Collins, F J

    1995-01-01

    A 28-year-old man presented with left chest, head and limb injuries following a road traffic accident (RTA). Increasing haemodynamic instability necessitated an emergency left thoracotomy at which a complete rupture of the pericardium and herniation of the heart was found. After repair, the patient made an uneventful post-operative recovery. The aetiology, investigation and management of this rare injury is discussed. Images Fig. 1 PMID:7640832

  6. Iatrogenic tracheobronchial rupture

    PubMed Central

    Paraschiv, M

    2014-01-01

    Abstract Iatrogenic tracheobronchial ruptures most frequently occur during tracheal intubation, but they can also be produced during tracheobronchial endoscopy or thoracic surgery. The clinical presentation can be brutal, with respiratory failure, cervical emphysema, pneumothorax and hemoptysis. There are also less symptomatic presentations. The diagnosis is confirmed by bronchoscopy. The therapeutic approach can be differentiated, surgical or conservative, although the criteria are not universally accepted. This article aims to review the indications and therapeutic options. PMID:25408752

  7. Free surface effects on the propagation of dynamic rupture

    NASA Astrophysics Data System (ADS)

    Nielsen, Stefan B.

    Dynamic rupture of reverse and normal fault intersecting the surface are investigated. In the case of a normal fault nucleating at depth and propagating upwards, coupling of rupture-radiated stress and free boundary conditions at the surface may induce a shallow secondary nucleation anticipating up to a few seconds the arrival of the main rupture front. Indeed, the free surface induces normal stress fluctuations modifying the fault frictional strength. No significant effect on rupture velocity is observed in the case of reverse faulting. These incidences are explained by a stress analysis and illustrated by some numerical simulations in the case of dynamic normal faulting in a homogeneous half-space. The described effects could explain some observations of high frequency radiation close to the surface in documented shallow earthquakes like in Kalamata, 1986 [Bouin, 1994].

  8. 14 CFR 23.1453 - Protection of oxygen equipment from rupture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protection of oxygen equipment from rupture... Equipment Miscellaneous Equipment § 23.1453 Protection of oxygen equipment from rupture. (a) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature,...

  9. Transversity: Theory and phenomenology

    SciTech Connect

    D'Alesio, Umberto

    2013-04-15

    The distribution of transversely polarized quarks inside a transversely polarized nucleon, known as transversity, encodes a basic piece of information on the nucleon structure, sharing the same status with the more familiar unpolarized and helicity distributions. I will review its properties and discuss different ways to access it, with highlights and limitations. Recent phenomenological extractions and perspectives are also presented.

  10. [Achilles tendon rupture].

    PubMed

    Thermann, H; Hfner, T; Tscherne, H

    2000-03-01

    The treatment of acute of Achilles tendon rupture experienced a dynamic development in the last ten years. Decisive for this development was the application of MRI and above all the ultrasonography in the diagnostics of the pathological changes and injuries of tendons. The question of rupture morphology as well as different courses of healing could be now evaluated objectively. These advances led consequently to new modalities in treatment concepts and rehabilitation protocols. The decisive input for improvements of the outcome results and particularly the shortening of the rehabilitation period came with introduction of the early functional treatment in contrast to immobilizing plaster treatment. In a prospective randomized study (1987-1989) at the Trauma Dept. of the Hannover Medical School could show no statistical differences comparing functional non-operative with functional operative therapy with a special therapy boot (Variostabil/Adidas). The crucial criteria for therapy selection results from the sonographically measured position of the tendon stumps in plantar flexion (20 degrees). With complete adaptation of the tendons' ends surgical treatment does not achieve better results than non-operative functional treatment in term of tendon healing and functional outcome. Regarding the current therapeutic standards each method has is advantages and disadvantages. Both, the operative and non-operative functional treatment enable a stable tendon healing with a low risk of re-rupture (1-2%). Meanwhile there is consensus for early functional after-treatment of the operated Achilles' tendons. There seems to be a trend towards non-operative functional treatment in cases of adequate sonographical findings, or to minimal invasive surgical techniques. PMID:10798233

  11. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  12. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  13. Composite Stress Rupture NDE Research and Development Project (Kevlar[R] and Carbon)

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor

    2010-01-01

    The objective was to develop and demonstrate nondestructive evaluation (NDE) techniques capable of assessing stress rupture related strength degradation for carbon composite pressure vessels, either in a structural health monitoring (SHM) or periodic inspection mode.

  14. Ruptured tubal molar pregnancy.

    PubMed

    Yakasai, I A; Adamu, N; Galadanchi, H S

    2012-01-01

    Molar pregnancies in most instances develop within the uterine cavity, but may occur at any site. Ectopic molar pregnancy is a rare event. The objective of this study was to present a case of ruptured tubal molar gestation, discuss its clinical features and ways to improve diagnostic accuracy. A 35-year-old woman presented with features suggestive of ruptured tubal ectopic pregnancy. There was neither any evidence at the time of presentation to suspect a molar gestation, nor ? human chorionic gonadotrophin (?hCG) hormone estimation was done, but only a clearview pregnancy test was carried out. She had total left salpingectomy and histological evaluation of the specimen revealed complete hydatidiform mole. The hCG level normalized within 3 weeks of follow-up. Clinical features of ectopic molar pregnancy may be indistinguishable from non-molar ectopic pregnancy. We recommend ?hCG estimation as well as histological examination of the surgical specimen for all patients coming with features suggestive of ectopic pregnancy. PMID:23238205

  15. Ruptured Spleen as a Differential Diagnosis in Ruptured Tubal Pregnancy

    PubMed Central

    Weekes, Leroy R.

    1984-01-01

    Two cases of traumatic biphasic or secondary splenic rupture are presented to demonstrate the clinical picture of an entity the obstetrician-gynecologist will be encountering more commonly in the future. The signs and symptoms of this condition figured prominently in the differential diagnosis of ruptured tubal pregnancy. PMID:6737489

  16. Risk of Uterine Rupture and Placenta Accreta With Prior Uterine Surgery Outside of the Lower Segment

    PubMed Central

    Gyamfi-Bannerman, Cynthia; Gilbert, Sharon; Landon, Mark B.; Spong, Catherine Y.; Rouse, Dwight J.; Varner, Michael W.; Caritis, Steve N.; Meis, Paul J.; Wapner, Ronald J.; Sorokin, Yoram; Carpenter, Marshall; Peaceman, Alan M.; O’Sullivan, Mary J.; Sibai, Baha M.; Thorp, John M.; Ramin, Susan M.; Mercer, Brian M.

    2012-01-01

    Objective Women with a prior myomectomy or prior classical cesarean delivery are often delivered early by cesarean due to concern for uterine rupture. Although theoretically at increased risk for placenta accreta, this risk has not been well quantified. Our objective was to estimate and compare the risks of uterine rupture and placenta accreta in women with prior uterine surgery. Methods Women with prior myomectomy or prior classical cesarean delivery were compared to women with a prior low transverse cesarean to estimate rates of both uterine rupture and placenta accreta. Results One hundred seventy-six women with a prior myomectomy, 455 with a prior classical cesarean delivery, and 13,273 women with a prior low transverse cesarean were evaluated. Mean gestational age at delivery differed by group (p<0.001), prior myomectomy (37.3 weeks), prior classical cesarean delivery (35.8 weeks), and low transverse cesarean (38.6 weeks). The frequency of uterine rupture in the prior myomectomy group was 0% (95% CI 0-1.98%). The frequency of uterine rupture in the low transverse cesarean group (0.41%) was not statistically different from the risk in the prior myomectomy group (p>0.99) or in the prior classical cesarean delivery group (0.88%, p=0.13). Placenta accreta occurred in 0% (95% CI 0-1.98%) of prior myomectomy compared with 0.19% in the low transverse cesarean group (p>0.99) and 0.88% in the prior classical cesarean delivery group (p=0.01 relative to low transverse cesarean). The adjusted OR for the prior classical cesarean delivery group (relative to low transverse cesarean) was 3.23 (1.11-9.39) for uterine rupture and 2.09 (0.69-6.33) for accreta. The frequency of accreta for those with previa was 11.1% for the prior classical cesarean delivery and 13.6% for low transverse cesarean groups (p>0.99=1.0). Conclusion A prior myomectomy is not associated with higher risks of either uterine rupture or placenta accreta. The absolute risks of uterine rupture and accreta after prior myomectomy are low. PMID:23168757

  17. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  18. Distal biceps tendon reconstruction in chronic ruptures.

    PubMed

    Darlis, Nickolaos A; Sotereanos, Dean G

    2006-01-01

    The purpose of this retrospective study was to evaluate the results of anatomic reattachment with reconstruction of the distal biceps tendon using an Achilles tendon allograft in 7 male patients with chronic distal biceps ruptures. Through a 1-incision anterior approach, the tendon allograft was attached to the bicipital tuberosity by using suture anchors and then secured to the biceps remnant. Follow-up averaged 29 months. Mean elbow flexion was 145 degrees, an extension deficit of 20 degrees was observed in 1 patient, and mean pronosupination was 170 degrees. All patients had 5/5 strength in flexion and supination on manual testing, and all returned to their employment. Mean supination strength was 87% of the contralateral healthy extremity. Six achieved an excellent and 1 a good rating in the Mayo elbow performance score. No complications were encountered. This technique is an excellent alternative to nonanatomic reattachment to the brachialis muscle for patients with high functional demands in pronosupination. PMID:16979059

  19. Ruptured thought: rupture as a critical attitude to nursing research.

    PubMed

    Beedholm, Kirsten; Lomborg, Kirsten; Frederiksen, Kirsten

    2014-04-01

    In this paper, we introduce the notion of rupture from the French philosopher Michel Foucault, whose studies of discourse and governmentality have become prominent within nursing research during the last 25 years. We argue that a rupture perspective can be helpful for identifying and maintaining a critical potential within nursing research. The paper begins by introducing rupture as an inheritance from the French epistemological tradition. It then describes how rupture appears in Foucault's works, as both an overall philosophical approach and as an analytic tool in his historical studies. Two examples of analytical applications of rupture are elaborated. In the first example, rupture has inspired us to make an effort to seek alternatives to mainstream conceptions of the phenomenon under study. In the second example, inspired by Foucault's work on discontinuity, we construct a framework for historical epochs in nursing history. The paper concludes by discussing the potential of the notion of rupture as a response to the methodological concerns regarding the use of Foucault-inspired discourse analysis within nursing research. We agree with the critique of Cheek that the critical potential of discourse analysis is at risk of being undermined by research that tends to convert the approach into a fixed method. PMID:24741691

  20. Acute Achilles tendon rupture in badminton players.

    PubMed

    Fahlstrm, M; Bjrnstig, U; Lorentzon, R

    1998-01-01

    All patients with badminton-related acute Achilles tendon ruptures registered during 1990 to 1994 at the University Hospital of Ume were retrospectively followed up using a questionnaire. Thirty-one patients (mean age, 36.0 years), 27 men and 4 women, were included. Thirty patients (97%) described themselves as recreational players or beginners. The majority of the injuries (29 of 31, 94%) happened at the middle or end of the planned game. Previous local symptoms had been noticed by five patients (16%). Long-term results showed that patients treated with surgery had a significantly shorter sick leave absence than patients treated without surgery (50 versus 75 days). There was no obvious selection favoring any treatment modality. None of the surgically treated patients had reruptures, but two reruptures occurred in the nonsurgically treated group. There seemed to be fewer remaining symptoms and a higher sports activity level after the injury in the surgically treated group. Our results indicate that local muscle fatigue may interfere with strength and coordination. Preventive measures such as specific treatment of minor injuries and adequate training of strength, endurance, and coordination are important. Our findings also indicate that surgical treatment and careful postoperative rehabilitation is of great importance among badminton players of any age or sports level with Achilles tendon rupture. PMID:9617415

  1. Influence of disorder on the rupture process of fibrous materials

    NASA Astrophysics Data System (ADS)

    Menezes-Sobrinho, I. L.; Rodrigues, A. L. S.

    2010-12-01

    Based on computational modelling the influence of disorder on the rupture process of fibrous materials have been evaluated. This has been done by simulating a bundle of parallel fibers under a constant uniaxial force. The disorder process was introduced by randomly assigning a strength threshold to each fiber of the bundle according to the Weibull distribution. The results indicate that the rupture process is extremely sensitive to the disorder level. In particular, we demonstrated that the load necessary to break a fiber bundle with large disorder is smaller than that necessary to break a fiber bundle with small disorder.

  2. Long-term creep-rupture failure envelope of epoxy

    NASA Astrophysics Data System (ADS)

    Melo, Jos Daniel D.; de Medeiros, Antonio M.

    2014-02-01

    An accelerated testing methodology based on the time-temperature superposition principle has been proposed in the literature for the long-term creep strength of polymer matrices and polymer composites. Also, it has been suggested that a standard master curve may be a feasible assumption to describe the creep behavior in both tension and compression modes. In the present research, strength master curves for an aerospace epoxy (8552) were generated for tension and compression, by shifting strength data measured at various temperatures. The shift function is obtained from superposition of creep-compliance curves obtained at different temperatures. A standard master curve was presented to describe the creep-rupture of the polymer under tension and compression. Moreover, long-term creep-rupture failure envelopes of the polymer were presented based on a two-part failure criterion for homogeneous and isotropic materials. Ultimately, the approach presented allows the prediction of creep-rupture failure envelopes for a time-dependent material based on tensile strengths measured at various temperatures, considering that the ratio between tensile and compressive strengths is known.

  3. Using Dynamic Rupture Models to Explore Physical Controls on the 2011 Mw 9.0 Tohoku-Oki Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Duan, B.

    2011-12-01

    Seismic and geodetic recordings are routinely used to invert for kinematic source models of large earthquakes, which provide us with detailed images of slip distribution and rupture evolution on causative faults. To gain insight into physical conditions that allow a fault to slip and a rupture to propagate in the way they did, we can resort to dynamic source models that obey physical laws in continuum mechanics and rock friction. Published kinematic models of the 2011 Mw 9.0 Tohoku-Oki earthquake reveal several features of the rupture. These features include 1) high static stress drop with large amounts of slip in a small area, 2) a weak initial phase, down-dip rupture for the first 40 seconds, extensive shallow rupture during 60 to 70 seconds, and continuing deeper rupture lasting more than 100 seconds, and 3) systematically down-dip high-frequency radiation with respect to the hypocenter. In this study, we use spontaneous rupture models to explore what physical conditions, including the initial stress state and friction properties on the subducting fault, can reproduce these features, so that we can gain some physical insights into controls on this megathrust earthquake. Dynamic rupture simulations of this shallow dipping megathrust faulting at reasonable spatial and temporal resolutions require parallel computing on supercomputers. Our newly parallelized finite element method algorithm EQdyna allows us to simulate a large suite of spontaneous rupture models to examine the questions. In model setup, we use depth-dependence principal stresses and take into account variations in pore fluid pressure and frictional properties associated with subducted seafloor features such as seamounts. Our preliminary results suggest followings. First, a high strength and high stress drop patch (probably a subducted seamount or seamout chain) just above the hypocenter on the fault plane can delay up-dip rupture and result in a concentrated large slip area. Second, significantly negative stress drop on the shallow portion of the subducting fault associated with the active accretionary prism is needed to reduce the amplitude of shallow slip and to confine shallow slip in a small area near the trench just up-dip of the region of maximum fault slip. Third, heterogeneities in the seismic strength parameter S down-dip of the hypocenter, probably due to both heterogeneous stresses from previous earthquakes and heterogeneous friction properties at the brittle and ductile transition zone, can produce large amounts of high-frequency radiations.

  4. Strength enhancement process for prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Freche, J. C.

    1977-01-01

    A technique involving superplastic processing and high pressure autoclaving was applied to a nickel base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m at 480 C were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high temperature tensile and stress rupture strengths were also devised.

  5. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    NASA Astrophysics Data System (ADS)

    Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, P. M.

    2012-09-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  6. Transverse gravity versus observations

    SciTech Connect

    lvarez, Enrique; Faedo, Antn F.; Lpez-Villarejo, J.J. E-mail: anton.fernandez@uam.es

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ?{sub ?}?{sup ?} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  7. Transverse gravity versus observations

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J. J.

    2009-07-01

    Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂μξμ = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.

  8. Rupture and healing of one-dimensional chains in a parametric magnetic ratchet potential.

    PubMed

    Tierno, Pietro; Reddy, Sathavaram V; Johansen, Tom H; Fischer, Thomas M

    2007-04-01

    Transverse paramagnetic particle chains parametrically driven by a magnetic ratchet potential rupture and heal upon collision with an obstacle. The overdamped transverse dynamics is frozen during the time the particles stay in the ratchet potential wells and kicked during the time the particles hop to the next well. On time scales large compared to the parametric modulation period the healing of the hole in the chain is determined by dipolar repulsion and hydrodynamic friction of the paramagnetic particles. PMID:17500891

  9. Repair of patellar tendon rupture using suture anchors.

    PubMed

    Bushnell, Brandon D; Tennant, Joshua N; Rubright, James H; Creighton, R Alexander

    2008-04-01

    Acute isolated rupture of the patellar tendon traditionally has been repaired via transpatellar suture tunnels. This retrospective study evaluated the demographics and epidemiology of this injury as well as the effectiveness and complication rates of our suture anchor technique. Between 1993 and 2005, a total of 82 cases of patellar tendon disruption in 71 patients were repaired. Fourteen cases involved basic primary repair with suture anchors of an acute isolated rupture of the patellar tendon and had an average follow-up of 29 months (range: 3-112 months). There were 3 (21%) failures of repair. The remaining 11 patients had excellent range of motion and strength and returned to their preoperative level of function. These results are comparable with other reports in the literature. The suture anchor technique thus represents a viable option for repair of patellar tendon ruptures and should be investigated further with a randomized, controlled trial. PMID:18500063

  10. Earthquake in a maze: compressional rupture branching during the 2012 M(w) 8.6 Sumatra earthquake.

    PubMed

    Meng, L; Ampuero, J-P; Stock, J; Duputel, Z; Luo, Y; Tsai, V C

    2012-08-10

    Seismological observations of the 2012 moment magnitude 8.6 Sumatra earthquake reveal unprecedented complexity of dynamic rupture. The surprisingly large magnitude results from the combination of deep extent, high stress drop, and rupture of multiple faults. Back-projection source imaging indicates that the rupture occurred on distinct planes in an orthogonal conjugate fault system, with relatively slow rupture speed. The east-southeast-west-northwest ruptures add a new dimension to the seismotectonics of the Wharton Basin, which was previously thought to be controlled by north-south strike-slip faulting. The rupture turned twice into the compressive quadrant, against the preferred branching direction predicted by dynamic Coulomb stress calculations. Orthogonal faulting and compressional branching indicate that rupture was controlled by a pressure-insensitive strength of the deep oceanic lithosphere. PMID:22821986

  11. Transverse Instability of Dunes

    NASA Astrophysics Data System (ADS)

    Parteli, Eric J. R.; Andrade, Jos S., Jr.; Herrmann, Hans J.

    2011-10-01

    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.

  12. Transverse instability of dunes.

    PubMed

    Parteli, Eric J R; Andrade, Jos S; Herrmann, Hans J

    2011-10-28

    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation. PMID:22107675

  13. Barriers to faulting in the Basin-Range province: evidence from the Sou Hills transverse block

    SciTech Connect

    Fonseca, J.E.

    1985-01-01

    Transverse structural blocks may inhibit the propagation of fault ruptures in the Basin-Range province. The Sou Hills, between Dixie and Pleasant Valleys, is a block of uplifted Tertiary bedrock transverse to the NNE-SSW trend of the central Nevada seismic belt. Three lines of evidence indicate that offset due to normal faulting is much less in the Sou Hills compared to adjacent segments of the seismic belt. First, estimates of total late Cenozoic offsets of pre-extension basalts show that the total offset is less in the Sou Hills. Second, analyses of landforms that reflect rates of relative uplift show that Quaternary tectonic activity on range-bounding faults declines where faults join the Sou Hills. Third, measurements of late Quaternary fault scarps show that individual rupture segments in the Sou Hills are shorter in length and have smaller displacements compared to the nearly continuous ruptures of several meters offset found along the Tobin and Stillwater Ranges to the north and south. The Sou Hills rupture pattern is distinctive: ruptures are dispersed over a wide zone rather than being concentrated along well-defined range fronts. Normal faulting patterns produced by the 1915 Pleasant Valley, Nevada and the 1983 Borah Peak, Idaho earthquakes indicate that a discontinuous, spatially dispersed faulting style typifies ruptures which die out in transverse bedrock features. These historic analogues support a model for prehistoric faulting in which ruptures have repeatedly died out in the Sou Hills. Transverse blocks such as the Sou Hills appear to present barriers to propagating ruptures.

  14. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    NASA Technical Reports Server (NTRS)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  15. Complex rupture during the 12 January 2010 Haiti earthquake

    USGS Publications Warehouse

    Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.

    2010-01-01

    Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  16. Multiarray rupture imaging of the devastating 2015 Gorkha, Nepal, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Lee, Suzan; Ge, Zengxi

    2016-01-01

    A rapid, robust multiarray backprojection method was applied to image the rupture pattern of the 2015 Gorkha, Nepal Mw7.8 main shock and its Mw7.3 aftershock. Backprojected teleseismic P wave trains from three regional seismic arrays in Europe, Australia, and Alaska show that both earthquakes ruptured unilaterally and primarily eastward, with rupture speeds potentially decreasing with depth. The rupture of the main shock first extended ESEward at ˜3.5 km/s over ˜120 km, with later rupture propagation further downdip on the eastern segment at ˜2.1 km/s. The aftershock ruptured the fault SE of the main shock's ruptured plane. It began to rupture updipward for ˜20 km at a speed around 1.2 km/s, then it may have accelerated to 3.5 km/s for the next 50 km. The apparent depth-dependent rupture speeds of the two earthquakes may be caused by along-dip heterogeneities in fault strength, with a higher stress concentration on the updip part of the Nepalese Main Himalayan Thrust.

  17. [Achilles tendon ruptures and tibialis anterior tendon ruptures].

    PubMed

    Pagenstert, G; Leumann, A; Frigg, A; Valderrabano, V

    2010-12-01

    Achilles tendon ruptures (ATR) are becoming the most frequent tendon rupture of the lower extremity, whereas less than 100 cases of tibialis anterior tendon ruptures (TATR) have been reported. Common in both tendons are the degenerative causes of ruptures in a susceptible tendon segment, whereas traumatic transections occur at each level. Triceps surae and tibialis anterior muscles are responsible for the main sagittal ankle range of motion and ruptures lead to a distinctive functional deficit. However, diagnosis is delayed in up to 25% of ATR and even more frequently in TATR. Early primary repair provides the best functional results. With progressive retraction and muscle atrophy delayed tendon reconstruction has less favourable functional results. But not all patients need full capacity, power and endurance of these muscles and non-surgical treatment should not be forgotten. Inactive patients with significant comorbidities and little disability should be informed that surgical treatment of TATR is complicated by high rates of rerupture and surgical treatment of ATR can result in wound healing problems rarely necessitating some kind of transplantation. PMID:21110002

  18. Fault Branching and Rupture Directivity

    NASA Astrophysics Data System (ADS)

    Dmowska, R.; Rice, J. R.; Kame, N.

    2002-12-01

    Can the rupture directivity of past earthquakes be inferred from fault geometry? Nakata et al. [J. Geogr., 1998] propose to relate the observed surface branching of fault systems with directivity. Their work assumes that all branches are through acute angles in the direction of rupture propagation. However, in some observed cases rupture paths seem to branch through highly obtuse angles, as if to propagate ``backwards". Field examples of that are as follows: (1) Landers 1992. When crossing from the Johnson Valley to the Homestead Valley (HV) fault via the Kickapoo (Kp) fault, the rupture from Kp progressed not just forward onto the northern stretch of the HV fault, but also backwards, i.e., SSE along the HV [Sowers et al., 1994, Spotila and Sieh, 1995, Zachariasen and Sieh, 1995, Rockwell et al., 2000]. Measurements of surface slip along that backward branch, a prominent feature of 4 km length, show right-lateral slip, decreasing towards the SSE. (2) At a similar crossing from the HV to the Emerson (Em) fault, the rupture progressed backwards along different SSE splays of the Em fault [Zachariasen and Sieh, 1995]. (3). In crossing from the Em to Camp Rock (CR) fault, again, rupture went SSE on the CR fault. (4). Hector Mine 1999. The rupture originated on a buried fault without surface trace [Li et al., 2002; Hauksson et al., 2002] and progressed bilaterally south and north. In the south it met the Lavic Lake (LL) fault and progressed south on it, but also progressed backward, i.e. NNW, along the northern stretch of the LL fault. The angle between the buried fault and the northern LL fault is around -160o, and that NNW stretch extends around 15 km. The field examples with highly obtuse branch angles suggest that there may be no simple correlation between fault geometry and rupture directivity. We propose that an important distinction is whether those obtuse branches actually involved a rupture path which directly turned through the obtuse angle (while continuing also on the main fault), or rather involved arrest by a barrier on the original fault and jumping [Harris and Day, JGR, 1993] to a neighboring fault on which rupture propagated bilaterally to form what appears as a backward-branched structure. Our studies [Poliakov et al., JGR in press, 2002; Kame et al, EOS, 2002] of stress fields around a dynamically moving mode II crack tip show a clear tendency to branch from the straight path at high rupture speeds, but the stress fields never allow the rupture path to directly turn through highly obtuse angles, and hence that mechanism is unlikely. In contrast, study of fault maps in the vicinity of the Kp to HV fault transition [Sowers et al., 1994], discussed as case (1) above, strongly suggest that the large-angle branching occurred as a jump, which we propose as the likely general mechanism. Implications for the Nakata et al. [1998] aim of inferring rupture directivity from branch geometry is that this will be possible only when rather detailed characterization (by surface geology, seismic relocation, trapped waves) of fault connectivity can be carried out in the vicinity of the branching junction, to ascertain whether direct turning of the rupture path through an angle, or jumping and then propagating bilaterally, were involved in prior events. They have opposite implications for how we would associate past directivity with a (nominally) branched fault geometry.

  19. Creep-rupture tests of internally pressurized Inconel 702 tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.

    1973-01-01

    Seamless Inconel 702 tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1390 to 1575 F and internal helium pressures from 700 to 1800 psi. Lifetimes ranged from 29 to 1561 hr. The creep-rupture strength of the tubes was about 70 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  20. Rupture of the tracheobronchial tree.

    PubMed Central

    Roxburgh, J C

    1987-01-01

    Eleven cases of tracheobronchial rupture are described. Nine were the result of external non-penetrating trauma and all but three had other serious injuries. The remaining two were caused by endobronchial intubation. Of the cases caused by external injury, respiratory tract injury was confined to the cervical trachea in three. Two required tracheostomy and repair and the third was managed conservatively; all made satisfactory recoveries. Intrathoracic rupture was recognised on or soon after admission in three cases. One patient died of uncontrollable pulmonary haemorrhage before he could be operated on; immediate repair gave good long term results in the other two. In three cases rupture of the main bronchus was not recognised until complete obstruction developed three, five, and 12 weeks after the accidents. The strictures were resected and the lung re-expanded. Robertshaw endobronchial tubes ruptured the left main bronchus in two patients undergoing oesophageal surgery. Uneventful recovery followed immediate repair. The difficulty of confirming rupture of a major airway is discussed and the importance of conserving the lung when the diagnosis has been missed is emphasised. Images PMID:3317977

  1. Coupling a geodynamic seismic cycling model to rupture dynamic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice; van Dinther, Ylona

    2014-05-01

    The relevance and results of dynamic rupture scenarios are implicitly linked to the geometry and pre-existing stress and strength state on a fault. The absolute stresses stored along faults during interseismic periods, are largely unquantifiable. They are, however, pivotal in defining coseismic rupture styles, near-field ground motion, and macroscopic source properties (Gabriel et al., 2012). Obtaining these in a physically consistent manner requires seismic cycling models, which directly couple long-term deformation processes (over 1000 year periods), the self-consistent development of faults, and the resulting dynamic ruptures. One promising approach to study seismic cycling enables both the generation of spontaneous fault geometries and the development of thermo-mechanically consistent fault stresses. This seismo-thermo-mechanical model has been developed using a methodology similar to that employed to study long-term lithospheric deformation (van Dinther et al., 2013a,b, using I2ELVIS of Gerya and Yuen, 2007). We will innovatively include the absolute stress and strength values along physically consistent evolving non-finite fault zones (regions of strain accumulation) from the geodynamic model into dynamic rupture simulations as an initial condition. The dynamic rupture simulations will be performed using SeisSol, an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme (Pelties et al., 2012). The dynamic rupture models are able to incorporate the large degree of fault geometry complexity arising in naturally evolving geodynamic models. We focus on subduction zone settings with and without a splay fault. Due to the novelty of the coupling, we first focus on methodological challenges, e.g. the synchronization of both methods regarding the nucleation of events, the localization of fault planes, and the incorporation of similar frictional constitutive relations. We then study the importance of physically consistent fault stress, strength, and geometry input for dynamic rupture propagation in terms of rupture path and dynamics. On the other hand, it will provide the opportunity to compare slow earthquake akin events developing in quasi-static geodynamic model to fully dynamic ruptures in terms of coseismic displacements and stress changes. Gabriel, A.-A. (2012), J.-P. Ampuero, L. A. Dalguer, and P. M. Mai, The transition of dynamic rupture modes in elastic media, J. Geophys. Res., 117(B9), 01480227. Gerya, T., and D. Yuen (2007), Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Planet In., 163(1-4), 83-105. Pelties, C. (2012), J. De la Puente, J.-P. Ampuero, G. B. Brietzke, and M. Käser Three-Dimensional Dynamic Rupture, Simulation with a High-order Discontinuous Galerkin Method on Unstructured Tetrahedral Meshes, J. Geophys. Res., 117(B2), B02309. van Dinther, Y. (2013a), T.V. Gerya, L.A. Dalguer, F. Corbi, F. Funiciello, and P.M. Mai, The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models, J. Geophys. Res., 118(4), 1502-1525. van Dinther, Y. (2013b), T.V. Gerya, L.A. Dalguer, P.M. Mai, G. Morra, and D. Giardini, The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models, J. Geophys. Res., 118, 6183-6202.

  2. MRI in transverse myelitis.

    PubMed

    Goh, Christine; Desmond, Patricia M; Phal, Pramit M

    2014-12-01

    Transverse myelitis is an acute inflammatory disease of the spinal cord, characterized by rapid onset of bilateral neurological symptoms. Weakness, sensory disturbance, and autonomic dysfunction evolve over hours or days, most progressing to maximal clinical severity within 10 days of onset. At maximal clinical severity, half will have a paraparesis, and almost all patients have sensory disturbance and bladder dysfunction. Residual disability is divided equally between severe, moderate and minimal or none. The causes of transverse myelitis are diverse; etiologies implicated include demyelinating conditions, collagen vascular disease, and parainfectious causes, however, despite extensive diagnostic work-up many cases are considered idiopathic. Due to heterogeneity in pathogenesis, and the similarity of its clinical presentation with those of various noninflammatory myelopathies, transverse myelitis has frequently been viewed as a diagnostic dilemma. However, as targeted therapies to optimize patient outcome develop, timely identification of the underlying etiology is becoming increasingly important. In this review, we describe the imaging and clinical features of idiopathic and disease-associated transverse myelitis and its major differentials, with discussion of how MR imaging features assist in the identification of various sub-types of transverse myelitis. We will also discuss the potential for advanced MR techniques to contribute to diagnosis and prognostication. PMID:24752988

  3. Spontaneous splenic rupture in pregnancy

    PubMed Central

    Elghanmi, Adil; Mohamed, Jou; Khabouz, Samira

    2015-01-01

    Splenic rupture during pregnancy is a rare and can frequently be a misdiagnosed pathology. This rupture is associated with a high maternal and fetal mortality rate. A 26 years old Moroccan woman para II gravida II presented at the third stage of pregnancy with acute onset of severe abdominal pain. She developed immediately a hypovolemic shock. After both a physical and sonographical exam, it was revealed that it was due to a massive hemoperitoneum. Therefore, an emergent laparotomy and cesarean delivery with abdominal exploration were performed; also, an active bleeding was identified at the splenic hilum consistent with splenic rupture. Through this case report, we want to raise awareness of this surgical emergency that requires immediate recognition because any delay can lead to catastrophic consequences PMID:26587160

  4. Non-popliteal synovial rupture.

    PubMed

    Sit, Michelle; Higgs, Jay B

    2009-06-01

    The ruptured popliteal synovial cyst is a common complication of chronic knee arthritis. In contrast, non-popliteal synovial rupture is less well recognized and may present a diagnostic dilemma. We report an 81-year-old woman who presented with chest wall pain and ecchymosis. Ultrasonography of the shoulder region readily diagnosed a dissecting parasynovial cyst. She developed the unusual complication of contralateral recurrence. Literature review revealed a small but important set of non-popliteal synovial ruptures in the regions of the shoulder, elbow, wrist, spine, hip, knee, and ankle. Local swelling, inflammation, ecchymosis, and nerve impingement may mimic other conditions. Awareness of the clinical presentations and a high index of suspicion are required to avoid diagnostic confusion. Management data are limited to case reports of arthrocentesis, injection, and very rarely, surgery. PMID:19390451

  5. Self-Rupturing Hermetic Valve

    NASA Technical Reports Server (NTRS)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self-energizing and requires low force compared to current pyrotechnic-based burst disk hermetic valves. This is a novel design for producing a single-use, self-rupturing, hermetically sealed valve for isolation of pressurized gas and/or liquids. This design can also be applied for single-use disposable valves for chemical instruments. A welded foil diaphragm is fully supported by two mated surfaces that are machined to micron accuracies using EDM. To open the valve, one of the surfaces is moved relative to the other to (a) remove the support creating an unsupported diaphragm that ruptures due to over pressure, and/or (b) produce tension in the diaphragm and rupture it.

  6. Enzymatically triggered rupture of polymersomes.

    PubMed

    Jang, Woo-Sik; Park, Seung Chul; Reed, Ellen H; Dooley, Kevin P; Wheeler, Samuel F; Lee, Daeyeon; Hammer, Daniel A

    2016-01-20

    Polymersomes are robust vesicles made from amphiphilic block co-polymers. Large populations of uniform giant polymersomes with defined, entrapped species can be made by templating of double-emulsions using microfluidics. In the present study, a series of two enzymatic reactions, one inside and the other outside of the polymersome, were designed to induce rupture of polymersomes. We measured how the kinetics of rupture were affected by altering enzyme concentration. These results suggest that protocells with entrapped enzymes can be engineered to secrete contents on cue. PMID:26616557

  7. Transverse freezing of thin liquid films

    NASA Astrophysics Data System (ADS)

    Beerman, Michael

    A pair of coupled non-linear partial differential equations is derived using lubrication theory that govern the morphology of a thin, liquid film of a pure and a binary metal alloy, bounded by the liquid's solid phase and a passive gas phase. The analysis is motivated by the directional freezing of metallic foams, and is a first attempt to model transverse freezing in thin films that form in foam networks, but also applies to thin film layers in general. Both the no-slip crystal-melt and the free melt-gas interfaces are deformable. The governing pair of non-linear differential equations for the most general case incorporate crystal-melt and melt-gas surface tension, latent heat, heat transfer, volume change, molecular interactions, thermocapillary and dilute phase concentration effects. Linear analysis of a uniform film reveals a variety of instabilities. A unique wavenumber is selected at the onset of instability in the case of an applied temperature gradient with vanishing crystal-melt surface tension. This system reproduces the isothermal result for a rigid solid-liquid interface in which a band of wavenumbers is unstable. A new long-wave instability has been identified, for the case with CM surface tension, that is due to the coupling of the interfaces. Numerical solutions of the fully non-linear system provide film evolution and rupture times, and show that, near the critical conditions, rupture can occur by the growth of standing or traveling waves. The numerics also reveals complex non-linear interactions between unstable modes. It is found that for most unstable initial conditions, the crystal-melt interface retreats by melting away from the tip region of the encroaching melt-gas interface due to a rise in heat flux as the film thins near the rupture point.

  8. Deconstructed transverse mass variables

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; Walker, Devin G. E.

    2015-04-01

    Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. We demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton, jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop- and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.

  9. Rupture of spleen post colonoscopy.

    PubMed

    Younes, Nidal A; Al-Ardah, Mahmoud I; Daradkeh, Salam S

    2009-08-01

    We review an interesting case of elective colonoscopy for rectal bleeding in a 68-year-old woman complicated by splenic rupture. She was managed by aggressive fluid and blood resuscitation followed by splenectomy. She had a smooth recovery and was discharged home 4 days after admission. The extreme rarity and interesting clinical course of the patient are discussed. PMID:19668895

  10. Distal biceps and triceps ruptures.

    PubMed

    Kokkalis, Zinon T; Ballas, Efstathios G; Mavrogenis, Andreas F; Soucacos, Panayotis N

    2013-03-01

    Biceps and triceps tendon ruptures are rather uncommon injuries and are most commonly diagnosed clinically. Magnetic resonance imaging can help the clinician to differentiate an incomplete tear and define any degeneration of the tendon. Surgical anatomical repair is typically performed in acute complete ruptures whereas nonoperative treatment can be used for partial ruptures, as well as for patients unfit for surgery. Single incision techniques are associated with a higher rate of nerve injuries, while double incision repairs have a higher prevalence of heterotopic ossification. Although various fixation methods have been applied including bone tunnels, interference screws, suture anchors, cortical button fixation, the current evidence does not support the superiority of one method over the other. A well-planned postoperative rehabilitation programme is essential for a good final outcome. As better fixation devices are being used, more aggressive rehabilitation programmes have been applied. Epidemiology, clinical evaluation, diagnosis, surgical and conservative management of these injuries are presented in this review along with the authors' preferred technique for the anatomical repair of acute complete ruptures. PMID:23352149

  11. Quadriceps Tendon Rupture due to Postepileptic Convulsion

    PubMed Central

    Erkut, Adem; Guvercin, Yilmaz; Sahin, Rifat; Keskin, Davut

    2014-01-01

    We present a case of quadriceps tendon (QT) rupture. QT ruptures can occur in all ages. The cause is mostly traumatic in origin. Spontaneous ruptures that are thought to result from predisposing conditions are rare. Post-convulsion QT ruptures lacking traumas in their history can be overlooked in clinical examinations. This should be born in mind by the attending physician, as early diagnosis and treatment of the condition can lead to satisfactory outcomes. PMID:24944977

  12. A viscoelastic model for axonal microtubule rupture.

    PubMed

    Shamloo, Amir; Manuchehrfar, Farid; Rafii-Tabar, Hashem

    2015-05-01

    Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances during traumatic brain injuries, they are placed in tension. In our model, microtubule bundles were formed from a large number of discrete masses. We employed Standard Linear Solid model (SLS), a viscoelastic model, to computationally simulate microtubules. In this study, we investigated the dynamic responses of two dimensional axonal microtubules under suddenly applied end forces by implementing discrete masses connected to their neighboring masses with a Standard Linear Solid unit. We also investigated the effect of the applied force rate and magnitude on the deformation of bundles. Under tension, a microtubule fiber may rupture as a result of a sudden force. Using the developed model, we could predict the critical regions of the axonal microtubule bundles in the presence of varying end forces. We finally analyzed the nature of microtubular failure under varying mechanical stresses. PMID:25835789

  13. Histopathological findings in spontaneous tendon ruptures.

    PubMed

    Jzsa, L; Kannus, P

    1997-04-01

    A spontaneous rupture of a tendon may be defined as a rupture that occurs during movement and activity, that should not and usually does not damage the involved musculotendinous units (1). Spontaneous tendon ruptures were uncommon before the 1950s. Bhler found only 25 Achilles tendon ruptures in Wien between 1925 and 1948 (2). Msender & Klatnek treated 20 Achilles tendon ruptures between 1953 and 1956, but 105 ruptures between 1964 and 1967 (3). Lawrence et al. found only 31 Achilles tendon ruptures in Boston during a period of 55 years (1900-1954) (4). During the recent decades tendon ruptures have, however, become relatively common in developed countries, especially in Europe and North America. A high incidence of tendon ruptures has been reported in Austria, Denmark, Finland, Germany. Hungary, Sweden, Switzerland and the USA; somewhat lower incidences have been reported in Canada, France, Great Britain and Spain. On the other hand, Greece, Japan, the Netherlands and Portugal have reported a clearly lower incidence. Interestingly, Achilles tendon ruptures are a rarity in developing countries, especially in Africa and East-Asia (5). In many developed countries, the increases in the rupture incidence have been dramatic. In the National Institute of Traumatology in Budapest, Hungary, the number of patients with an Achilles tendon rupture increased 285% in men and 500% in women between two successive 7-year periods, 1972-1978 and 1979-1985 (5). PMID:9211612

  14. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs 64.61 Rupture disc. If a rupture...

  15. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs 64.61 Rupture disc. If a rupture...

  16. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs 64.61 Rupture disc. If a rupture...

  17. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs 64.61 Rupture disc. If a rupture...

  18. 46 CFR 64.61 - Rupture disc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Rupture disc. 64.61 Section 64.61 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs 64.61 Rupture disc. If a rupture...

  19. Dynamic Rupture Segmentation Along The Nankai Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hok, S.; Fukuyama, E.; Hashimoto, C.

    2010-12-01

    In southwest Japan, large devastating earthquakes (Mw>8) occurred along the Nankai subduction zone every 100-200 years (e.g. Ando, 1975, Tectonophys.; Ishibashi, 2004, Ann. Geophys.). Historical records revealed the segmented nature of the 600 km long seismogenic zone, producing Nankai and Tonankai earthquakes to occur separately or jointly at each cycle. The intersegment zone which separates Nankai and Tonankai source areas, near the Kii Peninsula, should have some special physical properties. In this study, we investigate the dynamic linkage of the coseismic slips on the Nankai and Tonankai segments, by modeling the spontaneous rupture propagation on the subduction interface. To conduct a reliable modeling, the parameters lateral variations along the place interface are introduced by combining several geophysical observation data sets. First, we use a large-scale 3D geometry for the plate interface, inferred from seismicity; we also integrate the slip deficit distribution (Hashimoto et al., 2009, SSJ meeting) obtained by inversion of GPS data, to constrain the distribution of stress drop on the interface. This distribution is not uniform, and explains the 1st order asperities of the subduction zone: Hyuga, Nankai, Tonankai and Tokai areas appear clearly as loaded regions. In addition, a constitutive friction law is required to link fault slip and stress release. We compiled regional geophysical information relevant to the segmentation, to infer the distribution of the frictional parameters at seismogenic depths. We focused on areas where the rupture is known to have stopped. The barriers seem to be related to upper plate structure (Wells et al. 2003, JGR, Rosenau and Oncken 2009, JGR). Uplifted areas show common characteristics: end of seismogenic segments, underplating in the wedge, and higher density of the upper old wedge (granitic intrusions). Following above review, we introduced 3 barrier regions delimiting 2 asperity regions (Nankai and Tonankai). Inside the barrier, the fracture energy changes in regional scale, via a change of the critical slip distance scaling. The strength remains uniform along the interface. Asperities are produced by the initial stress distribution inferred from slip deficit. Using this model setting, we computed a few different spontaneous rupture scenarios, by changing only the location of rupture initiation. Remarkably, we could reproduce the segmentation of the rupture, as observed during the 1940s sequence, provided that the rupture initiates close to the Kii peninsula barrier area. However, if the rupture initiate far from the Kii peninsula, close to Tokai or west of Muroto cape for instance, the rupture is more likely to break the full plate interface in a single rupture event, consistently with what has been observed in the past. The rupture segmentation appears to be a consequence of the friction properties off-Kii Peninsula, as well as the rupture initiation position. This work provides a reliable way to enlighten the conditional segmentation process, as a consequence of the earthquake dynamic rupture.

  20. Factors influencing maternal survival in ruptured uterus.

    PubMed

    Megafu, U

    1985-12-01

    Ruptured uterus continues to be a common obstetric hazard in under developed countries. The commonest cause is spontaneous rupture from obstructed labor in the multipara. There was not a single rupture in the primipara. Rupture following previous cesarean section scar is also common. The most effective way of management is to correct fluid and blood loss followed by laparotomy and subtotal hysterectomy. This method gave a lower mortality than either repair and sterilization or total hysterectomy. Adequate pre-operative resuscitation and time interval between rupture and operation also influences mortality rate. The experience of the surgeon is another vital factor in determining mortality rate. PMID:2868942

  1. [Ettore Majoran's transversal epistemology].

    PubMed

    Bontems, Vincent

    2013-01-01

    Il valore delle leggi statistiche nella fisica e nelle scienze sociali is Ettore Majorana's only work on science. It offers a critique of classical determinism, establishing an analogy between the laws of quantum mechanics and social science and arguing that both are intrinsically linked to probability. This article first studies this argument from the standpoing of metaphysics, physics, and sociology, and then assesses the significance of this transversal epistemology. PMID:23636783

  2. Prediction of uterine rupture associated with attempted vaginal birth after cesarean delivery

    PubMed Central

    GROBMAN, William A.; LAI, Yinglei; LANDON, Mark B.; SPONG, Catherine Y.; LEVENO, Kenneth J.; ROUSE, Dwight J.; VARNER, Michael W.; MOAWAD, Atef H.; CARITIS, Steve N.; HARPER, Margaret; WAPNER, Ronald J.; SOROKIN, Yoram; MIODOVNIK, Menachem; CARPENTERr, Marshall; O'SULLIVAN, Mary J.; SIBAI, Baha M.; LANGER, Oded; THORP, John M.; RAMIN, Susan M.; MERCER, Brian M.

    2008-01-01

    Objective To predict individual-specific risk of uterine rupture during an attempted vaginal birth after cesarean (VBAC). Methods Women with one prior low-transverse cesarean delivery who underwent a trial of labor with a term singleton were identified in a multi-center concurrently collected database of deliveries occurring during a four-year period. We analyzed different techniques to develop an accurate prediction model for uterine rupture. Results Of the 11,855 women analyzed, 83 (0.7%) had a uterine rupture. The optimal model, based on a logistic regression,included: any prior vaginal delivery (OR 0.44, 95% CI 0.27 – 0.71) and labor induction(OR 1.73, 95% CI 1.11 – 2.69). This model, with a c-statistic of .627, had poor discriminating ability and does not allow the determination of a clinically useful estimate of the probability of uterine rupture for an individual patient. Conclusion Patient-specific factors cannot be used to accurately predict the relatively small proportion of women who will incur a uterine rupture during an attempted VBAC after 36 weeks of gestatation. Condensation Factors available before or at admission for delivery cannot be used to accurately predict uterine rupture during an attempted vaginal birth after cesarean. PMID:18439555

  3. Predicting the endpoints of earthquake ruptures.

    PubMed

    Wesnousky, Steven G

    2006-11-16

    The active fault traces on which earthquakes occur are generally not continuous, and are commonly composed of segments that are separated by discontinuities that appear as steps in map-view. Stress concentrations resulting from slip at such discontinuities may slow or stop rupture propagation and hence play a controlling role in limiting the length of earthquake rupture. Here I examine the mapped surface rupture traces of 22 historical strike-slip earthquakes with rupture lengths ranging between 10 and 420 km. I show that about two-thirds of the endpoints of strike-slip earthquake ruptures are associated with fault steps or the termini of active fault traces, and that there exists a limiting dimension of fault step (3-4 km) above which earthquake ruptures do not propagate and below which rupture propagation ceases only about 40 per cent of the time. The results are of practical importance to seismic hazard analysis where effort is spent attempting to place limits on the probable length of future earthquakes on mapped active faults. Physical insight to the dynamics of the earthquake rupture process is further gained with the observation that the limiting dimension appears to be largely independent of the earthquake rupture length. It follows that the magnitude of stress changes and the volume affected by those stress changes at the driving edge of laterally propagating ruptures are largely similar and invariable during the rupture process regardless of the distance an event has propagated or will propagate. PMID:17108963

  4. Strength enhancement process for prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Freche, J. C.

    1977-01-01

    A technique involving superplastic processing and high-pressure autoclaving was applied to a nickel-base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m (415 ksi) at 480 C (900 F) were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high-temperature tensile and stress-rupture strengths (980 C (1800 F)) were also devised.

  5. [Ruptured cerebral artery blister aneurysm].

