Sample records for treatment plant influent

  1. Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent

    PubMed Central

    McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L.

    2009-01-01

    The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 sequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTP) in metropolitan Milwaukee. The sewage profiles included a discernable human fecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera. The fecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human fecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in fecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human fecal microbes and enrichment of specific microbes from the environment to form a unique population structure. PMID:19840106

  2. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona.

    PubMed

    Kitajima, Masaaki; Haramoto, Eiji; Iker, Brandon C; Gerba, Charles P

    2014-06-15

    We investigated the occurrence of Cryptosporidium, Giardia, and Cyclospora at two wastewater treatment plants (WWTPs) in Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent wastewater samples were collected monthly, and protozoan (oo)cysts were concentrated using an electronegative filter, followed by the detection of protozoa using fluorescent microscopy (Cryptosporidium oocysts and Giardia cysts) and PCR-based methods (Cryptosporidium spp., Giardia intestinalis, and Cyclospora cayetanensis). The concentration of Giardia cysts in the influent was always higher than that of Cryptosporidium oocysts (mean concentration of 4.8-6.4×10(3) versus 7.4×10(1)-1.0×10(2)(oo)cysts/l) with no clear seasonality, and log10 reduction of Giardia cysts was significantly higher than that of Cryptosporidium oocysts for both WWTPs (P<0.05). Log10 reduction of Giardia cysts at the WWTP utilizing activated sludge was significantly higher than the other WWTP using trickling filter (P=0.014), while no statistically significant difference between the two WWTPs was observed for the log10 reduction of Cryptosporidium oocysts (P=0.207). Phylogenetic analysis revealed that G. intestinalis strains identified in wastewater belonged to two assemblages, AII and B, which are potentially infectious to humans. C. cayetanensis was also detected from both influent and effluent using a newly developed quantitative PCR, with the highest influent concentration of 1.2×10(4)copies/l. Our results demonstrated that these protozoan pathogens are prevalent in the study area and that efficacy of the conventional wastewater treatment processes at physically removing (oo)cysts is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nitrogen speciation in wastewater treatment plant influents and effluents-the US and Polish case studies.

    PubMed

    Pagilla, K R; Urgun-Demirtas, M; Czerwionka, K; Makinia, J

    2008-01-01

    The fate of N species, particularly dissolved organic nitrogen (DON), through process trains of a wastewater treatment plant (WWTP) was investigated. In this study, three fully nitrifying plants in Illinois, USA and biological nutrient removal (BNR) plants in northern Poland were sampled for N characterization in the primary and secondary effluents as a function of the particle size distribution. The correlations between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were examined. The key findings are that DON becomes significant portion (about 20%) of the effluent N, reaching up to 50% of effluent total N in one of the Polish plants. The DON constituted 56-95% of total ON (TON) in the secondary effluents, whereas in the Polish plants the DON contribution was substantially lower (19-62%) and in one case (Gdansk WWTP) colloidal ON was the dominating fraction (62% of TON). The DOC to DON ratio in the US plants is significantly lower than that in the receiving waters indicating potential for deterioration of receiving water quality. In Polish plants, the influent and effluent C:N ratios are similar, but not in the US plants. IWA Publishing 2008.

  4. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia.

    PubMed

    Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed

    2018-04-01

    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.

  5. Nutrient removal of a floating plant system receiving low- pollution wastewater: Effects of plant species and influent concentration

    NASA Astrophysics Data System (ADS)

    Duan, J. J.; Zhao, J. N.; Xue, L. H.; Yang, L. Z.

    2016-08-01

    Plant floating bed was adopted in this study to compare the purification effect of four plant species (Oenanthe javanica, Ipomoea aquatica, Hydrocotyle vulgaris, and Iris sibirica) receiving high and low treated domestic sewage. The experiment was conducted for eight months during the low temperature season. The results indicated that the average removal rates of TN and NH4+-N in I. aquatica floating bed were relatively high both under high and low influent concentration during the first stage of the experiment. During the second stage, H. vulgaris showed the best performance for nitrogen treatment, and the average removal rates of TN were 70.7% and 87.7% under high and low influent concentration, while the average removal rates of NH4 +-N were as high as 98.9% and 98.9%, accordingly. Moreover, H. vulgaris contributed most for plant assimilation to nitrogen removal among different plant floating systems. It was also found that the existence of hydrophytes effectively controlled the rise of water pH value and algae growth and reproduction, which helped to improve the aquatic environment. The results provide engineering parameters for the future design of an ecological remediation technology for low-pollution wastewater purification.

  6. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa.

    PubMed

    Abafe, Ovokeroye A; Späth, Jana; Fick, Jerker; Jansson, Stina; Buckley, Chris; Stark, Annegret; Pietruschka, Bjoern; Martincigh, Bice S

    2018-06-01

    South Africa has the largest occurrence of the human immune deficiency virus (HIV) in the world but has also implemented the largest antiretroviral (ARV) treatment programme. It was therefore of interest to determine the presence and concentrations of commonly used antiretroviral drugs (ARVDs) and, also, to determine the capabilities of wastewater treatment plants (WWTPs) for removing ARVDs. To this end, a surrogate standard based LC-MS/MS method was optimized and applied for the detection of thirteen ARVDs used in the treatment and management of HIV/acquired immune deficiency syndrome (HIV/AIDS) in two major and one modular WWTP in the eThekwini Municipality in KwaZulu-Natal, South Africa. The method was validated and the detection limits fell within the range of 2-20 ng L -1 . The analytical recoveries for the ARVDs were mainly greater than 50% with acceptable relative standard deviations. The concentration values ranged from influent), treatment facility (DEWATS); influent), influent),

  7. Improving flow distribution in influent channels using computational fluid dynamics.

    PubMed

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  8. Generation of synthetic influent data to perform (micro)pollutant wastewater treatment modelling studies.

    PubMed

    Snip, L J P; Flores-Alsina, X; Aymerich, I; Rodríguez-Mozaz, S; Barceló, D; Plósz, B G; Corominas, Ll; Rodriguez-Roda, I; Jeppsson, U; Gernaey, K V

    2016-11-01

    The use of process models to simulate the fate of micropollutants in wastewater treatment plants is constantly growing. However, due to the high workload and cost of measuring campaigns, many simulation studies lack sufficiently long time series representing realistic wastewater influent dynamics. In this paper, the feasibility of the Benchmark Simulation Model No. 2 (BSM2) influent generator is tested to create realistic dynamic influent (micro)pollutant disturbance scenarios. The presented set of models is adjusted to describe the occurrence of three pharmaceutical compounds and one of each of its metabolites with samples taken every 2-4h: the anti-inflammatory drug ibuprofen (IBU), the antibiotic sulfamethoxazole (SMX) and the psychoactive carbamazepine (CMZ). Information about type of excretion and total consumption rates forms the basis for creating the data-defined profiles used to generate the dynamic time series. In addition, the traditional influent characteristics such as flow rate, ammonium, particulate chemical oxygen demand and temperature are also modelled using the same framework with high frequency data. The calibration is performed semi-automatically with two different methods depending on data availability. The 'traditional' variables are calibrated with the Bootstrap method while the pharmaceutical loads are estimated with a least squares approach. The simulation results demonstrate that the BSM2 influent generator can describe the dynamics of both traditional variables and pharmaceuticals. Lastly, the study is complemented with: 1) the generation of longer time series for IBU following the same catchment principles; 2) the study of the impact of in-sewer SMX biotransformation when estimating the average daily load; and, 3) a critical discussion of the results, and the future opportunities of the presented approach balancing model structure/calibration procedure complexity versus predictive capabilities. Copyright © 2016. Published by Elsevier B.V.

  9. Determination of alcohol sulfates in wastewater treatment plant influents and effluents by gas chromatography-mass spectrometry.

    PubMed

    Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L

    2012-08-30

    In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Research on the sewage treatment in high altitude region based on Lhasa Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Li, Shuwen

    2017-12-01

    Sewage treatment is of great significance to enhance environmental quality, consolidate pollution prevention and ecological protection, and ensure sustainable economic and social development in high altitude region. However, there are numerous difficulties in sewage treatment due to the alpine climate, the relatively low economic development level, and the backward operation and management styles, etc. In this study, the characteristics of influent quality in the sewage treatment plant in Lhasa are investigated by analysing the influent BOD5/COD and BOD5/TN, comparing key indexes recorded from 2014 to 2016 with the hinterland. Results show that the concentration of influent COD, BOD5, NH3-N and SS in the Lhasa sewage treatment plant, in which the sewage belongs to low-concentration urban sewage, is smaller than that in the domestic sewage treatment plants in the mainland. The concentration ratio of BOD5/COD and BOD5/TN is below 0.4 and 4, which indicates that the biodegradation is poor and the carbon sources are in bad demand. The consequences obtained play a vital role in the design, operation and management of sewage treatment plants in high altitude region.

  11. Improved wet weather wastewater influent modelling at Viikinmäki WWTP by on-line weather radar information.

    PubMed

    Heinonen, M; Jokelainen, M; Fred, T; Koistinen, J; Hohti, H

    2013-01-01

    Municipal wastewater treatment plant (WWTP) influent is typically dependent on diurnal variation of urban production of liquid waste, infiltration of stormwater runoff and groundwater infiltration. During wet weather conditions the infiltration phenomenon typically increases the risk of overflows in the sewer system as well as the risk of having to bypass the WWTP. Combined sewer infrastructure multiplies the role of rainwater runoff in the total influent. Due to climate change, rain intensity and magnitude is tending to rise as well, which can already be observed in the normal operation of WWTPs. Bypass control can be improved if the WWTP is prepared for the increase of influent, especially if there is some storage capacity prior to the treatment plant. One option for this bypass control is utilisation of on-line weather-radar-based forecast data of rainfall as an input for the on-line influent model. This paper reports the Viikinmäki WWTP wet weather influent modelling project results where gridded exceedance probabilities of hourly rainfall accumulations for the next 3 h from the Finnish Meteorological Institute are utilised as on-line input data for the influent model.

  12. Efficacy of two wastewater treatment plants in removing genotoxins.

    PubMed

    Jolibois, B; Guerbet, M

    2005-04-01

    The genotoxic potential of influents and effluents of two different wastewater treatment plants (WTP-A and WTP-B) located in the Rouen, France, area was evaluated by the SOS chromotest without metabolic activation (on Escherichia coli PQ37) and the Ames fluctuation test (on Salmonella typhimurium strains TA 98, 100, TA 102) with and without metabolic activation. The wastewater samples were taken during two 1-week periods in January and April 2003. The simultaneous use of the SOS chromotest and Ames fluctuation test allowed us to evaluate the efficacy of the wastewater treatment plants at removing genotoxins. Genotoxins were detected with the Ames test but not with the SOS chromotest. Out of a total of 24 influents tested (14 for WTP-A and 10 for WTP-B), almost all were genotoxic in at least one Ames test strain (71% for WTP-A and 100% for WTP-B). In contrast, all of the tested effluents were nongenotoxic. This work showed that the treatment process used in the 2 wastewater treatment plants studied (activated sludge) was able to remove the genotoxins detected in their influents. Nevertheless, studies could be undertaken to determine which step of the treatment process removes genotoxins and whether WTP sludge use could be a source of genotoxic contamination for humans and the environment.

  13. Generation of diurnal variation for influent data for dynamic simulation.

    PubMed

    Langergraber, G; Alex, J; Weissenbacher, N; Woerner, D; Ahnert, M; Frehmann, T; Halft, N; Hobus, I; Plattes, M; Spering, V; Winkler, S

    2008-01-01

    When using dynamic simulation for fine tuning of the design of activated sludge (AS) plants diurnal variations of influent data are required. For this application usually only data from the design process and no measured data are available. In this paper a simple method to generate diurnal variations of wastewater flow and concentrations is described. The aim is to generate realistic influent data in terms of flow, concentrations and TKN/COD ratios and not to predict the influent of the AS plant in detail. The work has been prepared within the framework of HSG-Sim (Hochschulgruppe Simulation, http://www.hsgsim.org), a group of researchers from Germany, Austria, Luxembourg, Poland, the Netherlands and Switzerland. (c) IWA Publishing 2008.

  14. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    PubMed

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  15. Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants.

    PubMed

    Yoon, Suchul; Nakada, Norihide; Tanaka, Hiroaki

    2011-06-15

    N-Nitrosodimethylamine (NDMA) is a potent carcinogen that is formed during disinfection by chlorination or ozonation in wastewater treatment plants (WWTPs). At present, little is known about the occurrence and fate of NDMA and its formation potential (FP) during wastewater treatment. We investigated the fate of NDMA and NDMA FP in 12 WWTPs. NDMA occurred in the influents at a concentration ranging from below the limit of quantification (LOQ <10 ng/L) to 80 ng/L, and in the final discharges from below the LOQ to 73 ng/L. In three WWTPs located in industrial areas, the influent had a high NDMA FP (up to 8230 ng/L). The rate of NDMA FP reduction from influent to secondary effluent varied between 85 and 98%, regardless of treatment process. The rate of NDMA removal is due more to the influent properties than to the type of biological treatment process. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    USGS Publications Warehouse

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  17. EPA (ENVIRONMENTAL PROTECTION AGENCY) DESIGN INFORMATION REPORT: SIDESTREAMS IN WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Performance problems at publicly-owned treatment works are often attributed to the recycling of sidestreams generated in the wastewater treatment and sludge handling systems. Although the volumes of these sidestreams are generally small compared to plant influent flows, sidestrea...

  18. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.

    PubMed

    Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M

    2002-03-01

    The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.

  19. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada.

    PubMed

    Wang, De-Gao; Steer, Helena; Tait, Tara; Williams, Zackery; Pacepavicius, Grazina; Young, Teresa; Ng, Timothy; Smyth, Shirley Anne; Kinsman, Laura; Alaee, Mehran

    2013-10-01

    A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography - mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282-6.69μgL(-1), 7.75-135μgL(-1), and 1.53-26.9μgL(-1), respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009-0.045μgL(-1), <0.027-1.56μgL(-1), and <0.022-0.093μgL(-1), respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009-0.023μgL(-1), <0.027-1.48μgL(-1), and <0.022-0.151μgL(-1) for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003-0.049μgg(-1)dw, 0.011-5.84μgg(-1)dw, and 0.004-0.371μgg(-1)dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008-0.017μgg(-1)dw, <0.007-0.221μgg(-1)dw, and <0.009-0.711μgg(-1)dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater

  1. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants.

    PubMed

    Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Zhou, Li-Jun; Yang, Bin; Chen, Zhi-Feng; Lai, Hua-Jie

    2012-02-01

    The occurrence and fate of fourteen androgens, four estrogens, five glucocorticoids and five progestagens were investigated in two different types of wastewater treatment plants (Plant A: activated sludge with chlorination, and Plant B: oxidation ditch with UV) of Guangdong province, China. 14, 14, and 10 of 28 target compounds were detected in the influent, effluent and dewatered sludge samples with the concentrations ranging from below 1.2 ± 0.0 ng L(-1) (stanozolol) to 1368 ± 283 ng L(-1) (epi-androsterone), below 1.0 ± 0.0 ng L(-1) (progesterone) to 23.1 ± 1.0 ng L(-1) (5α-dihydrotestosterone), 1.0 ± 0.1 ng g(-1) (estrone) to 460 ± 4.4 ng g(-1) (5α-dihydrotestosterone), respectively. The concentrations of total androgens (1554-1778 ng L(-1) in influent, 13.3-47.8 ng L(-1) in effluent, 377-923 ng g(-1) in dewatered sludge) were much higher than those of total estrogens (41.5-60.2 ng L(-1) in influent, 5.6-13.5 ng L(-1) in effluent, 13.9-57.8 ng g(-1) in dewatered sludge), glucocorticoids (171-192 ng L(-1) in influent, 2.2-6.3 ng L(-1) in effluent, N.D.-4.4 ng g(-1) in dewatered sludge), and progestagens (39.6-40.5 ng L(-1) in influent, 6.9-12.1 ng L(-1) in effluent, N.D. in dewatered sludge) in these two WWTPs. According to mass balance analysis, the removal rates of most target steroids in Plant A had exceeded 90%, while those in Plant B for nearly half of detected target steroids were lower than 80%. It is obvious that the treatment capacity of the activated sludge system (Plant A) is superior to the oxidation ditch (Plant B) in the degradation of steroids in sewage treatment systems. Androgens, estrogens and progestagens were mainly removed by sorption and degradation, while the reduction of glucocorticoids was primarily due to degradation.

  2. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations.

    PubMed

    Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E

    2017-07-01

    The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents

  3. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants.

    PubMed

    Berglund, Björn; Dienus, Olaf; Sokolova, Ekaterina; Berglind, Emma; Matussek, Andreas; Pettersson, Thomas; Lindgren, Per-Eric

    2017-11-15

    Giardia intestinalis, Cryptosporidium spp., Entamoeba histolytica and Dientamoeba fragilis are parasitic protozoa and causative agents of gastroenteritis in humans. G. intestinalis and Cryptosporidium spp. in particular are the most common protozoa associated with waterborne outbreaks in high-income countries. Surveillance of protozoan prevalence in wastewater and evaluation of wastewater treatment removal efficiencies of protozoan pathogens is therefore imperative for assessment of human health risk. In this study, influent and effluent wastewater samples from three wastewater treatment plants in Sweden were collected over nearly one year and assessed for prevalence of parasitic protozoa. Quantitative real-time PCR using primers specific for the selected protozoa Cryptosporidium spp., G. intestinalis, E. histolytica, Entamoeba dispar and D. fragilis was used for protozoan DNA detection and assessment of wastewater treatment removal efficiencies. Occurrence of G. intestinalis, E. dispar and D. fragilis DNA was assessed in both influent (44, 30 and 39 out of 51 samples respectively) and effluent wastewater (14, 9 and 33 out of 51 samples respectively) in all three wastewater treatment plants. Mean removal efficiencies of G. intestinalis, E. dispar and D. fragilis DNA quantities, based on all three wastewater treatment plants studied varied between 67 and 87%, 37-75% and 20-34% respectively. Neither E. histolytica nor Cryptosporidium spp. were detected in any samples. Overall, higher quantities of protozoan DNA were observed from February to June 2012. The high prevalence of protozoa in influent wastewater indicates the need for continued monitoring of these pathogens in wastewater-associated aquatic environments to minimise the potential risk for human infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    PubMed Central

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A.; Khamis, Mustafa; Karaman, Rafik

    2013-01-01

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43−, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment. PMID:23823802

  5. Detection of Helicobacter pylori in drinking water treatment plants in Bogotá, Colombia, using cultural and molecular techniques.

    PubMed

    Vesga, Fidson-Juarismy; Moreno, Yolanda; Ferrús, María Antonia; Campos, Claudia; Trespalacios, Alba Alicia

    2018-05-01

    Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, and a predisposing factor for peptic ulcer and gastric cancer. The infection has been consistently associated with lack of access to clean water and proper sanitation. H. pylori has been detected in surface water, wastewater and drinking water. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in influent and effluent water from drinking water treatment plants (DWTP). A total of 310 influent and effluent water samples were collected from three drinking water treatment plants located at Bogotá city, Colombia. Specific detection of H. pylori was achieved by culture, qPCR and FISH techniques. Fifty-six positive H. pylori cultures were obtained from the water samples. Characteristic colonies were covered by the growth of a large number of other bacteria present in the water samples, making isolation difficult to perform. Thus, the mixed cultures were submitted to Fluorescent in situ Hybridization (FISH) and qPCR analysis, followed by sequencing of the amplicons for confirmation. By qPCR, 77 water samples, both from the influent and the effluent, were positive for the presence of H. pylori. The results of our study demonstrate that viable H. pylori cells were present in both, influent and effluent water samples obtained from drinking water treatment plants in Bogotá and provide further evidence that contaminated water may act as a transmission vehicle for H. pylori. Moreover, FISH and qPCR methods result rapid and specific techniques to identify H. pylori from complex environmental samples such as influent water. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Bisphenol A emission factors from industrial sources and elimination rates in a sewage treatment plant.

    PubMed

    Fuerhacker, M

    2003-01-01

    Bisphenol A (BPA) is widely used for the production of epoxy resins and polycarbonate plastics and is considered an endocrine disruptor. Special in vitro test systems and animal experiments showed a weak estrogenic activity. Aquatic wildlife especially could be endangered by waste water discharges. To manage possible risks arising from BPA emissions the major fluxes need to be investigated and the sources of the contamination of municipal treatment plants need to be determined. In this study, five major industrial point sources, two different household areas and the influent and effluent of the corresponding treatment plant (WWTP) were monitored simultaneously at a plant serving 120,000 population equivalents. A paper producing plant was the major BPA contributor to the influent load of the wastewater treatment plant. All the other emissions from point sources, including the two household areas, were considerably lower. The minimum elimination rate in the WTTP could be determined at 78% with an average of 89% of the total BPA-load. For a possible pollution-forecast, or for a comparison between different point sources, emission factors based on COD-emissions were calculated for industrial and household point sources at BPA/COD-ratios between 1.4 x 10(-8) - 125 x 10(-8) and 1.3 x 10(-6) - 6.3 x 10(-6), respectively.

  7. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  8. Seasonal occurrence, removal and risk assessment of 10 pharmaceuticals in 2 sewage treatment plants of Guangdong, China.

    PubMed

    Tang, Ying; Guo, Lu-Lu; Hong, Cheng-Yang; Bing, Yong-Xin; Xu, Zhen-Cheng

    2017-11-10

    A long-term investigation, which covered 10 sampling campaigns over 3 years, was performed to evaluate the occurrence, removal and risk of 10 pharmaceuticals in 2 full-scale sewage treatment plants (STPs) in Guangdong, South China. Target pharmaceuticals except for clofibrate and ibuprofen were detected in every sample, with mean concentrations of 12.5-685.6 and 7.9-130.3 ng/L in the influent and effluent, respectively. Salicylic acid was the most abundant compound in both the influents and effluents in the two STPs. For most pharmaceuticals, the seasonal variation in the influent showed the highest concentrations in January and lowest concentrations in July due to their consumption and rainfall. Ibuprofen and fenoprofen presented high removal rates (>90%) and some of the targets such as gemfibrozil, mefenamic acid, tolfenamic acid and diclofenac were detectable with significantly higher mass loads in effluents than in influents. Studies of the five efficiently eliminated pharmaceuticals show that the primary treatment and secondary treatment contributed to most pharmaceutical removal, the anoxic tank made a negligible contribution to their elimination. According to the results produced from the calculation of the risk quotient, only diclofenac might pose a risk to the aquatic environment.

  9. Effects of influent fractionation, kinetics, stoichiometry and mass transfer on CH4, H2 and CO2 production for (plant-wide) modeling of anaerobic digesters.

    PubMed

    Solon, Kimberly; Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2015-01-01

    This paper examines the importance of influent fractionation, kinetic, stoichiometric and mass transfer parameter uncertainties when modeling biogas production in wastewater treatment plants. The anaerobic digestion model no. 1 implemented in the plant-wide context provided by the benchmark simulation model no. 2 is used to quantify the generation of CH₄, H₂and CO₂. A comprehensive global sensitivity analysis based on (i) standardized regression coefficients (SRC) and (ii) Morris' screening's (MS's) elementary effects reveals the set of parameters that influence the biogas production uncertainty the most. This analysis is repeated for (i) different temperature regimes and (ii) different solids retention times (SRTs) in the anaerobic digester. Results show that both SRC and MS are good measures of sensitivity unless the anaerobic digester is operating at low SRT and mesophilic conditions. In the latter situation, and due to the intrinsic nonlinearities of the system, SRC fails in decomposing the variance of the model predictions (R² < 0.7) making MS a more reliable method. At high SRT, influent fractionations are the most influential parameters for predictions of CH₄and CO₂emissions. Nevertheless, when the anaerobic digester volume is decreased (for the same load), the role of acetate degraders gains more importance under mesophilic conditions, while lipids and fatty acid metabolism is more influential under thermophilic conditions. The paper ends with a critical discussion of the results and their implications during model calibration and validation exercises.

  10. Removal of two antibacterial compounds triclocarban and triclosan in a waste water treatment plant

    USDA-ARS?s Scientific Manuscript database

    This study investigates the fate of Triclocarban (TCC) and Triclosan (TCS) in a waste water treatment plant (WWTP). Our goal was to identify the most effective removal step and to determine the amount on the solid phase versus degraded. Our influent contained higher TCS than TCC concentrations (8....

  11. The effect of influent temperature variations in a sedimentation tank for potable water treatment--a computational fluid dynamics study.

    PubMed

    Goula, Athanasia M; Kostoglou, Margaritis; Karapantsios, Thodoris D; Zouboulis, Anastasios I

    2008-07-01

    A computational fluid dynamics (CFD) model is used to assess the effect of influent temperature variation on solids settling in a sedimentation tank for potable water treatment. The model is based on the CFD code Fluent and exploits several specific aspects of the potable water application to derive a computational tool much more efficient than the corresponding tools employed to simulate primary and secondary wastewater settling tanks. The linearity of the particle conservation equations allows separate calculations for each particle size class, leading to the uncoupling of the CFD problem from a particular inlet particle size distribution. The usually unknown and difficult to be measured particle density is determined by matching the theoretical to the easily measured experimental total settling efficiency. The present model is adjusted against data from a real sedimentation tank and then it is used to assess the significance of influent temperature variation. It is found that a temperature difference of only 1 degrees C between influent and tank content is enough to induce a density current. When the influent temperature rises, the tank exhibits a rising buoyant plume that changes the direction of the main circular current. This process keeps the particles in suspension and leads to a higher effluent suspended solids concentration, thus, worse settling. As the warmer water keeps coming in, the temperature differential decreases, the current starts going back to its original position, and, thus, the suspended solids concentration decreases.

  12. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant.

    PubMed

    Golovko, Oksana; Kumar, Vimal; Fedorova, Ganna; Randak, Tomas; Grabic, Roman

    2014-09-01

    Seasonal changes in the concentration of 21 pharmaceuticals in a wastewater treatment plant (WWTP) in České Budějovice were investigated over 12months. The target compounds were 10 antibiotics, 4 antidepressants, 3 psychiatric drugs, 2 antihistamines and 2 lipid regulators. 272 Wastewater samples (136 influents and 136 effluents) were collected from March 2011 to February 2012 and analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. All studied pharmaceuticals were frequently detected in both the influent and the effluent wastewater samples, except for meclozine, which was only found in the influent. The mean concentration of pharmaceuticals varied from 0.006μgL(-1) to 1.48μgL(-1) in the influent and from 0.003μgL(-1) to 0.93μgL(-1) in the effluent. The concentration of most pharmaceuticals was higher during winter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Strategies to improve energy efficiency in sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Au, Mau Teng; Pasupuleti, Jagadeesh; Chua, Kok Hua

    2013-06-01

    This paper discusses on strategies to improve energy efficiency in Sewage Treatment Plant (STP). Four types of STP; conventional activated sludge, extended aeration, oxidation ditch, and sequence batch reactor are presented and strategized to reduce energy consumption based on their influent flow. Strategies to reduce energy consumption include the use of energy saving devices, energy efficient motors, automation/control and modification of processes. It is envisaged that 20-30% of energy could be saved from these initiatives.

  14. Nitrous Oxide Production at a Fully Covered Wastewater Treatment Plant: Results of a Long-Term Online Monitoring Campaign.

    PubMed

    Kosonen, Heta; Heinonen, Mari; Mikola, Anna; Haimi, Henri; Mulas, Michela; Corona, Francesco; Vahala, Riku

    2016-06-07

    The nitrous oxide emissions of the Viikinmäki wastewater treatment plant were measured in a 12 month online monitoring campaign. The measurements, which were conducted with a continuous gas analyzer, covered all of the unit operations of the advanced wastewater-treatment process. The relation between the nitrous oxide emissions and certain process parameters, such as the wastewater temperature, influent biological oxygen demand, and ammonium nitrogen load, was investigated by applying online data obtained from the process-control system at 1 min intervals. Although seasonal variations in the measured nitrous oxide emissions were remarkable, the measurement data indicated no clear relationship between these emissions and seasonal changes in the wastewater temperature. The diurnal variations of the nitrous oxide emissions did, however, strongly correlate with the alternation of the influent biological oxygen demand and ammonium nitrogen load to the aerated zones of the activated sludge process. Overall, the annual nitrous oxide emissions of 168 g/PE/year and the emission factor of 1.9% of the influent nitrogen load are in the high range of values reported in the literature but in very good agreement with the results of other long-term online monitoring campaigns implemented at full-scale wastewater-treatment plants.

  15. Cost of phosphate removal in municipal wastewater treatment plants

    NASA Technical Reports Server (NTRS)

    Schuessler, H.

    1983-01-01

    Construction and operating costs of advanced wastewater treatment for phosphate removal at municipal wastewater treatment plants have been investigated on orders from the Federal Environmental Bureau in Berlin. Particular attention has been paid to applicable kinds of precipitants for pre-, simultaneous and post-precipitation as well as to different phosphate influent and effluent concentrations. The article offers detailed comments on determination of technical data, investments, capital costs, operating costs and annual costs as well as potential cost reductions resulting from precipitation. Selected results of the cost investigation are shown in graphical form as specific investments, operating and annual costs depending on wastewater flow.

  16. Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator.

    PubMed

    Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf

    2012-01-01

    This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weather files describing diurnal, weekend and seasonal variations through the combination of different generic model blocks, i.e. households, industry, rainfall and infiltration. The GSA is carried out by combining Monte Carlo simulations and standardized regression coefficients (SRC). Cluster analysis is then applied, classifying the influence of the model parameters into strong, medium and weak. The results show that the method is able to decompose the variance of the model predictions (R(2)> 0.9) satisfactorily, thus identifying the model parameters with strongest impact on several flow rate descriptors calculated at different time resolutions. Catchment size (PE) and the production of wastewater per person equivalent (QperPE) are two parameters that strongly influence the yearly average dry weather flow rate and its variability. Wet weather conditions are mainly affected by three parameters: (1) the probability of occurrence of a rain event (Llrain); (2) the catchment size, incorporated in the model as a parameter representing the conversion from mm rain · day(-1) to m(3) · day(-1) (Qpermm); and, (3) the quantity of rain falling on permeable areas (aH). The case study also shows that in both dry and wet weather conditions the SRC ranking changes when the time scale of the analysis is modified, thus demonstrating the potential to identify the effect of the model parameters on the fast/medium/slow dynamics of the flow rate. The paper ends with a discussion on the interpretation of GSA results and of the advantages of using synthetic dynamic flow rate data for WWTP influent scenario generation. This section also includes general suggestions on how to use the proposed

  17. Pharmaceuticals and consumer products in four wastewater treatment plants in urban and suburb areas of Shanghai.

    PubMed

    Sui, Qian; Wang, Dan; Zhao, Wentao; Huang, Jun; Yu, Gang; Cao, Xuqi; Qiu, Zhaofu; Lu, Shuguang

    2015-04-01

    Ten pharmaceuticals and two consumer products were investigated in four wastewater treatment plants (WWTPs) in Shanghai, China. The concentrations of target compounds in the wastewater influents ranged from below the limit of quantification (LOQ) to 9340 ng/L, with the frequency of detection of 31-100%, and the removal efficiencies were observed to be -82 to 100% in the four WWTPs. Concentrations of most target compounds (i.e. diclofenac, caffeine, metoprolol, sulpiride) in the wastewater influents were around three to eight times higher in urban WWTPs than in suburb ones, probably due to the different population served and lifestyles. Mean concentrations of target compounds in the wastewater influent generally decreased by 5-76% after rainfall due to the dilution of raw sewage by rainwater, which infiltrated into the sewer system. In the WWTPs located in the suburb area, the increased flow of wastewater influent led to a shortened hydraulic retention time (HRT) and decreased removal efficiencies of some compounds. On the contrary, the influence of rainfall was not significant on the removal efficiencies of investigated compounds in urban WWTPs, probably due to the almost unchanged influent flow, good removal performance, or bypass system employed.

  18. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Co-digestion of domestic kitchen waste and night soil sludge in a full-scale sludge treatment plant.

    PubMed

    Yoneyama, Y; Takeno, K

    2002-01-01

    A study was made on the domestic kitchen waste and night soil treatment performance of a full-scale sludge treatment plant. The sludge treatment at this plant was by thermophilic methane fermentation. The initial treatment, mesophilic to thermophilic fermentation, was able to be started up within a short time by adjusting the amount of influent waste. Thermophilic methane fermentation was carried out for five months (May-October) and the performance under a mean residual time of 22 days indicated a VTS decomposition of 42%, gas generation of 54-1,610 m3/day (average: 755 m3/day), and a mean methane concentration of 60%. The methane gas was used to generate power in the plant and the amount of power generated by methane gas was highest in October (average of 1,200 kWh/day). This was equivalent to about 7% of the power consumed at the entire sludge treatment plant. The BOD/NH4-N of the activated sludge influent water was lower, compared to a case where there is no recycle flow, due to the recycle flow from the methane fermentation process. There was, therefore, a tendency for an increase in the amount of methanol charged into the secondary denitrification tank. However, the quality of the effluent was satisfactory (BOD< 10 mg/L, SS< 5 mg/L, and T-N< 25 mg/L). Study results indicated that it was possible to implement a full-scale plant for recovering organic waste.

  20. Behavior of pharmaceuticals in waste water treatment plant in Japan.

    PubMed

    Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R

    2011-07-01

    The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).

  1. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations.

    PubMed

    Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G

    2017-03-01

    Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable

  2. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review.

    PubMed

    Tran, Ngoc Han; Reinhard, Martin; Gin, Karina Yew-Hoong

    2018-04-15

    Emerging contaminants, such as antibiotics, pharmaceuticals, personal care products, hormones, and artificial sweeteners, are recognized as new classes of water contaminants due to their proven or potential adverse effects on aquatic ecosystems and human health. This review provides comprehensive data on the occurrence of 60 emerging contaminants (ECs) in influent, treated effluent, sludge, and biosolids in wastewater treatment plants (WWTPs). In particular, data on the occurrence of ECs in the influents and effluents of WWTPs are systematically summarized and categorized according to geographical regions (Asia, Europe, and North America). The occurrence patterns of ECs in raw influent and treated effluents of WWTPs between geographical regions were compared and evaluated. Concentrations of most ECs in raw influent in Asian region tend to be higher than those in European and North American countries. Many antibiotics were detected in the influents and effluents of WWTPs at concentrations close to or exceeding the predicted no-effect concentrations (PNECs) for resistance selection. The efficacy of EC removal by sorption and biodegradation during wastewater treatment processes are discussed in light of kinetics and parameters, such as sorption coefficients (K d ) and biodegradation constants (k biol ), and physicochemical properties (i.e. log K ow and pK a ). Commonly used sampling and monitoring strategies are critically reviewed. Analytical research needs are identified, and novel investigative approaches for future monitoring studies are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Occurrence Characteristics of Microplastic in Secondary Sewage Treatment Plant in Shanghai,China.

    NASA Astrophysics Data System (ADS)

    Bai, M.; Zhao, S.; Li, D.

    2017-12-01

    As emerging pollutants, microplastics (MPs) are of concern worldwide. Due to plenty of microbeads and synthetic fibers presenting in the effluent of waste water treatment plants (WWTPs), WWTPs have been regarded as important point sources of MP into the sea. Currently, information of microplastics from WWTPs in China is limited. Herein, we studied the MP contamination of a sewage plant in Shanghai by analyzing water and sludge samples with fourier transform infrared spectroscopy. The abundances of MP in the influent, mixed water, effluent and sludge four stages are respectively 117 n/L, 90 n/L, 52 n/L and 181 n/50g(wet weight). The removal efficiency of MP in the current WWTP is 55.6%. Fiber is the most common shape type. Rayon is the most type in effluent and mixed water while synthetic leather account for the largest percentage in influent and sludge. This study firstly discussed the occurrence characteristics of microplastics in the WWTP of China and confirmed that WWTP is a source of MPs inputting into aquatic environments.

  4. Transport and fate of microplastic particles in wastewater treatment plants.

    PubMed

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  5. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage.

    PubMed

    Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei

    2017-09-07

    Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.

  6. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants.

    PubMed

    Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis

    2012-05-15

    The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Monitoring for Harmful Algal Blooms in Influent Waters and Through Treatment on Lake Erie in the 2013 and 2014 Bloom Seasons 

    EPA Science Inventory

    Monitoring of Harmful Algal Blooms in Influent and Through Drinking Water Treatment Facilities Located on Lake Erie in the 2013 and 2014 Bloom SeasonsToby Sanan, Nicholas Dugan, Darren Lytle, Heath MashHarmful algal blooms (HABs) and their associated toxins are emerging as signif...

  8. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China.

    PubMed

    Zhang, Chaojie; Yan, Hong; Li, Fei; Zhou, Qi

    2015-02-01

    Perfluorinated acids (PFAs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The discharge of wastewater effluent from municipal wastewater treatment plants (WWTPs) is a significant source of PFAs to the environment. In this study, wastewater and sludge samples were collected from two WWTPs in Shanghai, China, to investigate the contamination level and fate of PFAs in different stages of processing. The total concentrations of PFAs (∑PFAs) in influent from plants A and B were 2,452 and 292 ng L(-1), respectively. Perfluoropentanoic acid (1,520 ± 80 ng L(-1) in plant A and 89.2 ± 12.1 ng L(-1) in plant B) was the predominant PFA in influent waters, followed by perfluorooctanoic acid. The concentration of ∑PFAs ranged from 75.0 to 126.0 ng g(-1) dry weight in sludge samples from plant B, with perfluorooctanesulfonic acid as the predominant contaminant. The concentrations and fate of PFAs in different WWTPs vary. The ∑PFAs entering plant A decreased significantly in the final effluent of activated sludge process, while that in plant B increased significantly in the final effluent of sequencing batch reactor system. The concentration changes could be due to the sorption onto sludge, or the degradation of PFAs precursors.

  9. Spatiotemporal variations in estrogenicity, hormones, and endocrine-disrupting compounds in influents and effluents of selected wastewater-treatment plants and receiving streams in New York, 2008-09

    USGS Publications Warehouse

    Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.

    2014-01-01

    Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs

  10. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China.

    PubMed

    Ye, Xin; Guo, Xuesong; Cui, Xing; Zhang, Xian; Zhang, Han; Wang, M K; Qiu, Ling; Chen, Shaohua

    2012-08-01

    Concentrations of six endocrine-disrupting compounds (EDCs), bisphenol A (BPA), estrone (E(1)), 17β-estradiol (E(2)), estriol (E(3)), 17α-ethynylestradiol (EE(2)) and diethylstilbestrol (DES), were assessed in influents, effluents and excess sludge in ten municipal wastewater treatment plants (WWTPs) in the Three Gorges Reservoir (TGR) area, Chongqing, China. Three types of activated sludge treatment processes, oxidation ditch (OD), reversed anaerobic-anoxic-oxic (rA(2)/O) technology and sequential batch reactor (SBR), were used in the surveyed WWTPs. These WWTPs were all combined landfill leachate-sewage treatment plants. All analytes were extracted by solid-phase extraction (SPE) in the dissolved phase and by accelerated solvent-based extraction (ASE) in sludge. Gas chromatography-mass spectrometry (GC-MS) was employed for the analysis of EDCs. Among these EDCs, BPA was the most frequently detected and abundant compound (100.0-10566.7 ng L(-1), 15.5-1210.7 ng L(-1) and 85.0-2470.4 ng g(-1) with respect to the influents, effluents and excess sludge samples). The greatest levels of steroidal estrogens in municipal influents were observed in E(3) which were all >100 ng L(-1), followed by E(1) (42.2-110.7 ng L(-1)) and E(2) (7.4-32.7 ng L(-1)), and in the effluents and sludge were E(1) > E(3) > E(2) which were all <31 ng L(-1) and 105 ng g(-1), respectively. Regarding synthetic estrogens, EE(2) was frequently detected in the influents, occurring below 50 ng L(-1), while DES was not detected at all. A high correlation coefficient was observed between the leachate-sludge ratio and concentrations of influent EDCs, and it was statistically significant (i.e., R > 0.65, P < 0.05), but removal efficiency of the EDCs did not show significant differences with OD, rA(2)/O and SBR processes. Furthermore, modification of treatment technology as well as operational parameters, such as hydraulic retention time (HRT), sludge retention time (SRT) and disinfection process (DP

  11. Multi-objective Optimization for the Robust Performance of Drinking Water Treatment Plants under Climate Change and Climate Extremes

    NASA Astrophysics Data System (ADS)

    Raseman, W. J.; Kasprzyk, J. R.; Rosario-Ortiz, F.; Summers, R. S.; Stewart, J.; Livneh, B.

    2016-12-01

    To promote public health, the United States Environmental Protection Agency (US EPA), and similar entities around the world enact strict laws to regulate drinking water quality. These laws, such as the Stage 1 and 2 Disinfectants and Disinfection Byproducts (D/DBP) Rules, come at a cost to water treatment plants (WTPs) which must alter their operations and designs to meet more stringent standards and the regulation of new contaminants of concern. Moreover, external factors such as changing influent water quality due to climate extremes and climate change, may force WTPs to adapt their treatment methods. To grapple with these issues, decision support systems (DSSs) have been developed to aid WTP operation and planning. However, there is a critical need to better address long-term decision making for WTPs. In this poster, we propose a DSS framework for WTPs for long-term planning, which improves upon the current treatment of deep uncertainties within the overall potable water system including the impact of climate on influent water quality and uncertainties in treatment process efficiencies. We present preliminary results exploring how a multi-objective evolutionary algorithm (MOEA) search can be coupled with models of WTP processes to identify high-performing plans for their design and operation. This coupled simulation-optimization technique uses Borg MOEA, an auto-adaptive algorithm, and the Water Treatment Plant Model, a simulation model developed by the US EPA to assist in creating the D/DBP Rules. Additionally, Monte Carlo sampling methods were used to study the impact of uncertainty of influent water quality on WTP decision-making and generate plans for robust WTP performance.

  12. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants.

    PubMed

    Mao, Daqing; Yu, Shuai; Rysz, Michal; Luo, Yi; Yang, Fengxia; Li, Fengxiang; Hou, Jie; Mu, Quanhua; Alvarez, P J J

    2015-11-15

    The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. Copyright © 2015 Elsevier Ltd. All

  13. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain).

    PubMed

    Santos, J L; Aparicio, I; Alonso, E

    2007-05-01

    The occurrence of four anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine) in influent and effluent samples from four wastewater treatment plants (WWTPs) in Seville was evaluated. Removal rates in the WWTPs and risk assessment of the pharmaceutically active compounds have been studied. Analytical determination was carried out by high performance liquid chromatography (HPLC) with diode array (DAD) and fluorescence (Fl) detectors after sample clean up and concentration by solid phase extraction. All pharmaceutically active compounds, except diclofenac, were detected not only in wastewater influents but also in wastewater effluents. Mean concentrations of caffeine, carbamazepine, ketoprofen and naproxen ranged between 0.28-11.44 microg l(-1) and 0.21-2.62 microg l(-1) in influent and effluent wastewater, respectively. Ibuprofen was present in the highest concentrations in the range 12.13-373.11 microg l(-1) and 0.78-48.24 microg l(-1) in influent and effluent wastewater, respectively. Removal rates of the pharmaceuticals ranged between 6 and 98%. Risk quotients, expressed as ratios between the measured environmental concentration (MEC) and the predicted no effect concentrations (PNEC) were higher than 1 for ibuprofen and naproxen in influent wastewater and for ibuprofen in effluent wastewater.

  14. Mass flows and removal of antibiotics in two municipal wastewater treatment plants.

    PubMed

    Li, Bing; Zhang, Tong

    2011-05-01

    The mass flows and removal of 20 antibiotics of seven classes in two wastewater treatment plants (WWTPs) of Hong Kong were investigated in different seasons of a whole year, using bihourly 24h flow proportional composite samples. Antibiotics were detected at concentrations of 3.2-1718, 1.3-1176 and 1.1-233ngL(-1) in influents, secondary and disinfection effluents. Total daily discharges of all the detected antibiotics from effluents of Shatin and Stanley WWTPs were 470-710 and 3.0-5.2gd(-1), respectively. Ampicillin, cefalexin, sulfamethoxazole, sulfadiazine, sulfamethazine, chlortetracycline and vancomycin were effectively (52-100%) eliminated by activated sludge process while ampicillin and cefalexin were effectively (91-99%) eliminated by disinfection. Bihourly variation analysis showed that concentrations of the major antibiotics in influents varied more significantly in Stanley WWTP which served small communities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Calibration and validation of a phenomenological influent pollutant disturbance scenario generator using full-scale data.

    PubMed

    Flores-Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik; Thirsing, Carsten; Thornberg, Dines; Gernaey, Krist V; Jeppsson, Ulf

    2014-03-15

    The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM2). In this study, the influent characteristics of two large Scandinavian treatment facilities are studied for a period of two years. A step-wise procedure based on adjusting the most sensitive parameters at different time scales is followed to calibrate/validate the DIPDSG model blocks for: 1) flow rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles. Furthermore, additional phenomena such as size and accumulation/flush of particulates of/in the upstream catchment and sewer system are incorporated in the simulated time series. Finally, this study is complemented with: 1) the generation of additional future scenarios showing the effects of different rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented results balancing model structure/calibration procedure complexity and prediction capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Contribution of Wastewater Treatment Plants to Concentrations of PBDEs, PFCs, PCBs, DDT and Synthetic Musks in Fish Tissue from U.S. Urban Waters

    EPA Science Inventory

    Wastewater treatment plants (WWTPs) are tasked with removing a wide variety of contaminants from influents, including BOD and nutrients from human waste as well as any and all other compounds that emanate from homes and commercial facilities in the communities they serve. Traces ...

  17. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    PubMed

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  18. Development of Thresholds and Exceedance Probabilities for Influent Water Quality to Meet Drinking Water Regulations

    NASA Astrophysics Data System (ADS)

    Reeves, K. L.; Samson, C.; Summers, R. S.; Balaji, R.

    2017-12-01

    Drinking water treatment utilities (DWTU) are tasked with the challenge of meeting disinfection and disinfection byproduct (DBP) regulations to provide safe, reliable drinking water under changing climate and land surface characteristics. DBPs form in drinking water when disinfectants, commonly chlorine, react with organic matter as measured by total organic carbon (TOC), and physical removal of pathogen microorganisms are achieved by filtration and monitored by turbidity removal. Turbidity and TOC in influent waters to DWTUs are expected to increase due to variable climate and more frequent fires and droughts. Traditional methods for forecasting turbidity and TOC require catchment specific data (i.e. streamflow) and have difficulties predicting them under non-stationary climate. A modelling framework was developed to assist DWTUs with assessing their risk for future compliance with disinfection and DBP regulations under changing climate. A local polynomial method was developed to predict surface water TOC using climate data collected from NOAA, Normalized Difference Vegetation Index (NDVI) data from the IRI Data Library, and historical TOC data from three DWTUs in diverse geographic locations. Characteristics from the DWTUs were used in the EPA Water Treatment Plant model to determine thresholds for influent TOC that resulted in DBP concentrations within compliance. Lastly, extreme value theory was used to predict probabilities of threshold exceedances under the current climate. Results from the utilities were used to produce a generalized TOC threshold approach that only requires water temperature and bromide concentration. The threshold exceedance model will be used to estimate probabilities of exceedances under projected climate scenarios. Initial results show that TOC can be forecasted using widely available data via statistical methods, where temperature, precipitation, Palmer Drought Severity Index, and NDVI with various lags were shown to be important

  19. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.

