These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Rhizoctonia web blight  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight, caused by several Rhizoctonia spp., is an important disease of evergreen azaleas and other ornamental plants in nurseries. The primary pathogens causing web blight are binucleate Rhizoctonia anastomosis groups (AG) (= Ceratobasidium D.P. Rogers, teleomorph). In southern AL an...

2

Rhizoctonia web blight on azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Currently, fungicides are the only useful control for azalea web blight, but fungicides do not eliminate the pathogen. We have discovered that Rhizoctonia colonizes the entire azalea plant 12 months of the year in the Gulf Coast climate. This results in healthy appearing stems collected for propagat...

3

Research on Rhizoctonia Web Blight on Azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight is a reoccurring problem in compact varieties of container-grown azalea (Rhododendron sp.) in the Gulf Coast States. During the summers of 2002 and 2003, disease severity was measured weekly in the inoculated center plant of plots consisting of 49 ‘Gumpo’ azalea plants. Plant ...

4

Seasonal presence of Rhizoctonia species in container-grown azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight has been observed to be regularly distributed across large nursies and randomly distributed in blocks of azalea cultivars of varying susceptibility. The main objective of this project was to determine seasonal changes in the population of binucleate Rhizoctonia species in indi...

5

Rhizoctonia belly rot in cucumber fruit using Rhizoctonia solani isolated from sugar beet  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cucumbers are grown in rotation with sugar beets in some areas in Michigan but their interaction with important diseases affecting sugar beets is not well known. Cucumbers are known to be primarily susceptible to Rhizoctonia solani AG-4, but little is known about their susceptibility to AG 2-2 isola...

6

The effect of temperature on Rhizoctonia disease development and fungicide efficacy in controlling Rhizoctonia root rot on sugarbeet  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia solani AG 2-2 is the causal agent of Rhizoctonia root and crown rot in sugarbeet. Since the intraspecific group AG 2-2 IIIB is considered to be more virulent than AG 2-2 IV, our objectives were to monitor disease development of AG 2-2 IIIB infection at four different soil temperatures un...

7

Virulence, distribution and diversity of rhizoctonia solani from sugar beet in Idaho and Oregon.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia root rot causes serious losses on sugar beet worldwide. In order to help explain why Rhizoctonia root rot management practices have not performed well in some areas of the Intermountain West (IMW), a survey was conducted. In the IMW from 2004 to 2006, 94 Rhizoctonia solani field isolat...

8

GENETIC DIVERSITY AND VIRULENCE OF RHIZOCTONIA SPECIES ASSOCIATED WITH PLANTINGS OF LOTUS CORNICULATUS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Species of Rhizoctonia cause a blight of Lotus corniculatus, a perennial forage legume. We characterized genetic variation and virulence in populations of Rhizoctonia solani and binucleate Rhizoctonia associated with diseased L. corniculatus in field plantings over a period of several years. Isola...

9

Biogenesis of pipecolic acid in Rhizoctonia leguminicola  

SciTech Connect

This laboratory has long been interested in the biogenesis and biological properties of two indolizidine alkaloids, slaframine and swainsonine that are produced by the fungal parasite Rhizoctonia Leguminicola. Slaframine, (1S,6S,8aS-1 acetoxy-6-aminooctahydroindolizine) is a parasympathetic secretagogue, and swainsonine (1S,2R,8R,8aR-1,2,8-trihydroxyoctahydroindolizine) is a potent {alpha}-mannosidase inhibitor. This thesis concerns the initial steps of the biosynthesis of these alkaloids from lysine, via the common intermediate pipecolic acid, in whole cells and cell free enzyme systems of R. leguminicola. In confirmation of earlier work performed in this laboratory, L-lysine was used preferentially for pipecolate biosynthesis in R. Leguminicola. This pathway was supported by the finding that cell free extracts of R. leguminicola consistently converted L-(U-{sup 14}C)-lysine to three labelled metabolites: saccharopine, peak II, and pipecolic acid. Peak II was subsequently identified by appropriate proton NMR studies to be {delta}{sup 1}-piperideine-6-carboxylate, and the following pathway of pipecolic acid formation was postulated: L-lysine {yields} saccharopine {yields} {delta}{sup 1}-piperideine-6-carboxylate {yields} pipecolate. This pathway was confirmed by demonstration of each enzymatic step in vitro from purified radiolabeled substrates.

Wickwire, B.M.

1989-01-01

10

Rhizoctonia damping off stem canker and root rot  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia solani has been reported to cause damping-off and root rot of rhododendrons and azaleas. Damping-off often includes groups of dying and dead seedlings. Decline of rooted plants in containers results from both root rot and stem necrosis below or above the soil line. Root rot is usually no...