    PubMed

    Vega Valds, Pedro; Murias Quintana, Eduardo; Meiln Martnez, Angela; Gutirrez Morales, Julio; Lopez Garcia, Antonio

    2013-01-01

    We report the case of a young patient with subarachnoid haemorrhage secondary to a ruptured blister-like aneurysm. Since this kind of aneurysms have fragile walls without a well-defined neck, their treatment is difficult. We initially planned the deployment of a flow-diverter stent, but an angiogram obtained after 10 days revealed a morphological change of the aneurysm. Therefore, we finally deployed a conventional stent and introduced 2 micro coils into the point of rupture, obtaining a good morphological result without rebleeding. Follow-up at 1 and 6 months did not observe regrowth of the aneurysm. We offer a brief introduction and discussion of this pathology and its treatment. PMID:23517694

  6. Spontaneous rupture of the ureter

    PubMed Central

    Eken, Alper; Akbas, Tugana; Arpaci, Taner

    2015-01-01

    Spontaneous rupture of the ureter is a very rare condition and usually results from ureteral obstruction by a calculus. Only theoretical mechanisms have been proposed and no possible explanation has yet been reported in the literature. Intravenous contrast-enhanced computed tomography is the most informative study with high sensitivity. Treatment should be individualised, and depends on the state of the patient. Minimally invasive endourological procedures with double-J catheter placement and percutaneous drainage offer excellent results. Conservative management with analgesics and antibiotic coverage may be an alternative to surgery. Herein, we present a case of spontaneous rupture of the proximal ureter with no evidence of an underlying pathological condition. PMID:25715862

  7. Spontaneous hepatic rupture in pregnancy.

    PubMed

    Nelson, E W; Archibald, L; Albo, D

    1977-12-01

    Hepatic rupture as a late complication of toxemic pregnancy is a rare yet lethal condition requiring rapid recognition and surgical management. The clinical triad of toxemia, right upper quadrant pain, and sudden hypotension is the diagnostic hallmark of presentation. Most patients present near the time of delivery and are found to have subcapsular hematomas of the right hepatic lobe with free rupture into the peritoneal cavity and resultant exsanguinating hemorrhage. The association of toxemia and disseminated intravascular coagulation with secondary microembolic damage to the liver and other organs has been discussed. Basic surgical principles in the managment of hepatic subcapsular hematomas, and the prolonged postoperative course and frequent complications in these patients have been stressed. PMID:596550

  8. Instabilities at frictional interfaces: Creep patches, nucleation, and rupture fronts

    NASA Astrophysics Data System (ADS)

    Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2013-12-01

    The strength and stability of frictional interfaces, ranging from tribological systems to earthquake faults, are intimately related to the underlying spatially extended dynamics. Here we provide a comprehensive theoretical account, both analytic and numeric, of spatiotemporal interfacial dynamics in a realistic rate-and-state friction model, featuring both velocity-weakening and velocity-strengthening behaviors. Slowly extending, loading-rate-dependent creep patches undergo a linear instability at a critical nucleation size, which is nearly independent of interfacial history, initial stress conditions, and velocity-strengthening friction. Nonlinear propagating rupture frontsthe outcome of instabilitydepend sensitively on the stress state and velocity-strengthening friction. Rupture fronts span a wide range of propagation velocities and are related to steady-state-front solutions.

  9. Achilles tendon rupture in badminton.

    PubMed Central

    Kaalund, S; Lass, P; Hgsaa, B; Nhr, M

    1989-01-01

    The typical badminton player with an Achilles tendon rupture is 36 years old and, despite limbering up, is injured at the rear line in a sudden forward movement. He resumes work within three months and has a slight lack of dorsiflexion in the ankle as the main complication. Most patients resume badminton within one year, but some finish their sports career, mainly due to fear of a new injury. The investigation discusses predisposing factors and prophylactic measures. PMID:2605439

  10. Evaluating and Treating Transverse Myelitis

    MedlinePLUS

    AAN Summary of Evidence-based Guideline for PATIENTS and THEIR FAMILIES EVALUATING AND TREATING TRANSVERSE MYELITIS This fact sheet is provided to help you understand the best methods of evaluating and treating transverse myelitis (TM). Neurologists from ...

  11. Thrust-type subduction-zone earthquakes and seamount asperites: A physical model for seismic rupture

    SciTech Connect

    Cloos, M. )

    1992-07-01

    A thrust-type subduction-zone earthquake of M{sub W} 7.6 ruptures an area of {approximately}6,000 km{sup 2}, has a seismic slip of {approximately}1 m, and is nucleated by the rupture of an asperity {approximately}25km across. A model for thrust-type subduction-zone seismicity is proposed in which basaltic seamounts jammed against the base of the overriding plate act as strong asperities that rupture by stick-slip faulting. A M{sub W} 7.6 event would correspond to the near-basal rupture of a {approximately}2-km-tall seamount. The base of the seamount is surrounded by a low shear-strength layer composed of subducting sediment that also deforms between seismic events by distributed strain (viscous flow). Planar faults form in this layer as the seismic rupture propagates out of the seamount at speeds of kilometers per second. The faults in the shear zone are disrupted after the event by aseismic, slow viscous flow of the subducting sediment layer. Consequently, the extent of fault rupture varies for different earthquakes nucleated at the same seamount asperity because new fault surfaces form in the surrounding subducting sediment layer during each fast seismic rupture.

  12. Greater fear of re-injury and increased tibial translation in patients who later sustain an ACL graft rupture or a contralateral ACL rupture: a pilot study.

    PubMed

    Tagesson, Sofi; Kvist, Joanna

    2016-01-01

    The aim was to compare fear of re-injury, patient reported function, static and dynamic tibial translation and muscle strength assessed before and 5 weeks after an anterior cruciate ligament (ACL) reconstruction between individuals who sustained a subsequent ACL graft rupture or a contralateral ACL injury within 5years after the reconstruction, and individuals with no subsequent injury. Nineteen patients were investigated before, and 5 weeks after an ACL reconstruction with a quadruple hamstring tendon graft. At 5years follow up, 3 patients had sustained an ACL graft rupture and 2 patients had sustained a contralateral ACL rupture. Fear of re-injury, confidence with the knee, patient reported function, activity level, static and dynamic tibial translation and muscle strength were assessed. The re-injured group reported greater fear of re-injury and had greater static tibial translation in both knees before the ACL reconstruction compared to those who did not sustain another ACL injury. There were no other differences between groups. In conclusion, fear of re-injury and static tibial translation before the index ACL reconstruction were greater in patients who later on suffered an ACL graft rupture or a contralateral ACL rupture. These factors may predict a subsequent ACL injury. PMID:25894209

  13. Environmental Durability and Stress Rupture of EBC/CMCs

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2012-01-01

    This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.

  14. Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Adams, D. S.; Bowles, D. E.; Herakovich, C. T.

    1983-01-01

    The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.

  15. Morphological Parameters of Digital Subtraction Angiography 2D Image in Rupture Risk Profile of Small Intracranial Aneurysms: A Pilot Study.

    PubMed

    Hao, Ming; Ma, Jun; Huang, Qingjiu; He, Shengxue; Liang, Zheng; Wang, Chengbin

    2016-01-01

    Objective?To analyze the morphological parameters of small intracranial aneurysms using two-dimensional digital subtraction angiography (DSA) and to identify their relationship with rupture risk. Methods?Clinical and radiologic data from patients with DSA-confirmed small intracranial aneurysms and who received intravascular treatment were retrospectively analyzed. Morphological parameters such as maximum height, transverse diameter, aneurysm neck width, and aspect ratio (AR) were compared between patients with ruptured and unruptured aneurysms. Logistic regression analysis was performed to identify the predictors of rupture risk. Results?There were no significant differences between the unruptured (n?=?40) and ruptured groups (n?=?34) with respect to maximum height (p?=?0.087) and transverse diameter (p?=?0.736). However, aneurysm neck width (p?=?0.006) and AR (p?rupture risk. Conclusion?Two-dimensional DSA could be used to determine AR, which was an independent predictor of rupture risk of small aneurysms. Further studies with large sample sizes are needed to validate these results. PMID:26216735

  16. Characteristics of transverse waves in chromospheric mottles

    SciTech Connect

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P.; Verth, G.; Erdélyi, R.; Morton, R. J.; Christian, D. J.

    2013-12-10

    Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ∼2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ∼280 ± 80 km.

  17. Transverse field focused system

    DOEpatents

    Anderson, Oscar A. (Berkeley, CA)

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  18. Neutron Transversity at Jefferson Lab

    SciTech Connect

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  19. Transverse Compression of Tendons.

    PubMed

    Samuel Salisbury, S T; Paul Buckley, C; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10?s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31?MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E?=?0.14 and 0.10?MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218

  20. Early second trimester uterine scar rupture

    PubMed Central

    Bharatnur, Sunanda; Hebbar, Shripad; G, Shyamala

    2013-01-01

    Spontaneous uterine scar rupture can be lethal in pregnant women. A spontaneous uterine scar rupture in the early mid-trimester is rare and difficult to diagnose. This is a case of a 30-year-old woman (G2P1L1) at 19?weeks of gestation and having undergone a previous caesarean section presented with acute abdomen in shock. Laparotomy revealed a uterine scar rupture, which was resutured after evacuation of products of conception. This case merits that the uterine rupture should be considered as a differential diagnosis in pregnant women presenting with acute abdomen. In this case, although there was uterine rupture in the second trimester and a complete placental separation, fetus was alive which is quite unusual in patients presenting with rupture uterus. PMID:24326433

  1. Early second trimester uterine scar rupture.

    PubMed

    Bharatnur, Sunanda; Hebbar, Shripad; Shyamala, G

    2013-01-01

    Spontaneous uterine scar rupture can be lethal in pregnant women. A spontaneous uterine scar rupture in the early mid-trimester is rare and difficult to diagnose. This is a case of a 30-year-old woman (G2P1L1) at 19 weeks of gestation and having undergone a previous caesarean section presented with acute abdomen in shock. Laparotomy revealed a uterine scar rupture, which was resutured after evacuation of products of conception. This case merits that the uterine rupture should be considered as a differential diagnosis in pregnant women presenting with acute abdomen. In this case, although there was uterine rupture in the second trimester and a complete placental separation, fetus was alive which is quite unusual in patients presenting with rupture uterus. PMID:24326433

  2. Complex rupture of the M6.3 March 10, 2015 Bucaramanga earthquake: evidence of strong weakening process

    NASA Astrophysics Data System (ADS)

    Poli, P.; Prieto, G. A.; Yu, C. Q.; Florez, M.; Agurto-Detzel, H.; Mikesell, T. D.; Chen, G.; Dionicio, V.; Pedraza, P.

    2016-02-01

    We use seismic waves for a magnitude 6.3 intermediate-depth (160 km) earthquake in the Bucaramanga Nest, Colombia, to infer a complex rupture process with 2 distinct stages, characterized by different rupture velocities possibly controlled by the evolution of strength on the fault. Our integrated data processing permitted to precisely characterize the multistage rupture and the presence of a strong weakening event. The resulting seismic radiation is interpreted as resulting from an extreme weakening due to a cascading thermal shear runaway, with an initial inefficient radiation process followed by a fast and dynamic efficient rupture. Our results imply dynamic complexity of the seismic rupture deep inside the Earth, and may help to give some new insights about the physical mechanism of intermediate-depth earthquakes.

  3. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  4. Spontaneous rupture of a splenotic nodule.

    PubMed Central

    Lanigan, D. J.

    1990-01-01

    A case is presented of spontaneous rupture of splenic tissue occurring 14 years after a splenectomy was carried out for trauma. Spontaneous rupture of a splenotic nodule has not previously been described and it may be added to the list of causes of spontaneous haemoperitoneum. The incidence and function of residual splenic tissue are briefly discussed and other causes of splenic rupture are outlined. PMID:2267217

  5. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  6. Neck curve polynomials in neck rupture model

    SciTech Connect

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-06-06

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of {sup 280}X{sub 90} with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  7. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  8. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, Joe L.

    1984-01-01

    A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  9. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, J.L.

    1982-05-28

    A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  10. Nondestructive Evaluation and Monitoring Results from COPV Accelerated Stress Rupture Testing, NASA White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Saulsberry Regor

    2010-01-01

    Develop and demonstrate NDE techniques for real-time characterization of CPVs and, where possible, identification of NDE capable of assessing stress rupture related strength degradation and/or making vessel life predictions (structural health monitoring or periodic inspection modes). Secondary: Provide the COPV user and materials community with quality carbon/epoxy (C/Ep) COPV stress rupture progression rate data. Aid in modeling, manufacturing, and application of COPVs for NASA spacecraft.

  11. Uterine Rupture: A Seven Year Review at a Tertiary Care Hospital in New Delhi, India

    PubMed Central

    Sinha, Maruti; Gupta, Ridhima; Gupta, Pushpender; Rani, Rekha; Kaur, Ramanjeet; Singh, Rahil

    2016-01-01

    Objective: To identify the obstetric risk factors, incidence, and causes of uterine rupture, management modalities, and the associated maternal and perinatal morbidity and mortality in one of the largest tertiary level women care hospital in Delhi. Materials and Methods: A 7-year retrospective analysis of 47 cases of uterine rupture was done. The charts of these patients were analyzed and the data regarding demographic characteristics, clinical presentation, risk factors, management, operative findings, maternal and fetal outcomes, and postoperative complications was studied. Results: The incidence of rupture was one in 1,633 deliveries (0.061%). The vast majority of patients had prior low transverse cesarean section (84.8%). The clinical presentation of the patients with rupture of the unscarred uterus was more dramatic with extensive tears compared to rupture with scarred uterus. The estimated blood loss ranged from 1,200 to 1,500 cc. Hemoperitoneum was identified in 95.7% of the patient and 83% of the patient underwent repair of rent with or without simultaneous tubal ligation. Subtotal hysterectomy was performed in five cases. There were no maternal deaths in our series. However, there were 32 cases of intrauterine fetal demise and five cases of stillbirths. Conclusions: Uterine rupture is a major contributor to maternal morbidity and neonatal mortality. Four major easily identifiable risk factors including history of prior cesarean section, grand multiparity, obstructed labor, and fetal malpresentations constitute 90% of cases of uterine rupture. Identification of these high risk women, prompt diagnosis, immediate transfer, and optimal management needs to be overemphasized to avoid adverse fetomaternal complications. PMID:26917873

  12. Progression of abdominal aortic aneurysm towards rupture - refining clinical risk assessment using a fully coupled fluid-structure interaction method

    PubMed Central

    Xenos, Michalis; Labropoulos, Nicos; Rambhia, Suraj; Alemu, Yared; Einav, Shmuel; Tassiopoulos, Apostolos; Sakalihasan, Natzi; Bluestein, Danny

    2014-01-01

    Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in Patient based computed tomography (CT) scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 ruptured AAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences was observed between the peak systolic stress (PSS) and the peak stress at the mean arterial pressure (MAP) between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a-priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and ruptured AAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation. PMID:25527320

  13. Second-Trimester Uterine Rupture: Lessons Learnt

    PubMed Central

    F. ABDULWAHAB, Dalia; ISMAIL, Hamizah; NUSEE, Zalina

    2014-01-01

    Uterine rupture is a rare life-threatening complication. It mainly occurs in the third trimester of pregnancy and is rarely seen during the first or second trimesters. Our centre experienced three important cases of uterine rupture. First case: spontaneous uterine rupture at 14 weeks of pregnancy, which was diagnosed at autopsy. It was misled by the ultrasound finding of an intrauterine pregnancy, and searching for other non-gynaecological causes delayed the urgent obstetric surgical management. Second case: ruptured uterus at 24 weeks following medical termination due to foetal anomaly. It was diagnosed only at laparotomy indicated for failed medical termination and chorioamnionitis. Third case: uterine rupture at 21 weeks of pregnancy in a patient with gastroenterology symptoms. In these reports, we have discussed the various risk factors, presentations, course of events and difficulties in diagnosing uterine rupture. The study concludes that the clinical presentation of uterine ruptures varies. It occurs regardless of gestational age. Ultrasound findings of intrauterine pregnancy with free fluid do not exclude uterine rupture or ectopic pregnancy. Searching for non-gynaecological causes in such clinical presentations might delay crucial surgical intervention, which leads to unnecessary morbidity, mortality or loss of obstetrics function. PMID:25977625

  14. Probabilistic simulation of uncertainties in composite uniaxial strengths

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Stock, T. A.

    1990-01-01

    Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.

  15. Influence of fibre surface treatment on the transverse properties of carbon fibre reinforced composites

    SciTech Connect

    Kok, J.M.M. de; Klinken, E.J. van, Peijs, A.A.J.M.

    1993-12-31

    The influence of the fiber-matrix interface on the transverse properties of unidirectional composites has been studied using a combination of experimental and numerical micromechanical analyses. In the model, elastic springs are introduced as interface elements to attain an interphase, displaying mechanical characteristics close to those of the matrix and enabling separation of fiber and matrix. Since these elastic springs represent the chemical bonds formed at the interface as a result of chemical surface treatment, the micromechanical model can directly be related to the effects of this treatment. For verification of the numerical analyses the influence of the interface is determined experimentally by transverse testing of carbon fiber reinforced composites, incorporating carbon fibres subjected to different levels of surface treatment. Numerical results show that the interface neither affects the overall composite modulus nor the stress concentrations in the composite. Consequently, the composite transverse strength and failure strain are proportional to the interfacial bond strength, determined by the number of chemical bonds formed at the interface. This proportionality appears to be limited, since a minimum and maximum transverse strength is predicted for composites with respectively not bonded and perfectly bonded fibres. These observations are confirmed by experiments which indicate that there is no effect of the fiber-matrix interfacial bond strength on the transverse composite modulus. Experimental validation showed that the transverse composite strengths can be fitted to the predicted linear relation with the carbon fiber surface oxygen concentration, determining the interfacial bond strength. The predicted ultimate strength values are experimentally verified as well.

  16. Transverse relaxation mechanisms in articular cartilage.

    PubMed

    Mlynrik, V; Szomolnyi, P; Toffanin, R; Vittur, F; Trattnig, S

    2004-08-01

    Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz. PMID:15261626

  17. Aneurysm strength can decrease under calcification.

    PubMed

    Volokh, Konstantin Y; Aboudi, Jacob

    2016-04-01

    Aneurysms are abnormal dilatations of vessels in the vascular system that are prone to rupture. Prediction of the aneurysm rupture is a challenging and unsolved problem. Various factors can lead to the aneurysm rupture and, in the present study, we examine the effect of calcification on the aneurysm strength by using micromechanical modeling. The calcified tissue is considered as a composite material in which hard calcium particles are embedded in a hyperelastic soft matrix. Three experimentally calibrated constitutive models incorporating a failure description are used for the matrix representation. Two constitutive models describe the aneurysmal arterial wall and the third one - the intraluminal thrombus. The stiffness and strength of the calcified tissue are simulated in uniaxial tension under the varying amount of calcification, i.e. the relative volume of the hard inclusion within the periodic unit cell. In addition, the triaxiality of the stress state, which can be a trigger for the cavitation instability, is tracked. Results of the micromechanical simulation show an increase of the stiffness and a possible decrease of the strength of the calcified tissue as compared to the non-calcified one. The obtained results suggest that calcification (i.e. the presence of hard particles) can significantly affect the stiffness and strength of soft tissue. The development of refined experimental techniques that will allow for the accurate quantitative assessment of calcification is desirable. PMID:26717251

  18. Do buried-rupture earthquakes trigger less landslides than surface-rupture earthquakes for reverse faults?

    NASA Astrophysics Data System (ADS)

    Xu, Chong

    2014-07-01

    Gorum et al. (2013, Geomorphology 184, 127-138) carried out a study on inventory compilation and statistical analyses of landslides triggered by the 2010 Mw 7.0 Haiti earthquake. They revealed that spatial distribution patterns of these landslides were mainly controlled by complex rupture mechanism and topography. They also suggested that blind-rupture earthquakes trigger fewer landslides than surface-rupture earthquakes on thrust reverse faults. Although a few lines of evidence indicate that buried-rupture earthquakes might trigger fewer landslides than surface-rupture earthquakes on reverse faults, more careful comparisons and analyses indicate that it is not always true. Instead, some cases show that a buried-rupture earthquake can trigger a larger quantity of landslides that are distributed in a larger area, whereas surface-rupture earthquakes can trigger larger but a fewer landslides distributed in a smaller area.

  19. Effect of Normalization Temperature on Creep Strength of Modified 9Cr-1Mo Steel

    SciTech Connect

    T.C. Totemeier; H. Tian; J.A. Simpson

    2006-05-01

    The effect of normalization temperature from 850 to 1050C on the structure and creep-rupture properties of modified 9Cr-1Mo steel was studied. Normalization at temperatures less than 925C resulted in structures containing significant polygonized, recovered ferrite. These structures had poor creep-rupture strength; roughly two orders of magnitude increase in minimum creep rate or decrease in rupture life for 850C compared to 1050C normalization at test conditions of 600C and 145 MPa. Room-temperature strength and hardness were also reduced. Normalization at temperatures between 925C and 1000C also resulted in reduced creep strength in comparison with 1050C normalization, even though tempered martensite microstructures were formed and little change in room temperature strength was observedthe reduction was attributed to subtle differences in fine MX precipitates. The effect of reduced normalization temperature was more pronounced for higher temperature, lower stress creep-rupture conditions.

  20. Spontaneous rupture of the spleen operated in gynecological unit mistaken for ruptured hemorrhagic ovarian cyst: total splenectomy

    PubMed Central

    Eko, Filbert Eko; Fouelifack, Florent Ymele; de Paul, Elanga Vincent

    2014-01-01

    Spontaneous splenic rupture is always neglected when consulting acute abdominal pains in gynecological emergencies. It constitutes about 1% of all splenic ruptures and can be managed by abstention, surgery or embolization. We present the case of a young lady who was diagnosed of spontaneous rupture during surgery that was mistaken for ruptured hemorrhagic ovarian cyst and finally treated by total splenectomy. The pre-operative work up was absolute for a rupturred hemorrhagic cyst and secondariy for a ruptured ectopic gestation. PMID:25918564

  1. Dynamic Interface Rupture in Extremely Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Tsuji, K.

    2007-12-01

    Fracture experiments of monolithic brittle materials usually show the maximum speed of smooth rupture at some 30 % of the relevant shear wave speed. This experimental maximum rupture speed is by far lower than those predicted by theories and inferred from inversions of seismograms, and some seismic inversions (e.g., the 1979 Imperial Valley, 1992 Landers, 1999 Izmit, 2001 the central Kunlunshan and 2002 Denali earthquakes) even suggest the existence of supershear rupture speeds (i.e., rupture propagating faster than the relevant shear wave). Recently, Uenishi et al. ( SSJ Fall Meeting, 2004, 2005; AGU Fall Meeting, 2006) experimentally investigated dynamic fracture in monolithic hyperelastic materials under static mode- loading conditions with relatively high crack-parallel stresses. Using a high-speed digital video camera system, they showed that cracks may propagate supersonically even in homogeneous materials. However, the exact mechanism for rupture nucleation and the transition of a nucleated rupture from sub-Rayleigh to super-shear rupture speed has not been identified yet. In this contribution, we further develop our experimental system and investigate dynamic fracture in extremely heterogeneous media, consisting of thin fluid and solid films: Inside a wire frame (50mm high, 50mm wide), a flat soap film contacts a flat thin solid plastic film (20mm high, 20mm wide), under static tensile loading conditions. The rupture (crack), initiated at a point, propagates subsonically in the linear elastic fluid film (see e.g., Uenishi et al., SSJ Fall Meeting, 2006, for the dynamic rupture in monolithic fluid films). When the circular rupture front reaches the interface, the rupture advances along the interface and then it is "diffracted" at the two corners of the interface. We record the rupture propagation process utilizing our high-speed digital video camera at a frame rate of 20 ?s (2010-6s). The observed results show that interface rupture propagation may accelerate (or even decelerate) and the dynamic rupture behavior is very sensitive to the geometry of the interface between the two films: (1) When the subsonic rupture front reaches the first rectangular corner, it accelerates around the corner and then advances supersonically along the interface; and (2) when the supersonic interface rupture front approaches the second corner (obtuse with respect to the rupture front in fluid), it bifurcates for a short period (400 ?s): the first branch unexpectedly expands rather straight into the bulk and the second one propagates along the interface at a lower speed; At a later stage, again unexpectedly, the first branched crack decelerates significantly in the bulk and the two cracks eventually merge into a single crack. The overall behavior is - in some sense - similar to that of the oblique shock and Prandtl- Meyer expansion waves in fluid mechanics, and it might give new insights not only into the question of high rupture speeds of natural earthquakes but also into the generation mechanism of tsunamis. u.ac.jp/~uenishi/

  2. Metrics for comparing dynamic earthquake rupture simulations

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2014-01-01

    Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near?fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (?see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each codes results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.

  3. Effect of slag and silica fume on mechanical properties of high strength concrete

    SciTech Connect

    Li Jianyong; Tian Pei

    1997-06-01

    This paper presents the study on changes of the mechanical properties, including compressive strength, split tensile strength and rupture strength of four high strength concretes, caused by the addition of ground blast-furnace slag and silica fume. The study indicates that the mechanical properties of high strength concrete were improved to a great extent at later ages when cement used in concrete was replaced by slag and silica fume by 25% by weight.

  4. Age at intracranial aneurysm rupture among generations

    PubMed Central

    Woo, D; Hornung, R; Sauerbeck, L; Brown, R; Meissner, I; Huston, J; Foroud, T; Broderick, J

    2009-01-01

    Background: Previous studies have reported intracranial aneurysm (IA) occurring at young ages in subsequent generations. These studies did not correct for duration of follow-up. Second-generation members who would have their ruptured IA late in life may not be detected due to shorter follow-up time than the first generation. We examined families in which ruptured IA occurred in two consecutive generations for the hypothesis that the second generation (F1) was more likely to have a rupture at a younger age than the older generation (F0). Methods: The Familial Intracranial Aneurysm (FIA) Study is a multicenter, international study recruiting families of ruptured and unruptured IA. All available family members are interviewed. Cox proportional hazards regression models and Kaplan-Meier curves were used to examine differences by generation. Results: Although we found that the F1 generation was more likely to have an aneurysm rupture at a younger age than the F0 generation, we found that this was largely because of a lack of follow-up time in the F1 generation. The F1 generation had 50% the rupture rate of the prior generation. When analyzed by Kaplan-Meier curves, we found a tendency to have a slightly later rupture rate in the F1 generation once time to follow-up was included in the analysis model. Conclusions: Families of ruptured intracranial aneurysm (IA) do not appear to demonstrate “anticipation.” Our finding suggests that genetic epidemiology of ruptured IA should examine all types of variations such as single base-pair changes, deletions, insertions, and other variations that do not demonstrate anticipation. GLOSSARY FIA = familial intracranial aneurysm; IA = intracranial aneurysm; SAH = subarachnoid hemorrhage. PMID:19237697

  5. Cryogenic insulation strength and bond tester

    SciTech Connect

    Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P.

    1985-10-22

    A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing ''in situ'' on the tank. The apparatus comprises an electro-mechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cranks which are connected to a central member. When the lower end of member is attached to fitting, which in turn is bonded to plug, a pulling force is exerted on plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out on screen.

  6. Cryogenic insulation strength and bond tester

    NASA Technical Reports Server (NTRS)

    Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (Inventor)

    1985-01-01

    A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.

  7. Intermediate Temperature Stress Rupture of a Woven Hi-Nicalon, BN-Interphase, SiC Matric Composite in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurst, Janet; Brewer, David

    1999-01-01

    Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.

  8. CT diagnosis of ruptured abdominal aortic aneurysm

    SciTech Connect

    Rosen, A.; Korobkin, M.; Silverman, P.M.; Moore, A.V. Jr.; Dunnick, N.R.

    1984-08-01

    Abdominal computed tomography was performed in six patients with suspected ruptured abdominal aortic aneurysm but in whom an alternate clinical diagnosis was seriously considered. In each patient, a large aortic aneurysm was demonstrated in association with a retroperitoneal accumulation of high-density blood. The retroperitoneal blood was primarily confined to the extracapsular perinephric space. In four of the six patients, a focal area of the aortic wall was indistinct on the side of the retroperitoneal hemorrhage at the presumed site of rupture. Five of the six patients underwent emergency surgery, which confirmed the site of aneurysm, presence of rupture and the location of fresh retroperitoneal blood.

  9. Gastric rupture after the Heimlich maneuver.

    PubMed

    Bintz, M; Cogbill, T H

    1996-01-01

    Since 1975, the Heimlich maneuver has been widely applied to relieve upper airway obstruction caused by aspirated material. Life-threatening complications have been documented following this simple procedure. We report two cases of gastric rupture after use of the Heimlich maneuver. Both patients experienced pulmonary and abdominal symptoms. The diagnosis was confirmed in each case by the demonstration of free intraperitoneal air on an upright chest roentgenogram. Full-thickness gastric rupture along the lesser curvature of the stomach was repaired in both patients; one patient died. Abdominal pain or persistent abdominal distention despite nasogastric suction after the Heimlich maneuver should prompt evaluation for possible gastric rupture. PMID:8576987

  10. Rupture Following Biceps-to-Triceps Tendon Transfer in Adolescents and Young Adults With Spinal Cord Injury:

    PubMed Central

    Merenda, Lisa A.; Rutter, Laure; Curran, Kimberly; Kozin, Scott H.

    2012-01-01

    Background: Tendon transfer surgery can restore elbow extension in approximately 70% of persons with tetraplegia and often results in antigravity elbow extension strength. However, we have noted an almost 15% rupture/attenuation rate. Objective: This investigation was conducted to analyze potential causes in adolescents/young adults with spinal cord injury (SCI) who experienced tendon rupture or attenuation after biceps-to-triceps transfer. Methods: Medical charts of young adults with SCI who underwent biceps-to-triceps transfer and experienced tendon rupture or attenuation were reviewed. Data collected by retrospective chart review included general demographics, surgical procedure(s), use and duration of antibiotic treatment, time from tendon transfer surgery to rupture/attenuation, and method of diagnosis. Results: Twelve subjects with tetraplegia (mean age, 19 years) who underwent biceps-to-triceps reconstruction with subsequent tendon rupture or attenuation were evaluated. Mean age at time of tendon transfer was 18 years (range, 14-21 years). A fluoroquinolone was prescribed for 42% (n=5) of subjects. Tendon rupture was noted in 67% (n=8), and attenuation was noted in 33% (n=4). Average length of time from surgery to tendon rupture/attenuation was 5.7 months (range, 3-10 months). Conclusion: Potential contributing causes of tendon rupture/attenuation after transfer include surgical technique, rehabilitation, co-contraction of the transfer, poor patient compliance, and medications. In this cohort, 5 subjects were prescribed fluoroquinolones that have a US Food and Drug Administration black box concerning tendon ruptures. Currently, all candidates for upper extremity tendon transfer reconstruction are counseled on the effects of fluoroquinolones and the potential risk for tendon rupture. PMID:23459326

  11. Rupture of the distal tendon of the biceps brachii. A biomechanical study.

    PubMed

    Morrey, B F; Askew, L J; An, K N; Dobyns, J H

    1985-03-01

    In biomechanical studies on ten patients who had had a rupture of the distal tendon of the biceps brachii, we compared the results of immediate anatomical reattachment, delayed reattachment, and conservative treatment. When the tendon was simply attached to the brachialis muscle (one patient), there was nearly normal strength in elbow flexion but about 50 per cent loss of forearm supination. Late reinsertion (one patient) improved strength of both flexion and supination, but not to normal. Immediate reattachment (four patients) restored normal strength in flexion and supination at one year but not at four months (one patient). With conservative treatment (three patients) there was a mean loss of 40 per cent of supination strength and variable loss of flexion strength, averaging 30 per cent. These data suggest that immediate surgical reinsertion of the biceps tendon into the radial tuberosity, compared with other modes of treatment, restores more strength of flexion and supination. PMID:3972866

  12. Creep rupture behavior of candidate materials for nuclear process heat applications

    SciTech Connect

    Schubert, F.; te Heesen, E.; Bruch, U.; Cook, R.; Diehl, H.; Ennis, P.J.; Jakobeit, W.; Penkalla, H.J.; Ullrich, G.

    1984-08-01

    Creep and stress rupture properties are determined for the candidate materials to be used in hightemperature gas-cooled reactor (HTGR) components. The materials and test methods are briefly described based on experimental results of test durations of about20000 h. The medium creep strengths of the alloys Inconel-617, Hastelloy-X, Nimonic-86, Hastelloy-S, Manaurite-36X, IN-519, and Incoloy-800H are compared showing that Inconel-617 has the best creep rupture properties in the temperature range above 800/sup 0/C. The rupture time of welded joints is in the lower range of the scatterband of the parent metal. The properties determined in different simulated HTGR atmospheres are within the scatterband of the properties obtained in air. Extrapolation methods are discussed and a modified minimum commitment method is favored.

  13. In-reactor creep rupture properties of 20% CW modified 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Mizuta, S.; Kaito, T.; Okada, H.

    2000-02-01

    The in-reactor creep rupture tests of 20% cold worked modified 316 stainless steel were conducted in the temperature range from 878 to 1023 K using MOTA of FFTF, and were compared with the out-of-reactor tests. In-reactor creep rupture, lives become shorter than those of the out-of-reactor tests. In-reactor creep strain rate was significantly accelerated, and sufficient ductility appears to be maintained even under the irradiation. Considering 0.2% proof strength after neutron irradiation, sodium exposure or aging, the degraded rupture lives of in-reactor creep are ascribed to the enhanced dislocation recovery due to the neutron irradiation as well as to the solute elements dissolution into sodium under the sodium exposure environment.

  14. What Does the Transverse Carpal Ligament Contribute to Carpal Stability?

    PubMed Central

    Vanhees, Matthias; Verstreken, Frederik; van Riet, Roger

    2015-01-01

    Background?The transverse carpal ligament is well known for its involvement in carpal tunnel syndrome, and sectioning of this ligament remains the definite treatment for this pathology. Some authors believe that the transverse carpal ligament is an important stabilizer of the carpal arch, whereas others do not consider it to be significant. Several studies have been performed, both in vivo and in in vitro. Sectioning of the transverse carpal ligament does not seem to have any effect on the width of the carpal arch in the unloaded condition. However, patients will load the arch during their activities of daily living. Materials and Methods?A cadaveric study was done with distraction of the carpal bones before and after sectioning the transverse carpal ligament. Results?With the transverse carpal ligament intact, the carpal arch is mobile, with distraction leading up to 50% widening of the arch. Sectioning of the transverse carpal ligament resulted in a significant widening of the carpal arch by a further 30%. Conclusions?Loading of the carpal arch after sectioning of the transeverse carapal ligament leads to a significant increase in intracarpal mobility. This will inevitably influence carpal kinematics in the patient and might be responsible for some complications after simple carpal tunnel releases, such as pillar pain, palmar tenderness, and loss of grip strength. PMID:25709876

  15. Transverse correlations in multiphoton entanglement

    SciTech Connect

    Wen Jianming; Rubin, Morton H.; Shih Yanhua

    2007-10-15

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case.

  16. Gluon propagator and transverse vertices

    SciTech Connect

    Zhang, R.B.

    1985-03-15

    It is shown explicitly that in the axial gauge the Slavnov-Taylor identity contains no useful information for determining the gluon propagator through the Dyson-Schwinger equation; rather, it is the transverse vertex which plays the crucial role.

  17. Spontaneous rupture of ovarian cystadenocarcinoma: pre- and post-rupture computed tomography evaluation*

    PubMed Central

    Salvadori, Priscila Silveira; Bomfim, Lucas Novais; von Atzingen, Augusto Castelli; DIppolito, Giuseppe

    2015-01-01

    Epithelial ovarian tumors are the most common malignant ovarian neoplasms and, in most cases, eventual rupture of such tumors is associated with a surgical procedure. The authors report the case of a 54-year-old woman who presented with spontaneous rupture of ovarian cystadenocarcinoma documented by computed tomography, both before and after the event. In such cases, a post-rupture staging tends to be less favorable, compromising the prognosis. PMID:26543286

  18. Achilles tendon rupture in atypical patient populations.

    PubMed

    Kingsley, Peter

    2016-03-01

    Rupture of the Achilles tendon is a significant injury, and the likelihood of a good recovery is directly associated with early diagnosis and appropriate referral. Such injuries are commonly assessed and identified by practitioners working in 'minors' areas of emergency departments or urgent care settings. The literature frequently describes rupture of the Achilles tendon as 'typically sport-related' affecting 'middle-aged weekend warriors', but this aetiology accounts for only about 70% of such injuries. Factors such as the natural ageing process, obesity and use of some commonly prescribed medications, can increase the risk of developing a tendinopathy and subsequent rupture, often from a seemingly insignificant incident. However, research suggests that injuries in this patient population are more likely be missed on first examination. This article describes risk factors that should alert clinicians to the possibility of Achilles tendon rupture in 'atypical' patient populations. PMID:26948227

  19. Pregnancy-related rupture of arterial aneurysms.

    PubMed

    Barrett, J M; Van Hooydonk, J E; Boehm, F H

    1982-09-01

    Over 50 per cent of ruptured arterial aneurysms in women under the age of 40 are pregnancy-related. The hemodynamic and endocrine changes of pregnancy appear to be the cause of arterial alterations which may lead to new aneurysm formation and/or weakening of preexisting aneurysms. The most commonly reported arteries to have aneurysms rupture during pregnancy are the aorta, cerebral arteries, splenic artery, renal artery, coronary artery, and ovarian artery. In many instances, the rupture of an arterial aneurysm will initially simulate other less serious disease processes, thus delaying the correct diagnosis until a catastrophic event occurs. Early diagnosis and treatment of a ruptured arterial aneurysm are imperative in order to give optimal chances of survival to the mother and fetus. PMID:6752786

  20. Ruptured celiac artery aneurysm mimicking Boerhaave syndrome.

    PubMed

    Liu, Chien-Yu; Yang, Kai-Wei; Chen, Wei-Kung; Huang, Chen-Hsiung

    2013-09-01

    Ruptured celiac artery aneurysm is a rare cause for epigastric pain and is usually detected incidentally. Atypical presentation with postemetic epigastralgia and pleural effusion usually leads physicians to make the diagnosis of Boerhaave syndrome. Herein, we report a 32-year-old woman who was diagnosed with Boerhaave syndrome initially after presenting with acute postemetic epigastralgia and predominant left side pleural effusion. Diagnostic left thoracentesis yielded bloody fluid with similar amylase level to serum. The chest computed tomographic scan showed no evidence of esophageal rupture. However, a ruptured celiac artery aneurysm with retroperitoneal hematoma extending to the posterior mediastinum and bilateral pleural space was found incidentally. Although ruptured celiac artery aneurysm is an uncommon cause for postemetic epigastralgia, acute vascular events such as the previously stated cause should be the first impression rather than Boerhaave syndrome if the patient also presents with isolated pleural effusion containing unelevated amylase. PMID:23773770

  1. [Left Ventricular Rupture following Mitral Valve Replacement].

    PubMed

    Yamaguchi, Atsushi

    2015-07-01

    Left ventricular rupture is a rare but lethal complication after mitral valve replacement (MVR). Between 1989 and 2014, of 850 patients who underwent MVR, 6 developed left ventricular rupture in Saitama Medical Center, Jichi Medical University. Treasure type I rupture occurred in 5 patients and Miller type III in 1. Four cases developed ventricular rupture right after declamping of the ascending aorta, and the remaining 2 after the transfer to the intensive care unit( ICU). Prompt surgical therapy was achieved for the instant closure of the muscular wall defect under the cardiopulmonary bypass and cardiac arrest, however, leading to the disappointing result of 66.7% of hospital death. It is the most important to relieving the stress of the posterior wall of the left ventricle during mitral surgery by using the modification techniques with the preservation of posterior mitral leaflet and avoiding pre and afterload of the left ventricle right after the MVR. PMID:26197900

  2. Acute Iliac Artery Rupture: Endovascular Treatment

    SciTech Connect

    Chatziioannou, A.; Mourikis, D.; Katsimilis, J.; Skiadas, V. Koutoulidis, V.; Katsenis, K.; Vlahos, L.

    2007-04-15

    The authors present 7 patients who suffered iliac artery rupture over a 2 year period. In 5 patients, the rupture was iatrogenic: 4 cases were secondary to balloon angioplasty for iliac artery stenosis and 1 occurred during coronary angioplasty. In the last 2 patients, the rupture was secondary to iliac artery mycotic aneurysm. Direct placement of a stent-graft was performed in all cases, which was dilated until extravasation was controlled. Placement of the stent-graft was successful in all the cases, without any complications. The techniques used, results, and mid-term follow-up are presented. In conclusion, endovascular placement of a stent-graft is a quick, minimally invasive, efficient, and safe method for emergency treatment of acute iliac artery rupture, with satisfactory short- and mid-term results.

  3. The epidemiology of transverse myelitis.

    PubMed

    Bhat, Anupama; Naguwa, Stanley; Cheema, Gurtej; Gershwin, M Eric

    2010-03-01

    Transverse myelitis is a neurological disorder causing acute spinal cord injury as a result of acute inflammation, often associated with para infectious processes and autoimmune disease. The purpose of this article is to review the literature on the geoepidemiology of transverse myelitis and assess its environmental associations. Articles from 1981 to 2009 were reviewed in Pub Med along with potential causes such as autoimmune disease (focusing on systemic lupus erythematosus (SLE), antiphospholipid antibody syndrome (APS), and Sjogren's), infection, vaccination, and intoxication. PMID:20035902

  4. Expanding Endovascular Therapy of Very Small Ruptured Aneurysms with the 1.5-mm Coil

    PubMed Central

    Nguyen, Thanh N.; Masoud, Hesham; Tarlov, Nicholas; Holsapple, James; Chin, Lawrence S.; Norbash, Alexander M.

    2015-01-01

    Background Very small ruptured aneurysms (?3 mm) demonstrate a significant risk for procedural rupture with endovascular therapy. Since 2007, 1.5-mm-diameter coils have been available (Micrus, Microvention, and ev3), allowing neurointerventionalists the opportunity to offer patients with very small aneurysms endovascular treatment. In this study, we review the clinical and angiographic outcome of patients with very small ruptured aneurysms treated with the 1.5-mm coil. Methods This is a retrospective cohort study in which we examined consecutive ruptured very small aneurysms treated with coil embolization at a single institution. The longest linear aneurysm was recorded, even if the first coil was sized to a smaller transverse diameter. Very small aneurysms were defined as ?3 mm. Descriptive results are presented. Results From July 2007 to March 2015, 81 aneurysms were treated acutely with coils in 78 patients presenting with subarachnoid hemorrhage. There were 5 patients with 3-mm aneurysms, of which the transverse diameter was ?2 mm in 3 patients. In all 5 patients, a balloon was placed for hemostatic prophylaxis in case of rupture, and a single 1.5-mm coil was inserted for aneurysm treatment without complication. Complete aneurysm occlusion was achieved in 1 patient, residual neck in 2, and residual aneurysm in 2 patients. Aneurysm recanalization was present in 2 patients with an anterior communicating artery aneurysm; a recoiling attempt was unsuccessful in 1 of these 2 patients due to inadvertent displacement and distal coil embolization, but subsequent surgical clipping was successful. Another patient was retreated by surgical clipping for a residual wide-neck carotid terminus aneurysm. One patient died of ventriculitis 3 weeks after presentation; all 4 other patients had an excellent outcome with no rebleed at follow-up (mean 21 months, range 1-62). Conclusion The advent of the 1.5-mm coil may be used in the endovascular treatment of patients with very small ruptured aneurysms, providing a temporary protection to the site of rupture in the acute phase. If necessary, bridging with elective clipping may provide definitive aneurysm treatment. PMID:26600799

  5. Dynamic rupture activation of backthrust fault branching

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Ben-Zion, Yehuda; Ampuero, Jean-Paul

    2015-03-01

    We perform dynamic rupture simulations to investigate the possible reactivation of backthrust branches triggered by ruptures along a main thrust fault. Simulations with slip-weakening fault friction and uniform initial stress show that fast propagation speed or long propagation distance of the main rupture promotes reactivation of backthrust over a range of branch angles. The latter condition may occur separately from the former if rupture speed is limited by an increasing slip-weakening distance towards the junction direction. The results suggest a trade-off between the amplitude and duration of the dynamic stress near the main rupture front for backthrust reactivation. Termination of the main rupture by a barrier can provide enhanced loading amplitude and duration along a backthrust rooted near the barrier, facilitating its reactivation especially with a high frictional resistance. The free surface and depth-dependent initial stress can have several additional effects. The sign of the triggered motion along the backthrust can be reversed from thrust to normal if a deeply nucleated main rupture breaks the free surface, while it is preserved as thrust if the main rupture is terminated by a barrier at depth. The numerical results are discussed in relation to several recent megathrust earthquakes in Sumatra, Chile, and Japan, and related topics such as branch feedbacks to the main fault. The dynamic view on backthrust fault branching provided by the study fills a gap not covered by quasi-static models or observations. A specific examined case of antithetic fault branching may be useful for indicating a barrier-like behavior along the main fault.

  6. TRANSVERSE OSCILLATIONS IN CHROMOSPHERIC MOTTLES

    SciTech Connect

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P.; Morton, R. J.; Erdelyi, R.; Dorrian, G. D.

    2012-05-01

    A number of recent investigations have revealed that transverse waves are ubiquitous in the solar chromosphere. The vast majority of these have been reported in limb spicules and active region fibrils. We investigate long-lived, quiet-Sun, on-disk features such as chromospheric mottles (jet-like features located at the boundaries of supergranular cells) and their transverse motions. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. The data set is comprised of simultaneous imaging in the H{alpha} core, Ca II K, and G band of an on-disk quiet-Sun region. Time-distance techniques are used to study the characteristics of the transverse oscillations. We detect over 40 transverse oscillations in both bright and dark mottles, with periods ranging from 70 to 280 s, with the most frequent occurrence at {approx}165 s. The velocity amplitudes and transverse displacements exhibit characteristics similar to limb spicules. Neighboring mottles oscillating in-phase are also observed. The transverse oscillations of individual mottles are interpreted in terms of magnetohydrodynamic kink waves. Their estimated periods and damping times are consistent with phase mixing and resonant mode conversion.

  7. Application of high-velocity friction experiments to the shear rupture of a fault in an elastic half-space

    NASA Astrophysics Data System (ADS)

    Liao, Zonghu; Reches, Zeev

    2013-04-01

    We developed a physics-based model for earthquake rupture by numerically simulating shear rupture along a 2D vertical fault with the dynamic frictional strength of granite under high slip velocity. Recent experimental observations indicated that the steady-state frictional strength of silica-rich igneous rocks (granite, syenite, diorite) alternate between dynamic-weakening under low velocity (V < 0.03 m/s) and dynamic-strengthening under higher velocities (V > 0.03 m/s). This strength alternation was attributed to powder-lubrication (weakening), and powder dehydration (strengthening) (Sammis et al., 2011). We used the dynamic friction law which was determined on samples of Sierra White granite under experimental velocities approaching 1 m/s (Reches and Lockner, 2010). We converted their observed friction-distance-velocity relations into an empirical friction model referred to as WEST (WEakening - STrengthening). For the simulation calculations, we used the spectral element code of Ampuero (web.gps.caltech.edu/~ampuero/software), which computes the spontaneous rupture propagation along an anti-plane shear (mode III) fracture in an elastic half-space. In the present analysis, the WEST friction model is used as the fault strength while keeping all other parameters (crust properties and stresses) the same as Version 3 of the Southern California Earthquake Center (SCEC) benchmark problem (Harris et al., 2004). This approach allows for direct comparison between the WEST rupture and the benchmark rupture with a fault of slip-weakening friction model (Rojas et al., 2008). We found the following differences between the ruptures of the two models: (1) WEST-based rupture occurs earlier at all observation points away from the nucleation zone; (2) WEST-based model has lower (~ 35%) peak velocity and shorter rise-time; and (3) WEST-based rupture shows rich, frequent alteration of slip velocity, and consequently, the simulated rupture is more complex in stress drop, displacements, and friction recovery. We discuss the significant contribution of this experimentally-based friction model to the understanding of rupture models with emphasis on slip-pulse behavior.

  8. Tensile and stress-rupture behavior of hafnium carbide dispersed molybdenum and tungsten base alloy wires

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; Titran, Robert H.

    1993-01-01

    The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.

  9. Yield Stress Effects on Mucus Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hu, Yingying; Bian, Shiyao; Grotberg, John C.; Takayama, Shuichi; Grotberg, James B.

    2012-11-01

    Mucus plugs can obstruct airways, resulting in lost gas exchange and inflammation. Yield stress, one of the significant rheological properties of mucus, plays a significant role in plug rupture. We use carbopol 940 gels as mucus simulants to study dynamics of mucus plug rupture in experiments. Yield stress increases with gel concentration increasing (0.1% ~0.3%). The yield stress of the 0.2% gel is about 530 dyn/cm2, which can simulate normal mucus. A 2D PDMS channel is used to simulate a collapsed airway of the 12th generation in a human lung. Plug rupture is driven by a pressure drop of 1.6 104 ~ 2.0 104 dyn/cm2. Initial plug length varies from half to two times the half channel width. A micro-PIV technique is used to acquire velocity fields during rupture, from which wall shear stress is derived. Plug shortening velocity increases with the pressure drop, but decreases with yield stress or the initial plug length. Wall shear stress increases with yield stress, which indicates more potential damage may occur to epithelial cells when pathologic mucus has a high yield stress. Near the rupture moment, a wall shear stress peak appears at the front of the film deposited by the plug during rupture. This work is supported by NIH: HL84370 and HL85156.