    PubMed

    Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).

  20. Benchmarking of municipal waste water treatment plants (an Austrian project).

    PubMed

    Lindtner, S; Kroiss, H; Nowak, O

    2004-01-01

    An Austrian research project focused on the development of process indicators for treatment plants with different process and operation modes. The whole treatment scheme was subdivided into four processes, i.e. mechanical pretreatment (Process 1), mechanical-biological waste water treatment (Process 2), sludge thickening and stabilisation (Process 3) and further sludge treatment and disposal (Process 4). In order to get comparable process indicators it was necessary to subdivide the sample of 76 individual treatment plants all over Austria into five groups according to their mean organic load (COD) in the influent. The specific total yearly costs, the yearly operating costs and the yearly capital costs of the four processes have been related to the yearly average of the measured organic load expressed in COD (110 g COD/pe/d). The specific investment costs for the whole treatment plant and for Process 2 have been related to a calculated standard design capacity of the mechanical-biological part of the treatment plant expressed in COD. The capital costs of processes 1, 3 and 4 have been related to the design capacity of the treatment plant. For each group (related to the size of the plant) a benchmark band has been defined for the total yearly costs, the total yearly operational costs and the total yearly capital costs. For the operational costs of the Processes 1 to 4 one benchmark ([see symbol in text] per pe/year) has been defined for each group. In addition a theoretical cost reduction potential has been calculated. The cost efficiency in regard to water protection and some special sub-processes such as aeration and sludge dewatering has been analysed.

  1. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP.

    PubMed

    Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan

    2016-09-01

    The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for

  2. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia.

    PubMed

    Gracia-Lor, Emma; Sancho, Juan V; Serrano, Roque; Hernández, Félix

    2012-04-01

    A survey on the presence of pharmaceuticals in urban wastewater of a Spanish Mediterranean area (Castellon province) was carried out. The scope of the study included a wide variety of pharmaceuticals belonging to different therapeutical classes. For this purpose, 112 samples, including influent and effluent wastewater, from different conventional wastewater treatment plants were collected. Two monitoring programmes were carried out along several seasons. The first was in June 2008 and January 2009, and the second in April and October 2009. During the first monitoring, the occurrence of 20 analytes in 84 urban wastewater samples (influent and effluent) was studied. The selection of these pharmaceuticals was mainly based on consumption. From these, 17 compounds were detected in the samples, with analgesics and anti-inflammatories, cholesterol lowering statin drugs and lipid regulators being the most frequently detected groups. 4-Aminoantipyrine, bezafibrate, diclofenac, gemfibrozil, ketoprofen, naproxen and venlafaxine were the compounds most frequently found. In the highlight of these results, the number of analytes was increased up to around 50. A lot of antibiotic compounds were added to the target list as they were considered "priority pharmaceuticals" due to their more potential hazardous effects in the aquatic environment. Data obtained during the second monitoring programme (spring and autumn) corroborated the results from the first one (summer and winter). Analgesics and anti-inflammatories, lipid regulators together with quinolone and macrolide antibiotics were the most abundant pharmaceuticals. Similar median concentrations were found over the year and seasonal variation was not clearly observed. The removal efficiency of pharmaceuticals in the wastewater treatment plants was roughly evaluated. Our results indicated that elimination of most of the selected compounds occurred during the treatment process of influent wastewater, although it was incomplete

  3. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  4. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bellucci, F.; Gonzalez-Meler, M. A.; Heraty, L.; Kozak, J. A.

    2010-12-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates such as five-day Biological or Chemical Oxygen Demand [B(C)OD5] for CH4 and protein content of diets for N2O. Unfortunately, empirical validation of these models using field data is lacking. To fill this gap, we measured annual CH4 and N20 emissions from three wastewater treatment plants in the Chicago region that differ in size and design. Plants ranged from serving 0.17 to 2.3 million people, treating from 27 to 751 millions of gallons of wastewater per day, and having BOD5 from 101 to 220 mg/L. Primary settling tanks, exhausts, and aeration basins were the main sources of CH4 emissions, whereas N2O was mainly emitted by aeration basins at the three plants investigated. During 2009, per capita emissions for CH4 and N2O (for every thousand people) ranged from 61 to 1130 kg/yr and from 12 to 226 Kg/yr, respectively. These wide variations were in part due to chemistry of influent waters and plant design. We found that IPCC and USEPA algorithms were good predictors of CH4 emissions but they largely underestimated N20 emissions. Despite the differences in plant design and per capita emissions, we found that all three plants have a similar CH4:N2O flux ratio. If this flux ratio proves to be a general characteristic of wastewater treatment plants, it could provide a more accurate alternative to current models for estimation of N2O emissions.

  5. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain).

    PubMed

    Santos, J L; Aparicio, I; Callejón, M; Alonso, E

    2009-05-30

    Several pharmaceutically active compounds have been monitored during 1-year period in influent and effluent wastewater from wastewater treatment plants (WWTPs) to evaluate their temporal evolution and removal from wastewater and to know which variables have influence in their removal rates. Pharmaceutical compounds monitored were four antiinflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine). All of the pharmaceutically active compounds monitored, except diclofenac, were detected in influent and effluent wastewater. Mean concentrations measured in influent wastewater were 6.17, 0.48, 93.6, 1.83 and 5.41 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean concentrations measured in effluent wastewater were 2.02, 0.56, 8.20, 0.84 and 2.10 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean removal rates of the pharmaceuticals varied from 8.1% (carbamazepine) to 87.5% (ibuprofen). The existence of relationships between the concentrations of the pharmaceutical compounds, their removal rates, the characterization parameters of influent wastewaters and the WWTP control design parameters has been studied by means of statistical analysis (correlation and principal component analysis). With both statistical analyses, high correlations were obtained between the concentration of the pharmaceutical compounds and the characterization parameters of influent wastewaters; and between the removal rates of the pharmaceutical compounds, the removal rates of the characterization parameters of influent wastewaters and the WWTP hydraulic retention times. Principal component analysis showed the existence of two main components accounting for 76% of the total variability.

  6. Effects of influent strength on microorganisms in surface flow mesocosm wetlands.

    PubMed

    Tao, Wendong; Hall, Ken J; Ramey, William

    2007-11-01

    To choose an appropriate dilution ratio to treat woodwaste leachate without inhibition on heterotrophic bacteria, microbial ATP concentration and the rates of heterotrophic leucine incorporation and acetate uptake were compared across surface flow mesocosm wetlands fed with different strengths of influent. Abundances of protozoa and respiring bacteria were investigated in two mesocosm wetlands to elucidate the effects of influent strength on heterotrophic bacteria. The strongest influent or the raw leachate did not show a significant inhibitory effect on leucine incorporation and acetate uptake. Instead, leucine incorporation rates by bacteria in water, epiphytic biofilm and sediment were higher in mesocosm wetlands fed with a stronger influent. There were significantly more respiring planktonic bacteria (451 x 10(5) mL(-1)) and fewer nanoflagellates (3.8 x 10(3) mL(-1)) in the mesocosm fed with a strong influent, while fewer respiring planktonic bacteria (38.7 x 10(5)mL(-1)) and more nanoflagellates (15.4 x 10(3) mL(-1)) in the mesocosm fed with a weak influent. The majority of the total microbial ATP was attributed to sedimentary bacteria, of which >96% were inactive. Heterotrophic activity and its distribution among water, epiphytic biofilm and sediment in the mesocosm wetlands were affected by availability of bacterial substrates and grazing pressure of nanoflagellates.

  7. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  8. A comparison of efficiencies of microbiological pollution removal in six sewage treatment plants with different treatment systems.

    PubMed

    Kistemann, Thomas; Rind, Esther; Rechenburg, Andrea; Koch, Christoph; Classen, Thomas; Herbst, Susanne; Wienand, Ina; Exner, Martin

    2008-10-01

    Six sewage treatment plants (STP) were investigated over a 12-month period in order to measure the microbiological load of untreated municipal wastewater and to evaluate the removal efficiencies of different treatment systems. The STP investigated can be classified into three categories: bigger plants with tertiary treatment, smaller plants with enhanced secondary treatment, and very small compact facilities. The plants studied had a considerable quantitative impact on the hydrology of the catchment area; consequently, it was anticipated that the microbiological load of the effluent would also be significant. Eighty samples were taken from the influent and effluent of the STP, regardless of weather conditions, and several bacterial and two parasitological parameters were analysed. The average microbiological reduction of each STP was dependent on its capacity and treatment procedures and varied between 1.9 and 3.5log10. Small compact facilities had a significantly lower removal efficiency (2.0+/-1log10) and discharged treated wastewater with a poorer microbiological quality compared to larger plants with tertiary treatment or with enhanced secondary treatment (2.8log10). Final sand filtration and extensive intermediate settling considerably improved the overall microbiological removal efficiency. During the study period, the microbiological water quality of the receiving water course was not significantly impaired by the discharge of any of the investigated plants; however, the compact facilities showed critical treatment deficiencies. In particular, the reduction of Giardia cysts was insufficient (<1.5log10) compared to that of the bigger plants (>3.0log10). In order to quantify the overall impact of microbiological loads on the receiving watercourse in this catchment area, it is also necessary to assess the pollution from combined sewer overflow basins and diffuse pollution. This will be considered in subsequent studies.

  9. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    PubMed

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  10. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-05-07

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H₂O₂ AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m³ (0.4 kW, 1 m³/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H₂O₂ AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl₂), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl₂ was needed, resulting in AOX concentrations of up to 520 µg/L.

  11. Human enteric viruses in a wastewater treatment plant: evaluation of activated sludge combined with UV disinfection process reveals different removal performances for viruses with different features.

    PubMed

    Lizasoain, A; Tort, L F L; García, M; Gillman, L; Alberti, A; Leite, J P G; Miagostovich, M P; Pou, S A; Cagiao, A; Razsap, A; Huertas, J; Berois, M; Victoria, M; Colina, R

    2018-03-01

    This study assess the quality of wastewater through the detection and quantification of important viruses causing gastroenteritis at different stages of the wastewater treatment process in an activated-sludge wastewater treatment plant with ultraviolet disinfection. Ten sampling events were carried out in a campaign along a period of 18 months collecting wastewater samples from the influent, after the activated-sludge treatment, and after the final disinfection with UV radiation. Samples were concentrated through ultracentrifugation and analysed using retro-transcription, PCR and real time quantitative PCR protocols, for detection and quantification of Group A Rotavirus (RVA), Human Astrovirus (HAstV), Norovirus Genogroup II (NoV GII) and Human Adenovirus (HAdV). HAdV (100%), NoV GII (90%), RVA (70%) and HAstV (60%) were detected in influent samples with concentration from 1·4 (NoV GII) to 8·0 (RVA) log 10  gc l -1 . Activated-sludge treatment reached well quality effluents with low organic material concentration, although nonstatistical significant differences were registered among influent and postactivated sludge treatment samples, regarding the presence and concentration for most viruses. All post-UV samples were negative for NoV GII and HAstV, although RVA and HAdV were detected in 38% and 63% of those samples respectively, with concentration ranging from 2·2 to 5·5 and 3·1 to 3·4 log 10  gc l -1 . This study demonstrates that an activated-sludge wastewater treatment plant with UV disinfection reduces to levels below the detection limit those single-stranded RNA viruses as noroviruses and astroviruses and reach significant lower levels of rotaviruses and adenoviruses after the complete treatment process. © 2017 The Society for Applied Microbiology.

  12. Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants.

    PubMed

    Metcalfe, Chris D; Koenig, Brenda G; Bennie, Don T; Servos, Mark; Ternes, Thomas A; Hirsch, Roman

    2003-12-01

    Samples of influent (untreated) and effluent (treated) from 18 sewage treatment plants (STPs) in 14 municipalities in Canada were analyzed for residues of selected prescription and nonprescription drugs. Several neutral and acidic drugs were detected in effluents, including analgesic/anti-inflammatory agents, lipid regulators, and an antiepileptic drug, carbamazepine. Residues were extracted from effluents by solid-phase extraction, followed by either methylation and analysis of acidic drugs by gas chromatography/mass spectrometry or direct analysis of neutral drugs by liquid chromatography/tandem mass spectrometry. Analgesic/anti-inflammatory drugs such as ibuprofen and naproxen, as well as the metabolite of acetylsalicyclic acid, salicylic acid, were often detected in final effluents at microg/L concentrations. The acidic lipid regulator, clofibric acid, and the analgesic/anti-inflammatory drug diclofenac were not detected in any final effluent samples, which is not consistent with data from Europe. The precursor to clofibric acid, clofibrate, is not widely prescribed as a lipid regulator in Canada. However, the lipid regulators bezafibrate and gemfibrozil were detected in some samples of influent and effluent. The chemotherapy drugs ifosfamide and cyclophosphamide and the anti-inflammatory phenazone were not detected in influent or effluent samples, but the vasodilator drug pentoxyfylline was detected at ng/L concentrations in some final effluents. The widespread occurrence of carbamazepine at concentrations as high as 2.3 microg/L may be explained by use of this drug for other therapeutic purposes besides treatment of epilepsy and its resistance to elimination in STPs. The rates of elimination of ibuprofen and naproxen appeared to be elevated in STPs with hydraulic retention times for sewage greater than 12 h.

  13. Influence of Ammonium Ions, Organic Load and Flow Rate on the UV/Chlorine AOP Applied to Effluent of a Wastewater Treatment Plant at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Minke, Ralf

    2018-06-16

    This work investigates the influence of ammonium ions and the organic load (chemical oxygen demand (COD)) on the UV/chlorine AOP regarding the maintenance of free available chlorine (FAC) and elimination of 16 emerging contaminants (ECs) from wastewater treatment plant effluent (WWTE) at pilot scale (UV chamber at 0.4 kW). COD inhibited the FAC maintenance in the UV chamber influent at a ratio of 0.16 mg FAC per mg COD ( k HOCl⁻COD = 182 M −1 s −1 ). An increase in ammonium ion concentration led to a stoichiometric decrease of the FAC concentration in the UV chamber influent. Especially in cold seasons due to insufficient nitrification, the ammonium ion concentration in WWTE can become so high that it becomes impossible to achieve sufficiently high FAC concentrations in the UV chamber influent. For all ECs, the elimination effect by the UV/combined Cl₂ AOP (UV/CC) was not significantly higher than that by sole UV treatment. Accordingly, the UV/chlorine AOP is very sensitive and loses its effectiveness drastically as soon as there is no FAC but only CC in the UV chamber influent. Therefore, within the electrical energy consumption range tested (0.13⁻1 kWh/m³), a stable EC elimination performance of the UV/chlorine AOP cannot be maintained throughout the year.

  14. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    PubMed

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Time Series Analysis and Forecasting of Wastewater Inflow into Bandar Tun Razak Sewage Treatment Plant in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Abunama, Taher; Othman, Faridah

    2017-06-01

    Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.

  16. Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China.

    PubMed

    Liu, Hou-Qi; Lam, James C W; Li, Wen-Wei; Yu, Han-Qing; Lam, Paul K S

    2017-05-15

    Municipal wastewater treatment plants (WWTPs) are an important source of pharmaceuticals released into the environment. Understanding how various pharmaceuticals are distributed and handled in WWTPs is a prerequisite to optimize their abatement. Here we investigated the spatial distribution and removal efficiencies pharmaceuticals in China's WWTPs. A total of 35 pharmaceuticals in wastewater samples from 12 WWTPs at different cities of China were analyzed. Among these detected pharmaceuticals, caffeine showed the highest concentration (up to 1775.98ngL -1 ) in the WWTP influent. In addition, there were significant regional differences in pharmaceutical distribution with higher influent concentrations of total pharmaceuticals detected in WWTPs in the northern cities than the southern ones. The state-of-the-art treatment processes were generally inefficient in removing pharmaceuticals. Only 14.3% of pharmaceuticals were removed effectively (mean removal efficiency>70%), while 51.4% had a removal rate of below 30%. The anaerobic/anoxic/oxic (AAO)-membrane bioreactor (MBR) integrated process and sequencing batch reactor (SBR) showed better performance than the AAO and oxidation ditch (OD) processes. Ofloxacin, erythromycin-H 2 O, clarithromycin, roxithromycin and sulfamethoxazole in WWTP effluents exhibited a high or medium ecological risk and deserved special attention. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant.

    PubMed

    Sánchez-Avila, Juan; Bonet, Jordi; Velasco, Gemma; Lacorte, Silvia

    2009-06-15

    Industrial and urban discharges release organic contaminants which might affect the quality of receiving waters if not properly eliminated in Wastewater Treatment Plants (WWTP). This study is aimed to evaluate the source, transport and fate of contaminants of industrial origin in a sewage grid discharging to a WWTP and finally to the sea. The sampling network covered an industrial and urban area and wastewaters, influents and effluents of a WWTP were analyzed using a newly developed multiresidual method to capture a wide range contaminants (phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs). Alkylphenols and phthalates followed by PAHs were the main compounds detected at levels between 0.01 to 698 microg l(-1) in the sewage pipelines. At the WWTP influent they were detected at concentrations up to 345 microg l(-1). The contaminant load was eliminated in a 64-92% during the primary and secondary treatment of the plant. However, alkylphenols, phthalates bisphenol A and traces of PAHs were discharged with the effluent, producing a total net input of 825 g d(-1) to the sea. The study of wastewaters herein proposed can be used to better predict the loads into WWTP to improve treatment conditions according to specific sewage inputs and to assess the risks associated with the continuous discharge of contaminants to receiving plants.

  18. Impact of harmful algal blooms on several Lake Erie drinking water treatment facilities; methodology considerations

    EPA Science Inventory

    The propagation of cyanbacterial cells and their toxins were investigated at seven drinking water treatment plants (DWTPs) on Lake Erie were investigated with regards to harmful algal bloom (HAB) toxin concentrations, water quality variations in treatment plant influents, and pr...

  19. Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing.

    PubMed

    Ye, Lin; Zhang, Tong

    2011-09-01

    This study applied 454 high-throughput pyrosequencing to analyze potentially pathogenic bacteria in activated sludge from 14 municipal wastewater treatment plants (WWTPs) across four countries (China, U.S., Canada, and Singapore), plus the influent and effluent of one of the 14 WWTPs. A total of 370,870 16S rRNA gene sequences with average length of 207 bps were obtained and all of them were assigned to corresponding taxonomic ranks by using RDP classifier and MEGAN. It was found that the most abundant potentially pathogenic bacteria in the WWTPs were affiliated with the genera of Aeromonas and Clostridium. Aeromonas veronii, Aeromonas hydrophila, and Clostridium perfringens were species most similar to the potentially pathogenic bacteria found in this study. Some sequences highly similar (>99%) to Corynebacterium diphtheriae were found in the influent and activated sludge samples from a saline WWTP. Overall, the percentage of the sequences closely related (>99%) to known pathogenic bacteria sequences was about 0.16% of the total sequences. Additionally, a platform-independent Java application (BAND) was developed for graphical visualization of the data of microbial abundance generated by high-throughput pyrosequencing. The approach demonstrated in this study could examine most of the potentially pathogenic bacteria simultaneously instead of one-by-one detection by other methods.

  20. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant.

    PubMed

    Gupta, Sachin Kumar; Shin, Hanseob; Han, Dukki; Hur, Hor-Gil; Unno, Tatsuya

    2018-06-01

    The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment.

  1. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant.

    PubMed

    Loganathan, Bommanna; Phillips, Malia; Mowery, Holly; Jones-Lepp, Tammy L

    2009-03-01

    Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The objective of this study was to determine the contamination profiles and mass loadings of urobilin (a chemical marker of human waste), macrolide antibiotics (azithromycin, clarithromycin, roxithromycin), and two drugs of abuse (methamphetamine and ecstasy), from a small (<19 mega liters day(-1), equivalent to <5 million gallons per day) wastewater treatment plant in southwestern Kentucky. The concentrations of azithromycin, clarithromycin, methamphetamine and ecstasy in wastewater samples varied widely, ranging from non-detects to 300 ng L(-1). Among the macrolide antibiotics analyzed, azithromycin was consistently detected in influent and effluent samples. In general, influent samples contained relatively higher concentrations of the analytes than the effluents. Based on the daily flow rates and an average concentration of 17.5 ng L(-1) in the effluent, the estimated discharge of azithromycin was 200 mg day(-1) (range 63-400 mg day(-1)). Removal efficiency of the detected analytes from this WWTP were in the following order: urobilin>methamphetamine>azithromycin with percentages of removal of 99.9%, 54.5% and 47%, respectively, indicating that the azithromycin and methamphetamine are relatively more recalcitrant than others and have potential for entering receiving waters.

  2. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant.

    PubMed

    Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel

    2012-06-01

    This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. N2O emissions from an intermittently aerated semi-aerobic aged refuse bioreactor: Combined effect of COD and NH4+-N in influent leachate.

    PubMed

    Li, Weihua; Sun, Yingjie; Bian, Rongxing; Wang, Huawei; Zhang, Dalei

    2017-11-01

    The carbon-nitrogen ratio (COD/NH 4 + -N) is an important factor affecting nitrification and denitrification in wastewater treatment; this factor also influences nitrous oxide (N 2 O) emissions. This study investigated two simulated intermittently aerated semi-aerobic aged refuse bioreactors (SAARB) filled with 8-year old aged refuse (AR). The research analyzed how differences in and the combination of influent COD and NH 4 + -N impact N 2 O emissions in leachate treatment. Experimental results showed that N 2 O emissions increased as the influent COD/NH 4 + -N decreased. The influent COD had a greater effect on N 2 O emissions than NH 4 + -N at the same influent ratios of COD/NH 4 + -N (2.7 and 8.0, respectively). The maximum N 2 O emission accounted for 8.82±2.65% of the total nitrogen removed from the influent leachate; the maximum level occurred when the COD was 2000mg/L. An analysis of differences in influent carbon sources at the same COD/NH 4 + -N ratios concluded that the availability of biodegradable carbon substrates (i.e. glucose) is an important factor affecting N 2 O emissions. At a low influent COD/NH 4 + -N ratio (2.7), the N 2 O conversion rate was greater when there were more biodegradable carbon substrates. Although the SAARB included the N 2 O generation and reduction processes, N 2 O reduction mainly occurred later in the process, after leachate recirculation. The maximum N 2 O emission rate occurred in the first hour of single-period (24h) experiments, as leachate contacted the surface AR. In practical SAARB applications, N 2 O emissions may be reduced by measures such as reducing the initial recirculation loading of NH 4 + -N substrates, adding a later supplement of biodegradable carbon substrates, and/or prolonging hydraulic retention time (HRT) of influent leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water

    PubMed Central

    Kulkarni, Prachi; Olson, Nathan D.; Raspanti, Greg A.; Rosenberg Goldstein, Rachel E.; Gibbs, Shawn G.; Sapkota, Amir; Sapkota, Amy R.

    2017-01-01

    Reclaimed water has emerged as a potential irrigation solution to freshwater shortages. However, limited data exist on the persistence of antibiotics in reclaimed water used for irrigation. Therefore, we examined the fate of nine commonly-used antibiotics (ampicillin, azithromycin, ciprofloxacin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, and tetracycline) in differentially treated wastewater and reclaimed water from two U.S. regions. We collected 72 samples from two Mid-Atlantic and two Midwest treatment plants, as well as one Mid-Atlantic spray irrigation site. Antibiotic concentrations were measured using liquid-chromatography- tandem mass spectrometry. Data were analyzed using Mann-Whitney-Wilcoxon tests and Kruskal Wallis tests. Overall, antibiotic concentrations in effluent samples were lower than that of influent samples. Mid-Atlantic plants had similar influent but lower effluent antibiotic concentrations compared to Midwest plants. Azithromycin was detected at the highest concentrations (of all antibiotics) in influent and effluent samples from both regions. For most antibiotics, transport from the treatment plant to the irrigation site resulted in no changes in antibiotic concentrations, and UV treatment at the irrigation site had no effect on antibiotic concentrations in reclaimed water. Our findings show that low-level antibiotic concentrations persist in reclaimed water used for irrigation; however, the public health implications are unclear at this time. PMID:28635638

  5. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions.

    PubMed

    Jones, Jamie; Chang, Ni-Bin; Wanielista, Martin P

    2015-01-01

    To support nutrient removal, various stormwater treatment technologies have been developed via the use of green materials, such as sawdust, tire crumbs, sand, clay, sulfur, and limestone, as typical constituents of filter media mixes. These materials aid in the physiochemical sorption and precipitation of orthophosphates as well as in the biological transformation of ammonia, nitrates and nitrites. However, these processes are dependent upon influent conditions such as hydraulic residence time, influent orthophosphate concentrations, and other chemical species present in the inflow. This study aims to compare the physiochemical removal of orthophosphate by isotherm and column tests under differing influent conditions to realize the reliability of orthophosphate removal process with the aid of green sorption media. The green sorption media of interest in this study is composed of a 5:2:2:1 (by volume) mixture of cement sand, tire crumb, fine expanded clay, and limestone. Scenarios of manipulating the hydraulic residence time of the water from 18 min and 60 min, the influent dissolved phosphorus concentrations of 1.0 mg·L(-1) and 0.5 mg·L(-1), and influent water types of distilled and pond water, were all investigated in the column tests. Experimental data were compared with the outputs from the Thomas Model based on orthophosphate removal to shed light on the equilibrium condition versus kinetic situation. With ANOVA tests, significant differences were confirmed between the experimental data sets of the breakthrough curves in the column tests. SEM imaging analysis helps to deepen the understanding of pore structures and pore networks of meta-materials being used in the green sorption media. Life expectancy curves derived from the output of Thomas Model may be applicable for future system design of engineering processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale

    PubMed Central

    Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-01-01

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L. PMID:29735959

  7. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    PubMed

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  8. Estrogenic effects in the influents and effluents of the drinking water treatment plants.

    PubMed

    Gou, Yan-You; Lin, Susana; Que, Danielle E; Tayo, Lemmuel L; Lin, Ding-Yan; Chen, Kuan-Chung; Chen, Fu-An; Chiang, Pen-Chi; Wang, Gen-Shuh; Hsu, Yi-Chyuan; Chuang, Kuo Pin; Chuang, Chun-Yu; Tsou, Tsui-Chun; Chao, How-Ran

    2016-05-01

    Estrogen-like endocrine disrupting compounds (EEDC) such as bisphenol A, nonylphenol, and phthalic acid esters are toxic compounds that may occur in both raw- and drinking water. The aim of this study was to combine chemical- and bioassay to evaluate the risk of EEDCs in the drinking water treatment plants (DWTPs). Fifty-six samples were collected from seven DWTPs located in northern-, central-, and southern Taiwan from 2011 to 2012 and subjected to chemical analyses and two bioassay methods for total estrogenic activity (E-Screen and T47D-KBluc assay). Among of the considered EEDCs, only dibutyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) were detected in both drinking and raw water samples. DBP levels in drinking water ranged from

  9. Measuring and explaining eco-efficiencies of wastewater treatment plants in China: An uncertainty analysis perspective.

    PubMed

    Dong, Xin; Zhang, Xinyi; Zeng, Siyu

    2017-04-01

    In the context of sustainable development, there has been an increasing requirement for an eco-efficiency assessment of wastewater treatment plants (WWTPs). Data envelopment analysis (DEA), a technique that is widely applied for relative efficiency assessment, is used in combination with the tolerances approach to handle WWTPs' multiple inputs and outputs as well as their uncertainty. The economic cost, energy consumption, contaminant removal, and global warming effect during the treatment processes are integrated to interpret the eco-efficiency of WWTPs. A total of 736 sample plants from across China are assessed, and large sensitivities to variations in inputs and outputs are observed for most samples, with only three WWTPs identified as being stably efficient. Size of plant, overcapacity, climate type, and influent characteristics are proven to have a significant influence on both the mean efficiency and performance sensitivity of WWTPs, while no clear relationships were found between eco-efficiency and technology under the framework of uncertainty analysis. The incorporation of uncertainty quantification and environmental impact consideration has improved the liability and applicability of the assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Removal rate and releases of polybrominated diphenyl ethers in two wastewater treatment plants, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jin; Kim, Gi Beum

    2017-06-01

    Wastewater treatment plants (WWTPs) play an important role in minimizing the release of many pollutants into the environment. Nineteen congeners in two WWTPs in Korea were determined to investigate the occurrence and fate of polybrominated diphenyl ethers (PBDEs) during wastewater treatment processes. The concentration of total PBDEs was 69.6 and 183 ng/L in influent, which declined to 1.59 and 2.34 ng/L in the final effluent, respectively (Tongyeong and Jinhae WWTPs). PBDEs were found to exist mostly in the particulate phase of wastewater, which rendered sedimentation efficient for the removal of PBDEs. BDE-209 was the predominant congener in the influent and sludge. Most of the PBDEs entering the WWTPs presumably ended up in the sludge, with < 2% being discharged with the final effluent. According to the mass loading estimation, every day 2.55-9.29 g PBDEs entered the two WWTPs, 2.8-10.4 g were disposed to landfill sites in sludge form and 0.06-0.12 g were discharged to the surrounding water through final effluent, respectively. Preliminary results indicated that the ecological risk to organisms in soil exposed to PBDEs through the usage of sludge application to agricultural land was relatively low. To our knowledge, this study is the first to report on the removal efficiency of PBDEs in a WWTP in Korea.

  11. Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology.

    PubMed

    Gabarrón, S; Gernjak, W; Valero, F; Barceló, A; Petrovic, M; Rodríguez-Roda, I

    2016-05-15

    Emerging contaminants (EC) have gained much attention with globally increasing consumption and detection in aquatic ecosystems during the last two decades from ng/L to lower ug/L. The aim of this study was to evaluate the occurrence and removal of pharmaceutically active compounds (PhACs), endocrine disrupting chemicals (EDCs) and related compounds in a Drinking Water Treatment Plant (DWTP) treating raw water from the Mediterranean Llobregat River. The DWTP combined conventional treatment steps with the world's largest electrodialysis reversal (EDR) facility. 49 different PhACs, EDCs and related compounds were found above their limit of quantification in the influent of the DWTP, summing up to a total concentration of ECs between 1600-4200 ng/L. As expected, oxidation using chlorine dioxide and granular activated carbon filters were the most efficient technologies for EC removal. However, despite the low concentration detected in the influent of the EDR process, it was also possible to demonstrate that this process partially removed ionized compounds, thereby constituting an additional barrier against EC pollution in the product. In the product of the EDR system, only 18 out of 49 compounds were quantifiable in at least one of the four experimental campaigns, showing in all cases removals higher than 65% and often beyond 90% for the overall DWTP process. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant.

    PubMed

    Xie, Wen-Ming; Zeng, Raymond J; Li, Wen-Wei; Wang, Guo-Xiang; Zhang, Li-Min

    2018-05-31

    Reversed A 2 O process (anoxic-anaerobic-aerobic) and conventional A 2 O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A 2 O process was more efficient than in the conventional A 2 O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A 2 O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties.

  13. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    PubMed Central

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  14. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China.

    PubMed

    Leung, H W; Minh, T B; Murphy, M B; Lam, James C W; So, M K; Martin, Michael; Lam, Paul K S; Richardson, B J

    2012-07-01

    Occurrence, removal, consumption and environmental risks of sixteen antibiotics were investigated in several sewage treatment plants (STPs) featuring different treatment levels in Hong Kong, China. Cefalexin, ofloxacin and erythromycin-H(2)O were predominant with concentrations of 1020-5640, 142-7900 and 243-4740 ng/L in influent, respectively; their mass loads were comparable to levels reported in urban regions in China and were at the high end of the range reported for western countries. The target antibiotics behaved differently depending on the treatment level employed at the STPs and relatively higher removal efficiencies (>70%) were observed for cefalexin, cefotaxime, amoxicillin, sulfamethoxazole and chloramphenicol during secondary treatment. ß-lactams were especially susceptible to removal via the activated sludge process while macrolides were recalcitrant (<20%) in the dissolved phase. Two fluoroquinolones, ofloxacin (4%) and norfloxacin (52%), differed greatly in their removal efficiencies, probably because of disparities in their pK(a) values which resulted in different sorption behaviour in sludge. Overall antibiotic consumption in Hong Kong was back-calculated based on influent mass flows and compared with available prescription and usage data. This model was verified by a good approximation of 82% and 141% to the predicted consumption of total ofloxacin, but a less accurate estimate was obtained for erythromycin usage. Risk assessment indicated that algae are susceptible to the environmental concentrations of amoxicillin as well as the mixture of the nine detected antibiotics in receiving surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S; Ziglio, G

    2010-07-01

    A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China.

    PubMed

    Sun, Qian; Li, Mingyue; Ma, Cong; Chen, Xiangqiang; Xie, Xiaoqing; Yu, Chang-Ping

    2016-01-01

    The occurrence and fate of 48 pharmaceuticals and personal care products (PPCPs) in three wastewater treatment plants (WWTPs) located in different urbanization areas in Xiamen, China was investigated over one year. Results showed that PPCPs were widely detected, but the major PPCPs in the influent, effluent, and sludge were different. Spatial and seasonal variations of PPCP levels in the influent and sludge were observed. The removal efficiencies for most PPCPs were similar among the three WWTPs, although they employed different biological treatment processes. Furthermore, the mass loadings per inhabitant of most pharmaceuticals had a positive correlation with the urbanization levels, indicating that most pharmaceutical usage was higher in the urban core compared to the suburban zones. The total mass loadings of all the 48 PPCPs in the effluent and waste sludge showed close proportions, which suggested the importance of proper waste sludge disposal to prevent a large quantity of PPCPs from entering the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants.

    PubMed

    Yu, Yong; Wu, Laosheng; Chang, Andrew C

    2013-01-01

    The occurrence of 14 endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) in influents, effluents and sludge from five wastewater treatment plants (WWTPs) in southern California was studied in winter and summer. All 14 compounds were detected in influent samples from the five WWTPs except for estrone. Paracetamol, naproxen and ibuprofen were the dominant compounds, with mean concentrations of 41.7, 35.7 and 22.3 μg/L, respectively. The treatment removal efficiency for most compounds was more than 90% and concentrations in the effluents were relatively low. Seasonal variation of the compounds' concentration in the wastewater was significant: the total concentration of each compound in the wastewater was higher in winter than in summer, which is attributed to more human consumption of pharmaceuticals during winter and faster degradation of the compounds in summer. The highest concentrations of triclosan and octylphenol were detected in sewage sludge, with mean concentrations of 1505 and 1179 ng/g, respectively. Risk quotients (RQs), expressed as the ratios of environmental concentrations and the predicted no-effect concentrations (PNEC), were less than unity for all the compounds except for estrone in the effluents, indicating no immediate ecological risk is expected. However, RQs were higher than unity for 2 EDCs (estrone and octylphenol) and carbamazepine in sludge samples, indicating a significant ecotoxicological risk to human health. Therefore, appropriate treatment of sewage sludge is required before its application. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Contaminant trends in reservoir sediment cores as records of influent stream quality

    USGS Publications Warehouse

    Van Metre, P.C.; Mahler, B.J.

    2004-01-01

    When reconstructing water-quality histories from lake and reservoir cores, it is sometimes assumed that the chemical signatures in the cores reflect historical water quality in the influent streams. To investigate this assumption, concentrations of metals, PAHs, and organochlorine compounds in sediment cores were compared to those associated with an influent-stream suspended sediment for three reservoirs in Fort Worth, TX, and two reservoirs in Boston, MA, U.S.A., and interpreted in light of land-use and regulation histories. In evaluating relations between suspended sediments and cores, three levels of preservation were indicated: (1) influent concentrations and historical trends are preserved in cores (metals at all sites; some organic contaminants at some sites); (2) some loss occurs during transport and initial deposition but relative historical trends are preserved in cores (some organic contaminants at some sites); and (3) neither stream concentrations nor relative historical trends are preserved (dieldrin and p,p???-DDT). The degree of preservation of influent concentration histories varied between lakes, particularly for PAHs. The results support the use of sediment cores to infer streamwater-quality histories for many contaminants but indicate that reservoir-bottom sediment samples might underestimate concentrations of organic contaminants in some streams.

  20. Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry.

    PubMed

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2013-03-01

    Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.

  1. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    PubMed

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge

    PubMed Central

    Paiva, Magna C.; Ávila, Marcelo P.; Reis, Mariana P.; Costa, Patrícia S.; Nardi, Regina M. D.; Nascimento, Andréa M. A.

    2015-01-01

    Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant. PMID:26115093

  3. Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China.

    PubMed

    Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Qu, Jiuhui

    2015-03-01

    The occurrence, fate and environmental impact of 30 pharmaceuticals including sulfonamides, fluoroquinolones, tetracyclines, macrolides, dihydrofolate reductase inhibitors, β-blockers, antiepileptics, lipid regulators, and stimulants were studied in two municipal wastewater treatment plants (WWTPs) located in Wuxi City, East China. A total of 23 pharmaceuticals were detected in wastewater samples, with a maximum concentration of 16.1 μg L(-1) (caffeine) in the influent and 615.5 ng L(-1) (azithromycin) in the effluent; 19 pharmaceuticals were detected in sludge samples at concentrations up to 12.13 mg kg(-1), with ofloxacin, azithromycin and norfloxacin being the predominant species. Mass balance analysis showed that biodegradation primarily accounted for the removal of sulfonamides, most of the macrolides, and other miscellaneous pharmaceuticals, while adsorption onto the sludge was the primary removal pathway for fluoroquinolones, tetracylines, and azithromycin during biological treatment. The total mass loads of target pharmaceuticals per capita in the two WWTPs were in the ranges of 2681.8-4333.3, 248.0-416.6 and 214.6-374.5 μg per day per inhabitant in the influent, effluent and dewatered sludge, respectively. The upgraded Plant A adopting the combined anaerobic/anoxic/oxic and moving bed biofilm process exhibited a much higher removal of target pharmaceuticals than the conventional Plant B adopting the C-Orbal oxidation ditch process. The concentration levels of sulfamethoxazole, ofloxacin, ciprofloxacin and clarithromycin in the effluent, ofloxacin in the sludge, and the mixture of all target pharmaceuticals in both effluent and sludge posed a high risk to algae in aquatic environments.

  4. Automatic control and remote monitoring system for biological nutrient removal on small wastewater treatment plants in Korea.

    PubMed

    Lee, H; Min, Y M; Park, C H; Park, Y H

    2004-01-01

    Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.

  5. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    PubMed

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation?

    PubMed

    Filipovic, Marko; Berger, Urs

    2015-06-01

    Wastewater treatment plants (WWTP) have been suggested to be one of the major pathways of perfluoroalkyl acids (PFAAs) from the technosphere to the aquatic environment. The origin of PFAAs in WWTP influents is either from current primary emissions or a result of recirculation of PFAAs that have been residing and transported in the environment for several years or decades. Environmental recirculation can then occur when PFAAs from the environment enter the wastewater stream in, e.g., tap water. In this study 13 PFAAs and perfluorooctane sulfonamide were analyzed in tap water as well as WWTP influent, effluent and sludge from three Swedish cities: Bromma (in the metropolitan area of Stockholm), Bollebygd and Umeå. A mass balance of the WWTPs was assembled for each PFAA. Positive mass balances were observed for PFHxA and PFOA in all WWTPs, indicating the presence of precursor compounds in the technosphere. With regard to environmental recirculation, tap water was an important source of PFAAs to the Bromma WWTP influent, contributing >40% for each quantified sulfonic acid and up to 30% for the carboxylic acids. The PFAAs in tap water from Bollebygd and Umeå did not contribute significantly to the PFAA load in the WWTP influents. Our results show that in order to estimate current primary emissions from the technosphere, it may be necessary to correct the PFAA emission rates in WWTP effluents for PFAAs present in tap water, especially in the case of elevated levels in tap water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs).

    PubMed

    Eriksson, Ulrika; Haglund, Peter; Kärrman, Anna

    2017-11-01

    Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in sludge and water from waste water treatment plants, as a result of their incorporation in everyday products and industrial processes. In this study, we measured several classes of persistent PFASs, precursors, transformation intermediates, and newly identified PFASs in influent and effluent sewage water and sludge from three municipal waste water treatment plants in Sweden, sampled in 2015. For sludge, samples from 2012 and 2014 were analyzed as well. Levels of precursors in sludge exceeded those of perfluoroalkyl acids and sulfonic acids (PFCAs and PFSAs), in 2015 the sum of polyfluoroalkyl phosphoric acid esters (PAPs) were 15-20ng/g dry weight, the sum of fluorotelomer sulfonic acids (FTSAs) was 0.8-1.3ng/g, and the sum of perfluorooctane sulfonamides and ethanols ranged from non-detected to 3.2ng/g. Persistent PFSAs and PFCAs were detected at 1.9-3.9ng/g and 2.4-7.3ng/g dry weight, respectively. The influence of precursor compounds was further demonstrated by an observed substantial increase for a majority of the persistent PFCAs and PFSAs in water after waste water treatment. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) had a net mass increase in all WWTPs, with mean values of 83%, 28%, 37% and 58%, respectively. The load of precursors and intermediates in influent water and sludge combined with net mass increase support the hypothesis that degradation of precursor compounds is a significant contributor to PFAS contamination in the environment. Copyright © 2017. Published by Elsevier B.V.

  8. Presence of radionuclides in sludge from conventional drinking water treatment plants. A review.

    PubMed

    Fonollosa, E; Nieto, A; Peñalver, A; Aguilar, C; Borrull, F

    2015-03-01

    The analysis of sludge samples generated during water treatment processes show that different radioisotopes of uranium, thorium and radium, among others can accumulate in that kind of samples, even the good removal rates obtained in the aqueous phase (by comparison of influent and effluent water concentrations). Inconsequence, drinking water treatment plants are included in the group of Naturally Occurring Radioactive Material (NORM) industries. The accumulation of radionuclides can be a serious problem especially when this sludge is going to be reused, so more exhaustive information is required to prevent the possible radiological impact of these samples in the environment and also on the people. The main aim of this review is to outline the current situation regarding the different studies reported in the literature up to date focused on the analysis of the radiological content of these sludge samples from drinking water treatment plants. In this sense, special attention is given to the recent approaches for their determination. Another important aim is to discuss about the final disposal of these samples and in this regard, sludge reuse (including for example direct agricultural application or also as building materials) are together with landfilling the main reported strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Trace analysis and occurrence of anhydroerythromycin and tylosin in influent and effluent wastewater by liquid chromatography combined with electrospray tandem mass spectrometry.

    PubMed

    Yang, Shinwoo; Cha, Jongmun; Carlson, Kenneth

    2006-06-01

    Two wastewater treatment plants (WWTPs) of northern Colorado were monitored for anhydroerythromycin and tylosin. An analytical method has been developed and validated for the trace determination and confirmation of these compounds in the raw influent and final effluent water matrices. This method was used to evaluate the occurrence and fate of these compounds in WWTPs. The method uses solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Detection and quantification was performed using selected reaction monitoring, and a method detection limit of between 0.01 and 0.06 microg/L was obtained. Unequivocal confirmation analysis of analyte identity according to the criteria (based on the use of identification points) of the 2002/657/EC European Commission Decision was possible with satisfactory results. Average recoveries for the two compounds ranged from 89.2+/-9.7% for raw influent to 93.7+/-6.9% for effluent wastewaters. The within-run precision of the assay was found to be always less than 14.1% for the two analytes. The overall precision was always less than 13.7%. The relative uncertainty of the present assay was also evaluated and the combined relative uncertainty ranged from 6.4 to 15.5% over three days of the validation study. These compounds were partially removed in the WWTPs with a removal efficiency of >50%. The measured concentrations in raw influents and effluents ranged from 0.09-0.35 and 0.04-0.12 microg/L for anhydroerythromycin to 0.06-0.18 and ND-0.06 microg/L for tylosin, respectively. The results indicate that WWTP effluents are relevant point sources for residues of these compounds in the aquatic environment. These occurrence results were compared with those in WWTP wastewaters of other countries.

  10. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland.

    PubMed

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S; Herve, Sirpa H

    2016-04-01

    The presence of five selected pharmaceuticals, consisting of four anti-inflammatory drugs, diclofenac, ibuprofen, ketoprofen, naproxen, and an antiepileptic drug carbamazepine, was determined at four municipal wastewater treatment plants (WWTPs) and in the receiving waterway in central Finland. The samples were taken from influents and effluents of the WWTPs and from surface water of six locations along the water way, including northern Lake Päijänne. In addition, seasonal variation in the area was determined by comparing the concentrations in the winter and summer. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations in the influents and effluents ranged from hundreds of nanogram per liter to microgram per liter while ranged from tens of nanogram per liter in northern parts of the waterway to hundreds of nanogram per liter in northern Lake Päijänne near the city area. In addition, the concentrations were higher in the winter compared to summer time in surface water due to decreased temperature and solar irradiation. On the other hand, higher concentrations of ibuprofen, ketoprofen, and naproxen were found in summer at the WWTPs, possibly due to seasonal variations in consumption. In conclusion, there are considerable amounts of pharmaceuticals not only in influents and effluents of the WWTPs but also in lake water along the waterway and in northern Lake Päijänne.

  11. Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling.

    PubMed

    Heidler, Jochen; Halden, Rolf U

    2009-12-01

    This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through US treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 US states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (+/-95% confidence interval) of quantifiable compounds in influent ranged from 4.2 +/- 0.8 microg L(-1) for triclocarban to 0.03 +/- 0.01 microg L(-1) for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 +/- 0.08 and 0.07 +/- 0.04 microg L(-1), respectively). Median aqueous-phase removal efficiencies (+/-95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 +/- 2%) > triclocarban (87 +/- 7%) > dichlorocarbanilide (55 +/- 20%) > fipronil (18 +/- 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27 600 +/- 9600 and 15 800 +/- 8200 microg kg(-1) for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 +/- 70%) to triclocarban (87 +/- 29%) to triclosan (28 +/- 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258 000 +/- 110 00 kg year(-1) (mean

  12. Leachate characterization and performance evaluation of leachate treatment plant in Cipayung landfill, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, E.; Hartono, D. M.; Moersidik, S. S.; Gusniani, I.

    2018-01-01

    The operation of landfill can cause environmental problems due to waste decomposition in the form of leachate production. Cipayung Landfill has a leachate treatment plant using stabilization ponds. The objective of this research is to evaluate the performance of stabilization ponds at Cipayung Landfill. The data were analyzed based on leachate samples from treatment unit’s influent and effluent under rainy season condition from April to May 2017. The results show the average leachate quality based on parameters of temperature by 34.81°C, Total Suspended Solid (TSS) of 72.33 mg/L, pH of 7.83, Biochemical Oxygen Demand (BOD) of 3,959.63 mg/L, Chemical Oxygen Demand (COD) of 6,860 mg/L, Total Nitrogen of 373.33 mg/L, and heavy metal Mercury of 0.0016 mg/L. The treatment plant’s effluent quality exceeds the leachate standard limit based on Indonesia’s Ministry of Environment and Forestry Law No. 59 of 2016. The results of design evaluation show that the anaerobic pond, facultative pond, and maturation pond system do not meet the design criteria. Therefore, a design improvement is needed to increase the performance of the leachate treatment plant and to ensure that the leachate discharged to water bodies does not exceed the standard limit to prevent contamination of the environment.