11

Rhizoctonia seedling damping-off in sugar beet in Michigan  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia solani is an important seedling pathogen of sugar beet, causing damping-off following seedling emergence. Anastomosis group (AG)-4 has been the primary seedling pathogen reported on sugar beet, however, recent screening has found high incidence of infection by AG-2-2. Isolations of R. so...

12

HOST-PATHOGEN INTERACTION OF SUGARBEET SEEDLINGS WITH RHIZOCTONIA SOLANI  

Technology Transfer Automated Retrieval System (TEKTRAN)

The progress curve of seedling damping-off caused by Rhizoctonia solani showed three distinct stages - an initial rapid disease progress stage, an intermediate stationary phase, and a final decline and death phase, in the compatible interaction. Both virulent and avirulent fungal isolates initiated ...

13

Characterization of Rhizoctonia isolates associated with damping-off and crown rot of rooibos seedlings  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia species were reported to be an important component of the complex involved in damping-off of rooibos (Aspalathus linearis) seedlings and cause severe crown rot of seedlings in nurseries. However, no information is available on the anastomosis groups (AGs) of Rhizoctonia associated with d...

14

Rhizoctonia web blight development on container-grown azalea in relation to time and environmental factors  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight, caused by binucleate Rhizoctonia spp., is an annual problem in the southern United States on container-grown azaleas (Rhododendron spp.) that receive daily irrigation. Disease progress was assessed weekly from mid-May to mid-September in blocks of nursery-grown plants at thre...

15

Risk of Rhizoctonia Web Blight Development on Container-Grown Azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight, caused by binucleate Rhizoctonia spp., is an annual problem in the southern United States on container-grown azaleas (Rhododendron spp.) that receive daily irrigation. Disease progress was assessed weekly from mid-May to early October in blocks of nursery-grown plants at four...

16

Chemical and Hot Water Treatments to Eliminate Rhizoctonia From Azalea Stem Cuttings: Failures and Successes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Azalea web blight is an annual problem on some evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. The binucleate Rhizoctonia species, which cause the disease, are spread on new shoot growth harvested for propagation. Rhizoctonia can be eli...

17

Chemical and hot water treatments to control rhizoctonia AGP infesting stem cuttings of azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

In the southern and eastern U.S., azalea 'Gumpo' stems cut during the spring for propagation may be infested with Rhizoctonia spp. Multiple methods were evaluated for the purpose of eliminating Rhizoctonia spp. from stem cuttings to prevent spread into the propagation house. Stems were inoculated w...

18

RHIZOCTONIA ROOT ROT RISISTANCE OF BETA PIS FROM THE USDA-ARS NPGS, 2001  

Technology Transfer Automated Retrieval System (TEKTRAN)

Thirty Plant Introductions (PIs) from the USDA-ARS National Plant Germplasm System were evaluated for resistance to Rhizoctonia root rot. Materials were planted at the Crops Research Lab-Fort Collins Research Farm in CO and inoculated with dry, ground, barley-grain inoculum of Rhizoctonia solani i...

19

Transgenic expression of Lactoferrin imparts resistance to a soilborne fungal pathogen Rhizoctonia solani  

Technology Transfer Automated Retrieval System (TEKTRAN)

Transgenic tobacco (Nicotiana tabacum var Xanthi) and Arabidopsis (A. thaliana) plants expressing an antimicrobial bovine lactoferrin (BLF) gene were developed and evaluated for resistance against an economically important fungal pathogen Rhizoctonia solani, the causal agent of damping off diseases....

20

The influence of soil moisture and Rhizoctonia solani anastomosis and intraspecific group on the incidence of damping-off and the incidence and severity of Rhizoctonia crown and root rot in sugar beet  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia crown and root rot (Rhizoctonia solani) reduces plant stands, sugar quality and yield in sugar beet. To evaluate the influence of R. solani anastomosis (AG) and intraspecific groups and soil moisture on disease incidence and severity, a field trial was established in Ridgetown, Ontario, ...

21

CHARACTERIZATION OF PATHOGENIC RHIZOCTONIA SOLANI AND R. ORYZAE OF THE PACIFIC NORTHWEST USING REAL-TIME PCR  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia solani and R. oryzae are the principal causal agents of Rhizoctonia root rot, damping-off and bare patch in dryland cereal production systems of the Pacific Northwest. We developed SYBR Green I-based real-time quantitative PCR (Q-PCR) assays that specifically amplified the internal trans...

22

Seasonal prevalence of species of binculeate rhizoctonia fungi in growing medium, leaf litter, and stems of container-grown azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight is an annual problem on container-grown azalea in the southern and eastern U.S., but little is documented about the distribution or persistence of Rhizoctonia in container-grown azalea. Sixty azalea plants (cv. >Gumpo White=) with greater than 35% web blight severity were coll...