  10. Fault barriers favor activation of backthrusts near segment ends of megathrust ruptures

    NASA Astrophysics Data System (ADS)

    Xu, S.; Fukuyama, E.; Ben-Zion, Y.; Ampuero, J. P.

    2013-12-01

    Increasing evidence indicates that backthrusts may become active during or after megathrust ruptures in subduction zones, such as in Chile and Sumatra areas (Melnick et al., 2012; Singh et al., 2011). Previous studies on relevant mechanisms mainly focused on the interaction between forethrusts and the megathrust. Here we aim to investigate through dynamic rupture simulations how backthrusts may be activated by megathrust ruptures in subduction zone environment. Assuming a single backthrust branch, our preliminary results show that the activation of backthrust is difficult if the megathrust rupture can easily pass through the fault junction, owing to a quickly established stress shadow zone in the wake of the megathrust rupture front. In contrast, if the megathrust rupture is arrested or delayed around the junction, a resultant backward stress lobe of the type discussed by Xu and Ben-Zion (2013) can load the backthrust over a considerable amount of time and facilitates rupture activation along the backthrust. A number of candidates can serve to arrest or delay megathrust ruptures, such as the velocity-strengthening frictional behavior and off-fault weak materials in the shallow portion of subduction zones, fault bend or ramp, and subducted seamount. Moreover, these features are also found capable of generating backthrusts during the long-term quasi-static process, which provide pre-existing weakness to be reactivated by later dynamic ruptures. Our results agree, from a different point of view, with the study based on the critical taper theory (Cubas et al., 2013) that an increase of friction towards the trench favors the activation of backthrusts near the up-dip limit of megathrust ruptures. The results highlight the role of fault geometric or strength heterogeneities in controlling the strain partitioning on and off the main fault plane. Accordingly, activated backthrusts may be treated as markers that reflect the limits of seismogenic zones, and thus may be used to characterize segmentation of subduction zones. Backthrusts can contribute, like forethrusts, to local tsunami generation, intra-plate seismicity, etc., and should be examined in further detail in future studies.

  11. Simplified approach for design of raft foundations against fault rupture. Part II: soil-structure interaction

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, I.; Gerolymos, N.; Gazetas, G.; Bransby, M. F.

    2008-06-01

    This is the second paper of two, which describe the results of an integrated research effort to develop a four-step simplified approach for design of raft foundations against dip-slip (normal and thrust) fault rupture. The first two steps dealing with fault rupture propagation in the free-field were presented in the companion paper. This paper develops an approximate analytical method to analyze soil-foundation-structure interaction (SFSI), involving two additional phenomena: (i) fault rupture diversion (Step 3); and (ii) modification of the vertical displacement profile (Step 4). For the first phenomenon (Step 3), an approximate energy-based approach is developed to estimate the diversion of a fault rupture due to presence of a raft foundation. The normalized critical load for complete diversion is shown to be a function of soil strength, coefficient of earth pressure at rest, bedrock depth, and the horizontal position of the foundation relative to the outcropping fault rupture. For the second phenomenon (Step 4), a heuristic approach is proposed, which “scans” through possible equilibrium positions to detect the one that best satisfies force and moment equilibrium. Thus, we account for the strong geometric nonlinearities that govern this interaction, such as uplifting and second order ( P-Δ) effects. Comparisons with centrifuge-validated finite element analyses demonstrate the efficacy of the method. Its simplicity makes possible its utilization for preliminary design.

  12. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trmborg, Jrgen Kjoshagen; Sveinsson, Henrik Andersen; Thgersen, Kjetil; Scheibert, Julien; Malthe-Srenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  13. Speed of fast and slow rupture fronts along frictional interfaces.

    PubMed

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed. PMID:26274187

  14. Prediction of transverse fatigue behavior of unidirectionally reinforced metal matrix composites

    SciTech Connect

    John, R.; Buchanan, D.J.; Larsen, J.M.

    1998-11-03

    Unidirectionally reinforced metal matrix composites (MMC) are targeted for use in many aerospace applications which require high specific strength and stiffness at elevated temperatures. Such applications include blings and disks. The primary weakness of a component made of unidirectionally reinforced MMC is its susceptibility to transverse loads. The strength of the component in the transverse direction is significantly lower than that in the longitudinal direction under monotonic, sustained and fatigue loading conditions. Hence, replacement of monolithic components with MMC components requires that the transverse strength of the MMC should be predicted accurately. This paper discusses the applicability of a net-section based model to predict the fatigue behavior of [909] MMC under transverse loading.

  15. Rupture of the cell envelope by induced intracellular gas phase expansion in gas vacuolate bacteria.

    PubMed Central

    Hemmingsen, B B; Hemmingsen, E A

    1980-01-01

    Using a new approach, we estimated the physical strength of the cell envelopes of three species of gram-negative, gas vacuolate bacteria (Microcyclus aquaticus, Prosthecomicrobium pneumaticum, and Meniscus glaucopis). Populations of cells were slowly (0.5 to 2.9 h) saturated with argon, nitrogen, or helium to final pressures up to 100 atm (10, 132 kPa). The gas phases of the vesicles remained intact and, upon rapid (1 to 2 s) decompression to atmospheric pressure, expanded and ruptured the cells; loss of colony-forming units was used as an index of rupture. Because the cell envelope is the cellular component most likely to resist the expanding intracellular gas phase, its strength can be estimated from the minimum gas pressures that produce rupture. The viable counts indicated that these minimum pressures were between 25 and 50 atm; the majority of the cell envelopes were ruptured at pressures between 50 and 100 atm. Cells in which the gas vesicles were collapsed and the gas phases were effectively dissolved by rapid compression tolerated decompression from much higher gas saturations. Cells that do not normally possess gas vesicles (Escherichia coli) or that had been prevented from forming them by addition of L-lysine to the medium (M. aquaticus) were not harmed by decompression from gas saturation pressures up to 300 atm. PMID:7204336

  16. Condensate bright solitons under transverse confinement

    NASA Astrophysics Data System (ADS)

    Salasnich, L.; Parola, A.; Reatto, L.

    2002-10-01

    We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schrdinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the ``soliton train'' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula.

  17. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Larochelle, Kevin J.

    This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.

  18. Effect of pore pressure buildup on slowness of rupture propagation

    NASA Astrophysics Data System (ADS)

    Ougier-Simonin, A.; Zhu, W.

    2015-12-01

    Pore fluid pressure is known to play an important role in brittle fracture initiation and propagation, yet the underlying mechanisms remain unclear. We conducted triaxial experiments on saturated porous sandstones to investigate effects of pore pressure buildup on the slowness of shear rupture propagation at different confining pressures. At low to intermediate confinements, rocks fail by brittle faulting, and pore pressure buildup causes a reduction in rock's shear strength but does not induce measurable differences in slip behavior. When the confinement is high enough to prohibit dynamic faulting, rocks fail in the brittle-ductile transitional regime. In the transitional regime, pore pressure buildup promotes slip instability on an otherwise stably sliding fracture. Compared to those observed in the brittle regime, the slip rate, stress drop, and energy dissipated during rupture propagation with concurrent pore pressure buildup in the transitional regime are distinctively different. When decreasing confining pressure instead, the slip behavior resembles the ones of the brittle regime, emphasizing how the observed slowness is related to excess pore pressure beyond the effective pressure phenomenon. Analysis of the mechanical data using existing theoretical models confirms these observations. Quantitative microstructural analyses reveal that increasing pore pressure lessens the dilatancy hardening during failure, thus enhances slip along the localized zone in the transitional regime. Our experimental results suggest that pore pressure buildup induces slow slip in the transitional regime, and slip rates along a shear fracture may vary considerably depending on effective stress states.

  19. Effect of rolling on the high temperature tensile and stress-rupture properties of tungsten fiber-superalloy composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.

    1974-01-01

    An investigation was conducted to determine the effects of mechanical working on the 1093 C (2000 F) tensile and stress-rupture strength of tungsten alloy/superalloy composites. Hot pressed composites containing either conventional tungsten lamp filament wire or tungsten-1% ThO2 wire and a nickel base alloy matrix were hot rolled at 1093 C (2000 F). The hot pressed and rolled composite specimens were then tested in tension and stress-rupture at 1093 C (2000 F). Rolling decreased the degree of fiber-matrix reaction as a function of time of exposure at 1093 C (2000 F). The stress-rupture properties of the rolled composites were superior to hot pressed composites containing equivalent diameter fibers. Rolling did not appreciably affect the 1093 C (2000 F) ultimate tensile strength of the composites.

  20. Surgical Strategies for Acutely Ruptured Arteriovenous Malformations.

    PubMed

    Martinez, Jaime L; Macdonald, R Loch

    2015-11-01

    Brain arteriovenous malformations (AVMs) are focal neurovascular lesions consisting of abnormal fistulous connections between the arterial and venous systems with no interposed capillaries. This arrangement creates a high-flow circulatory shunt with hemorrhagic risk and hemodynamic abnormalities. While most AVMs are asymptomatic, they may cause severe neurological complications and death. Each AVM carries an annual rupture risk of 2-4%. Intracranial hemorrhage due to AVM rupture is the most common initial manifestation (up to 70% of presentations), and it carries significant morbidity and mortality. This complication is particularly important in the young and otherwise healthy population, in whom AVMs cause up to one-third of all hemorrhagic strokes. A previous rupture is the single most important independent predictor of future hemorrhage. Current treatment modalities for AVM are microsurgery, endovascular embolization, and radiosurgery. In acutely ruptured AVMs, early microsurgical excision is usually avoided. The standard is to wait at least 4 weeks to allow for patient recovery, hematoma liquefaction, and inflammatory reactions to subside. Exceptions to this rule are small, superficial, low-grade AVMs with elucidated angioarchitecture, for which early simultaneous hematoma evacuation and AVM excision is feasible. Emergent hematoma evacuation with delayed AVM excision (unless, as mentioned, the AVM is low grade) is recommended in patients with a decreased level of consciousness due to intracranial hemorrhage, posterior fossa or temporal lobe hematoma of >30 ml, or hemispheric hematoma of >60 ml. The applicability of endovascular techniques for acutely ruptured AVMs is not clear, but feasible options, until a definitive treatment is determined, include occluding intranidal and distal flow-related aneurysms and 'sealing' any rupture site or focal angioarchitectural weakness when one can be clearly identified and safely accessed. Radiosurgery is not performed in acutely ruptured AVMs because its therapeutic effects occur in a delayed fashion. PMID:26587641

  1. Dihadron Fragmentation Functions and Transversity

    NASA Astrophysics Data System (ADS)

    Radici, Marco; Courtoy, A.; Bacchetta, Alessandro

    2015-01-01

    We present preliminary results for an updated extraction of the transversity parton distribution based on the analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets in collinear factorization. Data for proton and deuteron targets by HERMES and COMPASS allow for a flavor separation of the valence components of transversity, while di-hadron fragmentation functions are taken from the semi-inclusive production of two pion pairs in back-to-back jets in e+e- annihilation. The latter data from Belle have been reanalyzed using the replica method and a more realistic estimate of the uncertainties on the chiral-odd interference fragmentation function has been obtained. After encoding this piece of information into the deep-inelastic scattering cross section, the transversity has been re-extracted by using the most recent and more precise COMPASS data for proton target. This picture represents the current most realistic estimate of the uncertainties on our knowledge of transversity. The preliminary results indicate that the valence up component seems smaller and with a narrower error band than in previous extraction.

  2. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers–Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  3. Creep-rupture behavior of candidate Stirling engine alloys after long-term aging at 760 deg C in low-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1984-01-01

    Nine candidate Stirling automotive engine alloys were aged at 760 C for 3500 hr in low pressure hydrogen or argon to determine the resulting effects on mechanical behavior. Candidate heater head tube alloys were CG-27, W545, 12RN72, INCONEL-718, and HS-188 while candidate cast cylinder-regenerator housing alloys were SA-F11, CRM-6D, XF-818, and HS-31. Aging per se is detrimental to the creep rupture and tensile strengths of the iron base alloys. The presence of hydrogen does not significantly contribute to strength degradation. Based percent highway driving cycle; CG-27 has adequate 3500 hr - 870 C creep rupture strength and SA-Fll, CRM-6D, and XF-818 have adequate 3500 hr - 775 C creep rupture strength.

  4. The Crinkling Strength and the Bending Strength of Round Aircraft Tubing

    NASA Technical Reports Server (NTRS)

    Osgood, William R

    1938-01-01

    The upper limit of the column strength of structural members composed of thin material is the maximum axial stress such members can carry when short enough to fail locally, by crinkling. This stress is a function of the mechanical properties of the material and of the geometrical shape of the cross section. The bending strength, as measured by the modulus of rupture, of structural members is also a function of these same variables. Tests were made of round tubes of chromium-molybdenum steel and of duralumin to determine the crinkling strengths and the bending strengths in terms of the specified yield strength and the ratio of diameter to thickness. Empirical formulas are given relating these quantities.

  5. Flutter analysis using transversality theory

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1993-01-01

    A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.

  6. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ??? is necessary to reconstruct C????), and the application of regularization is shown to improve accuracy. Finally, the effects of noise on reconstruction quality is demonstrated and a signal-to-noise ratio (SNR) of 40 dB is identified as a reasonable threshold for obtaining accurate reconstructions from experimental data. This study demonstrates that given an appropriate set of displacement fields, level of regularization, and signal strength, the transversely isotropic method can recover the relative magnitudes of all five elastic parameters without an independent measurement of stress. The quality of the reconstructions improves with increasing contrast, magnitude of deformation, and asymmetry in the distributions of material properties, indicating that elasticity imaging of cancellous bone could be a useful tool in laboratory studies to monitor the progression of damage and disease in this tissue. PMID:21744922

  7. Creep-rupture tests of internally pressurized Hastelloy-X tubes

    NASA Technical Reports Server (NTRS)

    Gumto, K. H.; Colantino, G. J.

    1973-01-01

    Seamless Hastelloy-X tubes with 0.375-in. outside diameter and 0.025-in. wall thickness were tested to failure at temperatures from 1400 to 1650 F and internal helium pressures from 800 to 1800 psi. Lifetimes ranged from 58 to 3600 hr. The creep-rupture strength of the tubes was from 20 to 40 percent lower than that of sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.

  8. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  9. Pericardial rupture from blunt chest trauma

    PubMed Central

    Borrie, J.; Lichter, I.

    1974-01-01

    Borrie, J. and Lichter, I. (1974).Thorax, 29, 329-337. Pericardial rupture from blunt chest trauma. Pericardial rupture may occur in two distinct anatomical sites, namely the diaphragmatic pericardium and the pleuropericardium. They may be combined. The problems in each type are different. In ruptured diaphragmatic pericardium the rent may involve the pericardial cavity alone, or may extend into one or both adjoining pleural cavities. Upward herniation of abdominal viscera can occur, with or without strangulation. The presence of a pericardial rent may be suggested by diagnostic pneumoperitoneum, and chest films showing displaced abdominal viscera; its extent may be fully revealed only by thoracotomy. If the rent involves only the diaphragmatic pericardium without lateral spread into a pleural cavity, the presence of a rent may be revealed only by exploratory thoracotomy with pericardiotomy. In ruptured pleuropericardium the rent is usually vertical and may occur on either side, more usually on the left. It may be recognized on chest films in its early stages by the presence of intrapericardial air arising from associated lung trauma. There is serious risk of heart dislocation with or without strangulation. The defect must be surgically repaired and, because of pericardial retraction, it may require a fabric patch. Teflon fabric has proved to be a long-term satisfactory pericardial substitute. Two cases of each type of pericardial rupture are described and illustrate these points. Images PMID:4853582

  10. Realizing vector meson dominance with transverse charge densities

    SciTech Connect

    Gerald Miller, Mark Strikman, Christian Weiss

    2011-10-01

    The transverse charge density in a fast-moving nucleon is represented as a dispersion integral of the imaginary part of the Dirac form factor in the timelike region (spectral function). At a given transverse distance b the integration effectively extends over energies in a range {radical}t {approx}< 1/b, with exponential suppression of larger values. The transverse charge density at peripheral distances thus acts as a low-pass filter for the spectral function and allows one to select energy regions dominated by specific t-channel states, corresponding to definite exchange mechanisms in the spacelike form factor. We show that distances b {approx} 0.5 - 1.5 fm in the isovector density are maximally sensitive to the {rho} meson region, with only a {approx}10% contribution from higher-mass states. Soft-pion exchange governed by chiral dynamics becomes relevant only at larger distances. In the isoscalar density higher-mass states beyond the {omega} are comparatively more important. The dispersion approach suggests that the positive transverse charge density in the neutron at b {approx} 1 fm, found previously in a Fourier analysis of spacelike form factor data, could serve as a sensitive test of the isoscalar strength in the {approx}1 GeV mass region. In terms of partonic structure, the transverse densities in the vector meson region b {approx} 1 fm support an approximate mean-field picture of the motion of valence quarks in the nucleon.

  11. Spatial Interdependency Between Kinematic Source Parameters Derived From Dynamic Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Schmedes, J.; Archuleta, R. J.; Lavallee, D.

    2008-12-01

    For a kinematic model to accurately predict ground motion, it is necessary to know not only the spatial distribution of the source parameters but also the spatial interdependency among the parameters. Because there are limitations to the kinematic parameters derived from inversions of seismic data, we determine the spatial interdependency between source parameters from physically based dynamic ruptures. We have computed and analyzed hundreds of dynamic rupture models to get a quantitative understanding of the spatial interdependency and amplitude distributions of parameters describing the earthquake source, such as stress drop, rupture velocity, and rise time. We use a slip weakening friction law combined with different approaches to create random heterogeneous initial stress and strength distributions on the fault as the basic ingredients for our dynamic ruptures. While there is much to be learned by looking at differences among all the models, we focus on features that are common among all models, that is, features that show the least dependence on the choice of the initial model. Using all dynamic ruptures, we are able to construct probability density functions (PDF's) for the amplitude distributions of the source parameters as well as for the spatial correlation between the source parameters. In addition we compute joint probability density functions to determine if there is a linear relationship between different source parameters, and cross spectral densities to determine if there is correlation at all scales. We find: (1) slip amplitude does not show systematic correlations with rupture velocity, and it is positively correlated with rise time; (2) peak slip rate shows strong correlation with rupture velocity and rise time; (3) the PDF of rupture velocity has a well defined maximum between 80%-90% of the shear wave velocity. The value of this maximum probability density increases with distance from the hypocenter, while the width of the PDF decreases, i.e., the rupture velocity tends toward a more constant value farther from the hypocenter. A similar dependence is found for the PDF of the rise times, which has a width that decreases with increasing distance from the nucleation zone; moreover, the mean value of the rise time shifts to a smaller value.

  12. Dynamic rupture simulation with an experimentally-determined friction law leads to slip-pulse propagation

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Chang, J. C.; Reches, Z.

    2013-12-01

    We simulate the dynamic rupture along a vertical, strike-slip fault in an elastic half-space. The fault has frictional properties that were determined in high-velocity, rotary shear apparatus Sierra-White granite. The experimental fault was abruptly loaded by a massive flywheel, which is assumed to simulate the loading of a fault patch during an earthquake, and termed Earthquake-Like-Slip Event (ELSE) (Chang et al., 2012). The experiments revealed systematic alteration between slip-weakening and slip-strengthening (Fig. 1A), and were considered as proxies of fault-patch behavior during earthquakes of M = 4-8. We used the friction-distance relations of these experiments to form an empirical slip-dependent friction model, ELSE-model (Fig. 1B). For the dynamic rupture simulation, we used the program of Ampuero (2002) (2D spectral boundary integral elements) designed for anti-plane (mode III) shear fracturing. To compare with published works, the calculations used a crust with mechanical properties and stress state of Version 3 benchmark of SCEC (Harris et al., 2004). The calculations with a fault of ELSE-model friction revealed: (1) Rupture propagation in a slip-pulse style with slip cessation behind the pulse; (2) Systematic decrease of slip distance away from the nucleation zone; and (3) Spontaneous arrest of the dynamic rupture without a barrier. These features suggest a rupture of a self-healing slip-pulse mode (Fig. 1C), in contrast to rupturing of a fault with linear slip-weakening friction (Fig. 1B) (Rojas et al., 2008) in crack-like mode and no spontaneous arrest. We deduce that the slip-pulse in our simulation results from the fast recovery of shear strength as observed in ELSE experiments, and argue that incorporating this experimentally-based friction model to rupture modeling produces realistic propagation style of earthquake rupture. Figure 1 Fault patch behavior during an earthquake. (A) Experimental evolution of frictional stress, slip velocity, and displacement in ELSE (Chang et al., 2012). (B) Friction laws of ELSE-model and linear slip-weakening model. (C) Conceptual evolution of shear stress, slip velocity and displacement during a slip-pulse rupture (adapted from Heaton, 1990).

  13. In situ ply strengths - An initial assessment

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1978-01-01

    The in situ ply strengths in several composites were calculated using a computational procedure developed for this purpose. Laminate fracture data for appropriate low modulus and high modulus fiber composites were used in the laminate analysis in conjunction with the method of least squares. The laminate fracture data were obtained from tests on Modmor-I graphite/epoxy, AS-graphite/epoxy, boron/epoxy and E-glass/epoxy. The results obtained show that the calculated in situ ply strengths can be considerably different from those measured in unidirectional composites, especially the transverse strengths and those in angleplied laminates with transply cracks.

  14. Dynamic Rupture Simulations of 11 March 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Dunham, E. M.

    2012-12-01

    There is strong observational evidence that the 11 March 2011 Tohoku earthquake rupture reached the seafloor. This was unexpected because the shallow portion of the plate interface is believed to be frictionally stable and thus not capable of sustaining coseismic rupture. In order to explore this seeming inconsistency we have developed a two-dimensional dynamic rupture model of the Tohoku earthquake. The model uses a complex fault, seafloor, and material interface structure as derived from seismic surveys. We use a rate-and-state friction model with steady state shear strength depending logarithmically on slip velocity, i.e., there is no dynamic weakening in the model. The frictional parameters are depth dependent with the shallowest portions of the fault beneath the accretionary prism being velocity strengthening. The total normal stress on the fault is taken to be lithostatic and the pore pressure is hydrostatic until a maximum effective normal stress is reached (40 MPa in our preferred model) after which point the pore pressure follows the lithostatic gradient. We also account for poroelastic buffering of effective normal stress changes on the fault. The off-fault response is linear elastic. Using this model we find that large stress changes are dynamically transmitted to the shallowest portions of the fault by waves released by deep slip that are reflected off the seafloor. These stress changes are significant enough to drive the rupture through a velocity strengthening region that is tens of kilometers long. Rupture to the trench is therefore consistent with standard assumptions about depth-dependence of subduction zone properties, and does not require extreme dynamic weakening, shallow high stress drop asperities, or other exceptional processes. We also make direct comparisons with measured seafloor deformation and onshore 1-Hz GPS data from the Tohoku earthquake. Through these comparisons we are able to determine the sensitivity of these data to several dynamic source parameters (prestress, seismogenic depth, and the extent and frictional properties of the shallow plate interface). We find that there is a trade-off between the near-trench frictional properties and effective normal stress, particularly for onshore measurements. That is, the data can be equally well fit by either a velocity strengthening or velocity weakening near-trench fault segment, provided that compensating adjustments are also made to the maximum effective normal stress on the fault. On the other hand, the seismogenic depth is fairly well constrained from the static displacement field, independent of effective normal stress and near-trench properties. Finally, we show that a water layer (modeled as an isotropic linear acoustic material) has a negligible effect on the rupture process. That said, the inclusion of a water layer allows us to make important predictions concerning hydroacoustic signals that were observed by ocean bottom pressure sensors.

  15. Acoustic levels of heavy truck tire ruptures.

    PubMed

    Wood, Matthew; Woodruff, William

    2013-05-01

    Transportation vehicles, whether they are passenger vehicles or heavy trucks and transport vehicles, rely upon rubber tires to negotiate the roadways and surfaces on which they are driven. These tires have the potential of sudden rupture resulting from various causes including but not limited to over-pressurization, sidewall failures, or punctures from roadway debris. These rupture events can and do occur while the vehicles are stationary (e.g., during servicing) or are being driven, and often occur without notice. While the phenomenon of sudden tire failure has been documented for several decades, the potential bodily injury which can occur when an individual is in close proximity to such a sudden rupture has only more recently been documented. Aside from anecdotal mention in case studies, there has been little quantitative information available on the acoustic levels during these failures. Our study provides measured acoustic levels as a function of distance for such catastrophic tire failures. PMID:23622472

  16. On the rupture of DNA molecule

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Modi, T.; Giri, D.; Kumar, S.

    2015-05-01

    Using Langevin dynamics simulations, we study effects of the shear force on the rupture of a double stranded DNA molecule. The model studied here contains two single diblock copolymers interacting with each other. The elastic constants of individual segments of diblock copolymer are considered to be different. We showed that the magnitude of the rupture force depends on whether the force is applied at 3' - 3' - ends or 5' - 5' - ends. Distributions of extension in hydrogen bonds and covalent bonds along the chain show the striking differences. Motivated by recent experiments, we have also calculated the variation of rupture force for different chain lengths. Results obtained from simulations have been validated with the analytical calculation based on the ladder model of DNA.

  17. Right ventricular hydatid cyst ruptured to pericardium.

    PubMed

    Sabzi, Feridoun; Vaziri, Siavoosh; Faraji, Reza

    2015-01-01

    Cardiac hydatidosis is rare presentation of body hydatidosis. Incidence of cardiac involvements range from 5% to 5% of patients with hydatid disease. Most common site of hydatid cyst in heart is interventricular septum and left ventricular free wall. Right ventricular free wall involvement by cyst that ruptured to pericardial cavity is very rare presentation of hydatid cyst. Cardiac involvement may have serious consequences such as rupture to blood steam or pericardial cavity. Both the disease and its surgical treatment carry a high complication rate, including rupture leading to cardiac tamponade, anaphylaxis and also death. In the present report, a 43-year-old man with constrictive pericarditis secondary to a pericardial hydatid cyst is described. PMID:26139761

  18. Postmyomectomic Uterine Rupture Despite Cesarean Section.

    PubMed

    Kacperczyk, Joanna; Bartnik, Paweł; Romejko-Wolniewicz, Ewa; Dobrowolska-Redo, Agnieszka

    2016-03-01

    Uterine fibroids (leiomyomas) are benign smooth muscle tumors of the uterus. Fibroids can develop anywhere within the muscular wall. Leiomyomas may be associated with infertility. Laparoscopic myomectomy is often used to remove symptomatic intramural or subserosal fibroids. Advantages of the procedure include short recovery time and minimal perioperative morbidity. At the same time, the multilayer suture technique is more complicated during laparoscopy. A rare but serious complication of laparoscopic myomectomies is uterine rupture. A brief review of the literature and a clinical example of a 33-year-old woman with history of infertility, laparoscopic myomectomies and uterine rupture followed by peripartum hemorrhage is presented. The treatment of leiomyomas is a challenge not only because of possible recurrence but also due to long-term consequences following successful myomectomy. Management of patients with uterine scars should include careful planning of the route of delivery, as the risk of rupture may be increased. PMID:26976991

  19. Component external leakage and rupture frequency estimates

    SciTech Connect

    Eide, S.A.; Khericha, S.T.; Calley, M.B.; Johnson, D.A.; Marteeny, M.L.

    1991-11-01

    In order to perform detailed internal flooding risk analyses of nuclear power plants, external leakage and rupture frequencies are needed for various types of components - piping, valves, pumps, flanges, and others. However, there appears to be no up-to-date, comprehensive source for such frequency estimates. This report attempts to fill that void. Based on a comprehensive search of Licensee Event Reports (LERs) contained in Nuclear Power Experience (NPE), and estimates of component populations and exposure times, component external leakage and rupture frequencies were generated. The remainder of this report covers the specifies of the NPE search for external leakage and rupture events, analysis of the data, a comparison with frequency estimates from other sources, and a discussion of the results.

  20. Partial rupture of the distal biceps tendon.

    PubMed

    Drr, H R; Stbler, A; Pfahler, M; Matzko, M; Refior, H J

    2000-05-01

    Partial rupture of the distal biceps tendon is a relatively rare event, and various degrees of partial tendon tears have been reported. In the current study four patients with partial atraumatic distal biceps tendon tears (mean age, 59 years; range, 40-82 years) are reported. In all four patients, a common clinical pattern emerged. Pain at the insertion of the distal biceps tendon in the radius unrelated to any traumatic event was the main symptom. In all patients the diagnosis was based on magnetic resonance imaging or computed tomography imaging. In three of four patients the partial rupture of the tendon caused a significant bursalike lesion. The typical appearance was a partially ruptured biceps tendon, with contrast enhancement signaling the degree of degeneration, tenosynovitis, and soft tissue swelling extending along the tendon semicircular to the proximal radius. In three patients, conservative treatment was successful. Only one patient needed surgery, with reinsertion of the tendon resulting in total functional recovery. PMID:10818980

  1. The effect of transient overloads on the stress-rupture of glass fibre reinforced polymers

    NASA Astrophysics Data System (ADS)

    Rawles, J. D.

    1990-01-01

    Power station cooling water (CW) system components may be subject to water hammer events during their thirty year service life. The immediate and long term effects of such events on glass fibre reinforced polymer (GFRP) structures were hitherto unknown. This study investigates these effects and considers how well design codes address the problem of water hammer. A sequence of model water hammer events were applied to coupons of glass reinforced polyester and vinyl ester laminates ("overloaded" coupons). Damage studies revealed transverse resin cracking but no fibre fractures. The effect of stress/time profile on damage was investigated. CW systems operating from a constant head reservoir were modelled by stress-rupture tests in an aqueous environment at 40 C. Stress-rupture lifetime of overloaded coupons was found to be reduced in comparison to virgin coupons. CW systems operating from a coastal reservoir were simulated by applying a sinusoidal load regime, with an R-ratio of 0.67, at a frequency of 23.15 Hz, to overloaded coupons in an aqueous environment at 40 C. The results were then compared with those from the stress-rupture tests. Genuine water hammer events were also applied to a model component. Glass reinforced polyester pipes of 151mm diameter were subjected to ten water hammer events of the type occurring in a CW system ("overloaded" pipes). Axial cracking resulted. Stress-rupture testing was carried out on virgin and overloaded pipes in an aqueous environment at 40 C. The lifetime of overloaded pipes was reduced in comparison to virgin pipes. This was attributed to enhanced stress-corrosion cracking at sites of water hammer induced cracking.Stress-rupture results for material tested in pipe and coupon form were compared. At a given stress level, longer lifetimes were exhibited by pipe material. This indicated that designing from coupon data might lead to costly overdesign. Design codes were then reviewed in the light of the above experimental results.

  2. Prognostic factors of spontaneously ruptured hepatocellular carcinoma

    PubMed Central

    Han, Xiang-Jun; Su, Hong-Ying; Shao, Hai-Bo; Xu, Ke

    2015-01-01

    AIM: To evaluate the prognostic factors in patients with spontaneously ruptured hepatocellular carcinoma (HCC). METHODS: Seventy-nine patients experiencing spontaneous rupture of HCC between April 2004 and August 2014 were enrolled in this study. The clinical features, treatment modalities and outcomes were reviewed. The statistical methods used in this work included univariate analysis, Kaplan-Meier survival analysis with log-rank tests, and multivariate analysis using a Cox regression hazard model. RESULTS: Of the 79 patients with HCC rupture, 17 (21.5%) underwent surgery, 32 (40.5%) underwent transarterial embolization (TAE), and 30 (38%) received conservative treatment. The median survival time was 125 d, and the mortality rate at 30 d was 27.8%. Multivariate analysis revealed that lesion length (HR = 1.46, P < 0.001), lesion number (HR = 1.37, P = 0.042), treatment before tumor rupture (HR = 4.36, P = 0.019), alanine transaminase levels (HR = 1.0, P = 0.011), bicarbonate levels (HR = 1.18, P < 0.001), age (HR = 0.96, P = 0.026), anti-tumor therapy during the follow-up period (HR = 0.21, P = 0.008), and albumin levels (HR = 0.89, P = 0.010) were independent prognostic factors of survival after HCC rupture. The Barcelona-Clinic Liver Cancer (BCLC) stage was also an important prognostic factor; the median survival times for BCLC stages A, B and C were 251, 175 and 40 d, respectively (P < 0.001). CONCLUSION: Anti-tumor therapy during the follow-up period, without a history of anti-tumor therapy prior to HCC rupture, small tumor length and number, and early BCLC stage are the most crucial predictors associated with satisfactory overall survival. Other factors play only a small role in overall survival. PMID:26139994

  3. Linguine sign in musculoskeletal imaging: calf silicone implant rupture.

    PubMed

    Duryea, Dennis; Petscavage-Thomas, Jonelle; Frauenhoffer, Elizabeth E; Walker, Eric A

    2015-08-01

    Imaging findings of breast silicone implant rupture are well described in the literature. On MRI, the linguine sign indicates intracapsular rupture, while the presence of silicone particles outside the fibrous capsule indicates extracapsular rupture. The linguine sign is described as the thin, wavy hypodense wall of the implant within the hyperintense silicone on T2-weighted images indicative of rupture of the implant within the naturally formed fibrous capsule. Hyperintense T2 signal outside of the fibrous capsule is indicative of an extracapsular rupture with silicone granuloma formation. We present a rare case of a patient with a silicone calf implant rupture and discuss the MRI findings associated with this condition. PMID:25577259

  4. New transverse damper correction scheme

    SciTech Connect

    Lopez, G.

    1993-10-01

    A transverse damping system for providing beam motion stability against Dipole Mode Multibunch Instabilities (DMMI) in the Superconducting Super Collider (SSC) is outlined. This damper makes use of two monitors and one kicker, as in existing designs. The novel feature is the use of a new correction scheme, which provides exact orbit compensation within two turns.

  5. Transverse Magnetic Field Propellant Isolator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2000-01-01

    An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

  6. Gastric rupture after bag-mask-ventilation

    PubMed Central

    Bednarz, Stephan; Filipovic, Miodrag; Schoch, Otto; Mauermann, Eckhard

    2015-01-01

    A 42 year old woman underwent bronchoscopy with procedural propofol sedation. During the procedure, the patient suffered respiratory arrest, and bag-mask ventilation was initiated. During forced mask ventilation, abdominal distention occurred. Even after correct placement of an endotracheal and a nasogastric tube, high inspiratory pressures persisted. The abdominal CT scan revealed a high amount of intraperitoneal free air. An emergent laparotomy confirmed a stomach rupture. Immediately after opening of the peritoneal cavity, peak ventilatory pressures decreased. In this case forceful bag-mask ventilation led to air insufflation into the stomach, increasing gastric pressure, and consecutive stomach rupture. PMID:26744639

  7. COMPARISON OF CLADDING CREEP RUPTURE MODELS

    SciTech Connect

    P. Macheret

    2000-06-12

    The objective of this calculation is to compare several creep rupture correlations for use in calculating creep strain accrued by the Zircaloy cladding of spent nuclear fuel when it has been emplaced in the repository. These correlations are used to calculate creep strain values that are then compared to a large set of experimentally measured creep strain data, taken from four different research articles, making it possible to determine the best fitting correlation. The scope of the calculation extends to six different creep rupture correlations.

  8. Thoracic Outlet Syndrome Following Breast Implant Rupture

    PubMed Central

    Caplash, Yugesh; Giri, Pratyush; Kearney, Daniel; Wagstaff, Marcus

    2015-01-01

    Summary: We present a patient with bilateral breast implant rupture who developed severe locoregional silicone granulomatous lymphadenopathy. Poly Implant Prothese silicone implants had been used for bilateral breast augmentation 5 years prior. Extracapsular implant rupture and bilateral axillary lymphadenopathy indicated explantation, capsulectomy, and selective lymph node excision. Histology demonstrated silicone lymphadenopathy with no evidence of malignancy. Over the subsequent 12 months, she developed progressive locoregional lymphadenopathy involving bilateral cervical, axillary, and internal mammary groups, resulting in bilateral thoracic outlet syndrome. We report the unusual presentation, progression, and the ultimate surgical management of this patient. PMID:25878942

  9. Tendon ruptures: mallet, flexor digitorum profundus.

    PubMed

    Yeh, Peter C; Shin, Steven S

    2012-08-01

    Mallet injuries are the most common closed tendon injury in the athlete. Flexor digitorum profundus ruptures are rare in baseball, but are common injuries in contact sports. The diagnosis for each condition is based on clinical examination, although radiographs should be evaluated for a possible bony component. Treatment for mallet injury depends on the athlete's goals of competition and understanding of the consequences of any treatment chosen. Gripping, throwing, and catching would be restricted or impossible with the injured finger immobilized. Treatment of FDP ruptures is almost always surgical and requires reattachment of the torn tendon to the distal phalanx. PMID:22883898

  10. Rupture energy of a pendular liquid bridge

    NASA Astrophysics Data System (ADS)

    Pitois, O.; Moucheront, P.; Chateau, X.

    2001-09-01

    We propose a simple expression for the rupture energy of a pendular liquid bridge between two spheres, taking into account capillary and viscous (lubrication) forces. In the case of capillary forces only, the results are in accordance with curve fitting expressions proposed by Simons et al. [2] and Willett et al. [5]. We performed accurate measurements of the force exerted by liquid bridges between two spheres. Experimental results are found to be close to theoretical values. A reasonable agreement is also found in the presence of viscous forces. Finally, for small bridge volumes, the rupture criterion given by Lian et al. [10] is modified, taking into account additional viscous effects.

  11. Spontaneous Achilles tendon rupture in alkaptonuria.

    PubMed

    Alajoulin, Omar A; Alsbou, Mohammed S; Ja'afreh, Somayya O; Kalbouneh, Heba M

    2015-12-01

    Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992

  12. Spontaneous Achilles tendon rupture in alkaptonuria

    PubMed Central

    Alajoulin, Omar A.; Alsbou, Mohammed S.; Jaafreh, Somayya O.; Kalbouneh, Heba M.

    2015-01-01

    Alkaptonuria (AKU) is a rare inborn metabolic disease characterized by accumulation of homogentisic acid (HGA). Excretion of HGA in urine causes darkening of urine and its deposition in connective tissues causes dark pigmentation (ochronosis), early degeneration of articular cartilage, weakening of the tendons, and subsequent rupture. In this case report, we present a rare case of a patient presented with unilateral spontaneous rupture of Achilles tendon due to AKU. The patient developed most of the orthopedic manifestations of the disease earlier than typical presentations. Alkaptonuria patients should avoid strenuous exercises and foot straining especially in patients developing early orthopedic manifestations. PMID:26620992

  13. Pectoralis major tendon rupture. Surgical procedures review.

    PubMed Central

    Merolla, Giovanni; Paladini, Paolo; Campi, Fabrizio; Porcellini, Giuseppe

    2012-01-01

    Summary Pectoralis major (PM) muscle is the powerful dynamic stabiliser of the shoulder that acts as a flexor, adductor and internal rotator. The rupture of the PM tendon is a relatively rare injury that was firstly described in a French boy by Patissier in 1822 and later, in 1861, by Letenneur who reported another similiar case. To date, over 200 cases have been published. In this article we describe the clinical anatomy and the mechanism of injuries of PM and we review the surgical procedures for acute and chronic ruptures. PMID:23738281

  14. Crack growth resistance and dynamic rupture arrest under slip dependent friction

    NASA Astrophysics Data System (ADS)

    Voisin, C.; Ionescu, I.; Campillo, M.

    2002-08-01

    The slip-strengthening behavior observed in fracture and friction experiments is considered as a possible candidate for crack growth resistance and dynamic rupture arrest. The peak shear stress τp and the strengthening slip Ds play a role in the crack growth resistance. Depending on this resistance, the rupture may be stopped by a strengthening barrier. In such a case, we show that the residual shear stress at the end of the dynamic process is not grid-size dependent, suggesting that the static shear stress will not exhibit any singularity at the crack tip. Hence, rupture arrest by a strengthening barrier is compatible with a criterion based on finite shear stress threshold. Considering a finite weak zone bounded by two strengthening barriers, we investigate the modalities of the rupture arrest. Despite the presence of the barriers, the size of the rupture event is not controlled a priori but rather depends on both the strength of the barrier and the seismic energy released in the weak zone. Depending on the parameters of the strengthening, two mechanisms are possible for the rupture arrest. The first one is associated with a negative stress drop inside the resisting zone. This mechanism is independent from the size of the weak zone. The second mechanism is associated with a positive stress drop inside the resisting zone, and is crack-size dependent. In both cases, we show the existence of a crack-arrest zone characterized by small amount of slip and shear stress concentration and associated with a self-healing slip pulse. This model, with weak zones and resisting zones is consistent with recent strong motion inversions and offers a possible mechanism for the fault length increase over geological times through progressive barrier damaging.

  15. Effect of stress state on slow rupture propagation in synthetic fault gouges

    NASA Astrophysics Data System (ADS)

    Hirauchi, Ken-ichi; Muto, Jun

    2015-12-01

    Slow slip events (SSEs) in subduction zones are known to proceed so sluggishly that the associated slow ruptures do not generate any detectable radiating seismic waves. Moreover, they propagate at speeds at least four orders of magnitude slower than regular earthquakes. However, the underlying physics of slow slip generation has yet to be understood. Here, we carry out laboratory studies of unstable slip along simulated fault zones of lizardite/chrysotile (liz/ctl) and antigorite (i.e., low- and high-temperature serpentine phases, respectively) and olivine, under varying conditions of normal stress, with the aim of better understanding the influence of stress state on the process of slow rupture along the plate interface. During a single unstable slip, we clearly observe a slow rupture phase that is often followed by an unstable, high-speed rupture. We find that lower fault-zone friction coefficients (? values from 0.7 down to 0.5) lead to increasing degree of the slow rupture mode, and also that the slow rupture velocities ( V r = 0.07 to 5.43 m/s) are largely consistent with those of short-term SSEs observed in nature. Our findings suggest that the generation of SSEs is facilitated by conditions of low normal stress and low fault-zone strength along the plate interface, which may be weakened by metamorphic reactions that result in the production of hydrous phases (e.g., serpentine) and/or the direct involvement of fluid itself, leading to a reduction in effective normal stress.

  16. Earthquake Stress Drop in Rupture Patches and Rupture Barriers on Gofar Transform Fault, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Moyer, P. A.; Boettcher, M. S.; McGuire, J. J.; Collins, J. A.

    2014-12-01

    The largest earthquakes on mid-ocean ridge transform faults (RTFs) exhibit the most systematic behaviors known in seismology. On the fast slipping Gofar transform fault on the East Pacific Rise (EPR), Mw ~6.0 earthquakes occur every ~5 years and repeatedly rupture the same asperities (fault patches), suggesting that the intervening fault segments (rupture barriers) stop the propagation of the largest earthquakes. In 2008, an ocean bottom seismometer (OBS) deployment captured the end of a seismic cycle on Gofar transform fault [McGuire et al., 2012]. We determine stress drop for earthquakes recorded during this experiment to investigate how the source properties of moderate sized earthquakes (3.0 < Mw < 5.5) differ between the rupture patch and rupture barrier fault segments. The OBS experiment on Gofar transform fault recorded an extensive foreshock sequence localized within a 10 km rupture barrier, the Mw 6.0 mainshock and its aftershocks that occurred in a ~10 km rupture patch, and an earthquake swarm that was located in a second rupture barrier adjacent to the ridge-transform intersection. Using waveforms recorded with a sample rate of 50 Hz on the OBS accelerometers, we calculate stress drop using the Madariaga [1976] circular crack model, with the corner frequency derived from an empirical Green's function (EGF) method, and seismic moment obtained by fitting an omega-squared source model to the low frequency amplitude of individual event spectra. Results for ~300 earthquakes in the foreshock, aftershock, and swarm zones have a range of stress drops from 0.2 to 50 MPa. Values for the best constrained 10% of earthquakes show a weighted average stress drop in the aftershock zone that is more than twice the weighted average stress drop in the foreshock zone (3.5 MPa and 1.1 MPa, respectively). These variations in earthquake stress drop reflect systematic differences in along strike fault zone properties between rupture patches and rupture barriers on Gofar transform fault.

  17. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris G.

    2014-05-01

    Today, frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength for confined conditions corresponding to the seismogenic layer. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism, the rock failure associated with consecutive creation of small slabs (known as ‘domino-blocks') from the intact rock in the rupture tip is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance, self-sustaining stress intensification, and self-unbalancing conditions. Due to this the failure process caused by the mechanism is very dynamic and violent. This makes it impossible to directly observe and study the mechanism and can explain why the mechanism has not been detected before. This paper provides physical motivation for the mechanism, based upon side effects accompanying the failure process. Physical and mathematical models of the mechanism presented in the paper explain unique and paradoxical features of the mechanism. The new shear rupture mechanism allows a novel point of view for understanding the nature of spontaneous failure processes in hard rocks including earthquakes.

  18. Creep and rupture properties of virgin 1-1/4Cr-1/2Mo plate and submerged arc weldments

    SciTech Connect

    Ellis, F.V.; Lin, Y.C.; Tordonato, S.

    1995-12-01

    The submerged arc welding process was used to join 19mm thick 1-1/4Cr-1/2Mo steel plate material. Following welding, the weldment was given a renormalizing and tempering heat treatment. Chemical analysis, metallurgical examination, tensile testing and creep rupture testing were performed. For the weld metal, the carbon content was 0.069% and the oxygen content was 0.081%. The measured tensile properties for the base material were within the scatter band for virgin plate material. Creep rupture testing was performed at stresses from 41.4 MPa to 137 MPa and temperatures from 600 C to 680 C. The measured rupture time for the renormalized and tempered SAW weldment was approximately equal to that for minimum strength unexposed base metal. The failure path was the weld metal remote from the fusion interface. The measured rupture strength for the base material was above average compared to that for unexposed base metal. The minimum creep rate and 0.2% offset tertiary time and strain data were determined. Power law, exponential and rational polynomial primary plus steady state creep equations were fit to the data. The minimum creep rate was correlated using a Dorn parameter and the primary creep coefficients were correlated with the minimum creep rate and rupture time. Tertiary creep was described using the exponential strain softening creep equation.

  19. Dynamic fault rupture model of the 2008 Iwate-Miyagi Nairiku earthquake, Japan; Role of rupture velocity changes on extreme ground motions

    NASA Astrophysics Data System (ADS)

    Pulido Hernandez, N. E.; Dalguer Gudiel, L. A.; Aoi, S.

    2009-12-01

    The Iwate-Miyagi Nairiku earthquake, a reverse earthquake occurred in the southern Iwate prefecture Japan (2008/6/14), produced the largest peak ground acceleration recorded to date (4g) (Aoi et al. 2008), at the West Ichinoseki (IWTH25), KiK-net strong motion station of NIED. This station which is equipped with surface and borehole accelerometers (GL-260), also recorded very high peak accelerations up to 1g at the borehole level, despite being located in a rock site. From comparison of spectrograms of the observed surface and borehole records at IWTH25, Pulido et. al (2008) identified two high frequency (HF) ground motion events located at 4.5s and 6.3s originating at the source, which likely derived in the extreme observed accelerations of 3.9g and 3.5g at IWTH25. In order to understand the generation mechanism of these HF events we performed a dynamic fault rupture model of the Iwate-Miyagi Nairiku earthquake by using the Support Operator Rupture Dynamics (SORD) code, (Ely et al., 2009). SORD solves the elastodynamic equation using a generalized finite difference method that can utilize meshes of arbitrary structure and is capable of handling geometries appropriate to thrust earthquakes. Our spontaneous dynamic rupture model of the Iwate-Miyagi Nairiku earthquake is governed by the simple slip weakening friction law. The dynamic parameters, stress drop, strength excess and critical slip weakening distance are estimated following the procedure described in Pulido and Dalguer (2009) [PD09]. These parameters develop earthquake rupture consistent with the final slip obtained by kinematic source inversion of near source strong ground motion recordings. The dislocation model of this earthquake is characterized by a patch of large slip located ~7 km south of the hypocenter (Suzuki et al. 2009). Our results for the calculation of stress drop follow a similar pattern. Using the rupture times obtained from the dynamic model of the Iwate-Miyagi Nairiku earthquake we estimated the rupture velocity as well as rupture velocity changes distribution across the fault plane based on the procedure proposed by PD09. Our results show that rupture velocity has strong variations concentrated in small patches within large slip areas (asperities). Using this dynamic model we performed the strong motion simulation at the IWTH25 borehole. We obtained that this model is able to reproduce the two HF events observed in the strong motion data. Our preliminary results suggest that the extreme acceleration pulses were induced by two strong rupture velocity acceleration events at the rupture front. References Aoi, S., T. Kunugi, and H. Fujiwara, 2008, Science, 322, 727-730. Ely, G. P., S. M. Day, and J.-B. Minster (2009), Geophys. J. Int., 177(3), 1140-1150. Pulido, N., S. Aoi, and W. Suzuki (2008), AGU Fall meeting, S33C-02. Pulido, N., and L.A. Dalguer, (2009). Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on a dynamic model of fault rupture: Application to the strong ground motion simulation, Bull. Seism. Soc. Am. 99(4), 2305-2322. Suzuki, W., S. Aoi, and H. Sekiguchi, (2009), Bull. Seism. Soc. Am. (Accepted).