  13. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation.

    PubMed

    Taheriyoun, Masoud; Moradinejad, Saber

    2015-01-01

    The reliability of a wastewater treatment plant is a critical issue when the effluent is reused or discharged to water resources. Main factors affecting the performance of the wastewater treatment plant are the variation of the influent, inherent variability in the treatment processes, deficiencies in design, mechanical equipment, and operational failures. Thus, meeting the established reuse/discharge criteria requires assessment of plant reliability. Among many techniques developed in system reliability analysis, fault tree analysis (FTA) is one of the popular and efficient methods. FTA is a top down, deductive failure analysis in which an undesired state of a system is analyzed. In this study, the problem of reliability was studied on Tehran West Town wastewater treatment plant. This plant is a conventional activated sludge process, and the effluent is reused in landscape irrigation. The fault tree diagram was established with the violation of allowable effluent BOD as the top event in the diagram, and the deficiencies of the system were identified based on the developed model. Some basic events are operator's mistake, physical damage, and design problems. The analytical method is minimal cut sets (based on numerical probability) and Monte Carlo simulation. Basic event probabilities were calculated according to available data and experts' opinions. The results showed that human factors, especially human error had a great effect on top event occurrence. The mechanical, climate, and sewer system factors were in subsequent tier. Literature shows applying FTA has been seldom used in the past wastewater treatment plant (WWTP) risk analysis studies. Thus, the developed FTA model in this study considerably improves the insight into causal failure analysis of a WWTP. It provides an efficient tool for WWTP operators and decision makers to achieve the standard limits in wastewater reuse and discharge to the environment.

  15. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    USGS Publications Warehouse

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  16. Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China.

    PubMed

    Zhou, Yiqi; Zha, Jinmiao; Wang, Zijian

    2012-11-01

    Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1 × 10(2) ng/l, 3.7 to 1.4 × 10(2) ng/l, no detection (nd) to 7.6×10(2) ng/l and nd to 3.3 × 10(2) ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6 ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was

  17. Influent of Borax Decahydrate Composition as Additional Flux into Stoneware Bodies

    NASA Astrophysics Data System (ADS)

    Bakil, Siti Natrah Abd; Hussin, Rosniza; Bakar Aramjat, Abu

    2017-08-01

    Stoneware is vitrified, has less porosity and requires high sintering temperature. The influent of borax decahydrate composition at sintering temperature 1050°C and 1150°C on the thermal analysis, fracture surface, linear shrinkage, water absorption and modular of rapture (MOR) were investigated. Rectangular sample were produced by uniaxially pressing at 40MPa. The thermal behavior was determined by thermogravimetric and different thermal analysis (TGA-DTA). The Scanning electron microscopy (SEM) was used for fracture surface analysis. The water absorption (%) of the sample were determined using Archimedes’ method. The experimental result showed that content of borax decahydrate have influent the properties of stoneware bodies.

  18. Cost-effective treatment solutions for rural areas: design and operation of a new package treatment plant for single households.

    PubMed

    Daude, D; Stephenson, T

    2003-01-01

    The design approach and operation of a newly developed package plant treating domestic sewage from single households were evaluated. Combining submerged aerated filter (SAF) technology with jet aeration and incorporating both into a compact and shallow tank resulted in a cost-effective treatment solution. A trial unit was permanently installed at a rural site, serving a single household. Jet aeration proved to be the best aeration method for the shallow bioreactor design. Further trials revealed a 50% reduction in suspended solids (SS) through the use of a static effluent filter and found that annual plant maintenance was vital to sustain stable operating conditions. Despite high variations in influent conditions, the trial unit produced good effluent quality during steady-state operation. Average effluent BOD5, COD and SS values were 19.6 mg l(-1), 98 mg l(-1) and 32 mg l(-1) achieving overall removal efficiencies of 94.2%, 85.9% and 87.6% respectively. However, effluent ammonia nitrogen (NH4-N) levels were found to be inconsistent varying from 9 mg l(-1) to over 60 mg l(-1).

  19. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA.

    PubMed

    Sadaria, Akash M; Sutton, Rebecca; Moran, Kelly D; Teerlink, Jennifer; Brown, Jackson Vanfleet; Halden, Rolf U

    2017-06-01

    Urban pest control insecticides-specifically fipronil and its 4 major degradates (fipronil sulfone, sulfide, desulfinyl, and amide), as well as imidacloprid-were monitored during drought conditions in 8 San Francisco Bay (San Francisco, CA, USA) wastewater treatment plants (WWTPs). In influent and effluent, ubiquitous detections were obtained in units of ng/L for fipronil (13-88 ng/L), fipronil sulfone (1-28 ng/L), fipronil sulfide (1-5 ng/L), and imidacloprid (58-306 ng/L). Partitioning was also investigated; in influent, 100% of imidacloprid and 62 ± 9% of total fiproles (fipronil and degradates) were present in the dissolved state, with the balance being bound to filter-removable particulates. Targeted insecticides persisted during wastewater treatment, regardless of treatment technology utilized (imidacloprid: 93 ± 17%; total fiproles: 65 ± 11% remaining), with partitioning into sludge (3.7-151.1 μg/kg dry wt as fipronil) accounting for minor losses of total fiproles entering WWTPs. The load of total fiproles was fairly consistent across the facilities but fiprole speciation varied. This first regional study on fiprole and imidacloprid occurrences in raw and treated California sewage revealed ubiquity and marked persistence to conventional treatment of both phenylpyrazole and neonicotinoid compounds. Flea and tick control agents for pets are identified as potential sources of pesticides in sewage meriting further investigation and inclusion in chemical-specific risk assessments. Environ Toxicol Chem 2017;36:1473-1482. © 2016 SETAC. © 2016 SETAC.

  20. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    PubMed

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  1. Evaluation of different wastewater treatment techniques in three WWTPs in Istanbul for the removal of selected EDCs in liquid phase.

    PubMed

    Can, Zehra Semra; Fırlak, Melike; Kerç, Aslıhan; Evcimen, Serkan

    2014-01-01

    Endocrine-disrupting compounds (EDCs) are exogenous substances that cause adverse health effects in an intact organism, or its progeny, subsequent to the changes in endocrine function. Recent studies have shown that wastewater treatment plant effluents play an important role in the release of EDCs into aquatic environments. Therefore, in this study, influent and effluent samples from three different wastewater treatment plants (WWTPs) in Istanbul were analysed for the presence of the principal EDCs. These chemicals include steroids and synthetic organic chemicals. Thus, the occurrence and fate of EDCs of great health concern were monitored at three WWTPs in Istanbul. Furthermore, these WWTPs are employing different treatment processes. Therefore, the EDC removal performances of different treatment regimes were also evaluated. Phytosterol was the most abundant EDC in the influent samples. Second group of compounds at high influent levels were alkyl phenols. Pesticide levels of all three WWTP influent samples were low. Pasakoy Advanced WWTP is more effective at eliminating EDCs. Kadikoy Primary WWTP exhibits the lowest EDC elimination efficiencies. To the best of our knowledge, this work comprises the first detailed report on the occurrence and behaviour of both natural and synthetic EDCs in WWTPs of Istanbul and Turkey. The steroid estrogen levels of this study are higher than the previously documented values, except the levels given for Gaobeidian WWTP in Beijing, China. This is attributed to higher population densities of Beijing and Istanbul and as well as to lower individual water consumption rates in the two cities.

  2. Environmental impact of pesticides after sewage treatment plants removal in four Spanish Mediterranean rivers

    NASA Astrophysics Data System (ADS)

    Campo, Julian; Masiá, Ana; Blasco, Cristina; Picó, Yolanda; Andreu, Vicente

    2013-04-01

    The re-use of sewage treatment plant (STP) effluents is currently one of the most employed strategies in several countries to deal with the water shortage problem. Some pesticides are bio-accumulative and due to their toxicity they can affect non-target organisms, especially in the aquatic ecosystems, threating their ecological status. Despite these facts, and to our knowledge, there are few peer-reviewed articles that report concentrations of pesticides in Spanish STPs. This work presents the results of an extensive survey that was carried out in October of 2010 in 15 of the STPs of Ebro, Guadalquivir, Jucar and Llobregat rivers in Spain. Forty-three currently used pesticides, belonging to anilide, neonicotinoid, thiocarbamate, acaricide, juvenile hormone mimic, insect growth regulator, urea, azole, carbamate, chloroacetanilide, triazine and organophosphorus, have been monitored. Integrated samples of influent and effluent, and dehydrated, lyophilized sludge from 15 STPs located along the rivers were analyzed for pesticide residues. With these data, removal efficiencies are also calculated. Extraction of water samples was performed through Solid Phase Extraction (SPE) and sludge samples were extracted using the QuEchERS method. Pesticide determination was carried out using Liquid Chromatograph - tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 48% to 70%, in water samples, and from 40 to 105 %, in sludge samples. The limits of quantification were 0.01-5 ng L-1 for the former, and 0.1-5.0 ng g-1 for the latter. In terms of frequency of detection, 31 analytes were detected in influent, 29 in effluent and 11 in sludge samples. Organophosphorus pesticides were the most frequently detected in all wastewater samples, but azole, urea, triazine, neonicotinoid and the insect growth regulator were also commonly found. Imazalil revealed the maximum concentration in wastewater samples from all rivers except the Guadalquivir, in which diuron presented the maximum

  3. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-05-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  5. UV disinfection pilot plant study at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffines, R.L.; Beavers, B.A.

    1993-01-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfectionmore » process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.« less

  6. Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2014-12-02

    Very few studies describe the fate of artificial sweeteners (ASWs) in wastewater treatment plants (WWTPs). In this study, mass loadings, removal efficiencies, and environmental emission of sucralose, saccharin, aspartame, and acesulfame were determined based on the concentrations measured in wastewater influent, primary effluent, effluent, suspended particulate matter (SPM), and sludge collected from two WWTPs in the Albany area of New York State, U.S.A. All ASWs were detected at a mean concentration that ranged from 0.13 (aspartame) to 29.4 μg/L (sucralose) in wastewater influent, 0.49 (aspartame) to 27.7 μg/L (sucralose) in primary influent, 0.11 (aspartame) to 29.6 μg/L (sucralose) in effluent, and from 0.08 (aspartame) to 0.65 μg/g dw (sucralose) in sludge. Aspartame was found in 92% of influent SPM samples at a mean concentration of 444 ng/g dw, followed by acesulfame (92 ng/g) and saccharin (49 ng/g). The fraction of the total mass of ASWs sorbed to SPM was in the rank order: aspartame (50.4%) > acesulfame (10.9%) > saccharin and sucralose (0.8%). The sorption coefficients of ASWs ranged from 4.10 (saccharin) to 4540 L/kg (aspartame). Significant removal of aspartame (68.2%) and saccharin (90.3%) was found in WWTPs; however, sucralose and acesulfame were less efficiently removed (<2.0%). The total mass loading of sucralose, saccharin, and acesulfame in the WWTP that served a smaller population (∼15,000) was 1.3-1.5 times lower than that in another WWTP that served a larger population (∼100,000). The average daily loading of sucralose in both WWTPs (18.5 g/d/1000 people) was ∼2 times higher than the average loading of saccharin. The daily discharge of sucralose from the WWTPs was the highest (17.6 g/d/1000 people), followed by acesulfame (1.22 g/d/1000 people), and saccharin (1.07 g/d/1000 people). Approximately, 1180 g of saccharin and 291 g of acesulfame were transformed in or removed daily from the two WWTPs. This is the first study to describe

  7. Licit and illicit drugs in a wastewater treatment plant in Verona, Italy.

    PubMed

    Repice, Carla; Dal Grande, Mario; Maggi, Roberto; Pedrazzani, Roberta

    2013-10-01

    The occurrence of 12 active substances among licit and illicit drugs was investigated over a 2 week period inflowing and outflowing in an activated sludge wastewater treatment plant in the city of Verona, Northern Italy. Chemical analyses were performed by means of on-line solid phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry in order to minimize sample pre-treatment. Quantifiable concentrations, up to hundreds of ng/L, were detected in influent and in effluent only for carbamazepine, codeine and benzoylecgonine. Such values are in accordance with literature data, so as removal efficiencies: it was observed that there was pretty much no abatement for carbamazepine, while average removal percentages of about 60% and 90% were calculated for codeine and benzoylecgonine, respectively. These results provide useful information (also concerning some active principles never or rarely detected, up to now, such as lormetazepam) for integrated water cycle managing, also taking into account the specific characteristics of the receiving water basin. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Occurrence and elimination of antibiotics in three sewage treatment plants with different treatment technologies in Urumqi and Shihezi, Xinjiang.

    PubMed

    Liu, Jiang; Lu, Jianjiang; Tong, Yanbin; Li, Chao

    2017-03-01

    Fourteen antibiotics, including five quinolones (QNs), five sulfonamides (SAs), and four tetracyclines (TCs), were selected to investigate their occurrence and elimination in three sewage treatment plants (STPs) by employing different treatment technologies in Urumqi (two STPs) and Shihezi (one STP), China. The STP in Shihezi was chosen as representative to investigate the distribution of antibiotics in a sludge-sewage system. Results showed that the concentrations of most detected antibiotics ranged from tens to hundreds of nanograms per liter in influent samples and under 100 ng L -1 in effluent samples. QNs and TCs were dominant species with concentrations of 2.33 mg kg -1 to 3.34 mg kg -1 and 0.36 mg kg -1 to 0.47 mg kg -1 in sludge samples, respectively. The elimination rates of target antibiotics by various STPs ranged from 17% to 100%. The STP with anaerobic/anoxic/aerobic and membrane bio-reactor technology removed antibiotics more efficiently than those with anaerobic/anoxic/oxic and oxidation ditch technology. The elimination capacities of treatment units from the three STPs were also investigated. SAs were mainly degraded in biological treatment units; conversely, QNs and TCs were significantly eliminated in sedimentary treatment units. Ozonation effectively removed remaining antibiotics but not UV and chlorination disinfection in this study.

  9. Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants.

    PubMed

    Wanner, Oskar; Panagiotidis, Vassileios; Clavadetscher, Peter; Siegrist, Hansruedi

    2005-11-01

    By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.

  10. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading.

    PubMed

    Turolla, A; Cattaneo, M; Marazzi, F; Mezzanotte, V; Antonelli, M

    2018-01-01

    The presence of antibiotic resistant bacteria (ARB) in wastewater was investigated and the role of wastewater treatment plants (WWTPs) in promoting or limiting antibiotic resistance was assessed. Escherichia coli (E. coli) and total heterotrophic bacteria (THB) resistance to ampicillin, chloramphenicol and tetracycline was monitored in three WWTPs located in Milan urban area (Italy), differing among them for the operating parameters of biological process, for the disinfection processes (based on sodium hypochlorite, UV radiation, peracetic acid) and for the discharge limits to be met. Wastewater was collected from three sampling points along the treatment sequence (WWTP influent, effluent from sand filtration, WWTP effluent). Antibiotic resistance to ampicillin was observed both for E. coli and for THB. Ampicillin resistant bacteria in the WWTP influents were 20-47% of E. coli and 16-25% of THB counts. A limited resistance to chloramphenicol was observed only for E. coli, while neither for E. coli nor for THB tetracycline resistance was observed. The biological treatment and sand filtration led to a decrease in the maximum percentage of ampicillin-resistant bacteria (20-29% for E. coli, 11-21% for THB). However, the conventionally adopted parameters did not seem adequate to support an interpretation of WWTP role in ARB spread. Peracetic acid was effective in selectively acting on antibiotic resistant THB, unlike UV radiation and sodium hypochlorite. The low counts of E. coli in WWTP final effluents in case of agricultural reuse did not allow to compare the effect of the different disinfection processes on antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Theoretical and experimental researches on the operating costs of a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, M.; Panaitescu, F.-V.; Anton, I.-A.

    2015-11-01

    Purpose of the work: The total cost of a sewage plants is often determined by the present value method. All of the annual operating costs for each process are converted to the value of today's correspondence and added to the costs of investment for each process, which leads to getting the current net value. The operating costs of the sewage plants are subdivided, in general, in the premises of the investment and operating costs. The latter can be stable (normal operation and maintenance, the establishment of power) or variables (chemical and power sludge treatment and disposal, of effluent charges). For the purpose of evaluating the preliminary costs so that an installation can choose between different alternatives in an incipient phase of a project, can be used cost functions. In this paper will be calculated the operational cost to make several scenarios in order to optimize its. Total operational cost (fixed and variable) is dependent global parameters of wastewater treatment plant. Research and methodology: The wastewater treatment plant costs are subdivided in investment and operating costs. We can use different cost functions to estimate fixed and variable operating costs. In this study we have used the statistical formulas for cost functions. The method which was applied to study the impact of the influent characteristics on the costs is economic analysis. Optimization of plant design consist in firstly, to assess the ability of the smallest design to treat the maximum loading rates to a given effluent quality and, secondly, to compare the cost of the two alternatives for average and maximum loading rates. Results: In this paper we obtained the statistical values for the investment cost functions, operational fixed costs and operational variable costs for wastewater treatment plant and its graphical representations. All costs were compared to the net values. Finally we observe that it is more economical to build a larger plant, especially if maximum loading

  12. Water-quality data for water- and wastewater-treatment plants along the Red River of the North, North Dakota and Minnesota, January through October 2006

    USGS Publications Warehouse

    Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.

    2008-01-01

    From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.

  13. Detection of Free-Living Amoebae Using Amoebal Enrichment in a Wastewater Treatment Plant of Gauteng Province, South Africa

    PubMed Central

    Muchesa, P.; Mwamba, O.; Barnard, T. G.; Bartie, C.

    2014-01-01

    Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria. PMID:25530964

  14. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    PubMed

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  15. Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality.

    PubMed

    Zhang, Yaobin; Liu, Yiwen; Jing, Yanwen; Zhao, Zhiqiang; Quan, Xie

    2012-01-01

    Zero valent iron (ZVI) is expected to help create an enhanced anaerobic environment that might improve the performance of anaerobic treatment. Based on this idea, a novel ZVI packed upflow anaerobic sludge blanket (ZVI-UASB) reactor was developed to treat azo dye wastewater with variable influent quality. The results showed that the reactor was less influenced by increases of Reactive Brilliant Red X-3B concentration from 50 to 1000 mg/L and chemical oxygen demand (COD) from 1000 to 7000 mg/L in the feed than a reference UASB reactor without the ZVI. The ZVI decreased oxidation-reduction potential in the reactor by about 80 mV. Iron ion dissolution from the ZVI could buffer acidity in the reactor, the amount of which was related to the COD concentration. Fluorescence in situ hybridization test showed the abundance of methanogens in the sludge of the ZVI-UASB reactor was significantly greater than that of the reference one. Denaturing gradient gel electrophoresis showed that the ZVI increased the diversity of microbial strains responsible for high efficiency.

  16. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    PubMed

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes

    PubMed Central

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11–50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33–18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic. PMID:29293534

  18. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.

    PubMed

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang; Geng, Jinju

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11-50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33-18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic.

  19. Evaluation of Emerging Contaminants of Concern at the South District Wastewater Treatment Plant Based on Seasonal Events, Miami-Dade County, Florida, 2004

    USGS Publications Warehouse

    Lietz, Arthur C.; Meyer, Michael T.

    2006-01-01

    The Comprehensive Everglades Restoration Plan has identified highly treated wastewater as a possible water source for the restoration of natural water flows and hydroperiods in selected coastal areas, including the Biscayne Bay coastal wetlands. One potential source of reclaimed wastewater for the Biscayne Bay coastal wetlands is the effluent from the South District Wastewater Treatment Plant in southern Miami-Dade County. The U.S. Geological Survey, in cooperation with the Comprehensive Everglades Restoration Plan Wastewater Reuse Technology Pilot Project Delivery Team, initiated a study to assess the presence of emerging contaminants of concern in the South District Wastewater Treatment Plant influent and effluent using current wastewater-treatment methods. As part of the study, 24-hour composite and discrete samples were collected at six locations (influent at plants 1 and 2, effluent pump, reuse train, chlorine dioxide unit, and ultraviolet pilot unit) at the plant during: (1) a dry-season, low-flow event on March 2-3, 2004, with an average inflow rate of 83.7 million gallons per day; (2) a wet-season, average-flow event on July 20-21, 2004, with an average inflow rate of 89.7 million gallons per day; and (3) high-rate disinfection tests on October 5 and 20, 2004, with average flow rates of 84.1 and 119.6 million gallons per day, respectively. During these four sampling events, 26, 27, 29, and 35 constituents were detected, respectively. The following transformations in concentration were determined in the waste stream: -100 to 180 percent at the effluent pump and -100 to 85 percent at the reuse train on March 2-3, 2004, and -100 to 1,609 percent at the effluent pump and -100 to 832 percent at the reuse train on July 20-21, 2004; -100 to -37 percent at the effluent pump, -100 to -62 percent at the reuse train, -100 to -56 percent at the chlorine dioxide unit, and -100 to -40 percent at the ultraviolet pilot unit on October 5, 2004; and -100 to -4 percent at the

  20. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.

    PubMed

    Johnson, Andrew C; Jürgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J

    2014-10-01

    Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 μg L(-1) for influent and 0.08 μg L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 μg kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants

    PubMed Central

    Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Joseph, Sam W.

    2012-01-01

    Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin (PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize the strains. Data were analyzed by two-sample proportion tests and analysis of variance. Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12 (8%) effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified among the MRSA isolates. Conclusions: Our findings raise potential public health concerns for wastewater treatment plant workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in treated

  2. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS.

    PubMed

    Oliveira, Tiago S; Murphy, Mark; Mendola, Nicholas; Wong, Virginia; Carlson, Doreen; Waring, Linda

    2015-06-15

    Two USEPA Regional Laboratories developed direct-injection LC/MS/MS methods to measure Pharmaceuticals and Personal Care Products (PPCPs) in water matrices. Combined, the laboratories were prepared to analyze 185 PPCPs (with 74 overlapping) belonging to more than 20 therapeutical categories with reporting limits at low part-per-trillion. In partnership with Suffolk County in NY, the laboratories conducted PPCP analysis on 72 samples belonging to 4 Water Systems (WS). Samples were collected at different stages of the WS (hospital effluents, WWTP influents/effluents) to assess PPCP relevance in hospital discharges, impact on WWTP performance and potential ecological risk posed by analytes not eliminated during treatment. Major findings include: a) acceptable accuracy between the two laboratories for most overlapping PPCPs with better agreement for higher concentrations; b) the measurement of PPCPs throughout all investigated WS with total PPCP concentrations ranging between 324 and 965 μg L(-1) for hospital effluent, 259 and 573 μg L(-1) for WWTP influent and 19 and 118 μg L(-1) for WWTP effluent; c) the variable contribution of hospital effluents to the PPCP loads into the WWTP influents (contribution ranging between 1% (WS-2) and 59% (WS-3); d) the PPCP load reduction after treatment for all WS reaching more than 95% for WS using activated sludge processes (WS-2 and WS-4), with inflow above 6500 m(3) d(-1), and having a lower percentage of hospital effluent in the WWTP influent; e) the relevance of four therapeutical categories for the PPCP load in WWTP effluents (analgesics, antidiabetics, antiepileptics and psychoanaleptics); and f) the risk quotients calculated using screening-level Predicted Non Effect Concentration indicate that WWTP effluents contain 33 PPCPs with potential medium to high ecological risk. To our knowledge no other monitoring investigation published in the scientific literature uses direct-injection methods to cover as many PPCPs and

  3. Fate of Organohalogens in U.S. Wastewater Treatment Plants and Estimated Chemical Releases to Soils Nationwide from Biosolids Recycling

    PubMed Central

    Heidler, Jochen; Halden, Rolf U.

    2009-01-01

    This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through U.S. treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 U.S. states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (± 95% confidence interval) of quantifiable compounds in influent ranged from 4.2 ± 0.8 µg L−1 for triclocarban to 0.03 ± 0.01 µg L−1 for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 ± 0.08 and 0.07 ± 0.04 µg L−1, respectively). Median aqueous-phase removal efficiencies (± 95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 ± 2%) > triclocarban (87 ± 7%) > dichlorocarbanilide (55 ± 20%) > fipronil (18 ± 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27,600 ± 9,600 and 15,800 ± 8,200 µg kg−1 for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 ± 70%) to triclocarban (87 ± 29%) to triclosan (28 ± 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258,000 ± 110,00 kg yr−1 (mean ± 95% confidence

  4. Occurrence and environmental implications of the presence of drugs of abuse in wastewater treatment plants of Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Picó, Yolanda; Andres-Costa, M. Jesus; Andreu, Vicente

    2014-05-01

    Drugs of abuse are continuously discharged into wastewaters due to human excretion as parent compounds and/or secondary metabolites after consumption or accidental disposal into the toilets. (Boles and Wells,2010). Incomplete removal of these compounds during wastewater treatment results in their release to the environment. Pollution by illicit drug residues at very low concentrations is generalized in populated areas, with potential risks for human health and the environment. The impact of treated wastewater effluent on the quality of receiving waters can be evaluated performing an investigated performing an ecotoxicological risk assessment calculating the risk quotient (RQ) of the drugs of abuse level observed. In addition, back-calculation from the concentration of illicit drug in the influents of wastewater treatment plants (WWTPs) provides an important tool for estimating its local consumption (Daughton 2001). Sampling campaigns were in three years, 2011 (March 9th to 15th), 2012 (April 17th to May 1st) and 2013 (March 6th to 12th) in influents and effluents from 3 Wastewater Treatment Plants (WWTPs), Pinedo I, Pinedo II and Quart-Benàger, that treats most of the wastewater of Valencia City and its surrounding towns. Cocaine (COC), amphetamine (AMP), methamphetamine (MAMP), ecstasy (MDMA) and ketamine (KET), Benzoylecgonine (BE), 6-acethylmorphine (6-MAM), and 11-nor-9-carboxy-delta9-tetrahydrocannabinol (THC-COOH) were analyzed using mass spectrometry techniques such as liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS/MS) Illicit drugs were extracted using solid phase extraction (SPE) and determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) in positive ionization with an electrospray ionization source (ESI). The determination of drugs of abuse in the influent of the selected WWTP shows that all compounds were detected in 100% of influents from Pinedo I, Pinedo II and Quart-Benàger in samples analyzed during three years

  5. Mass balance analysis of triclosan, diethyltoluamide, crotamiton and carbamazepine in sewage treatment plants.

    PubMed

    Nakada, N; Yasojima, M; Okayasu, Y; Komori, K; Suzuki, Y

    2010-01-01

    The behavior of antibacterial triclosan, insect-repellent diethyltoluamide (DEET), anticonvulsant carbamazepine, and antipruritic crotamiton was investigated at two sewage treatment plants (STPs) to clarify their complete mass balance. Twenty-four-hour flow-proportional composite samples were collected from the influent and effluent of primary and final sedimentation tanks, a biofiltration tank and disinfection tanks. Sludge samples (i.e., activated and excess sludge) and samples of the return flow from the sludge treatment process were collected in the same manner. The analytes in both the dissolved and particulate phases were individually determined by a gas chromatograph equipped with mass spectrometer. Triclosan was dominantly detected in the particulate phase especially in the early stage of treatment (up to 83%) and was efficiently removed (over 90%) in STPs, mainly by sorption to sewage sludge. Limited removal was observed for DEET (55+/-24%), while no significant removal was demonstrated for crotamiton or carbamazepine. The solid-water distribution coefficients (K(d), n=4) for triclosan (log K(d): 3.7-5.1), DEET (1.3-1.9) and crotamiton (1.1-1.6) in the sludge samples are also determined in this study. These findings indicate the limitations of current sewage treatment techniques for the removal of these water-soluble drugs (i.e. DEET, carbamazepine, and crotamiton).

  6. Wastewater-based epidemiology generated forensic information: Amphetamine synthesis waste and its impact on a small sewage treatment plant.

    PubMed

    Emke, Erik; Vughs, Dennis; Kolkman, Annemieke; de Voogt, Pim

    2018-05-01

    Chemical analysis of domestic wastewater can reveal the presence of illicit drugs either consumed by a population or directly discharged into the sewer system. In the search for causes of a recent malfunctioning of a small domestic wastewater treatment plant aberrantly high loads of amphetamine were observed in the influent of the plant. Direct discharges of chemical waste from illegal production sites were suspected to be the cause. Illegal manufacturing of amphetamines creates substantial amounts of chemical waste. Here we show that fly-tipping of chemical waste originating from an amphetamine synthesis in the catchment of a small sewage treatment plant resulted in failure of the treatment process. Target analysis of drugs of abuse and non-target screening using high resolution mass spectrometry provided evidence for the presence of amphetamine produced from the precursor 1-phenylpropan-2-one by the Leuckart process through specific synthesis markers. Furthermore the identity and presence of the pre-precursor 3-oxo-2-phenylbutanamide was confirmed and a route specific marker was proposed. This is the first study that demonstrates that non-target screening of wastewater can identify intermediates, impurities and by products of the synthesis routes used in illegal manufacturing of amphetamine. The profiles of chemicals thus obtained can be used in tracking productions sites within the corresponding sewer catchment. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Conventional wastewater treatment and reuse site practices modify bacterial community structure but do not eliminate some opportunistic pathogens in reclaimed water.

    PubMed

    Kulkarni, Prachi; Olson, Nathan D; Paulson, Joseph N; Pop, Mihai; Maddox, Cynthia; Claye, Emma; Rosenberg Goldstein, Rachel E; Sharma, Manan; Gibbs, Shawn G; Mongodin, Emmanuel F; Sapkota, Amy R

    2018-10-15

    Water recycling continues to expand across the United States, from areas that have access to advanced, potable-level treated reclaimed water, to those having access only to reclaimed water treated at conventional municipal wastewater treatment plants. This expansion makes it important to further characterize the microbial quality of these conventionally-treated water sources. Therefore, we used 16S rRNA gene sequencing to characterize total bacterial communities present in differentially-treated wastewater and reclaimed water (n = 67 samples) from four U.S. wastewater treatment plants and one associated spray irrigation site conducting on-site ultraviolet treatment and open-air storage. The number of observed operational taxonomic units was significantly lower (p < 0.01) in effluent, compared to influent, after conventional treatment. Effluent community structure was influenced more by treatment method than by influent community structure. The abundance of Legionella spp. increased as treatment progressed in one treatment plant that performed chlorination and in another that seasonally chlorinated. Overall, the alpha-diversity of bacterial communities in reclaimed water decreased (p < 0.01) during wastewater treatment and spray irrigation site ultraviolet treatment (p < 0.01), but increased (p < 0.01) after open-air storage at the spray irrigation site. The abundance of Legionella spp. was higher at the sprinkler system pumphouse at the spray irrigation site than in the influent from the treatment plant supplying the site. Legionella pneumophila was detected in conventionally treated effluent samples and in samples collected after ultraviolet treatment at the spray irrigation site, while Legionella feeleii persisted throughout on-site treatment at the spray irrigation site, and, along with Mycobacterium gordonae, was also detected at the sprinkler system pumphouse at the spray irrigation site. These data could inform the development of future

  8. Determination of phenols and pharmaceuticals in municipal wastewaters from Polish treatment plants by ultrasound-assisted emulsification-microextraction followed by GC-MS.

    PubMed

    Kotowska, Urszula; Kapelewska, Justyna; Sturgulewska, Joanna

    2014-01-01

    A method combining ultrasound-assisted emulsification-microextraction (USAEME) with gas chromatography-mass spectrometry (GC-MS) was developed for simultaneous determination of four acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, and diclofenac, as well as four phenols, 4-octylphenol, 4-n-nonylphenol, bisphenol A, and triclosan in municipal wastewaters. Conditions of extraction and simultaneous derivatization were optimized with respect to such aspects as type and volume of extraction solvent, volume of derivatization reagent, kind and amount of buffering salt, location of the test tube in the ultrasonic bath, and extraction time. The average correlation coefficient of the calibration curves was 0.9946. The LOD/(LOQ) values in influent and effluent wastewater were in the range of 0.002-0.121/(0.005-0.403) μg L(-1) and 0.002-0.828/(0.006-2.758) μg L(-1), respectively. Quantitative recoveries (≥94%) and satisfactory precision (average RSD 8.2%) were obtained. The optimized USAEME/GC-MS method was applied for determination of the considered pharmaceuticals and phenols in influents and treated effluents from nine Polish municipal wastewater treatment plants. The average concentration of acidic pharmaceuticals in influent and effluent wastewater were in the range of 0.06-551.96 μg L(-1) and 0.01-22.61 μg L(-1), respectively, while for phenols were in the range of 0.03-102.54 μg L(-1) and 0.02-10.84 μg L(-1), respectively. The removal efficiencies of the target compounds during purification process were between 84 and 99%.

  9. Microbial growth associated with granular activated carbon in a pilot water treatment facility.

    PubMed Central

    Wilcox, D P; Chang, E; Dickson, K L; Johansson, K R

    1983-01-01

    The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC. PMID:6625567

  10. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    PubMed

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  11. Synthesis of water suitable as the MEPC.174(58) G8 influent water for testing ballast water management systems.

    PubMed

    D'Agostino, Fabio; Del Core, Marianna; Cappello, Simone; Mazzola, Salvatore; Sprovieri, Mario

    2015-10-01

    Here, we describe the methodologies adopted to ensure that natural seawater, used as "influent water" for the land test, complies with the requirement that should be fulfilled to show the efficacy of the new ballast water treatment system (BWTS). The new BWTS was located on the coast of SW Sicily (Italy), and the sampled seawater showed that bacteria and plankton were two orders of magnitude lower than requested. Integrated approaches for preparation of massive cultures of bacteria (Alcanivorax borkumensis and Marinobacter hydrocarbonoclasticus), algae (Tetraselmis suecica), rotifers (Brachionus plicatilis), and crustaceans (Artemia salina) suitable to ensure that 200 m(3) of water fulfilled the international guidelines of MEPC.174(58)G8 are here described. These methodologies allowed us to prepare the "influent water" in good agreement with guidelines and without specific problems arising from natural conditions (seasons, weather, etc.) which significantly affect the concentrations of organisms at sea. This approach also offered the chance to reliably run land tests once every two weeks.

  12. Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product.

    PubMed

    Crutchik, D; Morales, N; Vázquez-Padín, J R; Garrido, J M

    2017-02-01

    A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH) 2 as a cheap magnesium and alkali source was also investigated. The struvite crystallization plant was operated for two different periods: period I, in which an influent with low phosphate concentration (34.0 mg P·L -1 ) was fed to the crystallization plant; and period II, in which an influent with higher phosphate concentration (68.0 mg P·L -1 ) was used. A high efficiency of phosphorus recovery by struvite crystallization was obtained, even when the effluent treated had a high level of alkalinity. Phosphorus recovery percentage was around 77%, with a phosphate concentration in the effluent between 10.0 and 30.0 mg P·L -1 . The experiments gained struvite pellets of 0.5-5.0 mm size. Moreover, the consumption of Mg(OH) 2 was estimated at 1.5 mol Mg added·mol P recovered -1 . Thus, industrial grade Mg(OH) 2 can be an economical alternative as magnesium and alkali sources for struvite crystallization at industrial scale.

  13. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation

  14. Compiled data on the vascular aquatic plant program, 1975 - 1977. [for sewage lagoon

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R.

    1977-01-01

    The performance of a single cell, facultative sewage lagoon was significantly improved with the introduction of vascular aquatic plants. Water hyacinth (Eichhornia crassipes) was the dominant plant from April to November; duckweed (Lemna spp.) and (Spirodela spp.) flourished from December to March. This 2 ha lagoon received approximately 475 cu m/day of untreated sewage and has a variable COD sub 5 loading rate of 22-30 kg/ha/day. During the first 14 months of operation with aquatic plants, the average influent BOD sub 5 was reduced by 95% from 110 mg/l to an average of 5 mg/l in the effluent. The average influent suspended solids were reduced by 90% from 97 mg/l to 10 mg/l in the effluent. Significant reductions in nitrogen and phosphorus were effected. The monthly kjeldahl nitrogen for influent and effluent averaged 12.0 and 3.4 mg/l, respectively, a reduction of 72%. The total phosphorus was reduced on an average of 56% from 3.7 mg/l influent to 1.6 mg/l effluent.

  15. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.

  16. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies

    USGS Publications Warehouse

    Ying, Guang-Guo; Kookana, Rai S.; Kolpin, Dana W.

    2009-01-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  17. Occurrence and removal of pharmaceutically active compounds in sewage treatment plants with different technologies.

    PubMed

    Ying, Guang-Guo; Kookana, Rai S; Kolpin, Dana W

    2009-08-01

    Occurrence of eight selected pharmaceutically active compounds (PhACs; caffeine, carbamazepine, triclosan, gemfibrozil, diclofenac, ibuprofen, ketoprofen and naproxen) were investigated in effluents from fifteen sewage treatment plants (STPs) across South Australia. In addition, a detailed investigation into the removal of these compounds was also carried out in four STPs with different technologies (Plant A: conventional activated sludge; plant B: two oxidation ditches; plant C: three bioreactors; and plant D: ten lagoons in series). The concentrations of these compounds in the effluents from the fifteen STPs showed substantial variations among the STPs, with their median concentrations ranging from 26 ng/L for caffeine to 710 ng/L for carbamazepine. Risk assessment based on the "worst case scenario" of the monitoring data from the present study suggested potential toxic risks to aquatic organisms posed by carbamazepine, triclosan and diclofenac associated with such effluent discharge. With the exception of carbamazepine and gemfibrozil, significant concentration decreases between influent and effluent were observed in the four STPs studied in more detail. Biodegradation was found to be the main mechanism for removing concentrations from the liquid waste stream for the PhACs within the four STPs, while adsorption onto sludge appeared to be a minor process for all target PhACs except for triclosan. Some compounds (e.g. gemfibrozil) exhibited variable removal efficiencies within the four STPs. Plant D (10 lagoons in series) was least efficient in the removal of the target PhACs; significant biodegradation of these compounds only occurred from the sixth or seventh lagoon.

  18. Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes).

    PubMed

    Archana, G; Dhodapkar, Rita; Kumar, Anupama

    2017-08-10

    This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L -1 in the surface water bodies, 12-373 μg L -1 in the influent and 11-233 μg L -1 in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be < 1 indicating no adverse effect on the targeted organism.

  19. Emissions of OTNE (Iso-E-super) - mass flows in sewage treatment plants.

    PubMed

    Bester, Kai; Klasmeier, Jörg; Kupper, Thomas

    2008-05-01

    The fate and mass flows of OTNE ([1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]ethan-1-one) which is commercialized as Iso-E-Super were studied in three large scale sewage treatment plants (STPs) in detail. The results are compared to 14 smaller ones located in Germany and Switzerland. OTNE inflow concentrations ranged from 4000 to 13,000 ngl(-1) while the effluent concentrations ranged from 500 to 6,900 ngl(-1). It is eliminated from the waste water with 56-64% during waste water treatment. High OTNE concentrations in sewage sludge showed that the elimination was mainly driven by sorption to sludge. This complies with major elimination in the first settling basins (primary settling tanks) while it was removed to a lesser extent in the aeration basin of the activated sludge treatment or in successive biofilters. The mass flows of OTNE in the influent of the German STPs were between 0.9 and 1.9 g per inhabitant and year. In the annual effluents mass flows of OTNE ranged between 0.2 and 0.8 g per inhabitant which complies with data measured in 13 smaller STPs from Switzerland. The similarity of data suggests that the observed mass flow data might be extrapolated to other European regions.

  20. Precursors of Halobenzoquinones and Their Removal During Drinking Water Treatment Processes.

    PubMed

    Wang, Wei; Qian, Yichao; Jmaiff, Lindsay K; Krasner, Stuart W; Hrudey, Steve E; Li, Xing-Fang

    2015-08-18

    Halobenzoquinones (HBQs) widely occur in drinking water treatment plant (DWTP) effluents; however, HBQ precursors and their removal by treatments remain unclear. Thus, we have investigated HBQ precursors in plant influents and their removal by each treatment before chlorination in nine DWTPs. The levels of HBQ precursors were determined using formation potential (FP) tests for 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dibromo-1,4-benzoquinone (DBBQ). HBQ precursors were present in all plant influents. DCBQ precursors were the most abundant (DCBQ FP up to 205 ng/L). Coagulation removed dissolved organic carbon (DOC) (up to 56%) and HBQ precursors (up to 39% for DCBQ). The level of removal of DOC was significantly greater than the level of removal of HBQ FP, suggesting that organic matter removed by coagulation had a high proportion of non-HBQ-precursor material. Granular activated carbon (GAC) decreased the level of HBQ FPs by 10-20%, where DOC removal was only 0.2-4.7%, suggesting that the GAC was not in the adsorption mode and biodegradation of HBQ precursors may have been occurring. Ozonation destroyed/transformed HBQ FPs by 10-30%, whereas anthracite/sand filtration and UV irradiation appeared to have no impact. The results demonstrated that the combined treatments did not substantially reduce HBQ precursor levels in water.

  1. Estimation of amount of selected pharmaceuticals sorbed onto digested sludge from wastewater treatment plant Bratislava-Petržalka.

    PubMed

    Ivanová, Lucia; Fáberová, Milota; Mackuľak, Tomáš; Grabic, Roman; Bodík, Igor

    2017-05-01

    Antibiotics and antidepressants are among the most successful drugs used for human therapy. Their concentration in influent on WWTP is relative high and there can be removed by biodegradation or sorption. The aim of this study was to define the amounts of sorbed pharmaceuticals on digested sludge from WWTP Bratislava - Petržalka. The amounts of sorbed pharmaceuticals were calculated from knowing partition coefficients for selected pharmaceuticals and from analytically measured pharmaceutical´s concentrations in sludge liquor. From this calculation were estimated the one-year sorbed amount of pharmaceutical onto sludge from wastewater treatment plant Petržalka (26,066g/y for ciprofloxacin, 756g/y for azithromycin, 647g/y for clarithromycin, 445g/y for venlafaxine and 148g/y for citalopram). Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge.

    PubMed

    Saliba, Pollyane Diniz; von Sperling, Marcos

    2017-10-01

    The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.

  3. [Occurrence and Removal of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Typical Wastewater Treatment Plants in Beijing].

    PubMed

    Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui

    2016-04-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.

  4. Effect of influent COD/SO4(2-) ratios on UASB treatment of a synthetic sulfate-containing wastewater.

    PubMed

    Hu, Yong; Jing, Zhaoqian; Sudo, Yuta; Niu, Qigui; Du, Jingru; Wu, Jiang; Li, Yu-You

    2015-07-01

    The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    PubMed

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  6. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants.

    PubMed

    Jimenez, Jose; Bott, Charles; Love, Nancy; Bratby, John

    2015-12-01

    Municipal wastewater contains a mixture of brown (feces and toilet paper), yellow (urine), and gray (kitchen, bathroom and wash) waters. Urine contributes approximately 70-80% of the nitrogen (N), 50-70% of the phosphorus (P) load and 60-70% of the pharmaceutical residues in normal domestic sewage. This study evaluated the impact of different levels of source separation of urine on an existing biological nutrient removal (BNR) process. A process model of an existing biological nutrient removal (BNR) plant was used. Increasing the amount of urine diverted from the water reclamation facilities, has little impact on effluent ammonia (NH₃-N) concentration, but effluent nitrate (NO₃-N) concentration decreases. If nitrification is necessary then no reduction in the sludge age can be realized. However, a point is reached where the remaining influent nitrogen load matches the nitrogen requirements for biomass growth, and no residual nitrogen needs to be nitrified. That allows a significant reduction in sludge age, implying reduced process volume requirements. In situations where nitrification is required, lower effluent nitrate (NO₃-N) concentrations were realized due to both the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The external carbon requirement for denitrification decreases as the urine separation efficiency increases due to the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The effluent phosphorus concentration decreases when the amount of urine sent to water reclamation facilities is decreased due to lower influent phosphorus concentrations. In the case of chemical phosphate removal, urine separation reduces the amount of chemicals required.

  7. Intra- and Inter-Pandemic Variations of Antiviral, Antibiotics and Decongestants in Wastewater Treatment Plants and Receiving Rivers

    PubMed Central

    Singer, Andrew C.; Järhult, Josef D.; Grabic, Roman; Khan, Ghazanfar A.; Lindberg, Richard H.; Fedorova, Ganna; Fick, Jerker; Bowes, Michael J.; Olsen, Björn; Söderström, Hanna

    2014-01-01

    The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir’s active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP’s influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max = 6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009’s weekly river samples (max = 193 ng/L), but only in 5% and 0% of the late- and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17–74 ng/L, with clarithromycin (max = 292 ng/L) and erythromycin (max = 448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well

  8. Mass loading and emission of thirty-seven pharmaceuticals in a typical municipal wastewater treatment plant in Hunan Province, Southern China.

    PubMed

    Lin, Huiju; Li, Haipu; Chen, Leilei; Li, Lei; Yin, Ling; Lee, Hsiaowan; Yang, Zhaoguang

    2018-01-01

    The occurrence, fate, mass loading and environmental emission of 37 pharmaceuticals were studied through an integrated approach involving both dissolved and adsorbed phase at a typical wastewater treatment plant in Hunan Province, Southern China. The results displayed the prevalence of 24 and 23 compounds in dissolved phase of influent and effluent, respectively. Fourteen compounds were found adsorbed onto sludge with a mean concentration ranging from 0.85 to 2900μg/kg dry weight. Twelve compounds exhibited high adsorption potential onto suspended particulate matter (SPM) with a mean fraction ranging from 8.8% (trimethoprim) to 97% (tetracycline). Furthermore, SPM showed a diverse absorbability in influent and effluent water circumstance. The overall elimination varied from -16% for lincomycin to 99% for paracetamol, while macrolides were able to withstand the whole treatment process. Mass balance analysis indicated that degradation was the predominant removal pathway for most compounds, and adsorption onto sludge combined with a minor portion of degradation explained for the reduction of tetracyclines and fluoroquinolones, whereas macrolides were recalcitrant to both two processes. The total mass loading was estimated to be up to 2800mg/d/1000 inhabitants and most compounds exhibited lower or comparable level comparing to the global published data. The total environmental emission was estimated up to be 1000mg/d/1000 inhabitants, and a value of 650mg/d/1000 inhabitants was obtained when considering merely the dissolved phase. This work would be helpful for the better understanding of ultimate fate and real pollution of pharmaceuticals in the water environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Predicting influent biochemical oxygen demand: Balancing energy demand and risk management.

    PubMed

    Zhu, Jun-Jie; Kang, Lulu; Anderson, Paul R

    2018-01-01

    Ready access to comprehensive influent information can help water reclamation plant (WRP) operators implement better real-time process controls, provide operational reliability and reduce energy consumption. The five-day biochemical oxygen demand (BOD 5 ), a critical parameter for WRP process control, is expensive and difficult to measure using hard-sensors. An alternative approach based on a soft-sensor methodology shows promise, but can be problematic when used to predict high BOD 5 values. Underestimating high BOD 5 concentrations for process control could result in an insufficient amount of aeration, increasing the risk of an effluent violation. To address this issue, we tested a hierarchical hybrid soft-sensor approach involving multiple linear regression, artificial neural networks (ANN), and compromise programming. While this hybrid approach results in a slight decrease in overall prediction accuracy relative to the approach based on ANN only, the underestimation percentage is substantially lower (37% vs. 61%) for predictions of carbonaceous BOD 5 (CBOD 5 ) concentrations higher than the long-term average value. The hybrid approach is also flexible and can be adjusted depending on the relative importance between energy savings and managing the risk of an effluent violation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessment of pesticides removal using two-stage Integrated Aerobic Treatment Plant (IATP) by Bacillus sp. isolated from agricultural field.