  20. [Papillary Muscle Rupture after Repair of Ischemic Left Ventricular Free Wall Rupture; Report of a Case].

    PubMed

    Kurumisawa, Soki; Kaminishi, Yuichirou; Akutsu, Hirohiko; Takazawa, Ippei; Aizawa, Kei; Misawa, Yoshio

    2015-11-01

    A 67-year-old man experienced acute inferior myocardial infarction. Echocardiography and computed tomography showed massive pericardial effusion. He underwent emergency operation for ischemic ventricular free wall rupture. During the operation, an oozing type rupture was found on the inferior wall and the bleeding was completely controlled by applying fibrin glue sheets. On the 5th day after the operation, ventricular tachycardia appeared with hemodynamic deterioration. Echocardiography showed a ruptured posteromedial papillary muscle with massive mitral regurgitation. Intra-aortic balloon pumping was introduced and emergency repair operation was performed. The mitral valve was replaced with a bioprosthetic valve. The postoperative course was uneventful. PMID:26555919

  1. Large-Scale Weibull Analysis of H-451 Nuclear- Grade Graphite Specimen Rupture Data

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Walker, Andrew; Baker, Eric H.; Murthy, Pappu L.; Bratton, Robert L.

    2012-01-01

    A Weibull analysis was performed of the strength distribution and size effects for 2000 specimens of H-451 nuclear-grade graphite. The data, generated elsewhere, measured the tensile and four-point-flexure room-temperature rupture strength of specimens excised from a single extruded graphite log. Strength variation was compared with specimen location, size, and orientation relative to the parent body. In our study, data were progressively and extensively pooled into larger data sets to discriminate overall trends from local variations and to investigate the strength distribution. The CARES/Life and WeibPar codes were used to investigate issues regarding the size effect, Weibull parameter consistency, and nonlinear stress-strain response. Overall, the Weibull distribution described the behavior of the pooled data very well. However, the issue regarding the smaller-than-expected size effect remained. This exercise illustrated that a conservative approach using a two-parameter Weibull distribution is best for designing graphite components with low probability of failure for the in-core structures in the proposed Generation IV (Gen IV) high-temperature gas-cooled nuclear reactors. This exercise also demonstrated the continuing need to better understand the mechanisms driving stochastic strength response. Extensive appendixes are provided with this report to show all aspects of the rupture data and analytical results.

  2. The transverse mechanical behaviour of glass fibre reinforced plastics

    NASA Astrophysics Data System (ADS)

    Wells, Garry Michael

    The importance of transverse cracking in composites technology is highlighted by the use of classical lamination theory to predict the sequential damage process in cross-plied laminates. The literature on transverse fibre carposite behaviour is comprehensively reviewed, with particular emphasis on papers which present quantitative theoretical models. No work reviewed has measured the full range of mechanical properties on a single material necessary to allow a complete assessment of all the models of transverse failure. A resin system, based on epoxy/urethane blends, has been identified which allows production of high quality unidirectional composites with a systematic variation in flexibility. A preliminary experimental programme has identified those test specimens which can provide the necessary stress/strain and toughness properties of the range of flexibilised materials and thereby allow a validation of the theoretical models reviewed. In the preliminary experimental programme, transverse cracks are shown to extend with an increasing fracture toughness due to the formation of a 'tied zone' of fracture face bridging 'stringers' behind the crack tip. The influence of this effect on crack stability is discussed. By modelling the balance between fracture and strain energies, the equilibrium state of individual stringers is predicted. Direct observations of equilibrium stringer angles are seen to correspond with these predictions. A quite general model is developed which predicts, with reasonble accuracy, the observed increase of fracture toughness with crack extension and the geometry dependence of this increase. The literature models of stiffness, strength and failure strain are seen to display a dissappointing lack of agreement with the experimental results over the full range of material flexibilities. The influence of matrix Poisson constraint on these properties is discussed. Fracture toughness results indicate that very large critical defects control transverse strength. It is suggested that such defects develop by sub-critical debond or microcrack coalescence.

  3. Validation of the rupture properties of the 2001 Kunlun, China (Ms = 8.1), earthquake from seismological and geological observations

    USGS Publications Warehouse

    Wen, Y.-Y.; Ma, K.-F.; Song, T.R.-A.; Mooney, W.D.

    2009-01-01

    We determine the finite-fault slip distribution of the 2001 Kunlun earthquake (Ms = 8.1) by inverting teleseismic waveforms, as constrained by geological and remote sensing field observations. The spatial slip distribution along the 400-km-long fault was divided into five segments in accordance with geological observations. Forward modelling of regional surface waves was performed to estimate the variation of the speed of rupture propagation during faulting. For our modelling, the regional 1-D velocity structure was carefully constructed for each of six regional seismic stations using three events with magnitudes of 5.1-5.4 distributed along the ruptured portion of the Kunlun fault. Our result shows that the average rupture velocity is about 3.6 km s-1, consistent with teleseismic long period wave modelling. The initial rupture was almost purely strike-slip with a rupture velocity of 1.9 km s-1, increasing to 3.5 km s-1 in the second fault segment, and reaching a rupture velocity of about 6 km s-1 in the third segment and the fourth segment, where the maximum surface offset, with a broad fault zone, was observed. The rupture velocity decelerated to a value of 3.3 km s-1 in the fifth and final segment. Coseismic slip on the fault was concentrated between the surface and a depth of about 10 km. We infer that significant variations in rupture velocity and the observed fault segmentation are indicative of variations in strength along the interface of the Kunlun fault, as well as variations in fault geometry. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  4. D-Zero Cryostat Supplemental Rupture Disc

    SciTech Connect

    Mulholland, G.T.; /Fermilab

    1987-08-03

    The common relief and rupture disc vent line requires a double disc assembly with vented interspace for accurate disc burst pressures. The first disc must take pump and purge vacuum loading, but be set to operate at 110% of the MAWP, 18.3 psig (ASME code). The available solution is 18.3 psig with a burst tolerance of +/- psig. The interspace should be locally vented by a flow limiting vent valve to decouple the vent line backpressure from the vessel rupture disc. The second disc must take the worst case vent line backpressure, the steady state value found in D-Zero engineering note 3740.000-EN-63 with all three cryostats simultaneously venting at the fire condition into the 4-inch x 6-inch and 6-inch x 8-inch sections. This value is less than 2 psid. The maximum rupture value for the second disc must be less than the minimum rupture value for the first disc less 2 psid i.e. < 16.3.

  5. Surgical Management of Spontaneous Ruptured Hepatocellular Adenoma

    PubMed Central

    Ribeiro Junior, Marcelo Augusto Fontenelle; Chaib, Eleazar; Saad, William Abro; DAlbuquerque, Luiz Augusto Carneiro; Cecconello, Ivan

    2009-01-01

    AIMS Spontaneous ruptured hepatocellular adenoma (SRHA) is a rare life-threatening condition that may require surgical treatment to control hemorrhaging and also stabilize the patient. We report a series of emergency surgeries performed at our institution for this condition. METHODS We reviewed medical records and radiology files of 28 patients (from 1989 to 2006) with a proven diagnosis of hepatocellular adenoma (HA). Three (10.7%) of 28 patients had spontaneous ruptured hepatocellular adenoma, two of which were associated with intrahepatic hemorrhage while one had intraperitoneal bleeding. Two patients were female and one was male. Both female patients had a background history of oral contraceptive use. Sudden abdominal pain associated with hemodynamic instability occurred in all patients who suffered from spontaneous ruptured hepatocellular adenoma. The mean age was 41.6 years old. The preoperative assessment included liver function tests, ultrasonography and computed tomography. RESULTS The surgical approaches were as follows: right hemihepatectomy for controlling intraperitoneal bleeding, and right extended hepatectomy and non-anatomic resection of the liver for intrahepatic hemorrhage. There were no deaths, and the postoperative complications were bile leakage and wound infection (re-operation), as well as intraperitoneal abscess (re-operation) and pleural effusion. CONCLUSION Spontaneous ruptured hepatocellular adenoma may be treated by surgery for controlling hemorrhages and stabilizing the patient, and the decision to operate depends upon both the patients condition and the expertise of the surgical team. PMID:19690662

  6. Surface Rupture in Northwest Saudi Arabia

    USGS Multimedia Gallery

    Wendy McCausland of the USGS Volcano Disaster Assistance Program and Hani Zahran of the Saudi Geological Survey view the southern end of the surface fault rupture caused by a M5.4 earthquake in the Saudi Arabian desert on May 19, 2009. The ground displacements in the soft sediments of the foreground...

  7. Surgical resection of ruptured fibrolamellar hepatocellular carcinoma.

    PubMed

    Minutolo, Vincenzo; Licciardello, Alessio; Arena, Manuel; Minutolo, Orazio; Lanteri, Raffaele; Arena, Goffredo

    2013-01-01

    Fibrolamellar hepatocellular carcinoma (FLH) is a rare primary tumor of the liver, which typically arises from noncirrhotic livers and affects patients below the age of 35. We report on a 29-year-old male patient who presented with a ruptured FLH and was treated with surgical resection. Options for treatment and review of the management are described. PMID:23956918

  8. Surgical Resection of Ruptured Fibrolamellar Hepatocellular Carcinoma

    PubMed Central

    Minutolo, Vincenzo; Licciardello, Alessio; Arena, Manuel; Minutolo, Orazio; Lanteri, Raffaele; Arena, Goffredo

    2013-01-01

    Fibrolamellar hepatocellular carcinoma (FLH) is a rare primary tumor of the liver, which typically arises from noncirrhotic livers and affects patients below the age of 35. We report on a 29-year-old male patient who presented with a ruptured FLH and was treated with surgical resection. Options for treatment and review of the management are described. PMID:23956918

  9. Spontaneous splenic rupture resulted from infectious mononucleosis

    PubMed Central

    Won, Andy C.M.; Ethell, Anthony

    2011-01-01

    INTRODUCTION Infectious mononucleosis is common among young adults and teenagers. However, spontaneous rupture of spleen secondary to IM is rare and it is the most frequent cause of death in infectious mononucleosis. PRESENTATION OF CASE A previously healthy 16-year-old girl presented with a one-week history of sore throat, non-productive cough, fever, malaise and a positive Monospot test. Prior to transfer to the hospital, she had two syncopal episodes and a complaint of abdominal pain at home. Clinical examination revealed that she was febrile and mildly tachycardic with an evidence of localised peritonism on her left upper quadrant. Urgent abdominal ultrasound and computed tomography scan showed subcapsular haematoma with a significant amount of complex fluid within the abdominal cavity, especially the left flank. Emergency laparotomy was performed and a moderate amount of haemoperitoneum was evacuated. The spleen was found grossly enlarged with a haematoma identified on the ruptured capsule. Splenectomy was performed and peritoneal cavity was washed out meticulously prior to the closure of the abdominal wall. DISCUSSION Despite the fact that infectious mononucleosis is a self-limiting disease, it may cause serious and lethal complications. The best treatment of splenic rupture secondary to infectious mononucleosis has been controversial but it is mainly based on the haemodynamical status of the patient and the experience of the treating surgeon. CONCLUSION Spontaneous rupture of spleen secondary to IM can be lethal in those patients with high possibility of deterioration with conservative management, thus timely surgical intervention is required. PMID:22288057

  10. Bond-rupture immunosensors--a review.

    PubMed

    Hirst, Evan R; Yuan, Yong J; Xu, W L; Bronlund, J E

    2008-07-15

    It has long been the goal of researchers to develop fast and reliable point-of-care alternatives to existing lab-based tests. A viable point-of-care biosensor is fast, reliable, simple, cost-effective, and detects low concentrations of the target analyte. The target of biosensors is biological such as bacteria or virus and as such, the antibody-antigen bond derived from the real immune response is used. Biosensor applications include lab-based tests for the purposes of diagnostics, drug discovery, and research. Additional applications include environmental, food, and agricultural monitoring. The main merits of the bond-rupture method are quick, simple, and capable of discriminating between specific and non-specific interactions. The separation of specific and non-specific bonds is important for working in real-life complex serums such as blood. The bond-rupture technique can provide both qualitative results, the detection of a target, and quantitative results, the concentration of target. Bond-rupture achieves this by a label-free method requiring no pre-processing of the analyte. A piezoelectric transducer such as the quartz crystal microbalance (QCM) shakes the bound particles free from the surface. Other transducers such as Surface Acoustic Wave (SAW) are also considered. The rupture of the bonds is detected as electronic noise. This review article links diverse research areas to build a picture of a field still in development. PMID:18343101

  11. [Splenic rupture--a skateboard accident].

    PubMed

    Kruse, P

    1990-03-01

    A 13-year-old boy presented with persisting abdominal pain after a skateboard accident. Primary clinical and laboratory findings disclosed no signs of intra abdominal bleeding. Ultrasound scanning indicated rupture of the spleen which was confirmed by acute exploratory laparotomy. PMID:2321288

  12. Laparoscopic splenectomy for atraumatic splenic rupture.

    PubMed

    Grossi, Ugo; Crucitti, Antonio; D'Amato, Gerardo; Mazzari, Andrea; Tomaiuolo, Pasquina M C; Cavicchioni, Camillo; Bellantone, Rocco

    2011-01-01

    A traumatic splenic rupture (ASR) is a rare clinical entity. Several underlying benign and malignant conditions have been described as a leading cause. We report on a case of ASR in a 41-year-old man treated with laparoscopic splenectomy. Considering ASR as a life-threatening condition, a prompt diagnosis can be life saving. PMID:21675627

  13. Primary gastric rupture in 47 horses (19952011)

    PubMed Central

    Winfield, Laramie S.; Dechant, Julie E.

    2015-01-01

    The purpose of this retrospective case-control study was to identify factors associated with primary gastric rupture and to investigate if there were differences between etiologies of primary gastric rupture. Compared to the general colic population, Quarter horses were under-represented and Friesians and draft breeds were over-represented in 47 cases of primary gastric ruptures. Horses with primary gastric rupture typically presented with severe clinical and clinicopathological derangements. There were 24 idiopathic gastric ruptures, 20 gastric impaction associated ruptures, and 3 perforating gastric ulcers. Thoroughbred horses were over-represented in the idiopathic gastric rupture group compared to other breeds and etiologies. This study suggests the presence of important breed predispositions for development of gastric rupture. Further study is necessary to identify if these predispositions are associated with management factors or breed-specific disorders. PMID:26345205

  14. Creep and rupture properties of longitudinal seam welded hot reheat piping

    SciTech Connect

    Ellis, F.V.; Steakley, M.F.; Roberts, B.W.

    1995-12-01

    Post exposure creep rupture testing was performed on two longitudinal seam welded hot reheat piping samples. The first pipe was 2-1/4Cr-1Mo steel with a large inside surface repair weld that had been given a subcritical postweld heat treatment. The weld had a shallow lack of fusion defect at the root pass. Weldment rupture specimens oriented in the hoop direction of the pipe were tested at 41.4 MPa and 665 C, 650 C and 635 C. The failure path was through the fine-grained region of the heat-affected-zone. The measured rupture time of the longitudinal seam weldment was approximately 2/3 of that for minimum strength unexposed base metal. The complete creep curve was fit to a power law primary plus an exponential softening tertiary with explicit rupture time. The second pipe was 1-1/4Cr-1/2Mo steel and the weld had been given a renormalizing and tempering heat treatment. All weld metal creep rupture specimens were used. Creep and tensile tests were performed to develop constitutive equations for creep crack growth analysis. The emphasis was on primary and secondary creep with test stresses of 41.4 MPa and 68.6 MPa and temperatures from 550 C to 650 C. The maximum test duration was approximately one year. The measured rupture time for the weld metal was approximately equal to that for minimum strength base material. Exponential and rational polynomial primary plus steady state creep equations were fit to the data. The minimum creep rate was fit to a Dorn parameter with stress dependent activation energy. At 540 C, the power for the stress dependence of the minimum creep rate was 6.2. The primary creep coefficients corresponding to time constants were shown to have good correlations with rupture time and minimum creep rate. The product of the primary creep coefficients (initial creep rate) had good correlation with the minimum creep rate for each stress.

  15. Source rupture process of the 2011 Fukushima-ken Hamadori earthquake: how did the two subparallel faults rupture?

    NASA Astrophysics Data System (ADS)

    Tanaka, Miho; Asano, Kimiyuki; Iwata, Tomotaka; Kubo, Hisahiko

    2014-12-01

    The 2011 Fukushima-ken Hamadori earthquake (MW 6.6) occurred about a month after the 2011 Great Tohoku earthquake (MW 9.0), and it is thought to have been induced by the 2011 Tohoku earthquake. After the 2011 Hamadori earthquake, two subparallel faults (the Itozawa and Yunodake faults) were identified by field surveys. The hypocenter was located nearby the Itozawa fault, and it is probable that the Itozawa fault ruptured before the Yunodake fault rupture. Here, we estimated the source rupture process of the 2011 Hamadori earthquake using a model with two subparallel faults based on strong motion data. The rupture starting point and rupture delay time of the Yunodake fault were determined based on Akaike's Bayesian Information Criterion (ABIC). The results show that the Yunodake fault started to rupture from the northern deep point 4.5 s after the Itozawa fault started to rupture. The estimated slip distribution in the shallow part is consistent with the surface slip distribution identified by field surveys. Time-dependent Coulomb failure function changes (?CFF) were calculated using the stress change from the Itozawa fault rupture in order to evaluate the effect of the rupture on the Yunodake fault. The ?CFF is positive at the rupture starting point of the Yunodake fault 4.5 s after the Itozawa fault started to rupture; therefore, it is concluded that during the 2011 Hamadori earthquake, the Yunodake fault rupture was triggered by the Itozawa fault rupture.

  16. Mechanical properties of high-strength concrete

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  17. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  18. Spontaneous rupture of multifocal hepatocellular carcinoma: case report

    PubMed Central

    zen, zkan; Tosun, Alptekin; Akgl, i?dem

    2015-01-01

    Hemoperitoneum due to nontraumatic liver rupture is rare. The most common cause of nontraumatic rupture of the liver is hepatocellular carcinoma (HCC). The other causes of nontraumatic liver ruptures are peliosis hepatis, polyarteritis nodosa, systemic lupus erythematosus, preeclampsia, metastatic carcinoma, and other primary liver tumors. In this report, we present the computed tomography findings of spontaneous liver rupture in a 52-year-old male patient due to multifocal HCC, with the diagnosis proven by surgical specimen. PMID:26316825

  19. National Football League athletes' return to play after surgical reattachment of complete proximal hamstring ruptures.

    PubMed

    Mansour, Alfred A; Genuario, James W; Young, Jason P; Murphy, Todd P; Boublik, Martin; Schlegel, Theodore F

    2013-06-01

    Although hamstring strains are common among professional football players, proximal tendon avulsions are relatively rare. Surgical repair is recommended, but there is no evidence on professional football players return to play (RTP). We hypothesized that surgical reattachment of complete proximal hamstring ruptures in these athletes would enable successful RTP. Ten proximal hamstring avulsions were identified in 10 National Football League (NFL) players between 1990 and 2008. Participating team physicians retrospectively reviewed each player's training room and clinical records, operative notes, and imaging studies. The ruptures were identified and confirmed with magnetic resonance imaging. Of the 10 injuries, 9 had palpable defects. Each of the ruptures was managed with surgical fixation within 10 days of injury. All of the players reported full return of strength and attempted to resume play at the beginning of the following season, with 9 of the 10 actually returning to play. However, despite having no limitations related to the surgical repair, only 5 of the 10 athletes played in more than 1 game. Most NFL players who undergo acute surgical repair of complete proximal hamstring ruptures are able to RTP, but results are mixed regarding long-term participation. This finding may indicate that this injury is a marker for elite-level physical deterioration. PMID:23805425

  20. Surgical treatment of ruptures of the Achilles tendon: a review of long-term results.

    PubMed Central

    Krueger-Franke, M; Siebert, C H; Scherzer, S

    1995-01-01

    The rupture of the Achilles tendon is frequently sports-related. In the time from 1 January, 1978 until 31 December, 1988, we treated 358 men and 54 women with such an injury at the Staatliche Orthopaedische Klinik in Munich. The average age of these patients was 43 years. The site of the rupture was generally located between 3-5 cm proximal of the distal insertion of the tendon. In the follow-up examination of 122 patients with surgical treatment of tendo calcaneus ruptures 85% showed 'good' to 'very good' subjective results. Of the operated patients 97% would choose the same treatment under similar circumstances. The isokinetic studies demonstrated a loss of static and dynamic strength in plantar flexion of the ankle joint of 9.1%, and 16.7% respectively, when compared to the healthy contralateral side. The ultrasound examination revealed a thickening of the tendon and of the dorsal paratenon with changes in the internal structure of the injured Achilles tendon. In spite of these favourable results, the high complication rate of 15.1% shows the need for new and extensive studies regarding the various alternative treatment forms, such as functional, non-operative options, to finally resolve the debate about the optimal treatment of Achilles tendon ruptures. Images Figure 4 Figure 5 Figure 6 Figure 7 PMID:7551757

  1. Transverse instabilities in the LIL

    SciTech Connect

    Boussoukaya, M.; Bienvenu, G.; Bourdon, J.C.; Chehab, R.; LeDuff, J.

    1985-10-01

    In view of a Beam Break Up (BBU) study, we have calculated and identified series of transverse deflecting modes in the S band sections of the LEP Injector Linacs (LIL). In these TW quasi-constant gradient structures with various iris diameters from 18 to 26 mm, only ..pi..-modes of the C band of the HEM/sub 11/, having negative group velocities and phase velocities around c will lead to cumulative BBU. These deflecting ..pi..-modes occur at frequencies in the range from 4558 to 4290 MHz for diameters from 18 to 26 mm. Frequency variation with iris diameter is -15 MHz for each added mm for calculated and measured 0-modes and about twice that value for ..pi..-modes. Levels for starting transverse instabilities have been determined for various accelerated Beam Currents with different pulse widthes.

  2. Rupture of wetting films caused by nanobubbles.

    PubMed

    Stckelhuber, Klaus Werner; Radoev, Boryan; Wenger, Andreas; Schulzet, Hans Joachim

    2004-01-01

    It is now widely accepted that nanometer sized bubbles, attached at a hydrophobic silica surface, can cause rupture of aqueous wetting films due to the so-called nucleation mechanism. But the knowledge of the existence of such nanobubbles does not give an answer to how the subprocesses of this rupture mechanism operate. The aim of this paper is to describe the steps of the rupture process in detail: (1) During drainage of the wetting film, the apex of the largest nanobubble comes to a distance from the wetting film surface, where surface forces are acting. (2) An aqueous "foam film" in nanoscale size is formed between the bubble and the wetting film surface; in this foam film different Derjaguin-Landau-Verwey-Overbeek (DLVO) forces are acting than in the surrounding wetting film. In the investigated system, hydrophobized silica/water/air, all DLVO forces in the wetting film are repulsive, whereas in the foam film the van der Waals force becomes attractive. (3) The surface forces over and around the apex of the nanobubble lead to a deformation of the film surfaces, which causes an additional capillary pressure in the foam film. An analysis of the pressure balance in the system shows that this additional capillary pressure can destabilize the foam film and leads to rupture of the foam film. (4) If the newly formed hole in the wetting film has a sufficient diameter, the whole wetting film is destabilized and the solid becomes dewetted. Experimental data of rupture thickness and lifetime of wetting films of pure electrolyte and surfactant solutions show that the stabilization of the foam film by surfactants has a crucial effect on the stability of the wetting film. PMID:15745015

  3. Evaluation of Transverse Tensile Stress Characteristics of GdBCO Coated Conductors

    NASA Astrophysics Data System (ADS)

    Sato, H.; Nakamura, N.; Fujita, S.; Daibo, M.; Iijima, Y.

    Recently, GdBCO coated conductor (CC) coils for high field magnets are investigated for practical use. GdBCO CC coils are subjected to longitudinal and transverse tensile stresses in their operation, so there is some research for mechanical properties of the GdBCO CCs in the recent years. Fujikura has also researched mechanical properties, for example, tensile or delamination strength, of the GdBCO CCs. In this report, we investigated pin-pull delamination test in Liquid nitrogen (LN2) to research mechanical delamination and critical current (Ic) degradation strength. We found out mechanical delamination strength is corresponding to Ic degradation strength. In addition, we experiment repeated transverse tensile stress on GdBCO CCs in LN2, most of the samples have more than 50 times at 50 MPa, which corresponds to single delamination strength, and there is no Ic degradation before mechanical delamination.

  4. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  5. Creep rupture of the joint of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Lin, Kun-Liang; Yeh, Jing-Hong; Wu, Si-Han; Lee, Ruey-Yi

    2014-01-01

    Creep properties of sandwich joint specimens made of a newly developed BaO-B2O3-Al2O3-SiO2 glass-ceramic sealant (GC-9) and a ferritic-stainless-steel interconnect (Crofer 22 H) for planar solid oxide fuel cells (pSOFCs) are investigated at 800 °C under constant shear and tensile loadings. The creep rupture time of Crofer 22 H/GC-9/Crofer 22 H joint specimens is increased with a decrease in applied load for both shear and tensile loading modes. The given metal/sealant/metal joint has a greater degradation of joint strength at 800 °C under prolonged, constant tensile loading as compared to shear loading. The tensile creep strength at a rupture time of 1000 h is about 9% of the average tensile joint strength, while the shear creep strength at 1000 h is about 23% of the average shear joint strength. Failure patterns of both shear and tensile joint specimens are similar regardless of the creep rupture time. In general, creep cracks initiate at the interface between the (Cr,Mn)3O4 spinel layer and the BaCrO4 chromate layer, penetrate through the BaCrO4 layer, and propagate along the interface between the chromate layer and glass-ceramic substrate until final fracture. Final, fast fracture occasionally takes place within the glass-ceramic layer.

  6. Transverse momentum distributions of hadrons

    SciTech Connect

    Jacak, B.

    1990-01-01

    The study of hadron production in heavy ion collisions is essential to the search for effects beyond independent nucleon-nucleon collisions, for example the predicted phase transition to quark matter. Hadron distributions are known over a large range of transverse momenta for p-p collisions, so a careful study of the differences can be made. The transverse momentum distributions of hadrons may provide global information about p-nucleus and nucleus-nucleus collisions, such as the degree of thermalization achieved, and perhaps provide evidence for collective expansion of the highly excited central region. Comparison of the p{sub t} and transverse mass, m{sub t}, distributions of different hadronic species are crucial to extract this kind of information. Hadronic p{sub t} spectra show effects of the collision dynamics, such as hard scattering processes, and possibly rescattering of partons as well as of the formed hadrons. Such modifications have been observed in p-nucleus collisions, and can be expected to be important in nucleus-nucleus reactions. The spectral shape changes arising in this manner cause a background in efforts to extract global information from hadronic p{sub t} spectra. Lastly, there is an excess of pions observed at low p{sub t} in p-A and A-A collisions. the origin of these soft pions is not yet well understood. The phenomenon represents a major difference between p-p and nuclear collisions. 31 refs., 8 figs.

  7. Spin resonance strength calculation through single particle tracking for RHIC

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  8. Radionuclide diagnosis of splenic rupture in infectious mononucleosis

    SciTech Connect

    Vezina, W.C.; Nicholson, R.L.; Cohen, P.; Chamberlain, M.J.

    1984-06-01

    Spontaneous splenic rupture is a rare but serious complication of infectious mononucleosis. Although radionuclide spleen imaging is a well accepted method for diagnosis of traumatic rupture, interpretation can be difficult in the setting of mononucleosis, as tears may be ill-defined and diagnosis hampered by inhomogeneous splenic uptake. Four proven cases of spontaneous rupture are presented, three of which illustrate these diagnostic problems.

  9. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    PubMed Central

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD. PMID:25552833

  10. Ruptured rectal duplication with urogenital abnormality: Unusual presentation.

    PubMed

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD. PMID:25552833

  11. Micromechanics-based strength and lifetime prediction of polymer composites

    NASA Astrophysics Data System (ADS)

    Bandorawalla, Tozer Jamshed

    With the increasing use of composite materials for diverse applications ranging from civil infrastructure to offshore oil exploration, the durability of these materials is an important issue. Practical and accurate models for lifetime will enable engineers to push the boundaries of design and make the most efficient use of composite materials, while at the same time maintaining the utmost standards of safety. The work described in this dissertation is an effort to predict the strength and rupture lifetime of a unidirectional carbon fiber/polymer matrix composite using micromechanical techniques. Sources of material variability are incorporated into these models to predict probabilistic distributions for strength and lifetime. This approach is best suited to calculate material reliability for a desired lifetime under a given set of external conditions. A systematic procedure, with experimental verification at each important step, is followed to develop the predictive models in this dissertation. The work begins with an experimental and theoretical understanding of micromechanical stress redistribution due to fiber fractures in unidirectional composite materials. In-situ measurements of fiber stress redistribution are made in macromodel composites where the fibers are large enough that strain gauges can be mounted directly onto the fibers. The measurements are used to justify and develop a new form of load sharing where the load of the broken fiber is redistributed only onto the nearest adjacent neighbors. The experimentally verified quasi-static load sharing is incorporated into a Monte Carlo simulation for tensile strength modeling. Very good agreement is shown between the predicted and experimental strength distribution of a unidirectional composite. For the stress-rupture models a time and temperature dependent load-sharing analysis is developed to compute stresses due to an arbitrary sequence of fiber fractures. The load sharing is incorporated into a simulation for stress rupture lifetime. The model can be used to help understand and predict the role of temperature in accelerated measurement of stress-rupture lifetimes. It is suggested that damage in the gripped section of purely unidirectional specimens often leads to inaccurate measurements of rupture lifetime. Hence, rupture lifetimes are measured for [90/03]s carbon fiber/polymer matrix specimens where surface 90° plies protect the 0° plies from damage. Encouraging comparisons are made between the experimental and predicted lifetimes of the [90/03]s laminate. Finally, it is shown that the strength-life equal rank assumption is erroneous because of fundamental differences between quasi-static and stress-rupture failure behaviors in unidirectional polymer composites.

  12. Megathrust Properties and Large Earthquake Rupture Processes

    NASA Astrophysics Data System (ADS)

    Lay, T.; Ye, L.; Kanamori, H.

    2014-12-01

    Constraining physical controls on seismic rupture of plate boundary megathrust faults is challenging due to observational limitations, but seismic, geodetic, tsunami, electromagnetic, geologic and hydrologic studies are steadily accumulating data that hold potential of advancing our understanding of subduction fault zones. Very shallow (< 15 km deep) megathrust earthquakes are rare, but intermittently occur as large tsunami earthquakes such as the 2010 Mentawai Mw 7.8 event. This rupture occurred up-dip of prior large interplate ruptures in the Sumatra subduction zone in 2007, and rupture extended all the way to the trench, but with patchy large-slip regions that can only be confidently resolved using tsunami observations. The seismic wave radiation from tsunami earthquakes is now established to be distinct from that of ruptures deeper on the megathrust, but the controlling factors are not well-resolved. Smaller events at shallow depths tend to have diverse rupture processes, but some are also anomalously depleted in short-period radiation, suggesting that the shallow environment has variable scale-lengths of frictional heterogeneity. At the other end of the megathrust, large events deeper than about 35 km tend to have modest enhancement of short-period seismic wave radiation, with somewhat lower slope to their short-period source spectra than typical of shallower events. The controlling process are also not well-resolved for this behavior. These depth-variations of megathrust earthquake source spectra are one class of observations that may relate to pressure- and temperature-dependent evolution of the megathrust from the trench to decoupling depths near 45-50 km. Other attributes of seismic sources, such as static stress drop and moment-scaled radiated energy have large variability, but do not show systematic variations with depth on the megathrust, so some attributes of earthquake processes are not strongly influenced by evolving conditions of the plate boundary. We explore these issues based on a recent seismological study of all large interplate earthquakes from 1990-2014 combined with detailed investigations of several recent large and great earthquakes for which we have unprecedented geophysical data sets.

  13. Isolated Total Rupture of Extraocular Muscles

    PubMed Central

    Chen, Jingchang; Kang, Ying; Deng, Daming; Shen, Tao; Yan, Jianhua

    2015-01-01

    Abstract Total rupture of extraocular muscles is an infrequent clinical finding. Here we conducted this retrospective study to evaluate their causes of injury, clinical features, imaging, surgical management, and final outcomes in cases of isolated extraocular muscle rupture at a tertiary center in China. Thirty-six patients were identified (24 men and 12 women). Mean age was 34 years (range 260). The right eye was involved in 21 patients and the left 1 in 15. A sharp object or metal hook was the cause of this lesion in 16 patients, sinus surgery in 14 patients, traffic accident in 3 patients, orbital surgery in 2 patients, and conjunctive tumor surgery in 1 patient. The most commonly involved muscles were medial (18 patients) and inferior rectus muscles (13 patients). The function of the ruptured muscles revealed a scale of ?3 to ?4 defect of ocular motility and the amount of deviation in primary position varied from 10 to 140 PD (prism diopter). Computerized tomography (CT) confirmed the presence of ruptured muscles. An end-to-end muscle anastomosis was performed and 3 to 5?mm of muscle was resected in 23 patients. When the posterior border of the injured muscle could not be identified (13 patients), a partial tendon transposition was performed, together with recession of the antagonist in most patients, whereas a recession of the antagonist muscle plus a resection of the involved muscle with or without nasal periosteal fixation was performed in the remaining patients. After an average of 16.42 months of follow-up an excellent result was achieved in 23 patients and results of 13 patients were considered as a failure. In most patients, the posterior border of the ruptured muscle can be identified and an early surgery can be performed to restore function. Alternatively, a partial tendon transposition should be performed. When muscular rupture is suspected, an early orbital CT is required to confirm this possibility, which can then verify the necessity for an early surgical intervention. PMID:26426604

  14. Creep-rupture behavior of seven iron-base alloys after long term aging at 760 deg in low pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.; Stephens, J. R.

    1980-01-01

    Seven candidate iron-base alloys for heater tube application in the Stirling automotive engine were aged for 3500 hours at 760 C in argon and hydrogen. Aging degraded the tensile and creep-rupture properties. The presence of hydrogen during aging caused additional degradiation of the rupture strength in fine grain alloys. Based on current design criteria for the Mod 1 Stirling engine, N-155 and 19-9DL are considered the only alloys in this study with strengths adequate for heater tube service at 760 C.

  15. Lifetimes statistics for single Kevlar 49 aramid filaments in creep-rupture at elevated temperatures

    SciTech Connect

    Wu, H.F.

    1987-01-01

    Kevlar 49 fibrous composites are routinely fabricated to have strengths above 1.5 GPa(200 ksi), but in many applications one would like to sustain such stresses for long time periods, sometimes at elevated temperatures. Thus the temperature dependence of the creep-rupture process in the fibers is of interest. Experimental data are presented for the lifetime of single Kevlar 49 filaments under constant stress at elevated temperatures. The goal of this research was to fully characterize the statistical strength and lifetime behavior of single filaments in order to separate fiber effects from fiber/matrix interactions in the creep-rupture lifetime of Kevlar 49/epoxy composites as described for example in Phoenix and Wu (1983). First we conducted experiments to determine distributions for the strength of filaments from the two distinct spools as a function of temperature. As expected, the data could generally be fitted by a two-parameter Weibull distribution. Lifetime experiments at 80 and 130/sup 0/C were conducted at several stress levels chosen as suitable fractions of the Weibull scale parameter for short-term strength for that temperature. The lifetime data were well modelled by a two-parameter Weibull distribution with large variability.

  16. QCD Evolution of Helicity and Transversity TMDs

    SciTech Connect

    Prokudin, Alexei

    2014-01-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  17. Proximal coracobrachialis tendon rupture, subscapularis tendon rupture, and medial dislocation of the long head of the biceps tendon in an adult after traumatic anterior shoulder dislocation

    PubMed Central

    Saltzman, Bryan M.; Harris, Joshua D.; Forsythe, Brian

    2015-01-01

    Rupture of the coracobrachialis is a rare entity, in isolation or in combination with other muscular or tendinous structures. When described, it is often a result of direct trauma to the anatomic area resulting in rupture of the muscle belly. The authors present a case of a 57-year-old female who suffered a proximal coracobrachialis tendon rupture from its origin at the coracoid process, with concomitant subscapularis tear and medial dislocation of the long head of biceps tendon after first time traumatic anterior shoulder dislocation. Two weeks after injury, magnetic resonance imaging suggested the diagnosis, which was confirmed during combined arthroscopic and open technique. Soft-tissue tenodesis of coracobrachialis to the intact short head of the biceps, tenodesis of the long head of biceps to the intertubercular groove, and double-row anatomic repair of the subscapularis were performed. The patient did well postoperatively, and ultimately at 6 months follow-up, she was without pain, and obtained 160° of active forward elevation, 45° of external rotation, internal rotation to T8, 5/5 subscapularis and biceps strength. Scoring scales had improved from the following preoperative to final follow-up: American Shoulder and Elbow Surgeons, 53.33-98.33; constant, 10-100; visual analogue scale-pain, 4-0. DASH score was 5. PMID:25937715

  18. Intermediate Temperature Strength Degradation in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Cawley, James D.; Levine, Stanley (Technical Monitor)

    2001-01-01

    Woven silicon carbide fiber-reinforced, silicon carbide matrix composites are leading candidate materials for an advanced jet engine combustor liner application. Although the use temperature in the hot region for this application is expected to exceed 1200 C, a potential life-limiting concern for this composite system exists at intermediate temperatures (800 +/- 200 C), where significant time-dependent strength degradation has been observed under stress-rupture loading. A number of factors control the degree of stress-rupture strength degradation, the major factor being the nature of the interphase separating the fiber and the matrix. BN interphases are superior to carbon interphases due to the slower oxidation kinetics of BN. A model for the intermediate temperature stress-rupture of SiC/BN/SiC composites is presented based on the observed mechanistic process that leads to strength degradation for the simple case of through-thickness matrix cracks. The approach taken has much in common with that used by Curtin and coworkers, for two different composite systems. The predictions of the model are in good agreement with the rupture data for stress-rupture of both precracked and as-produced composites. Also, three approaches that dramatically improve the intermediate temperature stress-rupture properties are described: Si-doped BN, fiber spreading, and 'outside debonding'.

  19. Reconstruction of a ruptured patellar tendon using ipsilateral semitendinosus and gracilis tendons with preserved distal insertions: two case reports

    PubMed Central

    2013-01-01

    Background Acute patellar tendon ruptures with poor tissue quality. Ruptures that have been neglected are difficult to repair. Several surgical techniques for the repair of the patellar tendon have been reported, however, these techniques remain difficult because of contractures, adhesions, and atrophy of the quadriceps muscle after surgery. Case presentation We report the cases of 2 Japanese patients (Case 1: a 16-year-old male and Case 2: a 43-year-old male) with patellar tendon ruptures who were treated by reconstruction using semitendinosus-gracilis (STG) tendons with preserved distal insertions. Retaining the original insertion of the STG appears to preserve its viability and provide the revascularization necessary to accelerate healing. Both tendons were placed in front of the patella, in a figure-of-eight fashion, providing stability to the patella. Conclusion Both patients recovered near normal strength and stability of the patellar tendon as well as restoration of function after the operation. PMID:24010848

  20. A review on delayed presentation of diaphragmatic rupture

    PubMed Central

    Rashid, Farhan; Chakrabarty, Mallicka M; Singh, Rajeev; Iftikhar, Syed Y

    2009-01-01

    Diaphragmatic rupture is a life-threatening condition. Diaphragmatic injuries are quite uncommon and often result from either blunt or penetrating trauma. Diaphragmatic ruptures are usually associated with abdominal trauma however, it can occur in isolation. Acute traumatic rupture of the diaphragm may go unnoticed and there is often a delay between the injury and the diagnosis. A comprehensive literature search was performed using the terms "delayed presentation of post traumatic diaphragmatic rupture" and "delayed diaphragmatic rupture". The diagnostic and management challenges encountered are discussed, together with strategies for dealing with them. We have focussed on mechanism of injury, duration, presentation and site of injury, visceral herniation, investigations and different approaches for repair. We intend to stress on the importance of delay in presentation of diaphragmatic rupture and to provide a review on the available investigations and treatment methods. The enclosed case report also emphasizes on the delayed presentation, diagnostic challenges and the advantages of laparoscopic repair of delayed diaphragmatic rupture. PMID:19698091

  1. An unusual presentation of recurrent uterine rupture during pregnancy

    PubMed Central

    Tan, Shu Qi; Thia, Edwin Wee Hong; Tee, Chee Seng John; Yeo, George Seow Heong

    2015-01-01

    We describe a case of recurrent uterine rupture at the site of a previous rupture. Our patient had a history of right interstitial pregnancy with spontaneous uterine fundal rupture at 18 weeks of pregnancy. During her subsequent pregnancy, she was monitored closely by a senior consultant obstetrician. The patient presented at 34 weeks with right hypochondriac pain. She was clinically stable and fetal monitoring showed no signs of fetal distress. Ultrasonography revealed protrusion of the intact amniotic membranes in the abdominal cavity at the uterine fundus. Uterine rupture is a rare but hazardous obstetric complication. High levels of caution should be exercised in patients with a history of prior uterine rupture, as they may present with atypical symptoms. Ultrasonography could provide valuable information in such cases where there is an elevated risk of uterine rupture at the previous rupture site. PMID:26106245

  2. Spontaneous rupture of renal angiomyolipoma during pregnancy.

    PubMed

    dos Santos, Mariana Mouraz Lopes; Proena, Sara Marques Soares; Reis, Maria Ins Nunes Pereira de Almeida; Viana, Rui Miguel Almeida Lopes; Martins, Lusa Maria Bernardo; Colao, Joo Manuel dos Reis; Nunes, Filomena Maria Pinheiro

    2014-08-01

    Renal angiomyolipoma is a benign tumor, composed of adipocytes, smooth muscle cells and blood vessels. The association with pregnancy is rare and related with an increased risk of complications, including rupture with massive retroperitoneal hemorrhage. The follow-up is controversial because of the lack of known cases, but the priorities are: timely diagnosis in urgent cases and a conservative treatment when possible. The mode of delivery is not consensual and should be individualized to each case. We report a case of a pregnant woman with 18 weeks of gestation admitted in the emergency room with an acute right low back pain with no other symptoms. The diagnosis of rupture of renal angiomyolipoma was established by ultrasound and, due to hemodynamically stability, conservative treatment with imaging and clinical monitoring was chosen. At 35 weeks of gestation, it was performed elective cesarean section without complications for both mother and fetus. PMID:25184352

  3. Spontaneous intramural rupture of the oesophagus.

    PubMed Central

    Steadman, C; Kerlin, P; Crimmins, F; Bell, J; Robinson, D; Dorrington, L; McIntyre, A

    1990-01-01

    The clinical, endoscopic, and radiological features of seven patients with an uncommon oesophageal injury characterised by long lacerations of the oesophageal mucosa with haematoma formation but without perforation are reported. The injuries were not related to forceful vomiting or any other definable cause but were similar to those previously described as intramural oesophageal rupture. Upper gastrointestinal endoscopy undertaken to identify the cause of haematemesis in six patients proved safe and useful. When dysphagia and odynophagia occurred early in the clinical course to alert the clinician to possible oesophageal injury, radiological contrast studies were used to exclude perforation. One patient in this study had oesophageal cavernocapillary haemangiomatosis which may have caused intramural oesophageal bleeding and submucosal dissection but in the remainder the aetiology of intramural oesophageal rupture remains uncertain. Conservative management was successful in all patients. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2387502

  4. Premature rupture of the membranes: neonatal consequences.

    PubMed

    Merenstein, G B; Weisman, L E

    1996-10-01

    Premature rupture of the membranes (PROM), membrane rupture before the onset of labor, occurs in 2% to 18% of pregnancies. The time from PROM to delivery (latency) is usually less than 48 hours in term pregnancy. Therefore, the risks of PROM at term are related to fetal distress, prolapsed cord, abruptio placenta, and rarely, infection. Preterm PROM (pPROM), PROM before 37 weeks' gestation, accounts for 20% to 40% of PROM, and the incidence is doubled in multiple gestations. The latency period in pPROM is inversely related to the gestational age thereby increasing the risks of oligohydramnios and infection in very premature infants and their mothers. Because pPROM is associated with 30% to 40% of premature births, pPROM is also responsible for the neonatal problems resulting from prematurity. This review examines the impact of PROM on the neonate including fetal distress, prematurity, infection, pulmonary hypoplasia, and restriction deformations. PMID:8912991

  5. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  6. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  7. An unusual diagnosis of splenic rupture.

    PubMed

    Roche, Matthew; Maloku, Fatmir; Abdel-Aziz, Tarek Ezzat

    2014-01-01

    A 22-year-old woman presented with a 3-day history of worsening epigastric pain, non-productive cough and vomiting. On examination she was pale and had abdominal tenderness predominant in the right upper quadrant. Abdominal ultrasound excluded the presence of gall stones, but was unable to rule out free fluid in the abdomen. CT demonstrated extensive high-density ascites; however, no source of bleeding could be demonstrated. Clinically the patient's condition deteriorated, and an exploratory laparotomy was performed. In theatre the splenic capsule was found to have detached from the splenic body and emergency splenectomy was performed. Virology serology later demonstrated acute cytomegalovirus (CMV) infection, although tissue microscopy and CMV staining were negative. No other cause of rupture was found. The interesting aspects of this case include the poor correlation between initial presenting symptoms and subsequent diagnosis, the difficulty encountered in making a firm diagnosis and the atypical cause of rupture. PMID:25293683

  8. Physically Based Failure Criteria for Transverse Matrix Cracking

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are developed to determine the onset and direction of propagation for unstable crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in-situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.

  9. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  10. Transverse SSA in inclusive DIS

    NASA Astrophysics Data System (ADS)

    Pitonyak, Daniel

    2013-10-01

    We analyze the transverse single spin asymmetry (SSA) in inclusive deep inelastic scattering (DIS), which requires a two-photon exchange to generate a non-zero effect. We present numerical results for the SSA that allow us to comment on the so-called "sign mismatch" issue invloving the Efremov-Teryaev-Qiu-Sterman (ETQS) function TF(x,x). In particular, we discuss how our results indicate a collinear twist-3 Sivers-type effect may not be the main cause of the SSAs seen in proton-proton (pp) collisions.

  11. Optical Isolators With Transverse Magnets

    NASA Technical Reports Server (NTRS)

    Fan, Yuan X.; Byer, Robert L.

    1991-01-01

    New design for isolator includes zigzag, forward-and-backward-pass beam path and use of transverse rather than longitudinal magnetic field. Design choices produce isolator with as large an aperture as desired using low-Verdet-constant glass rather than more expensive crystals. Uses commercially available permanent magnets in Faraday rotator. More compact and less expensive. Designed to transmit rectangular beam. Square cross section of beam extended to rectangular shape by increasing one dimension of glass without having to increase magnetic field. Potentially useful in laser systems involving slab lasers and amplifiers. Has applications to study of very-high-power lasers for fusion research.

  12. TRANSVERSE ECHO MEASUREMENTS IN RHIC.

    SciTech Connect

    FISCHER, W.

    2005-09-18

    Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular they examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.

  13. Slip-pulse rupture behavior on a 2 m granite fault

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-09-01

    We describe observations of dynamic rupture events that spontaneously arise on meter-scale laboratory earthquake experiments. While low-frequency slip of the granite sample occurs in a relatively uniform and crack-like manner, instruments capable of detecting high-frequency motions show that some parts of the fault slip abruptly (velocity > 100 mm s-1, acceleration > 20 km s-2) while the majority of the fault slips more slowly. Abruptly slipping regions propagate along the fault at nearly the shear wave speed. We propose that the dramatic reduction in frictional strength implied by this pulse-like rupture behavior has a common mechanism to the weakening reported in high-velocity friction experiments performed on rotary machines. The slip pulses can also be identified as migrating sources of high-frequency seismic waves. As observations from large earthquakes show similar propagating high-frequency sources, the pulses described here may have relevance to the mechanics of larger earthquakes.

  14. Unsuspected paperboard-endophthalmitis in ruptured eye.

    PubMed

    Wolter, J R; Pavilack, M A

    1990-05-01

    The eye of a 3-year-old boy was directly exposed to the explosion of an M-80 firecracker which he had been holding in his hand. The cornea and lens were ruptured. Although not evident on an initial CT scan, pathologic examination revealed a paperboard foreign body lodged in the vitreous. This paperboard, rather than the burnt powder, was likely the central focus of the subacute endophthalmitis that developed. PMID:2381660

  15. Megakaryocyte rupture for acute platelet needs

    PubMed Central

    Stritt, Simon

    2015-01-01

    Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1? (IL-1?) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need. PMID:25963815

  16. Megakaryocyte rupture for acute platelet needs.

    PubMed

    Nieswandt, Bernhard; Stritt, Simon

    2015-05-11

    Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1? (IL-1?) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need. PMID:25963815

  17. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  18. Endovascular Treatment of Ruptured Pericallosal Artery Aneurysms

    PubMed Central

    Ko, Jun Kyeung; Kim, Hwan Soo; Choi, Hyuk Jin; Lee, Tae Hong; Yun, Eun Young

    2015-01-01

    Objective Aneurysms arising from the pericallosal artery (PA) are uncommon and challenging to treat. The aim of this study was to report our experiences of the endovascular treatment of ruptured PA aneurysms. Methods From September 2003 to December 2013, 30 ruptured PA aneurysms in 30 patients were treated at our institution via an endovascular approach. Procedural data, clinical and angiographic results were retrospectively reviewed. Results Regarding immediate angiographic control, complete occlusion was achieved in 21 (70.0%) patients and near-complete occlusion in 9 (30.0%). Eight procedure-related complications occurred, including intraprocedural rupture and early rebleeding in three each, and thromboembolic event in two. At last follow-up, 18 patients were independent with a modified Rankin Scale (mRS) score of 0-2, and the other 12 were either dependent or had expired (mRS score, 3-6). Adjacent hematoma was found to be associated with an increased risk of poor clinical outcome. Seventeen of 23 surviving patients underwent follow-up conventional angiography (mean, 16.5 months). Results showed stable occlusion in 14 (82.4%), minor recanalization in two (11.8%), and major recanalization, which required recoiling, in one (5.9%). Conclusion Our experiences demonstrate that endovascular treatment for a ruptured PA aneurysms is both feasible and effective. However, periprocedural rebleedings were found to occur far more often (20.0%) than is generally suspected and to be associated with preoperative contrast retention. Analysis showed existing adjacent hematoma is predictive of a poor clinical outcome. PMID:26539261

  19. Ruptured carotid aneurysm revealing a Behcet's disease.

    PubMed

    Lyazidi, Youssef; Abissegue, Ghislain Y; Chtata, Hassan T; Taberkant, Mustafa

    2015-08-01

    We report the case of a 20-year-old male who was operated for a large ruptured aneurysm of the right common carotid artery, revealing a Behcet's disease. The aneurysm was excised and the right common carotid artery was repaired with a polytetrafluoroethylene prosthesis. None of the criteria of the International Study Group for Behcet's disease was present at the time of the diagnosis. PMID:26038305

  20. Heating and Weakening of Major Faults During Seismic Rupture

    NASA Astrophysics Data System (ADS)

    Rice, J. R.

    2007-12-01

    The absence of significant heat flow from major fault zones, and scarcity of evidence for their seismic melting, means that during earthquake slip such zones could not retain shear strength comparable to the typically high static friction strength of rocks. One line of explanation is that they are actually statically weak, which could be because materials of exceptionally low friction (smectites, talc) accumulate along fault zones, or perhaps because pore pressure within the fault core is far closer to lithostatic than hydrostatic. Without dismissing either, the focus here is on how thermal processes during the rapid slips of seismic rupture can weaken a fault which is indeed statically strong. (The discussion also leaves aside another kind of non- thermal dynamic weakening, possible when there is dissimilarity in seismic properties across the fault, and/or in poroelastic properties and permeability within fringes of damaged material immediately adjoining the slip surface. Spatially nonuniform mode II slip like near a propagating rupture front may then induce a substantial reduction in the effective normal stress \\bar?.) The heating and weakening processes to be discussed divide roughly into two camps: (1) Those which are expected to be active from the start of seismic slip, and hence will be present in all earthquakes; and (2) Those that kick-in after threshold conditions of rise of temperature T or accumulation of slip are reached, and hence become a feature of larger, or at least deeper slipping, earthquakes. It has been argued that the two major players of (1) are as follows: (1.1) Flash heating and weakening of frictional contact asperities in rapid slip [Rice, 1999, 2006; Tullis and Goldsby, 2003; Goldsby and Hirth, 2006; Beeler et al., 2007; Yuan and Prakash, 2007]. That gives a strong velocity-weakening character to the friction coefficient, which is consistent with inducing self-healing rupture modes [Noda et al., 2006; Lu et al., 2007]. It is a process for which the details are still poorly understood in presence of substantial fault gouge, almost surely present in some of the large-slip experiments fitting the flash weakening theoretical model. (1.2) Thermal pressurization of pore fluid by frictional heating, a process which reduces \\bar? [Sibson, 1973; Lachenbruch, 1980; Mase and Smith, 1987], and is expected to be active wherever the fault wear products, as gouge, retain porosity of a few percent or more. At some depth and temperature they may instead sinter to a coherent solid on the interseismic time scale. Those of category (2) are as follows: (2.1) Macroscopic melting of the shear zone [Tsutsumi and Shimamoto, 1997; Hirose and Shimamoto, 2005; Fialko and Khazan, 2005; Nielsen et al., 2007], a process for which conditions may not be met if (1.1) and (1.2) kill off strength rapidly enough [Rempel and Rice, 2006], or do so with the help of one of the next two items. (2.2) Thermal decomposition like in smectite or serpentine dehydration [Sulem et al., 2004, 2007; Hirose and Bystricky, 2007] or coal devolatilization [O'Hara et al., 2006], leading to a high pressure fluid phase. (2.3) Formation of a weak gel-like layer like in wet silica-rich lithologies [Goldsby and Tullis, 2002; DiToro et al., 2004]. It is argued that some large-slip experiments involving significant weakening of unsaturated specimens in lab air, and others involving dehydration, may exhibit a component of weakening from pressurization of water vapor that is desorbed from mineral surfaces or released by dehydration during frictional heating. The hydraulic diffusivity of water vapor is unexpectedly low at levels of p comparable to the low normal stresses of the experiments involved.

  1. Incorporating Undrained Pore Fuid Pressurization Into Analyses of Off-Fault Plasticity During Dynamic Rupture

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Templeton, E. L.; Rice, J. R.

    2007-12-01

    When considering dynamic fault rupture in fluid-saturated elastic-plastic materials, it is sensible to assume locally undrained behavior everywhere except in small diffusive boundary layers along the rupture surface. To evaluate undrained pore pressure changes, we consider here not just the linear poroelastic effect expressed in terms of the Skempton coefficient B, like in our previous work [Viesca et al., AGU Fall 2006], but also include plastic dilatancy, which, when positive, induces a fluid suction. We work in the context of Mohr-Coulomb-like plasticity, but with a Drucker-Prager type model. Plastic parts of strain increments are controlled by the Terzaghi effective stress, elastic parts by the Biot stress combination. Following earlier work of Rudnicki, the incremental elastic-plastic constitutive relation for undrained deformation has precisely the same form as for drained deformation, so long as we change the drained constitutive parameters into new undrained ones under transformation rules that we present. Spontaneous slip-weakening fault rupture is analyzed using the dynamic finite element procedures with ABAQUS Explicit, and undrained elastic-plastic properties. Results are shown for plastic zones and effects on rupture propagation, and how they are influenced by such parameters as B and ratio β of dilatant to shear plastic strains, for a range of principal orientations and magnitudes (relative to yield) of the pre-stress state. The undrained approximation must fail in diffusive boundary layers along the slip surface [Rudnicki and Rice, JGR 2006; Dunham and Rice, AGU Fall 2006] because the predicted pore pressures will be discontinuous at the fault. We show how to extend the Rudnicki and Rice calculation of the actual pore pressure on the fault in terms of the undrained predictions to the two sides. However, because of difficulties thus far in representing this within the ABAQUS program, all results obtained as of the time of writing neglect effects of such pore pressure changes on the fault slip-weakening strength during rupture.

  2. Rupture directivity of moderate earthquakes in northern California

    USGS Publications Warehouse

    Seekins, Linda C.; Boatwright, John

    2010-01-01

    We invert peak ground velocity and acceleration (PGV and PGA) to estimate rupture direction and rupture velocity for 47 moderate earthquakes (3.5?M?5.4) in northern California. We correct sets of PGAs and PGVs recorded at stations less than 55125 km, depending on source depth, for site amplification and sourcereceiver distance, then fit the residual peak motions to the unilateral directivity function of Ben-Menahem (1961). We independently invert PGA and PGV. The rupture direction can be determined using as few as seven peak motions if the station distribution is sufficient. The rupture velocity is unstable, however, if there are no takeoff angles within 30 of the rupture direction. Rupture velocities are generally subsonic (0.5?0.9?); for stability, we limit the rupture velocity at v=0.92?, the Rayleigh wave speed. For 73 of 94 inversions, the rupture direction clearly identifies one of the nodal planes as the fault plane. The 35 strike-slip earthquakes have rupture directions that range from nearly horizontal (6 events) to directly updip (5 events); the other 24 rupture partly along strike and partly updip. Two strike-slip earthquakes rupture updip in one inversion and downdip in the other. All but 1 of the 11 thrust earthquakes rupture predominantly updip. We compare the rupture directions for 10 M?4.0 earthquakes to the relative location of the mainshock and the first two weeks of aftershocks. Spatial distributions of 8 of 10 aftershock sequences agree well with the rupture directivity calculated for the mainshock.

  3. Transient gravity perturbations induced by earthquake rupture

    NASA Astrophysics Data System (ADS)

    Harms, J.; Ampuero, J.-P.; Barsuglia, M.; Chassande-Mottin, E.; Montagner, J.-P.; Somala, S. N.; Whiting, B. F.

    2015-06-01

    The static and transient deformations produced by earthquakes cause density perturbations which, in turn, generate immediate, long-range perturbations of the Earth's gravity field. Here, an analytical solution is derived for gravity perturbations produced by a point double-couple source in homogeneous, infinite, non-self-gravitating elastic media. The solution features transient gravity perturbations that occur at any distance from the source between the rupture onset time and the arrival time of seismic P waves, which are of potential interest for real-time earthquake source studies and early warning. An analytical solution for such prompt gravity perturbations is presented in compact form. We show that it approximates adequately the prompt gravity perturbations generated by strike-slip and dip-slip finite fault ruptures in a half-space obtained by numerical simulations based on the spectral element method. Based on the analytical solution, we estimate that the observability of prompt gravity perturbations within 10 s after rupture onset by current instruments is severely challenged by the background microseism noise but may be achieved by high-precision gravity strainmeters currently under development. Our analytical results facilitate parametric studies of the expected prompt gravity signals that could be recorded by gravity strainmeters.

  4. Dynamics of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis; Nomoto, Hiroyuki; Huie, Phil; Brown, Jefferson; Palanker, Daniel

    2009-05-01

    In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating and maximize the therapeutic window, a computational model of millisecond retinal photocoagulation and rupture was developed. Optical attenuation of 532-nm laser light in ocular tissues was measured, including retinal pigment epithelial (RPE) pigmentation and cell-size variability. Threshold powers for vaporization and RPE damage were measured with pulse durations ranging from 1 to 200 ms. A finite element model of retinal heating inferred that vaporization (rupture) takes place at 180-190C. RPE damage was accurately described by the Arrhenius model with activation energy of 340 kJ/mol. Computed photocoagulation lesion width increased logarithmically with pulse duration, in agreement with histological findings. The model will allow for the optimization of beam parameters to increase the width of the therapeutic window for short exposures.

  5. Bladder rupture after intentional medication overdose.

    PubMed

    Huston, Butch; Mills, Kelly; Froloff, Victor; McGee, Michael

    2012-06-01

    We report the case of a 51-year-old woman who had a medical history of diabetes, depression with past suicide attempts, and suicidal ideation. She was found unresponsive in a motel with multiple bottles of medicines (melatonin, carisoprodol, ativan, and clonazepam) and an unopened bottle of wine. She was transported to the local hospital and treated for benzodiazepine toxicity and aspiration pneumonitis.The decedent gradually became more alert and was extubated 3 days after hospital admission. The decedent was reportedly getting up to use the restroom when she became tachypneic and diaphoretic and complained of generalized body pain. Her condition quickly declined, and she was pronounced deceased. A postmortem examination revealed an acute bladder rupture and soft tissue hemorrhage.A review of the literature reveals that isolated bladder rupture after minimal or no trauma in association with alcohol or drug ingestion is an infrequently reported, but recognized, injury. The diagnosis of bladder rupture should be considered in a patient with lower abdominal pain, even without a history of trauma. A history of voiding or bladder dysfunction should increase the suspicion for this injury. If suspected, a retrograde cystogram should be obtained promptly. Failure to consider and recognize this injury may lead to significant morbidity. PMID:21897194

  6. [Muscular rupture of the extensor pollicis longus].

    PubMed

    Towfigh, H

    1984-12-01

    Closed ruptures of the extensor pollicis longus tendon usually appear as a consequence of fractures of the wrist joint or the carpal bones or ensue from polyarthritic changes or result from a process of degeneration. Mechanical injury of the tendon is quite rare but can be observed after direct trauma or after operative treatment of a distal fracture of the radius. Closed traumatic ruptures of the extensor pollicis longus tendon in the absence of pathological changes are--in spite of the frequency of rotation injuries of the forearm--very rare. The patient in the case described is a 45-year-old locksmith whose forearm and hand had been caught in a lathe. This led to sudden, extreme rotation and pronation of the hand. Clinically distinct signs of a rupture of the extensor pollicis longus tendon could be seen. During operation a tear of the muscular portion of the long extensor tendon of the thumb was found. The function of extension was restored by transfer of the extensor indicis tendon. PMID:6392038

  7. Intersonic and Supersonic ruptures in a model of dynamic rupture in a layered medium

    NASA Astrophysics Data System (ADS)

    Ma, X.; Elbanna, A. E.

    2014-12-01

    The velocity structure in the lithosphere is quite complex and is rarely homogeneous. Wave reflection, transmission, and diffraction from the boundaries of the different layers and inclusions are expected to lead to a rich dynamic response and significantly affect rupture propagation on embedded faults. Here, we report our work on modeling dynamic rupture in an elastic domain with an embedded soft (stiff) layer as a first step towards modeling rupture propagation in realistic velocity structures. We use the Finite Element method (Pylith) to simulate rupture on a 2D in-plane fault embedded in an elastic full space. The simulated domain is 30 km wide and 100km long. Absorbing boundary conditions are used around the edges of the domain to simulate an infinite extension in all directions. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We consider embedded soft/stiff layers with 20% to 60% reduction/increase of wave velocity respectively. The embedded layers are placed at different distances from the fault surface. We observed that the existence of a soft layer significantly shortens the transition length to supershear propagation through the Burridge-Andrews mechanism. The higher the material contrast, the shorter the transition length to supershear propagation becomes. We also observe that supershear rupture could be generated at pretress values that are lower than what is theoretically predicted for a homogeneous medium. We find that the distance from the lower boundary of the soft layer to the fault surface has a stronger influence on the supershear transition length as opposed to the thickness of the soft layer. In the existence of an embedded stiffer layer we found that rupture could propagate faster than the fault zone P-wave speed. In this case, the propagating rupture generate two Mach cones; one is associated with the shear wave, and the other is associated with the local P-wave speed. This is a signature of supersonic crack tips. We also noted a smooth transition into supershear, with the rupture speed increasing continuously through the so-called 'energetically forbidden zone' (between Rayleigh wave speed and shear wave speed) corresponding to the wave speeds of the background medium.

  8. Liver Hydatid Cyst with Transdiaphragmatic Rupture and Lung Hydatid Cyst Ruptured into Bronchi and Pleural Space

    SciTech Connect

    Ar Latin-Small-Letter-Dotless-I bas, Bilgin Kadri Dingil, Guerbuez; Koeroglu, Mert; Uenguel, Uemit; Zaral Latin-Small-Letter-Dotless-I , Aliye Ceylan

    2011-02-15

    The aim of this case study is to present effectiveness of percutaneous drainage as a treatment option of ruptured lung and liver hydatid cysts. A 65-year-old male patient was admitted with complicated liver and lung hydatid cysts. A liver hydatid cyst had ruptured transdiaphragmatically, and a lung hydatid cyst had ruptured both into bronchi and pleural space. The patient could not undergo surgery because of decreased respiratory function. Both cysts were drained percutaneously using oral albendazole. Povidone-iodine was used to treat the liver cyst after closure of the diaphragmatic rupture. The drainage was considered successful, and the patient had no recurrence of signs and symptoms. Clinical, laboratory, and radiologic recovery was observed during 2.5 months of catheterization. The patient was asymptomatic after catheter drainage. No recurrence was detected during 86 months of follow-up. For inoperable patients with ruptured liver and lung hydatid cysts, percutaneous drainage with oral albendazole is an alternative treatment option to surgery. The percutaneous approach can be life-saving in such cases.

  9. Design prediction for long term stress rupture service of composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Robinson, Ernest Y.

    1992-01-01

    Extensive stress rupture studies on glass composites and Kevlar composites were conducted by the Lawrence Radiation Laboratory beginning in the late 1960's and extending to about 8 years in some cases. Some of the data from these studies published over the years were incomplete or were tainted by spurious failures, such as grip slippage. Updated data sets were defined for both fiberglass and Kevlar composite stand test specimens. These updated data are analyzed in this report by a convenient form of the bivariate Weibull distribution, to establish a consistent set of design prediction charts that may be used as a conservative basis for predicting the stress rupture life of composite pressure vessels. The updated glass composite data exhibit an invariant Weibull modulus with lifetime. The data are analyzed in terms of homologous service load (referenced to the observed median strength). The equations relating life, homologous load, and probability are given, and corresponding design prediction charts are presented. A similar approach is taken for Kevlar composites, where the updated stand data do show a turndown tendency at long life accompanied by a corresponding change (increase) of the Weibull modulus. The turndown characteristic is not present in stress rupture test data of Kevlar pressure vessels. A modification of the stress rupture equations is presented to incorporate a latent, but limited, strength drop, and design prediction charts are presented that incorporate such behavior. The methods presented utilize Cartesian plots of the probability distributions (which are a more natural display for the design engineer), based on median normalized data that are independent of statistical parameters and are readily defined for any set of test data.

  10. Short slip duration in dynamic rupture in the presence of heterogeneous fault properties

    NASA Astrophysics Data System (ADS)

    Beroza, Gregory C.; Mikumo, Takeshi

    1996-10-01

    Recent studies of strong motion data consistently show that the risetime (duration of slip at particular locations on the fault) is significantly shorter than the overall rupture duration. The physical explanation for this observation and its implications have become central issues in earthquake source studies. Two classes of mechanisms have been proposed to explain short risetimes. One explanation is that velocity-weakening frictional behavior on the fault surface causes the fault to self-heal. This possibility is suggested by rate-dependent friction observed in laboratory experiments and by some two-dimensional dynamic numerical simulations of earthquake rupture. It has recently been demonstrated, however, that the velocity dependence of friction observed in the laboratory is too weak to cause faults to self-heal. An alternative explanation for short risetimes is that spatially heterogeneous fault strength (e.g., barriers) limit the slip duration. In this paper we investigate this second explanation for short risetimes by constructing a three-dimensional dynamic rupture model for the 1984 Morgan Hill, California earthquake (Mw = 6.2) using a kinematic model previously obtained from waveform inversion of strong motion data. We assume velocity-independent friction and a critical stress fracture criterion and derive a dynamic model specified by the spatial distribution of dynamic stress drop and strength excess that reproduces the slip and rupture time of the kinematic model. The slip velocity time functions calculated from this dynamic model are then used in a subsequent inversion to fit the strong motion data. By alternating between dynamic and kinematic modeling, we obtain a dynamic model that provides an acceptable fit to the recorded waveforms. In this dynamic model the risetime is short over most of the fault, which is attributable entirely to the short scale-length slip/stress drop heterogeneity required by the strong motion data. A self-healing mechanism, such as strongly velocity-dependent friction, is not required to explain the short risetimes observed in this earthquake.

  11. Immunopathological mechanisms in dogs with rupture of the cranial cruciate ligament.

    PubMed

    Doom, M; de Bruin, T; de Rooster, H; van Bree, H; Cox, E

    2008-09-15

    The majority of studies on cranial cruciate ligament (CrCL) disease to date have been carried out on dogs that already sustained a CrCL rupture, which is the end-stage of the disease. Investigations have recently been carried out to study humoral and cellular immunopathological mechanisms in predisposed dogs before clinical rupture of the contralateral CrCL. The cruciate ligaments are mainly composed of collagen type I, and immune responses to collagen have been suggested as a cause of CrCL degradation in dogs. None of these investigations showed evidence that anticollagen type I antibodies alone initiate CrCL damage. However, in predisposed dogs a distinct anticollagen type I antibody gradient was found towards the contralateral stifle joint that eventually sustained a CrCL rupture, suggesting that there was an inflammatory process present in these joints before detectable joint instability occurred. The importance of cellular reactivity to collagen type I in cruciate disease also remains unclear. Peripheral blood mononuclear cell proliferation to collagen type I was very diverse in dogs with cruciate disease whereas some sham operated dogs and healthy dogs tested positive as well. It is not yet determined whether cellular reactivity to collagen type I exists locally in the stifle joints nor whether this could initiate CrCL degradation. Inflammatory processes within the stifle joint can alter the composition of the cruciate ligaments. In animal models of immune-mediated synovitis, the mechanical strength of the CrCL is significantly reduced. Immunohistochemical studies on synovial tissues from dogs with rheumatoid arthritis and dogs with cruciate disease revealed that the pathologic features are similar in both joint pathologies and that the differences are mainly quantitative. Joint inflammation induced by biochemical factors such as cytokines has been implied in CrCL degeneration. In several studies, the levels of pro-inflammatory and T helper cytokines were measured in dogs that sustained a CrCL rupture, but the exact role of the various cytokines in the pathogenesis of CrCL disease remains inconclusive. More recently, the levels of the cytokines have been investigated over time in predisposed dogs before and after CrCL rupture. IL-8 expression tended to be higher in stifle joints that will rupture their CrCL during the next 6 months than in those that will not, indicating an inflammatory process in these joints before clinical rupture. This review provides a comprehensive overview of all possible implications of humoral and cell-mediated immune responses published in dogs with cruciate disease together with publications from human joint diseases. Furthermore, this review highlights recent findings on cytokines and proteinases in the accompanying joint inflammation. PMID:18621423

  12. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    USGS Publications Warehouse

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time necessary for the crack to reach the half-length Ic. We compare the Tn values resulting from distinct simulations calculated using different constitutive laws and different sets of constitutive parameters. Our results confirm that the DR law provides a different description of the nucleation process than the SW law adopted in this study. We emphasize that the DR law yields a complete description of the rupture process, which includes the most prominent features of SW.

  13. Development of an extended BIEM and its application to the analysis of earthquake dynamic rupture interacting with a medium interface

    NASA Astrophysics Data System (ADS)

    Kusakabe, T.; Kame, N.

    2013-12-01

    An extended boundary integral equation method (XBIEM) has been recently proposed for the analysis of dynamic crack growth (=dynamic earthquake rupture model) in an inhomogeneous medium consisting of homogeneous sub-regions. Originally XBIEM is applicable to non-planar geometry of cracks and medium interfaces, but it has been demonstrated only for a simple planar crack along a bimaterial interface. Here we developed a code to analyse non-planar rupture with non-planar interfaces in a mode III problem, and applied it to a dynamic rupture problem across a planar bimaterial interface to investigate the effect of medium inhomogeneity. For this purpose, we firstly derived all the displacement and displacement velocity kernels in a unified analytic discretized form, in addition to the stress kernels already derived, necessary for versatile geometry of boundaries (i.e., cracks and interfaces) and checked all the kernel components in the simulation of wave propagation across a non-planar interface cutting a homogeneous medium. Then we validated our code in a wave reflection-transmission problem across a planar bimaterial interface. Secondly, in order to realize the analysis of dynamic rupture crossing a bimaterial interface we introduced a new implicit time-stepping scheme for instantaneously interacting boundary elements on the crack and medium interface. Such interactions only appear in the crack's crossing the interface. Otherwise we can use the explicit scheme as employed for BIEM in a homogeneous medium. We validated our numerical code for the crack growth in a homogeneous medium cut with a planar interface and found that our new scheme worked well. Finally, we tackled dynamic rupture propagation on a planar fault embedded normal to the planar interface of a bimaterial. Spontaneous rupture was allowed not only on the planar main fault but also on the interfacial fault and it is controlled by different slip-weakening laws on each of them: each peak strength is individually chosen and its ratio ζ=τ(interface)/τ(main) is chosen as one of controlling parameters. Another parameter η is chosen as a ratio of the shear wave velocities of the bimaterial, η=β(+)/β(-). Simulations were conducted for hundres of parameter sets of (η, ζ). Our results showed two distinct rupture processes: a) one is to propagate rupture just on the prescribed fault, and b) another is to activate the subsidiary interfacial rupture, which finally results in arresting rupture on the main planar fault. Two processes were found to be clearly divided by a line in the parameter plane (η, ζ). With increasing ζ, rupture tends to stay on the main fault with less significant activation of subsidiary interfacial rupture and it agrees with our physical anticipation. With increasing η from 0.7 to 1.4 (one corresponds to homogeneous), the rupture processes shift from (a) to (b). This dependency may be understandable in terms of two extreme cases: rupture approaching a free surface and rupture approaching a fixed boundary. In the former case, the traction approaches zero in the vicinity of free surface, and thus stress does not concentrate along the interface, and vice versa.

  14. Rupture Velocities of Intermediate- and Deep-Focus Earthquakes

    NASA Astrophysics Data System (ADS)

    Warren, L. M.

    2014-12-01

    The rupture velocities of intermediate- and deep-focus earthquakes --- how they vary between subduction zones, how they vary with depth, and what their maximum values are --- may help constrain the mechanism(s) of the earthquakes. As part of a global study of intermediate- and deep-focus earthquakes, I have used rupture directivity to estimate the rupture vector (speed and orientation) for 422 earthquakes >70 km depth with MW ?5.7 since 1990. I estimate the rupture velocity relative to the local P-wave velocity (vr/?). Since the same method is used for all earthquakes, the results can be readily compared across study areas. The study areas --- Middle America, South America, Tonga-Kermadec, Izu-Bonin-Marianas, and Japan-Kurils-Kamchatka --- include some of the warmest and coldest subduction zones: subducting plate ages range from 9-150 Myr and descent rates range from 1-13 cm/yr. Across all subduction zones and depth ranges, for the 193 earthquakes with observable directivity and well-constrained rupture vectors, most earthquakes rupture on the more horizontal of the two possible nodal planes. However, the rupture vectors appear to be randomly-oriented relative to the slip vector, so the earthquakes span the continuum from Mode II (i.e., parallel slip and rupture vectors) to Mode III rupture (i.e., perpendicular slip and rupture vectors). For this earthquake population, the mean rupture velocity is 0.43 vr/? 0.14 vr/?. The mean earthquake rupture velocities are similar between all subduction zones. Since the local seismic wavespeed is faster in colder subduction zones, absolute rupture velocities are faster in colder subduction zones. Overall, the fastest rupture velocities exceed the local S-wave speed. The supershear ruptures are associated with earthquakes closer to Mode II than Mode III faulting. This is consistent with theoretical calculations, which limit the rupture velocity to the S-wave speed for Mode III rupture but the P-wave speed for Mode II rupture.

  15. Strong transverse coupling in the Tevatron

    SciTech Connect

    Annala, G; Carson, J; Edwards, Don; Gelfand, N; Harding, D; Johnson, T; Johnstone, J; Martens, M; Sen, T; Syphers, Mike

    2003-03-01

    The Tevatron was designed with an extensive set of correction and adjustment magnets built into the spool pieces in recognition of the circumstance that a superconducting synchrotron was not as easy to modify as its conventional forebearers. Recently, concern has mounted at the high excitation of the skew quadrupole correctors. The purpose of this note is to account for this situation. When slow extraction was attempted from the Main Ring in the summer of 1970 horizontal-vertical coupling prevented adequate transverse oscillation growth for efficient slow spill. This situation was corrected by an 8 mrad roll of each of twelve equi-spaced quadrupoles [1]. In order to avoid a repetition of this problem in the Tevatron, an extremely strong skew quadrupole circuit was built in at the outset. When the Tevatron was commissioned only 4$ of the capability of this circuit was required. Now, 20 years later, the excitation of this skew quadrupole circuit is approximately 60%. Other skew quadrupole correctors were installed in the neighborhood of the long straight sections, and for a variety of reasons the number of elements in the strong circuit was reduced from 48 to 42. These are relatively minor changes in the present context. Recall that in the normal Tevatron tuning process the skew quad circuits are adjusted to minimize the difference between the horizontal and vertical tunes to the level of {Delta}{nu}{sub min} {approx} 0.003. Normally the horizontal-vertical coupling is not observed directly by orbit measurements during this procedure. it was recognized that the strength of the skew quadrupole settings would imply an uncorrected minimum tune difference of 0.2 units. Clearly, with the skew quad circuit turned off the coupling of the orbital motion should be easily observable. In the following sections, the authors describe the recent Tevatron studies that exhibit the transverse coupling and the analyses that link these observations to the long term development of a skew quadrupole coefficient in the Tevatron dipoles. In brief, their conclusion is that a{sub 1} at the level of one of the traditional units will account for the coupling and is consistent with physical examination of a selection of dipoles in the tunnel.

  16. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  17. Transverse-longitudinal integrated resonator

    DOEpatents

    Hutchinson, Donald P. (Knoxville, TN); Simpson, Marcus L. (Knoxville, TN); Simpson, John T. (Knoxville, TN)

    2003-03-11

    A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.

  18. Transversal magnetoresistance in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Klier, J.; Gornyi, I. V.; Mirlin, A. D.

    2015-11-01

    We explore theoretically the magnetoresistivity of three-dimensional Weyl and Dirac semimetals in transversal magnetic fields within two alternative models of disorder: (i) short-range impurities and (ii) charged (Coulomb) impurities. Impurity scattering is treated using the self-consistent Born approximation. We find that an unusual broadening of Landau levels leads to a variety of regimes of the resistivity scaling in the temperature-magnetic field plane. In particular, the magnetoresistance is nonmonotonous for the white-noise disorder model. For H ?0 the magnetoresistance for short-range impurities vanishes in a nonanalytic way as H1 /3. In the limits of strongest magnetic fields H , the magnetoresistivity vanishes as 1 /H for pointlike impurities, while it is linear and positive in the model with Coulomb impurities.

  19. Ultraviolet behavior of transverse gravity

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J. J.

    2008-10-01

    The structure of the divergences for transverse theories of gravity is studied to one-loop order. These theories are invariant only under those diffeomorphisms that enjoy unit Jacobian determinant (TDiff), so that the determinant of the metric transforms as a true scalar instead of a density. Generically, the models include an additional scalar degree of freedom contained in the metric besides the usual spin two component. When the cosmological constant is fine tuned to zero, there are only two theories which are on shell finite, namely the one in which the symmetry is enhanced to the full group of diffeomorphisms, i.e. Einstein's gravity, and another one denoted by WTDiff which enjoys local Weyl invariance. Both of them are free from the additional scalar.

  20. The Energy Budget of Earthquake Rupture: a View From Spontaneous Rupture Modeling and Finite-Source Models

    NASA Astrophysics Data System (ADS)

    Mai, P.; Guatteri, M.

    2003-12-01

    It is a common and frustrating experience of many dynamic modelers to initiate spontaneous rupture calculations that subsequently abort before rupturing to the desired earthquake size [Nielsen and Olsen, 2000; Oglesby and Day, 2002]. Source parameters in such dynamic source models are strongly correlated, but stress drop is the main factor affecting the distribution of the other dynamic rupture parameters. Additionally, the position of the hypocenter exerts a strong influence on the dynamic properties of the earthquake, and certain hypocenter positions are not plausible as those would not lead to spontaneous rupture propagation. To further investigate this last statement, we analyze the energy budget during earthquake rupture using spontaneous dynamic rupture calculations and finite-source rupture models. In describing the energy budget during earthquake rupture, we follow Favreau and Archuleta [2003]. Each point on the fault contributes to the radiated seismic energy Ers = Eel - Efr - Erx, where Eel denotes the elasto-static energy and Efr the fracture energy. In this study we neglect for simplicity the relaxation work Erx spent during the stopping of the earthquake. A rupture can be characterized by locally negative seismic energy density values, but its integral over the fault plane must be positive. The fundamental condition for rupture growth is therefore that the integral of Ers on the rupture area remains always positive during rupture propagation. Based on a simple energy budget calculation, we focus on identifying those target slip/stress distribution in dynamic rupture modeling that for a given hypocenter location fail to rupture spontaneously. Additionally, we study the energy budget of finite-source rupture models by analyzing the integrated seismic energy for the inferred slip maps using also hypocenter positions other than the network location. These results indicate how rupture was promoted for the true hypocenter while randomized hypocenters may not have been able to sustain a large earthquake. Our approach helped us both to speed up the computation of successful spontaneous rupture models, as well as to construct dynamically consistent rupture models for strong motion prediction.

  1. Transverse Patterning and Human Amnesia

    PubMed Central

    Verfaellie, Mieke; Grafman, Jordan

    2006-01-01

    The transverse patterning (TP) task (A+ B?, B+ C?, C+ A?) has played a central role in testing the hypothesis that medial-temporal (and, in particular, hippocampal) brain damage selectively impairs learning on at least some classes of configural (i.e., nonlinear) learning tasks. Results in the animal and human literature generally support that hypothesis. Reed and Squire [Impaired transverse patterning in human amnesia is a special case of impaired memory for two-choice discrimination tasks. Behavioral Neuroscience, 113, 39, 1999], however, advanced an alternative account in which impaired TP performance in amnesia reflects a generic scaling artifact arising from the greater difficulty of the TP task compared to the elemental (i.e., linear) control task that is typically used. We begin with a critique of Reed and Squire, countering their conceptual arguments and showing that their results, when analyzed appropriately, support the configural deficit hypothesis. We then report results from eight new amnesic patients and controls on an improved version of the TP task. Despite substantial practice, accuracy of patients with bilateral hippocampal damage due to anoxia reached and maintained an asymptote of only 54% correct, well below the maximum accuracy obtainable (67%) in the absence of configural learning. A patient with selective bilateral damage to the anterior thalamic nuclei exhibited a TP accuracy asymptote that was near 67%, a pattern of two out of three correct consecutive trials, and a pattern of nearly always answering correctly for two of the three TP item pairs. These results are consistent with a set of unique and parameter-free predictions of the configural deficit hypothesis. PMID:17014376

  2. Delamination behaviour of GdBCO coated conductor tapes under transverse tension

    NASA Astrophysics Data System (ADS)

    Gorospe, A.; Nisay, A.; Dizon, J. R.; Shin, H. S.

    2013-11-01

    The electromechanical property behaviour of 2G coated conductor (CC) tapes fabricated by multi-layer deposition process both in the in-plane and transverse direction should be understood. The CC tapes are used in the fabrication of epoxy resin-impregnated coils. In such case, the Lorentz force due to the high magnetic field applied as well as the thermal stress due to the difference in coefficient of thermal expansion (CTE) among constituent layers during cooling to cryogenic temperature will induce transversely applied load to the surface of CC tapes in coils. Hence, the CC tape should have a good mechanical property in the transverse direction in order to maintain its superior performance under magnetic field. In this study, a test frame which gives precisely aligned transverse load was devised. Using the fixture, the delamination behaviours including the delamination strength of the GdBCO CC tapes under transverse tensile loading were investigated. Large variation on the delamination strength of the CC tapes was recorded and might have resulted from the slit edge effect and the inhomogeneity of the CC tapes. The Ic degradation behaviour under transverse load was related to the location where delamination occurred in the sample.

  3. Dynamic Rupture along a Material Interface: Background, Implications, and Recent Seismological Observations

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; McGuire, J.

    2003-04-01

    Natural fault systems have interfaces that separate different media. There are fundamental differences between in-plane ruptures on planar faults that separate similar and dissimilar elastic solids. In a linear isotropic homogeneous solid, slip does not change the normal stress on the rupture plane. However, if the fault separates different materials in-plane slip can produce strong variations of normal stress on the fault. The interaction between slip and normal stress along a material interface can reduce dynamically the frictional strength, making material interfaces mechanically favored surfaces for rupture propagation. Analytical and numerical works (Weertman, 1980; Adams, 1995; Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998) have shown that rupture along a material interface occurs as a narrow wrinkle-like pulse propagating spontaneously only in one direction, that of slip in the more compliant medium. Characteristic features of the wrinkle-like pulse include: (1) Strong correlation between variations of normal stress and slip. (2) Asymmetric motion on different sides of the fault. (3) Preferred direction of rupture propagation. (4) Self-sharpening and divergent behavior with propagation distance. These characteristics can be important to a number of fundamental issues, including trapping of rupture in structures with material interfaces, the heat flow paradox, short rise-time of earthquake slip, possible existence of tensile component of rupture, and spatial distribution of seismic shaking. Rubin and Gillard (2000), Rubin (2002) and McGuire et al. (2002) presented some seismological evidence that rupture propagation along the San Andreas and other large faults is predominantly unidirectional. Features (1)-(4) are consistent with observations from lab sliding and fracture experiments (Anooshehpoor and Brune, 1999; Schallamach, 1971; Samudrala and Rosakis, 2000). Cochard and Rice (2000) performed calculations of rupture along a material interface governed by a regularized friction having a gradual response of strength to an abrupt variation of normal stress. Their calculations confirmed features (1)-(3) and showed hints of feature (4). The latter was not fully developed in their results because the calculations did not extend long enough in time. Ben-Zion and Huang (2002) simulated dynamic rupture on an interface governed by the regularized friction between a low velocity layer and a surrounding host rock. The results show that the self-sharpening and divergent behavior exists also with the regularized friction for large enough propagation distance. The simulations of Ben-Zion and Huang suggest that in fault structures having a low velocity layer, rupture initiated by failing of an asperity with size not larger than the layer width can become a self-sustaining wrinkle-like pulse. However, if the initial asperity is much larger than the layer width, the rupture will not propagate as a self-sustaining pulse (unless there is also an overall contrast across the fault). The Bear Valley section of the San Andreas Fault separates high velocity block on the SW from a low-velocity material on the NE. This contrast is expected to generate a preference for rupture to the SE and fault zone head-waves on the NE block. Using seismograms from a high density temporary array (Thurber et al., 1997), we measured differential travel-times of head-waves along with the geometrical distribution of the stations at which they arrive prior to the direct P-wave. The travel-time data and spatial distribution of events and stations associated with headwave first arrivals are compatible with the theoretical results of Ben-Zion (1989). We are now modeling waveforms to obtain high resolution image of the fault-zone structure. To test the prediction of unidirectional rupture propagation, we estimate the space-time variances of the moment-release distribution of magnitude 2.5-3.0 events using a variation of the Empirical Green's Function technique. Initial results for a few small events indicate rupture propagation in both directions. We are

  4. Dynamic rupture processes and seismic radiation in models of earthquake faults separating similar and dissimilar solids

    NASA Astrophysics Data System (ADS)

    Shi, Zheqiang

    This thesis examines dynamic ruptures along frictional interfaces and seismic radiation in models of earthquake faults separating similar and dissimilar solids with the goal of advancing the understanding of earthquake physics. The dynamics of Mode-II rupture along an interface governed by slip-weakening friction between dissimilar solids are investigated. The results show that the wrinkle-like rupture along such interfaces evolves to unilateral propagation in the slip direction of the compliant side for a broad range of conditions, and the closer the initial shear stress is to the static friction the smaller degree of material contrast is needed for this evolution to occur. Transition of the wrinkle-like pulse to crack-like rupture occurs when the reduction of friction coefficient is sufficiently large. Energy partition associated with various rupture modes along an interface governed by rate- and state-dependent friction between identical solids is investigated. The rupture mode changes with varying velocity dependence of friction, strength excess parameter and length of the nucleation zone. High initial shear stress and weak velocity dependence of friction favor crack-like ruptures, while the opposite conditions favor the pulse-like mode. The rupture mode can switch from a subshear single pulse to a supershear train of pulses when the width of the nucleation zone is increased. The elastic strain energy released over the same propagation distance by the different rupture modes has the order: supershear crack, subshear crack, supershear train-of-pulses and subshear single-pulse. General considerations and observations suggest that the subshear pulse and supershear crack are, respectively, the most and least common modes of earthquake ruptures. The effect of plasticity and interface elasticity on dynamic frictional sliding along an interface induced by edge impact loading between two identical elastic-viscoplastic solids is analyzed. The material on each side is isotropically strain-hardening. The interface is characterized as having an elastic response together with an inelastic response characterized by rate- and state-dependent friction. The results show that bulk material plasticity tends to smooth out oscillations. Larger impact velocity induces more extensive plastic dissipation and larger effect on slip mode and energy partition. Also larger values of the interface shear stiffness tend to favor crack-like mode of sliding. The last part of we examine the characteristics of seismic radiation from localized fault-opening and shear motions and the effect of having dissimilar solids across the fault on seismic radiation by employing calculations of synthetic seismograms generated at various receiver locations by shear and tensile dislocation sources. The existence of a velocity contrast across the fault produces complexities that mask somewhat the polarity and amplitude signals of body waves characteristic of the tensile dislocation. The recording and analysis of the discussed signals for regular earthquakes that are dominated by shear motion will require high-resolution receivers located very close to the fault.

  5. Missed Iatrogenic Bladder Rupture Following Normal Vaginal Delivery

    PubMed Central

    Baheti, Vidyasagar H; Patwardhan, Sujata K

    2015-01-01

    Bladder rupture following caesarian section is well documented complications. Intraperitoneal bladder rupture following normal vaginal delivery is very rare. Hereby, we present a case report of intraperitoneal bladder rupture presented late following normal vaginal delivery. We report a case of spontaneous intraperitoneal urinary bladder rupture following uneventful outlet forceps delivery in a 22-year-old primi gravid woman with gestational diabetes mellitus and fetal macrosomia who presented with large urinary ascites, anuria and renal failure. Emergent exploratory laparotomy with repair of the intraperitoneal bladder rupture helped to prevent its potential complications. Postpartum patients who undergo episiotomy or perineal repair may land up in unnoticed urinary retention which may rarely terminate in spontaneous urinary bladder rupture. Awareness of its manifestations amongst emergency physician would help to initiate appropriate timely management. PMID:26557563

  6. Measuring thermal rupture force distributions from an ensemble of trajectories.

    PubMed

    Swan, J W; Shindel, M M; Furst, E M

    2012-11-01

    Rupture, bond breaking, or extraction from a deep and narrow potential well requires considerable force while producing minimal displacement. In thermally fluctuating systems, there is not a single force required to achieve rupture, but a spectrum, as thermal forces can both augment and inhibit the bond breaking. We demonstrate measurement and interpretation of the distribution of rupture forces between pairs of colloidal particles bonded via the van der Waals attraction. The otherwise irreversible bond is broken by pulling the particles apart with optical tweezers. We show that an ensemble of the particle trajectories before, during and after the rupture event may be used to produce a high fidelity description of the distribution of rupture forces. This analysis is equally suitable for describing rupture forces in molecular and biomolecular contexts with a number of measurement techniques. PMID:23215431

  7. Measuring Thermal Rupture Force Distributions from an Ensemble of Trajectories

    NASA Astrophysics Data System (ADS)

    Swan, J. W.; Shindel, M. M.; Furst, E. M.

    2012-11-01

    Rupture, bond breaking, or extraction from a deep and narrow potential well requires considerable force while producing minimal displacement. In thermally fluctuating systems, there is not a single force required to achieve rupture, but a spectrum, as thermal forces can both augment and inhibit the bond breaking. We demonstrate measurement and interpretation of the distribution of rupture forces between pairs of colloidal particles bonded via the van der Waals attraction. The otherwise irreversible bond is broken by pulling the particles apart with optical tweezers. We show that an ensemble of the particle trajectories before, during and after the rupture event may be used to produce a high fidelity description of the distribution of rupture forces. This analysis is equally suitable for describing rupture forces in molecular and biomolecular contexts with a number of measurement techniques.

  8. Quantum metrology for the Ising Hamiltonian with transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Skotiniotis, Michael; Sekatski, Pavel; Dr, Wolfgang

    2015-07-01

    We consider quantum metrology for unitary evolutions generated by parameter-dependent Hamiltonians. We focus on the unitary evolutions generated by the Ising Hamiltonian that describes the dynamics of a one-dimensional chain of spins with nearest-neighbour interactions and in the presence of a global, transverse, magnetic field. We analytically solve the problem and show that the precision with which one can estimate the magnetic field (interaction strength) given one knows the interaction strength (magnetic field) scales at the Heisenberg limit, and can be achieved by a linear superposition of the vacuum and N free fermion states. In addition, we show that Greenberger-Horne-Zeilinger-type states exhibit Heisenberg scaling in precision throughout the entire regime of parameters. Moreover, we numerically observe that the optimal precision using a product input state scales at the standard quantum limit.

  9. Capturing Continental Rupture Processes in Afar

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia; Belachew, Manahloh; Tepp, Gabrielle; Keir, Derek; Ayele, Atalay

    2014-05-01

    Both continental and oceanic rifting processes are highly 3D, but the stability of the along-axis segmentation from rifting to breakup, and its relationship to seafloor spreading remains debated. Three-dimensional models of the interactions of faults and magmatism in time and space are in development, but modelling and observations suggest that magmatic segments may propagate and/or migrate during periods of magmatism. Our ability to discriminate between the various models in large part depends on the quality of data in the ocean-transition zone, or, observations from zones of incipient plate rupture. Largely 2D crustal-scale seismic data from magmatic passive margins reveal large magmatic additions to the crust, but the timing of this heat and mass transfer is weakly constrained. Thus, the lack of information on the across rift breadth of the deforming zone at rupture, and the relationship between the early rift segmentation and the seafloor spreading segmentation represent fundamental gaps in knowledge. Our study of Earth's youngest magmatic margin, the superbly exposed, tectonically active southern Red Sea, aims to answer the following questions: What are the geometry and kinematics of active fault systems across the 'passive margin' to zone of incipient plate rupture? What is the relationship between the initial border fault segmentation, and the breakup zone segmentation? What is the distribution of active deformation and magmatism, and how does it compare to time-averaged strain patterns? We integrate results of recent experiments that suggest widespread replacement of crust and mantle lithosphere beneath the 'passive' margin, and explain the ongoing seismic deformation as a consequence of bending stresses across the ocean-continent transition, with or without a dynamic component.

  10. [SURGICAL TREATMENT OF PATIENTS WITH URETERAL RUPTURES].

    PubMed

    Komjakov, B K; Guliev, B G

    2015-01-01

    The aim of the study was to analyze the causes of ureteral ruptures and the types surgical procedures used for their management. Over the period from 2006 to 2014, 7 patients with ureteral ruptures underwent surgical treatment in the Mechnikov N-WSMU clinic. All of them were males aged 50 to 71 years. In all cases, the ureter was injured during ureteroscopy and contact lithotripsy. In two patients the right ureter was cut off at the border of the upper and middle third, in four--at 3-4 cm below pyeloureteral segment, one patient diagnosed with a complete separation of the ureter from the kidney pelvis. Patients, who have suffered a detachment of the ureter in other hospitals, previously underwent surgical exploration of the retroperitoneal space, drainage of the kidney by pyelonephrostomy (5) and ureterocutaneostomy (1). In a case of a patient with an injury that occurred in our clinic, laparoscopic nephrectomy with autologous renal transplantation was carried out. Five patients with extended ureter defects underwent ileo-ureteroplasty. The patient with left ureterocutaneostomy underwent nephrovesical bypass. Patency of the upper urinary tract and kidney function were restored in all patients, all of them were relieved from external drains. The duration of the intestinal plastic averaged 160 minutes, laparoscopic nephrectomy with autologous transplantation--210 min and nephrovesical bypass--110 min. Blood transfusion was required only in autologous graft patient. The ureteral rupture is a serious complication of ureteral endourological procedures in upper urinary tract. It requires such complicated reconstructive operations as autologous transplantation of the kidney or intestinal ureteroplasty. PMID:26390553

  11. Dynamic stress changes during earthquake rupture

    USGS Publications Warehouse

    Day, S.M.; Yu, G.; Wald, D.J.

    1998-01-01

    We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

  12. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.