    PubMed

    Geed, S R; Shrirame, B S; Singh, R S; Rai, B N

    2017-10-01

    The biodegradation of synthetic wastewater containing Atrazine, Malathion and Parathion was studied in two stage Integrated Aerobic Treatment Plant using Bacillus sp. (consortia) isolated from agricultural field. The influent stream containing these pesticides with initial COD of 1232mg/L were fed to first reactor and treated effluent of first reactor was fed to second reactor. The maximum removal of pesticides in IATP was found to be greater than 90%. The various process parameters such as pH, DO, Redox potential and BOD 5 /COD were monitored during the treatment. The degradation of pesticides and its metabolites in the treated effluent were confirmed by GC-MS. Kinetic parameters such as first order rate constant (K obs ), cell yield (Y X/C ) and decay coefficients (K dp ) were evaluated and found to be 0.00425 per hr, 0.696mg of COD/mg MLSS and 0.0010 per hr respectively. This integrated process was found more effective than physico-chemical treatment of pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Occurrence and fate of anti-inflammatory drugs in wastewater treatment plants in Japan.

    PubMed

    Nakada, Norihide; Komori, Koya; Suzuki, Yutaka

    2005-01-01

    The fates of anti-inflammatory drugs (e.g., ibuprofen, naproxen, mefenamic acid and ketoprofen), which are frequently detected in the discharges of wastewater treatment plants (WWTPs) and river water in Japan, were clarified in two WWTPs. The concentrations of ibuprofen, naproxen, mefenamic acid and ketoprofen were 69-1080, 179-305, 143-1580 and 160-1060 ng/L in the influent, and N.D. (< 40 ng/L), 74-166, 72-265, 64-107 ng/L in the effluent, respectively. The concentrations of the anti-inflammatory drugs analyzed were almost equal to or lower than those reported in foreign countries. High removal efficiencies of the drugs, except ibuprofen, were observed in the WWTP that has longer hydraulic retention time than that of the other WWTP. For ibuprofen, high removal efficiencies were observed in both WWTPs (84 to 98%). Disinfection by chlorination was not effective to remove the drugs surveyed. On the other hand, the effective removal of ketoprofen by ultraviolet (UV) radiation for disinfection was demonstrated, although the disinfection by-products were not identified.

  13. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters.

    PubMed

    Patrolecco, Luisa; Capri, Silvio; Ademollo, Nicoletta

    2015-04-01

    This paper provides data on the occurrence of selected human pharmaceuticals (carbamazepine, clofibric acid, diclofenac, fenofibrate, fenoprofen, gemfibrozil, ibuprofen, ketoprofen, and naproxen) including steroid hormones (17β-estradiol, 17α-ethinylestradiol, and estrone) in influents/effluents to/from the four principal wastewater treatment plants (WWTPs) serving the city of Rome (Italy), in two different sampling campaigns. Target compounds were also analyzed in the receiving River Tiber and River Aniene. Analytical determination was carried out by LC-MS/MS after sample cleanup and concentration by off-line solid-phase extraction (SPE). The aim of the study was to increase the information currently available on the presence and persistence of pharmaceuticals in Italian urban wastewaters and to evaluate the environmental impact of the pharmaceutical residues discharged through effluents into the receiving rivers. Results indicated that after the treatment processes, most of pharmaceuticals were not completely eliminated, as average removal efficiencies were in the 14-100% wide range during both sampling periods, with higher yields in spring than in winter. Levels detected in overall samples ranged from 5 to 2,230 ng/L in influents and from 5 to 1,424 ng/L in effluents. Carbamazepine, diclofenac, ibuprofen, and gemfibrozil showed the highest persistence to removal. Concentrations in the receiving waters were about one order of magnitude lower than in effluents, with a tendency to increase progressively through the urban tract of the river. Finally, an environmental risk analysis showed that carbamazepine, gemfibrozil, and estrone can pose a high risk at the concentrations detected in effluents and a medium risk in rivers, highlighting their potential hazard for the health of the aquatic ecosystem.

  14. Large-Scale Survey of Human Enteroviruses in Wastewater Treatment Plants of a Metropolitan Area of Southern Italy.

    PubMed

    Pennino, Francesca; Nardone, Antonio; Montuori, Paolo; Aurino, Sara; Torre, Ida; Battistone, Andrea; Delogu, Roberto; Buttinelli, Gabriele; Fiore, Stefano; Amato, Concetta; Triassi, Maria

    2018-06-01

    Human enteroviruses (HEVs) occur in high concentrations in wastewater and can contaminate receiving environmental waters, constituting a major cause of acute waterborne disease worldwide. In this study, we investigated the relative abundance, occurrence, and seasonal distribution of polio and other enteroviruses at three wastewater treatment plants (WWTPs) in Naples, Southern Italy, from January 2010 to December 2014. Influent and effluent samples from the three WWTPs were collected monthly. One hundred and sixty-one of the 731 wastewater samples collected (22.0%) before and after water treatment were CPE positive on RD cells; while no samples were positive on L20B cells from any WWTPs. Among the 140 non-polio enterovirus isolated from inlet sewage, 69.3% were Coxsackieviruses type B and 30.7% were Echoviruses. Among these, CVB3 and CVB5 were most prevalent, followed by CVB4 and Echo6. The twenty-one samples tested after treatment contained 6 CVB4, 5 CVB3, 3 Echo11, and 2 Echo6; while other serotypes were isolated less frequently. Data on viral detection in treated effluents of WWTPs confirmed the potential environmental contamination by HEVs and could be useful to establish standards for policies on wastewater management.

  15. The removal of illicit drugs and morphine in two waste water treatment plants (WWTPs) under tropical conditions.

    PubMed

    Devault, Damien A; Néfau, Thomas; Levi, Yves; Karolak, Sara

    2017-11-01

    The consumption of drugs of abuse has been recently investigated in Martinique using the back-calculation approach, also called the "sewage epidemiology" method. Results demonstrated a very high consumption considering the international data. Wastewater treatment plants (WWTPs) are located just behind the Martinique island shoreline, and effluents could impact the vulnerable corals and marine seagrass ecosystem. The present article aims to determine a WWTP's efficiency by comparing the influent and effluent of two WWTPs, with different residence times and biological treatments, located either outdoors or indoors. In parallel, a degradation study is conducted using spiked wastewater exposed to tropical and ambient temperatures. Results demonstrate the consistent efficiency of the two processes, especially for the outdoor WWTP which uses the activated sludge process. The positive effect of the tropical temperature is showed by the increase of cocaine degradation at 31 °C. Thus, low illicit drug residue concentrations in effluent would indicate that wastewater treatment is efficient and even enhanced under tropical context. This fact should be confirmed with others molecules. Furthermore, our results highlight the need for subsequent studies of sludge contamination because of their local recycling as compost.

  16. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    PubMed

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs

  17. Meta-Analysis of the Reduction of Norovirus and Male-Specific Coliphage Concentrations in Wastewater Treatment Plants.

    PubMed

    Pouillot, Régis; Van Doren, Jane M; Woods, Jacquelina; Plante, Daniel; Smith, Mark; Goblick, Gregory; Roberts, Christopher; Locas, Annie; Hajen, Walter; Stobo, Jeffrey; White, John; Holtzman, Jennifer; Buenaventura, Enrico; Burkhardt, William; Catford, Angela; Edwards, Robyn; DePaola, Angelo; Calci, Kevin R

    2015-07-01

    Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Wastewater treatment plant (WWTP) effluents impacting bivalve mollusk-growing areas are potential sources of NoV contamination. We have developed a meta-analysis that evaluates WWTP influent concentrations and log10 reductions of NoV genotype I (NoV GI; in numbers of genome copies per liter [gc/liter]), NoV genotype II (NoV GII; in gc/liter), and male-specific coliphage (MSC; in number of PFU per liter), a proposed viral surrogate for NoV. The meta-analysis included relevant data (2,943 measurements) reported in the scientific literature through September 2013 and previously unpublished surveillance data from the United States and Canada. Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log10 gc/liter) is larger than the value for NoV GI (1.5 log10 gc/liter; 95% CI, 0.4, 2.4 log10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log10 reductions were -2.4 log10 gc/liter (95% CI, -3.9, -1.1 log10 gc/liter) for NoV GI, -2.7 log10 gc/liter (95% CI, -3.6, -1.9 log10 gc/liter) for NoV GII, and -2.9 log10 PFU per liter (95% CI, -3.4, -2.4 log10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were -1.4 log10 gc/liter (95% CI, -3.3, 0.5 log10 gc/liter) for NoV GI, -1.7 log10 gc/liter (95% CI, -3.1, -0.3 log10 gc/liter) for NoV GII, and -3.6 log10 PFU per liter (95% CI, -4.8, -2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log10 reduction in NoV GII and the mean log10 reduction in MSCs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment.

    PubMed

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2014-01-01

    In the present work, an extensive study on the presence of eighteen pharmaceuticals and personal care products (PPCPs) in eight wastewater treatment plants (WWTPs) of Greece has been conducted. The study covered four sampling periods over 1-year, where samples (influents; effluents) from eight WWTPs of various cities in Greece were taken. All WWTPs investigated are equipped with conventional activated sludge treatment. A common pre-concentration step based on SPE was applied, followed by LC-UV/Vis-ESI-MS. Further confirmation of positive findings was accomplished by using LC coupled to a high resolution Orbitrap mass spectrometer. The results showed the occurrence of all target compounds in the wastewater samples with concentrations up to 96.65 μg/L. Paracetamol, caffeine, trimethoprim, sulfamethoxazole, carbamazepine, diclofenac and salicylic acid were the dominant compounds, while tolfenamic acid, fenofibrate and simvastatin were the less frequently detected compounds with concentrations in effluents below the LOQ. The removal efficiencies showed that many WWTPs were unable to effectively remove most of the PPCPs investigated. Finally, the study provides an assessment of the environmental risk posed by their presence in wastewaters by means of the risk quotient (RQ). RQs were more than unity for various compounds in the effluents expressing possible threat for the aquatic environment. Triclosan was found to be the most critical compound in terms of contribution and environmental risk, concluding that it should be seriously considered as a candidate for regulatory monitoring and prioritization on a European scale on the basis of realistic PNECs. The results of the extensive monitoring study contributed to a better insight on PPCPs in Greece and their presence in influent and effluent wastewaters. Furthermore, the unequivocal identification of two transformation products of trimethoprim in real wastewaters by using the advantages of the LTQ Orbitrap capabilities

  19. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    NASA Astrophysics Data System (ADS)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  20. Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China.

    PubMed

    Duan, Lei; Zhang, Yizhe; Wang, Bin; Deng, Shubo; Huang, Jun; Wang, Yujue; Yu, Gang

    2018-04-18

    The occurrence, eliminations, enantiomeric distribution and intra-day variations of five chiral pharmaceuticals (three beta-blockers and two antidepressants) were investigated in eight major WWTPs in Beijing, China. The results revealed that metoprolol (MTP) and venlafaxine (VFX) were of the highest concentrations among the five determined pharmaceuticals with mean concentrations of 803 ng L -1 and 408 ng L -1 , respectively in influents, and 354 ng L -1 and 165 ng L -1 in effluents, respectively. Their removal efficiencies, intra-day concentration changes and enantiomeric profiles during wastewater treatment were further analyzed. Loads of these two chiral pharmaceuticals were also studied to reveal drug use pattern. A/A/O+MBR (anaerobic/anoxic/oxic + membrane bio-reactor) followed by joint disinfection treatment process exhibited the high removal efficiencies. No or weak enantioselectivity was observed in most WWTPs. However, obvious enantiomeric fraction (EF) changing of MTP was observed in WWTP3 employing A/A/O+MBR. Intra-day concentration fluctuations of MTP were smaller than VFX. A quick response to sudden rise influent concentration of MTP was observed in WWTP1 effluent but EF response lagged behind. Similar bihourly EF variations in influents and effluents were also observed in most WWTPs for MTP and VFX in consideration of hydraulic residence time (HRT). Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    NASA Astrophysics Data System (ADS)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  2. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments.

    PubMed

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub; Romalde, Jesús L

    2016-07-01

    Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions

  3. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments

    PubMed Central

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level

  4. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece.

    PubMed

    Papageorgiou, Myrsini; Kosma, Christina; Lambropoulou, Dimitra

    2016-02-01

    A comprehensive study, which contains the seasonal occurrence, removal, mass loading and environmental risk assessment of 55 multi-class pharmaceuticals and personal care products (PPCPs), took place in the wastewater treatment plant (WWTP) of Volos, Greece. A one year monitoring study was performed and the samples were collected from the influent and the effluent of the WWTP. Solid phase extraction was used for the pre-concentration of the samples followed by an LC-DAD-ESI/MS analysis. Positive samples were further confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The maximum concentrations of the PPCPs varied between 21 ng/L and 15,320 ng/L in the influents and between 18 ng/L and 9965 ng/L in the effluents. The most commonly detected PPCPs were the diuretic furosemide, the beta-blockers atenolol and metoprolol, the analgesics paracetamol, nimesulide, salicylic acid and diclofenac and the psychomotor stimulant caffeine. The removal efficiencies ranged between negative and high removal rates, demonstrating that the WWTP is not able to efficiently remove the complex mixture of PPCPs. The estimated mass loads ranged between 5.1 and 3513 mg/day/1000 inhabitants for WWTP influent and between 4.1 to 2141 mg/day/1000 inhabitants for WWTP effluent. Finally, environmental risk assessment has been regarded a necessary part of the general research. According to the results produced from the calculation of the risk quotient on three trophic levels, the anti-inflammatory drug diclofenac and the antibiotics, trimethoprim and ciprofloxacin, identified to be of high potential environmental risk for acute toxicity, while diclofenac also for chronic toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: mass balance analysis and consumption back-calculated model.

    PubMed

    Yan, Qing; Gao, Xu; Huang, Lei; Gan, Xiu-Mei; Zhang, Yi-Xin; Chen, You-Peng; Peng, Xu-Ya; Guo, Jin-Song

    2014-03-01

    The occurrence and fate of twenty-one pharmaceutically active compounds (PhACs) were investigated in different steps of the largest wastewater treatment plant (WWTP) in Southwest China. Concentrations of these PhACs were determined in both wastewater and sludge phases by a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Results showed that 21 target PhACs were present in wastewater and 18 in sludge. The calculated total mass load of PhACs per capita to the influent, the receiving water and sludge were 4.95mgd(-1)person(-1), 889.94μgd(-1)person(-1) and 78.57μgd(-1)person(-1), respectively. The overall removal efficiency of the individual PhACs ranged from "negative removal" to almost complete removal. Mass balance analysis revealed that biodegradation is believed to be the predominant removal mechanism, and sorption onto sludge was a relevant removal pathway for quinolone antibiotics, azithromycin and simvastatin, accounting for 9.35-26.96% of the initial loadings. However, the sorption of the other selected PhACs was negligible. The overall pharmaceutical consumption in Chongqing, China, was back-calculated based on influent concentration by considering the pharmacokinetics of PhACs in humans. The back-estimated usage was in good agreement with usage of ofloxacin (agreement ratio: 72.5%). However, the back-estimated usage of PhACs requires further verification. Generally, the average influent mass loads and back-calculated annual per capita consumption of the selected antibiotics were comparable to or higher than those reported in developed countries, while the case of other target PhACs was opposite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Impact of influent data frequency and model structure on the quality of WWTP model calibration and uncertainty.

    PubMed

    Cierkens, Katrijn; Plano, Salvatore; Benedetti, Lorenzo; Weijers, Stefan; de Jonge, Jarno; Nopens, Ingmar

    2012-01-01

    Application of activated sludge models (ASMs) to full-scale wastewater treatment plants (WWTPs) is still hampered by the problem of model calibration of these over-parameterised models. This either requires expert knowledge or global methods that explore a large parameter space. However, a better balance in structure between the submodels (ASM, hydraulic, aeration, etc.) and improved quality of influent data result in much smaller calibration efforts. In this contribution, a methodology is proposed that links data frequency and model structure to calibration quality and output uncertainty. It is composed of defining the model structure, the input data, an automated calibration, confidence interval computation and uncertainty propagation to the model output. Apart from the last step, the methodology is applied to an existing WWTP using three models differing only in the aeration submodel. A sensitivity analysis was performed on all models, allowing the ranking of the most important parameters to select in the subsequent calibration step. The aeration submodel proved very important to get good NH(4) predictions. Finally, the impact of data frequency was explored. Lowering the frequency resulted in larger deviations of parameter estimates from their default values and larger confidence intervals. Autocorrelation due to high frequency calibration data has an opposite effect on the confidence intervals. The proposed methodology opens doors to facilitate and improve calibration efforts and to design measurement campaigns.

  7. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2018-04-01

    Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to

  8. Occurrence and fate of PBDEs and novel brominated flame retardants in a wastewater treatment plant in Harbin, China.

    PubMed

    Li, Bo; Sun, Shao-Jing; Huo, Chun-Yan; Li, Wen-Long; Zhu, Ning-Zheng; Qi, Hong; Kong, Ling-Jun; Li, Yi-Fan; Ma, Wan-Li

    2016-10-01

    Wastewater treatment plant (WWTP) is considered to be an important medium for the transport and transformation of organic pollutants. This study attempted to comprehensively investigate polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in a WWTP in Harbin, one of the main "Old Industrial Base" in China. The mean concentrations of the total PBDEs in the influent, effluent, and sludge were 152 ng/L, 16.2 ng/L, and 503 g/g dw, respectively, which were at the low end of the global range. BDE-209 was the most abundant congener, with contributions to the total PBDE ranging from 90.5 to 98.5 %. The level of the total NBFRs ranged from 24.5 to 107 ng/L, 0.95 to 20.3 ng/L, and 305 to 1202 ng/g dw in the influent, effluent, and sludge, respectively. For NBFRs, DBDPE was the most abundant congener (38.8-50.5 %), followed by BEHTBP (11.0-35.0 %). The ratio for DBDPE/BDE-209 (0.62 ± 0.42) was found less than 1 in sludge, which indicated that Deca-BDE is still the major BFR product in this city. Source identification suggested that indoor dust should be an important source of BFRs in the WWTP. Approximately 20.8 and 7.79 kg of PBDEs and NBFRs on annual basis were removed with the sludge. Biodegradation could play an important role on the fate of BFRs in the WWTP, which is required for future research.

  9. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    PubMed

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.

  10. Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis.

    PubMed

    Ebrahimi, Milad; Gerber, Erin L; Rockaway, Thomas D

    2017-05-15

    For most water treatment plants, a significant number of performance data variables are attained on a time series basis. Due to the interconnectedness of the variables, it is often difficult to assess over-arching trends and quantify operational performance. The objective of this study was to establish simple and reliable predictive models to correlate target variables with specific measured parameters. This study presents a multivariate analysis of the physicochemical parameters of municipal wastewater. Fifteen quality and quantity parameters were analyzed using data recorded from 2010 to 2016. To determine the overall quality condition of raw and treated wastewater, a Wastewater Quality Index (WWQI) was developed. The index summarizes a large amount of measured quality parameters into a single water quality term by considering pre-established quality limitation standards. To identify treatment process performance, the interdependencies between the variables were determined by using Principal Component Analysis (PCA). The five extracted components from the 15 variables accounted for 75.25% of total dataset information and adequately represented the organic, nutrient, oxygen demanding, and ion activity loadings of influent and effluent streams. The study also utilized the model to predict quality parameters such as Biological Oxygen Demand (BOD), Total Phosphorus (TP), and WWQI. High accuracies ranging from 71% to 97% were achieved for fitting the models with the training dataset and relative prediction percentage errors less than 9% were achieved for the testing dataset. The presented techniques and procedures in this paper provide an assessment framework for the wastewater treatment monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea.

    PubMed

    Talvitie, Julia; Heinonen, Mari; Pääkkönen, Jari-Pekka; Vahtera, Emil; Mikola, Anna; Setälä, Outi; Vahala, Riku

    2015-01-01

    This study on the removal of microplastics during different wastewater treatment unit processes was carried out at Viikinmäki wastewater treatment plant (WWTP). The amount of microplastics in the influent was high, but it decreased significantly during the treatment process. The major part of the fibres were removed already in primary sedimentation whereas synthetic particles settled mostly in secondary sedimentation. Biological filtration further improved the removal. A proportion of the microplastic load also passed the treatment and was found in the effluent, entering the receiving water body. After the treatment process, an average of 4.9 (±1.4) fibres and 8.6 (±2.5) particles were found per litre of wastewater. The total textile fibre concentration in the samples collected from the surface waters in the Helsinki archipelago varied between 0.01 and 0.65 fibres per litre, while the synthetic particle concentration varied between 0.5 and 9.4 particles per litre. The average fibre concentration was 25 times higher and the particle concentration was three times higher in the effluent compared to the receiving body of water. This indicates that WWTPs may operate as a route for microplastics entering the sea.

  12. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    PubMed

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  13. Occurrence of betablockers in effluents of wastewater treatment plants from the Lyon area (France) and risk assessment for the downstream rivers.

    PubMed

    Miège, Cécile; Favier, Maxime; Brosse, Corinne; Canler, Jean-Pierre; Coquery, Marina

    2006-11-15

    Five betablockers (oxprenolol, metoprolol, propranolol, bisoprolol, betaxolol) were analysed in effluents collected over a 3-month period from wastewater treatment plants (WTP) from the Lyon area in France. The analytical protocol consisted of solid phase extraction of the dissolved aqueous phase on HLB cartridges and analysis by gas chromatography coupled with mass detection (GC-MS) after derivatization. Concentrations of metoprolol, propranolol and bisoprolol varied from 45 to 2838ng/L whereas oxprenolol and betaxolol were never detected in these effluent samples. A high variability of betablockers concentrations and fluxes was observed between WTP effluents and within each WTP over the time period studied. Considering a flux per person for a dry weather period, Fontaine plant was pointed out as the less efficient WTP, which might be explained by its type of treatment (biological aerated filters). But we need additional analysis of effluent and influent waters to confirm this hypothesis. A tentative approach of local environmental risk assessment of propranolol based on the calculation of PEC/PNEC (predicted environmental concentration/predicted non effect concentration) ratio approach lead us to conclude on a negligible risk for the downstream rivers (Rhône river at Ternay and Saône river at Couzon Mt d'Or).

  14. Comparison between mixed liquors of two side-stream membrane bioreactors treating wastewaters from waste management plants with high and low solids anaerobic digestion.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Fernández-Giménez, E; Álvarez-Requena, C; Muñagorri-Mañueco, F; Ortiz-Villalobos, G

    2016-09-01

    In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media. Copyright © 2014. Published by Elsevier B.V.

  16. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  17. Analysis of amphetamine and methamphetamine in municipal wastewater influent and effluent using weak cation-exchange SPE and LC-MS/MS.

    PubMed

    Boles, Tammy H; Wells, Martha J M

    2016-12-01

    Amphetamine and methamphetamine are emerging contaminants-those for which no regulations currently require monitoring or public reporting of their presence in our water supply. In this research, a protocol for weak cation-exchange (WCX) SPE coupled with LC-MS/MS was developed for determination of emerging contaminants amphetamine and methamphetamine in a complex wastewater matrix. Gradient LC parameters were adjusted to yield baseline separation of methamphetamine from other contaminants. Methamphetamine-D5 was used as the internal standard (IS) to compensate for sample loss during SPE and for signal loss during MS (matrix effects). Recoveries were 102.1 ± 7.9% and 99.4 ± 4.0% for amphetamine and methamphetamine, respectively, using WCX sorbent. Notably, methamphetamine was determined to be present in wastewater influent at each sampling date tested. Amphetamine was present in wastewater influent on two of four sampling dates. Amphetamine concentrations ranged from undetectable to 86.4 ng/L in influent, but it was undetectable in wastewater effluent. Methamphetamine was detected in influent at concentrations ranging from 27.0-60.3 ng/L. Methamphetamine concentration was reduced but incompletely removed at this facility. Although absent in one post-UV effluent sample, concentrations of methamphetamine ranged from 10.8-14.8 ng/L. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    PubMed

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants.

    PubMed

    Shoeib, Mahiba; Schuster, Jasmin; Rauert, Cassandra; Su, Ky; Smyth, Shirley-Anne; Harner, Tom

    2016-11-01

    The potential of wastewater treatment plants (WWTPs) to act as sources of poly and perfluoroalkyl substances (PFASs), volatile methyl siloxanes (VMSs) and organic UV-filters to the atmosphere was investigated. Target compounds included: PFASs (fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides/sulfonamidoethanols (FOSAs/FOSEs), perfluroalkyl sulfonic acids (PFSAs) and perfluroalkyl carboxylic acids (PFCAs)), cyclic VMSs (D3 to D6), linear VMSs (L3 to L5) and eight UV-filters. Emissions to air were assessed at eight WWTPs using paired sorbent-impregnated polyurethane foam passive air samplers, deployed during summer 2013 and winter 2014. Samplers were deployed on-site above the active tank and off-site as a reference. Several types of WWTPs were investigated: secondary activated sludge in urban areas (UR-AS), secondary extended aeration in towns (TW-EA) and facultative lagoons in rural areas (RU-LG). The concentrations of target compounds in air were ∼1.7-35 times higher on-site compared to the corresponding off-site location. Highest concentrations in air were observed at UR-AS sites while the lowest were at RU-LG. Higher air concentrations (∼2-9 times) were observed on-site during summer compared to winter, possibly reflecting enhanced volatilization due to higher wastewater temperatures or differences in influent wastewater concentrations. A significant positive correlation was obtained between concentrations in air and WWTP characteristics (influent flow rate and population in the catchment of the WWTP); whereas a weak negative correlation was obtained with hydraulic retention time. Emissions to air were estimated using a simplified dispersion model. Highest emissions to air were seen at the UR-AS locations. Emissions to air (g/year/tank) were highest for VMSs (5000-112,000) followed by UV-filters (16-2000) then ΣPFASs (10-110). Copyright © 2016. Published by Elsevier Ltd.

  20. One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan.

    PubMed

    Katayama, Hiroyuki; Haramoto, Eiji; Oguma, Kumiko; Yamashita, Hiromasa; Tajima, Atsushi; Nakajima, Hideichiro; Ohgaki, Shinichiro

    2008-03-01

    Sewerage systems are important nodes to monitor human enteric pathogens transmitted via water. A quantitative virus survey was performed once a month for a year to understand the seasonal profiles of noroviruses genotype 1 and genotype 2, enteroviruses, and adenoviruses in sewerage systems. A total of 72 samples of influent, secondary-treated wastewater before chlorination and effluent were collected from six wastewater treatment plants in Japan. Viruses were successfully recovered from 100ml of influent and 1000ml of the secondary-treated wastewater and effluent using the acid rinse method. Viruses were determined by the RT-PCR or PCR method to obtain the most probable number for each sample. All the samples were also assayed for fecal coliforms (FCs) by a double-layer method. The seasonal profiles of noroviruses genotype 1 and genotype 2 in influent were very similar, i.e. they were abundant in winter (from November to March) at a geometric mean value of 190 and 200 RT-PCR units/ml, respectively, and less frequent in summer (from June to September), at 4.9 and 9.1 RT-PCR units/ml, respectively. The concentrations of enteroviruses and adenoviruses were mostly constant all the year round, 17 RT-PCR units/ml and 320 PCR units/ml in influent, and 0.044 RT-PCR units/ml and 7.0 PCR units/ml in effluent, respectively.

  1. Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China.

    PubMed

    Feng, Jingjing; Chen, Xiaolin; Jia, Lei; Liu, Qizhen; Chen, Xiaojia; Han, Deming; Cheng, Jinping

    2018-04-10

    Wastewater treatment plants (WWTPs) are the most common form of industrial and municipal wastewater control. To evaluate the performance of wastewater treatment and the potential risk of treated wastewater to aquatic life and human health, the influent and effluent concentrations of nine toxic metals were determined in 12 full-scale WWTPs in Shanghai, China. The performance was evaluated based on national standards for reclamation and aquatic criteria published by US EPA, and by comparison with other full-scale WWTPs in different countries. Potential sources of heavy metals were recognized using partial correlation analysis, hierarchical clustering, and principal component analysis (PCA). Results indicated significant treatment effect on As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn. The removal efficiencies ranged from 92% (Cr) to 16.7% (Hg). The results indicated potential acute and/or chronic effect of Cu, Ni, Pb, and Zn on aquatic life and potential harmful effect of As and Mn on human health for the consumption of water and/or organism. The results of partial correlation analysis, hierarchical clustering based on cosine distance, and PCA, which were consistent with each other, suggested common source of Cd, Cr, Cu, and Pb and common source of As, Hg, Mn, Ni, and Zn. Hierarchical clustering based on Jaccard similarity suggested common source of Cd, Hg, and Ni, which was statistically proved by Fisher's exact test.

  2. Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities.

    PubMed

    Bade, Richard; Bijlsma, Lubertus; Sancho, Juan V; Baz-Lomba, Jose A; Castiglioni, Sara; Castrignanò, Erika; Causanilles, Ana; Gracia-Lor, Emma; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; van Nuijs, Alexander L N; Ort, Christoph; Plósz, Benedek G; Ramin, Pedram; Rousis, Nikolaos I; Ryu, Yeonsuk; Thomas, Kevin V; de Voogt, Pim; Zuccato, Ettore; Hernández, Félix

    2017-02-01

    The popularity of new psychoactive substances (NPS) has grown in recent years, with certain NPS commonly and preferentially consumed even following the introduction of preventative legislation. With the objective to improve the knowledge on the use of NPS, a rapid and very sensitive method was developed for the determination of ten priority NPS (N-ethylcathinone, methylenedioxypyrovalerone (MDPV), methylone, butylone, methedrone, mephedrone, naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe) in influent wastewater. Sample clean-up and pre-concentration was made by off-line solid phase extraction (SPE) with Oasis MCX cartridges. Isotopically labelled internal standards were used to correct for matrix effects and potential SPE losses. Following chromatographic separation on a C 18 column within 6 min, the compounds were measured by tandem mass spectrometry in positive ionization mode. The method was optimised and validated for all compounds. Limits of quantification were evaluated by spiking influent wastewater samples at 1 or 5 ng/L. An investigation into the stability of these compounds in influent wastewater was also performed, showing that, following acidification at pH 2, all compounds were relatively stable for up to 7 days. The method was then applied to influent wastewater samples from eight European countries, in which mephedrone, methylone and MDPV were detected. This work reveals that although NPS use is not as extensive as for classic illicit drugs, the application of a highly sensitive analytical procedure makes their detection in wastewater possible. The developed analytical methodology forms the basis of a subsequent model-based back-calculation of abuse rate in urban areas (i.e. wastewater-based epidemiology). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa.

    PubMed

    Edokpayi, Joshua N; Odiyo, John O; Msagati, Titus A M; Popoola, Elizabeth O

    2015-06-29

    Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP). The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA) guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26-0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3(-) N) in the influent and effluent varied between 0.499-2.31 mg/L and 7.545-19.413 mg/L, respectively. The concentration of NO3- N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552-42.646 mg/L and 1.572-32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32-74%), Fe (7-32%) and Zn (24-94%) in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge.

  4. Removal of indicator organisms by chemical treatment of wastewater.

    PubMed

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  5. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection LC/MS/MS—Characterization of Municipal Wastewaters

    PubMed Central

    Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363

  6. High occurrence of hepatitis E virus in samples from wastewater treatment plants in Switzerland and comparison with other enteric viruses.

    PubMed

    Masclaux, Frédéric G; Hotz, Philipp; Friedli, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2013-09-15

    Hepatitis E virus (HEV) is responsible for many enterically transmitted viral hepatitides around the world. It is currently one of the waterborne diseases of global concern. In industrialized countries, HEV appears to be more common than previously thought, even if it is rarely virulent. In Switzerland, seroprevalence studies revealed that HEV is endemic, but no information was available on its environmental spread. The aim of this study was to investigate -using qPCR- the occurrence and concentration of HEV and three other viruses (norovirus genogroup II, human adenovirus-40 and porcine adenovirus) in influents and effluents of 31 wastewater treatment plants (WWTPs) in Switzerland. Low concentrations of HEV were detected in 40 out of 124 WWTP influent samples, showing that HEV is commonly present in this region. The frequency of HEV occurrence was higher in summer than in winter. No HEV was detected in WWTP effluent samples, which indicates a low risk of environmental contamination. HEV occurrence and concentrations were lower than those of norovirus and adenovirus. The autochthonous HEV genotype 3 was found in all positive samples, but a strain of the non-endemic and highly pathogenic HEV genotype I was isolated in one sample, highlighting the possibility of environmental circulation of this genotype. A porcine fecal marker (porcine adenovirus) was not detected in HEV positive samples, indicating that swine are not the direct source of HEV present in wastewater. Further investigations will be necessary to determine the reservoirs and the routes of dissemination of HEV. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    NASA Astrophysics Data System (ADS)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  8. Metagenomic insight of nitrogen metabolism in a tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1.

    PubMed

    Sul, Woo-Jun; Kim, In-Soo; Ekpeghere, Kalu I; Song, Bongkeun; Kim, Bong-Soo; Kim, Hong-Gi; Kim, Jong-Tae; Koh, Sung-Cheol

    2016-11-09

    Nitrogen (N) removal in a tannery wastewater treatment plant was significantly enhanced by the bioaugmentation of the novel consortium BM-S-1. In order to identify dominant taxa responsible for N metabolisms in the different stages of the treatment process, Illumina MiSeq Sequencer was used to conduct metagenome sequencing of the microbial communities in the different stages of treatment system, including influent (I), buffering (B), primary aeration (PA), secondary aeration (SA) and sludge digestion (SD). Based on MG-RAST analysis, the dominant phyla were Proteobacteria, Bacteroidetes and Firmicutes in B, PA, SA and SD, whereas Firmicutes was the most dominant in I before augmentation. The augmentation increased the abundance of the denitrification genes found in the genera such as Ralstonia (nirS, norB and nosZ), Pseudomonas (narG, nirS and norB) and Escherichia (narG) in B and PA. In addition, Bacteroides, Geobacter, Porphyromonasand Wolinella carrying nrfA gene encoding dissimilatory nitrate reduction to ammonium were abundantly present in B and PA. This was corroborated with the higher total N removal in these two stages. Thus, metagenomic analysis was able to identify the dominant taxa responsible for dissimilatory N metabolisms in the tannery wastewater treatment system undergoing bioaugmentation. This metagenomic insight into the nitrogen metabolism will contribute to a successful monitoring and operation of the eco-friendly tannery wastewater treatment system.

  9. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  10. Removal of PFOS, PFOA and other perfluoroalkyl acids at water reclamation plants in South East Queensland Australia.

    PubMed

    Thompson, Jack; Eaglesham, Geoff; Reungoat, Julien; Poussade, Yvan; Bartkow, Michael; Lawrence, Michael; Mueller, Jochen F

    2011-01-01

    This paper examines the fate of perfluorinated sulfonates (PFSAs) and carboxylic acids (PFCAs) in two water reclamation plants in Australia. Both facilities take treated water directly from WWTPs and treat it further to produce high quality recycled water. The first plant utilizes adsorption and filtration methods alongside ozonation, whilst the second uses membrane processes and advanced oxidation to produce purified recycled water. At both facilities perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were the most frequently detected PFCs. Concentrations of PFOS and PFOA in influent (WWTP effluent) ranged up to 3.7 and 16 ng L⁻¹ respectively, and were reduced to 0.7 and 12 ng L⁻¹ in the finished water of the ozonation plant. Throughout this facility, concentrations of most of the detected perfluoroalkyl compounds (PFCs) remained relatively unchanged with each successive treatment step. PFOS was an exception to this, with some removal following coagulation and dissolved air flotation/sand filtration (DAFF). At the second plant, influent concentrations of PFOS and PFOA ranged up to 39 and 29 ng L⁻¹. All PFCs present were removed from the finished water by reverse osmosis (RO) to concentrations below detection and reporting limits (0.4-1.5 ng L⁻¹). At both plants the observed concentrations were in the low parts per trillion range, well below provisional health based drinking water guidelines suggested for PFOS and PFOA. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Biocides in urban wastewater treatment plant influent at dry and wet weather: concentrations, mass flows and possible sources.

    PubMed

    Bollmann, Ulla E; Tang, Camilla; Eriksson, Eva; Jönsson, Karin; Vollertsen, Jes; Bester, Kai

    2014-09-01

    In recent years, exterior thermal insulation systems became more and more important leading to an increasing amount of houses equipped with biocide-containing organic façade coatings or fungicide treated wood. It is known that these biocides, e.g. terbutryn, carbendazim, and diuron, as well as wood preservatives as propiconazole, leach out of the material through contact with wind driven rain. Hence, they are present in combined sewage during rain events in concentrations up to several hundred ng L(-1). The present study focused on the occurrence of these biocides in five wastewater treatment plants in Denmark and Sweden during dry and wet weather. It was discovered, that biocides are detectable not only during wet weather but also during dry weather when leaching from façade coatings can be excluded as source. In most cases, the concentrations during dry weather were in the same range as during wet weather (up to 100 ng L(-1)); however, for propiconazole noteworthy high concentrations were detected in one catchment (4.5 μg L(-1)). Time resolved sampling (12 × 2 h) enabled assessments about possible sources. The highest mass loads during wet weather were detected when the rain was heaviest (e.g. up to 116 mg h(-1) carbendazim or 73 mg h(-1) mecoprop) supporting the hypothesis that the biocides were washed off by wind driven rain. Contrary, the biocide emissions during dry weather were rather related to household activities than with emissions from buildings, i.e., emissions were highest during morning and evening hours (up to 50 mg h(-1)). Emissions during night were significantly lower than during daytime. Only for propiconazole a different emission behaviour during dry weather was observed: the mass load peaked in the late afternoon (3 g h(-1)) and declined slowly afterwards. Most likely this emission was caused by a point source, possibly from inappropriate cleaning of spray equipment for agriculture or gardening. Copyright © 2014 Elsevier

  12. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Msagati, Titus A. M.; Popoola, Elizabeth O.

    2015-01-01

    Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP). The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA) guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26–0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3− N) in the influent and effluent varied between 0.499–2.31 mg/L and 7.545–19.413 mg/L, respectively. The concentration of NO3− N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552–42.646 mg/L and 1.572–32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32–74%), Fe (7–32%) and Zn (24–94%) in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge. PMID:26132481

  13. A comparative study of occurrence and fate of endocrine disruptors: diethyl phthalate and dibutyl phthalate in ASP- and SBR-based wastewater treatment plants.

    PubMed

    Saini, Gita; Pant, Shalini; Singh, Shri Om; Kazmi, A A; Alam, Tanveer

    2016-11-01

    Phthalates are endocrine-disrupting chemicals which affect endocrine system by bio-accumulation in aquatic organisms and produce adverse health effects in aquatic organisms as well as human beings, when come in contact. Present study focuses on occurrence and removal of two phthalates: diethylphthalate (DEP) and dibutylphthalate (DBP) in two full-scale wastewater treatment plants (WWTPs) i.e. sewage treatment plants (STPs) based on well-adopted technologies, activated sludge process (ASP) and sequencing batch reactor (SBR).Gas chromatography-mass spectrometry (GC-MS) analysis was performed for both wastewater and sludge sample for determination and identification of the concentration of these compounds in both STPs by monitoring the STPs for 9 months. It was observed that the concentration of DEP was less than DBP in the influent of ASP and SBR. Average concentrations of DEP and DBP in sludge sample of ASP were found to be 2.15 and 2.08 ng/g, whereas in SBR plant, these values were observed as 1.71 and 2.01 ng/g, respectively. Concerning the removal efficiency of DEP, SBR and ASP plants were found effective with removal efficiency of 91.51 and 91.03 %, respectively. However, in the case of DBP, SBR showed lower removal efficiency (85.42 %) as compared to ASP (92.67 %). Comparative study of both plants proposed that in ASP plant, DBP reduction was higher than the SBR. Fourier transformation infrared (FTIR) analysis also confirmed the same result of sludge analysis for both STPs. Sludge disposal studied with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) techniques confirmed that sludge of both STPs have high calorific value and can be used as fuel to make fuel-briquettes and bottom ash to make firebricks.

  14. Seasonal variations in the concentration and removal of nonylphenol ethoxylates from the wastewater of a sewage treatment plant.

    PubMed

    Gao, Dawen; Li, Zhe; Guan, Junxue; Liang, Hong

    2017-04-01

    In this study, we investigated the occurrence and fate of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) in a full scale sewage treatment plant, which applied an Anaerobic/Oxic process. Concentrations of NP, NP1EO and NP2EO in the wastewater were measured during the period spanning a whole year. The results showed remarkable seasonal variation in the concentrations of the compounds. The NPnEO compounds were most abundant in winter, with the total concentrations of influent NP, NP1EO and NP2EO ranging from 3900 to 7000ng/L, 4000 to 4800ng/L and 5200 to 7200ng/L, respectively. Regarding the total removal efficiencies of the three types of short-chain NPnEO compounds, different trends were exhibited according to different seasons. The average removal efficiency of NP for the different seasons ranked as follows: winter>summer>autumn>spring; NP2EO concentrations decreased as follows: summer>autumn>winter>spring, while NP1EO concentrations reduced according to: spring>summer>autumn>winter. We also investigated the contribution ratio of individual treatment units in the A/O process, with the findings suggesting that the anaerobic treatment unit plays an important role in the elimination of short-chain NPnEOs from the wastewater. Copyright © 2016. Published by Elsevier B.V.

  15. Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio

    PubMed Central

    Welles, Laurens; Abbas, Ben; Sorokin, Dimitry Y.; Lopez-Vazquez, Carlos M.; Hooijmans, Christine M.; van Loosdrecht, Mark C. M.; Brdjanovic, Damir

    2017-01-01

    The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels. PMID:28111570

  16. ADM1-based methodology for the characterisation of the influent sludge in anaerobic reactors.

    PubMed

    Huete, E; de Gracia, M; Ayesa, E; Garcia-Heras, J L

    2006-01-01

    This paper presents a systematic methodology to characterise the influent sludge in terms of the ADM1 components from the experimental measurements traditionally used in wastewater engineering. For this purpose, a complete characterisation of the model components in their elemental mass fractions and charge has been used, making a rigorous mass balance for all the process transformations and enabling the future connection with other unit-process models. It also makes possible the application of mathematical algorithms for the optimal characterisation of several components poorly defined in the ADM1 report. Additionally, decay and disintegration have been necessarily uncoupled so that the decay proceeds directly to hydrolysis instead of producing intermediate composites. The proposed methodology has been applied to the particular experimental work of a pilot-scale CSTR treating real sewage sludge, a mixture of primary and secondary sludge. The results obtained have shown a good characterisation of the influent reflected in good model predictions. However, its limitations for an appropriate prediction of alkalinity and carbon percentages in biogas suggest the convenience of including the elemental characterisation of the process in terms of carbon in the analytical program.

  17. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations.

    PubMed

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R

    2015-01-01

    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  18. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China.

    PubMed

    Zhang, Chunlin; Geng, Xuesong; Wang, Hao; Zhou, Lei; Wang, Boguang

    2017-01-01

    Atmospheric ammonia (NH 3 ), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH 3  m -3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH 3 m -3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  20. The Effect of Hydraulic Loading Rate and Influent Source on the Binding Capacity of Phosphorus Filters

    PubMed Central

    Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria

    2013-01-01

    Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313

  1. Is polymeric substrate in influent an indirect impetus for the nitrification process in an activated sludge system?

    PubMed

    Wang, Bin-Bin; Gu, Ya-Wei; Chen, Jian-Meng; Yao, Qian; Li, Hui-Juan; Peng, Dang-Cong; He, Feng

    2017-06-01

    Different from monomeric substrate, polymeric substrate (PS) needs to undergo slow hydrolysis process before becoming available for consumption by bacteria. Hydrolysis products will be available for the heterotrophs in low concentration, which will reduce competitive advantages of heterotrophs to nitrifiers in mixed culture. Therefore, some links between PS and nitrification process can be expected. In this study, three lab-scale sequencing batch reactors with different PS/total substrate (TS) ratio (0, 0.5 or 1) in influent were performed in parallel to investigate the influence of PS on nitrification process in activated sludge system. The results showed that with the increase of PS/TS ratio, apparent sludge yields decreased, while NO 3 - -N concentration in effluent increased. The change of PS/TS ratio in influent also altered the cycle behaviors of activated sludge. With the increase of PS/TS ratio from 0 to 0.5 and 1, the ammonium and nitrite utilization rate increased ∼2 and 3 times, respectively. The q-PCR results showed that the abundance of nitrifiers in activated sludge for PS/TS ratio of 0.5 and 1 were 0.7-0.8 and 1.4-1.5 orders of magnitude higher than that for PS/TS ratio of 0. However, the abundance of total bacteria decreased about 0.5 orders of magnitude from the former two to the latter. The FISH observation confirmed that the nitrifiers' microcolony became bigger and more robust with the increase of PS/TS ratio. This paper paves a path to understand the role of PS/TS in affecting the nitrification process in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2014-09-02

    Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.

  3. Pathway governing nitrogen removal in artificially aerated constructed wetlands: Impact of aeration mode and influent chemical oxygen demand to nitrogen ratios.

    PubMed

    Hou, Jie; Wang, Xin; Wang, Jie; Xia, Ling; Zhang, Yiqing; Li, Dapeng; Ma, Xufa

    2018-06-01

    This study aimed at assessing the influence of aeration mode and influent COD/N ratio on nitrogen removal in constructed wetlands (CWs). The results showed that a simultaneous partial nitrification, anammox and denitrification (SNAD) process was established in the intermittent aerated V1. While nitrogen removal pathway gradually changed from partial nitrification-denitrification to complete nitrification-denitrification along with reducing COD/N ratio in the continuous limited aerated V2. Effective inhibition of NOBs under intermittent aeration conditions, good retention of anammox bacteria biomass and much faster depletion of COD prior to substantial NH 4 + -N conversion jointly led to the successful achievement of stable SNDA process with elevated influent COD/N ratios in V1. Furthermore, the presence of SNAD ensured a robust ammonium (84-92%) and TN (80-91%) removal efficiency in V1 under varying COD loading rates. In contrast, the TN removal efficiency decreased rapidly along with the reducing influent COD/N ratios in V2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants.

    PubMed

    Verplanck, Philip L; Furlong, Edward T; Gray, James L; Phillips, Patrick J; Wolf, Ruth E; Esposito, Kathleen

    2010-05-15

    A primary pathway for emerging contaminants (pharmaceuticals, personal care products, steroids, and hormones) to enter aquatic ecosystems is effluent from sewage treatment plants (STP), and identifying technologies to minimize the amount of these contaminants released is important. Quantifying the flux of these contaminants through STPs is difficult. This study evaluates the behavior of gadolinium, a rare earth element (REE) utilized as a contrasting agent in magnetic resonance imaging (MRI), through four full-scale metropolitan STPs that utilize several biosolids thickening, conditioning, stabilization, and dewatering processing technologies. The organically complexed Gd from MRIs has been shown to be stable in aquatic systems and has the potential to be utilized as a conservative tracer in STP operations to compare to an emerging contaminant of interest. Influent and effluent waters display large enrichments in Gd compared to other REEs. In contrast, most sludge samples from the STPs do not display Gd enrichments, including primary sludges and end-product sludges. The excess Gd appears to remain in the liquid phase throughout the STP operations, but detailed quantification of the input Gd load and residence times of various STP operations is needed to utilize Gd as a conservative tracer.