  13. Conservative management of a ruptured mycotic aneurysm

    PubMed Central

    Lodge, Freya; Conway, Nerys; Waterfield, Nick

    2013-01-01

    Mycotic aneurysms are a well-recognised complication of infective endocarditis. In contrast to many sequelae of endocarditis, they can present late in the course of the disease, despite adequate treatment. We discuss the case of an 82-year-old patient who was successfully treated for Enterococcus faecalis endocarditis, but presented late with a hypotensive collapse. CT imaging demonstrated a ruptured mycotic aneurysm. He underwent laparotomy, but the decision was made to treat conservatively to protect the vascular supply to the bowel. The patient subsequently made a full recovery. PMID:23682082

  14. Conservative management of a ruptured mycotic aneurysm.

    PubMed

    Lodge, Freya; Conway, Nerys; Waterfield, Nick

    2013-01-01

    Mycotic aneurysms are a well-recognised complication of infective endocarditis. In contrast to many sequelae of endocarditis, they can present late in the course of the disease, despite adequate treatment. We discuss the case of an 82-year-old patient who was successfully treated for Enterococcus faecalis endocarditis, but presented late with a hypotensive collapse. CT imaging demonstrated a ruptured mycotic aneurysm. He underwent laparotomy, but the decision was made to treat conservatively to protect the vascular supply to the bowel. The patient subsequently made a full recovery. PMID:23682082

  15. Anisotropy in rupture lines of paper sheets

    NASA Astrophysics Data System (ADS)

    Menezes-Sobrinho, I. L.; Couto, M. S.; Ribeiro, I. R. B.

    2005-06-01

    We have experimentally investigated the fracture process in paper samples submitted to a uniaxial force. Five types of paper sheets (newsprint, towel, sulfite, silk, and couche papers) were fractured along two orthogonal orientations. In order to characterize the rupture lines of the paper sheets we utilized the Hurst exponent. Our results indicate a dependence of the Hurst exponent on the orientation of the paper sheets for samples of newsprint and, probably, towel and silk papers. For the other types of paper the Hurst exponent does not depend on the direction of crack propagation.

  16. Anisotropy in rupture lines of paper sheets.

    PubMed

    Menezes-Sobrinho, I L; Couto, M S; Ribeiro, I R B

    2005-06-01

    We have experimentally investigated the fracture process in paper samples submitted to a uniaxial force. Five types of paper sheets (newsprint, towel, sulfite, silk, and couche papers) were fractured along two orthogonal orientations. In order to characterize the rupture lines of the paper sheets we utilized the Hurst exponent. Our results indicate a dependence of the Hurst exponent on the orientation of the paper sheets for samples of newsprint and, probably, towel and silk papers. For the other types of paper the Hurst exponent does not depend on the direction of crack propagation. PMID:16089834

  17. Intermediate Temperature Stress Rupture of Woven SiC Fiber, BN Interphase, SiC Matrix Composites in Air

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Levine, Stanley (Technical Monitor)

    2000-01-01

    Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.

  18. Effect of brace design on patients with ACL-ruptures.

    PubMed

    Strutzenberger, G; Braig, M; Sell, S; Boes, K; Schwameder, H

    2012-11-01

    Different designs of functional knee braces for ACL-injury rehabilitation exist. In addition to the mechanical stabilization provided by rigid shell braces, sleeve braces also address proprioceptive mechanisms, but little is known if this leads to benefits for ACL-deficient subjects. Therefore the aim of this study was to investigate the effect of 2 different functional brace designs (shell and sleeve brace) on functional achievements in ACL-deficient patients. 28 subjects with ACL-ruptured knees performed tests for knee joint laxity, joint position sense, static and dynamic balance and isometric and dynamic lower limb extension strength in non-braced, sleeve braced and shell braced condition. The results showed a significant decrease in knee joint laxity for sleeve (33%; p<0.001) and rigid shell bracing (14%, p=0.039). The sleeve brace revealed a significant increase in dynamic balance after perturbation (20%; p=0.024) and a significant increase in dynamic lower limb peak rate of force development (17%; p=0.015) compared to the non-braced condition. The effects might be caused by the flexible area of support and the incorporated mechanisms to address proprioceptive aspects. Braces might not be needed in simple daily life tasks, but could provide beneficial support in more dynamic settings when patients return to sporting activities after an ACL-injury. PMID:22706937

  19. A Rare Case of Adductor Longus Muscle Rupture

    PubMed Central

    van de Kimmenade, R. J. L. L.; van Bergen, C. J. A.; van Deurzen, P. J. E.; Verhagen, R. A. W.

    2015-01-01

    An adductor longus muscle rupture is a rare injury. This case report describes a 32-year-old patient with an adductor longus rupture. The trauma mechanism was a hyperabduction movement during a soccer game. Nonoperative treatment was initiated. After a follow-up of 4 years, the patient was without pain but a small swelling was still visible. This report describes the anatomy, pathophysiology, and evidence-based treatment of adductor longus rupture. PMID:25918663

  20. Spontaneous Tricuspid Valve Chordal Rupture in Idiopathic Pulmonary Hypertension.

    PubMed

    Rodrigues, Ana Clara Tude; Afonso, Jos E; Cordovil, Adriana; Monaco, Claudia; Piveta, Rafael; Cordovil, Rodrigo; Fischer, Claudio H; Vieira, Marcelo; Lira-Filho, Edgar; Morhy, Samira S

    2016-03-01

    Rupture of tricuspid valve is unusual, occurring mainly in the setting of blunt trauma or endomyocardial biopsy. Spontaneous tricuspid valve chordal rupture is particularly rare. We report herein a case of a patient with severe pulmonary hypertension, on the lung transplantation waiting list, who presented with spontaneous chordal rupture, exacerbation of tricuspid insufficiency and worsening of clinical status. Diagnosis and treatment, along with possible mechanisms for this complication, are discussed. PMID:26660848

  1. Ruptured anterior mediastinal teratoma with radiologic, pathologic, and bronchoscopic correlation.

    PubMed

    Escalon, Joanna G; Arkin, Jordan; Chaump, Michael; Harkin, Timothy J; Wolf, Andrea S; Legasto, Alan

    2015-01-01

    While most teratomas are asymptomatic, intrathoracic teratomas can rarely rupture spontaneously causing more alarming symptoms. Ruptured teratoma is a serious clinical entity, and early recognition is crucial for avoidance of further complications and preparation of proper surgical approach. We present a case of ruptured anterior mediastinal teratoma with radiologic, pathologic, and bronchoscopic correlation. This case uniquely illustrates a patient presenting with signs of infection and progressively worsening symptoms, thus emphasizing the need for early diagnosis and the importance of imaging. PMID:25863875

  2. Right Hemi-Diaphragmatic Rupture: An Injury Missed or Masked?

    PubMed Central

    Dhua, Anjan

    2015-01-01

    Right sided traumatic diaphragmatic rupture in children is uncommon and may escape early detection. Missed injuries are associated with high mortality and morbidity due to incarceration and strangulation of abdominal viscera. We report a 15-month-old child with blunt trauma chest and abdomen, who presented with bilateral hemothoraces and liver laceration seven days after the incident. Diagnosis of right diaphragmatic rupture was confirmed after another week. The surgical repair of diaphragmatic rupture was undertaken successfully. PMID:26064808

  3. Surgical repair of a rupture of the pectoralis major muscle.

    PubMed

    Pochini, Alberto De Castro; Andreoli, Carlos Vicente; Ejnisman, Benno; Maffulli, Nicola

    2015-01-01

    Muscle rupture is rarely treated surgically. Few reports of good outcomes after muscular suture have been published. Usually, muscular lesions or partial ruptures heal with few side effects or result in total recovery. We report a case of an athlete who was treated surgically to repair a total muscular rupture in the pectoralis major muscle. After 6 months, the athlete returned to competitive practice. After a 2-year follow-up, the athlete still competes in skateboard championships. PMID:25716033

  4. Fiber Orientation of the Transverse Carpal Ligament

    PubMed Central

    Prantil, Ryan K; Xiu, Kaihua; Kim, Kwang E; Gaitan, Diana M; Sacks, Michael S; Woo, Savio L-Y.; Li, Zong-Ming

    2011-01-01

    The transverse carpal ligament is the volar roof of the carpal tunnel. Gross observation shows that the ligament appears to have fibers that roughly orient in the transverse direction. A closer anatomical examination shows that the ligament also has oblique fibers. Knowledge of the fiber orientation of the transverse carpal ligament is valuable for further understanding the ligament's role in regulating the structural function of the carpal tunnel. The purpose of this study is to quantify collagen fiber orientation within the transverse carpal ligament using the small angle light scattering technique. Eight transverse carpal ligament samples from cadaver hands were used in this study. Individual 20 ?m sections were cut evenly along the thickness of the transverse carpal ligament. Sections of three thickness levels (25%, 50%, and 75% from the volar surface) were collected for each transverse carpal ligament. Fibers were grouped in the following orientation ranges: transverse, longitudinal, oblique in the pisiform-trapezium (PT), and oblique in the scaphoid-hamate (SH) directions. In analyzing the fiber percentages, the orientation types for the different thickness levels of the ligament showed that the transverse fibers were the most prominent (>60.7%) followed by the PT oblique (18.6%), SH oblique (13.0%), and longitudinal (8.6%) fibers. PMID:22488997

  5. Intracranial Aneurysms: Wall Motion Analysis for Prediction of Rupture.

    PubMed

    Vanrossomme, A E; Eker, O F; Thiran, J-P; Courbebaisse, G P; Zouaoui Boudjeltia, K

    2015-10-01

    Intracranial aneurysms are a common pathologic condition with a potential severe complication: rupture. Effective treatment options exist, neurosurgical clipping and endovascular techniques, but guidelines for treatment are unclear and focus mainly on patient age, aneurysm size, and localization. New criteria to define the risk of rupture are needed to refine these guidelines. One potential candidate is aneurysm wall motion, known to be associated with rupture but difficult to detect and quantify. We review what is known about the association between aneurysm wall motion and rupture, which structural changes may explain wall motion patterns, and available imaging techniques able to analyze wall motion. PMID:25929878

  6. Asymptomatic rupture of the uterus: a case report.

    PubMed Central

    Alper, M. M.; Dudley, D. K.

    1984-01-01

    Rupture of the gravid uterus is a serious obstetric emergency that threatens maternal and fetal life. In certain cases the classic clinical picture may be absent. Most asymptomatic ruptures are in the lower segment and of minor extent or are really dehiscences of scars. This paper presents a case of massive spontaneous rupture involving the entire corpus diagnosed at elective postpartum sterilization. This unusual event stimulated a review of the causes and clinical presentations of uterine rupture. Images FIG. 1 FIG. 2 PMID:6692194

  7. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders.

    PubMed

    Huang, Huang-Chiao; Walker, Candace Rae; Nanda, Alisha; Rege, Kaushal

    2013-04-23

    Approximately 1.5 million people suffer from colorectal cancer and inflammatory bowel disease in the United States. Occurrence of leakage following standard surgical anastomosis in intestinal and colorectal surgery is common and can cause infection leading to life-threatening consequences. In this report, we demonstrate that plasmonic nanocomposites, generated from elastin-like polypeptides (ELPs) cross-linked with gold nanorods, can be used to weld ruptured intestinal tissue upon exposure to near-infrared (NIR) laser irradiation. Mechanical properties of these nanocomposites can be modulated based on the concentration of gold nanorods embedded within the ELP matrix. We employed photostable, NIR-absorbing cellularized and noncellularized GNR-ELP nanocomposites for ex vivo laser welding of ruptured porcine small intestines. Laser welding using the nanocomposites significantly enhanced the tensile strength, leakage pressure, and bursting pressure of ruptured intestinal tissue. This, in turn, provided a liquid-tight seal against leakage of luminal liquid from the intestine and resulting bacterial infection. This study demonstrates the utility of laser tissue welding using plasmonic polypeptide nanocomposites and indicates the translational potential of these materials in intestinal and colorectal repair. PMID:23530530

  8. Rupture process for micro-earthquakes inferred from borehole seismic recordings

    NASA Astrophysics Data System (ADS)

    Taira, Taka'aki; Dreger, Douglas S.; Nadeau, Robert M.

    2015-09-01

    We investigate the spatial extent of rupture and variability in fault slip for micro-earthquakes by inverting seismic moment rate functions derived from empirical Green's function deconvolution. By using waveforms from an array of borehole seismometers, we determine the spatial distributions of fault slip for M 3+ earthquakes that occurred along the Hayward fault in central California and identify a variety of slip behaviors including subevents, directivity, and high stress drop. The 2013 M w 3.2 Orinda earthquake exhibits a complex rupture process involving two subevents with northwest and up-dip directivity. The two subevents release 43 and 18 % of the total seismic moment (6.7 1013 N m), and their inferred peak stress drops are 18 and 8 MPa. The 2011 M w 4.0 Berkeley and 2012 M w 4.0 El Cerrito earthquakes are marked by high stress drop. The inferred peak and mean stress drops are about 100-130 and 40 MPa, respectively, which suggests that there are locally high levels of fault strength on the Hayward fault. Our finite-source modeling suggests that the radiation efficiency determined for these two earthquakes is very low (<0.1) and implies that most energy is dissipated during the earthquake rupture process.

  9. Shear rupture of a directionally solidified eutectic gamma/gamma prime - alpha (Mo) alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1978-01-01

    Directionally solidified Mo alloys are evaluated to determine the shear rupture strength and to possibly improve it by microstructural and heat treatment variations. Bars of the alloy containing nominally 5.7% Al and 33.5% Mo by weight with balance Ni were directionally solidified at rates between 10 and 100 mm per hour in furnaces with thermal gradients at the liquid-solid interface of 250 or 100 C per cm. A limited number of longitudinal shear rupture tests were conducted at 760 C and 207 MPa in the as - solidified and in several heat treated conditions. It is shown that shear rupture failures are partly transgranular and that resistance to failure is prompted by good fiber alignment and a matrix structure consisting mainly of gamma prime. Well aligned as - solidified specimens sustained the shear stress for an average of 81 hours. A simulated coating heat treatment appeared to increase the transformation of gamma to gamma prime and raised the average shear life of aligned specimens to 111 hours. However, heat treatments at 1245 C and especially at 1190 C appeared to be detrimental by causing partial solutioning of the gamma prime, and reducing lives to 47 and 10 hours, respectively.

  10. Rupture force of cell adhesion ligand tethers modulates biological activities of a cell-laden hydrogel.

    PubMed

    Lee, Min Kyung; Park, Jooyeon; Wang, Xuefeng; Roein-Peikar, Mehdi; Ko, Eunkyung; Qin, Ellen; Lee, Jonghwi; Ha, Taekjip; Kong, Hyunjoon

    2016-04-01

    Recent efforts to design a synthetic extracellular matrix for cell culture, engineering, and therapies greatly contributed to addressing biological roles of types and spatial organization of cell adhesion ligands. It is often suggested that ligand-matrix bond strength is another path to regulate cell adhesion and activities; however tools are lacking. To this end, this study demonstrates that a hydrogel coupled with integrin-binding deoxyribonucleic acid (DNA) tethers with pre-defined rupture forces can modulate cell adhesion, differentiation, and secretion activities due to the changes in the number and, likely, force of cells adhered to a gel. The rupture force of DNA tethers was tuned by altering the spatial arrangement of matrix-binding biotin groups. The DNA tethers were immobilized on a hydrogel of alginate grafted with biotin using avidin. Mesenchymal stem cells showed enhanced adhesion, neural differentiation, and paracrine secretion when cultured on the gel coupled with DNA tethers with higher rupture forces. Such innovative cell-matrix interface engineering would be broadly useful for a series of materials used for fundamental and applied studies on biological cells. PMID:26912186

  11. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  12. Silicone implant rupture: detection with US.

    PubMed

    Harris, K M; Ganott, M A; Shestak, K C; Losken, H W; Tobon, H

    1993-06-01

    The authors evaluated the ability of ultrasound (US) in detection of silicone implant ruptures and compared US detection with that of mammography and physical examination in 22 women with 29 sites of implant leakage. On sonograms, leaks were evident from a highly echogenic pattern of scattered and reverberating echoes with loss of detail posterior to the echogenic area. The area appears as a "snowstorm" and has a well-defined anterior margin but a poorly defined posterior margin. Twenty-five sites in 19 women were surgically confirmed. Mammograms obtained with various views and sonograms were available for comparison in 20 of 25 surgically confirmed leaks. Of all 29 leaks, 14 were detected at physical examination as palpable masses. Six of these 20 leaks were not detected with mammography. With US, only one leak was not detected. US allowed more accurate prediction of the extent of free silicone in the breast and enabled detection of silicone within axillary nodes. Recognition of the characteristic highly echogenic sonographic appearance of microglobules of free silicone in the soft tissues can improve detection of implant rupture. PMID:8497626

  13. GPU Acceleration of Support Operator Rupture Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Dong, T.; Yuen, D. A.

    2010-12-01

    SORD (Support Operator Rupture Dynamics) is an open-source software based on a fourth-order finite-difference method which can simulate 3D elastic wave propagation and spontaneous rupture on hexahedral mesh. It can be used for many kinds of surface boundary conditions, including free surface. The original software is developed by Geoffrey Ely from USC and modified by us for acceleration on GPU with NVIDIA CUDA. Our motivation on accelerating SORD on GPU is inspired by new generation GPUs superior ability on general purpose computing and NVIDIA CUDAs user-friendly developing environment for academic users. After translating the code from Fortran 95 to CUDA and implementing the transformed CUDA SORD code on the NVIDIA Tesla C1060, we obtained a factor of 6 speedup as compared to the original Fortran 95 version code , which was run on Intel Xeon X5570 2.9GHz. Our 3D wave solutions show explicitly visually in 3D format the different propagating wave fronts associated with the P and S waves according to the appropriate elastic parameter ratios. Because of the limitation of the global memory of NVIDIA Tesla C1060, too many more grid points would slow the calculation. However, by using the new NVIDIA Tesla C2070, which has 6 GBytes global memory, we can increase the simulation data size into 350X350X350.

  14. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  15. Shear rupture of a directionally solidified eutectic gamma/gamma-prime - alpha /Mo/ alloy. [for aircraft engine turbine blades

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1978-01-01

    Directionally solidified gamma/gamma-prime - alpha (Mo) eutectic alloys are being evaluated for application as advanced aircraft engine turbine blades. Their excellent high-temperature strength is partly due to their directionally aligned microstructure. However, alloys with such directional structures may display low shear strength at 760 C, the operating temperature of advanced blade roots. The objective of this investigation was to determine the shear rupture strength of the gamma/gamma-prime - alpha eutectic alloy and possibly to improve it by microstructural and heat-treatment variations. Bars of gamma/gamma-prime - alpha alloy containing nominally 5.7% Al and 33.5% Mo by weight with balance Ni were directionally solidified at rates between 10 and 100 mm per hour. Materials were solidified in furnaces with thermal gradients at the liquid-solid interface of 250 or 100 C per cm. A limited number of longitudinal shear rupture tests were conducted at 760 C and 207 MPa in the as-solidified and in several heat-treated conditions. It was found that the shear rupture failures are partly transgranular and that resistance to failure is promoted by good fiber alignment and a matrix structure consisting mainly of gamma-prime. Well-aligned as-solidified specimens sustained the shear stress for an average of 81 hours, while cellular material failed in one hour or less.

  16. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  17. Effect of heat treatment at 1150 C on creep-rupture properties of alloy FA-180

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.

    1996-08-01

    The alloy FA-180, with a composition of Fe-28Al-5Cr-0.5Nb-0.8Mo-0.025Zr-0.05C-0.005B (at.%), is of interest because of its improved creep-rupture resistance when compared to alloy FA-129 (Fe-28Al-5Cr-0.5Nb-0.2C). At a temperature of 593 C and under a stress of 207 MPa, the creep-rupture life of FA-129 heat treated for 1 h at 750 C is about 20 h while the FA-180 alloy lasts approximately 100 h. Heat treatment at 1,150 C has been shown to further improve the creep life of FA-180 and creep-rupture lives of approximately 2,000 h have been attained. This strengthening was attributed to the presence of fine matrix and grain boundary Zr-rich MC precipitates that were produced by the heat treatment. The current study continues the investigation of the effect of heat treatment at 1,150 C on the improvement of creep-rupture life in alloy FA-180. As part of the effort to understand the strengthening mechanisms involved with heat treatment at 1,150 C, transmission electron microscopy was used to correlate the microstructure with the improved creep resistance. Results indicate that heat treatment at 1,150 C for 1 h, followed by rapid quenching in water or mineral oil, produces even further improvements in the creep-rupture life of this alloy. A specimen being tested at 593 C and 207 MPa was stopped after over 6000 h of life, while another specimen lasted over 1,600 h at 650 C and 241 MPa. The microstructure of the oil-quenched specimen contained many dislocation loops which were not present in the air-cooled specimens. These loops pinned dislocations during creep testing at temperatures of 593--700 C, resulting in stabilized deformation microstructure and increased creep-rupture strength.

  18. Clinical outcomes after repair of quadriceps tendon rupture: a systematic review.

    PubMed

    Ciriello, Vincenzo; Gudipati, Suribabu; Tosounidis, Theodoros; Soucacos, P N; Giannoudis, Peter V

    2012-11-01

    The existing evidence regarding the management of quadriceps tendon rupture remains obscure. The aim of the current review is to investigate the characteristics, the different techniques employed and to analyse the clinical outcomes following surgical repair of quadriceps tendon rupture. An Internet based search of the English literature of the last 25 years was carried out. Case reports and non-clinical studies were excluded. The methodological quality of the included studies was assessed using the Coleman Methodology Score. All data regarding mechanism and site of rupture, type of treatment, time elapsed between diagnosis and repair, patients' satisfaction, clinical outcome, return to pre-injury activities, complications and recurrence rates were extracted and analysed. Out of 474 studies identified, 12 met the inclusion criteria. The average of Coleman Methodology Score was 50.46/100. In total 319 patients were analysed with a mean age of 57 years (16-85). The mean time of follow-up was 47.5 months (3 months to 24 years). The most common mechanism of injury was simple fall (61.5%). Spontaneous ruptures were reported in 3.2% of cases. The most common sites of tear were noted between 1cm and 2 cm of the superior pole of the patella and, in the older people, at the osseotendinous junction. The most frequently used repair technique was patella drill holes (50% of patients). Simple sutures were used in mid-substance ruptures. Several reinforcement techniques were employed in case of poor quality or retraction of the torn ends of tendon. The affected limb was immobilised in a cast for a period of 3-10 weeks. Quadriceps muscular atrophy and muscle strength deficit were present in most of the cases. Worst results were noted in delayed repairs. Reported complications included heterotopic ossifications in 6.9% of patients, deep venous thrombosis or pulmonary embolism in 2.5%, superficial infection in 1.2% and deep infection in 1.1%. It appears that the type of surgical repair does not influence the clinical results. The majority of the studies reported good or excellent ROM and return to the pre-injury activities. The overall rate of re-rupture was 2%. PMID:22959496

  19. Investigating Earthquake Rupture Processes in a Deep South African Gold Mine (Invited)

    NASA Astrophysics Data System (ADS)

    McGarr, A.; Fletcher, J. B.; Boettcher, M. S.; Heesakkers, V.; Johnston, M. J.; Reches, Z.

    2010-12-01

    A primary objective of the NELSAM (Natural Earthquake Laboratory in South African Mines) Project was to record the rupture processes in the near field of a mining-induced earthquake of M>3. When this project was initiated, it seemed likely that an earthquake this large would rupture the ancient Pretorius fault where it intersected the gold-bearing reef at a depth of 3600 m, near the bottom of TauTona Mine. To prepare, a small-scale network of borehole seismic and strain instrumentation was installed. Also, much effort was expended in geologic investigations in the immediate environs of the portion of the Pretorius fault where earthquake rupture was expected. Contrary to expectations, the M>3, earthquake never occurred, at least as of this writing. Nonetheless, this project has provided many insights regarding earthquake ruptures because of an opportunity that came up during the initial field investigations of the Pretorius fault. That is, a M2.2 earthquake ruptured the Pretorius fault in December 2004, before the NELSAM borehole instrumentation was installed. This earthquake was, however, well recorded by the mine-wide seismic network and so these seismograms, together with the extensive mapping of the rupture within the Pretorius fault zone, have enhanced considerably our understanding of earthquake source processes and the conditions causing an earthquake. The initial field studies revealed that the Pretorius fault is about 10 km long and dips nearly vertically, on average, with oblique slip up to 200 m. This slip occurred more than 2 billion years ago during the Archean. In the meantime, the Pretorius fault has been inactive until affected by mining operations. This extensive period of inactivity has allowed the fault zone material to recover much of its initial strength; thus, rupture across this fault is probably more like fresh rock fracture than frictional slip. After the M2.2 earthquake in December 2004, a comprehensive study of its effects on the Pretorius fault revealed oblique-normal slip across four non-parallel segments of the fault zone, with a maximum observed slip of 25 mm. The ambient state of stress measured in the environs of this study area is extensional with a vertically oriented, maximum principal stress due to the overburden that is about twice the minimum horizontal principal stress. These ambient stresses were altered substantially by the nearby mining so as to induce this M2.2 earthquake. Analysis of the ground motion data from the mine-wide seismic network indicated a seismic moment tensor with a shear component of 2.3e12 N-m as well as an implosive component, associated with coseismic collapse of the nearby mine stopes. Laboratory rock mechanics results were used to interpret the seismic moment and the maximum slip to infer a failure stress in the seismogenic zone of about 120 MPa. This high failure stress is consistent with the strength of the Pretorius fault zone material measured in the laboratory as well as with the radiated energy, 5.4e8 J, which is quite high for an earthquake of M2.2. In short, the rupture zone of this well-recorded earthquake was studied in detail to reveal many important insights concerning the source mechanics of earthquakes.

  20. Strength characterization of yttria/alumina-doped sintered silicon nitride

    NASA Technical Reports Server (NTRS)

    Govila, R. K.

    1987-01-01

    The flexural strength of yttria/alumina-doped sintered silicon nitride (Ford Material-RM 20) was measured as a function of temperature (20 to 1400 deg C), applied stress and time. Flexural stress rupture testing at 800 and 1000 deg C indicated that the material can sustain 344 MPa and 276 MPa, respectively, without failure, for a limited time (less than or equal to 100 h). The RM 20 material was susceptible to both oxidation and early stages of creep deformation at temperatures above 1000 deg C and displayed extensive creep deformation and degradation in strength above 1300 deg C.

  1. Insight into the rupture process of a rare tsunami earthquake from near-field high-rate GPS

    NASA Astrophysics Data System (ADS)

    Macpherson, K. A.; Hill, E. M.; Elosegui, P.; Banerjee, P.; Sieh, K. E.

    2011-12-01

    We investigated the rupture duration and velocity of the October 25, 2010 Mentawai earthquake by examining high-rate GPS displacement data. This Mw=7.8 earthquake appears to have ruptured either an up-dip part of the Sumatran megathrust or a fore-arc splay fault, and produced tsunami run-ups on nearby islands that were out of proportion with its magnitude. It has been described as a so-called "slow tsunami earthquake", characterised by a dearth of high-frequency signal and long rupture duration in low-strength, near-surface media. The event was recorded by the Sumatran GPS Array (SuGAr), a network of high-rate (1 sec) GPS sensors located on the nearby islands of the Sumatran fore-arc. For this study, the 1 sec time series from 8 SuGAr stations were selected for analysis due to their proximity to the source and high-quality recordings of both static displacements and dynamic waveforms induced by surface waves. The stations are located at epicentral distances of between 50 and 210 km, providing a unique opportunity to observe the dynamic source processes of a tsunami earthquake from near-source, high-rate GPS. We estimated the rupture duration and velocity by simulating the rupture using the spectral finite-element method SPECFEM and comparing the synthetic time series to the observed surface waves. A slip model from a previous study, derived from the inversion of GPS static offsets and tsunami data, and the CRUST2.0 3D velocity model were used as inputs for the simulations. Rupture duration and velocity were varied for a suite of simulations in order to determine the parameters that produce the best-fitting waveforms.

  2. Transverse Mercator Projection Via Elliptic Integrals

    NASA Technical Reports Server (NTRS)

    Wallis, David E.

    1992-01-01

    Improved method of construction of U.S. Army's universal transverse Mercator grid system based on Gauss-Kruger transverse Mercator projection and on use of elliptic integrals of second kind. Method can be used to map entire northern or southern hemisphere with respect to single principal meridian.

  3. Transverse instability at the recycler ring

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2004-10-01

    Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

  4. Cladding For Transversely-Pumped Laser Rod

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  5. Transverse impedance localization using intensity dependent optics

    SciTech Connect

    Calaga,R.; Arduini, G.; Metral, E.; Papotti, G.; Quatraro, D.; Rumolo, G.; Salvant, B.; Tomas, R.

    2009-05-04

    Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.

  6. Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions

    SciTech Connect

    Prokudin, Alexei; Bacchetta, Alessandro

    2013-07-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  7. Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions

    SciTech Connect

    Prokudin, Alexey; Bacchetta, Alessandro

    2013-10-01

    We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.

  8. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  9. Transverse and longitudinal vibrations in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Beltukov, Y. M.; Fusco, C.; Tanguy, A.; Parshin, D. A.

    2015-12-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q. For this purpose we define the transverse component of the eigenvector with given ? as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.

  10. Transverse Spin Effects in SIDIS at COMPASS

    SciTech Connect

    Joosten, Rainer

    2009-12-17

    The measurement of single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target is an important part of the COMPASS physics program. It allows us to investigate the transversity distribution functions as well as transverse momentum dependent distribution functions by measuring azimuthal asymmetries in the hadron production. After COMPASS took data in the years 2002-2004 by scattering a 160 GeV/c muon beam off a transversely polarized deuteron ({sup 6}LiD) target, in 2007 additional data was collected on a transversely polarized proton (NH{sub 3}) target. In this contribution, the latest results on the Collins and Sivers asymmetries in single hadron production as well as two-hadron asymmetries from the analysis of the proton data are presented and compared with existing model predictions.

  11. Quantifying uncertainty in earthquake rupture models

    NASA Astrophysics Data System (ADS)

    Page, Morgan T.

    Using dynamic and kinematic models, we analyze the ability of GPS and strong-motion data to recover the rupture history of earthquakes. By analyzing the near-source ground-motion generated by earthquake ruptures through barriers and asperities, we determine that both the prestress and yield stress of a frictional inhomogeneity can be recovered. In addition, we find that models with constraints on rupture velocity have less ground motion than constraint-free, spontaneous dynamic models with equivalent stress drops. This suggests that kinematic models with such constraints overestimate the actual stress heterogeneity of earthquakes. We use GPS data from the well-recorded 2004 Mw6.0 Parkfield Earthquake to further probe uncertainties in kinematic models. We find that the inversion for this data set is poorly resolved at depth and near the edges of the fault. In such an underdetermined inversion, it is possible to obtain spurious structure in poorly resolved areas. We demonstrate that a nonuniform grid with grid spacing matching the local resolution length on the fault outperforms small uniform grids, which generate spurious structure in poorly resolved regions, and large uniform grids, which lose recoverable information in well-resolved areas of the fault. The nonuniform grid correctly averages out large-scale structure in poorly resolved areas while recovering small-scale structure near the surface. In addition to probing model uncertainties in earthquake source models, we also examine the effect of model uncertainty in Probabilistic Seismic Hazard Analysis (PSHA). While methods for incorporating parameter uncertainty of a particular model in PSHA are well-understood, methods for incorporating model uncertainty are more difficult to implement due to the high degree of dependence between different earthquake-recurrence models. We show that the method used by the 2002 Working Group on California Earthquake Probabilities (WGCEP-2002) to combine the probability distributions given by multiple earthquake recurrence models has several adverse effects on their result. In particular, WGCEP-2002 uses a linear combination of the models which ignores model dependence and leads to large uncertainty in the final hazard estimate. In addition to analyzing current statistical problems, we present alternative methods for rigorously incorporating model uncertainty into PSHA.

  12. Isolated rupture of teres major in a goalkeeper.

    PubMed

    Maciel, Rafael Almeida; Zogaib, Rodrigo Kallas; Pochini, Alberto De Castro; Ejnisman, Benno

    2015-01-01

    A complete rupture of the teres major is an extremely rare injury and rarely described in the literature. We report the first case of an isolated rupture of the teres major in a professional football goalkeeper. The diagnosis requires a high degree of suspicion and complementation by image examinations. Conservative treatment has a high success rate with early return to sport. PMID:26701915

  13. Non-bleeding Spontaneous Rupture of Hepatocellular Carcinoma

    PubMed Central

    Islam, Mahibul; Deka, Pranjal; Kapur, Raj; Ansari, Md. Abu Masud

    2013-01-01

    Rupture of hepatocellular carcinoma (HCC) is not uncommon and most ruptured HCC present with hemoperitoneum and hemorrhagic shock. Management of ruptured HCC is different than non-ruptured one. Short- and long-term mortality increases following rupture of HCC with increasing chances of tumor dissemination. We describe a case with non-bleeding spontaneous rupture of HCC. A 62-year-old male patient was admitted to our institute hospital with mild to moderate pain in the right upper part of the abdomen. He lost appetite and weight. Ultrasonography of the abdomen was performed and it suggested HCC and ascites. Triple phase computer tomography revealed HCC in segments 6 and 7 of liver with typical radiological characteristics. Portal vein was thrombosed. No extravasation of dye was seen. Ruptured of tumor through liver capsule was seen with necrosis and hemorrhage in the center of the tumor. Non-bleeding ruptured HCC has not been reported in the literature to the best of our knowledge. We herein describe this rare case. PMID:24497757

  14. Ultrasound Diagnosis of Bilateral Quadriceps Tendon Rupture After Statin Use

    PubMed Central

    Nesselroade, Ryan D.; Nickels, Leslie Connor

    2010-01-01

    Simultaneous bilateral quadriceps tendon rupture is a rare injury. We report the case of bilateral quadriceps tendon rupture sustained with minimal force while refereeing a football game. The injury was suspected to be associated with statin use as the patient had no other identifiable risk factors. The diagnosis was confirmed using bedside ultrasound. PMID:21079697

  15. Spleen rupture in course of chronic pancreatitis. A case report.

    PubMed

    Luck, O D; Juhl-Jensen, V

    1990-01-01

    Non-traumatic spleen rupture is exceedingly rare. We report case, in which an occlusion of the pancreatic duct induced a fistula from the pancreatic tail to the spleen coursing enzymatic digestion resulting in subcapsular bleeding and rupture of the spleen. The pathogenesis is discussed. PMID:2131568

  16. Relaxing Segmentation: Does It Improve Characterization of Fault Rupture Behavior?

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.

    2014-12-01

    Most faults have not ruptured once historically, let alone repeatedly. Estimating future rupture length of an earthquake source has been a challenge since the 1970s when concepts of full and half fault lengths were employed. In the 1980s paleoseismic event timing and observations of slip, coupled with geometric and other physical fault changes, led to concepts of fault segmentation and it's modeling for hazard. The Uniform California Earthquake Rupture Forecast 3 (UCERF 3, Field et al., 2014) relaxed segmentation, guided by rules in which a separation distance of ≤5km and orientation to Coulomb stress changes at fault junctions are prime factors for allowing fault-to-fault jumps. A set of ~350 fault sections produced ~250K ruptures ranging in length from 15 km-1200 km. An inversion provided the rates of these, which range from 102-108 years. Many of the long ruptures have exceedingly low individual rates within the UCERF 3 geologic model but are sufficient in number to release cumulative moment that brings the long-term (Myr) and historical (since 1850) MFDs for the California region into close agreement. Does UCERF 3 have too many multi-fault ruptures? Since 1850 there have been ~260 surface ruptures worldwide in shallow continental crust. 77% are 0-49km; 6% exceed 150km, and the longest is 1906 San Francisco (435-470 km). In California since 1857 there have been 31 surface ruptures. 77% are shorter than 49 km. The longest are 1906, 1857 Fort Tejon (297km), and 1872 Owens Valley (108 km). Most long historical strike-slip ruptures are continuous and geomorphically well-defined traces with limited geometric changes. In contrast, UCERF3 modeling of the south Hayward, as an example, allows it to participate in ruptures that extend to the south ends of the San Andreas or San Jacinto faults (900 km). These include branching (Hayward-Calaveras, San Andreas-San Jacinto) and jumps (Calaveras-San Andreas) on creeping sections of these faults. 5km is the connectivity threshold in UCERF 3 but only 40% of historical ruptures have negotiated this distance. There are other controls of rupture propagation: frictional properties, rupture dynamics, creep, and, as shown by the 2002 Denali-Totschunda rupture, the timing of the prior event and level of stress accumulation on adjacent fault sections. Time will be the tester.

  17. A Three Year Clinicopathological Study of Cases of Rupture Uterus

    PubMed Central

    Rathod, Setu; Swain, Sujata

    2015-01-01

    Introduction Rupture uterus is a life threatening obstetric complication with serious maternal and fetal side-effects. We report a 3 year (2010-2013) retrospective clinical study of pregnancy with rupture uterus cases attending a tertiary care hospital. Aim The aim of the study was to evaluate the incidence of rupture uterus, incidence as per age, parity, clinical presentations, risk factors, complications and management. Materials and Methods Retrospective data of 74 cases of rupture uterus in SCB Medical college, Cuttack was collected from case records of 26,547 deliveries during a 3 year span (2010-2013). Parameters like cause of rupture, type, site of rupture and outcome were recorded. The collected data was analysed by SPSS software v19. Results Out of 26,547 deliveries during the three year period, there were 74 cases of rupture uterus with an incidence of rupture 1 in 359 (0.28%). The mean age of rupture uterus was 27.4 years. 95.8% were multigravida and majority were referred cases from low socioeconomic status. Only 40.5% had the required minimum of four antenatal visits as recommended by WHO (World Health Organisation). A total of 48.6% of cases with rupture uterus had history of previous Caesarean section. Prolonged labour was present in 75.6% of the cases. Only 12.2% of the cases had history of oxytocin use whereas 9.5% had undergone an operative vaginal delivery. Obstructed labour was the cause in 24.3% of cases, 85.1% had complete rupture. Majority had a rupture in the anterior wall (69%) and 81.1% had rupture in lower segment of uterus. Only 17.6% had broad ligament haematoma, 10.8% colporrhexis and 6.8% had associated bladder injury. Repair was possible in only 39.2% of cases, whereas majority landed up in hysterectomy. Internal iliac ligation was done in 2.7% of cases. Perinatal mortality was 90.5% whereas maternal death was seen in 13.5% cases. One patient developed VVF (vesicovaginal fistula). Duration of hospital stay was upto 14 days in 81.1% cases. Conclusion Education and proper care especially of high risk patients like previous caesarean by competent personnal, proper use of oxytocin and early referral may help to reduce the incidence of rupture uterus. PMID:26673858

  18. Earthquake rupture stalled by a subducting fracture zone.

    PubMed

    Robinson, D P; Das, S; Watts, A B

    2006-05-26

    We showed that the rupture produced by the great Peru earthquake (moment magnitude 8.4) on 23 June 2001 propagated for approximately 70 kilometers before encountering a 6000-square-kilometer area of fault that acted as a barrier. The rupture continued around this barrier, which remained unbroken for approximately 30 seconds and then began to break when the main rupture front was approximately 200 kilometers from the epicenter. The barrier had relatively low rupture speed, slip, and aftershock density as compared to its surroundings, and the time of the main energy release in the earthquake coincided with the barrier's rupture. We associate this barrier with a fracture zone feature on the subducting oceanic plate. PMID:16728638

  19. Spontaneous diaphragmatic rupture related to local invasion by retroperitoneal liposarcoma.

    PubMed

    Pehar, M; Vukoja, I; Rozi?, D; Mikovi?, J

    2012-01-01

    We report a case of the female patient who was admitted to the hospital because of syncope experienced while climbing stairs. Diagnostic workup raised the suspicion of a right diaphragmatic rupture that was eventually confirmed by surgery (right-sided thoracotomy). Surgery also revealed tissue protruding through the rupture site from within the retroperitoneum that was proven subsequently to be a dedifferentiated liposarcoma. Second surgery was performed to completely remove the liposarcoma tissue and repair a coincident old right lumbar region hernia. The patient recovered fully. Spontaneous rupture of the diaphragm is rare and this is especially true for the right hemidiaphragm. We report the first case of diaphragmatic rupture caused by local infiltration by a retroperitoneal liposarcoma. This and similar reports emphasise that in cases with high clinical suspicion of diaphragmatic rupture, diagnosis should be pursued even in the absence of a preceding traumatic event. PMID:22524913

  20. Material contrast does not predict earthquake rupture propagation direction

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    2005-01-01

    Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.

  1. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  2. Surgical management of acute distal biceps tendon rupture associated with contralateral radial palsy

    PubMed Central

    Ennaciri, Badr; Beaudouin, Emmanuel; Mahfoud, Mustapha; Berrada, Mohamed Saleh; Montbarbon, Eric

    2015-01-01

    Acute distal biceps tendon rupture constitute a rare lesion of biceps injuries, typically, easy to diagnosis after lifting a heavy object. Treatment is controversial, nonoperative for sedentary and elderly patients; surgical for young and active individuals. Many operative techniques are described, they all aim to restore an excellent strength of flexion and supination. We opted for one-incision method and fixation using trans-osseous anchoring for our patient, because we are convinced that is a simpler and safer technique. Postoperative rehabilitation, after a period of elbow immobilization, must be operated for returning to full activity. Biceps tendon repair has permitted to our patient who suffer from right upper limb handicap due to radial nerve palsy, recuperating the lost strength and force in his dominant limb and maintaining some quality of life. PMID:26958121

  3. Life-Threatening Retropharyngeal Hemorrhage Secondary to Rupture of the Inferior Thyroid Artery

    PubMed Central

    Calogero, Cristina G.; Miller, Andrew C.; Greenberg, Marna Rayl

    2015-01-01

    Inferior thyroid artery (ITA) rupture is rare and may progress to life-threatening conditions. We present a patient who visited the emergency department after an episode of syncope and dizziness in which he had a mechanical fall that resulted in abrasions and a hematoma to his left forehead. The patient presented with dysphagia and anterior neck swelling that progressed rapidly into airway compromise requiring endotracheal intubation. Emergent computed tomography revealed a large retropharyngeal hematoma, with active arterial extravasation that was thought to be arising from the thyrocervical trunk on the left. The hematoma measured approximately 6.7?cm transversely and 3.2?cm anteroposteriorly and extended from the level of the lower nasopharynx, down the neck into the retropharyngeal and danger space and into the mediastinum posterior to the esophagus, overall approximately 25?cm. The larynx was deviated anteriorly and there was esophageal compression. An emergent arteriogram and catheterization confirmed bleeding from branches of the ITA, and successful embolization was performed. It is important to recognize the ITA rupture as a potential etiology of an acute airway compromise. In emergent situations, while securing an airway is a priority, rapidly initiating diagnostic testing to confirm the diagnosis and arranging for arterial embolization can be life-saving. PMID:26819785

  4. Rupture of the quadriceps tendon. A case report in a young dog.

    PubMed

    Arnault, F; Dembour, T; Gallois Bride, H; Chancrin, J L

    2009-01-01

    A five-month-old, male, 16 kg, mixed breed dog was presented for an acute non-weight bearing lameness of the right hind limb. A subtotal avulsion of the quadriceps tendon at its patellar insertion was diagnosed through radiography and ultrasonography. Two nylon sutures secured with a stainless steel crimp were placed in a locking loop pattern in the quadriceps tendon and through a transverse 2.7 mm drill-hole in the patella. No external coaptation was used postoperatively. A full functional recovery was observed, and was followed for one year postoperatively. Quadriceps tendon rupture has not been described in the veterinary literature to our knowledge; in humans, quadriceps tendon rupture is a well known entity, often due to systemic disease resulting in weakening of the tendinous structures. In the case presented herein, the dog's history, young age and location, without underlying biochemical abnormalities, led us to believe that the observed lesion was of traumatic origin. The surgical treatment performed was based on that performed in humans and also that which has been investigated experimentally in the dog. PMID:19151876

  5. Extraperitoneally Ruptured, Everted, and Prolapsed Bladder: A Very Rare Complication of Pelvic Injury

    PubMed Central

    Ojewola, Rufus Wale; Tijani, Kehinde Habeeb; Badmus, Olakunle Olaleke; Oliyide, Abisola Ekundayo; Osegbe, Chukwudi Emmanuel

    2015-01-01

    Traumatic rupture of the bladder with eversion and protrusion via the perineum is a rare complication of pelvic injury. We present a 36-year-old lady who sustained severe pelvic injury with a bleeding right-sided deep perineal laceration. She had closed reduction of pelvic fracture with pelvic banding and primary closure of perineal laceration at a private hospital. She subsequently had dehiscence of repaired perineal laceration with protrusion of fleshy mass from vulva and leakage of urine per perineum five weeks later. Examination revealed a fleshy mucosa-like mass protruding anteriorly with a bridge of tissue between it and right anterolateral vaginal wall. Upward pressure on this mass revealed the bladder neck and ureteric orifices. She had perineal and pelvic exploration with findings of prolapsed, completely everted bladder wall through a transverse anterior bladder wall rent via the perineum, and an unstable B1 pelvic disruption. She had repair of the ruptured, everted, and prolapsed bladder, double-plate and screw fixation of disrupted pelvis and repair of the pelvic/perineal defect. She commenced physiotherapy and ambulation a week after surgery. Patient now walks normally and is continent of urine. We conclude that the intrinsic urethral continent mechanism plays a significant role in maintaining continence in females. PMID:26417472

  6. Unresponsive primipara after rupture of membranes.

    PubMed

    Buechel, Johanna; Berset, Andreas; Lehmann, Michael A; Lapaire, Olav

    2015-01-01

    Amniotic fluid embolism, also called anaphylactoid syndrome of pregnancy, is a rare but severe problem in obstetrics. It occurs in 8/100,000 births and the maternal mortality is up to 90%. We report the case of a patient with amniotic fluid embolism who was transferred to our hospital. The initial presentation was an unresponsive patient after spontaneous rupture of the membranes. The massive hypotension and coagulopathy as well as fetal bradycardia of 60 bpm led, after stabilisation of the mother, to an emergency caesarean section. The neonate expired hours later, despite neonatological intensive care. During the operation, we had to deal with massive bleeding due to the coagulopathy. Through interdisciplinary teamwork including Bakri postpartum balloon insertion through the obstetrics team, uterine artery embolism by the interventional radiologists and transfusion of blood products, the maternal life was saved and the patient was discharged 9 days after admission. PMID:25883261

  7. Ruptured Rathke cleft cyst mimicking pituitary apoplexy.

    PubMed

    Neidert, Marian Christoph; Woernle, Christoph Michael; Leske, Henning; Mller-Goede, Diane; Pangalu, Athina; Schmid, Christoph; Bernays, Ren-Ludwig

    2013-12-01

    Rathke cleft cysts (RCCs) are benign cystic lesions of the sellar and suprasellar region that are asymptomatic in most cases. Occasionally, compression of the optic pathway and hypothalamo-pituitary structures may cause clinical symptoms, such as headaches, visual deficits and endocrinopathies. Acute presentation caused by hemorrhage into an RCC have been described in the literature, and the term "Rathke cleft cyst apoplexy" has been coined. We present the case of a 32-year-old man with acute onset of meningitis-type symptoms and imaging findings resembling hemorrhagic pituitary tumor apoplexy. In retrospect, clinical symptoms, intraoperative appearance, and histologic examination were compatible with the diagnosis of nonhemorrhagic rupture of an RCC. Thus, the clinical presentation of "Rathke cleft cyst apoplexy" is not necessarily caused by hemorrhage. PMID:23696292

  8. Poroelastic Bimaterial Effects in Rupture Dynamics

    NASA Astrophysics Data System (ADS)

    Dunham, E. M.; Rice, J. R.