  5. Planted floating bed performance in treatment of eutrophic river water.

    PubMed

    Bu, Faping; Xu, Xiaoyi

    2013-11-01

    The objective of the study was to treat eutrophic river water using floating beds and to identify ideal plant species for design of floating beds. Four parallel pilot-scale units were established and vegetated with Canna indica (U1), Accords calamus (U2), Cyperus alternifolius (U3), and Vetiveria zizanioides (U4), respectively, to treat eutrophic river water. The floating bed was made of polyethylene foam, and plants were vegetated on it. Results suggest that the floating bed is a viable alternative for treating eutrophic river water, especially for inhibiting algae growth. When the influent chemical oxygen demand (COD) varied from 6.53 to 18.45 mg/L, total nitrogen (TN) from 6.82 to 12.25 mg/L, total phosphorus (TP) from 0.65 to 1.64 mg/L, and Chla from 6.22 to 66.46 g/m(3), the removal of COD, TN, TP, and Chla was 15.3%-38.4%, 25.4%-48.4%, 16.1%-42.1%, and 29.9 %-88.1%, respectively. Ranked by removal performance, U1 was best, followed by U2, U3, and U4. In the floating bed, more than 60% TN and TP were removed by sedimentation; plant uptake was quantitatively of low importance with an average removal of 20.2% of TN and 29.4% of TP removed. The loss of TN (TP) was of the least importance. Compared with the other three, U1 exhibited better dissolved oxygen (DO) gradient distributions, higher DO levels, higher hydraulic efficiency, and a higher percentage of nutrient removal attributable to plant uptake; in addition, plant development and the volume of nutrient storage in the C. indica tissues outperformed the other three species. C. indica thus could be selected when designing floating beds for the Three Gorges Reservoir region of P. R. China.

  6. [Ultrasonic sludge treatment and its application on aerobic digestion].

    PubMed

    Li, Huan; Jin, Yi-ying; Nie, Yong-feng; Li, Lei; Yang, Hai-ying

    2007-07-01

    In order to enhance the degradation efficiency of waste activated sludge (WAS) in conventional aerobic digestion, various ultrasonic assisted treatment methods were investigated including ultrasonic disintegration of influent sludge, ultrasonic improvement of influent sludge activity and ultrasonic disintegration of return sludge. Firstly the effects of ultrasonic sludge treatment were studied to choose appropriate ultrasonic parameters, and then the experiments of aerobic digestion with different ultrasonic treatments were carried out. The results show that 1.0 W/mL, 10 minutes ultrasonic treatment can increase soluble chemical oxygen demand (SCOD) in the supernatant phase of sludge sample by 5.4 times and decrease total suspended solid (TSS) by 16%; 0.05 W/mL, 10 min ultrasonic treatment can increase the specific oxygen uptake rate (SOUR) of sludge sample by 29%. The two kinds of ultrasonic influent sludge pretreatment can't improve aerobic digestion effectively. Ultrasonic return sludge disintegration can enhance the volatile suspended solid (VSS) degradation ratio by 15%. Furthermore, the settlement performance of digested sludge is still good and the pollutant concentrations of supernatant phase increase slightly. So ultrasonic return sludge disintegration is considered as the most appropriate assisted treatment mode for aerobic digestion.

  7. Fate of stable strontium in the sewage treatment process as an analog for radiostrontium released by nuclear accidents.

    PubMed

    Kamei-Ishikawa, Nao; Ito, Ayumi; Umita, Teruyuki

    2013-09-15

    Radionuclides were widely released into the environment due to the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. Some of these radionuclides have flowed into municipal sewage treatment plants through sewer systems. We have observed the fate of stable Sr in the sewage treatment process as a means to predict the fate of radiostrontium. Concentrations of stable Sr were determined in sewage influent, effluent, dewatered sludge, and incinerated sewage sludge ash collected from a sewage treatment plant once a month from July to December 2011. In the mass balance of Sr in the sewage treatment plant, 76% of the Sr entering the plant was discharged to the receiving water on average. Additionally, 14% of the Sr flowing through the plant was transferred to the sewage sludge and then concentrated in the sludge ash without being released to the atmosphere. We also investigated Sr sorption by activated sludge in a batch experiment. Measurements at 3 and 6h after the contact showed Sr was sorbed in the activated sludge; however, the measurements indicated Sr desorption from activated sludge occurred 48 h after the contact. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    PubMed

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L -1 and from 11.8 to 792.9 μg kg -1 dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  9. Optimisation potential for a SBR plant based upon integrated modelling for dry and wet weather conditions.

    PubMed

    Rönner-Holm, S G E; Kaufmann Alves, I; Steinmetz, H; Holm, N C

    2009-01-01

    Integrated dynamic simulation analysis of a full-scale municipal sequential batch reactor (SBR) wastewater treatment plant (WWTP) was performed using the KOSMO pollution load simulation model for the combined sewer system (CSS) and the ASM3 + EAWAG-BioP model for the WWTP. Various optimising strategies for dry and storm weather conditions were developed to raise the purification and hydraulic performance and to reduce operation costs based on simulation studies with the calibrated WWTP model. The implementation of some strategies on the plant led to lower effluent values and an average annual saving of 49,000 euro including sewage tax, which is 22% of the total running costs. Dynamic simulation analysis of CSS for an increased WWTP influent over a period of one year showed high potentials for reducing combined sewer overflow (CSO) volume by 18-27% and CSO loads for COD by 22%, NH(4)-N and P(total) by 33%. In addition, the SBR WWTP could easily handle much higher influents without exceeding the monitoring values. During the integrated simulation of representative storm events, the total emission load for COD dropped to 90%, the sewer system emitted 47% less, whereas the pollution load in the WWTP effluent increased to only 14% with 2% higher running costs.

  10. The role of potassium, magnesium and calcium in the Enhanced Biological Phosphorus Removal treatment plants.

    PubMed

    Barat, R; Montoya, T; Seco, A; Ferrer, J

    2005-09-01

    Cations as potassium and magnesium play an important role in maintaining the stability of Enhanced Biological Phosphorus Removal (EBPR) process. In this paper potassium, magnesium and calcium behaviour in EBPR treatment plants has been studied. An ASM2d model extension which takes into account the role of potassium and magnesium in the EBPR process has been developed. Finally, a simulation of the effect on P removal of a shortage of K and Mg was studied. The experimental results showed that K and Mg play an important role in the EBPR process being cotransported with P into and out of bacterial cells. It has been observed that calcium is not involved in P release and uptake. The values of the molar ratios K/P (0.28 mol K mol P(-1)) and Mg/P (0.36 mol Mg mol P(-1)) were obtained accomplishing the charge balance, with different K/Mg mass ratios and without phosphorus precipitation. Model predictions accurately reproduced experimental data. The simulations carried out showed the important effect of the K and Mg influent concentration for P removal efficiency. The results illustrate that the proposed ASM2d model extension must be considered in order to accurately simulate the phosphorus removal process.

  11. Tracking the behavior of different size fractions of dissolved organic matter in a full-scale advanced drinking water treatment plant.

    PubMed

    Quang, Viet Ly; Choi, Ilhwan; Hur, Jin

    2015-11-01

    In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.

  12. Contribution of treated wastewater to the contamination of recreational river areas with Cryptosporidium spp. and Giardia duodenalis.

    PubMed

    Castro-Hermida, José Antonio; García-Presedo, Ignacio; Almeida, André; González-Warleta, Marta; Correia Da Costa, José Manuel; Mezo, Mercedes

    2008-07-01

    Samples of the influent and final effluent from 12 wastewater treatment plants from Galicia (NW, Spain) were analyzed for the presence of Cryptosporidium spp. oocysts and Giardia duodenalis cysts. All of the plants discharge effluent to a hydrographic basin in which there are numerous recreational areas and fluvial beaches. The samples (25-50 liters) were collected in spring, summer, autumn and winter of 2007. A total of 96 samples were analyzed using techniques included in the US Environmental Protection Agency Method 1623. To identify the genotypes present, the following genes were amplified and sequenced: 18S SSU rRNA (Cryptosporidium spp.) and beta-giardina (G. duodenalis). Both parasites were detected in influent and effluent samples from all treatment plants (100%) throughout the year, and G. duodenalis always outnumbered Cryptosporidium spp. The mean concentration of G. duodenalis per liter of influent was significantly higher (P<0.05) than the mean concentration of Cryptosporidium spp. per liter of influent. The mean concentrations of parasites in influent samples ranged from 6 to 350 Cryptosporidium spp. oocysts per liter and from 89 to 8305 G. duodenalis cysts per liter. In final treated effluent, the mean concentration of parasites ranged from 2 to 390 Cryptosporidium spp. oocysts per liter and from 79 to 2469 G. duodenalis cysts per liter. The distribution of results per season revealed that in all plants, the highest number of (oo)cysts were detected in spring and summer. Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium hominis and assemblages A-I, A-II, E of G. duodenalis were detected. The risk of contamination of water courses by Cryptosporidium spp. and G. duodenalis is therefore considerable. It is important that wastewater treatment authorities reconsider the relevance of the levels of contamination by both parasites in wastewater, and develop adequate countermeasures.

  13. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.

    PubMed

    Dorman, Lane; Castle, James W; Rodgers, John H

    2009-05-01

    A pilot-scale constructed wetland treatment system (CWTS) was designed and built to decrease the concentration and toxicity of constituents of concern in ash basin water from coal-burning power plants. The CWTS was designed to promote the following treatment processes for metals and metalloids: precipitation as non-bioavailable sulfides, co-precipitation with iron oxyhydroxides, and adsorption onto iron oxides. Concentrations of Zn, Cr, Hg, As, and Se in simulated ash basin water were reduced by the CWTS to less than USEPA-recommended water quality criteria. The removal efficiency (defined as the percent concentration decrease from influent to effluent) was dependent on the influent concentration of the constituent, while the extent of removal (defined as the concentration of a constituent of concern in the CWTS effluent) was independent of the influent concentration. Results from toxicity experiments illustrated that the CWTS eliminated influent toxicity with regard to survival and reduced influent toxicity with regard to reproduction. Reduction in potential for scale formation and biofouling was achieved through treatment of the simulated ash basin water by the pilot-scale CWTS.

  14. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  15. Behavior, fate, and mass loading of short chain chlorinated paraffins in an advanced municipal sewage treatment plant.

    PubMed

    Zeng, Lixi; Li, Huijuan; Wang, Thanh; Gao, Yan; Xiao, Ke; Du, Yuguo; Wang, Yawei; Jiang, Guibin

    2013-01-15

    Sewage treatment plants (STP) are an important source of short chain chlorinated paraffins (SCCPs) to the ambient environment through discharge of effluent and application of sludge. In this work, a field study was conducted to determine the behavior and possible removal of SCCPs during the sewage treatment process in an advanced municipal STP in Beijing, China. SCCPs were detected in all sewage water and sludge samples, and 97% of the initial mass loading in raw sewage was found to be associated with suspended matter. The total concentrations in raw influent, tertiary effluent, and dewatered sludge were 184 ± 19 ng/L, 27 ± 6 ng/L, and 15.6 ± 1.4 μg/g dry weight (d.w.), respectively. The dissolved concentrations of total SCCPs (∑SCCPs) significantly decreased during mechanical, biological, and chemical treatments. SCCP homologue profiles in aqueous phase were distinctly different from those in solid phase. Along the treatment process, the relative abundance of shorter chain and lower chlorinated congeners gradually increased in sewage water, but no obvious variations of homologue profiles were found in sludge. Mass flow analysis indicated, the removal efficiency in aqueous phase for ∑SCCPs was 82.2%, and the congener-specific removal efficiencies were positively related to their solid-water partition coefficients (K(d)). Mass balance results indicated that 0.8% and 72.6% of the initial SCCP mass loading were ultimately found in the effluents and dewatered sludge, respectively, while the remaining 26.6% was lost mainly due to biodegradation/biotransformation. It was suggested that the activated sludge system including basic anaerobic-anoxic-aerobic processes played an effective role in removing SCCPs from the wastewater, while the sorption to sludge by hydrophobic interactions was an important fate of SCCPs during the sewage treatment.

  16. Shotgun Metagenomic Profiles Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater Type

    PubMed Central

    Ibarbalz, Federico M.; Orellana, Esteban; Figuerola, Eva L. M.

    2016-01-01

    ABSTRACT This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater

  17. Study on a discrete-time dynamic control model to enhance nitrogen removal with fluctuation of influent in oxidation ditches.

    PubMed

    Liu, Yanchen; Shi, Hanchang; Shi, Huiming; Wang, Zhiqiang

    2010-10-01

    The aim of study was proposed a new control model feasible on-line implemented by Programmable Logic Controller (PLC) to enhance nitrogen removal against the fluctuation of influent in Carrousel oxidation ditch. The discrete-time control model was established by confirmation model of operational conditions based on a expert access, which was obtained by a simulation using Activated Sludge Model 2-D (ASM2-D) and Computation Fluid Dynamics (CFD), and discrete-time control model to switch between different operational stages. A full-scale example is provided to demonstrate the feasibility of the proposed operation and the procedure of the control design. The effluent quality was substantially improved, to the extent that it met the new wastewater discharge standards of NH(3)-N<5mg/L and TN<15 mg/L enacted in China throughout a one-day period with fluctuation of influent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater.

    PubMed

    Kalčíková, G; Alič, B; Skalar, T; Bundschuh, M; Gotvajn, A Žgajnar

    2017-12-01

    Microplastics in the environment are either a product of the fractionation of larger plastic items or a consequence of the release of microbeads, which are ingredients of cosmetics, through wastewater treatment plant (WWTP) effluents. The aim of this study was to estimate the amount of microbeads that may be released by the latter pathways to surface waters using Ljubljana, Slovenia as a case study. For this purpose, microbeads contained in cosmetics were in a first step characterized for their physical properties and particle size distribution. Subsequently, daily emission of microbeads from consumers to the sewerage system, their fate in biological WWTPs and finally their release into surface waters were estimated for Ljubljana. Most of the particles found in cosmetic products were <100 μm. After application, microbeads are released into sewerage system at an average rate of 15.2 mg per person per day. Experiments using a lab-scale sequencing batch biological WWTP confirmed that on average 52% of microbeads are captured in activated sludge. Particle size analyses of the influent and effluent confirmed that smaller particles (up to 60-70 μm) are captured within activated sludge while bigger particles were detected in the effluent. Applying these data to the situation in Ljubljana indicates that about 112,500,000 particles may daily be released into the receiving river, resulting in a microbeads concentration of 21 particles/m 3 . Since polyethylene particles cannot be degraded and thus likely accumulate, the data raise concerns about potential effects in aquatic ecosystems in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of virus reduction efficiency in wastewater treatment unit processes as a credit value in the multiple-barrier system for wastewater reclamation and reuse.

    PubMed

    Ito, Toshihiro; Kato, Tsuyoshi; Hasegawa, Makoto; Katayama, Hiroyuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-12-01

    The virus reduction efficiency of each unit process is commonly determined based on the ratio of virus concentration in influent to that in effluent of a unit, but the virus concentration in wastewater has often fallen below the analytical quantification limit, which does not allow us to calculate the concentration ratio at each sampling event. In this study, left-censored datasets of norovirus (genogroup I and II), and adenovirus were used to calculate the virus reduction efficiency in unit processes of secondary biological treatment and chlorine disinfection. Virus concentration in influent, effluent from the secondary treatment, and chlorine-disinfected effluent of four municipal wastewater treatment plants were analyzed by a quantitative polymerase chain reaction (PCR) approach, and the probabilistic distributions of log reduction (LR) were estimated by a Bayesian estimation algorithm. The mean values of LR in the secondary treatment units ranged from 0.9 and 2.2, whereas those in the free chlorine disinfection units were from -0.1 and 0.5. The LR value in the secondary treatment was virus type and unit process dependent, which raised the importance for accumulating the data of virus LR values applicable to the multiple-barrier system, which is a global concept of microbial risk management in wastewater reclamation and reuse.

  20. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

    2014-04-15

    Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    NASA Astrophysics Data System (ADS)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  2. EVALUATING TREATMENT PLANTS FOR PARTICULATE CONTAMINANT REMOVAL

    EPA Science Inventory

    The article is intended to serve as a guide for those who evaluate water treatment plants with the objective of lowering the turbidity of finished water produced from filtration plants in which chemical coagulation is part of the treatment process. Ineffective removal of turbidit...

  3. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment.

    PubMed

    Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise

    2017-05-01

    The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.

    PubMed

    Svojitka, Jan; Dvořák, Lukáš; Studer, Martin; Straub, Jürg Oliver; Frömelt, Heinz; Wintgens, Thomas

    2017-04-01

    Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL -1 as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL -1 as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.

    PubMed

    Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing

    2009-03-01

    The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.

  7. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  8. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    PubMed

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.

  9. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.

    PubMed

    Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P

    2003-01-01

    Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.

  10. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less

  11. Impact of influent COD/N ratio on disintegration of aerobic granular sludge.

    PubMed

    Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao

    2014-10-01

    Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 124, THE WATER TREATMENT PLANT, LOOKING NORTHEAST. THE ROCKY FLATS PLANT WATER SUPPLY, TREATMENT, STORAGE, AND DISTRIBUTION SYSTEM HAS OPERATED CONTINUOUSLY SINCE 1953 - Rocky Flats Plant, Water Treatment Plant, West of Third Street, north of Cedar Avenue, Golden, Jefferson County, CO

  13. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  14. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    PubMed

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. A database for medicinal plants used in treatment of asthma

    PubMed Central

    Kasirajan, Balaji; Maruthamuthu, Rajadurai; Gopalakrishnan, Vidhya; Arumugam, Krithika; Asirvatham, Hudson; Murali, Vidya; Mohandass, Ramya; Bhaskar, Anusha

    2007-01-01

    The knowledge of most plants used in the treatment of asthma, the plant part which is effective in treatment is confined to very few persons who are engaged in folklore medicine. However, this form of medicine is not very popular. Therefore, it is of considerable interest to ethno-botanical community to understand the plants and the parts used for treatment. Here, we describe AsthmaPlantBase, a database containing information of medicinal plants for treatment of asthma. Availability http://www.asthmaplants.com. PMID:18288333

  16. 1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF STORAGE SHED (BLDG 773). SECURITY FENCE EAST OF SEWAGE TREATMENT PLANT. - Vandenberg Air Force Base, Space Launch Complex 3, Sewage Treatment Plant, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. JEM spotlight: Monitoring the treatment efficiency of a full scale ozonation on a sewage treatment plant with a mode-of-action based test battery.

    PubMed

    Escher, Beate I; Bramaz, Nadine; Ort, Christoph

    2009-10-01

    Tertiary treatment of wastewater with ozone is a promising technique for removing residual micropollutants that remain after secondary biological treatment. We monitored the performance of a full-scale ozonation reactor on a sewage treatment plant in Switzerland with a screening battery of bioassays. Six toxicity endpoints were selected that covered non-specific toxicity, as well as selected receptor-mediated modes of action and reactive toxicity. Non-specific toxicity was assessed with two bioassays, the bioluminescence inhibition of the marine luminescent bacterium Vibrio Fischeri and the growth inhibition of the green algae Pseudokirchneriella subcapitata. Treatment efficiency was around 90% for the secondary treatment, but only 65% and 76% for the ozonation step in the two non-specific endpoints, respectively. This finding is consistent with this type of oxidation reaction because ozone only modifies the organic molecules but does not mineralize them fully leaving residual toxicity of the transformation products. In contrast, the specific receptor-mediated endpoints of inhibition of photosystem II in algae and estrogenicity were largely reduced by ozonation. While compounds inhibiting photosynthesis proved to be rather recalcitrant toward biological treatment with only 47% removal, an additional 86% removal by ozonation yielded an overall treatment efficiency in the entire treatment chain of 89%. The effect on estrogenicity, quantified with the yeast estrogen screen, was even more significant: A treatment efficiency of 95% in the secondary treatment, 86% during ozonation plus a small effect by biological sand filtration yielded an overall treatment efficiency of 99.5%. Insecticides that inhibit acetylcholinesterase were fairly resistant to degradation, but an overall treatment efficiency of 91% was achieved in two steps: 72% in biological treatment and 60% during ozonation. Finally, no significant genotoxicity was observed with the umuC test after ozonation

  18. Investigation of Pharmaceutical Residues in Hospital Effluents, in Ground- and Drinking Water from Bundeswehr Facilities, and their Removal During Drinking Water Purification (Arzneimittelrueckstaende in Trinkwasser(versorgungsanlagen) und Krankenhausabwaessern der Bundeswehr: Methodenentwicklung - Verkommen - Wasseraufbereitung)

    DTIC Science & Technology

    1999-11-01

    Drinking water processing plant , Analysis, Calculation model, Field experiment 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION...sewage effluents and from the sewer of the municipal sewage treatment plant in Berlin-Ruhleben. In the field trials, the MDWPUs that both apply reverse...waste water samples, along the municipal sewer system and In the influents and effluents of the receiving sewage treatment plants . To estimate the

  19. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China.

    PubMed

    Zhang, Xin; Zhao, Hongxia; Du, Juan; Qu, Yixuan; Shen, Chen; Tan, Feng; Chen, Jingwen; Quan, Xie

    2017-07-01

    In this study, the occurrence and removal efficiencies of 31 antibiotics, including 11 sulfonamides (SAs), five fluoroquinolones (FQs), four macrolides (MLs), four tetracyclines (TCs), three chloramphenicols (CAPs), and four other antibiotics (Others), were investigated in 12 municipal wastewater treatment plants (WWTPs) in Dalian, China. A total of 29 antibiotics were detected in wastewater samples with the concentration ranging from 63.6 to 5404.6 ng/L. FQs and SAs were the most abundant antibiotic classes in most wastewater samples, accounting for 42.2 and 23.9% of total antibiotic concentrations, respectively, followed by TCs (16.0%) and MLs (14.8%). Sulfamethoxazole, erythromycin, clarithromycin, azithromycin, ofloxacin, and norfloxacin were the most frequently detected antibiotics; of these, the concentration of ofloxacin was the highest in most of influent (average concentration = 609.8 ng/L) and effluent (average concentration = 253.4 ng/L) samples. The removal efficiencies varied among WWTPs in the range of -189.9% (clarithromycin) to 100% (enoxacin, doxycycline, etc), and more than 50% of antibiotics could not be efficiently removed with the removal efficiency less than 65%. An environmental risk assessment was also performed in the WWTP effluents by calculating the risk quotient (RQ), and high RQ values (>1) indicated erythromycin and clarithromycin might cause the ecological risk on organisms in surrounding water near discharge point of WWTPs in this area, which warrants further attention.

  1. An Update on Modifications to Water Treatment Plant Model

    EPA Science Inventory

    Water treatment plant (WTP) model is an EPA tool for informing regulatory options. WTP has a few versions: 1). WTP2.2 can help in regulatory analysis. An updated version (WTP3.0) will allow plant-specific analysis (WTP-ccam) and thus help meet plant-specific treatment objectives...

  2. Source Separation and Treament of Anthropogenic Urine (WERF Report INFR4SG09b)

    EPA Science Inventory

    Abstract: Anthropogenic urine, although only 1% of domestic wastewater flow, is responsible for 50-80% of the nutrients and a substantial portion of the pharmaceuticals and hormones present in the influent to wastewater treatment plants. Source separation and treatment of urine...

  3. Evaluating the Role of Total Organic Carbon in Predicting the Treatment Efficacy of Biosand Filters for the Removal of Vibrio cholerae in Drinking Water During Startup.

    PubMed

    Danley-Thomson, Ashley A; Huang, Ellen C; Worley-Morse, Thomas; Gunsch, Claudia K

    2018-05-09

    In biosand filters (BSF), treatment is largely driven by the development of a biolayer (schmutzdecke) which establishes itself during the startup phase. In the present study, the effect of changing influent total organic carbon (TOC) loading on the removal efficiency of Vibrio cholerae in laboratory-operated BSFs was quantified. BSFs were charged with high, medium or low TOC influents and removal efficacy and schmutzdecke composition was monitored over two months. The highest V. cholerae removal efficiencies were observed in the BSF receiving the lowest TOC. Schmutzdecke composition was found to be influenced by influent TOC, in terms of microbial community structure and amount of extracellular polymeric substance (EPS). Physical/chemical attachment was shown to be important during startup. The BSF receiving influent water with lower TOC had a higher attachment coefficient than the BSF receiving high TOC water, suggesting more physical/chemical treatment in the lower TOC BSF. The high TOC BSF had more EPS than did the biofilm from the low TOC BSF, suggesting that schmutzdecke effects may be more significant at high TOC. Overall, this study confirms that influent water characteristics will affect BSF treatment efficacy of V. cholerae especially during the startup phase. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Buoyant Filter Bio-Reactor (BFBR)--a novel anaerobic wastewater treatment unit.

    PubMed

    Panicker, Soosan J; Philipose, M C; Haridas, Ajit

    2008-01-01

    The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70-80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80-90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost. IWA Publishing 2008.

  5. Biological and Physicochemical Wastewater Treatment Processes Reduce the Prevalence of Virulent Escherichia coli

    PubMed Central

    Biswal, Basanta Kumar; Mazza, Alberto; Masson, Luke; Gehr, Ronald

    2013-01-01

    Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands. PMID:23160132

  6. Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process.

    PubMed

    Hashimoto, T; Onda, K; Nakamura, Y; Tada, K; Miya, A; Murakami, T

    2007-05-01

    The presence of natural estrogens, 17beta-estradiol (E2), estrone (E1) and estriol (E3), as well as estrogenic activity in wastewater influents and secondary effluents were investigated in 20 full-scale wastewater treatment plants in Japan. In all of the influent samples, natural estrogens were detected at concentrations above the minimum limits of detection (0.5ng/L). The concentrations of natural estrogens detected in the effluent of oxidation ditch plants were generally lower than previously reported values. On the other hand, in the conventional activated sludge plants, increments of E1 during biological treatment were frequently observed although E2 and E3 were removed effectively in the process. The removal rates of natural estrogens or estrogenic activity show no observed statistical relationship with the solids retention time (SRT) and the hydraulic retention time (HRT). However, the plants with high SRT or HRT generally showed high and stable removal of both natural estrogens and estrogenic activity.

  7. Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies.

    PubMed

    Solon, K; Flores-Alsina, X; Kazadi Mbamba, C; Ikumi, D; Volcke, E I P; Vaneeckhaute, C; Ekama, G; Vanrolleghem, P A; Batstone, D J; Gernaey, K V; Jeppsson, U

    2017-04-15

    The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop) is used as test platform upon which three different operational alternatives (A 1 , A 2 , A 3 ) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium ( [Formula: see text] ) and total suspended solids (X TSS ) control strategy (A 1 ) better adapts the system to influent dynamics, improves phosphate [Formula: see text] accumulation by phosphorus accumulating organisms (X PAO ) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (E aeration ) (21%). The addition of iron ( [Formula: see text] ) for chemical P removal (A 2 ) promotes the formation of ferric oxides (X HFO-H , X HFO-L ), phosphate adsorption (X HFO-H,P , X HFO-L,P ), co-precipitation (X HFO-H,P,old , X HFO-L,P,old ) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m -3 ). This also has an impact on the sludge line, with hydrogen sulfide production ( [Formula: see text] ) reduced (36%) due to iron sulfide (X FeS ) precipitation. As a consequence, there is also a slightly higher energy production (E production ) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A 3 ) for P recovery reduces the quantity of P in the anaerobic digester supernatant

  8. Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant.

    PubMed

    Zeng, Lixi; Wang, Thanh; Wang, Pu; Liu, Qian; Han, Shanlong; Yuan, Bo; Zhu, Nali; Wang, Yawei; Jiang, Guibin

    2011-07-01

    Short-chain chlorinated paraffins (SCCPs) are an extremely complex group of industrial chemicals and found to be potential persistent organic pollutants (POPs), and thus have attracted extensive concern worldwide. In this study, influent, effluent, and sludge were collected from a large sewage treatment plant (STP) in Beijing, China. Water, sediment, and aquatic species were also collected from a recipient lake that receives effluents discharged from the STP. These samples were then analyzed to investigate the effect of STP effluent on distribution and trophic transfer of SCCPs in the local aquatic ecosystem. Concentrations of total SCCPs (ΣSCCPs) in lake water and surface sediments were found in the range 162-176 ng/L and 1.1-8.7 μg/g (dry weight, dw), respectively. Vertical concentration profiles of sediment cores showed ΣSCCPs decreased exponentially with increasing depth. Specific congener composition analysis in sediment layers indicated possible in situ biodegradation might be occurring. High bioaccumulation of SCCPs was observed in the sampled aquatic species. The bioaccumulation factor (BAF) generally increased with the number of chlorines in the SCCP congeners. A significantly positive correlation between lipid-normalized ΣSCCPs concentration and trophic levels (R(2) = 0.65, p < 0.05) indicate that SCCPs can biomagnify through the food chain in the effluent-receiving aquatic ecosystem.

  9. Anammox moving bed biofilm reactor pilot at the 26th Ward wastewater treatment plants in Brooklyn, New York: start-up, biofilm population diversity and performance optimization.

    PubMed

    Mehrdad, M; Park, H; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; Chandran, K

    2014-01-01

    New York City Environmental Protection in conjunction with City College of New York assessed the application of the anammox process in the reject water treatment using a moving bed biofilm reactor (MBBR) located at the 26th Ward wastewater treatment plant, in Brooklyn, NY. The single-stage nitritation/anammox MBBR was seeded with activated sludge and consequently was enriched with its own 'homegrown' anammox bacteria (AMX). Objectives of this study included collection of additional process kinetic and operating data and assessment of the effect of nitrogen loading rates on process performance. The initial target total inorganic nitrogen removal of 70% was limited by the low alkalinity concentration available in the influent reject water. Higher removals were achieved after supplementing the alkalinity by adding sodium hydroxide. Throughout startup and process optimization, quantitative real-time polymerase chain reaction (qPCR) analyses were used for monitoring the relevant species enriched in the biofilm and in the suspension. Maximum nitrogen removal rate was achieved by stimulating the growth of a thick biofilm on the carriers, and controlling the concentration of dissolved oxygen in the bulk flow and the nitrogen loading rates per surface area; all three appear to have contributed in suppressing nitrite-oxidizing bacteria activity while enriching AMX density within the biofilm.

  10. Antibiotic resistance genes show enhanced mobilization through suspended growth and biofilm-based wastewater treatment processes.

    PubMed

    Petrovich, Morgan; Chu, Binh; Wright, Dorothy; Griffin, Jim; Elfeki, Maryam; Murphy, Brian T; Poretsky, Rachel; Wells, George

    2018-05-01

    Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs) that are disseminated into the environment via effluent. However, few studies have compared abundance, mobilization and selective pressures for ARGs in WWTPs as a function of variations in secondary treatment bioprocesses. We used shotgun metagenomics to provide a comprehensive analysis of ARG composition, relationship to mobile genetic elements and co-occurrences with antibiotic production genes (APGs) throughout two full-scale municipal WWTPs, one of which employs biofilm-based secondary treatment and another that uses a suspended growth system. Results showed that abundances of ARGs declined by over 90% per genome equivalent in both types of wastewater treatment processes. However, the fractions of ARGs associated with mobile genetic elements increased substantially between influent and effluent in each plant, indicating significant mobilization of ARGs throughout both treatment processes. Strong positive correlations between ARGs and APGs were found for the aminoglycoside antibiotic class in the suspended growth system and for the streptogramin antibiotic class in the biofilm system. The biofilm and suspended growth WWTPs exhibited similarities in ARG abundances, composition and mobilization trends. However, clear differences were observed for within-plant ARG persistence. These findings suggest that both biofilm and suspended growth-based WWTPs may promote genetic mobilization of persistent ARGs that are then disseminated in effluent to receiving water bodies.

  11. TREATMENT OF AMMONIA PLANT PROCESS CONDENSATE EFFLUENT

    EPA Science Inventory

    The report gives results of an examination of contaminant content and selected treatment techniques for process condensate from seven different ammonia plants. Field tests were performed and data collected on an in-plant steam stripping column with vapor injection into the reform...

  12. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X).

    PubMed

    Polesel, Fabio; Andersen, Henrik R; Trapp, Stefan; Plósz, Benedek Gy

    2016-10-04

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.

  13. Efficient nitrogen removal via simultaneous nitrification and denitrification in a penicillin wastewater biological treatment plant.

    PubMed

    Luo, Weiwei; Jin, Xibiao; Yu, Yonglian; Zhou, Sichen; Lu, Shuguang

    2014-01-01

    Nitrogen-removal performance was investigated in a penicillin wastewater biological treatment plant (P-WWTP) reconstructed from a cyclic activated sludge system (CASS) tank designed for simultaneous nitrification and denitrification (SND). Good performance was obtained during a 900-day operation period, as indicated by effluent chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH₃‒N) values of 318 ± 34, 28.7 ± 2.4 and<0.2 mg L⁻¹ when the influent COD, total Kjeldahl nitrogen (TKN) and NH₃‒N were 3089 ± 453, 251.4 ± 26.5 and 124.8 ± 26.8 mg L⁻¹, respectively. Nitrification and denitrification occurred at different spaces, that is, 71.4% of TN removal occurred in the first 40% of the aeration tank, while 68.8% of the TKN removal occurred in 40-100% of the aeration tank. Sufficient easily biodegradable organics (EBO) in wastewater were key to the occurrence of SND. The denitrification rate under aeration conditions was 10.7 mg N g VSS⁻¹ h⁻¹ when EBO were sufficient, but 0.98 mg N g VSS⁻¹ h⁻¹ when EBO were completely degraded. Nitrification primarily occurred in the rear of the aeration tank owing to the competition for oxygen between carbonaceous oxidation and nitrification. The nitrification rate was only 7.13 mg NOD g VSS⁻¹ h⁻¹ at the beginning of the reaction, but 14.7 mg NOD g VSS⁻¹ h⁻¹ when EBO were completely degraded. These results will facilitate the improvement of nitrogen removal by existing WWTPs.

  14. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Que, Chen-Jing; Xu, Gang; Sun, Yan-Feng; Ma, Jing; Xu, Hui; Sun, Rui; Tang, Liang

    2016-10-01

    The occurrence and fate of 12 commonly used antibiotics, two fluoroquinolones (FQs), three sulfonamides (SAs), three macrolides (MLs), two β-lactams and two tetracyclines (TCs), were studied in four sewage treatment plants (STPs) and their receiving water, the Huangpu River, Shanghai. The levels of selected antibiotics in the STPs ranged from ngL(-1) to μgL(-1), while ofloxacin (OFL) was predominant (reach up to 2936.94ngL(-1)). The highest and lowest proportions were of FQs (STP 1, STP 2 and STP 3) and TCs (in four STPs) respectively in both influents and effluents. And the second-highest proportion was of FQs in STP 4 (only 2% lower than the highest). What could be inferred was that the usage of TCs were extremely low while the usage of FQs were larger than other antibiotics in our study area. The elimination of antibiotics through these STPs was incomplete and a wide range of removal efficiencies (-442.8% to 100%) during the treatment was observed. Based on the mass loadings as well as the per-capita mass loadings of target antibiotics in four STPs, OFL was considered the primary contaminant herein. In the Huangpu River, 3 antibiotics were not detected in any water samples, while the detection frequencies of 4 antibiotics were 100%. The highest concentration detected in the river was 53.91ngL(-1) of sulfapyridine (SD). The Spearman correlation analysis of antibiotics in STPs and the nearby water samples suggests that the antibiotics discharged from some STPs might influence the receiving water to some extent. Moreover, most of the hazard quotient (HQ) values in STP effluents were one order magnitude higher than those in their receiving water. However, there is no imminent significant ecotoxicological risk caused by any single compound in the effluents and receiving waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Detection, composition and treatment of volatile organic compounds from waste treatment plants.

    PubMed

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities.

  16. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants

    PubMed Central

    Font, Xavier; Artola, Adriana; Sánchez, Antoni

    2011-01-01

    Environmental policies at the European and global level support the diversion of wastes from landfills for their treatment in different facilities. Organic waste is mainly treated or valorized through composting, anaerobic digestion or a combination of both treatments. Thus, there are an increasing number of waste treatment plants using this type of biological treatment. During waste handling and biological decomposition steps a number of gaseous compounds are generated or removed from the organic matrix and emitted. Different families of Volatile Organic Compounds (VOC) can be found in these emissions. Many of these compounds are also sources of odor nuisance. In fact, odors are the main source of complaints and social impacts of any waste treatment plant. This work presents a summary of the main types of VOC emitted in organic waste treatment facilities and the methods used to detect and quantify these compounds, together with the treatment methods applied to gaseous emissions commonly used in composting and anaerobic digestion facilities. PMID:22163835

  17. 40 CFR 63.1585 - How does an industrial POTW treatment plant demonstrate compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Works Industrial Potw Treatment Plant Description and Requirements § 63.1585 How does an industrial POTW treatment plant demonstrate compliance? (a) An existing industrial POTW treatment plant demonstrates... §§ 63.1586 through 63.1590. Non-industrial POTW Treatment Plant Requirements ...

  18. On-site treatment of a motorway service area wastewater using a package sequencing batch reactor (SBR).

    PubMed

    Del Solar, J; Hudson, S; Stephenson, T

    2005-01-01

    A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d(-1) which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.

  19. Planting methods and treatment for black walnut seedlings.

    Treesearch

    Robert D. Williams

    1974-01-01

    Neither planting method nor stock treatment had any appreciable effect on survival and growth of black walnut, but survival and growth were significantly affected by the planting site and site preparation.

  20. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2015-05-01

    The fates of psychoactive pharmaceuticals, including two antischizophrenics, six sedative-hypnotic-anxiolytics, four antidepressants, four antihypertensives, and their select metabolites, were determined in two wastewater treatment plants (WWTPs) in the Albany area of New York. All target psychoactive pharmaceuticals and their metabolites were found at a mean concentration that ranged from 0.98 (quetiapine) to 1220 ng/L (atenolol) in wastewater and from 0.26 (lorazepam) to 1490 ng/g dry weight (sertraline) in sludge. In this study, the fraction of psychoactive pharmaceuticals that was sorbed to suspended particulate matter (SPM) was calculated for the first time. Over 50% of the total mass of aripiprazole, norquetiapine, norsertraline, citalopram, desmethyl citalopram, propranolol, verapamil, and norverapamil was found sorbed to SPM in the influent. The mass loadings, i.e., influx, of target psychoactive pharmaceuticals in WWTPs ranged from 0.91 (diazepam) to 347 mg/d/1000 inhabitants (atenolol), whereas the environmental emissions ranged from 0.01 (dehydro-aripiprazole) to 316 mg/d/1000 inhabitants (atenolol). The highest calculated removal efficiencies were found for antischizophrenics (quetiapine=88%; aripiprazole=71%). However, the removal of some psychoactive pharmaceuticals through adsorption onto sludge was minimal (<1% of the initial mass load), which suggests that bio-degradation and/or chemical-transformation are the dominant mechanisms of removal of these pharmaceuticals in WWTPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong

    2017-12-01

    This study provided the first comprehensive data on the occurrence and removal of twenty-five target emerging contaminants (ECs) in a full-scale water reclamation plant (WRP) in the Southeast Asian region. Nineteen out of the twenty-five ECs were ubiquitously detected in raw influent samples. Concentrations of the detected ECs in raw influent samples ranged substantially from 44.3 to 124,966ng/L, depending upon the compound and sampling date. The elimination of ECs in full-scale conventional activated sludge (CAS) and membrane bioreactor (MBR) systems at a local WRP was evaluated and compared. Several ECs, such as acetaminophen, atenolol, fenoprofen, indomethacin, ibuprofen, and oxybenzone, exhibited excellent removal efficiencies (>90%) in biological wastewater treatment processes, while some of the investigated compounds (carbamazepine, crotamiton, diclofenac, and iopamidol) appeared to be persistent in the both CAS and MBR systems. Field-based monitoring results showed that MBR outperformed CAS in the elimination of most target ECs. The relationship between molecular characteristics of ECs (i.e. physicochemical properties and structural features) and their removal efficiencies during biological wastewater treatment was also elucidated. Excellent removal efficiencies (>90%) were often noted for ECs with the sole presence of electron donating groups (i.e. phenolic [OH], amine [NH 2 ], methoxy [OCH 3 ], phenoxy [OC 6 H 5 ], or alkyl groups). Conversely, ECs with the absence of electron donating groups or the predominance of strong electron withdrawing groups (e.g. halogenated, carbonyl, carboxyl, and sulfonamide) tended to show poor removal efficiencies (<30%) in biological wastewater treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Medicinal plants used in treatment of inflammatory skin diseases

    PubMed Central

    2013-01-01

    Skin is an organ providing contact with the environment and protecting the human body from unfavourable external factors. Skin inflammation, reflected adversely in its functioning and appearance, also unfavourably affects the psyche, the condition of which is important during treatment of chronic skin diseases. The use of plants in treatment of inflammatory skin diseases results from their influence on different stages of inflammation. The paper presents results of the study regarding the anti-inflammatory activity of the plant raw material related to its influence on skin. The mechanism of action, therapeutic indications and side effects of medicinal plants used for treatment of inflammatory diseases of the skin are described. PMID:24278070

  4. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  5. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    PubMed

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  6. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Stainless-steel wires exclude gulls from a wastewater treatment plant

    USGS Publications Warehouse

    Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen

    2013-01-01

    There is growing concern about the prevalence of pathogens and antibiotic-resistant bacteria in the environment and the role wildlife plays in their transmission and dissemination. Gulls feeding at wastewater treatment plants may provide a route for transmission of pathogens and bacteria to public water supplies or other critical areas. The authors identified gulls routinely feeding at a wastewater treatment plant in Millbury, Mass., and tested the effectiveness of overhead stainless-steel wires in excluding gulls from the plant. The number of gulls in certainstructures was compared before and after wiring and during an experimental approach using simultaneous treatments and controls. Stainless-steel wires spaced at 0.9-3.3 m (3-10 ft) effectively prevented gulls from using treatment structures (p < 0.0001) and were effective for > 24 months. Materials costs to wire all structures was about $5,700, and labor costs were $4,020. Overhead stainless-steel wires can provide a long-term, cost-efficient method of excluding ring-billed gulls from wastewater treatment plants.

  8. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  9. Sludge quantification at water treatment plant and its management scenario.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  10. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  11. Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model.

    PubMed

    Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn

    2017-11-15

    A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: Their influence on reproductive processes and systemic toxicity in male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vikas; Chakraborty, Ajanta; Viswanath, Gunda

    2008-01-01

    Endocrine-disrupting chemicals (EDC) are linked to human health and diseases as they mimic or block the normal functioning of endogenous hormones. The present work dealt with a comparative study of the androgenic potential of wastewater treatment plant (WWTP) influents and effluents in Northern region of India, well known for its polluted water. Water samples were screened for their androgenic potential using the Hershberger assay and when they were found positive for androgenicity, we studied their mode of action in intact rats. The data showed a significant change in the weight and structure of sex accessory tissues (SATs) of castrated andmore » intact rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change in the expression patterns of the major steroidogenic enzymes in adrenal and testis: cytochrome P450{sub SCC}, cytochrome P450{sub C17}, 3{beta}-hydroxysteroid dehydrogenase, 17{beta}-hydroxysteroid dehydrogenase. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile showed a decreased level of gonadotrophic hormones and increased testosterone level. Further, increase in the serum level of alkaline phosphatase, SGPT and SGOT and histopathological changes in kidney and liver of treated animals, confirmed the toxic effects of contaminating chemicals. Analysis of water samples using HPLC and GC-MS showed the presence of various compounds and from them, four prominent aromatic compounds viz. nonylphenol, hexachlorobenzene and two testosterone equivalents, were identified. Our data suggest that despite rigorous treatment, the final treated effluent from WWTP still has enough androgenic and toxic compounds to affect general health.« less

  13. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.

    PubMed

    Xu, Jian; Xu, Yan; Wang, Hongmei; Guo, Changsheng; Qiu, Huiyun; He, Yan; Zhang, Yuan; Li, Xiaochen; Meng, Wei

    2015-01-01

    The extensive use of antibiotics has caused the contamination of both antibiotics and antibiotic resistance genes (ARGs) in the environment. In this study, the abundance and distribution of antibiotics and ARGs from a sewage treatment plant (STP) and its effluent-receiving river in Beijing China were characterized. Three classes of antibiotics including tetracycline, sulfonamide and quinolone were quantified by LC-MS/MS. In the secondary effluent they were detected at 195, 2001 and 3866 ng L(-1), respectively, which were higher than in the receiving river water. A total of 13 ARGs (6 tet genes: tetA, tetB, tetE, tetW, tetM and tetZ, 3 sulfonamide genes: sul1, sul2 and sul3, and 4 quinolone genes: gryA, parC, qnrC and qnrD) were determined by quantitative PCR. For all ARGs, sulfonamide resistance genes were present at relatively high concentrations in all samples, with the highest ARG concentration above 10(-1). ARGs remained relatively stable along each sewage treatment process. The abundances of detected ARGs from the STP were also higher than its receiving river. Bivariate correlation analysis showed that relative tet gene copies (tetB/16S-rRNA and tetW/16S-rRNA) were strongly correlated with the concentrations of tetracycline residues (r(2)>0.8, p<0.05), while no significant correlations occurred between sulfonamides and sul genes. A negative correlation between the relative abundance of quinolone resistance gene (qnrC/16S-rRNA) and the concentrations of enrofloxacin (ENR) was also determined. The difference of ARGs levels in the raw influent and secondary effluent suggested that the STP treatment process may induce to increase the abundance of resistance genes. The results showed that the sewage was an important repository of the resistance genes, which need to be effectively treated before discharge into the natural water body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction.

    PubMed

    Han, B; Kim, J; Kim, Y; Choi, J S; Makarov, I E; Ponomarev, A V

    2005-01-01

    A pilot plant for treating 1000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with an electron beam in this plant, and it gave rise to elaborating the optimal technology of the electron beam treatment of wastewater with increased reliability for instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in the flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day each, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  15. Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants.

    PubMed

    Corominas, Lluís; Flores-Alsina, Xavier; Snip, Laura; Vanrolleghem, Peter A

    2012-11-01

    New tools are being developed to estimate greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs). There is a trend to move from empirical factors to simple comprehensive and more complex process-based models. Thus, the main objective of this study is to demonstrate the importance of using process-based dynamic models to better evaluate GHG emissions. This is tackled by defining a virtual case study based on the whole plant Benchmark Simulation Model Platform No. 2 (BSM2) and estimating GHG emissions using two approaches: (1) a combination of simple comprehensive models based on empirical assumptions and (2) a more sophisticated approach, which describes the mechanistic production of nitrous oxide (N(2) O) in the biological reactor (ASMN) and the generation of carbon dioxide (CO(2) ) and methane (CH(4) ) from the Anaerobic Digestion Model 1 (ADM1). Models already presented in literature are used, but modifications compared to the previously published ASMN model have been made. Also model interfaces between the ASMN and the ADM1 models have been developed. The results show that the use of the different approaches leads to significant differences in the N(2) O emissions (a factor of 3) but not in the CH(4) emissions (about 4%). Estimations of GHG emissions are also compared for steady-state and dynamic simulations. Averaged values for GHG emissions obtained with steady-state and dynamic simulations are rather similar. However, when looking at the dynamics of N(2) O emissions, large variability (3-6 ton CO(2) e day(-1) ) is observed due to changes in the influent wastewater C/N ratio and temperature which would not be captured by a steady-state analysis (4.4 ton CO(2) e day(-1) ). Finally, this study also shows the effect of changing the anaerobic digestion volume on the total GHG emissions. Decreasing the anaerobic digester volume resulted in a slight reduction in CH(4) emissions (about 5%), but significantly decreased N(2) O emissions in

  16. 40 CFR 63.1581 - Does the subpart distinguish between different types of POTW treatment plants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... different types of POTW treatment plants? 63.1581 Section 63.1581 Protection of Environment ENVIRONMENTAL... treatment plants? Yes, POTW treatment plants are divided into two subcategories. A POTW treatment plant which does not meet the characteristics of an industrial POTW treatment plant belongs in the non...

  17. Fuel treatments alter native plant composition and increase non-native plant cover

    Treesearch

    Suzanne Owen

    2010-01-01

    Slash-pile burning and mechanical mastication are commonly prescribed fuel treatments for wildfire mitigation. Researchers from Flagstaff, AZ, and Spain recently published an article in Forest Ecology and Management that compared effects of the treatments on understory plant composition in Colorado pinyon-juniper woodlands (Owen and others 2009). Results showed that...

  18. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  19. 40 CFR 63.1582 - What are the characteristics of an industrial POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... industrial POTW treatment plant? 63.1582 Section 63.1582 Protection of Environment ENVIRONMENTAL PROTECTION... Works Industrial Potw Treatment Plant Description and Requirements § 63.1582 What are the characteristics of an industrial POTW treatment plant? (a) Your POTW is an industrial POTW treatment plant if an...

  20. CYTOTOXICITY AND MUTAGENESIS METHODS FOR EVALUATING TOXICITY REMOVAL FROM WASTEWATERS

    EPA Science Inventory

    This project was a feasibility study of the effectiveness of a mammalian cell cytotoxicity assay and a mammalian cell mutagenesis assay for monitoring the toxicity and mutagenicity of influent and effluent wastewater at treatment plants. In the cytotoxicity assay, ambient samples...

  1. ALKYLPHENOL (APE) MONITORING AND ASSESSMENT OF REGION 5

    EPA Science Inventory

    Two draft reports have been prepared for publication - a USGS document titled "Alkylphenols and hormones in wastewater treatment plant influents, effluents, and receiving streams of the Great Lakes Region" and a journal article titled "Biological responses of male fatehead minno...

  2. 40 CFR 141.703 - Sampling locations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... multiple plants draw water from the same influent, such as the same pipe or intake, the State may approve...) The State may approve a system to collect a source water sample after chemical treatment. To grant this approval, the State must determine that collecting a sample prior to chemical treatment is not...

  3. Importance of analytically verifying chemical treatments

    USGS Publications Warehouse

    Rach, J.J.; Gaikowski, M.P.; Olson, J.J.

    1997-01-01

    Hydrogen peroxide is considered a low regulatory priority compound by the U.S. Food and Drug Administration. It is used to control fungal infections on fish eggs. We studied the treatment profiles of hydrogen peroxide in Heath, McDonald egg jar, and Clark-Williamson incubators during treatments intended to deliver an effective regimen of at least 500 ??L hydrogen peroxide/L (i.e., treatments of 500 and 1,000 ??L/L) for 15 min. Hydrogen peroxide concentrations decreased with increasing distance from the influent water in both Heath and Clark-Williamson incubators. The top treatment tray (tray 2) of the Heath incubator received more than 90% of the intended regimen during the 500 ??L/L treatment, whereas at 1,000 ??L/L, all trays had hydrogen peroxide concentrations at or above 500 ??L/L for 15 min. None of the compartments in the Clark-Williamson incubator received the intended therapeutic regimen when treated at 500 ??L/L. The McDonald egg jar system distributed the intended concentration for the designated treatment period in all jars, except those located directly below the influent water. Our results indicate that dilution of therapeutants applied through certain egg incubation systems significantly decreases the efficacy of treatments and may render them ineffective. The dilution characteristics of egg incubation systems should be assessed in order to ensure proper delivery of all intended chemical concentrations and exposure regimens. Suggestions for maintaining the minimum effective concentrations in evaluated incubators are included.

  4. Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China.

    PubMed

    Ashfaq, Muhammad; Li, Yan; Wang, Yuwen; Qin, Dan; Rehman, Muhammad Saif Ur; Rashid, Azhar; Yu, Chang-Ping; Sun, Qian

    2018-08-01

    We investigated the occurrence, removal and mass balance of 8 endocrine disrupting compounds (EDCs), including estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), triclosan (TCS), triclocarbon (TCC), 4-n-nonyl phenol (NP) and 4-n-octyl phenol (OP), along with 5 of their transformation products (TPs), including 4-hydroxy estrone (4-OH E1), 4-hydroxy estradiol (4-OH E2), methyl triclosan (MeTCS), carbanilide (NCC), dichlorocarbanilide (DCC) in a wastewater treatment plant. Generally, E3 showed the highest concentrations in wastewater with median value of 514 ng/L in influent, while TCS and TCC showed highest level in sludge and suspended solids (SS) with median value of 960 and 724 μg/kg, respectively. Spatial variations were observed along each unit of the wastewater treatment processes for dissolved analytes in wastewater and adsorbed analytes in suspended solids and sludge. Special emphasis was placed to understand the mass load of EDCs and their TPs to the wastewater treatment unit and mass loss during the wastewater treatment processes. Mass loss based on both aqueous and suspended phase concentration revealed that majority of these chemicals were significantly removed during the treatment process except for TCS, TCC, and three of their TPs (MeTCS, NCC, DCC), which were released or generated during the treatment process. Mass load results showed that 42.4 g of these EDCs and their TPs entered this wastewater treatment system daily via influent, whereas 6.15 g and 7.60 g were discharged through effluent and sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Occurrence, fate and risk assessment of androgens in ten wastewater treatment plants and receiving rivers of South China.

    PubMed

    Zhang, Jin-Na; Ying, Guang-Guo; Yang, Yuan-Yuan; Liu, Wang-Rong; Liu, Shuang-Shuang; Chen, Jun; Liu, You-Sheng; Zhao, Jian-Liang; Zhang, Qian-Qian

    2018-06-01

    Androgens are one class of steroids that could cause endocrine disrupting effects in aquatic organisms. However, little information is available about androgens in wastewater treatment plants (WWTPs) with different treatment technologies. Here we investigated the occurrence, removal, and fate of fourteen natural and synthetic androgens in ten WWTPs of Guangdong province, south China. The results showed detection of ten androgens in the influents of the ten WWTPs, with concentrations up to 4650 ng/L (androsta-1,4-diene-3,17-dione). But only three androgens androsta-1,4-diene-3,17-dione, 4-androstene-3,17-dione and 17β-boldenone were detected in the final effluents of the ten WWTPs, while six androgens androsta-1,4-diene-3,17-dione (N.D. to 43.0 ng/g), 4-androstene-3,17-dione (2.06-42.7 ng/g), epi-androsterone (N.D. to 506 ng/g), testosterone (0.29-4.24 ng/g), 17β-boldenone (N.D. to 2.05 ng/g) and methyl testosterone (N.D. to 0.70 ng/g) were found in activated sludge. The aqueous phase removal rates for most androgens in the WWTPs exceeded 95% except for 4-androstene-3,17-dione with its removal rates varying between 79.5% and 100%. The removal of androgens in the WWTPs could be attributed mainly to biodegradation while removal by precipitation, volatilization, sludge absorption and oxidation was very limited. Eight androgens were also found in five receiving rivers. The risk quotients of some androgens (androsta-1,4-diene-3,17-dione, 4-androstene-3,17-dione, methyl testosterone, 17α-trenbolone) exceeded 1 in the receiving rivers, showing high risks to aquatic organisms. Further studies are needed to understand the origin of these high risk androgens and ecological effects. Copyright © 2018. Published by Elsevier Ltd.

  6. Occurrence of sulfonamide residues along the Ebro River basin: removal in wastewater treatment plants and environmental impact assessment.

    PubMed

    García-Galán, M Jesús; Díaz-Cruz, M Silvia; Barceló, Damià

    2011-02-01

    Sulfonamides (SAs) have become one of the antibiotic families most frequently found in all kind of environmental waters. In the present work, the presence of 16 SAs and one of their acetylated metabolites in different water matrices of the Ebro River basin has been evaluated during two different sampling campaigns carried out in 2007 and 2008. Influent and effluent samples from seven wastewater treatment plants (WWTPs), together with a total of 28 river water samples were analyzed by on-line solid phase extraction-liquid chromathography-tandem mass spectrometry (on-line SPE-LC-MS/MS). Sulfamethoxazole and sulfapyridine were the SAs most frequently detected in WWTPs (96-100%), showing also the highest concentrations, ranging from 27.2 ng L(-1) to 596 ng L(-1) for sulfamethoxazole and from 3.7 ng L(-1) to 227 ng L(-1) for sulfapyridine. Sulfamethoxazole was also the SA most frequently detected in surface waters (85% of the samples) at concentrations between 11 ng L(-1) and 112 ng L(-1). In order to assess the effectiveness of the wastewater treatment in degrading SAs, removal efficiencies in the seven WWTPs were calculated for each individual SA (ranging from 4% to 100%) and correlated to the corresponding hydraulic retention times or residence times of the SAs in the plants. SAs half-lives were also estimated, ranging from to 2.5 hours (sulfadimethoxine) to 128 h (sulfamethazine). The contribution of the WWTPs to the presence of SAs depends on both the load of SAs discharging on the surface water from the WWTP effluent but also on the flow of the receiving waters in the discharge sites and the dilution exerted; WWTP4 exerts the highest pressure on the receiving water course. Finally, the potential environmental risk posed by SAs was evaluated calculating the hazard quotients (HQ) to different non-target organisms in effluent and river water. The degree of susceptibility resulted in algae>daphnia>fish. Sulfamethoxazole was the only SA posing a risk to algae in

  7. Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure.

    PubMed

    Zhang, Yu; Chen, Zhimin; An, Wei; Xiao, Shumin; Yuan, Hongying; Zhang, Dongqing; Yang, Min

    2015-04-01

    Membrane bioreactors (MBR) are highly efficient at intercepting particles and microbes and have become an important technology for wastewater reclamation. However, many pathogens can accumulate in activated sludge due to the long residence time usually adopted in MBR, and thus may pose health risks when membrane integrity problems occur. This study presents data from a survey on the occurrence of water-borne Giardia pathogens in reclaimed water from a full-scale wastewater treatment plant with MBR experiencing membrane integrity failure, and assessed the associated risk for green space irrigation. Due to membrane integrity failure, the MBR effluent turbidity varied between 0.23 and 1.90 NTU over a period of eight months. Though this turbidity level still met reclaimed water quality standards (≤5 NTU), Giardia were detected at concentrations of 0.3 to 95 cysts/10 L, with a close correlation between effluent turbidity and Giardia concentration. All β-giardin gene sequences of Giardia in the WWTP influents were genotyped as Assemblages A and B, both of which are known to infect humans. An exponential dose-response model was applied to assess the risk of infection by Giardia. The risk in the MBR effluent with chlorination was 9.83×10(-3), higher than the acceptable annual risk of 1.0×10(-4). This study suggested that membrane integrity is very important for keeping a low pathogen level, and multiple barriers are needed to ensure the biological safety of MBR effluent. Copyright © 2015. Published by Elsevier B.V.

  8. A hedging point strategy--balancing effluent quality, economy and robustness in the control of wastewater treatment plants.

    PubMed

    Ingildsen, P; Olsson, G; Yuan, Z

    2002-01-01

    An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.

  9. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  10. Profiles and removal efficiency of polybrominated diphenyl ethers by two different types of sewage treatment work in Hong Kong.

    PubMed

    Man, Yu Bon; Chow, Ka Lai; Man, Ming; Lam, James Chung Wah; Lau, Frankie Tat Kwong; Fung, Wing Cheong; Wong, Ming Hung

    2015-02-01

    This study was to investigate removal efficiencies and profiles of 14 polybrominated diphenyl ether (PBDE) congeners by two different types of sewage treatment work (STW) in Hong Kong: Stonecutters Island STW (SCISTW) which uses chemically enhanced primary treatment (CEPT) process and Sha Tin STW (STSTW) which adopts biological treatment. The results indicated that both SCISTW and STSTW had a high total removal efficiency for BDE-47, BDE-99 BDE-209 and total PBDEs (SCISTW: 71.6 ± 15.8, 84.7 ± 12.3, 96.0 ± 2.62 and 87.4 ± 8.02%, respectively; STSTW: 74.8 ± 9.5, 90.7 ± 9.14, 96.2 ± 2.41 and 89.3 ± 2.62%, respectively) and PBDEs were chiefly removed by sorption. However, the profile of PBDEs demonstrated that the relative proportions of BDE-28 and BDE-47 in total PBDEs markedly increased, while that of BDE-209 decreased in the effluent samples of the two sewage treatment works, especially in STSTW. The percentage of BDE-209 in total PBDEs in effluent (49.3%) of SCISTW was 21.2% lower than that in influent (70.5%), and the percentage of BDE-209 in total PBDEs in effluent (13.8%) of STSTW was 34.1% reduced from influent (47.9%). Despite overall removal, the percentage of BDE-47 in total PBDEs in effluent (17.6%) of SCISTW was 6.85% higher than that in influent (10.7%), and the percentage of BDE-47 in total PBDEs in effluent (33.5%) of STSTW was 18.1% increased from influent (16.8%). The increase in proportion of BDE-47 in the effluent might raise environmental and public health concerns. Our study is a first attempt in reporting the PBDE congener profiles in different phases of sewage treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  12. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristale, Joyce; Ramos, Dayana D.; Dantas, Renato F.

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatmentmore » and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  13. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  14. CHLORINE DISINFECTION OF BLENDED WASTEWATER EFFLUENTS I

    EPA Science Inventory

    During wet weather events collected water can exceed the capacity of a wastewater treatment plant (WWTP) and alternate flow management techniques must be employed. One technique is to treat influent flows through primary clarification and limit the flow to the secondary treatmen...

  15. CHLORINE DISINFECTION OF BLENDED WASTEWATER EFFLUENTS

    EPA Science Inventory

    During wet weather events collected water can exceed the capacity of a wastewater treatment plant (WWTP) and alternate flow management techniques must be employed. One technique is to treat influent flows through primary clarification and limit the flow to the secondary treatmen...

  16. Pharmaceuticals and Hormones in the Environment

    EPA Science Inventory

    Some of the earliest initial reports from Europe and the United States demonstrated that a variety of pharmaceuticals and hormones could be found in surface waters, source waters, drinking water, and influents and effluents from wastewater treatment plants (WWTPs). It is unknown...

  17. INORGANIC CHEMICAL CHARACTERIZATION OF WATER TREATMENT PLANT RESIDUALS

    EPA Science Inventory

    The study obtained field data on the inorganic contaminants and constituents in residuals produced by Water Treatment Plants (WTPs). Eight WTPs were studied based on treatment technology, contamination or suspected contamination of raw water, and efficiency in the removal of cont...

  18. Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.

    PubMed

    Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H

    2015-01-01

    This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study.

  19. Performance intensification of Prague wastewater treatment plant.

    PubMed

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  20. Drugs of abuse and their metabolites in the Ebro River basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation.

    PubMed

    Postigo, Cristina; López de Alda, María José; Barceló, Damià

    2010-01-01

    Drugs of abuse and their metabolites have been recently recognized as environmental emerging organic contaminants. Assessment of their concentration in different environmental compartments is essential to evaluate their potential ecotoxicological effects. It also constitutes an indirect tool to estimate drug abuse by the population at the community level. The present work reports for the first time the occurrence of drugs of abuse and metabolites residues along the Ebro River basin (NE Spain) and also evaluates the contribution of sewage treatment plants (STPs) effluents to the presence of these chemicals in natural surface waters. Concentrations measured in influent sewage waters were used to back calculate drug usage at the community level in the main urban areas of the investigated river basin. The most ubiquitous and abundant compounds in the studied aqueous matrices were cocaine, benzoylecgonine, ephedrine and ecstasy. Lysergic compounds, heroin, its metabolite 6-monoacetyl morphine, and Delta(9)-tetradhydrocannabinol were the substances less frequently detected. Overall, total levels of the studied illicit drugs and metabolites observed in surface water (in the low ng/L range) were one and two orders of magnitude lower than those determined in effluent (in the ng/L range) and influent sewage water (microg/L range), respectively. The investigated STPs showed overall removal efficiencies between 45 and 95%. Some compounds, such as cocaine and amphetamine, were very efficiently eliminated (>90%) whereas others, such as ecstasy, methamphetamine, nor-LSD, and THC-COOH where occasionally not eliminated at all. Drug consumption estimates pointed out cocaine as the most abused drug, followed by cannabis, amphetamine, heroin, ecstasy and methamphetamine, which slightly differs from national official estimates (cannabis, followed by cocaine, ecstasy, amphetamine and heroin). Extrapolation of the consumption data obtained for the studied area to Spain points out a total

  1. Vivianite as an important iron phosphate precipitate in sewage treatment plants.

    PubMed

    Wilfert, P; Mandalidis, A; Dugulan, A I; Goubitz, K; Korving, L; Temmink, H; Witkamp, G J; Van Loosdrecht, M C M

    2016-11-01

    Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for phosphorus recovery. Surplus and digested sludge of two sewage treatment plants was investigated. The plants relied either solely on iron based phosphorus removal or on biological phosphorus removal supported by iron dosing. Mössbauer spectroscopy showed that vivianite and pyrite were the dominating iron compounds in the surplus and anaerobically digested sludge solids in both plants. Mössbauer spectroscopy and XRD suggested that vivianite bound phosphorus made up between 10 and 30% (in the plant relying mainly on biological removal) and between 40 and 50% of total phosphorus (in the plant that relies on iron based phosphorus removal). Furthermore, Mössbauer spectroscopy indicated that none of the samples contained a significant amount of Fe(III), even though aerated treatment stages existed and although besides Fe(II) also Fe(III) was dosed. We hypothesize that chemical/microbial Fe(III) reduction in the treatment lines is relatively quick and triggers vivianite formation. Once formed, vivianite may endure oxygenated treatment zones due to slow oxidation kinetics and due to oxygen diffusion limitations into sludge flocs. These results indicate that vivianite is the major iron phosphorus compound in sewage treatment plants with moderate iron dosing. We hypothesize that vivianite is dominating in most plants where iron is dosed for phosphorus removal which could offer new routes for phosphorus recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  3. WWTP dynamic disturbance modelling--an essential module for long-term benchmarking development.

    PubMed

    Gernaey, K V; Rosen, C; Jeppsson, U

    2006-01-01

    Intensive use of the benchmark simulation model No. 1 (BSM1), a protocol for objective comparison of the effectiveness of control strategies in biological nitrogen removal activated sludge plants, has also revealed a number of limitations. Preliminary definitions of the long-term benchmark simulation model No. 1 (BSM1_LT) and the benchmark simulation model No. 2 (BSM2) have been made to extend BSM1 for evaluation of process monitoring methods and plant-wide control strategies, respectively. Influent-related disturbances for BSM1_LT/BSM2 are to be generated with a model, and this paper provides a general overview of the modelling methods used. Typical influent dynamic phenomena generated with the BSM1_LT/BSM2 influent disturbance model, including diurnal, weekend, seasonal and holiday effects, as well as rainfall, are illustrated with simulation results. As a result of the work described in this paper, a proposed influent model/file has been released to the benchmark developers for evaluation purposes. Pending this evaluation, a final BSM1_LT/BSM2 influent disturbance model definition is foreseen. Preliminary simulations with dynamic influent data generated by the influent disturbance model indicate that default BSM1 activated sludge plant control strategies will need extensions for BSM1_LT/BSM2 to efficiently handle 1 year of influent dynamics.

  4. Microbial response to single-cell protein production and brewery wastewater treatment

    PubMed Central

    Lee, Jackson Z; Logan, Andrew; Terry, Seth; Spear, John R

    2015-01-01

    As global fisheries decline, microbial single-cell protein (SCP) produced from brewery process water has been highlighted as a potential source of protein for sustainable animal feed. However, biotechnological investigation of SCP is difficult because of the natural variation and complexity of microbial ecology in wastewater bioreactors. In this study, we investigate microbial response across a full-scale brewery wastewater treatment plant and a parallel pilot bioreactor modified to produce an SCP product. A pyrosequencing survey of the brewery treatment plant showed that each unit process selected for a unique microbial community. Notably, flow equalization basins were dominated by Prevotella, methanogenesis effluent had the highest levels of diversity, and clarifier wet-well samples were sources of sequences for the candidate bacterial phyla of TM7 and BD1-5. Next, the microbial response of a pilot bioreactor producing SCP was tracked over 1 year, showing that two different production trials produced two different communities originating from the same starting influent. However, SCP production resulted generally in enrichment of several clades of rhizospheric diazotrophs of Alphaproteobacteria and Betaproteobacteria in the bioreactor and even more so in the final product. These diazotrophs are potentially useful as the basis of a SCP product for commercial feed production. PMID:24837420

  5. Waste stream recycling: Its effect on water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornwell, D.A.; Lee, R.G.

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  6. Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang

    2018-05-15

    The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  8. Reproductive Responses of Common Carp Cyprinus carpio in Cages to Influent of the Las Vegas Wash in Lake Mead, Nevada, from late Winter to early Spring

    EPA Science Inventory

    To investigate the potential for contaminants in Las Vegas Wash (LW) influent to produce effects indicative of endocrine disruption in vivo, adult male and female common carp were exposed in cages for 42-48 d at four sites and two reference locations in Lake Mead.

  9. Complete physico-chemical treatment for coke plant effluents.

    PubMed

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  10. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    PubMed

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. An improved biofilter to control the dissolved organic nitrogen concentration during drinking water treatment.

    PubMed

    Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin

    2016-09-01

    Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.

  12. Indigenous plant medicines for health care: treatment of Diabetes mellitus and hyperlipidemia.

    PubMed

    Parikh, Nisha H; Parikh, Palak K; Kothari, Charmy

    2014-05-01

    Medicinal plants have played an important role in treating and preventing a variety of diseases throughout the world. Metabolic syndrome had become a global epidemic, defined as a cluster of three of five criteria: insulin resistance and glucose intolerance, abdominal obesity, hypertension, low high-density cholesterol, and hypertriglyceridemia. The current review focuses on Indian medicinal plant drugs and plants used in the treatment of diabetes and hyperlipidemia. Though there are various approaches to reduce the ill-effects of diabetes and hyperlipidemia and its secondary complications, plant-based drugs are preferred due to lesser side effects and low cost. The current review focuses on twenty-three medicinal plants used in the treatment of Diabetes mellitus and nine medicinal plants used in the treatment of hyperlipidemia. The wealth of knowledge on medicinal plants points to a great potential for research and the discovery of new drugs to fight diseases, including diabetes and hyperlipidemia. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  15. A comprehensive approach for diagnosing opportunities for improving the performance of a WWTP.

    PubMed

    Silva, C; Matos, J Saldanha; Rosa, M J

    2016-12-01

    High quality services of wastewater treatment require a continuous assessment and improvement of the technical, environmental and economic performance. This paper demonstrates a comprehensive approach for benchmarking wastewater treatment plants (WWTPs), using performance indicators (PIs) and indices (PXs), in a 'plan-do-check-act' cycle routine driven by objectives. The performance objectives herein illustrated were to diagnose the effectiveness and energy performance of an oxidation ditch WWTP. The PI and PX results demonstrated an effective and reliable oxidation ditch (good-excellent performance), and a non-reliable UV disinfection (unsatisfactory-excellent performance) related with influent transmittance and total suspended solids. The energy performance increased with the treated wastewater volume and was unsatisfactory below 50% of plant capacity utilization. The oxidation ditch aeration performed unsatisfactorily and represented 38% of the plant energy consumption. The results allowed diagnosing opportunities for improving the energy and economic performance considering the influent flows, temperature and concentrations, and for levering the WWTP performance to acceptable-good effectiveness, reliability and energy efficiency. Regarding the plant reliability for fecal coliforms, improvement of UV lamp maintenance and optimization of the UV dose applied and microscreen recommissioning were suggested.

  16. Medicinal plants as alternative treatments for female sexual dysfunction: utopian vision or possible treatment in climacteric women?

    PubMed

    Mazaro-Costa, Renata; Andersen, Monica L; Hachul, Helena; Tufik, Sergio

    2010-11-01

    Female sexual dysfunction (FSD) is a complex and multifactorial condition. An increased incidence of FSD is especially associated with the decline of estrogen. Thus, menopause is a critical phase for FSD complaints. In this context, medicinal plants may be a therapeutic option. To identify and describe the popular and clinical uses of medicinal plants for FSD treatment in climacteric women. We highlighted the majority of the plants commonly involved with the female reproductive system including: Angelica sinensis, Cimicifuga racemosa, Ferula hermonis, Ginkgo biloba, Humulus lupulus, Lepidium meyenii, Tribulus terrestris, Trifolium pratense, and Vitex agnus-castus. This study is a narrative review of studies of plants that are possible alternative treatments for FSD. The species described have clinical and popular uses in different cultures as well as medical indications for female reproductive disturbances, mainly in climacteric women. We have also analyzed the evidence level of clinical studies. The main outcome assessed is the efficacy of plants in improving the symptoms of FSD. There is little evidence from the literature to recommend the use of medicinal plants when treating FSD. The majority of studies with a strong level of evidence are associated with the treatment of the vasomotor symptoms of menopause. Ferula hermonis, Angelica sinensis, and Gingko biloba may be suggested for arousal disorder studies. Cimicifuga racemosa, Trifolium pratense, and Vitex agnus-castus may be recommended for several FSD. Humulus lupulus and Tribulus terrestris may help with desire disorder studies. Lepidium meyenii should be studied further. Studies of these plants indicate that they may be useful as a possible alternative and/or complementary approach for studies aimed at the treatment of FSD. At this time, however, this review cannot recommend a plant that has a strong enough level of evidence for treatment of FSD. Thus, there is a need for clinical (double-blinded and

  17. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.

    PubMed

    Modin, Oskar; Fukushi, Kensuke; Rabaey, Korneel; Rozendal, René A; Yamamoto, Kazuo

    2011-04-01

    In wastewater treatment plants, the reject water from the sludge treatment processes typically contains high ammonium concentrations, which constitute a significant internal nitrogen load in the plant. Often, a separate nitrification reactor is used to treat the reject water before it is fed back into the plant. The nitrification reaction consumes alkalinity, which has to be replenished by dosing e.g. NaOH or Ca(OH)(2). In this study, we investigated the use of a two-compartment microbial fuel cell (MFC) to redistribute alkalinity from influent wastewater to support nitrification of reject water. In an MFC, alkalinity is consumed in the anode compartment and produced in the cathode compartment. We use this phenomenon and the fact that the influent wastewater flow is many times larger than the reject water flow to transfer alkalinity from the influent wastewater to the reject water. In a laboratory-scale system, ammonium oxidation of synthetic reject water passed through the cathode chamber of an MFC, increased from 73.8 ± 8.9 mgN/L under open-circuit conditions to 160.1 ± 4.8 mgN/L when a current of 1.96 ± 0.37 mA (15.1 mA/L total MFC liquid volume) was flowing through the MFC. These results demonstrated the positive effect of an MFC on ammonium oxidation of alkalinity-limited reject water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Medicinal Plants Used for Treatment of Diarrhoeal Related Diseases in Ethiopia

    PubMed Central

    Woldeab, Bizuneh; Regassa, Reta

    2018-01-01

    This paper presents a review of relevant antidiarrhoeal medicinal plants based on the fundamental knowledge accumulated by indigenous people of Ethiopia. The review includes an inventory carried out on the phytochemical and pharmacological analysis of plant species used in the treatments of diarrhoeal diseases. This study is based on a review of the literature published in scientific journals, books, theses, proceedings, and reports. A total of 132 medicinal plants used by local people of Ethiopia are reported in the reviewed literature. Herbs (43.6%) were the primary source of medicinal plants, followed by trees (27%). Some findings include the predominance of leaf material used (78%), as well as the frequent use of crushing of the plant parts (38%) as a mode of preparation. This study demonstrates the importance of traditional medicines in the treatment of basic human ailments such as diarrhoeal diseases in Ethiopia. Baseline information gaps were observed in different regions of Ethiopia. Thus, documentation of the knowledge held by other regions of Ethiopia that have so far received less attention and urban ethnobotany is recommended for future ethnobotanical studies. In addition, phytochemical studies are recommended mainly on frequently utilized medicinal plants for treatment of diarrhoeal diseases which can serve as a basis for future investigation of modern drug development. Although societies in Ethiopia have long used medicinal plants for diarrhoeal diseases treatment, it is also a good practice to perform toxicological tests. PMID:29743923

  19. The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter.

    PubMed

    Maizel, Andrew C; Remucal, Christina K

    2017-10-01

    There is a growing interest in water reuse and in recovery of nutrients from wastewater. Because many advanced treatment processes are designed to remove organic matter, a better understanding of the composition of dissolved organic matter (DOM) in wastewater is needed. To that end, we assessed DOM in the Nine Springs Wastewater Treatment Plant in Madison, Wisconsin by UV-visible spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry. Samples were collected from the influent and effluent of two different secondary treatment processes and their respective secondary clarifiers, the UV disinfection unit, and an Ostara treatment system, which produces struvite via chemical precipitation. The optical properties reveal that DOM throughout the plant is relatively aliphatic and is low in molecular weight compared to DOM in freshwater systems. Furthermore, the DOM is rich in heteroatoms (e.g., N, S, P, and Cl) and its molecular formulas are present in the lipid-, protein-, carbohydrate-, and lignin-like regions of van Krevelen diagrams. Secondary treatment produces DOM that is more aromatic and more complex, as shown by the loss of highly saturated formulas and the increase in the number of CHO, CHON, and CHOP formulas. The two secondary treatment processes produce DOM with distinct molecular compositions, while the secondary clarifiers and UV disinfection unit result in minimal changes in DOM composition. The Ostara process decreases the molecular weight of DOM, but does not otherwise alter its composition. The optical properties agree with trends in the molecular composition of DOM within the main treatment train of the Nine Springs plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty.

    PubMed

    Flores-Alsina, Xavier; Rodríguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2008-11-01

    The evaluation of activated sludge control strategies in wastewater treatment plants (WWTP) via mathematical modelling is a complex activity because several objectives; e.g. economic, environmental, technical and legal; must be taken into account at the same time, i.e. the evaluation of the alternatives is a multi-criteria problem. Activated sludge models are not well characterized and some of the parameters can present uncertainty, e.g. the influent fractions arriving to the facility and the effect of either temperature or toxic compounds on the kinetic parameters, having a strong influence in the model predictions used during the evaluation of the alternatives and affecting the resulting rank of preferences. Using a simplified version of the IWA Benchmark Simulation Model No. 2 as a case study, this article shows the variations in the decision making when the uncertainty in activated sludge model (ASM) parameters is either included or not during the evaluation of WWTP control strategies. This paper comprises two main sections. Firstly, there is the evaluation of six WWTP control strategies using multi-criteria decision analysis setting the ASM parameters at their default value. In the following section, the uncertainty is introduced, i.e. input uncertainty, which is characterized by probability distribution functions based on the available process knowledge. Next, Monte Carlo simulations are run to propagate input through the model and affect the different outcomes. Thus (i) the variation in the overall degree of satisfaction of the control objectives for the generated WWTP control strategies is quantified, (ii) the contributions of environmental, legal, technical and economic objectives to the existing variance are identified and finally (iii) the influence of the relative importance of the control objectives during the selection of alternatives is analyzed. The results show that the control strategies with an external carbon source reduce the output uncertainty

  1. Innovative treatment system for digester liquor using anammox process.

    PubMed

    Furukawa, Kenji; Inatomi, Yasuhiko; Qiao, Sen; Quan, Lai; Yamamoto, Taichi; Isaka, Kazuichi; Sumino, Tatsuo

    2009-11-01

    This study demonstrated that partial nitritation using nitrifying activated sludge entrapped in a polyethylene glycol (PEG) gel carrier, as a pretreatment to anammox process, could be successfully applied to digester liquor of biogas plant at a nitrogen loading rate of 3.0 kg-N/m(3)/d. The nitritation process produced an effluent with a NO(2)-N/NH(4)-N ratio between 1.0 and 1.4, which was found to be suitable for the subsequent anammox process. A high SS concentration (2000-3000 mg/l) in the digester liquor did not affect partial nitritation treatment performances. Effluent from this partial nitritation reactor was successfully treated in the anammox reactor using anammox sludge entrapped in the PEG gel carrier with T-N removal rates of greater than 4.0 kg-N/m(3)/d. Influent BOD and SS contents did not inhibit anammox activity of the anammox gel carrier. The combination of partial nitritation and anammox reactors using PEG entrapped nitrifying and anammox bacteria was shown to be effective for the removal of high concentration ammonium in the digester liquor of a biogas plant.

  2. Treatment of anxiety and depression: medicinal plants in retrospect.

    PubMed

    Fajemiroye, James O; da Silva, Dayane M; de Oliveira, Danillo R; Costa, Elson A

    2016-06-01

    Anxiety and depression are complex heterogeneous psychiatric disorders and leading causes of disability worldwide. This review summarizes reports on the fundamentals, prevalence, diagnosis, neurobiology, advancement in treatment of these diseases and preclinical assessment of botanicals. This review was conducted through bibliographic investigation of scientific journals, books, electronic sources, unpublished theses and electronic medium such as ScienceDirect and PubMed. A number of the first-line drugs (benzodiazepine, azapirone, antidepressant tricyclics, monoamine oxidase inhibitors, serotonin selective reuptake inhibitors, noradrenaline reuptake inhibitors, serotonin and noradrenaline reuptake inhibitors, etc.) for the treatment of these psychiatric disorders are products of serendipitous discoveries. Inspite of the numerous classes of drugs that are available for the treatment of anxiety and depression, full remission has remained elusive. The emerging clinical cases have shown increasing interests among health practitioners and patients in phytomedicine. The development of anxiolytic and antidepressant drugs of plant origin takes advantage of multidisciplinary approach including but not limited to ethnopharmacological survey (careful investigation of folkloric application of medicinal plant), phytochemical and pharmacological studies. The selection of a suitable plant for a pharmacological study is a basic and very important step. Relevant clues to achieving this step include traditional use, chemical composition, toxicity, randomized selection or a combination of several criteria. Medicinal plants have been and continue to be a rich source of biomolecule with therapeutic values for the treatment of anxiety and depression. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  3. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goshe, A.J.; Nodianos, M.J.

    1995-12-01

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  4. Comparative survey of the influent and effluent water quality of shrimp ponds on Mexican farms.

    PubMed

    Ruiz-Fernández, A C; Páez-Osuna, F

    2004-01-01

    The influent and effluent water quality of two ponds at four aquaculture facilities (two intensive and two semiintensive growout systems) located on the Northwest coast of Mexico was monitored. Temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand (self-consumption in 48 hours), total suspended solids, particulate organic material, nitrite, nitrate, ammonium, reactive and total phosphate, and chlorophyll a were analyzed every 2 weeks during two consecutive growout cycles. Changes recorded in most of these water quality variables were not strongly related to the management practices of the ponds, but rather to environmental factors. The mean percent differences between inflowing and outflowing water that were observed indicated that water used for culture returned to the natural environment depleted of nutrients (inorganic nitrogen and reactive phosphate), and it was evident that the rearing activities promoted the exportation of particulate material to the surrounding environment.

  5. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  6. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    EPA Pesticide Factsheets

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  7. Wastewater characterization survey, Edwards Air Force Base, California. Final report, 17-28 February 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, R.P.

    1992-08-01

    A wastewater characterization survey was conducted at Edwards Air Force Base from 17-28 February 1992 by personnel from the Water Quality Function of Armstrong Laboratory. Extensive sampling of the treatment plant influent wastewater and sludge beds was performed as well as sampling at nine other sites in the base cantonment area. Some sampling of an Imhoff tank on North Base, five evaporation ponds and the lakebed was also conducted. Low levels of organic contamination were found in the influent and industrial sites downstream of Site 7. Site 7 is a manhole located in an identified Installation Restoration Program (IRP) site.more » Corrective actions were recommended to prevent organic soil contaminants from intruding into this site prior to the operation of a planned tertiary treatment plant. Organic and inorganic contaminants discharged at other industrial sites were found to be in low concentrations and indicated that good shop practices were followed in minimizing contamination of the wastewater with industrial chemicals.« less

  8. Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks.

    PubMed

    Tewari, S; Jindal, R; Kho, Y L; Eo, S; Choi, K

    2013-04-01

    Pharmaceuticals have been frequently detected in aquatic environment worldwide and suspected for potential ecological consequences. However, occurrences, sources and potential risks of pharmaceutical residues have rarely been investigated in Bangkok, Thailand, one of most densely populated cities in the world. We collected water samples from five wastewater treatment plants (WWTPs), six canals, and in mainstream Chao Phraya River of Bangkok, in three sampling events representing different seasonal flow conditions, i.e., June and September 2011 and January 2012. Fourteen major pharmaceuticals including acetaminophen, acetylsalicylic acid, atenolol, caffeine, ciprofloxacin, diclofenac, ibuprofen, mefenamic acid, naproxen, roxithromycin, sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim were analyzed. Levels of pharmaceutical residues in WWTP influents on average were the highest for acetylsalicylic acid (4700 ng L(-1)), followed by caffeine (2250 ng L(-1)) and ibuprofen (702 ng L(-1)). In effluents, the concentration of caffeine was the highest (307 ng L(-1)), followed by acetylsalicylic acid (261 ng L(-1)) and mefenamic acid (251 ng L(-1)). In surface water, acetylsalicylic acid showed the highest levels (on average 1360 ng L(-1) in canals and 313 ng L(-1) in the river). Removal efficiencies of WWTPs for roxithromycin, sulfamethoxazole and sulfamethazine were determined negligible. For several compounds, the concentrations in ambient water were higher than those detected in the effluents, implying contribution of the WWTPs to be negligible. Hazard quotients estimated for acetylsalicylic acid, ciprofloxacin, diclofenac and mefenamic acid in most of the canals and that of ciprofloxacin in the river, were greater than or close to 1, suggesting potential ecological risks. Ecological implications of the pharmaceutical residues in Bangkok waterway warrant further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  10. Presence of Methicillin Resistant Staphylococcus aureus (MRSA) in sewage treatment plant.

    PubMed

    Boopathy, Raj

    2017-09-01

    The presence of antibiotic resistant bacteria and antibiotic resistance genes in rural sewage treatment plants are not well reported in the literature. The aim of the present study was to study the frequency occurrence of Methicillin Resistant Staphylococcus aureus (MRSA) in a rural sewage treatment plant. This study was conducted using raw sewage as well as treated sewage from a small town sewage treatment plant in rural southeast Louisiana of USA. Results showed the presence of MRSA consistently in both raw and treated sewage. The presence of mecA gene responsible for methicillin resistance was confirmed in the raw and treated sewage water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    EPA Pesticide Factsheets

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  12. Region 9 NPDES Facilities - Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  13. Long term operation of high concentration powdered activated carbon membrane bio-reactor for advanced water treatment.

    PubMed

    Seo, G T; Moon, C D; Chang, S W; Lee, S H

    2004-01-01

    A pilot scale experiment was conducted to evaluate the performance of a membrane bioreactor filled with high concentration powdered activated carbon. This hybrid system has great potential to substitute for existing GAC or O3/BAC processes in the drinking water treatment train. The system was installed at a water treatment plant located downstream of the Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system which consists of PAC bio-reactor, submerged MF membrane module and air supply facility. PAC concentration of 20 g/L was maintained at the beginning of the experiment and it was increased to 40 g/L. The PAC has not been changed during the operational periods. The membrane was a hollow fiber type with pore sizes of 0.1 and 0.4 microm. It was apparent that the high PAC concentration could prevent membrane fouling. 40 g/L PAC was more effective to reduce the filtration resistance than 20 g/L. At the flux of 0.36 m/d, TMP was maintained less than 40 kPa for about 3 months by intermittent suction type operation (12 min suction/3 min idling). Adsorption was the dominant role to remove DOC at the initial operational period. However the biological effect was gradually increased after around 3 months operation. Constant DOC removal could be maintained at about 40% without any trouble and then a tremendous reduction of DBPs (HAA5 and THM) higher than 85% was achieved. Full nitrification was observed at the controlled influent ammonia nitrogen concentration of 3 and 7 mg/L. pH was an important parameter to keep stable ammonia oxidation. From almost two years of operation, it is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment under the recent situation of more stringent DBPs regulation in Korea.

  14. Saudi medicinal plants for the treatment of scorpion sting envenomation.

    PubMed

    Al-Asmari, Abdulrahman; Manthiri, Rajamohamed Abbas; Abdo, Nasreddien; Al-Duaiji, Fawzi Abdullah; Khan, Haseeb Ahmad

    2017-09-01

    Scorpion sting envenoming poses major public health problems. The treatment modalities include antivenoms, chemical antidotes and phytotherapy, with varying degrees of effectiveness and side effects. In this investigation, we reviewed the use of Saudi medicinal plants for the treatment of scorpion sting patients. The relevant literature was collected using the online search engines including Science Direct, Google and PubMed with the help of specific keywords. We also used the printed and online resources at our institutional library to gather the relevant information on the use of medicinal plants for the treatment of scorpion sting patients. A descriptive statistics was used for data compilation and presentation. The results of this survey showed the use of at least 92 medicinal plants with beneficial effects for treating victims of stings of different scorpion species. These commonly used herbs spanned to 37 families whilst different parts of these plants were employed therapeutically for alleviation of envenomation symptoms. The application of leaves (41%) was preferred followed by roots (19%), whole plant (14%) and seeds (9%). The use of latex (4%), stem (3%), flowers (3%) and bark (3%) was also reported. In some cases, tannin (2%), rhizome (1%) and shoot (1%) were also used. In conclusion, herbal medicines are effectively used for the treatment of patients with scorpion envenomation. This type of medication is free from side effects as observed with chemical antidotes or antivenom therapy. It is important to identify the active ingredients of herbal drugs for improving their therapeutic potential in traditional medicine.

  15. 40 CFR 63.1592 - Which General Provisions apply to my POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POTW treatment plant? 63.1592 Section 63.1592 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Publicly Owned Treatment Works General Requirements § 63.1592 Which General Provisions apply to my POTW treatment plant? (a) Table 1 to this subpart...

  16. Fate of dissolved organic nitrogen in two stage trickling filter process.

    PubMed

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems.

    PubMed

    Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui

    2017-12-01

    In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    PubMed

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  19. Medicinal Plants in the Treatment of Colitis: Evidence from Preclinical Studies.

    PubMed

    Santana, Marília T; Cercato, Luana M; Oliveira, Janaíne P; Camargo, Enilton A

    2017-05-01

    Ulcerative colitis is a chronic inflammatory condition whose treatment includes aminosalicylates, corticosteroids, and immunomodulators. Medicinal plants seem to be an important alternative treatment for this condition. They have been the subject of a great number of studies in recent years. This study was conducted to systematically review the medicinal plants tested in experimental models of ulcerative colitis. We conducted a systematic literature search through specialized databases (PUBMED, SCOPUS, EMBASE, MEDLINE, LILACS, SCIELO, and SCISEARCH) and selected articles published between January 2000 and June 21, 2016 by using "medicinal plants" and "ulcerative colitis" as key words. Sixty-eight studies were included, and the families Asteraceae and Lamiaceae presented the largest number of studies, but plants from several other families were cited; many of them have shown good results in experimental animals. However, only a few species (such as Andrographis paniculata and Punica granatum ) have undergone clinical tests against ulcerative colitis, and the observation that many preclinical studies reviewed are purely descriptive has certainly contributed to this fact. Chemical constituents (mainly flavonoids and terpenes) seem to play a role in the effects of the plants. Thus, the data herein reviewed reinforce the potential of medicinal plants as a source of alternative approaches to the treatment of ulcerative colitis. Georg Thieme Verlag KG Stuttgart · New York.

  20. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    PubMed

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparison of planted soil infiltration systems for treatment of log yard runoff.

    PubMed

    Hedmark, Asa; Scholz, Miklas; Aronsson, Par; Elowson, Torbjorn

    2010-07-01

    Treatment of log yard runoff is required to avoid contamination of receiving watercourses. The research aim was to assess if infiltration of log yard runoff through planted soil systems is successful and if different plant species affect the treatment performance at a field-scale experimental site in Sweden (2005 to 2007). Contaminated runoff from the log yard of a sawmill was infiltrated through soil planted with Alnus glutinosa (L.) Gärtner (common alder), Salix schwerinii X viminalis (willow variety "Gudrun"), Lolium perenne (L.) (rye grass), and Phalaris arundinacea (L.) (reed canary grass). The study concluded that there were no treatment differences when comparing the four different plants with each other, and there also were no differences between the tree and the grass species. Furthermore, the infiltration treatment was effective in reducing total organic carbon (55%) and total phosphorus (45%) concentrations in the runoff, even when the loads on the infiltration system increased from year to year.

  2. 7 CFR 305.31 - Irradiation treatment of imported regulated articles for certain plant pests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Irradiation treatment of imported regulated articles... TREATMENTS Irradiation Treatments § 305.31 Irradiation treatment of imported regulated articles for certain plant pests. (a) Approved doses. Irradiation at the following doses for the specified plant pests...

  3. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  4. TREATMENT PLANT EVALUATION DURING A WATERBORNE OUTBREAK

    EPA Science Inventory

    If a waterborne disease outbreak is the result of problems at a treatment plant, a thorough and careful evaluation of both process equipment and operating procedures would be needed. his evaluation should be done in a series of actions. hese actions are explained in this paper. h...

  5. Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the ebro river basin (northeast Spain).