    2006-12-01

    A mismatch of elastic properties across a fault induces normal stress changes during spatially nonuniform slip. Recently, Rudnicki and Rice (2006) showed that similar effects follow from a mismatch of poroelastic properties (e.g., permeability) within fluid-saturated damage fringes along the fault walls; those induce changes in pore pressure on the slip plane and hence changes in effective normal stress during slip. The sign of both changes can be either positive or negative, and they need not agree. Both signs reverse when the rupture propagates in the opposite direction, introducing asymmetry into the rupture process. We model a poroelastic fault zone cut by a planar fault separating regions of potentially different poroelastic properties. Slip compresses one side of the fault while dilating the opposite side. The resulting undrained pore pressure change is of opposite sign across the fault, and pore fluid diffuses to ensure continuity of pore pressure and fluid flux across the fault. Pore pressure on the fault decreases if the compressive side is less permeable (all other quantities being equal) and vice-versa. The poroelastic properties are measured over the hydraulic diffusion length, generally of order a few millimeters in well-sheared fault core cataclasite for a slip duration of a few seconds. (Poroelastic effects are essentially negligible on that time scale at greater distances from the fault because of vastly smaller pore pressure gradients; the material responds there like a classical elastic solid with moduli based on undrained poroelastic response.) Steady sliding of two half-spaces (neglecting shear heating) with identical elastic properties but a mismatch in poroelastic properties is unstable to perturbations for all non-zero values of the friction coefficient and Skempton's coefficient. The growth rate is proportional to the wavenumber of the perturbation, rendering this problem ill-posed in a manner similar to that for elastic mismatch. When both elastic and poroelastic properties are discontinuous across the fault, sliding is unstable for arbitrarily small friction coefficients if the elastic mismatch permits the existence of a generalized Rayleigh wave. When the poroelastic effect opposes the elastic bimaterial effect, there exists a critical parameter set at which the effects precisely balance and sliding is neutrally stable. The propagation direction of the unstable mode reverses across this critical state. For a large elastic mismatch, the generalized Rayleigh wave goes out of existence and sliding is stabilized for friction coefficients less than some critical value; this value is altered by the poroelastic response. This stability analysis is augmented by calculations of spontaneous ruptures on slip-weakening faults across which elastic and poroelastic properties may be discontinuous. Prakash-Clifton regularization permits convergent solutions in the otherwise ill-posed regime. The numerical method is validated by comparison to analytical solutions for the rupture of a line asperity between dissimilar elastic solids in frictionless contact (Harris and Day, 1997) and for a self-similar crack between identical elastic solids but with a mismatch in poroelastic properties.

  9. Multifractal scaling of thermally activated rupture processes.

    PubMed

    Sornette, D; Ouillon, G

    2005-01-28

    We propose a "multifractal stress activation" model combining thermally activated rupture and long memory stress relaxation, which predicts that seismic decay rates after mainshocks follow the Omori law approximately 1/t(p) with exponents p linearly increasing with the magnitude M(L) of the mainshock. We carefully test this prediction on earthquake sequences in the Southern California earthquake catalog: we find power law relaxations of seismic sequences triggered by mainshocks with exponents p increasing with the mainshock magnitude by approximately 0.1-0.15 for each magnitude unit increase, from p(M(L) = 3) approximately 0.6 to p(M(L) = 7) approximately 1.1, in good agreement with the prediction of the multifractal model. PMID:15698332

  10. Rupture process of the 2011 off the Pacific coast of Tohoku Earthquake ( M w 9.0) as imaged with back-projection of teleseismic P-waves

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Mori, Jim

    2011-07-01

    We use the back-projection method, with data recorded on the dense USArray network, to estimate the rupture propagation for the M w 9.0 earthquake that occurred offshore of the Tohoku region, Japan. The results show a variable rupture propagation ranging from about 1.0 to 3.0 km/s for the high-frequency radiation. The rupture propagates over about 450 km in approximately 150 s. Based on the rupture speed and direction, the high-frequency source process can be divided into two parts. The first part has a relatively slow rupture speed of 1.0 to 1.5 km/s and propagates northwestward. In the second part, the rupture progresses southwestward starting with a slow speed of about 1.5 km/s and accelerating to about 3.0 km/s. We see three large pulses at 30 s, 80 s and 130 s. The first two, including the largest second pulse, were located 50 to 70 km northwest of the epicenter. The third occurred about 250 km southwest of the epicenter. The variability of rupture velocity may be associated with significant changes of physical properties along the fault plane. Areas of low/high rupture speed are associated with large/small energy releases on the fault plane. These variations may reflect the strength properties along the fault. Also, locations of the high-frequency radiation derived from the back-projection analysis are significantly different from the areas of very large slip for this earthquake.

  11. Fluid-induced rupture experiment on Fontainebleau sandstone: Premonitory activity, rupture propagation, and aftershocks

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Thompson, B. D.; Fortin, J.; Guguen, Y.; Young, R. P.

    2007-10-01

    A 14% porosity Fontainebleau sandstone sample (diameter = 40 mm, length = 88 mm) was loaded tri-axially, under 100 MPa confining pressure and 240 MPa differential stress. In drained conditions and under constant load, pore pressure (water) was raised until failure was triggered. During the experiment, elastic wave velocities and permeability were monitored while more than 3000 Acoustic Emissions (AE) were located prior and after failure. AE locations show that macroscopic fracture propagated from a large nucleation patch at speeds comprised between 0.1 and 4 m/s. Number of AE hits per second followed Omori's law, with exponents of 0.92 and 1.18 pre- and post-failure respectively. No quiescence was observed post failure, except where rupture initially nucleated from. Fast depressurization of the pore space induced secondary aftershocks located within the fracture plane, possibly indicating a heterogeneous fault geometry after rupture, of lower permeability, that compacted during the release of pore pressure.

  12. Flexibility and Muscular Strength.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    1988-01-01

    This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)

  13. Macroscopic Source Properties from Dynamic Rupture Styles in Plastic Media

    NASA Astrophysics Data System (ADS)

    Gabriel, A.; Ampuero, J. P.; Dalguer, L. A.; Mai, P. M.

    2011-12-01

    High stress concentrations at earthquake rupture fronts may generate an inelastic off-fault response at the rupture tip, leading to increased energy absorption in the damage zone. Furthermore, the induced asymmetric plastic strain field in in-plane rupture modes may produce bimaterial interfaces that can increase radiation efficiency and reduce frictional dissipation. Off-fault inelasticity thus plays an important role for realistic predictions of near-fault ground motion. Guided by our previous studies in the 2D elastic case, we perform rupture dynamics simulations including rate-and-state friction and off-fault plasticity to investigate the effects on the rupture properties. We quantitatively analyze macroscopic source properties for different rupture styles, ranging from cracks to pulses and subshear to supershear ruptures, and their transitional mechanisms. The energy dissipation due to off-fault inelasticity modifies the conditions to obtain each rupture style and alters macroscopic source properties. We examine apparent fracture energy, rupture and healing front speed, peak slip and peak slip velocity, dynamic stress drop and size of the process and plastic zones, slip and plastic seismic moment, and their connection to ground motion. This presentation focuses on the effects of rupture style and off-fault plasticity on the resulting ground motion patterns, especially on characteristic slip velocity function signatures and resulting seismic moments. We aim at developing scaling rules for equivalent elastic models, as function of background stress and frictional parameters, that may lead to improved "pseudo-dynamic" source parameterizations for ground-motion calculation. Moreover, our simulations provide quantitative relations between off-fault energy dissipation and macroscopic source properties. These relations might provide a self-consistent theoretical framework for the study of the earthquake energy balance based on observable earthquake source parameters.

  14. Bacterial DNA findings in ruptured and unruptured intracranial aneurysms.

    PubMed

    Pyysalo, Mikko J; Pyysalo, Liisa M; Pessi, Tanja; Karhunen, Pekka J; Lehtimäki, Terho; Oksala, Niku; Öhman, Juha E

    2016-05-01

    Objective Chronic inflammation has earlier been detected in ruptured intracranial aneurysms. A previous study detected both dental bacterial DNA and bacterial-driven inflammation in ruptured intracranial aneurysm walls. The aim of this study was to compare the presence of oral and pharyngeal bacterial DNA in ruptured and unruptured intracranial aneurysms. The hypothesis was that oral bacterial DNA findings would be more common and the amount of bacterial DNA would be higher in ruptured aneurysm walls than in unruptured aneurysm walls. Materials and methods A total of 70 ruptured (n = 42) and unruptured (n = 28) intracranial aneurysm specimens were obtained perioperatively in aneurysm clipping operations. Aneurysmal sac tissue was analysed using a real-time quantitative polymerase chain reaction to detect bacterial DNA from several oral species. Both histologically non-atherosclerotic healthy vessel wall obtained from cardiac by-pass operations (LITA) and arterial blood samples obtained from each aneurysm patient were used as control samples. Results Bacterial DNA was detected in 49/70 (70%) of the specimens. A total of 29/42 (69%) of the ruptured and 20/28 (71%) of the unruptured aneurysm samples contained bacterial DNA of oral origin. Both ruptured and unruptured aneurysm tissue samples contained significantly more bacterial DNA than the LITA control samples (p-values 0.003 and 0.001, respectively). There was no significant difference in the amount of bacterial DNA between the ruptured and unruptured samples. Conclusion Dental bacterial DNA can be found using a quantitative polymerase chain reaction in both ruptured and unruptured aneurysm walls, suggesting that bacterial DNA plays a role in the pathogenesis of cerebral aneurysms in general, rather than only in ruptured aneurysms. PMID:26777430

  15. RESEARCH PAPERS : Transition process from nucleation to high-speed rupture propagation: scaling from stick-slip experiments tonatural earthquakes

    NASA Astrophysics Data System (ADS)

    Shibazaki, Bunichiro; Matsu'ura, Mitsuhiro

    1998-01-01

    The process of earthquake generation is governed by a coupled non-linear system consisting of the equation of motion in elastodynamics and a fault constitutive relation. On the basis of the results of stick-slip experiments we constructed a theoretical source model with a slip-dependent constitutive law. Using the theoretical source model, we simulated the transition process numerically from quasi-static nucleation to high-speed rupture propagation and succeeded in quantitatively explaining the three phases observed in stick-slip experiments, that is very slow (1 cm s-1 ) quasi-static nucleation preceding the onset of dynamic rupture, dynamic but slow (10 m s-1 ) rupture growth without seismic-wave radiation, and subsequent high-speed (2 km s-1 ) rupture propagation. Theoretical computation of far-field waveforms with this model shows that a slow initial phase preceding the main P phase expected from a classical source model is radiated in the accelerating stage from the slow dynamic rupture growth to the high-speed rupture propagation. On the assumption that the physical law governing rupture processes in natural earthquakes is essentially the same as that in stick-slip events, we scaled the theoretical source model explaining the stick-slip experiments to the case of natural earthquakes so that the scaled source model explains the observed average stress drop, the critical nucleation-zone size, and the duration of the slow initial phase well. The physical parameters prescribing the source model are the weak-zone size L , the critical weakening displacement Dc , the breakdown strength drop ?b , and the rigidity ? of the surrounding elastic medium. In scaling these parameters, we held a non-dimensional controlling parameter ?' = (?Dc )/(?b L ) in numerical simulation constant. From the results of scaling we found the following fundamental relations between the source parameters: (1) the critical weakening displacement Dc is in proportion to the weak-zone size L , but (2) the breakdown strength drop ?b is independent of L .

  16. Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate Temperature — Part I

    NASA Astrophysics Data System (ADS)

    Larochelle, K. J.; Morscher, G. N.

    2006-05-01

    The stress rupture strength of the SYL-iBN/BN/SiC composite was evaluated at 550 and 750 °C with moisture content levels of 0.0, 0.2, and 0.6 atm partial pressure of water vapor, pH2O. The stress rupture strengths decreased with respect to time with the rate of decrease related to the temperature and the amount of moisture content. In all cases the degradation was more severe initially and then approached a run-out threshold level. The thresholds were reached at approximately 100+, 60, 80 h for the 550 °C with 0.0, 0.2, and 0.6 pH2O, respectively. The thresholds were reached at approximately 40, 20, and 10 h for the 750 °C cases. The interpolated stress rupture strengths at 100 h for 0.0, 0.2, and 0.6 pH2O at 550 °C were 82%, 68%, and 51% of the room temperature monotonic tensile strength. At 750 °C these strengths were 67%, 51%, and 50%. Analysis of Field Emission Scanning Electron Microscopy images showed evidence of embrittlement of the fiber/matrix interphase. Little to no embrittlement was observed at both temperatures with 0.0 pH2O. At both 550 and 750 °C with 0.2 and 0.6 pH2O, evidence of embrittlement increased with temperature and test duration with the most extensive embrittlement observed at 750 °C with 0.6 pH2O.

  17. Strength Training for Girls.

    ERIC Educational Resources Information Center

    Connaughton, Daniel; Connaughton, Angela; Poor, Linda

    2001-01-01

    Strength training can be fun, safe, and appropriate for young girls and women and is an important component of any fitness program when combined with appropriate cardiovascular and flexibility activities. Concerns and misconceptions regarding girls' strength training are discussed, presenting general principles of strength training for children

  18. The Influence of TiO2 Addition on the Modulus of Rupture of Alumina-Magnesia Refractory Castables

    NASA Astrophysics Data System (ADS)

    Yuan, Wenjie; Deng, Chengji; Zhu, Hongxi

    2015-08-01

    The addition of TiO2 to alumina-magnesia refractory castables could accelerate the in situ spinel and calcium hexa-aluminate (CA6) formation and change the phase evolution, which will have direct effect on the overall modulus of rupture values. The cold (CMOR) and hot (HMOR) modulus of rupture, thermal expansion, and elastic modulus of alumina-magnesia refractory castables with different amounts of TiO2 were measured. The correlation of CMOR, theoretical strength, fracture toughness, and the fractal dimension of the fracture surface for these compositions were investigated. HMOR data were described using the model based on Varshni approach and Adam-Gibbs theory. The influence of TiO2 addition on the modulus of rupture of alumina-magnesia refractory castables was related to microcracks derived from expansive phase formation and pore filling or viscous bridging due to the presence of liquid phase at high temperature. The contribution of the above factors to the modulus of rupture for castables varied with the temperature.

  19. Dynamic Tension Spectroscopy and Strength of Biomembranes

    PubMed Central

    Evans, Evan; Heinrich, Volkmar; Ludwig, Florian; Rawicz, Wieslawa

    2003-01-01

    Rupturing fluid membrane vesicles with a steady ramp of micropipette suction produces a distribution of breakage tensions governed by the kinetic process of membrane failure. When plotted as a function of log(tension loading rate), the locations of distribution peaks define a dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along the kinetic pathway. Using tests on five types of giant phosphatidylcholine lipid vesicles over loading rates(tension/time) from 0.01100 mN/m/s, we show that the kinetic process of membrane breakage can be modeled by a causal sequence of two thermally-activated transitions. At fast loading rates, a steep linear regime appears in each spectrum which implies that membrane failure starts with nucleation of a rare precursor defect. The slope and projected intercept of this regime are set by defect size and frequency of spontaneous formation, respectively. But at slow loading rates, each spectrum crosses over to a shallow-curved regime where rupture tension changes weakly with rate. This regime is predicted by the classical cavitation theory for opening an unstable hole in a two-dimensional film within the lifetime of the defect state. Under slow loading, membrane edge energy and the frequency scale for thermal fluctuations in hole size are the principal factors that govern the level of tension at failure. To critically test the model and obtain the parameters governing the rates of transition under stress, distributions of rupture tension were computed and matched to the measured histograms through solution of the kinetic master (Markov) equations for defect formation and annihilation or evolution to an unstable hole under a ramp of tension. As key predictors of membrane strength, the results for spontaneous frequencies of defect formation and hole edge energies were found to correlate with membrane thicknesses and elastic bending moduli, respectively. PMID:14507698

  20. TRANSVERSE SPIN AT PHENIX AND FUTURE PLANS.

    SciTech Connect

    MAKDISI,Y.

    2005-01-28

    The PHENIX experiment took data with transversely polarized proton beams in 2001-2002 and measured the transverse single spin asymmetries in inclusive neutral pion and non-identified charge hadrons at midrapidity and {radical} s = 200 GeV. The data near X{sub F} {approx} 0 cover a transverse momentum range from 0.5 to 5.0 GeV/c. The observed asymmetries are consistent with zero with good statistical accuracy. This paper presents the current work in light of earlier measurements at lower energies in this kinematic region and the future plans of the PHENIX detector.

  1. Transverse Colon Diverticulitis with Calcified Fecalith

    PubMed Central

    Solak, Aynur; Solak, Ilhami; Genç, Berhan; Sahin, Neslin; Yalaz, Seyhan

    2013-01-01

    Left colonic diverticula are common in Western populations, whereas right colonic diverticulosis primarily occurs in Oriental populations. Diverticulitis of the transverse colon is very rare, with very few cases reported in the literature. Herein, we report a case of transverse colon diverticulitis caused by a calcified stone in a 69-year-old female. This was a solitary diverticulum. The signs and symptoms of the disease are similar to acute pancreatitis. To the best of our knowledge, this is the first report describing the MRI findings of a patient with trans-verse colon diverticulitis caused by a calcified stone. PMID:25610254

  2. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  3. Congenital Osseus Bridging of Lumbar Transverse Processes

    PubMed Central

    Kim, Jae Ho; Kim, Hyeun Sung

    2012-01-01

    Osseous bridging between lumbar transverse processes is an uncommon condition that may cause low back pain. In most cases, its etiology is alleged to be trauma to the back and only rarely has a congenital origin been indicated. Furthermore, most reported cases involved adults, the majority of whom were middle-aged. Here, the authors describe the case of the youngest girl reported to date with congenital transverse process bridging. As far as the authors' knowledge, there has been no report of congenital bridging of transverse processes in children or adolescents in Korea. PMID:23091678

  4. Stainless steels with improved strength for service at 760 C and above

    SciTech Connect

    Swindeman, R.W.

    1998-03-01

    An evaluation was undertaken of modified 25Cr-20Ni stainless steels and a modified 20Cr-25Ni-Nb stainless steel for advanced energy applications at 760 C (1,400 F) and higher. It was found that good fabricability, strength, and ductility could be produced in the modified steels. Stress rupture data to beyond 10,000 h showed that the strengths of the modified steels were more than double that for type 310H stainless steel.

  5. Finite Element Simulations of Dynamic Shear Rupture Experiments and Path Selection Along Branched Faults

    NASA Astrophysics Data System (ADS)

    Templeton, E. L.; Baudet, A.; Bhat, H. S.; Dmowska, R.; Rice, J. R.; Rosakis, A. J.; Rousseau, C. E.

    2005-12-01

    The study of dynamically propagating shear cracks along geometrically complex paths is important to understanding the mechanics of earthquakes. Recent laboratory fracture studies of Rousseau and Rosakis examined a branched configuration, analogous to their study of rupture along a bent fault path [Rousseau and Rosakis, JGR, 2003], to enhance understanding of the behavior of a shear rupture approaching the intersection of two paths. Whereas crack motion along a simple bent path is readily explained by means of the energy available to sustain the propagating crack, or through a crack tip stress field criterion, the behavior of multiple paths displays more intricate variations featuring the inability of the crack to extend along secondary paths situated at shallow angles with respect to the initial direction of propagation. Secondary paths located at larger angles, on the extensional side, generally promote simultaneous extension along both paths beyond the junction, in contrast to preferred motion along the straight path, which is favored when secondary paths are situated on the compressional side. The experiments involve impact loading of thin plates of Homalite-100, a photoelastic polymer, which are cut along branched paths and weakly glued back together everywhere except along a starter notch near the impact site. High-speed photography of isochromatic fringe patterns (lines of constant difference between in-plane principal stresses) characterized the transient deformation field associated with the impact and rupture propagation. We adapted the ABAQUS/Explicit dynamic finite element program to analyze the propagation of shear cracks along such branched weakened paths. Two configurations for weakened paths, branches at 35 to the compressional side and the extensional side, were analyzed. We implemented a linear slip-weakening failure model as a user-defined constitutive relation within the ABAQUS program, where weakening could be included in either or both of (1) a cohesive part, c = c(? u) (where ? u = slip) of the shear strength that is insensitive to compressive normal stress ?, and (2) a frictional part f ?, with friction coefficient f = f(? u). The analyses of impact loading, and rupture nucleation and propagation were carried out in a 2D plane stress framework. A set of studies of slip weakening parameters and impact velocity were done to investigate the relationship between the strength of the interface and the speed of rupture propagation. For a branch on the extensional side of the main fault, increasing f(0) decreases the propagation speed on the continuation of the straight main fault while increasing speed on the branch. Whether the rupture is propagating at an intersonic or sub-Rayleigh speed when it reaches the branching junction has a large effect on the nature of rupture propagation along the inclined path. While not achieving perfect agreement with the experimental measurements, principal features observed in dynamic isochromatic line patterns were reproduced.

  6. The effect of fiber reinforcement type and water storage on strength properties of a provisional fixed partial denture resin.

    PubMed

    Uzun, Gülay; Keyf, Filiz

    2003-04-01

    Fracture resistance of provisional restorations is an important clinical concern. This property is directly related to transverse strength. Strengthening of provisional fixed partial dentures may result from reinforcement with various fiber types. This study evaluated the effect of fiber type and water storage on the transverse strength of a commercially available provisional resin under two different conditions. The denture resin was reinforced with either glass or aramid fiber or no reinforcement was used. Uniform samples were made from a commercially available autopolymerizing provisional fixed partial denture resin. Sixteen bar-shaped specimens (60 x 10 x 4 mm) were reinforced with pre-treated epoxy resin-coated glass fibers, with aramid fibers, or with no fibers. Eight specimens of each group, with and without fibers, were tested after 24 h of fabrication (immediate group), and after 30-day water storage. A three-point loading test was used to measure the transverse strength, the maximal deflection, and the modulus of elasticity. The Kruskal-Wallis Analysis of Variance was used to examine differences among the three groups, and then the Mann-Whitney U Test and Wilcoxon Signed Ranks Test were applied to determine pair-wise differences. The transverse strength and the maximal deflection values in the immediate group and in the 30-day water storage group were not statistically significant. In the group tested immediately, the elasticity modulus was found to be significant (P = 0.042). In the 30-day water storage group, all the values were statistically insignificant. The highest transverse strength was displayed by the glass-reinforced resin (66.25MPa) in the immediate group. The transverse strength value was 62.04MPa for the unreinforced samples in the immediate group. All the specimens exhibited lower transverse strength with an increase in water immersion time. The transverse strength value was 61.13 MPa for the glass-reinforced resin and was 61.24 MPa for the unreinforced resin. The aramid-reinforced resin decreased from 62.29 to 58.77 MPa. The addition of fiber reinforcement enhanced the physical properties (the transverse strength, the maximal deflection, the modulus of elasticity) of the processed material over that seen with no addition of fiber. Water storage did not statistically affect the transverse strength of the provisional denture resin compared to that of the unreinforced resin. The transverse strength was lowered at water storage but it was not statistically significant. The transverse strength was enhanced by fiber addition compared to the unreinforced resin. The glass fiber was superior to the other fiber. Also the modulus of elasticity was enhanced by fiber addition compared to the unreinforced resin. PMID:12797420

  7. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  8. Shigella subverts the host recycling compartment to rupture its vacuole.

    PubMed

    Mellouk, Nora; Weiner, Allon; Aulner, Nathalie; Schmitt, Christine; Elbaum, Michael; Shorte, Spencer L; Danckaert, Anne; Enninga, Jost

    2014-10-01

    Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization. Here, we identify host proteins involved in Shigella uptake and vacuolar membrane rupture by high-content siRNA screening and subsequently focus on Rab11, a constituent of the recycling compartment. Rab11-positive vesicles are recruited to the invasion site before vacuolar rupture, and Rab11 knockdown dramatically decreases vacuolar membrane rupture. Additionally, Rab11 recruitment is absent and vacuolar rupture is delayed in the ipgD mutant that does not dephosphorylate PI(4,5)P? into PI(5)P. Ultrastructural analyses of Rab11-positive vesicles further reveal that ipgD mutant-containing vacuoles become confined in actin structures that likely contribute to delayed vacular rupture. These findings provide insight into the underlying molecular mechanism of vacuole progression and rupture during Shigella invasion. PMID:25299335

  9. Patient specific stress and rupture analysis of ascending thoracic aneurysms.

    PubMed

    Trabelsi, Olfa; Davis, Frances M; Rodriguez-Matas, Jose F; Duprey, Ambroise; Avril, Stphane

    2015-07-16

    An ascending thoracic aortic aneurysm (ATAA) is a serious medical condition which, more often than not, requires surgery. Aneurysm diameter is the primary clinical criterion for determining when surgical intervention is necessary but, biomechanical studies have suggested that the diameter criterion is insufficient. This manuscript presents a method for obtaining the patient specific wall stress distribution of the ATAA and the retrospective rupture risk for each patient. Five human ATAAs and the preoperative dynamic CT scans were obtained during elective surgeries to replace each patient's aneurysm with a synthetic graft. The material properties and rupture stress for each tissue sample were identified using bulge inflation tests. The dynamic CT scans were used to generate patient specific geometries for a finite element (FE) model of each patient's aneurysm. The material properties from the bulge inflation tests were implemented in the FE model and the wall stress distribution at four different pressures was estimated. Three different rupture risk assessments were compared: the maximum diameter, the rupture risk index, and the overpressure index. The peak wall stress values for the patients ranged from 28% to 94% of the ATAA's failure stress. The rupture risk and overpressure indices were both only weakly correlated with diameter (?=-0.29, both cases). In the future, we plan to conduct a large experimental and computational study that includes asymptomatic patients under surveillance, patients undergoing elective surgery, and patients who have experienced rupture or dissection to determine if the rupture risk index or maximum diameter can meaningfully differentiate between the groups. PMID:25979384

  10. Daughter bubble cascades produced by folding of ruptured thin films.

    PubMed

    Bird, James C; de Ruiter, Rille; Courbin, Laurent; Stone, Howard A

    2010-06-10

    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal. PMID:20535206

  11. Transversally periodic solitary gravity-capillary waves.

    PubMed

    Milewski, Paul A; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  12. Transversally periodic solitary gravitycapillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravitycapillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravitycapillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  13. Development of Transverse Modes Damped DLA Structure

    SciTech Connect

    Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.

    2009-01-22

    As the dimensions of accelerating structures become smaller and beam intensities higher, the transverse wakefields driven by the beam become quite large with even a slight misalignment of the beam from the geometric axis. These deflection modes can cause inter-bunch beam breakup and intra-bunch head-tail instabilities along the beam path, and thus BBU control becomes a critical issue. All new metal based accelerating structures, like the accelerating structures developed at SLAC or power extractors at CLIC, have designs in which the transverse modes are heavily damped. Similarly, minimizing the transverse wakefield modes (here the HEMmn hybrid modes in Dielectric-Loaded Accelerating (DLA) structures) is also very critical for developing dielectric based high energy accelerators. In this paper, we present the design of a 7.8 GHz transverse mode damped DLA structure currently under construction, along with plans for the experimental program.

  14. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Howson, T. E.; Tien, J. K.; Mervyn, D. A.

    1980-01-01

    The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and gamma-prime precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles.

  15. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a dozen fault-spanning volumes. At the magnitude threshold M = 7, the ACDF can be well fit by renewal models with fairly small aperiodicity parameters (α < 0.2) for all fault volumes but one (on the San Jacinto fault). At interseismic (Reid) time scales, we observe pairs of fault segments that are tightly locked, such as the Cholame and Carrizo sections of the San Andreas Fault (SAF), where the CCDF and two ACDFs are nearly equal; segments out of phase (Carrizo-SAF/Coachella-SAF and Coachella-SAF/San Jacinto), where the CCDF variation is an odd function of time; and segments where events are in phase with integer ratios of recurrence times (2:1 synchronicity of Coachella-SAF/Mojave-SAF and Carrizo-SAF/Mojave-SAF). At near-seismic (Omori) time scales, we observe various modes of clustering, triggering, and shadowing in RSQSim catalogs; e.g., events on Mojave-SAF trigger Garlock events, and events on Coachella-SAF shut down events on San Jacinto. Therefore, despite its geometrical complexity and multiplicity of time scales, the RSQSim model of the San Andreas fault system exhibits a variety of synchronous behaviors that increase the predictability of large ruptures within the system. A key question for earthquake forecasting is whether the real San Andreas system is equally, or much less, synchronous.

  16. Chiral dynamics and peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  17. Results from the AGS Booster transverse damper

    SciTech Connect

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-06-01

    To reach the design intensity of 1.5 {times} 10{sup 13} protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s{sup {minus}1} have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.

  18. Results from the AGS Booster transverse damper

    SciTech Connect

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 [times] 10[sup 13] protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s[sup [minus]1] have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.

  19. Kinetic Theory for Transverse Optomechanical Instabilities

    NASA Astrophysics Data System (ADS)

    Tesio, E.; Robb, G. R. M.; Ackemann, T.; Firth, W. J.; Oppo, G.-L.

    2014-01-01

    We investigate transverse symmetry-breaking instabilities emerging from the optomechanical coupling between light and the translational degrees of freedom of a collisionless, damping-free gas of cold, two-level atoms. We develop a kinetic theory that can also be mapped on to the case of an electron plasma under ponderomotive forces. A general criterion for the existence and spatial scale of transverse instabilities is identified; in particular, we demonstrate that monotonically decreasing velocity distribution functions are always unstable.

  20. Transverse structure of the QCD string

    SciTech Connect

    Meyer, Harvey B.

    2010-11-15

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.

  1. Endovascular Treatment of an Aortic Traumatic Double Rupture

    PubMed Central

    Attin, Domenico; Buia, Francesco; Russo, Vincenzo; Pilato, Emanuele; Lovato, Luigi; Bartolomeo, Roberto Di; Zompatori, Maurizio

    2015-01-01

    Traumatic thoracic aortic rupture is a life-threatening condition; aortic isthmus is the most common site of rupture, but in rare cases traumatic injury can localize elsewhere, such as at aortic arch or at the level of the diaphragm. In the past few years, endovascular treatment of traumatic aortic injury became a safe procedure, with lower mortality and complication, if compared with open surgery. We report a case of a 40-year-old-man admitted to emergency department after a violent car crash in which an aortic traumatic double rupture was successfully treated with two endovascular stent-grafts coverage. PMID:25859315

  2. The Initial Rupture of the 2000 Western Tottori Earthquake

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Umeda, Y.; Mori, J.; Kawakata, H.

    2002-12-01

    Two clear P phases were identified on the seismograms for the 2000 Western Tottori earthquake(M7.3). Following the initial P phase (P1), a larger arrival (P2) several seconds later indicates that the rupture did not grow smoothly, but has at least 2 subevents. Hypocenters corresponding to these two P arrivals were determined using 14 stations within hypocentral distances of 60 km. The initial rupture started from the edge of a region that has had swarm activity, including M5 events, since 1989. The source of the second larger P phase was located 1km deeper and 5km southeast from the initial rupture. The hypocenter of the second rupture was off the fault plane estimated from the mechanism solution of the initial rupture using the P1 phase first motions. The average time interval between the two phases was 2.5 second, which is consistent with an empirical relation between the magnitude and duration time for initial ruptures. According to rupture model of this earthquake determined by Sekiguchi and Iwata, little slip occurred near the starting point, and 3 seconds after, larger slip occurred 5km southeast of the starting point, corresponding to our location of the source of second rupture. In this study, we tried deriving the rupture process for the spatiotemporal slip distribution of the first few seconds of the rupture of this earthquake by using a waveform inversion. We divided the area near the initial hypocenter into 10 x 6 subfaults with dimensions of 250 x 250 m2. For the inversion, we used 3-component data from 12 KiK-net and K-net stations data integrated from acceleration to velocity and bandpassed filtered from 0.1 to 3.0 Hz. Green_fs functions were calculated using a 1-dimensional velocity structure that was determined from the temporary aftershock observations. We used 12 time windows spaced at 0.05 sec intervals Our results show that the area of the initial rupture area was about 0.5 km2 and extended toward the southeast from the initial hypocenter. There does not appear to be much slip in the area between the location of the initial rupture and the location of the sudden increase in slip 2.5 seconds later.

  3. Spontaneous "spaghetti" flexor tendon ruptures in the rheumatoid wrist.

    PubMed

    Hashizume, Hiroyuki; Nishida, Keiichiro; Fujiwara, Kazuo; Inoue, Hajime

    2004-01-01

    A 54-year-old woman who had been treated for rheumatoid arthritis for 12 years developed spontaneous multiple flexor tendon ruptures during a 5-month period. Radiography revealed volar subluxation of the lunate bone. Surgery was performed 5 months after the first onset of tendon rupture. All eight flexors, except the flexor pollicis longus tendons, had ruptured, and the damage resembled spaghetti. Four flexor digitorum profundus tendons were reconstructed by bridge graft using their respective sublimis tendons. Wrist joint fusion and tenolysis were performed 3 months after the first operation. Each finger achieved a good range of motion 2 years and 6 months after the second operation. PMID:17143686

  4. Laparoscopic repair of a bladder rupture in a foal.

    PubMed

    Edwards, R B; Ducharme, N G; Hackett, R P

    1995-01-01

    Ruptured bladder was diagnosed in a 90-day-old Thoroughbred colt that had suffered a open, comminuted tibial fracture 2 days earlier. The bladder rupture was identified by laparoscopic examination of the abdomen and was repaired using a laparoscopic stapling instrument. This technique provided good visualization and allowed repair of the rupture with minimal intervention. Ten months after surgery, the foal was admitted to a referral surgical practice because of colic and stanguria. A urinary calculus was removed from the penile urethra by urethrotomy. Laparoscopic repair of the bladder with nonabsorbable staples may be contraindicated because of possible urolith formation. PMID:7701772

  5. Frictional melting during the rupture of the 1994 bolivian earthquake

    PubMed

    Kanamori; Anderson; Heaton

    1998-02-01

    The source parameters of the 1994 Bolivian earthquake (magnitude Mw = 8.3) suggest that the maximum seismic efficiency eta was 0.036 and the minimum frictional stress was 550 bars. Thus, the source process was dissipative, which is consistent with the observed slow rupture speed, only 20% of the local S-wave velocity. The amount of nonradiated energy produced during the Bolivian rupture was comparable to, or larger than, the thermal energy of the 1980 Mount St. Helens eruption and was sufficient to have melted a layer as thick as 31 centimeters. Once rupture was initiated, melting could occur, which reduces friction and promotes fault slip. PMID:9452378

  6. The rupture of a single liquid aluminium alloy film.

    PubMed

    Heim, K; Garca-Moreno, F; Vinod Kumar, G S; Rack, A; Banhart, J

    2014-07-14

    The present study is based on the idea of understanding the rupture of films in metal foams by studying free standing metallic films as a model system. Liquid dynamics, the velocity of the rupturing material as well as the behaviour of ceramic particles inside the melt were analysed optically ex situ and by synchrotron X-ray radiography in situ. It was found that the resistance of films to rupture is mainly based on the interaction between solid particles and an immobile oxide skin, the formation of which depends on the oxygen content of the surrounding atmosphere and the presence of magnesium. PMID:24854899

  7. Surviving Right Atrial Rupture From Blunt Thoracic Trauma After Pericardiectomy.

    PubMed

    Lajevardi, Sepehr Seyed; Galougahi, Keyvan Karimi; Nova, George; Marshman, David

    2016-02-01

    Right atrial rupture secondary to blunt trauma is exceedingly rare. We present a case report of blunt chest trauma and right atrial rupture in a patient with a background of pericardiectomy that were successfully managed surgically. Right atrial rupture must be considered as a differential diagnosis in patients with blunt chest trauma. In patients with previous pericardiectomy, this injury may manifest with massive hemothorax, and insertion of a chest drain should be performed with extreme caution. In our experience, urgent exploratory thoracotomy and repair of the defect are the mainstays of acute management. PMID:26777930

  8. Laparoscopic splenectomy for spontaneous rupture of the spleen.

    PubMed

    Thapar, Pinky M; Philip, Roji; Masurkar, Vishwanath G; Khadse, Prashant L; Randive, Nilima U

    2016-01-01

    Laparoscopic splenectomy is a gold standard for management of planned benign splenic pathologies. Spontaneous rupture of the spleen (SRS) leading to acute abdomen occurs in only 1% of all splenic ruptures. Laparoscopic splenectomy in traumatic and atraumatic rupture due to intra-splenic pathology is reported. We present the first reported case of laparoscopic splenectomy in a 23-year-old male who presented with hemoperitoneum due to idiopathic or SRS. The procedure was safely accomplished with slight modified technique and minimum usage of advanced gadgets. PMID:26917926

  9. Laparoscopic splenectomy for spontaneous rupture of the spleen

    PubMed Central

    Thapar, Pinky M.; Philip, Roji; Masurkar, Vishwanath G.; Khadse, Prashant L.; Randive, Nilima U.

    2016-01-01

    Laparoscopic splenectomy is a gold standard for management of planned benign splenic pathologies. Spontaneous rupture of the spleen (SRS) leading to acute abdomen occurs in only 1% of all splenic ruptures. Laparoscopic splenectomy in traumatic and atraumatic rupture due to intra-splenic pathology is reported. We present the first reported case of laparoscopic splenectomy in a 23-year-old male who presented with hemoperitoneum due to idiopathic or SRS. The procedure was safely accomplished with slight modified technique and minimum usage of advanced gadgets. PMID:26917926

  10. Earthquake rupture in shallow, unconsolidated sediment

    NASA Astrophysics Data System (ADS)

    Bullock, R. J.; De Paola, N.; Marco, S.; Holdsworth, R.

    2014-12-01

    Faults in shallow, unconsolidated sediment are often associated with aseismic creep, due to the velocity-strengthening behaviour of unconsolidated materials observed during lab experiments. They are expected to appear as broad zones of distributed deformation. However, large seismic ruptures can still propagate to the surface through shallow sediment, causing vast damage and destructive tsunamis. Our understanding of how seismic rupturing of shallow faults in unconsolidated sediment occurs in nature is limited due to the lack of direct observations constraining their structure, deformation patterns and mechanisms, and frictional behaviour. We studied syn-depositional normal faults, which deform unconsolidated, saturated lake sediments of the palaeo-Dead Sea. The sediments belong to the Lisan Formation (~70-18 Ka) and comprise alternating 1-3 mm thick laminae of aragonite and ultrafine-grained detritus. The faults formed at the surface, the only overburden being the overlying water column, and are known to have hosted seismic slip during large events (M ? 6), due to their association with seismites. The faults are discrete, localized structures, which sharply truncate laminae in the host sediment. Slip surfaces are sharp and straight and accompanied by a narrow slip zone, up to 1 cm wide, but often ? 1 mm wide, containing ultrafine-grained gouge. The majority of slip, up to 3 m, is concentrated in these slip zones. Faults can be categorised as having either simple geometry (one continuous fault strand accommodates all the displacement) or complex geometry (two or more fault segments share the overall displacement). Slip profiles constructed for simple geometry faults all have similar shapes, regardless of maximum displacement, whereas those for complex geometry faults are highly variable, due to segment interaction. It is apparent from the slip profiles that these faults grow and interact in the same way as 'brittle' faults in cohesive rocks. We will present results of microstructural analyses of the fault rocks, to constrain the deformation mechanisms occurring during seismic slip in unconsolidated sediment. We will also present results of low- and high-velocity friction experiments, which will constrain the conditions under which brittle deformation and seismic slip occur in these materials.

  11. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  12. Exploring the transverse spin structure of the nucleon

    SciTech Connect

    D'Alesio, Umberto

    2008-10-13

    We discuss our present understanding of the transverse spin structure of the nucleon and of related properties originating from parton transverse motion. Starting from the transversity distribution and the ways to access it, we then address the role played by spin and transverse momentum dependent (TMD) distributions in azimuthal and transverse single spin asymmetries. The latest extractions of the Sivers, Collins and transversity functions are also presented.

  13. Comparisons of 76 Hz vertical electric and horizontal magnetic field strengths received in Connecticut

    NASA Astrophysics Data System (ADS)

    Bannister, P. R.

    1986-03-01

    The results of 60 days of selected whip antenna measurements are discussed in this report. The main result is that the Connecticut vertical electric field strength behavior is usually very similar to the transverse-horizontal magnetic field strength behavior (in both amplitude and relative phase) during both normal and disturbed propagation conditions.

  14. A Controllable Earthquake Rupture Experiment on the Homestake Fault

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Gwaba, D.; Elsworth, D.; Lowell, R. P.; Onstott, T. C.

    2010-12-01

    Fault-slip is typically simulated in the laboratory at the cm-to-dm scale. Laboratory results are then up-scaled by orders of magnitude to understand faulting and earthquakes processes. We suggest an experimental approach to reactivate faults in-situ at scales ~10-100 m using thermal techniques and fluid injection to modify in situ stresses and the fault strength to the point where the rock fails. Mines where the modified in-situ stresses are sufficient to drive faulting, present an opportunity to conduct such experiments. During our recent field work in the former Homestake gold mine in the northern Black Hills, South Dakota, we found a large fault present on multiple mine levels. The fault is subparallel to the local foliation in the Poorman formation, a Proterozoic metamorphic rock deformed into regional-scale folds with axes plunging ~40 to the SSE. The fault extends at least 1.5 km along strike and dip, with a center ~1.5 km deep. It strikes ~320-340 N, dips ~45-70 NE, and is recognized by a ~0.3-0.5 m thick distinct gouge that contains crushed host rock and black material that appears to be graphite. Although we could not find clear evidence for fault displacement, secondary features suggest that it is a normal fault. The size and distinct structure of this fault make it a promising target for in-situ experimentation of fault strength, hydrological properties, and slip nucleation processes. Most earthquakes are thought to be the result of unstable slip on existing faults, Activation of the Homestake fault in response to the controlled fluid injection and thermally changing background stresses is likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a small earthquake (dynamic) rupture. This controlled instability is intimately related to the dependence of the fault strength on the slip process and has been analyzed for the Homestake fault conditions. Scale analyses indicate that this transition occurs for the nucleation patch size ~1 m. This represents a fundamental limitation for laboratory experiments, where the induced dynamic patch could be tractable, and necessitates larger scale field tests ~10-100 m. The ongoing dewatering is expected to affect displacements in the fault vicinity. This poroelastic effect can be used to better characterize the fault. Nucleation, propagation, and arrest of dynamic fault slip is governed by fluid overpressure source, diffusion, and the magnitude of the background loading in relation to the peak and residual strength in the fault zone at the ambient pore pressure level. More information on in-situ stresses than currently available is required to evaluate the fault state. Yet, initial modeling suggests that a suitable place for such an experiment is where the Homestake fault intersects the 4850-ft mine level or at greater depths.

  15. [Idiopathic gastric rupture in toddler: case report].

    PubMed

    Donoso Fuentes, Alejandro; Arriagada Santis, Daniela; Cruces Romero, Pablo; Daz Rubio, Franco

    2012-04-01

    Idiopathic gastric rupture is rare in children. Most of them occur in newborn. The authors report the case of a 2-year-old female toddler with no significant medical records. Clinical picture began 48 h before with abdominal pain, nausea and vomiting. She was admitted to the Emergency Room in poor general condition, with abdominal distension and rebound tenderness. Laparotomy was performed immediately show-ing multiple perforations in the posterior wall of the stomach. Partial gastrectomy was performed. Afterwards, she was admitted to ICU in shock. She received mechanical ventilation, intravenous fluid administration (260 ml/kg in 12 h), vasoactive support and antibacterial therapy (cefotaxime and metronidazole). Laboratory showed leukopenia and thrombocytopenia. Etiological study was entirely negative for toxic and drug consumption. Collagen disease was ruled out and serum level of gastrin was normal. Her post operative course was characterized by persistent fever caused by left subphrenic collection (positive culture for Candida galabrata). Peritoneal lavage via laparotomy and percutaneous drainage of the residual collections were performed. She completed 3 weeks of antibacterial and antifungal therapies with adequate outcome. Her follow-up in 12 months was uneventful. PMID:22451295

  16. Guide to transverse projections and mass-constraining variables

    SciTech Connect

    Barr, A. J.; Khoo, T. J.; Lester, C. G.; Konar, P.; Kong, K.; Matchev, K. T.; Park, M.

    2011-11-01

    This paper seeks to demonstrate that many of the existing mass-measurement variables proposed for hadron colliders (m{sub T}, m{sub eff}, m{sub T2}, missing p-vector{sub T}, h{sub T}, {radical}(s-circumflex){sub min}, etc.) are far more closely related to each other than is widely appreciated, and indeed can all be viewed as a common mass-bound specialized for a variety of purposes. A consequence of this is that one may understand better the strengths and weaknesses of each variable, and the circumstances in which each can be used to best effect. In order to achieve this, we find it necessary first to revisit the seemingly empty and infertile wilderness populated by the subscript 'T' (as in 'pe{sub T}') in order to remind ourselves what this process of transversification actually means. We note that, far from being simple, transversification can mean quite different things to different people. Those readers who manage to battle through the barrage of transverse notation distinguishing 'T' from 'v' or or from 'o', and 'early projection' from 'late projection', will find their efforts rewarded towards the end of the paper with (i) a better understanding of how collider mass variables fit together, (ii) an appreciation of how these variables could be generalized to search for things more complicated than supersymmetry, (iii) will depart with an aversion to thoughtless or naieve use of the so-called 'transverse methods' of any of the popular computer Lorentz-vector libraries, and (iv) will take care in their subsequent papers to be explicit about which of the 61 identified variants of the 'transverse mass' they are employing.

  17. Guide to transverse projections and mass-constraining variables

    NASA Astrophysics Data System (ADS)

    Barr, A. J.; Khoo, T. J.; Konar, P.; Kong, K.; Lester, C. G.; Matchev, K. T.; Park, M.

    2011-11-01

    This paper seeks to demonstrate that many of the existing mass-measurement variables proposed for hadron colliders (mT, meff, mT2, missing p→T, hT, s^min⁡, etc.) are far more closely related to each other than is widely appreciated, and indeed can all be viewed as a common mass-bound specialized for a variety of purposes. A consequence of this is that one may understand better the strengths and weaknesses of each variable, and the circumstances in which each can be used to best effect. In order to achieve this, we find it necessary first to revisit the seemingly empty and infertile wilderness populated by the subscript “T” (as in “p̸T”) in order to remind ourselves what this process of transversification actually means. We note that, far from being simple, transversification can mean quite different things to different people. Those readers who manage to battle through the barrage of transverse notation distinguishing “⊤” from “∨” or from “∘,” and “early projection” from “late projection,” will find their efforts rewarded towards the end of the paper with (i) a better understanding of how collider mass variables fit together, (ii) an appreciation of how these variables could be generalized to search for things more complicated than supersymmetry, (iii) will depart with an aversion to thoughtless or naïve use of the so-called transverse methods of any of the popular computer Lorentz-vector libraries, and (iv) will take care in their subsequent papers to be explicit about which of the 61 identified variants of the “transverse mass” they are employing.

  18. Soft, Brown Rupture: Clinical Signs and Symptoms Associated with Ruptured PIP Breast Implants

    PubMed Central

    Duncan, Robert T.; Feig, Christine; Reintals, Michelle; Hill, Sarah

    2014-01-01

    Background: Preoperative signs and symptoms of patients with Poly Implant Prothese (PIP) implants could be predictive of device failure. Based on clinical observation and intraoperative findings 4 hypotheses were raised: (1) Preoperative clinical signs including acquired asymmetry, breast enlargement, fullness of the lower pole, decreased mound projection, and change in breast consistency could be indicative of implant rupture. (2) Device failure correlates with a low preoperative Baker grade of capsule. (3) Brown-stained implants are more prone to implant failure. (4) The brown gel could be indicative of iodine ingression through a substandard elastomer shell. Methods: Preoperative clinical signs were compared with intraoperative findings for 27 patients undergoing PIP implant explantation. Results: Acquired asymmetry (P = 0.0003), breast enlargement (P = 0.0002), fuller lower pole (P < 0.0001), and loss of lateral projection (P < 0.0001) were all significantly predictive of device failure. Capsule Baker grade was lower preoperatively for ruptured implants. The lack of palpable and visible preoperative capsular contracture could be secondary to the elastic nature of the capsular tissue found. Brown implants failed significantly more often than white implants. Analysis of brown gel revealed the presence of iodine, suggesting povidone iodine ingression at implantation. Conclusions: Preoperative signs can be predictive of PIP implant failure. Brown-stained implants are more prone to rupture. The presence of iodine in the gel suggests unacceptable permeability of the shell early in the implants life span. A noninvasive screening test to detect brown implants in situ could help identify implants at risk of failure in those who elect to keep their implants. PMID:25506532

  19. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    SciTech Connect

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550{degrees}c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength.

  20. Electrical manipulation of crystal symmetry for switching transverse acoustic phonons.

    PubMed

    Jeong, H; Jho, Y D; Stanton, C J

    2015-01-30

    We experimentally explore the use of a novel device where lateral electric fields can be applied to break the translational symmetry within the isotropic plane and hence change the selection rules to allow normally forbidden transverse acoustic (TA) phonon generations. The ultrafast screening of the lateral electric field by the photocarriers relieves shear strain in the structure and switches on the propagating TA waves. The amplitude and on-state time of the TA mode can be modulated by the external field strength and size of the laterally biased region. The observed frequency shift with an external bias as well as the strong geometrical dependence confirm the role of the asymmetric potential distribution in electrically manipulating the crystal symmetry to control modal behavior of acoustic phonons. PMID:25679892

  1. Diamond nanowires with nitrogen vacancy under a transverse electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Cao, J. X.; Chen, Xiaoyuan; Ding, J. W.; Zhang, Peihong; Ren, Wei

    2015-01-01

    We have investigated the electronic, magnetic, and optical properties of hydrogenated diamond nanowires (DNWs) with nitrogen-vacancy (NV) centers using density functional theory. The strong localization of defect states results in the formation of local magnetic moments with a spin-polarization energy that is close to those for transition-metal atoms. Such spin-polarized defect states are found to be stable well above room temperature, in agreement with previous experimental reports. In addition, we find that a semiconductor-metal transition can be triggered upon applying a transverse electric field. Furthermore, an enhanced optical absorption in the visible-light region is predicted in DNWs with NV centers. The strength and the position of the absorption can be tuned or optimized by an external electric field and/or the nanowire diameter.

  2. Co-existence of a rare dyspnea with pericardial diaphragmatic rupture and pericardial rupture: a case report

    PubMed Central

    Karg?, Ahmet Blent; Zeybek, Arife

    2015-01-01

    Pericardial-diaphragmatic rupture is a rare condition which occurs after blunt trauma and involves the herniation of abdominal organs into the pericardium. A 77-year-old female patient presenting with complaints of palpitation and difficulty in breathing was admitted to the emergency room. Left lateral thoracotomy revealed the herniation of abdominal organs into the thorax. A pericardial-diaphragmatic rupture and a pericardial rupture were found to co-exist. The diaphragm and the pericardium were repaired primarily. The case is presented here because herniation of abdominal organs into the pleural cavity through the pericardium is a rare condition. PMID:26336505

  3. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  4. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  5. Conservative management of gastric rupture following scuba diving.

    PubMed Central

    Hunter, J D; Roobottom, C A; Bryson, P J; Brown, C

    1998-01-01

    Gastric rupture is an uncommon surgical problem which normally presents with an acute abdomen and peritonism. An unusual case following underwater ascent and its conservative management is presented. Images Figure 1 Figure 2 PMID:9570057

  6. Experimental investigation of creep rupture of reactor vessel lower head

    SciTech Connect

    Chu, Tze Yao; Pilch, M.M.; Bentz, J.H.

    1997-12-01

    This paper summarizes experiments on creep rupture of reactor pressure vessel (RPV) lower heads under the thermal and pressure loads of a core meltdown accident. Lower head failure (LHF) is of importance to accident assessment and accident management.

  7. A New Clinical Test in Diagnosing Quadriceps Tendon Rupture

    PubMed Central

    Jolles, BM; Garofalo, R; Gillain, L; Schizas, C

    2007-01-01

    INTRODUCTION Extensor mechanism ruptures might be easily overlooked and misdiagnosed, and delayed diagnosis of quadriceps tendon rupture is frequent. However, the literature recommends early surgical repair within 72 h. PATIENTS AND METHODS This paper describes a new simple clinical diagnostic test that directly evaluates the integrity of the distal 5 cm of the quadriceps tendon itself. It consists of inserting a needle in the tendon, proximal to the suspected rupture and mobilising the knee joint. RESULTS The suspected ruptured quadriceps tendons with a positive needle diagnostic test were confirmed intra-operatively. CONCLUSIONS This minimally invasive and easily available technique should be considered in the diagnostic work-up and treatment planning of patients with suspected tears of the quadriceps tendon. PMID:17394710

  8. Rapid estimation of fault rupture extent using envelopes of acceleration

    NASA Astrophysics Data System (ADS)

    Kang, Lan-Chi; Jin, Xing; Li, Jun; Qiu, Yi; Wei, Yong-Xiang

    2013-12-01

    We present a new strategy to estimate the geometry of a rupture on a finite fault for rapid reporting of seismic intensity. We use envelope attenuation relationships which were presented by Huo et al. (Acta Seismol Sin 16:519-525, 1994). An important base of this work is the fault finiteness theory. We propose a new model to simulate high-frequency motions from earthquakes with large rupture dimension. The envelope of high-frequency ground motion from a large earthquake can be expressed as a root-mean-squared combination of envelope functions from smaller earthquakes. We use simulated envelopes of ground acceleration to estimate the direction and along-strike length of a rupture. Using the Wenchuan and Jiji (Chi-Chi) earthquake dataset, we parameterize the fault geometry with an epicenter, a fault strike, and along-strike rupture lengths. So this methodology seems quite appropriate for the rapid reporting systems of seismic intensity.

  9. Aneurysmal Rupture of a Mesodiverticular Band to a Meckel's Diverticulum

    PubMed Central

    Sommerhalder, Christian; Fretwell, Kenneth R.; Salzler, Gregory G.; Creasy, John M.; Robitsek, R. Jonathan; Schubl, Sebastian D.

    2015-01-01

    Aneurysmal rupture of a mesodiverticular band has not previously been reported in the clinical literature. We are reporting a case of hemoperitoneum in a 51-year-old male after an aneurysmal rupture of a mesodiverticular band. This case demonstrates that in rare instances, a rupture of the mesodiverticular band leading to Meckel's diverticulum can lead to significant hemoperitoneum. This is usually caused by a traumatic injury but in our case was apparently caused by an aneurysm of the mesodiverticular artery. Patients with known Meckel's diverticula should be aware of the possibility of rupture, as should clinicians treating those with a history of this usually benign congenital abnormality. Rapid surgical intervention is necessary to repair the source of bleeding, as massive blood loss was encountered in this case. PMID:25688323

  10. Pancreatic rupture in four cats with high-rise syndrome.

    PubMed

    Liehmann, Lea M; Dörner, Judith; Hittmair, Katharina M; Schwendenwein, Ilse; Reifinger, Martin; Dupré, Gilles

    2012-02-01

    Pancreatic trauma and rupture are rare after feline high-rise syndrome; however, should it happen, pancreatic enzymes will leak into the abdominal cavity and may cause pancreatic autodigestion and fatty tissue saponification. If not diagnosed and treated, it can ultimately lead to multiorgan failure and death. In this case series, 700 records of high-rise syndrome cats that presented between April 2001 and May 2006 were analysed, and four cats with pancreatic rupture were identified. Clinical signs, diagnosis using ultrasonography and lipase activity in blood and abdominal effusion, and treatment modalities are reported. Three cats underwent surgical abdominal exploration, one cat was euthanased. Rupture of the left pancreatic limb was confirmed in all cases. Two of the operated cats survived to date. High-rise syndrome can lead to abdominal trauma, including pancreatic rupture. A prompt diagnosis and surgical treatment should be considered. PMID:22314089

  11. Spontaneous Posterior Uterine Rupture in Twin-Twin Transfusion Syndrome.

    PubMed

    Smid, Marcela C; Waltner-Toews, Rebecca; Goodnight, William

    2016-03-01

    Background?The maternal and fetal risks of uterine distension in rapidly progressive twin-twin transfusion syndrome (TTTS) in the setting of prior uterine scar are poorly characterized. Case?We present the case of a 42-year-old woman, G4P1201, at 21 weeks gestation with stage-1 TTTS who developed a spontaneous posterior uterine rupture necessitating emergent laparotomy and delivery of previable fetuses, possibly due to prior uterine scar from a displaced intrauterine device. Conclusion?TTTS may be a risk factor for uterine rupture, including uterine rupture in atypical anatomic locations. Prior unrecognized uterine scars, including perforations, may magnify the risk for atypical uterine rupture in the setting of excessive uterine distension. PMID:26929874

  12. Acute Patellar Tendon Rupture after Total Knee Arthroplasty Revision

    PubMed Central

    Rhee, Seung Joon; Pham, The Hien

    2015-01-01

    Patellar tendon rupture is a catastrophic complication following total knee arthroplasty (TKA). Though revision TKA has been suspected of being a predisposing factor for the occurrence of patellar tendon rupture, there are few reports on patellar tendon rupture after revision TKA. Here, we present a case of acute patellar tendon rupture that occurred after TKA revision. In the patient, the patellar tendon was so thin and could not be repaired, and accordingly was sutured end to end. We used the anterior tibialis tendon allograft to augment the poor quality patellar tendon tissue. Fixation of the allograft was done by using the bone tunnel created through tibial tuberosity and suturing the allograft to the patellar tendon and quadriceps tendon. The patient was instructed to wear a full extension knee splint and was kept non-weight bearing for 6 weeks after operation. Full knee extension could be achieved 6 weeks postoperatively. PMID:26060612

  13. Transverse and longitudinal angular momenta of light

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin-direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  14. Estimating the magnetic field strength from magnetograms

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Martnez Gonzlez, M. J.; Manso Sainz, R.

    2015-05-01

    A properly calibrated longitudinal magnetograph is an instrument that measures circular polarization and gives an estimation of the magnetic flux density in each observed resolution element. This usually constitutes a lower bound of the field strength in the resolution element, given that it can be made arbitrarily large as long as it occupies a proportionally smaller area of the resolution element and/or becomes more transversal to the observer while still produce the same magnetic signal. However, we know that arbitrarily stronger fields are less likely - hG fields are more probable than kG fields, with fields above several kG virtually absent - and we may even have partial information about their angular distribution. Based on a set of sensible considerations, we derive simple formulae based on a Bayesian analysis to give an improved estimation of the magnetic field strength for magnetographs.

  15. Alumina strength degradation in the elastic regime

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.

    1997-08-01

    Measurements of Kanel et. al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic limit (HEL) relax over a time span of microseconds after initial loading. Failure (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study the authors have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime.

  16. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    NASA Astrophysics Data System (ADS)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting strike of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure of the rupture extent and dimensions, but not necessarily the strike. We found that using standard earthquake catalogs, such as the National Earthquake Information Center catalog, we can constrain the rupture extent, rupture direction, and in many cases the type of faulting, of the mainshock with the aftershocks that occur within the first hour after the mainshock. However, this data may not be currently available in near real-time. Since our results show that these early aftershock locations may be used to estimate first order rupture parameters for large global earthquakes, the near real-time availability of these data would be useful for fast earthquake damage assessment.

  17. Acoustic investigation of rupture nucleation in the Laboratory

    NASA Astrophysics Data System (ADS)

    Schubnel, Alexandre; Brantut, Nicolas; Ougier-Simonin, Audrey; Adeliner, Mathilde; Fortin, Jerome; Gueguen, Yves

    2010-05-01

    Triaxial compression experiments were performed on several materials (Glass, Granite, Basalt, Sandstone, Marble and Gypsum) at confining pressures ranging from 10 to 100MPa, and from room temperature to 70 degrees C. During each of these experiments, acoustic waves radiated from damage accumulation and fast crack propagation were continuously monitored thanks to a fast acoustic recorder, which enables to obtain continuous acoustogram of rupture nucleation and propagation, without the limitations of former trigger systems. In our experiments, rupture does not need to be slowed down, and the transition from quasi-static nucleation to dynamic propagation has now been systematically investigated.Comparing each material, three main observation can be drawn : - First, the amount of damage accumulation before the dynamic rupture propagation varies from material to material, and also depends on the pressure and temperature conditions. For instance, glass, granites and sandstones are typically materials where the nucleation involves a large amount of cracking prior to rupture. In contrast, rupture in basalt at low confinement is not preceded by any damage accumulation. Finally, pre-rupture damage accumulation can also be purely aseismic, which is the case of marble for instance. - Second, the brittle-ductile transition does not exactly overlaps the aseismic-seismic transition, at least in the conditions at which we performed our experiments. For example, marble deforms plastically beyond 50MPa, and although the deformation is ductile, a large amount of crack accumulates in the rock, which tends to make it unstable. In the same way, acoustic emissions decrease in gypsum with increasing pressure and temperatures. - Finally, the time during which rupture propagates depends largely on the rheology. For instance, and in the case of ductile failures such as in marble, dislocation and twin accumulation is such that cracks propagation steps are small and/or slow, and thus the radiated energy release rate remains small at early stages of rupture and increases with rupture speed. Put together, our observations clearly highlight the dependence of the radiated acoustic (and microseismic?) energy during rupture nucleation and early stages of crack propagation not only on the rupture propagation speed and the slip velocity but most importantly on the rock's lithology and rheology.

  18. Laboratory investigation of the radiative energy transfer during rupture nucleation

    NASA Astrophysics Data System (ADS)

    Schubnel, A. J.; Brantut, N.; Ougier-Simonin, A.; Adelinet, M.; Fortin, J.; Gueguen, Y.

    2009-12-01

    Triaxial compression experiments were performed on several materials (Glass, Granite, Basalt, Sandstone, Marble and Gypsum) at confining pressures ranging from 10 to 100MPa, and from room temperature to 70 degrees C. During each of these experiments, acoustic waves radiated from damage accumulation and fast crack propagation were continuously monitored thanks to a fast acoustic recorder, which enables to obtain continuous acoustogram of rupture nucleation and propagation, without the limitations of former trigger systems. In our experiments, rupture does not need to be slowed down, and the transition from quasi-static nucleation to dynamic propagation has now been systematically investigated.Comparing each material, three main observation can be drawn : - First, the amount of damage accumulation before the dynamic rupture propagation varies from material to material, and also depends on the pressure and temperature conditions. For instance, glass, granites and sandstones are typically materials where the nucleation involves a large amount of cracking prior to rupture. In contrast, rupture in basalt at low confinement is not preceded by any damage accumulation. Finally, pre-rupture damage accumulation can also be purely aseismic, which is the case of marble for instance. - Second, the brittle-ductile transition does not exactly overlaps the aseismic-seismic transition, at least in the conditions at which we performed our experiments. For example, marble deforms plastically beyond 50MPa, and although the deformation is ductile, a large amount of crack accumulates in the rock, which tends to make it unstable. In the same way, acoustic emissions decrease in gypsum with increasing pressure and temperatures. - Finally, the time during which rupture propagates depends largely on the rheology. For instance, and in the case of ductile failures such as in marble, dislocation and twin accumulation is such that cracks propagation steps are small and/or slow, and thus the radiated energy release rate remains small at early stages of rupture and increases with rupture speed. Put together, our observations clearly highlight the dependence of the radiated acoustic (and microseismic?) energy during rupture nucleation and early stages of crack propagation not only on the rupture propagation speed and the slip velocity but most importantly on the rock’s lithology and rheology.

  19. [Massive hemoperitoneum from rupture of an intra-peritoneal varix].

    PubMed

    Laut, F; Frampas, E; Mathon, G; Leborgne, J; Dupas, B

    2002-11-01

    Rupture of an intra-abdominal varix in a patient with portal hypertension is a rare but severe cause of massive hemoperitoneum. The authors report the case of a patient with alcoholic cirrhosis that presented to the emergency department with hypovolemic shock. Imaging showed massive hemoperitoneum, severe portal hypertension and suggested the diagnosis of spontaneous rupture of an intra-abdominal varix, confirmed at laparotomy. PMID:12469017

  20. A Case Series of Spontaneous Rupture of the Urinary Bladder

    PubMed Central

    Kivlin, Dana; Ross, Curtis; Lester, Kyle; Metro, Michael; Ginsberg, Philip

    2015-01-01

    We report 2 cases of spontaneous bladder rupture related to chronic outlet obstruction and urinary retention. In both cases, focal perforation was identified within diverticula. Bladder rupture in the absence of trauma is a rare and serious event with a mortality rate approaching 50%. These injuries are often initially misdiagnosed and it is our goal to provide insight to the presentation, management and treatment of this rare event. PMID:26195965

  1. Atraumatic splenic rupture after coagulopathy owing to a snakebite.

    PubMed

    Kang, Changwoo; Kim, Dong Hoon; Kim, Seong Chun; Kim, Dong Seob; Jeong, Chi-Young

    2014-09-01

    Among the many complications that may follow envenomation by some species of venomous snakes, coagulopathy is common and well known. However, hemoperitoneum induced by coagulopathy after a snakebite is rare. Atraumatic spontaneous splenic rupture is also an uncommon and life-threatening condition. Here, we report a case of presumptive envenomation by Gloydius spp. that resulted in atraumatic splenic rupture as a probable manifestation of coagulopathy, which has not been previously reported. PMID:24882658

  2. A Case Series of Spontaneous Rupture of the Urinary Bladder.

    PubMed

    Kivlin, Dana; Ross, Curtis; Lester, Kyle; Metro, Michael; Ginsberg, Philip

    2015-05-01

    We report 2 cases of spontaneous bladder rupture related to chronic outlet obstruction and urinary retention. In both cases, focal perforation was identified within diverticula. Bladder rupture in the absence of trauma is a rare and serious event with a mortality rate approaching 50%. These injuries are often initially misdiagnosed and it is our goal to provide insight to the presentation, management and treatment of this rare event. PMID:26195965

  3. A Tuboovarian Abscess Associated with a Ruptured Spleen

    PubMed Central

    Li, Jennifer S.; Sheele, Johnathan Michael

    2016-01-01

    We report the first case of a tuboovarian abscess complicated by a ruptured spleen. Our patient was a 27-year-old female with human immunodeficiency virus (HIV) who presented to the emergency department (ED) with complaints of urinary symptoms and diarrhea. After being diagnosed with a tuboovarian abscess (TOA), she received antibiotics and was admitted to the gynecology service. Shortly thereafter she developed hemorrhagic shock, necessitating a splenectomy and salpingooophorectomy from a ruptured spleen. PMID:26904315

  4. Traumatic rupture of both peroneal longus and brevis tendons.

    PubMed

    Pelet, Stéphane; Saglini, Marco; Garofalo, Raffaele; Wettstein, Michael; Mouhsine, Elyazid

    2003-09-01

    Injuries of peroneal tendons are rare. Diagnosis of traumatic rupture is often late and presents as chronic ankle instability. A case of a complete traumatic rupture of both peroneal longus and brevis tendons with acute clinical and radiological diagnosis is presented. Surgical repair was performed by direct end-to-end suture on the 4th day after trauma, with excellent functional outcome at 1-year follow-up. PMID:14524524

  5. Imaging features of postpartum uterine rupture: a case report.

    PubMed

    Has, Recep; Topuz, Samet; Kalelioglu, Ibrahim; Tagrikulu, Demet

    2008-01-01

    We present a case report on a postpartum uterine rupture with the history of a previous cesarean section. During the diagnosis of rupture, ultrasound, computerized tomography (CT) and magnetic resonance imaging of the uterus were obtained. Ultrasound examination did not result in substantial information. CT and magnetic resonance imaging established the correct diagnosis. The patient underwent exploratory laparotomy, and the diagnosis was confirmed. Diagnostic qualifications of these three instruments were compared. PMID:17435984

  6. Prelabor uterine rupture after laparoscopic repair of uterine perforation.

    PubMed

    Tischner, Ilke; Tan, Toh L; Uchil, Dhiraj; Brown, Richard N

    2010-01-01

    Uterine rupture is an established risk of previous uterine trauma. Conventionally this has been considered most likely following prior classical or midline hysterotomies at cesarean section or subsequent to abdominal myomectomy in which the uterine cavity was breached. Although there are reports of such cases after laparoscopic procedures such as myomectomy the incidence is believed to be very small. We present an extreme case of uterine rupture at 27 weeks with a previous laparoscopically repaired uterine perforation. PMID:20226423

  7. Ruptured abdominal aortic aneurysm diagnosed through non-contrast MRI

    PubMed Central

    Chatra, Priyank S

    2013-01-01

    Rupture of an aneurysm is a rare complication although it is considered a common cause of death. Some of these patients present with the classic triad of symptoms such as abdominal pain, pulsatile abdominal mass and shock. Most symptoms are misleading and will only present as vague abdominal pain. Here we describe one such patient with an unusual presentation of a misleading abdominal mass which was eventually diagnosed as a ruptured abdominal aortic aneurysm after an emergency MRI. PMID:25003065

  8. Size-Dependent Rupture Strain of Elastically Stretchable Metal Conductors

    PubMed Central

    Graudejus, O.; Jia, Z.; Li, T.; Wagner, S.

    2012-01-01

    Experiments show that the rupture strain of gold conductors on elastomers decreases as the conductors are made long and narrow. Rupture is caused by the irreversible coalescence of microcracks into one long crack. A mechanics model identifies a critical crack length ?cr, above which the long crack propagates across the entire conductor width. ?cr depends on the fracture toughness of the gold film and the width of the conductor. The model provides guidance for the design of highly stretchable conductors. PMID:22773917

  9. Different and Unpredictable Clinical Outcome of Ruptured Pulmonary Hydatid Cysts

    PubMed Central

    Sheikhy, Kambiz; Daneshvar Kakhaki, Abolghasem; Saghebi, Seyed Reza; Malekzadegan, Alireza

    2015-01-01

    Most authors believe that the best treatment for pulmonary hydatid disease is surgical evacuation. Although albendazole has been used prophylactically before surgery, there are many reports about increased incidence of the rupture of cyst after albendazole therapy, which can cause some complications. In this case report we present a patient with bilateral pulmonary hydatid cyst that was ruptured after using albendazole and different strategies were used for management of each cyst.

  10. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    USGS Publications Warehouse

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  11. Fast rupture propagation for large strike-slip earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Mori, Jim; Koketsu, Kazuki

    2016-04-01

    Studying rupture speeds of shallow earthquakes is of broad interest because it has a large effect on the strong near-field shaking that causes damage during earthquakes, and it is an important parameter that reflects stress levels and energy on a slipping fault. However, resolving rupture speed is difficult in standard waveform inversion methods due to limited near-field observations and the tradeoff between rupture speed and fault size for teleseismic observations. Here we applied back-projection methods to estimate the rupture speeds of 15 Mw ≥ 7.8 dip-slip and 8 Mw ≥ 7.5 strike-slip earthquakes for which direct P waves are well recorded in Japan on Hi-net, or in North America on USArray. We found that all strike-slip events had very fast average rupture speeds of 3.0-5.0 km/s, which are near or greater than the local shear wave velocity (supershear). These values are faster than for thrust and normal faulting earthquakes that generally rupture with speeds of 1.0-3.0 km/s.

  12. Hypocenter locations in finite-source rupture models

    USGS Publications Warehouse

    Mai, P.M.; Spudich, P.; Boatwright, J.

    2005-01-01

    We use a database of more than 80 finite-source rupture models for more than 50 earthquakes (Mw, 4.1-8.1) with different faulting styles occurring in both tectonic and subduction environments to analyze the location of the hypocenter within the fault and to consider the correlation between hypocenter location and regions of large slip. Rupture in strike-slip and crustal dip-slip earthquakes tends to nucleate in the deeper sections of the fault; subduction earthquakes do not show this tendency. Ratios of the hypocentral slip to either the average or the maximum slip show that rupture can nucleate at locations with any level of relative displacement. Rupture nucleates in regions of very large slip (D ??? 2/3 Dmax,) in only 16% of the events, in regions of large slip (1/3 Dmax < D < 2/3 Dmax,) in 35% of the events, and in regions of low slip (D ??? 1/3 Dmax) in 48% of the events. These percentages significantly exceed the percentages of fault area with very large (???7%) and large (???28%) slip. Ruptures that nucleate in regions of low slip, however, tend to nucleate close to regions of large slip and encounter a zone of very large slip within half the total rupture length. Applying several statistical tests we conclude that hypocenters are not randomly located on a fault but are located either within or close to regions of large slip.

  13. Rupture of a biomembrane under dynamic surface tension

    NASA Astrophysics Data System (ADS)

    Bicout, D. J.; Kats, E.

    2012-03-01

    How long will a fluid membrane vesicle stressed with a steady ramp of micropipette last before rupture? Or conversely, how high should the surface tension be to rupture such a membrane? To answer these challenging questions we developed a theoretical framework that allows for the description and reproduction of dynamic tension spectroscopy (DTS) observations. The kinetics of the membrane rupture under ramps of surface tension is described as a succession of an initial pore formation followed by the Brownian process of the pore radius crossing the time-dependent energy barrier. We present the formalism and a derive (formal) analytical expression of the survival probability describing the fate of the membrane under DTS conditions. Using numerical simulations for the membrane prepared in an initial state with a given distribution of times for pore nucleation, we study the membrane lifetime (or inverse of rupture rate) and distribution of membrane surface tension at rupture as a function of membrane characteristics like pore nucleation rate, the energy barrier to failure, and tension loading rate. It is found that simulations reproduce the main features of DTS experiments, particularly the pore nucleation and pore-size diffusion-controlled limits of membrane rupture dynamics. This approach can be adapted and applied to processes of permeation and pore opening in membranes (electroporation, membrane disruption by antimicrobial peptides, vesicle fusion).

  14. Isolated renal pelvis rupture secondary to blunt trauma: Case report

    PubMed Central

    Taken, Kerem; Onc, Mehmet Re?it; Ergn, Mslm; Ery?lmaz, Recep; Gne?, Mustafa

    2015-01-01

    Introduction Isolated rupture of the renal pelvis is a very rare condition and thus causes delays in the diagnosis of the rupture. It is most commonly seen in the setting of obstructive ureteric calculus. Other rare causes include neoplasms, trauma, and iatrogenic procedures. Diagnosis is usually established on computed tomography (CT) which demonstrates the extravasation of the contrast in the peripelvic, perinephric, or retroperitoneal collections. Presentation of case A 27-year-old male patient was admitted to our hospital due to multiple traumas associated with motor vehicle accidents. The patient had clear urine output. A large pelvic rupture was detected by abdominal contrast-enhanced CT and after consulting with other departments, emergency repair of the renal pelvis was performed and a ureteral stent was implanted. Discussion Only a few isolated cases of pelvis rupture with resultant extravasation have been reported in the literature. The treatment of pelvic rupture should be preceded by the removal of underlying causes, followed by conservative management. However, surgical intervention should be warranted in the emergency cases presenting with the symptoms that may impede the decision-making process and in the cases whose diagnosis cannot be clarified by radiological techniques. Conclusion Renal pelvic injury must be considered in the differential diagnosis of blunt trauma. Surgical intervention may be necessary in some cases. We present a case who underwent surgery due to isolated renal pelvis rupture caused by blunt abdominal trauma. PMID:25734319

  15. Evidence for Supershear Rupture During the 1906 San Francisco Earthquake

    NASA Astrophysics Data System (ADS)

    Song, S.; Beroza, G. C.; Segall, P.

    2005-12-01

    The 1906 San Francisco earthquake is perhaps the single most important event in the history of earthquake science. Measurements taken and analyzed for that event led to the demonstration of elastic rebound. Despite the importance of this earthquake, the two most recently published source models, one based on seismic data and the other based on geodetic data, are sharply discordant. We suggest the two source models can be reconciled if rupture in the 1906 earthquake exceeded the shear wave velocity. Observations of super-shear rupture in recent large strike-slip earthquakes suggests that it is possible and may even be typical of large strike-slip events. We find that we can fit the geodetic data and the envelope of the seismic data provided the rupture exceeds the shear wave speed to the north of Point Arena. We are analyzing non-repeated triangulation measurements and solving the joint slip/rupture velocity inverse problem to test this hypothesis more rigorously. If supershear rupture in large earthquakes is common, it would be of fundamental importance for understanding the hazard posed by large strike-slip faults in general, and for our understanding seismic hazard in northern California in particular, because so much of our characterization of the hazard in that region is based on our understanding of what happened in 1906. The prediction of strong ground motion in future large strike-slip earthquakes will be profoundly different if earthquake rupture velocity is routinely supershear.

  16. The temporal distribution of seismic radiation during deep earthquake rupture

    USGS Publications Warehouse

    Houston, H.; Vidale, J.E.

    1994-01-01

    The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

  17. Volume Fraction Dependence of Droplet Rupturing in Concentrated Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Meleson, K.

    2005-03-01

    We investigate droplet rupturing by extreme shear in concentrated silicone oil-in-water nanoemulsions stabilized by sodium dodecyl sulfate (SDS) surfactant. According to Taylor's prediction for dilute emulsions, the ruptured droplet radius, a, varies inversely with the viscosity of the continuous phase. If one assumes that the emulsion's effective viscosity controls the average radius of the ruptured droplets, then emulsions that have larger droplet volume fractions, ?s would be ruptured by the same shear flow to smaller radii. In stark contrast to this, we find that the average droplet radius actually rises with as ? approaches the quiescent maximally random jammed value of 0.64. This is evidence that both droplet rupturing and coalescence occur when concentrated emulsions are subjected to extreme shear. We have also observed phase inversion to an oil-continuous emulsion for ? > 0.64. This supports the idea that coalescence occurs as the driving shear breaks thin films between the concentrated oil droplets at high ?. In addition, we find that the ruptured droplet size is relatively insensitive to large changes in the oil viscosity inside the droplets.

  18. A Strength Model and Service Envelope for PBX 9501

    SciTech Connect

    Stevens, Ralph

    2014-02-05

    An analytical method is proposed for making an assessment of the severity of the response of PBX 9501 in structural response simulations. The approach is based on the coherent use of a strength model and a failure criterion. The strength model is based on a creep rupture function and an associated cumulative damage model. The material's residual strength at any time during a simulation of structural response is determined by taking into account both the actual stress history up to that time, and a hypothetical continuation of the applied stresses that are assumed to grow until material failure results. The residual strength is used by the failure criterion to define the region of safe (non-failed) material response. The Mohr-Coulomb failure criterion is chosen for its general applicability to materials with both cohesive and frictional strength. The combined use of the residual strength model and the failure criterion provides a quantitative method of assessing the severity of the response of PBX 9501 material in structural simulations: the proximity of any evolving, general state of stress to the failure surface (which shrinks due to the cumulative damage caused by the past stress history) can be calculated and used as a measure of margin to failure. The strength model has been calibrated to a broad range of uniaxial tension and compression tests, and a small set of creep tests, and is applicable to a broad range of loading conditions.

  19. Nucleon Spin Structure: Longitudinal and Transverse

    SciTech Connect

    Jian-Ping Chen

    2011-02-01

    Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.

  20. Examination of the cyclic strength of structural cermet materials

    SciTech Connect

    Sereda, N.N.; Gerikhanov, A.K.; Koval'chenko, M.S.; Pedanov, L.G.; Tsyban, V.A.

    1986-11-01

    The authors examined the cyclic strength of cermets based on titanium and tungsten carbides. The first material is represented by three modifications: KTS-1N, KTSL-1 and KTNKH-70, whereas the second material is represented by a single modification, VK-15. Calculations were carried out using the simplified equation of the transverse oscillations without taking into account the inertia forces of the cross section under the effect of the transverse force on deflection. Comparison of the results of the tests on VK-15 cermet and the three titanium carbide alloys showed that the former has high fatigue failure resistance at all the lives.

  1. Self-healing pulse-like shear ruptures in the laboratory.

    PubMed

    Lykotrafitis, George; Rosakis, Ares J; Ravichandran, Guruswami

    2006-09-22

    Models predict that dynamic shear ruptures during earthquake faulting occur as either sliding cracks, where a large section of the interface slides behind a fast-moving rupture front, or self-healing slip pulses, where the fault relocks shortly behind the rupture front. We report experimental visualizations of crack-like, pulse-like, and mixed rupture modes propagating along frictionally held, "incoherent" interfaces separating identical solids, and we describe the conditions under which those modes develop. A combination of simultaneously performed measurements via dynamic photoelasticity and laser interferometry reveals the rupture mode type, the exact point of rupture initiation, the sliding velocity history, and the rupture propagation speed. PMID:16990544

  2. Stability and conductivity of self assembled wires in a transverse electric field

    PubMed Central

    Stephenson, C.; Hubler, A.

    2015-01-01

    Self assembling wire networks typically evolve to minimize the resistance across electrical contacts which are frequently used in a manner comparable to Hebbian learning. In this work, we demonstrate that electrical fields can also be used to cause an increase in the resistance of the wire network. We show that if such a wire is exposed to a transverse electric field, the wire is deformed in a way that depends on it’s tensile strength. We measure the wire resistance as a function of transverse field for several field strengths and show that by deforming the wire, the amplitude of the resulting shape can be modified in a controllable fashion. At a critical value of the transverse field, we show that the wire loses stability. At this point we observe thresholding behavior in that the resistance increases abruptly to a maximum value and the wire is destroyed. This thresholding behavior suggests that self assembled wires may be manipulated via an transverse electric field and demonstrates that a mechanism exists for the destruction of undesirable connections. PMID:26463476

  3. Transverse match of high peak-current beam into the LANSCE DTL using PARMILA

    SciTech Connect

    Merrill, F.E.; Rybarcyk, L.J.

    1996-09-01

    A new algorithm that uses a multiparticle PARMILA-based code to match high peak current H{sup +} beam ({approx}21 mA) into the Los Alamos Neutron Science Center (LANSCE) drift tube linac (DTL) has been developed. Two single cell rf bunchers in the low energy beam transport (LEBT) prepare the initially unbunched beam for DTL capture. The transverse distribution at the entrance to the DTL is set with four quadrupoles in the 1.26 m between the last transverse emittance measuring station and the DTL entrance. Previous matching algorithms used TRACE and TRACE 3-D to determine these quadrupole strengths. PARMILA simulation show this procedure produces non-zero mismatch and additional emittance growth through the DTL for high current beams. Because of strong space-charge forces and a rapidly forming longitudinal bunch, simple envelope calculations do not model the beam evolution in the LEBT well. A PARMILA model of this region was combined with ant iterative search routine to set the LEBT quadrupole strengths to achieve a better transverse match into the DTL. Simulations predict a significant reduction in transverse emittance at the exit of the DTL over the typical TRACE 3-D result.

  4. Stability and conductivity of self assembled wires in a transverse electric field

    NASA Astrophysics Data System (ADS)

    Stephenson, C.; Hubler, A.

    2015-10-01

    Self assembling wire networks typically evolve to minimize the resistance across electrical contacts which are frequently used in a manner comparable to Hebbian learning. In this work, we demonstrate that electrical fields can also be used to cause an increase in the resistance of the wire network. We show that if such a wire is exposed to a transverse electric field, the wire is deformed in a way that depends on it’s tensile strength. We measure the wire resistance as a function of transverse field for several field strengths and show that by deforming the wire, the amplitude of the resulting shape can be modified in a controllable fashion. At a critical value of the transverse field, we show that the wire loses stability. At this point we observe thresholding behavior in that the resistance increases abruptly to a maximum value and the wire is destroyed. This thresholding behavior suggests that self assembled wires may be manipulated via an transverse electric field and demonstrates that a mechanism exists for the destruction of undesirable connections.

  5. Stability and conductivity of self assembled wires in a transverse electric field.

    PubMed

    Stephenson, C; Hubler, A

    2015-01-01

    Self assembling wire networks typically evolve to minimize the resistance across electrical contacts which are frequently used in a manner comparable to Hebbian learning. In this work, we demonstrate that electrical fields can also be used to cause an increase in the resistance of the wire network. We show that if such a wire is exposed to a transverse electric field, the wire is deformed in a way that depends on it's tensile strength. We measure the wire resistance as a function of transverse field for several field strengths and show that by deforming the wire, the amplitude of the resulting shape can be modified in a controllable fashion. At a critical value of the transverse field, we show that the wire loses stability. At this point we observe thresholding behavior in that the resistance increases abruptly to a maximum value and the wire is destroyed. This thresholding behavior suggests that self assembled wires may be manipulated via an transverse electric field and demonstrates that a mechanism exists for the destruction of undesirable connections. PMID:26463476

  6. High strength, superplastic superalloy

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.; Freche, J. C.; Waters, W. J.

    1969-01-01

    High strength superplastic superalloys are produced by extruding a pre-alloyed powder. The cast nickel base superalloy was remelted and converted to pre-alloyed powder by inert gas atomization. The superalloy shows high tensile strength and superplasticity and finds use in hot working and casting.

  7. Tensile strength of carbyne chains in varied chemical environments and structural lengths

    NASA Astrophysics Data System (ADS)

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J.

    2014-09-01

    Carbyne and carbyne-based low-dimensional structures are promising for several applications including ultra-compact circuits and purification devices. Designing any applied carbyne-based structure requires a fundamental understanding of the mechanical strength of carbyne chains with different lengths at different temperatures and operating chemical environment. Here we use molecular dynamics simulations to investigate the strength of carbyne chains with different lengths at different temperatures. A theoretical framework based on statistical mechanics and molecular dynamics results is presented, proving a fast and insightful method for predicting the rupture force and its physical mechanism. The effect of water molecules interaction is also studied on the mechanical properties and it is shown that both the tensile strength and rupture strain are improved by the water interaction. The results of this work can be used for designing and analyzing the robustness and reliability of various carbyne-based materials and applied devices for varies working conditions.

  8. A wind tunnel study of particle kinematics during crust rupture and erosion

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick; McKenna Neuman, Cheryl

    2012-11-01

    Sediments with protective crusts of varying type were subjected to particles fed from an upwind source during wind tunnel experiments carried out to compare their ability to resist erosion and alter the kinematics of the saltation cloud. A laser Doppler anemometer measured the distribution of particle velocity for saltators impacting each crusted surface and for particles ejected from this same surface, inclusive of ricochets. Biotic crusts grown on sand in an environmental chamber were able to withstand erosion over several hours of continuous particle impact, as compared to brittle salt crusts, which, regardless of wind speed or sodium chloride concentration, eroded fully within one half hour. Despite the appearance of deep pits and grooves on the ruptured crusts, loss of mass dominated over particle trapping on these rough surfaces. While decreasing salt concentration between 320 g kg- 1 and 80 g kg- 1 generally was found to be associated with an increase in the mass flux of particles ejected from the surface, little to no correlation with either wind speed or particle impact speed was observed. The range over which varying salt concentration affects the momentum of ejected particles is rather narrow, within 160 g kg- 1. Temporal changes in the velocity distribution of ejected particles with crust rupture and deflation are complicated by variations in crust strength with depth. This is especially true of biotic crusts and weak salt crusts. Fast moving particles associated with the upper 40% of the cumulative velocity distribution generally demonstrate little variation from the control surfaces, and probably represent ricochets. In comparison, those within the lower 60% of the distribution are significantly affected by crust rupture and erosion, and may include low energy rebounds as well as the entrainment of new particles loosened from within the crust. While such measurements are exceedingly rare, they are needed for the validation of physically based models of crust erosion.

  9. Relationship between high-frequency radiation and asperity ruptures, revealed by hybrid back-projection with a non-planar fault model.

    PubMed

    Okuwaki, Ryo; Yagi, Yuji; Hirano, Shiro

    2014-01-01

    High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry. We applied it to teleseismic P-waveforms of the Mw 8.8 2010 Chile earthquake to estimate the spatiotemporal distribution of high-frequency (0.5-2.0 Hz) radiation. By comparing the result with the coseismic slip distribution obtained by waveform inversion, we found that strong high-frequency radiation can precede and may trigger a large asperity rupture. Moreover, in between the large slip events, high-frequency radiation of intermediate strength was concentrated along the rupture front. This distribution suggests that by bridging the two large slips, this intermediate-strength high-frequency radiation might play a key role in the interaction of the large slip events. PMID:25406638

  10. Relationship between High-frequency Radiation and Asperity Ruptures, Revealed by Hybrid Back-projection with a Non-planar Fault Model

    PubMed Central

    Okuwaki, Ryo; Yagi, Yuji; Hirano, Shiro

    2014-01-01

    High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry. We applied it to teleseismic P-waveforms of the Mw 8.8 2010 Chile earthquake to estimate the spatiotemporal distribution of high-frequency (0.5–2.0 Hz) radiation. By comparing the result with the coseismic slip distribution obtained by waveform inversion, we found that strong high-frequency radiation can precede and may trigger a large asperity rupture. Moreover, in between the large slip events, high-frequency radiation of intermediate strength was concentrated along the rupture front. This distribution suggests that by bridging the two large slips, this intermediate-strength high-frequency radiation might play a key role in the interaction of the large slip events. PMID:25406638

  11. Transverse Spin Relaxation in Liquid X

    SciTech Connect

    Romalis, M. V.; Ledbetter, M. P.

    2001-08-06

    Using spin-echo NMR techniques we study the transverse spin relaxation of hyperpolarized liquid X{sup 129}e in a spherical cell. We observe an instability of the transverse magnetization due to dipolar fields produced by liquid X{sup 129}e , and find that imperfections in the {pi} pulses of the spin-echo sequence suppress this instability. A simple perturbative model of this effect is in good agreement with the data. We obtain a transverse spin relaxation time of 1300sec in liquid X{sup 129}e , and discuss applications of hyperpolarized liquid X{sup 129}e as a sensitive magnetic gradiometer and for a permanent electric dipole moment search.

  12. Transverse flow CW atomic iodine laser system

    SciTech Connect

    Schlie, L. A.; Rathge, R. D.

    1985-08-13

    A transverse flow CW atomic iodine laser system uses a closed cycle fuel system to operate in a continuous mode. An elliptical pump cell having a Hg arc lamp cooled by deionized water irradiates with UV energy C/sub 3/F/sub 7/I gas to produce excited atomic iodine. A transverse flow section attached to the pump cell channels C/sub 3/F/sub 7/I gas into a laser cell where lasing occurs. The flow section has upstream and downstream flow cavities, triangular shaped, that channel the laser gas. A diffuser and flow straighteners are placed in these cavities to make the flow velocity across the transverse laser axis as uniform as possible so as to produce very stable laser gain output.

  13. Broadband transverse field interaction continuous beam amplifier

    NASA Astrophysics Data System (ADS)

    Jasper, L. J., Jr.; Desantis, C. M.; Baxendale, J. F.

    1984-08-01

    A broadband transverse field interaction continuous beam amplifier device comprised of an elongated continuous cathode modulating grid structure, an elongated continuous demodulating grid-collector structure, first or input waveguide transmission line means including the modulating grid for propagating an input RF wave transversely to an electron beam traveling from the cathode-grid structure to the output-collector structure where the electrons are bunched or modulated by the process of transverse wave interaction, and second or output waveguide transmission line means including the demodulating grid for propagating an induced amplified RF output wave resulting from prebunched electrons traversing the demodulator grid. Both input and output transmission line means include slow wave structures which are implemented in the grid structures.

  14. Carotid Atheroma Rupture Observed In Vivo and FSI-Predicted Stress Distribution Based on Pre-rupture Imaging

    PubMed Central

    Rayz, Vitaliy L.; Soares, Bruno; Wintermark, Max; Mofrad, Mohammad R. K.; Saloner, David

    2010-01-01

    Atherosclerosis at the carotid bifurcation is a major risk factor for stroke. As mechanical forces may impact lesion stability, finite element studies have been conducted on models of diseased vessels to elucidate the effects of lesion characteristics on the stresses within plaque materials. It is hoped that patient-specific biomechanical analyses may serve clinically to assess the rupture potential for any particular lesion, allowing better stratification of patients into the most appropriate treatments. Due to a sparsity of in vivo plaque rupture data, the relationship between various mechanical descriptors such as stresses or strains and rupture vulnerability is incompletely known, and the patient-specific utility of biomechanical analyses is unclear. In this article, we present a comparison between carotid atheroma rupture observed in vivo and the plaque stress distribution from fluid–structure interaction analysis based on pre-rupture medical imaging. The effects of image resolution are explored and the calculated stress fields are shown to vary by as much as 50% with sub-pixel geometric uncertainty. Within these bounds, we find a region of pronounced elevation in stress within the fibrous plaque layer of the lesion with a location and extent corresponding to that of the observed site of plaque rupture. PMID:20232151

  15. Behavior Of A Confined Tension Lap Splice In High-Strength Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Ahmed H.; Abousafa, Hala; El-Hadidi, Omaia S.

    2015-09-01

    The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of the lap splice of a steel reinforcement in tension zones in high-strength concrete beams are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of the transverse reinforcement around the spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from a splitting bond failure to a flexural failure when the amount of the transverse reinforcement in the splice region increased, and the compressive strength increased up to 100 MPa. The presence of the transverse reinforcement around the spliced bars had a pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using the ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of the transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high-strength concrete beams.

  16. Evolution of transverse modes in FELIX macropulses

    SciTech Connect

    Weits, H.H.; Lin, L.; Werkhoven, G.H.C. van

    1995-12-31

    We present ringdown measurements of both the intracavity beam, using a low reflection beamsplitter, as well as the hole-outcoupled beam of FELIX, the intracavity measurements being taken at various sets of transverse coordinates. Recent measurements show a significant difference in the decay of the signals at different radial positions, suggesting the presence of higher order transverse modes. The formation of transverse modes depends on the properties of the cold cavity and its losses (i.e. resonator parameters, diffraction and outcoupling at the hole, absorption and edge losses on the mirrors, waveguide clipping), as well as on the gain mechanism. Both simulations with the axisymmetric ELIXER code and previous hole-outcoupled measurements indicated a substantial energy content of the 2nd or 4th Gauss-Laguerre (GL) mode for the 20-30 {mu}m regime of FELIX. Moreover, as FELIX has a phase degenerate cavity, the fundamental and higher order transverse modes can interplay to create a reduced outcoupling efficiency at the hole. For example, in contrast to the decay rate of 13% per roundtrip that we would expect for a pure gaussian beam when we include a loss of 6% for the reflection at the intracavity beamsplitter, recent simulations indicate a decay rate as high as 23% of the hole-outcoupled signal. In this case the 2nd order GL mode contains 30% of the total intracavity power. The effect of transverse modes on subpulses in the limit cycle regime is an interesting aspect. As soon as a subpulse is losing contact with the electrons, its transverse pattern will exhibit an on-axis hole after a few roundtrips, according to the simulations. This process could mean that the subpulses are less pronounced in the hole-outcoupled signal of FELIX 1.

  17. Transversely stable soliton trains in photonic lattices

    SciTech Connect

    Yang Jianke

    2011-09-15

    We report the existence of transversely stable soliton trains in optics. These stable soliton trains are found in two-dimensional square photonic lattices when they bifurcate from X-symmetry points with saddle-shaped diffraction inside the first Bloch band and their amplitudes are above a certain threshold. We also show that soliton trains with low amplitudes or bifurcated from edges of the first Bloch band ({Gamma} and M points) still suffer transverse instability. These results are obtained in the continuous lattice model and are further corroborated by the discrete model.

  18. Charged particles time-dependent transverse transport

    NASA Astrophysics Data System (ADS)

    Fraschetti, F.; Jokipii, J. R.

    2010-12-01

    We discuss an analytical derivation for the temporal dependence of the transverse transport coefficient for times smaller than the correlation time of the magnetic turbulence, as seen by the particle, where the quasi-linear theory is not valid. The transverse transport is assumed to be dominated by the guiding center motion. Contributions of wavelengths shorter and longer than the coherence length to particle drift from the local magnetic field lines and to the magnetic field lines random walk are assessed for slab and 3D isotropic turbulence. Extensions of this model will allow for a study of solar wind physically motivated anisotropy.

  19. Early recovery in post Varicella transverse myelitis.

    PubMed

    Chand, Prem; Ibrahim, Shahnaz; Zaidi, Syed Sohail; Amjad, Nida

    2014-05-01

    A 7 years old boy presenting with acute flaccid paralysis after Varicella zoster infection was diagnosed as having acute transverse myelitis on MRI. He recovered fully after treatment with intravenous corticosteroids and acyclovir. The occurrence of this condition during or following Varicella infection is uncommon. There are previously very few reported cases of post-Varicella acute transverse myelitis in which recovery started after 3 months of treatment. In this case complete recovery occurred in 2 weeks of treatment. This report emphasizes the need for Varicella zoster vaccine to prevent not only acute Varicella, but also its rare postinfectious neurologic sequelae. PMID:24906257

  20. Transverse dune trailing ridges and vegetation succession

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Marisa' Martinez, M. L.

    2008-07-01

    We describe the evolution of, and vegetation succession on, a previously undescribed landform: transverse dune trailing ridges at El Faralln transgressive dunefield in the state of Veracruz, Mexico. Three-dimensional clinometer/compass and tape topographic surveys were conducted in conjunction with 1 m 2 contiguous percent cover and presence/absence vegetation survey transects at eight locations across two adjacent trailing ridges. At the study site, and elsewhere, the transverse dune trailing ridges are formed by vegetation colonization of the lateral margins of active transverse, barchanoidal transverse, and akl or network dunes. For simplicity, all trailing ridges formed from these dune types are referred to as transverse dune trailing ridges. Because there are several transverse dunes in the dunefield, multiple trailing ridges can be formed at one time. Two adjacent trailing ridges were examined. The shortest length ridge was 70 m long, and evolving from a 2.5 m-high transverse dune, while the longer ridge was 140 m long, and evolving from an 8 m-high dune. Trailing ridge length is a proxy measure of ridge age, since the longer the ridge, the greater the length of time since initial formation. With increasing age or distance upwind, species diversity increased, as well as species horizontal extent and percent cover. In turn, the degree of bare sand decreased. Overall, the data indicate a successional trend in the vegetation presence and cover with increasing age upwind. Those species most tolerant to burial ( Croton and Palafoxia) begin the process of trailing ridge formation. Ipomoea and Canavalia are less tolerant to burial and also are typically the next colonizing species. Trachypogon does not tolerate sand burial or deposition very well and only appears after significant stabilization has taken place. The ridges display a moderately defined successional sequence in plant colonization and percentage cover with time (and upwind distance). They are significant geomorphologically as a unique landform in transgressive dunefields, and also because they may be the only remaining indication of transverse dune presence, and net dune migration direction once the dunefield is stabilized and in a final evolutionary state.