    PubMed

    Gros, Meritxell; Petrović, Mira; Barceló, Damià

    2007-08-01

    The occurrence of 28 pharmaceuticals of major human consumption in Spain, including analgesics and anti-inflammatories, lipid regulators, psychiatric drugs, antibiotics, antihistamines, and beta-blockers, was assessed along the Ebro river basin, one of the biggest irrigated lands in that country. Target compounds were simultaneously analyzed by off-line solid-phase extraction, followed by liquid chromatography-tandem mass spectrometry. The loads of detected pharmaceuticals and their removal rates were studied in seven wastewater treatment plants (WWTPs) located in the main cities along the basin. Total loads ranged from 2 to 5 and from 0.5 to 1.5 g/d/1,000 inhabitants in influent and effluent wastewaters, respectively. High removal rates (60-90%) were achieved mainly for analgesics and anti-inflammatories. The other groups showed lower rates, ranging from 20 to 60%, and in most cases, the antiepileptic carbamazepine, macrolide antibiotics, and trimethoprim were not eliminated at all. Finally, the contribution of WWTP effluents to the presence of pharmaceuticals in receiving river waters was surveyed. In receiving surface water, the most ubiquitous compounds were the analgesics and anti-inflammatories ibuprofen, diclofenac, and naproxen; the lipid regulators bezafibrate and gemfibrozil; the antibiotics erythromycin, azithromycin, sulfamethoxazole, trimethoprim, and less frequently, ofloxacin; the antiepileptic carbamazepine; the antihistamine ranitidine; and the beta-blockers atenolol and sotalol. Although levels found in WWTP effluents ranged from low microg/L to high ng/L, pharmaceuticals in river waters occurred at levels at least one order of magnitude lower (low ng/L range) because of dilution effect. From the results obtained, it was proved that WWTP are hot spots of aquatic contamination concerning pharmaceuticals of human consumption.

  6. R-plasmid transfer in a wastewater treatment plant.

    PubMed Central

    Mach, P A; Grimes, D J

    1982-01-01

    Enteric bacteria have been examined for their ability to transfer antibiotic resistance in a wastewater treatment plant. Resistant Salmonella enteritidis, Proteus mirabilis, and Escherichia coli were isolated from clinical specimens and primary sewage effluent. Resistance to ampicillin, chloramphenicol, streptomycin, sulfadiazine, and tetracycline was demonstrated by spread plate and tube dilution techniques. Plasmid mediation of resistance was shown by ethidium bromide curing, agarose gel electrophoresis, and direct cell transfer. Each donor was mated with susceptible E. coli and Shigella sonnei. Mating pairs (and recipient controls) were suspended in unchlorinated primary effluent that had been filtered and autoclaved. Suspensions were added to membrane diffusion chambers which were then placed in the primary and secondary setting tanks of the wastewater treatment plant. Resistant recombinants were detected by replica plating nutrient agar master plates onto xylose lysine desoxycholate agar plates that contained per milliliter of medium 10 micrograms of ampicillin, 30 micrograms of chloramphenicol, 10 micrograms of streptomycin, 100 micrograms of sulfadiazine, or 30 micrograms of tetracycline. Mean transfer frequencies for laboratory matings were 2.1 X 10(-3). In situ matings for primary and secondary settling resulted in frequencies of 4.9 X 10(-5) and 7.5 X 10(-5), respectively. These values suggest that a significant level of resistance transfer occurs in wastewater treatment plants in the absence of antibiotics as selective agents. Images PMID:6760813

  7. Impact of toxic chemicals on local wastewater treatment plant and the environment

    NASA Astrophysics Data System (ADS)

    Bennett, Gary F.

    1989-05-01

    Because toxic chemicals being discharged to sewers were simultaneously interfering with wastewater treatment processes of municipal, biological treatment plants and were passing through these plants to negatively impact the bodies of water to which these plants were discharging, the U.S. Environmental Protection Agency issued regulations governing industrial discharges to municipal sewers. These “Pretreatment Regulations” limit industrial discharges to municipal sewers of heavy metals, oil and grease, acids and bases, and toxic organic chemicals. This paper discusses the evolution of these regulations, the basis for them, the types of regulations (categorical and local), and the rationale for their promulgation based on the impacts of toxics chemicals on the treatment plant and receiving system. Finally, the expected results of these regulations in reducing industrial discharges of toxic chemicals is discussed.

  8. Behavior of Selected Endocrine Disrupting Chemicals in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Wang, Xinze; Lu, Jiaming; Ollivier, Natacha; Saturnino, Anais; Gomez, Elena; Casellas, Claude; Picot, Bernadette

    2010-11-01

    The behavior of endocrine disrupting chemicals in sewage treatment plant affects their final fate in water environment. We selected six endocrine disrupting chemicals: 4 alkylphenols (4-tert-octylphenol, octylphenol, 4-nonylphenol, bisphenol A) and 2 steroids (17α-ethinylestradiol and estriol) as targets, their removal and transformation in wastewater treatment plant were studied. Five mixed liquors were sampled respectively from different stages of Minhang wastewater treatment plant in Shanghai. EDCs concentration were analyzed with GC-MS. The main removal pathways of EDCs include initial adsorption by suspended solids and following biodegradation in biological sludge. The removal efficiency of six targets was more than 86%. The concentration of OP and 4-n-NP in water significantly increased in anoxic stage, the reason may be the releases of EDCs from sludge to water on the condition of low DO. And it was also found that the EDCs could be released to water phase in the secondary clarifier, which may cause potential risk of EDCs entering the environment with discharge.

  9. Medicinal Plants for the Treatment of Acne Vulgaris: A Review of Recent Evidences.

    PubMed

    Nasri, Hamid; Bahmani, Mahmoud; Shahinfard, Najmeh; Moradi Nafchi, Atefeh; Saberianpour, Shirin; Rafieian Kopaei, Mahmoud

    2015-11-01

    Acne vulgaris affects about 85% of teenagers and may continue to adulthood. There are about two million visits to physicians per year for teenagers and the direct cost of acne treatment in the US exceeds $1 billion per year. A wide variety of treatment regimens exist for acne vulgaris including benzoil peroxide, retinoids, isotretinoids, keratolytic soaps, alpha hydroxy acids, azelaic acid, salicilic acid as well as hormonal, anti-androgen or antiseborrheic treatments. However, none of these methods is free of side effects and their exact role in therapy is not clear. In this paper apart from presenting the possible causes of acne vulgaris and its available drugs, recently published papers about medicinal plants used in the treatment of acne vulgaris were reviewed. Consumption of alternative and complementary medicine, including medicinal plants, is increasing and is common amongst patients affected by acne and infectious skin diseases. Medicinal plants have a long history of use and have been shown to possess low side effects. These plants are a reliable source for preparation of new drugs. Many plants seem to have inhibitory effects on the growth of bacteria, fungi and viruses in vitro. However, there are a few clinical evidences about the effectiveness and safety of these plants in the treatment of acne and other skin infections.

  10. An ethnobotanical study of medicinal plants administered for the treatment of hypertension.

    PubMed

    Baharvand-Ahmadi, Babak; Bahmani, Mahmoud; Tajeddini, Pegah; Rafieian-Kopaei, Mahmoud; Naghdi, Nasrollah

    2016-01-01

    The incidence of cardiovascular diseases (CVDs) is very high in human societies and their prevention and treatment are the most important priority in many countries. Hypertension makes an important contribution to the development of CVDs. This study aimed to collect the ethno-medicinal knowledge of the traditional healers of Shiraz on medicinal plants used in the treatment of hypertension. Ethno-medicinal data were collected from September 2012 to July 2013 through direct interview. Twenty-five healers were interviewed using semi-structured questionnaires and their traditional ethno-medicinal knowledge was recorded. Questionnaires were included apothecary personal information, plant local name, plant parts used, method of preparation, season of harvest and traditional use. Data collected from surveys and interviews were transferred to Microsoft Excel 2007 and analyzed. Analysis of data showed that, 27 medicinal plants from 22 families are used for the treatment of hypertension. The families with most antihypertensive species were Apiaceae (8%), Rosaceae (8%) and Papaveraceae (8%). The most frequently used plant parts were leaves (36%) followed by fruits (30%), aerial part (17%) and branches (7%). The most frequently used preparation method was decoction (95%). Borago officinalis (51.85%), Berberis vulgaris (51.58%) had the highest frequency of mention. The ethno-medicinal survey of medicinal plants recommended by traditional healers for the treatment of hypertension provides new areas of research on the antihypertensive effect of medicinal plants. In the case of safety and effectiveness, they can be refined and processed to produce natural drugs.

  11. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    PubMed

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  12. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  13. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area.

  14. Phytoremediation of explosives in groundwater using innovative wetlands-based treatment technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, F.J.; Behrends, L.L.; Coonrod, H.S.

    1997-12-31

    Many army ammunition plants across the country have problems with groundwater contaminated with explosives. A field demonstration was initiated at the Milan Army Ammunition Plant near Milan, Tennessee early in 1996 to demonstrate the feasibility of treating contaminated groundwater with constructed wetlands. Two different systems were designed and installed. A lagoon system consisted of two cells in series with each cell having dimensions of 24 x 9.4 x 0.6 m (L x W x H). A gravel-bed system consisted of three gravel-beds operated in series with a primary anaerobic cell having dimensions of 32 x 11 x 1.4 m (Lmore » x W x H), followed by a pair of secondary cells each with dimensions of 5.5 x 11 x 1.4 m (L x W x H). The primary cell is maintained anaerobic by adding powdered milk to the water every two weeks. The secondary cells are maintained aerobic via reciprocation, whereby water is pumped back and forth from one cell to another to cause a recurrent fill and drain action. The lagoons were planted with sago pond weed, water stargrass, elodea, and parrot feather. The gravel-bed wetlands were planted with canary grass, wool grass, sweet flag, and parrot feather. Water began flowing to each of the wetland treatment systems at 19 L min{sup {minus}1} starting in June 1996. The design hydraulic retention time through each treatment system was approximately 10 days. Influent and effluent water samples were collected every 2 weeks. Intensive sampling of water interior to the wetlands occurred every 2 months.« less

  15. Metropolitan Spokane Region Water Resources Study. Appendix D. Wastewater Generation and Treatment

    DTIC Science & Technology

    1976-01-01

    equipment and toxic to the anaerobic organisms in the digesters . Plant operating policy requires that, when the influent chloride concentration reaches...sheep e. 55,000 turkeys f. 100,000 laying hens or broilers g. 30,000 laying hens or broilers wiL!, liquid manure handling systems h. 5000 ducks i...study area is currently off from the levels indicated in the census due to unfavorable feed and price levels. There is essentially no broiler production

  16. Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Detail for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems, on complying with part 68 with respect to chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  17. Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the PhATE™ model.

    PubMed

    Cunningham, Virginia L; D'Aco, Vincent J; Pfeiffer, Danielle; Anderson, Paul D; Buzby, Mary E; Hannah, Robert E; Jahnke, James; Parke, Neil J

    2012-07-01

    This article presents the capability expansion of the PhATE™ (pharmaceutical assessment and transport evaluation) model to predict concentrations of trace organics in sludges and biosolids from municipal wastewater treatment plants (WWTPs). PhATE was originally developed as an empirical model to estimate potential concentrations of active pharmaceutical ingredients (APIs) in US surface and drinking waters that could result from patient use of medicines. However, many compounds, including pharmaceuticals, are not completely transformed in WWTPs and remain in biosolids that may be applied to land as a soil amendment. This practice leads to concerns about potential exposures of people who may come into contact with amended soils and also about potential effects to plants and animals living in or contacting such soils. The model estimates the mass of API in WWTP influent based on the population served, the API per capita use, and the potential loss of the compound associated with human use (e.g., metabolism). The mass of API on the treated biosolids is then estimated based on partitioning to primary and secondary solids, potential loss due to biodegradation in secondary treatment (e.g., activated sludge), and potential loss during sludge treatment (e.g., aerobic digestion, anaerobic digestion, composting). Simulations using 2 surrogate compounds show that predicted environmental concentrations (PECs) generated by PhATE are in very good agreement with measured concentrations, i.e., well within 1 order of magnitude. Model simulations were then carried out for 18 APIs representing a broad range of chemical and use characteristics. These simulations yielded 4 categories of results: 1) PECs are in good agreement with measured data for 9 compounds with high analytical detection frequencies, 2) PECs are greater than measured data for 3 compounds with high analytical detection frequencies, possibly as a result of as yet unidentified depletion mechanisms, 3) PECs are less

  18. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  19. Medicinal Plants for the Treatment of Asthma: A Traditional Persian Medicine Perspective.

    PubMed

    Javadi, Behjat; Sahebkar, Amirhossein; Emami, Seyed Ahmad

    2017-01-01

    To search major Traditional Persian Medicine (TPM) textbooks for medicinal plants used to treat asthma. The conformity of the TPM findings on the anti-asthmatic efficacy of plants with the findings of pharmacological studies was also explored. Major TPM textbooks were hand searched to find medicinal plants used for the treatment of asthma. Scientific names of TPM-suggested plants were determined using botanical databases and were used for a multidatabase electronic search in PubMed, Scopus, ScienceDirect and Google Scholar databases. Then, the antiasthmatic effectiveness of TPM-recommended plants was verified in view of the findings from modern pharmacological investigations. According to the main TPM texts, Adianthum capillus-veneris, Boswellia oleogumresin, Crocus sativus, Glycyrrhiza glabra, Hyssopus officinalis and Ruta graveolens were the most efficacious medicinal plants for the treatment of asthma. This finding was confirmed by pharmacological studies which showed counterbalancing effects of the above-mentioned plants on inflammation, oxidative stress, allergic response, tracheal smooth muscle cell constriction and airway remodeling. The strong ethnobotanical background of plants used in TPM could be a valuable tool to find new anti-asthmatic medications. In this review, TPM-suggested anti-asthmatic plants were found to possess several mechanisms relevant to the treatment of respiratory diseases according to the information retrieved from modern pharmacological studies. This high degree of conformity suggested further proof-of-concept trials to ascertain the role of these plants in the routine management of asthmatic patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Medicinal Plants for the Treatment of Acne Vulgaris: A Review of Recent Evidences

    PubMed Central

    Nasri, Hamid; Bahmani, Mahmoud; Shahinfard, Najmeh; Moradi Nafchi, Atefeh; Saberianpour, Shirin; Rafieian Kopaei, Mahmoud

    2015-01-01

    Context: Acne vulgaris affects about 85% of teenagers and may continue to adulthood. There are about two million visits to physicians per year for teenagers and the direct cost of acne treatment in the US exceeds $1 billion per year. Evidence Acquisition: A wide variety of treatment regimens exist for acne vulgaris including benzoil peroxide, retinoids, isotretinoids, keratolytic soaps, alpha hydroxy acids, azelaic acid, salicilic acid as well as hormonal, anti-androgen or antiseborrheic treatments. However, none of these methods is free of side effects and their exact role in therapy is not clear. In this paper apart from presenting the possible causes of acne vulgaris and its available drugs, recently published papers about medicinal plants used in the treatment of acne vulgaris were reviewed. Results: Consumption of alternative and complementary medicine, including medicinal plants, is increasing and is common amongst patients affected by acne and infectious skin diseases. Medicinal plants have a long history of use and have been shown to possess low side effects. These plants are a reliable source for preparation of new drugs. Conclusions: Many plants seem to have inhibitory effects on the growth of bacteria, fungi and viruses in vitro. However, there are a few clinical evidences about the effectiveness and safety of these plants in the treatment of acne and other skin infections. PMID:26862380

  1. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    PubMed

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  2. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  3. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.; Hallett, K.; DeWolfe, J.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less

  4. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration.

    PubMed

    Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F

    2010-01-01

    A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the

  5. Removal of bacterial contaminants and antibiotic resistance genes by conventional wastewater treatment processes in Saudi Arabia: Is the treated wastewater safe to reuse for agricultural irrigation?

    PubMed

    Al-Jassim, Nada; Ansari, Mohd Ikram; Harb, Moustapha; Hong, Pei-Ying

    2015-04-15

    This study aims to assess the removal efficiency of microbial contaminants in a local wastewater treatment plant over the duration of one year, and to assess the microbial risk associated with reusing treated wastewater in agricultural irrigation. The treatment process achieved 3.5 logs removal of heterotrophic bacteria and up to 3.5 logs removal of fecal coliforms. The final chlorinated effluent had 1.8 × 10(2) MPN/100 mL of fecal coliforms and fulfils the required quality for restricted irrigation. 16S rRNA gene-based high-throughput sequencing showed that several genera associated with opportunistic pathogens (e.g. Acinetobacter, Aeromonas, Arcobacter, Legionella, Mycobacterium, Neisseria, Pseudomonas and Streptococcus) were detected at relative abundance ranging from 0.014 to 21 % of the total microbial community in the influent. Among them, Pseudomonas spp. had the highest approximated cell number in the influent but decreased to less than 30 cells/100 mL in both types of effluent. A culture-based approach further revealed that Pseudomonas aeruginosa was mainly found in the influent and non-chlorinated effluent but was replaced by other Pseudomonas spp. in the chlorinated effluent. Aeromonas hydrophila could still be recovered in the chlorinated effluent. Quantitative microbial risk assessment (QMRA) determined that only chlorinated effluent should be permitted for use in agricultural irrigation as it achieved an acceptable annual microbial risk lower than 10(-4) arising from both P. aeruginosa and A. hydrophila. However, the proportion of bacterial isolates resistant to 6 types of antibiotics increased from 3.8% in the influent to 6.9% in the chlorinated effluent. Examples of these antibiotic-resistant isolates in the chlorinated effluent include Enterococcus and Enterobacter spp. Besides the presence of antibiotic-resistant bacterial isolates, tetracycline resistance genes tetO, tetQ, tetW, tetH, tetZ were also present at an average 2.5 × 10(2), 1.6 × 10

  6. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  7. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Bijlsma, L; Morales, E; Pastor, L; Hernández, F

    2013-09-15

    Advanced oxidation processes (AOP) based on ozone treatments, assisted by ultrasounds, have been investigated at a pilot-plant scale in order to evaluate the removal of emerging contaminants in sewage water. Around 60 emerging contaminants, mainly pharmaceuticals from different therapeutically classes and drugs of abuse, have been determined in urban wastewater samples (treated and untreated) by LC-MS/MS. In a first step, the removal efficiency of these contaminants in conventional sewage water treatment plants was evaluated. Our results indicate that most of the compounds were totally or partially removed during the treatment process of influent wastewater. Up to 30 contaminants were quantified in the influent and effluent samples analysed, being antibiotics, anti-inflammatories, cholesterol lowering statin drugs and angiotensin II receptor antagonists the most frequently detected. Regarding drugs of abuse, cocaine and its metabolite benzoylecgonine were the most frequent. In a second step, the effectiveness of AOP in the removal of emerging contaminants remaining in the effluent was evaluated. Ozone treatments have been proven to be highly efficient in the removal, notably decreasing the concentrations for most of the emerging contaminants present in the water samples. The use of ultrasounds, alone or assisting ozone treatments, has been shown less effective, being practically unnecessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Review of Medicinal Plants for the Treatment of Earache and Tinnitus in Iran.

    PubMed

    Mahmoudian-Sani, Mohammad Reza; Hashemzadeh-Chaleshtori, Morteza; Asadi-Samani, Majid; Luther, Tahra

    2017-06-01

    Despite numerous trials, there has not yet been any definite strategy to reduce replicable long-term tinnitus and earache. Complementary and alternative medical approaches have been used to decrease the symptoms of tinnitus and earache. This study was conducted to report medicinal plants that are used to treat ear disorders, especially earache and tinnitus in different regions of Iran. Directory of Open Access Journals (DOAJ), Google Scholar, PubMed, LISTA (EBSCO), Embase, and Web of Science were searched using relevant search terms to retrieve eligible publications. Twenty-three species from sixteen families were used for the treatment of earache and tinnitus in Iran. Plants from families Asteraceae and Lamiaceae were the most commonly used plants for the treatment of earache. Ginkgo biloba was frequently reported for the treatment of tinnitus. This study shows the important role of medicinal plants in the treatment of earache and tinnitus in some regions of Iran. The medicinal plants reported in this review can be considered in treatments for earache and tinnitus if examined more extensively in clinical trials.

  9. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanguang; Zhou Xuefei; Zhang Yalei, E-mail: zhangyalei2003@163.com

    Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5more » kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.« less

  10. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    EPA Pesticide Factsheets

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  11. Microbial communities in riparian soils of a settling pond for mine drainage treatment.

    PubMed

    Fan, Miaochun; Lin, Yanbing; Huo, Haibo; Liu, Yang; Zhao, Liang; Wang, Entao; Chen, Weimin; Wei, Gehong

    2016-06-01

    Mine drainage leads to serious contamination of soil. To assess the effects of mine drainage on microbial communities in riparian soils, we used an Illumina MiSeq platform to explore the soil microbial composition and diversity along a settling pond used for mine drainage treatment. Non-metric multidimensional scaling analysis showed that the microbial communities differed significantly among the four sampling zones (influent, upstream, downstream and effluent), but not seasonally. Constrained analysis of principal coordinates indicated heavy metals (zinc, lead and copper), total sulphur, pH and available potassium significantly influenced the microbial community compositions. Heavy metals were the key determinants separating the influent zone from the other three zones. Lower diversity indices were observed in the influent zone. However, more potential indicator species, related to sulphur and organic matter metabolism were found there, such as the sulphur-oxidizing genera Acidiferrobacter, Thermithiobacillus, Limnobacter, Thioprofundum and Thiovirga, and the sulphur-reducing genera Desulfotomaculum and Desulfobulbus; the organic matter degrading genera, Porphyrobacter and Paucimonas, were also identified. The results indicated that more microorganisms related to sulphur- and carbon-cycles may exist in soils heavily contaminated by mine drainage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An Evaluation of Reed Bed Technology to Dewater Army Wastewater Treatment Plant Sludge

    DTIC Science & Technology

    1993-09-01

    speculated that the plants produced "root exudations" that were active against pathogens, and that the plants specifically showed an affinity for cadmium , zinc...Schwenksville, PA Topton Sewage Treatment Topton. PA Wabash WWTP Wabash . IN Wallingford Fire District #lWastewater Treatment Plant Wallingford. VT...Navy Group 06/88 Tom Severance Security 207-963-5534 Winter Harbour. ME Wabash WWTP. IN 09/91 Vincent J. Bauco 219-563-2941 20 Table 4 (Cont’d

  13. Gas chromatographic–mass spectrometric fragmentation study of phytoestrogens as their trimethylsilyl derivatives: Identification in soy milk and wastewater samples

    USGS Publications Warehouse

    Ferrar, Imma; Barber, Larry B.; Thurman, E. Michael

    2009-01-01

    An analytical method for the identification of eight plant phytoestrogens (biochanin A, coumestrol, daidzein, equol, formononetin, glycitein, genistein and prunetin) in soy products and wastewater samples was developed using gas chromatography coupled with ion trap mass spectrometry (GC/MS–MS). The phytoestrogens were derivatized as their trimethylsilyl ethers with trimethylchlorosilane (TMCS) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). The phytoestrogens were isolated from all samples with liquid–liquid extraction using ethyl acetate. Daidzein-d4 and genistein-d4 labeled standards were used as internal standards before extraction and derivatization. The fragmentation patterns of the phytoestrogens were investigated by isolating and fragmenting the precursor ions in the ion-trap and a typical fragmentation involved the loss of a methyl and a carbonyl group. Two characteristic fragment ions for each analyte were chosen for identification and confirmation. The developed methodology was applied to the identification and confirmation of phytoestrogens in soy milk, in wastewater effluent from a soy-milk processing plant, and in wastewater (influent and effluent) from a treatment plant. Detected concentrations of genistein ranged from 50,000 μg/L and 2000 μg/L in soy milk and in wastewater from a soy-plant, respectively, to 20 μg/L and <1 μg/L for influent and effluent from a wastewater treatment plant, respectively.

  14. The use of food waste as a carbon source for on-site treatment of nutrient-rich blackwater from an office block.

    PubMed

    Tannock, Simon J C; Clarke, William P

    2016-09-01

    Wastewater from office blocks is typically dominated by blackwater and is therefore concentrated and nutrient-rich. A pilot plant was operated for 260 days, receiving 300 L d(-1) of wastewater directly from an office building to determine whether nutrient removal could be achieved using food waste (FW) as a supplemental carbon source. The pilot plant consisted of a 600 L prefermenter and a 600 L membrane bioreactor that was operated as a sequential batch reactor in order to cycle through anoxic, anaerobic and aerobic phases. The influent wastewater Chemical Oxygen Demand (COD)/N/P was, on average, 1438/275/40 mg L(-1), considerably higher than typical municipal wastewater. Treatment trials on the wastewater alone showed that the COD was only marginally sufficient to exhaust nitrate, and initiate anaerobic conditions required for phosphate removal. The addition of 15 kg d(-1) of macerated FW increased the average influent COD/N/P concentrations to 20,072/459/66 mg L(-1). The suitability of FW as a carbon source was demonstrated by denitrification to NOx-N concentration of <1 mg L(-1) during the biological nutrient removal (BNR) cycles. N removal was limited by nitrification. FW also induced the anaerobic phase within the BNR cycles necessary for P removal. The final average COD (non-recalcitrant)/N/P effluent concentrations under FW supplementation were 7/50/13 mg L(-1) which equates to 99%, 89% and 80% COD/N/P removal, respectively, meeting the highest nutrient removal efficiency standards stipulated by state jurisdictions for on-site systems in the USA.

  15. Estimating the Concentration and Biodegradability of Organic Matter in 22 Wastewater Treatment Plants Using Fluorescence Excitation Emission Matrices and Parallel Factor Analysis

    PubMed Central

    Yang, Liyang; Shin, Hyun-Sang; Hur, Jin

    2014-01-01

    This study aimed at monitoring the changes of fluorescent components in wastewater samples from 22 Korean biological wastewater treatment plants and exploring their prediction capabilities for total organic carbon (TOC), dissolved organic carbon (DOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and the biodegradability of the wastewater using an optical sensing technique based on fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). Three fluorescent components were identified from the samples by using EEM-PARAFAC, including protein-like (C1), fulvic-like (C2) and humic-like (C3) components. C1 showed the highest removal efficiencies for all the treatment types investigated here (69% ± 26%–81% ± 8%), followed by C2 (37% ± 27%–65% ± 35%), while humic-like component (i.e., C3) tended to be accumulated during the biological treatment processes. The percentage of C1 in total fluorescence (%C1) decreased from 54% ± 8% in the influents to 28% ± 8% in the effluents, while those of C2 and C3 (%C2 and %C3) increased from 43% ± 6% to 62% ± 9% and from 3% ± 7% to 10% ± 8%, respectively. The concentrations of TOC, DOC, BOD, and COD were the most correlated with the fluorescence intensity (Fmax) of C1 (r = 0.790–0.817), as compared with the other two fluorescent components. The prediction capability of C1 for TOC, BOD, and COD were improved by using multiple regression based on Fmax of C1 and suspended solids (SS) (r = 0.856–0.865), both of which can be easily monitored in situ. The biodegradability of organic matter in BOD/COD were significantly correlated with each PARAFAC component and their combinations (r = −0.598–0.613, p < 0.001), with the highest correlation coefficient shown for %C1. The estimation capability was further enhanced by using multiple regressions based on %C1, %C2 and C3/C2 (r = −0.691). PMID:24448170

  16. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    PubMed

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  17. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Medicinal Plants for Diabetes Treatment During Pregnancy.

    PubMed

    Damasceno, Debora Cristina; Leal-Silva, Thais; Soares, Thaigra Sousa; Moraes-Souza, Rafaianne Queiroz; Volpato, Gustavo Tadeu

    2017-01-01

    Diabetes mellitus is a syndrome of great importance that affects an increasing number of people every day. In particular, diabetes is a common and important disease during pregnancy and is marked by complications, both fetal and maternal, that increase the risks of morbidity and mortality for diabetic pregnant women and their offspring. Drugs such as insulin and hypoglycemic drugs are given to treat diabetes, but regular exercise and adequate diet have also been indicated. Furthermore, coadjutant therapies such as medicinal plants are popularly used to reduce diabetes-induced hyperglycemia, either within or outside the context of pregnancy. However, studies examining plant use for diabetes treatment are necessary to confirm its possible effects and its safety for the mother and fetus. The objective of this literature review was to conduct a survey of plant species that are utilized worldwide and their stated therapeutic uses. A literature search was performed using the terms "diabetes and pregnancy", which resulted in the identification of 31,272 articles. Of these studies, only 12 (0.0038%) were related to medicinal plants, demonstrating that there has been little investigation into this issue. Of the papers analyzed in this review, half evaluated plant leaves, indicating that these scientific studies attempted to reproduce the preparations commonly used by various populations, i.e., in the form of tea. Additionally, more than 90% of studies utilized experimental animals to evaluate the maternal-fetal safety of medicinal plant substances that may potentially be dangerous for humans. Thus, once confidence levels for plant-derived substances are established based on toxicological analyses and safety is confirmed, it is possible that plants will be used to complement conventional diabetes therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. In-Plant Corrosion Study of Steels in Distillery Effluent Treatment Plant

    NASA Astrophysics Data System (ADS)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2015-05-01

    The present study deals with corrosion and performance of steels observed in an effluent treatment plant (ETP) of a distillery. For this purpose, the metal coupons were exposed in primary (untreated effluent) and secondary tank (anaerobic treatment effluent) of the ETP. The extent of attack has been correlated with the composition of the effluent with the help of laboratory immersion and electrochemical tests. Untreated distillery effluent found to be more corrosive than the anaerobic-treated effluents and is assigned due to chloride, phosphate, calcium, nitrate, and nitrite ions, which enhances corrosivity at acidic pH. Mild steel showed highest uniform and localized corrosion followed by stainless steels 304L and 316L and lowest in case of duplex 2205.

  20. Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities.

    PubMed

    Gros, Meritxell; Blum, Kristin M; Jernstedt, Henrik; Renman, Gunno; Rodríguez-Mozaz, Sara; Haglund, Peter; Andersson, Patrik L; Wiberg, Karin; Ahrens, Lutz

    2017-04-15

    A comprehensive screening of micropollutants was performed in wastewaters from on-site sewage treatment facilities (OSSFs) and urban wastewater treatment plants (WWTPs) in Sweden. A suspect screening approach, using high resolution mass spectrometry, was developed and used in combination with target analysis. With this strategy, a total number of 79 micropollutants were successfully identified, which belong to the groups of per- and polyfluoroalkyl substances (PFASs), pesticides, phosphorus-containing flame retardants (PFRs) and pharmaceuticals and personal care products (PPCPs). Results from this screening indicate that concentrations of micropollutants are similar in influents and effluents of OSSFs and WWTPs, respectively. Removal efficiencies of micropollutants were assessed in the OSSFs and compared with those observed in WWTPs. In general, removal of PFASs and PFRs was higher in package treatment OSSFs, which are based on biological treatments, while removal of PPCPs was more efficient in soil bed OSSFs. A novel comprehensive prioritization strategy was then developed to identify OSSF specific chemicals of environmental relevance. The strategy was based on the compound concentrations in the wastewater, removal efficiency, frequency of detection in OSSFs and on in silico based data for toxicity, persistency and bioaccumulation potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    PubMed

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  2. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments.

    PubMed

    Tonetto de Freitas, Sergio; McElrone, Andrew J; Shackel, Kenneth A; Mitcham, Elizabeth J

    2014-01-01

    The mechanisms regulating Ca(2+) partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca(2+) partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca(2+) partitioning and allocation on fruit susceptibility to the Ca(2+) deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca(2+) conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l(-1) ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l(-1) ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16-19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36-40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca(2+) movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca(2+) concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca(2+) movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca(2+) concentrations and reduced fruit susceptibility to BER to a lesser extent.

  3. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments

    PubMed Central

    Tonetto de Freitas, Sergio

    2014-01-01

    The mechanisms regulating Ca2+ partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca2+ partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca2+ partitioning and allocation on fruit susceptibility to the Ca2+ deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca2+ conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l−1 ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l−1 ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16–19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36–40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca2+ movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca2+ concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca2+ movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca2+ concentrations and reduced fruit susceptibility to BER to a lesser extent. PMID:24220654

  4. A Course on Operational Considerations in Wastewater Treatment Plant Design. Instructor's Manual.

    ERIC Educational Resources Information Center

    Cooper, John W.; And Others

    This manual contains 17 instructional units (sequenced to correspond to parallel chapters in a student's manual) focusing on upgrading the design of wastewater plant facilities and serving as a reference source for establishing criteria for upgrading wastewater treatment plants. The manual also furnishes information for modifying plant design to…

  5. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India.

    PubMed

    Subedi, Bikram; Balakrishna, Keshava; Joshua, Derrick Ian; Kannan, Kurunthachalam

    2017-01-01

    Environmental contamination by pharmaceuticals and personal care products (PPCPs) is barely studied in India despite being one of the largest global producers and consumers of pharmaceuticals. In this study, 29 pharmaceuticals and six metabolites were determined in sewage treatment plants (STPs) in Udupi (STP U : population served ∼150,000) and Mangalore (STP M : population served ∼450,000); the measured mean concentrations ranged from 12 to 61,000 ng/L and 5.0 to 31,000 ng/L, respectively. Atorvastatin (the most prescribed antihypercholesterolemic in India), mefenamic acid, and paraxanthine were found for the first time in wastewater in India at the mean concentrations of 395 ng/L, 1100 ng/L, and 13,000 ng/L, respectively. Select pharmaceutical metabolites (norverapamil and clopidogrel carboxylic acid) were found at concentrations of upto 7 times higher than their parent drugs in wastewater influent and effluent. This is the first study in India to report mass loading and emission of PPCPs and their select metabolites in STPs. The total mass load of all PPCPs analyzed in this study at STP U (4.97 g/d/1000 inhabitants) was 3.6 times higher than calculated for STP M . Select recalcitrant PPCPs (carbamazepine, diazepam, and clopidogrel) were found to have negative or no removal from STP U while additional treatment with upflow anaerobic sludge blanket reactor at STP M removed (up to 95%) these PPCPs from STP M . Overall, 5.1 kg of caffeine, 4.1 kg of atenolol, 2.7 kg of ibuprofen, and 1.9 kg of triclocarban were discharged annually from STP U . The PPCP contamination profile in the Indian STP was compared with a similar study in the USA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of hydraulic retention time and granular medium in microbial removal in tertiary treatment reed beds.

    PubMed

    García, Joan; Vivar, Joan; Aromir, Maria; Mujeriego, Rafael

    2003-06-01

    The main objective of this paper is to evaluate the role of hydraulic retention time (HRT) and granular medium in faecal coliform (FC) and somatic coliphage (SC) removal in tertiary reed beds. Experiments were carried out in a pilot plant with four parallel reed beds (horizontal subsurface flow constructed wetlands), each one containing a different type of granular medium. This pilot plant is located in a wastewater treatment plant in Montcada i Reixac, near Barcelona, in northeastern Spain. The microbial inactivation ratios obtained in the different beds are compared as a function of three selected HRTs. Secondary effluent from the wastewater treatment plant was used as the influent of the pilot system. The microbial inactivation ratio ranged between 0.1 and 2.7 log-units for FC and from 0.5 to 1.7 log-units for SC in beds with coarser granular material (5-25mm), while it ranged between 0.7 and 3.4 log-units for FC and from 0.9 to 2.6 log-units for SC in the bed with finer material (2-13mm). HRT and granular medium are both key factors in microbial removal in the tertiary reed beds. The microbial inactivation ratio rises as the HRT increases until it reaches a saturation value (in general at an HRT of 3 days). The value of the microbial inactivation ratio at the saturation level depends on the granular medium contained in the bed. The specific surface area necessary to reach 2-3 log-units of FC and SC is approximately 3m(2)/person-equivalent.

  7. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    NASA Astrophysics Data System (ADS)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  8. Jar Test. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    The jar test is used to determine the proper chemical dosage required for good coagulation and flocculation of water. The test is commonly used in potable water, secondary effluent prior to advanced wastewater treatment, secondary clarifier influent, and sludge conditioning practice. Designed for individuals who have completed National Pollutant…

  9. Benchmarking wastewater treatment plants under an eco-efficiency perspective.

    PubMed

    Lorenzo-Toja, Yago; Vázquez-Rowe, Ian; Amores, María José; Termes-Rifé, Montserrat; Marín-Navarro, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-10-01

    The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ethnomedicinal survey of plants used in the treatment of malaria in Southern Nigeria.

    PubMed

    Iyamah, P C; Idu, M

    2015-09-15

    Malaria is one of the most severe public health problems worldwide. It is a leading cause of death and disease in many developing countries, where young children and pregnant women are the groups most affected. Spread of multidrug-resistant strains of Plasmodium and the adverse side effects of the existing anti-malarial drugs have necessitated the search for novel, well tolerated and more efficient antimalarial drugs. This ethnomedicinal study surveyed the different types of medicinal plants used for the treatment of malaria in Southern Nigeria with the intent of identifying plants that are traditionally employed in the treatment of malaria across geopolitical boundaries. Data were collected from 79 respondents composed of 50 traditional herbsellers and 29 herbal practitioners using a semi-structured questionnaire. Data was analyzed using frequency and percentages. Of the 79 respondents interviewed, 24% were males while 76% were females. A total of 156 species belonging to 60 families were reported being used to treat malaria in the study area. Fabaceae was the most represented family having fourteen (14) plant species. Of the plants identified during the survey, Azadirachta indica was the species of highest relative frequency of citation (RFC - 1.0). The dominant plant parts used in the preparation of remedies were leaves (50.50%) and Decoction was the main method of preparation. Analysis of regional plant occurrence revealed that South-Western Nigeria represented the region with the highest plant occurrence (60.7%) followed by South-South (24%) and South-East (15.3%). Regional occurrence of plants used in the treatment of malaria in Southern Nigeria is reported here for the first time. This study has documented a great diversity of plants used in the treatment of malaria in Southern Nigeria. Extracts prepared strictly according to the practitioners' recipes should therefore be screened for antiplasmodial activity and toxicity by in vitro and in vivo standard

  12. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants.

    PubMed

    Mackuľak, Tomáš; Mosný, Michal; Škubák, Jaroslav; Grabic, Roman; Birošová, Lucia

    2015-03-01

    In this study we analyzed and characterized 29 psychoactive remedies, illicit drugs and their metabolites in single stages of wastewater treatment plants in the capital city of Slovakia. Psychoactive compounds were present within all stages, and tramadol was detected at a very high concentration (706 ng/L). Significant decreases of codeine, THC-COOH, cocaine and buprenorphine concentration were observed in the biological stage. Consequently, we were interested in the possibility of alternative tertiary post-treatment of effluent water with the following aquatic plants: Cabomba caroliniana, Limnophila sessiliflora, Egeria najas and Iris pseudacorus. The most effective plant for tertiary cleansing was I. pseudacorus which demonstrated the best pharmaceutical removal capacity. After 48 h codeine and citalopram was removed with 87% efficiency. After 96 h were all analyzed compounds were eliminated with efficiencies above 58%. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A Course on Operational Considerations in Wastewater Treatment Plant Design. Student Manual.

    ERIC Educational Resources Information Center

    Stottler, Stag and Associates, San Antonio, TX.

    This manual was designed to furnish information for upgrading the design of wastewater treatment plant facilities and to serve as a resource for establishing criteria for upgrading these plants. The manual also furnishes information for modifying plant design to compensate for current organic and hydraulic overloads and/or to meet more stringent…

  14. [Numerical simulation and operation optimization of biological filter].

    PubMed

    Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing

    2014-12-01

    BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10.

  15. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    PubMed

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  16. The role of orthophosphate and dissolved oxygen in the performance of arsenic-iron removal plants in Bangladesh.

    PubMed

    Brennan, Ryan T; McBean, Edward A

    2011-01-01

    Arsenic iron removal plants (AIRPs) are used in some locations in Bangladesh to remove arsenic from groundwater to provide access to safer drinking water. In this study, the influence of orthophosphate in influent water on the performance of 21 (of 105) AIRPs installed in the Manikganj District was evaluated. The degree of aeration was also estimated, and the role of dissolved oxygen in AIRP performance is discussed. AIRP installations were done by a local non-governmental organization (The Society for People's Action in Change and Equity) with financial assistance from the Australian High Commission, Dhaka under the Direct Aid Program of the Australian Government. The presence of orthophosphate in the influent did not influence arsenic removal efficiency in the tested AIRPs, likely due to the high iron concentrations at all sites. The high iron provides adequate surface area for both orthophosphate and arsenic to be removed. Orthophosphate co-precipitated with iron oxides much more quickly than arsenic, in one cleaning cycle study, and is expected to play a more significant role in interfering with arsenic removal at sites with much lower iron concentrations. The aeration trays studied are estimated to introduce at least 2.4-3.7 mg/L of dissolved oxygen. In normal operation, sufficient oxygen is introduced through the aeration tray to fully oxidize all influent iron. The AIRPs studied show promise for use in areas of Bangladesh with high natural iron, where users are concerned with arsenic, iron, or both, in their drinking water.

  17. Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  18. Treatment of plants with gaseous ethylene and gaseous inhibitors of ethylene action

    USDA-ARS?s Scientific Manuscript database

    Ethylene is an interesting plant hormone to work with. It’s a gas! Literally. And this affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some ...

  19. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania.

    PubMed

    Lupan, Iulia; Carpa, Rahela; Oltean, Andreea; Kelemen, Beatrice Simona; Popescu, Octavian

    2017-09-27

    The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river.

  20. Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water.

    PubMed

    Choe, Jong Kwon; Mehnert, Michelle H; Guest, Jeremy S; Strathmann, Timothy J; Werth, Charles J

    2013-05-07

    Environmental impacts of conventional and emerging perchlorate drinking water treatment technologies were assessed using life cycle assessment (LCA). Comparison of two ion exchange (IX) technologies (i.e., nonselective IX with periodic regeneration using brines and perchlorate-selective IX without regeneration) at an existing plant shows that brine is the dominant contributor for nonselective IX, which shows higher impact than perchlorate-selective IX. Resource consumption during the operational phase comprises >80% of the total impacts. Having identified consumables as the driving force behind environmental impacts, the relative environmental sustainability of IX, biological treatment, and catalytic reduction technologies are compared more generally using consumable inputs. The analysis indicates that the environmental impacts of heterotrophic biological treatment are 2-5 times more sensitive to influent conditions (i.e., nitrate/oxygen concentration) and are 3-14 times higher compared to IX. However, autotrophic biological treatment is most environmentally beneficial among all. Catalytic treatment using carbon-supported Re-Pd has a higher (ca. 4600 times) impact than others, but is within 0.9-30 times the impact of IX with a newly developed ligand-complexed Re-Pd catalyst formulation. This suggests catalytic reduction can be competitive with increased activity. Our assessment shows that while IX is an environmentally competitive, emerging technologies also show great promise from an environmental sustainability perspective.

  1. Emerging pollutants in wastewater: a review of the literature.

    PubMed

    Deblonde, Tiphanie; Cossu-Leguille, Carole; Hartemann, Philippe

    2011-11-01

    For 20 years, many articles report the presence of new compounds, called "emerging compounds", in wastewater and aquatic environments. The US EPA (United States - Environmental Protection Agency) defines emerging pollutants as new chemicals without regulatory status and which impact on environment and human health are poorly understood. The objective of this work was to identify data on emerging pollutants concentrations in wastewater, in influent and effluent from wastewater treatment plants (WWTPs) and to determine the performance of sewage disposal. We collected 44 publications in our database. We sought especially for data on phthalates, Bisphenol A and pharmaceuticals (including drugs for human health and disinfectants). We gathered concentration data and chose 50 pharmaceutical molecules, six phthalates and Bisphenol A. The concentrations measured in the influent ranged from 0.007 to 56.63 μg per liter and the removal rates ranges from 0% (contrast media) to 97% (psychostimulant). Caffeine is the molecule whose concentration in influent was highest among the molecules investigated (in means 56.63 μg per liter) with a removal rate around 97%, leading to a concentration in the effluent that did not exceed 1.77 μg per liter. The concentrations of ofloxacin were the lowest and varied between 0.007 and 2.275 μg per liter in the influent treatment plant and 0.007 and 0.816 μg per liter in the effluent. Among phthalates, DEHP is the most widely used, and quantified by the authors in wastewater, and the rate of removal of phthalates is greater than 90% for most of the studied compounds. The removal rate for antibiotics is about 50% and 71% for Bisphenol A. Analgesics, anti inflammatories and beta-blockers are the most resistant to treatment (30-40% of removal rate). Some pharmaceutical molecules for which we have not collected many data and which concentrations seem high as Tetracycline, Codeine and contrast products deserve further research. Copyright © 2011

  2. Efficiency of WWTP to remove emerging pollutants in wastewater

    NASA Astrophysics Data System (ADS)

    Carmona, Eric; Llopis, Agustín; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Recently some compounds that are extensively used are considered emerging pollutants since are at low concentrations and have been little studied. Pharmaceuticals and personal care products are classified as this kind of pollutants and most of these are excreted through urine or feces and come to end up to treatment plants. Recent studies indicates that pharmaceuticals, personal care products or illicit drugs from Waste Water Treatment Plants (WWTP) are a considerable chemical pollution in surface [1, 2]. The purpose of this study is to determine the removal efficiency for two WWT of Pinedo I and II, Valencia (Spain). After obtaining the results of analysis by an Agilent 1260 HPLC in tandem with a 6410 MS/MS triple quad, a simple mathematical operation with the influents and effluents is performed. This operation consists in subtracted from the influent, the effluent, divided by the result of the influent and this multiply by 100. Results are expressed as a percentage with its 95 % confidence interval (CI). The influent and effluent of the samples were filtered with a 0.50 μm glass fiber filter of 90 mm by Advantec (Minato-ku, Tokyo, Japan). After filtration, 250ml of this water is extracted through a SPE. SPE was performed with Strata-X 33U Polymeric Reversed Phase (200 mg/6 mL) from Phenomenex. These cartridges were conditioned with 6 mL of methanol and 6 mL of distilled water. Extracts were eluted with 6mL of Methanol and evaporated with compressed air. The residue was reconstituted with 1 mL of methanol-water (30:70, v/v). The removal efficiencies depend on the type of the compound, these rates remain between 23% and 100%. In some cases, removal efficiency is negative since some compounds are accumulated in the sludge and these have more concentration. Tertiary treatment including UV disinfection could efficiently reduce most of the residual pharmaceuticals below their quantification limits. Acknowledgments This work has been supported by the Spanish Ministry

  3. 40 CFR 63.1583 - What are the emission points and control requirements for an industrial POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control requirements for an industrial POTW treatment plant? 63.1583 Section 63.1583 Protection of... Pollutants: Publicly Owned Treatment Works Industrial Potw Treatment Plant Description and Requirements § 63.1583 What are the emission points and control requirements for an industrial POTW treatment plant? (a...

  4. Treatment of wastewater from flue gas desulphurization plants in the Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, L.H.J.; Brugghen, F.W. van der; Enoch, G.D.

    1995-06-01

    In the Netherlands, all coal fired boilers of power stations are equipped with a wet lime(stone)-gypsum flue gas desulphurization (FGD) installation in order to fulfill the emission demands for SO{sub 2}. These wet FGD installations produce a wastewater stream containing impurities like suspended solids and traces of heavy metals like As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Za. As the target values stated by the licensing authorities are very stringent, most of these heavy metals and suspended solids have to be removed to very low concentration levels. Therefore, a very efficient treatment method, based on coprecipitation ofmore » heavy metal hydroxides and sulphides, which was developed by KEMA, has been installed at all, the coal fired power plants. This paper describes the operational experiences until now with these wastewater treatment installations at two coal fired power plants using sea-water for make-up and one using fresh water. The following aspects will be discussed in more detail: reliability of the wastewater treatment processes both with respect to removal efficiency of heavy metals and suspended solids and plant operation itself influence of a changing composition of the wastewater on the performance of these wastewater treatment installations. Finally, also the impact of co-firing of the sludge produced in these wastewater treatment installations will be discussed.« less

  5. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry.

    PubMed

    Caballo, C; Sicilia, M D; Rubio, S

    2015-03-01

    This manuscript describes, for the first time, the simultaneous enantioselective determination of ibuprofen, naproxen and ketoprofen in wastewater based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The method uses a single-step sample treatment based on microextraction with a supramolecular solvent made up of hexagonal inverted aggregates of decanoic acid, formed in situ in the wastewater sample through a spontaneous self-assembly process. Microextraction of profens was optimized and the analytical method validated. Isotopically labeled internal standards were used to compensate for both matrix interferences and recoveries. Apparent recoveries for the six enantiomers in influent and effluent wastewater samples were in the interval 97-103%. Low method detection limits (MDLs) were obtained (0.5-1.2 ng L(-1)) as a result of the high concentration factors achieved in the microextraction process (i.e. actual concentration factors 469-736). No analyte derivatization or evaporation of extracts, as it is required with GC-MS, was necessary. Relative standard deviations for enantiomers in wastewater were always below 8%. The method was applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in influents and effluents from three wastewater treatment plants. All the values found for profen enantiomers were consistent with those previously reported and confirmed again the suitability of using the enantiomeric fraction of ibuprofen as an indicator of the discharge of untreated or poorly treated wastewaters. Both the analytical and operational features of this method make it applicable to the assessment of the enantiomeric fate of profens in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effective Medicinal Plant in Cancer Treatment, Part 2: Review Study

    PubMed Central

    Kooti, Wesam; Servatyari, Karo; Behzadifar, Masoud; Asadi-Samani, Majid; Sadeghi, Fatemeh; Nouri, Bijan; Zare Marzouni, Hadi

    2017-01-01

    Cancer is the second cause of death after cardiovascular diseases. With due attention to rapid progress in the phytochemical study of plants, they are becoming popular because of their anticancer effects. The aim of this study was to investigate the effective medicinal plants in the treatment of cancer and study their mechanism of action. In order to gather information the keywords “traditional medicine,” “plant compounds,” “medicinal plant,” “medicinal herb,” “toxicity,” “anticancer effect,” “cell line,” and “treatment” were searched in international databases such as ScienceDirect, PubMed, and Scopus and national databases such as Magiran, Sid, and Iranmedex, and a total of 228 articles were collected. In this phase, 49 nonrelevant articles were excluded. Enhancement P53 protein expression, reducing the expression of proteins P27, P21, NFκB expression and induction of apoptosis, inhibition of the PI3K/Akt pathway, and reduction of the level of acid phosphatase and lipid peroxidation are the most effective mechanisms of herbal plants that can inhibit cell cycle and proliferation. Common treatments such as radiotherapy and chemotherapy can cause some complications. According to results of this study, herbal extracts have antioxidant compounds that can induce apoptosis and inhibit cell proliferation by the investigated mechanisms. PMID:28359161

  7. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Use of medicinal plants for the treatment of measles in Nigeria.

    PubMed

    Sonibare, M A; Moody, J O; Adesanya, E O

    2009-03-18

    The present study was an ethnobotanical survey of three Local Government areas of the Ijebu area of Ogun State in southwest Nigeria for plants used in the treatment of measles. Unstructured interviews were conducted among both urban and rural dwellers of three major groups of Ijebu people inhabiting the area (Ijebu North, Ijebu northeast and Ijebu Ode Local Governments). A total of 20 respondents constituted by herbalists, herbsellers and old people that have privileged information on the plants used in the treatment of measles among children were encountered during the survey. Twenty-three plant species belonging to 18 Angiosperm families were said to possess curative properties for the cure of measles among the local populace. Amongst the most frequently used plants are Elytraria marginata Vahl, Peperomia pellucida (L.) Humb., Bonpl. & Kunth, Vernonia amygdalina Del., Momordica charantia L., Newbouldia laevis (P. Beauv.) Seem. ex Bureau, and Ocimum gratissimum L. The most frequently mentioned family is Cucurbitaceae. The mode of preparation and recommended dosages are enumerated in this paper. The results of the study call for an urgent need of the introduction of a strategy for the conservation of indigenous medicinal plants in the area.

  9. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  10. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA.

    PubMed

    Naquin, Anthony; Shrestha, Arsen; Sherpa, Mingma; Nathaniel, Rajkumar; Boopathy, Raj

    2015-01-01

    Increasing uses and disposals of antibiotics to the environment have increased emergence of various antibiotic resistance. One of the sources for the spread of antibiotic resistance is wastewater treatment plant, where bacteria and antibiotics can come in contact and can acquire antibiotics resistance. There are very few studies on this subject from a small town sewage treatment plant. Therefore, this study was conducted using raw sewage as well as treated sewage from a sewage treatment plant in Thibodaux in rural southeast Louisiana in USA. Samples were collected monthly from the Thibodaux sewage treatment plant and the presence of antibiotic resistance genes was monitored. The study showed the presence of antibiotic resistance genes in both raw and treated sewage in every month of the study period. The genetic transformation assay showed the successful transformation of methicillin resistant gene, mecA to an antibiotic sensitive Staphylococcus aureus, which became antibiotic resistant within 24h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant.

    PubMed

    Hirooka, Kayako; Asano, Ryoki; Yokoyama, Atsushi; Okazaki, Masao; Sakamoto, Akira; Nakai, Yutaka

    2009-06-01

    Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated. On the basis of the efficiency of CODCr removal and the ammonia oxidation reaction, it was concluded that the nozzle-cavitation treatment did not have a negative impact on the performance of the MBR. The estimation of the inorganic material balance showed that when the mass of the excess sludge was decreased, the inorganic content of the activated sludge increased and some part of the inorganic material was simultaneously solubilized in the effluent.

  12. Integrating algaculture into small wastewater treatment plants: process flow options and life cycle impacts.

    PubMed

    Steele, Muriel M; Anctil, Annick; Ladner, David A

    2014-05-01

    Algaculture has the potential to be a sustainable option for nutrient removal at wastewater treatment plants. The purpose of this study was to compare the environmental impacts of three likely algaculture integration strategies to a conventional nutrient removal strategy. Process modeling was used to determine life cycle inventory data and a comparative life cycle assessment was used to determine environmental impacts. Treatment scenarios included a base case treatment plant without nutrient removal, a plant with conventional nutrient removal, and three other cases with algal unit processes placed at the head of the plant, in a side stream, and at the end of the plant, respectively. Impact categories included eutrophication, global warming, ecotoxicity, and primary energy demand. Integrating algaculture prior to activated sludge proved to be most beneficial of the scenarios considered for all impact categories; however, this scenario would also require primary sedimentation and impacts of that unit process should be considered for implementation of such a system.

  13. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  14. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    PubMed

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Toxic effect of single and binary treatments of synthetic and plant-derived molluscicides against Achatina fulica.

    PubMed

    Rao, I G; Singh, D K

    2002-01-01

    The toxic effect of single and binary treatments of synthetic and plant-derived molluscicides was studied against the harmful terrestrial snail Achatina fulica. In single treatments, among the synthetic molluscicides Snail Kill and cypermethrin were potent, whereas Cedrus deodara oil was more toxic among molluscicides of plant origin against A. fulica. In binary treatments, a combination of Cedrusdeodara + Alliumsativum was more toxic. The toxicities of these single and binary treatments of synthetic and plant-derived molluscicides were dose and time dependent. Copyright 2002 John Wiley & Sons, Ltd.

  16. Performance evaluation of water treatment plants based on microfilter technology for rural water supply.

    PubMed

    Reddy, R C; Ravindra Rao, R; Kelkar, P S; Rao, I R; Ramarao, K G; Elyas, S I

    2002-01-01

    Panchayat Raj Engineering Department (PRED), Government of Andhra Pradesh installed package water treatment plants on a trial basis, in some villages in Krishna district of Andhra Pradesh. These plants with a design capacity of 6000-12000 lph were supplied and erected by a firm in Hyderabad. These plants consist of three stage treatment comprising of pulverized quartz filter bed, activated carbon bed and micro filter unit followed by disinfection. At the request of PRED, comprehensive studies were carried on individual plants which includes a detailed appraisal of the performance of the individual components of the plant, infrastructure at the village level for routine O&M of the plants as also views of the community regarding their acceptability of the system. This paper presents the findings and conclusions of the performance evaluation study.

  17. Application of NASA-developed technology to the automatic control of municipal sewage treatment plants

    NASA Technical Reports Server (NTRS)

    Hiser, L. L.; Herrera, W. R.

    1973-01-01

    A search was made of NASA developed technology and commercial technology for process control sensors and instrumentation which would be applicable to the operation of municipal sewage treatment plants. Several notable items were found from which process control concepts were formulated that incorporated these items into systems to automatically operate municipal sewage treatment plants. A preliminary design of the most promising concept was developed into a process control scheme for an activated sludge treatment plant. This design included process control mechanisms for maintaining constant food to sludge mass (F/M) ratio, and for such unit processes as primary sedimentation, sludge wastage, and underflow control from the final clarifier.

  18. Simulation analysis of capacity and performance improvement in wastewater treatment plants: Case study of Alexandria eastern plant

    NASA Astrophysics Data System (ADS)

    Moursy, Aly; Sorour, Mohamed T.; Moustafa, Medhat; Elbarqi, Walid; Fayd, Mai; Elreedy, Ahmed

    2018-05-01

    This study concerns the upgrading of a real domestic wastewater treatment plant (WWTP) supported by simulation. The main aims of this work are to: (1) decide between two technologies to improve WWTP capacity and its nitrogen removal efficiency; membrane bioreactor (MBR) and integrated fixed film activated sludge (IFAS), and (2) perform a cost estimation analysis for the two proposed solutions. The model used was calibrated based on data from the existing WWTP, namely, Eastern plant and located in Alexandria, Egypt. The activated sludge model No. 1 (ASM1) was considered in the model analysis by GPS-X 7 software. Steady-state analysis revealed that high performances corresponded to high compliance with Egyptian standards were achieved by the two techniques; however, MBR was better. Nonetheless, the two systems showed poor nitrogen removal efficiency according to the current situation, which reveals that the plant needs a modification to add an anaerobic treatment unit before the aerobic zone.

  19. A trial of herbicide treatments for enrichment plantings of cherrybark oak

    Treesearch

    James H. Miller; E.C. Burkhardt

    1987-01-01

    An ongoing screening trial is testing nine herbicide treatments for establishing planted cherrybark oak (Quercus falcata var. Pagodaefolia Ell.) on the loessial bluff forests in weutern Mississippi. The test treatments include tree injection (TordonTM RTU) and two rates of two soil-active pelleted herbicides...

  20. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by

  1. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.

    PubMed

    Cromar, N J; Sweeney, D G; O'Brien, M J; Fallowfield, H J

    2005-01-01

    This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.

  2. Wastewater management in small towns - understanding the failure of small treatment plants in Bolivia.

    PubMed

    Cossio, Claudia; McConville, Jennifer; Rauch, Sebastien; Wilén, Britt-Marie; Dalahmeh, Sahar; Mercado, Alvaro; Romero, Ana M

    2018-06-01

    Wastewater management in developing countries is a challenge, especially in small towns with rapid population growth. This study aims at assessing the performance and management of five treatment plants (TPs) in rural areas of Cochabamba, Bolivia. Pollutants' concentrations, wastewater flows, hydraulic and organic loads and hydraulic retention times were determined in three small treatment plants (2000-10,000 population equivalent [p.e.]; flow > 432 m 3 /d) and two very small treatment plants (<2000 p.e.; flow < 432 m 3 /d). The performance assessment was based on operational parameters, treatment efficiency and effluent quality. Management data were collected through semi-structured interviews with managers of local water associations. The results support that the poor performance of the TPs is due to lack of operational expertise and financial resources for adequate operation and maintenance (O&M). Additionally, effective treatment was affected by the type of technology used and whether the plant design included plans for O&M with available resources. This study contributes to a better understanding of actual operating conditions of wastewater TPs in small towns, thus providing needed information regarding technology selection, design, implementation and operation.

  3. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.T. Rader

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment.more » Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.« less

  4. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2017-03-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity ( r = 0.730), TSS ( r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  5. Medicinal plants used in Lesotho for treatment of reproductive and post reproductive problems.

    PubMed

    Moteetee, A; Seleteng Kose, L

    2016-12-24

    Reproductive healthcare has been highlighted as a major challenge in Lesotho mainly due to the high prevalence of HIV/AIDS and sexually transmitted infections. As a result other reproductive ailments have not received much attention, particularly because healthcare facilities are already limited and many of them are inaccessible. For these reasons, medicinal plants play a major role in primary healthcare system in the country, in addition the plants are easily accessible, more affordable, and their use forms part of the cultural heritage. However, documentation of medicinal plants used for reproductive ailments is scattered, more importantly the biological and pharmacological properties, as well as toxicity of many of these plants are not yet known. To document the plants used by both male and female Basotho (residing in Lesotho) for the treatment of reproductive ailments, to explore their recorded biological and pharmacological effects as well as their toxicity, and to establish if these plants are used for similar purposes in other southern African cultures. The results stem from published findings of recent interviews of traditional medicinal practitioners in the Maseru District of Lesotho, first author's own experiences and observations from the Qacha's Nek District as well as comprehensive literature survey including numerous books and unpublished data. Electronic databases such as Google, Google Scholar, PubMed, and ScienceDirect were also used to search for the chemical compounds, pharmacological activity, and toxicity of the plants. A total of 87 plant species are reported to be used for the treatment of several reproductive problems such as infertility, complications associated with pregnancy (twelve plants are used to treat conditions such as colic, heartburn, nausea, and constipation), cleansing and/ or toning of the uterus (with a purpose either to induce pregnancy or to get rid of the placenta, for example Withania somnifera and Zantedeschia

  6. Study of the effect of DMSO on VOS odour production in a wastewater plant.

    PubMed

    Cheng, X; Peterkin, E D; Burlingame, G A

    2007-01-01

    Odours caused by volatile organic sulphides (VOS) have a history spanning over 20 years for Philadelphia's Northeast Water Pollution Control Plant (NEWPCP). A "canned corn" type of odour has caused residential complaints. Traditional odour control approaches based on hydrogen sulphide failed. This study confirmed that dimethyl sulphoxide (DMSO) from a chemical facility was the dominant cause of the "canned corn" nuisance odour in the form of dimethyl sulphide (DMS). During a discharge, DMSO concentrations up to 12 mg/L were found in the influent of the NEWPCP. Each DMSO concentration peak induced a DMS peak. DMS concentrations increased from less than 50 microg/L to 6 mg/L with a corresponding decrease in DMSO. Approximately 79% of DMSO from the primary sedimentation influent was passed to the effluent, and to downstream processes, such as the aeration tanks where the DMS was volatilised by the aeration. The DMS partial pressure in ambient air of NEWPCP can be between 0.03 and 0.18 x 10(-3) atm during a DMSO discharge. From the above information, the potential of VOS production is estimated and a practical plan for remediation can be designed.

  7. Online biochemical oxygen demand monitoring for wastewater process control--full-scale studies at Los Angeles Glendale wastewater plant, California.

    PubMed

    Iranpour, Reza; Zermeno, Miguel

    2008-04-01

    The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow

  8. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota.

    PubMed

    Leslie, H A; Brandsma, S H; van Velzen, M J M; Vethaak, A D

    2017-04-01

    Environmental contamination by plastic particles, also known as 'microplastics', brings synthetic materials that are non-degradable and biologically incompatible into contact with ecosystems. In this paper we present concentration data for this emerging contaminant in wastewater treatment plants (WWTPs) and freshwater and marine systems, reflecting the routes via which these particles can travel and the ecosystems they potentially impact along their path. Raw sewage influents, effluents and sewage sludge from seven municipal WWTPs in the Netherlands contained mean particle concentrations of 68-910L -1 , 51-81L -1 and 510-760kg -1 wet weight (ww), respectively (particle sizes between 10 and 5000μm). Even after treatment, wastewater constitutes a source of microplastic pollution of surface waters, and via biosolids applications in farming and forestry, plastic retained in sewage sludge can be transferred to terrestrial environments. The WWTPs investigated here had a mean microplastics retention efficiency of 72% (s.d. 61%) in the sewage sludge. In the receiving waters of treated and untreated wastewaters, we detected high microplastic levels in riverine suspended particulate matter (1400-4900kg -1 dry weight (dw)) from the Rhine and Meuse rivers. Amsterdam canal water sampled at different urban locations contained microplastic concentrations (48-187L -1 ), similar to those observed in wastewater that is emitted from sewage treatment facilities in the area. At least partial settling of the particles occurs in freshwater as well, as indicated by microplastics in urban canal sediments (<68 to 10,500particleskg -1 dw). Microplastics in suspension in the water column have the potential to be discharged into the sea with other riverine suspended particulates. We report microplastic concentrations from 100 up to 3600particleskg -1 dry sediment collected at 15 locations along the Dutch North Sea coast. The high microplastic enrichment in marine sediments compared to most

  9. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery

  10. Microbial fuel cells as pollutant treatment units: Research updates.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-10-01

    Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Economical and technical efficiencies evaluation of full scale piggery wastewater treatment BNR plants.

    PubMed

    Oa, S W; Choi, E; Kim, S W; Kwon, K H; Min, K S

    2009-01-01

    A method evaluating the economic efficiency of piggery waste treatment plant based on kinetics for nitrogen removal performances is executed in this study and five full scale plants were evaluated, monitored intensively during one year under steady-state conditions. The performance data from those surveyed plants were recalculated by first-order kinetic equation instead of the Monod's equation, and the nitrogen removal kinetics related with COD/TKN ratios. Two plants adapting two extreme strategies for pre treatment, 'excess phase separation', and 'minimum phase separation', were evaluated by the assessment of life cycle cost (LCC). Although the compared two plants use an opposite strategy to each other, similar evaluation results are deduced by nitrogen removal efficiencies and operational and construction costs. But the proportions of constituent elements are as different as two opposite strategies, so electrical and construction costs are inversely proportional to chemical costs and operational costs respectively.

  12. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    PubMed

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  13. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  14. Impact of Wet-Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  15. Impact of Wet Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  16. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  17. Phytotherapeutic Information on Plants Used for the Treatment of Tuberculosis in Eastern Cape Province, South Africa

    PubMed Central

    Lawal, I. O.; Grierson, D. S.; Afolayan, A. J.

    2014-01-01

    The current rate of deforestation in Africa constitutes a serious danger to the future of medicinal plants on this continent. Conservation of these medicinal plants in the field and the scientific documentation of our knowledge about them are therefore crucial. An ethnobotanical survey of plants used for the treatment of tuberculosis (TB) was carried out in selected areas of the Eastern Cape, South Africa. These areas were Hala, Ncera, Sheshegu, and Gquamashe, all within the Nkonkobe Municipality. One hundred informants were interviewed. The survey included the identification of scientific and vernacular names of the plants used for treatment of TB as well as the methods of preparation and administration, the part used, dosage, and duration of treatment. The survey revealed 30 plants belonging to 21 families which are commonly used by traditional healers for the treatment of TB and associated diseases. Of these plants Clausena anisata, Haemanthus albiflos, and Artemisia afra were the most cited. The leaves were the most common part used in the medicinal preparations. Our findings are discussed in relation to the importance of the documentation of medicinal plants. PMID:24864158

  18. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  19. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  20. 40 CFR 63.1586 - What are the emission points and control requirements for a non-industrial POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control requirements for a non-industrial POTW treatment plant? 63.1586 Section 63.1586 Protection of... Pollutants: Publicly Owned Treatment Works Non-Industrial Potw Treatment Plant Requirements § 63.1586 What are the emission points and control requirements for a non-industrial POTW treatment plant? There are...

  1. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    PubMed

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  2. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem.

    PubMed

    Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll

    2016-09-01

    Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic

  3. Effects of ecological restoration alternative treatments on nonnative plant species establishment

    Treesearch

    Michael T. Stoddard; Christopher M. McGlone; Peter Z. Fule

    2008-01-01

    Disturbances generated by forest restoration treatments have the potential for enhancing the establishment of nonnative species thereby impeding long-term native plant recovery. In a ponderosa pine forest next to the Fort Valley Experimental Forest, Arizona, we examined the establishment of nonnative species after three alternative treatments with different intensities...

  4. Ethnopharmacological survey on medicinal plants used in snakebite treatments in Western and Sabaragamuwa provinces in Sri Lanka.

    PubMed

    Dharmadasa, R M; Akalanka, G C; Muthukumarana, P R M; Wijesekara, R G S

    2016-02-17

    Sri Lanka has a great diversity of snake species. In this relation, over 40,000 cases of snakebite accidents are reported annually from different agro-ecological regions of the country. Since more than 95% of victims rely on traditional treatments, there is an urgent necessity to improve the system. Traditional knowledge on snakebite treatments has been passed on from generation to generation within families. Unfortunately, there has been a limited update of information on pertinent issues related to this subject. In the present study we conducted a comprehensive survey on the types of medicinal plant materials, including the specific plant parts that are available for this purpose. In addition, various treatment types, frequency index, heavily used and rare materials, family wise distribution, challenges faced by traditional practitioners and future prospects were also explored. The present survey covered two provinces with a high population of traditional practitioners for snakebites treatment in Sri Lanka.Information was gathered from a total of seventy-four (74) traditional practitioners from the Sabaragamuwa and Western provinces. A questionnaire was prepared and pre-tested by 10-15 respondents prior to the survey. Actual data were gathered through face-to-face interviews. Collected data were tabulated and analyzed. A total of 341 different plant species belonging to 99 families were documented. The highest number of plants was reported from the family Fabaceae (32 species). This was followed by Malvaceae (16 species), Asteraceae (15 species), Rutaceae (13 species Apocyanaceae (14 species), Lamiaceae (11 species), Poaceae, Euphorbaceae and Phyllanthaceae (10 species per each) respectively. Different parts of the plant such as leaves (53.67%), barks (26.10%), entire plant (14.08%), roots (10.26%), bulbs (8.80%), seeds (7.62%), fruits (6.45%), buds (5.87%), flowers (3.23%) stems (2.93%) and latex (2.05%) were used for the preparation of nine different types of

  5. Automatic control of the effluent turbidity from a chemically enhanced primary treatment with microsieving.

    PubMed

    Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J

    2017-10-01

    For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.

  6. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    USGS Publications Warehouse

    Sibrell, P.L.; Watten, B.; Boone, T.; ,

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and <10% of manganese (Mn) (10 mg/L in influent). Ferrous iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new

  7. Sludge dewatering and stabilization in drying reed beds: characterization of three full-scale systems in Catalonia, Spain.

    PubMed

    Uggetti, Enrica; Llorens, Esther; Pedescoll, Anna; Ferrer, Ivet; Castellnou, Roger; García, Joan

    2009-09-01

    Optimization of sludge management can help reducing sludge handling costs in wastewater treatment plants. Sludge drying reed beds appear as a new and alternative technology which has low energy requirements, reduced operating and maintenance costs, and causes little environmental impact. The objective of this work was to evaluate the efficiency of three full-scale drying reed beds in terms of sludge dewatering, stabilization and hygienisation. Samples of influent sludge and sludge accumulated in the reed beds were analysed for pH, Electrical Conductivity, Total Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand, Biochemical Oxygen Demand, nutrients (Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP)), heavy metals and faecal bacteria indicators (Escherichiacoli and Salmonella spp.). Lixiviate samples were also collected. There was a systematic increase in the TS concentration from 1-3% in the influent to 20-30% in the beds, which fits in the range obtained with conventional dewatering technologies. Progressive organic matter removal and sludge stabilization in the beds was also observed (VS concentration decreased from 52-67% TS in the influent to 31-49% TS in the beds). Concentration of nutrients of the sludge accumulated in the beds was quite low (TKN 2-7% TS and TP 0.04-0.7% TS), and heavy metals remained below law threshold concentrations. Salmonella spp. was not detected in any of the samples, while E. coli concentration was generally lower than 460MPN/g in the sludge accumulated in the beds. The studied systems demonstrated a good efficiency for sludge dewatering and stabilization in the context of small remote wastewater treatment plants.

  8. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions.

    PubMed

    Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José

    2016-10-01

    The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Environmental enhancement of swine lagoons through influent treatment

    USDA-ARS?s Scientific Manuscript database

    Confined swine production generates large volumes of wastewater typically stored and treated in anaerobic lagoons. Failure of these lagoons during tropical storms in North Carolina along with major public environmental concerns led to a permanent state moratorium of construction of new anaerobic lag...

  10. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    PubMed

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  12. Characterization of staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398.

    PubMed

    Gómez, Paula; Lozano, Carmen; Benito, Daniel; Estepa, Vanesa; Tenorio, Carmen; Zarazaga, Myriam; Torres, Carmen

    2016-05-01

    The objective of this study was to determine the prevalence of Staphylococcus in urban wastewater treatment plants (UWTP) of La Rioja (Spain), and to characterize de obtained isolates. 16 wastewater samples (8 influent, 8 effluent) of six UWTPs were seeded on mannitol-salt-agar and oxacillin-resistance-screening-agar-base for staphylococci and methicillin-resistant Staphylococcus aureus recovery. Antimicrobial susceptibility profile was determined for 16 antibiotics and the presence of 35 antimicrobial resistance genes and 14 virulence genes by PCR. S. aureus was typed by spa, agr, and multilocus-sequence-typing, and the presence of immune-evasion-genes cluster was analyzed. Staphylococcus spp. were detected in 13 of 16 tested wastewater samples (81%), although the number of CFU/mL decreased after treatment. 40 staphylococci were recovered (1-5/sample), and 8 of them were identified as S. aureus being typed as (number of strains): spa-t011/agr-II/ST398 (1), spa-t002/agr-II/ST5 (2), spa-t3262/agr-II/ST5 (1), spa-t605/agr-II/ST126 (3), and spa-t878/agr-III/ST2849 (1). S. aureus ST398 strain was methicillin-resistant and showed a multidrug resistance phenotype. Virulence genes tst, etd, sea, sec, seg, sei, sem, sen, seo, and seu, were detected among S. aureus and only ST5 strains showed genes of immune evasion cluster. Thirty-two coagulase-negative Staphylococcus of 12 different species were recovered (number of strains): Staphylococcus equorum (7), Staphylococcus vitulinus (4), Staphylococcus lentus (4), Staphylococcus sciuri (4), Staphylococcus fleurettii (2), Staphylococcus haemolyticus (2), Staphylococcus hominis (2), Staphylococcus saprophyticus (2), Staphylococcus succinus (2), Staphylococcus capitis (1), Staphylococcus cohnii (1), and Staphylococcus epidermidis (1). Five presented a multidrug resistance phenotype. The following resistance and virulence genes were found: mecA, lnu(A), vga(A), tet(K), erm(C), msr(A)/(B), mph(C), tst, and sem. We found that

  13. Heavy metal extractable forms in sludge from wastewater treatment plants.

    PubMed

    Alvarez, E Alonso; Mochón, M Callejón; Jiménez Sánchez, J C; Ternero Rodríguez, M

    2002-05-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is widely accepted that the determination of total elements does not give an accurate estimation of the potential environmental impact. So, it is necessary to apply sequential extraction techniques to obtain a suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the BCR's guidelines was applied to sludge samples collected from each sludge treatment step of five municipal activated sludge plants. Al. Cd, Co, Cu, Cr, Fe, Mn, Hg, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes none of metal concentrations exceeded maximum permitted levels. In most of the metal elements under considerations, results showed a clear rise along the sludge treatment in the proportion of two less-available fractions (oxidizable metal and residual metal).

  14. Assessment of wastewater treatment plant effluent effects on fish reproduction

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  15. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants.

    PubMed

    Bauer, H; Fuerhacker, M; Zibuschka, F; Schmid, H; Puxbaum, H

    2002-09-01

    Raw wastewater is a potential carrier of pathogenic microorganisms and may pose a health risk when pathogenic microorganisms become aerosolized during aeration. Two different types of wastewater treatment plants were investigated, and the amounts of cultivable bacteria and fungi were measured in the emitted aerosols. Average concentrations of 17,000 CFU m(-3) of mesophilic, 2,100 CFU m(-3) of TSA-SB bacteria (bacteria associated with certain waterborne virulence factors), 1700 CFU m(-3) of mesophilic and 45 CFU m(-3) of thermotolerant fungi, were found in the aerosol emitted by the aeration tank of the activated sludge plant. In the aerosol of the fixed-film reactor 3000 CFU m(-3) mesophilic and 730CFUm(-3) TSA-SB bacteria, and 180 CFUm(-3) mesophilic and 14 CFU m(-3) thermotolerant fungi were measured. The specific emissions per population equivalent between the two types of treatment plants differed by two orders of magnitude. The microbial flux based on the open water surface area of the two treatment plants was similar. The aerosolization ratios of cultivable bacteria (expressed as CFU m(-3) aerosol/m(-3) wastewater) ranged between 8.4 x 10(-11) and 4.9 x 10(-9). The aerosolization ratio of fungi was one to three orders of magnitude higher and a significant difference between the two types of treatment plants could be observed.

  16. The role of tannins in conventional and membrane treatment of tannery wastewater.

    PubMed

    Munz, G; De Angelis, D; Gori, R; Mori, G; Casarci, M; Lubello, C

    2009-05-30

    The role that tannins play in tannery wastewater treatment has been evaluated employing a pilot Membrane Bioreactor (MBR) plant and a full scale Conventional Activated Sludge Process (CASP) plant conducted in parallel. The proposed methodology has established the preliminary use of respirometry to examine the biodegradability of a selection of commercial products (synthetic and natural tannins); the subsequent analysis, by means of spectrophotometric reading and RP-IPC (Reverse-Phase Ion-Pair) liquid chromatography, estimates the concentrations of natural tannins and naphthalenesulfonic tanning agents in the influent and effluent samples. The results show that a consistent percentage of the Total Organic Carbon (TOC) in the effluent of the biological phase of the plants is attributable to the presence of natural and synthetic (Sulfonated Naphthalene-Formaldehyde Condensates, SNFC) tannins (17% and 14% respectively). The titrimetric tests that were aimed at evaluating the levels of inhibition on the nitrifying biomass samples did not allow a direct inhibiting effect to be associated with the concentration levels of the tannin in the effluent. Nonetheless, the reduced specific growth rates of ammonium and nitrite oxidising bacteria imply that a strong environmental pressure is present, if not necessarily due to the concentration of tannins, due to the wastewater as a whole. The differences that have emerged by comparing the two technologies (CASP and MBR), in regards to the role that tannins play in terms of biodegradability, did not appear to be significant.

  17. General RMP Guidance - Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Additional information for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems; about compliance for chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  18. TOXICITY REDUCTION EVALUATION (TRE) AT A MUNICIPAL WASTEWATER TREATMENT PLANT USING MUTAGENICITY AS AN END- POINT

    EPA Science Inventory

    Previous work revealed substantial levels of mutagenicity in effluents from certain municipal wastewater treatment plants. One of these treatment plants was selected for further study to track the effluent mutagenicity to its sources, to chemically characterize the mutagenicity, ...

  19. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  20. Efficacy of carbon dioxide treatments for the control of the two-spotted spider mite, Tetranychus urticae, and treatment impact on plant seedlings.

    PubMed

    Gong, Ya-Jun; Cao, Li-Jun; Wang, Ze-Hua; Zhou, Xiao-Yi; Chen, Jin-Cui; Hoffmann, Ary Anthony; Wei, Shu-Jun

    2018-03-28

    To develop a new control method for the two-spotted spider mite (TSSM), Tetranychus urticae, we investigated the effect of controlled atmospheres of carbon dioxide (CO 2 ) on TSSM mortality under different concentrations and treatment periods, and evaluated the impact of treatments on seedlings of five host plants of TSSM. Egg hatching rate of TSSM was reduced to 37.7, 5.4 or 0% after 24 h treatment involving concentrations of 16.7, 33.3 or 50%, respectively. Mobile stages (nymphs and adult) of TSSM were completely controlled after 24 h treatment at concentrations higher than 33.3%. After 4 h at concentrations of 33.3 or 50%, 1st-day survival rate for all mobile stages was 45.3 or 36.0%, respectively, whereas after 8 or 16 h treatments, all values were decreased to zero. Seedlings of four major host plants of TSSM (cucumber, eggplant, rape, green peppers) were damaged to varying degrees after 24 h at the three concentrations, but strawberry, another host plant, was not damaged. Cucumber suffered the most serious damage, resulting in wilting and death. In conclusion, controlled atmospheres of CO 2 can kill TSSM, particularly at high concentrations and with long treatment times. It can be used to control TSSM on strawberry, but should be used cautiously on other host plants.

  1. Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment.

    PubMed

    Xu, Dong; Liu, Sitong; Chen, Qian; Ni, Jinren

    2017-12-01

    The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated. The monitored results of the activated sludge sampled from six full-scale WWTPs indicated that Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria and Nitrospirae were dominant phyla, and Nitrospira was the most abundant and ubiquitous genus across the three biological zones. The anaerobic-, anoxic- and oxic-zones shared approximately similar percentages across the 50 most abundant genera, and three genera (i.e. uncultured bacterium PeM15, Methanosaeta and Bellilinea) presented statistically significantly differential abundance in the anoxic-zone. Illumina high-throughput sequences related to ammonium oxidizer organisms and denitrifiers with top50 abundance in all samples were Nitrospira, uncultured Nitrosomonadaceae, Dechloromonas, Thauera, Denitratisoma, Rhodocyclaceae (norank) and Comamonadaceae (norank). Moreover, environmental variables such as water temperature, water volume, influent ammonium nitrogen, influent chemical oxygen demand (COD) and effluent COD exhibited significant correlation to the microbial community according to the Monte Carlo permutation test analysis (p < 0.05). The abundance of Nitrospira, uncultured Nitrosomonadaceae and Denitratisoma presented strong positive correlations with the influent/effluent concentration of COD and ammonium nitrogen, while Dechloromonas, Thauera, Rhodocyclaceae (norank) and Comamonadaceae (norank) showed positive correlations with water volume and temperature. The established relationship between microbial community and environmental variables in different biologically functional zones of the six representative WWTPs at different geographical locations made the present work of potential use for evaluation of practical wastewater treatment processes.

  2. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  3. Occurrence of waterborne pathogens and Escherichia coli at offshore drinking water intakes in lake Ontario.

    PubMed

    Edge, T A; Khan, I U H; Bouchard, R; Guo, J; Hill, S; Locas, A; Moore, L; Neumann, N; Nowak, E; Payment, P; Yang, R; Yerubandi, R; Watson, S

    2013-10-01

    The occurrence of waterborne pathogens was investigated at three drinking water intakes located about 2 km offshore in Lake Ontario. Water sampling was conducted over 3 years for Campylobacter spp., Cryptosporidium spp., Giardia spp., cultivable enteric viruses, and water quality parameters. All pathogens were detected in the offshore source water for each water treatment plant (WTP1 to WTP3), although at relatively low frequencies and concentrations. Giardia was the most common pathogen, occurring in 36% of water samples from the influent of WTP1 (n = 46), and with a maximum concentration of 0.70 cysts/liter in this influent. Cryptosporidium occurred as frequently as 15% in the WTP2 influent (n = 35), with a maximum concentration of 0.40 oocysts/liter in the WTP1 influent. The human Bacteroidales HF183 DNA marker was most common in the WTP1 influent (19%), and this was the only WTP where the Cryptosporidium hominis genotype was detected. No water quality parameter was predictive of pathogen occurrence across all three WTP influents. Escherichia coli was often below detection when pathogens were detected, and spikes in E. coli concentrations often did not coincide with pathogen occurrence. After summer rain events, river plumes had E. coli concentrations as high as 222 CFU/100 ml in surface waters 2 km offshore, without impacting drinking water intakes below the thermocline on the lake bottom. At times, prechlorination to control mussels at offshore intake cribs compromised the use of E. coli for "raw" water quality assessment, particularly for chlorine-resistant Cryptosporidium. E. coli measured by standard methods did not reliably predict pathogen occurrence at drinking water intakes in offshore ecosystems.

  4. Occurrence of Waterborne Pathogens and Escherichia coli at Offshore Drinking Water Intakes in Lake Ontario

    PubMed Central

    Khan, I. U. H.; Bouchard, R.; Guo, J.; Hill, S.; Locas, A.; Moore, L.; Neumann, N.; Nowak, E.; Payment, P.; Yang, R.; Yerubandi, R.; Watson, S.

    2013-01-01

    The occurrence of waterborne pathogens was investigated at three drinking water intakes located about 2 km offshore in Lake Ontario. Water sampling was conducted over 3 years for Campylobacter spp., Cryptosporidium spp., Giardia spp., cultivable enteric viruses, and water quality parameters. All pathogens were detected in the offshore source water for each water treatment plant (WTP1 to WTP3), although at relatively low frequencies and concentrations. Giardia was the most common pathogen, occurring in 36% of water samples from the influent of WTP1 (n = 46), and with a maximum concentration of 0.70 cysts/liter in this influent. Cryptosporidium occurred as frequently as 15% in the WTP2 influent (n = 35), with a maximum concentration of 0.40 oocysts/liter in the WTP1 influent. The human Bacteroidales HF183 DNA marker was most common in the WTP1 influent (19%), and this was the only WTP where the Cryptosporidium hominis genotype was detected. No water quality parameter was predictive of pathogen occurrence across all three WTP influents. Escherichia coli was often below detection when pathogens were detected, and spikes in E. coli concentrations often did not coincide with pathogen occurrence. After summer rain events, river plumes had E. coli concentrations as high as 222 CFU/100 ml in surface waters 2 km offshore, without impacting drinking water intakes below the thermocline on the lake bottom. At times, prechlorination to control mussels at offshore intake cribs compromised the use of E. coli for “raw” water quality assessment, particularly for chlorine-resistant Cryptosporidium. E. coli measured by standard methods did not reliably predict pathogen occurrence at drinking water intakes in offshore ecosystems. PMID:23835181

  5. Effects of habitat management treatments on plant community composition and biomass in a Montane wetland

    USGS Publications Warehouse

    Austin, J.E.; Keough, J.R.; Pyle, W.H.

    2007-01-01

    Grazing and burning are commonly applied practices that can impact the diversity and biomass of wetland plant communities. We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the U.S. Fish and Wildlife Service. Our study area was Grays Lake, a large, montane wetland in southeastern Idaho that is bordered by extensive wet meadows. We identified seven plant cover types, representing the transition from dry meadow to deep wetland habitats: mixed deep marsh, spikerush slough, Baltic rush (Juncus balticus), moist meadow, alkali, mesic meadow, and dry meadow. We compared changes in community composition and total aboveground biomass of each plant cover type between 1998, when all units had been idled for three years, and 1999 (1 yr post-treatment) and 2000 (2 yr post-treatment). Analysis using non-metric multidimensional scaling indicated that compositional changes varied among cover types, treatments, and years following treatment. Treatment-related changes in community composition were greatest in mixed deep marsh, Baltic rush, and mesic meadow. In mixed deep marsh and Baltic rush, grazing and associated trampling contributed to changes in the plant community toward more open water and aquatic species and lower dominance of Baltic rush; grazing and trampling also seemed to contribute to increased cover in mesic meadow. Changing hydrological conditions, from multiple years of high water to increasing drought, was an important factor influencing community composition and may have interacted with management treatments. Biomass differed among treatments and between years within cover types. In the wettest cover types, fall burning and grazing rotation treatments had greater negative impact on biomass than the idle treatment, but in drier cover types, summer grazing stimulated

  6. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  7. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran.

    PubMed

    Mirzaei, Roya; Yunesian, Masud; Nasseri, Simin; Gholami, Mitra; Jalilzadeh, Esfandiyar; Shoeibi, Shahram; Mesdaghinia, Alireza

    2018-04-01

    The presence of most prescribed antibiotic compounds from four therapeutic classes (β-lactam, cephalosporins, macrolides, fluoroquinolones) were studied at two full-scale WWTPs, two rivers, thirteen groundwater resources, and five water treatment plants in Tehran. Analytical methodology was based on high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. Samples were collected at 33 sample locations on three sampling periods over four months from June to August 2016. None of the target antibiotics were detected in groundwater resources and water treatment plants, while seven out of nine target antibiotics were analyzed in two studied river waters as well as the influent and effluent of wastewater treatment plants at concentrations ranging from influent (552.6-796.2ng/L) and effluent (127-248.7ng/L) samples of WWTP A, whereas cephalosporins including cephalexin (523.3-977.7ng/L) and cefixime (278.65 to 422.1ng/L) were the most abundant detected antibiotics in the influent and effluent of WWTP B. Aqueous phase removal efficiencies were assessed and ranged from 339.83% to 100% for the seven detected antibiotics. "Negative removals" were observed for erythromycin, azithromycin, and cefixime due to the deconjugation of conjugated metabolites via biological transformation in the studied WWTPs. From a statistical point of view, significant differences (p<0.05) were observed in the concentrations of cefixime, cephalexin, azithromycin, and erythromycin in the effluent of both studied WWTPs. Ciprofloxacin and cephalexin were the most abundant detected antibiotics in the two studied river waters. Statistical results revealed that there were significant differences in the concentrations of ciprofloxacin, azithromycin, and erythromycin (p<0.05) in Firozabad ditch (receiving WWTP effluent) and Kan River (non-receiving WWTP effluent) which demonstrated that WWTPs discharges could

  8. Anaerobic co-digestion of sludge with other organic wastes in small wastewater treatment plants: an economic considerations evaluation.

    PubMed

    Pavan, P; Bolzonella, D; Battistoni, E; Cecchi, F

    2007-01-01

    This paper deals with an economic comparison between costs and incomes in small wastewater treatment plants where the anaerobic co-digestion process of sludge and biowaste with energy recovery is operated. Plants in the size range 1,000-30,000 persons equivalent (pe) were considered in the study: typical costs, comprehensive of capital and operating costs, were in the range euro69-105 per person per year depending on the plant size: the smaller the size the higher the specific cost. The incomes deriving from taxes and fees for wastewater treatment are generally in the range euro36-54 per person per year and can only partially cover costs in small wastewater treatment plants. However, the co-treatment of biowaste and the use of produced energy for extra credits (green certificates) determine a clear improvement in the possible revenues from the plant. These were calculated to be euro23-25 per person per year; as a consequence the costs and incomes can be considered comparable for wastewater treatment plants (WWTPs) with size larger than 10,000 pe. Therefore, anaerobic co-digestion of biowaste and sludge can also be considered a sustainable solution for small wastewater treatment plants in rural areas where several different kinds of biowaste are available to enhance biogas production in anaerobic reactors.

  9. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    PubMed

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  10. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  11. Potential for polyhydroxyalkanoate production on German or European municipal waste water treatment plants.

    PubMed

    Pittmann, T; Steinmetz, H

    2016-08-01

    Biopolymers, which are made of renewable raw materials and/or biodegradable residual materials present a possible alternative to common plastic. A potential analysis, based on experimental results in laboratory scale and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 20% of the 2015 worldwide biopolymer production. In addition a profound estimation regarding all European Union member states showed that theoretically about 115% of the actual worldwide biopolymer production could be produced on European waste water treatment plants. With an upgraded biopolymer production and a theoretically reachable biopolymer proportion of around 60% of the cell dry weight a total of 1,794,656tPHAa or approximately 236% of today's biopolymer production could be produced on waste water treatment plants in the European Union, using primary sludge as raw material only. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    PubMed

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.

  13. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  14. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.

    PubMed

    Anumol, Tarun; Vijayanandan, Arya; Park, Minkyu; Philip, Ligy; Snyder, Shane A

    2016-01-01

    The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of anaerobic digestion and liming on plant availability of phosphorus in iron- and aluminium-precipitated sewage sludge from primary wastewater treatment plants.

    PubMed

    Alvarenga, Emilio; Øgaard, Anne Falk; Vråle, Lasse

    2017-04-01

    More efficient plant utilisation of the phosphorus (P) in sewage sludge is required because rock phosphate is a limited resource. To meet environmental legislation thresholds for P removal from wastewater (WW), primary treatment with iron (Fe) or aluminium (Al) coagulants is effective. There is also a growing trend for WW treatment plants (WWTPs) to be coupled to a biogas process, in order to co-generate energy. The sludge produced, when stabilised, is used as a soil amendment in many countries. This study examined the effects of anaerobic digestion (AD), with or without liming as a post-treatment, on P release from Fe- and Al-precipitated sludges originating from primary WWTPs. Plant uptake of P from Fe- and Al-precipitated sludge after lime treatment but without AD was also compared. Chemical characterisation with sequential extraction of P and a greenhouse experiment with barley (Hordeum vulgare) were performed to assess the treatment effects on plant-available P. Liming increased the P-labile fraction in all cases. Plant P uptake increased from 18.5 mg pot -1 to 53 mg P pot -1 with liming of Fe-precipitated sludge and to 35 mg P pot -1 with liming of the digestate, while it increased from 18.7 mg pot -1 to 39 and 29 mg P pot -1 for the Al-precipitated substrate and digestate, respectively. Thus, liming of untreated Fe-precipitated sludge and its digestate resulted in higher P uptake than liming its Al-precipitated counterparts. AD had a negative impact on P mobility for both sludges.

  16. Operation, Maintenance and Performance Evaluation of the Potomac Estuary Experimental Water Treatment Plant. Appendix. Volume 2.

    DTIC Science & Technology

    1983-09-01

    1.2 . 7*96.69 Ŕ.40 2.43 1.16 1.7 T*100 96.40 S.45 6.22 1.4 701100049 940 .36 4.11 1.0 MKWTP Finished Water (See Table H4-20 for Results) Nu mbrs ...carbon submerged in water when loading. This provides for a uniformly packed column. c. Continue adding carbon and column sections until the desired...difficult to evaluate. Because influent to the aeration basin is submerged at an underflow baffle, it was necessary to inject the tracer at the upstream

  17. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Passive sampling: A cost-effective method for understanding antibiotic fate, behaviour and impact.

    PubMed

    Chen, Chang-Er; Zhang, Hao; Ying, Guang-Guo; Zhou, Li-Jun; Jones, Kevin C

    2015-12-01

    The occurrence of antibiotics in the environment has raised much concern in recent years. Understanding their release, fate and behaviour in the environment is vital to assess potential risks. In this study, a novel passive water sampler - diffusion gradients in thin-films for organics (o-DGT) - was employed to assess the occurrence and removal of antibiotics in two waste water treatment plants (WWTPs) - one in China and the other in the United Kingdom (UK). Of the targeted compounds, 11 of 19 were detected in the Chinese WWTP (ND-200ng/L) and 10 of 40 were found in the UK plant (ND-1380ng/L). Florfenicol, lincomycin, ofloxacin and roxithromycin were most abundant in the Chinese WWTP (influent), while anhydrous erythromycin, ciprofloxacin, trimethoprim, ofloxacin and sulfapyridine were the most abundant in the UK influent samples. Estimated Chinese and UK consumption data are used to interpret the results. Neither of the WWTPs was very effective at removing antibiotics: ~40-50% (overall) was removed by the two plants, with the rest being discharged into the receiving rivers. This is the first study using o-DGT to assess the occurrence and removal of antibiotics in WWTPs. o-DGT is a useful, cost-effective tool to assess WWTP performance and can highlight the effectiveness of treatment steps, which can be applied to wastewater based epidemiology studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The effect of sludge water treatment plant residuals on the properties of compressed brick

    NASA Astrophysics Data System (ADS)

    Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.

    2017-11-01

    The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens

  20. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.