23

Metabolism of fungicide 2-allylphenol in Rhizoctonia cerealis.  

PubMed

2-Allylphenol is a biomimetic synthetic fungicide that mimics the compound ginkgol found in gingko fruit (Gingko biloba L.). This systemic fungicide can effectively suppress a wide range of plant diseases, including wheat sharp eyespot (Rhizoctonia cerealis). However, its degradation in environment after application is still unknown. To understand this fungicide degradation, major metabolites of 2-allylphenol in R. cerealis were examined. The parent and metabolites of 2-allylphenol were detected and quantified in the mycelia and liquid medium. Results showed that 2-allylphenol was metabolized and bio-transformed by R. cerealis, and four metabolites were found, including 2-(2-hydroxyphenyl) acetic acid (M1), 2-(2, 3-dihydroxypropyl) phenol (M2), 2-(2-hydroxypropyl)-phenol (M3) and 2-(3-hydroxypropyl)-phenol (M4). Based on the results, we propose that the biodegradation pathway is that 2-allylphenol is rapidly oxidized into metabolite M2 and hydrolyzed into M3 and M4, which formed M2, and carboxylation of M2 to 2-hydroxy-3-(2?-hydroxyphenyl) propionic acid which undergo hydrolyzation and decarboxylation to form M1. 2-Allylphenol can be bio-transformed to new compounds by R. cerealis, suggesting the existence of microbe metabolic pathways for 2-allylphenol. PMID:24530843

Qu, Tianli; Zhang, Jinlan; Meng, Zhaoli; Liu, Xili; Cao, Yongsong; Li, Jianqiang; Hao, Jianjun J

2014-04-01

24

Rhizoctonia in Container Grown Azalea, and Camellia Twig Blight: Incubation and Latency Periods  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight is a reoccurring problem in compact varieties of container-grown azalea (Rhododendron sp.) in the Gulf Coast States. Disease severity was measured weekly in ‘Gumpo’ azalea plants spaced at distances of 0, 6, 12, 18, or 24 cm. Evaporative potential (EP), leaf wetness (LW), rela...

25

Long-term Preservation of a Collection of Rhizoctonia solani, using Cryogenic Storage  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia solani is an important plant pathogen on a number of crops and maintaining an extensive collection of reference isolates is important in understanding relationships of this pathogen with multiple hosts. Current long-term storage methods typically call for frequent transfer increasing the...

26

Genetic and Physical Characterization of Binucleate Rhizoctonia Species Causing Web Blight on Azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Web blight caused by species of Rhizoctonia is an annual problem on container-grown azalea (Rhododendron spp.) during nursery production in the southern U.S. While damage is not usually lethal, infected plants are not saleable during the current year and growth is reduced. The objective of this rese...

27

Incidence and spatial distribution of Rhizoctonia and Pythium species determined with real-time PCR  

Technology Transfer Automated Retrieval System (TEKTRAN)

Populations of Rhizoctonia and Pythium are diverse in eastern Washington, with multiple species/anastomosis groups present throughout the region and within individual fields. Recent evidence suggests that species composition may be influenced by crop rotation. The Cook Agronomy Farm near Pullman, WA...

28

Influence of Rhizoctonia-Bacterial root rot complex on storability of sugar beet  

Technology Transfer Automated Retrieval System (TEKTRAN)

The root rot complex, caused by Rhizoctonia solani and Leuconostoc mesenteroides, can lead to yield loss in the field but may also lead to problems with sucrose loss in storage. Thus, studies were conducted to investigate if placing sugar beet roots suffering from root rot together with healthy roo...

29

CHARACTERIZATION OF RHIZOCTONIA SPP. FROM CROPPING SYSTEMS IN THE WESTERN CAPE PROVINCE OF SOUTH AFRICA  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia spp. are important pathogens of a broad range of crop plants that are economically important to the farm economy of the Western Cape region of South Africa. However, there is little information concerning the identity and relative importance of these fungal pathogens. Isolates of Rhizo...

30

Development of an Agrobacterium-based transformation system for Rhizoctonia solani  

Technology Transfer Automated Retrieval System (TEKTRAN)

A 8.7 kb binary vector containing the 1.9 kb hygromycin B phosphortransferase (hyg) gene was constructed with promoter and terminator regions from the glyceraldehyde-3-phosphate- dehydrogenase (gpd) gene of Rhizoctonia solani anastomosis group 3 (AG-3) at the 5'- and 3'- gene termini of hyg. Promot...

31

Postharvest respiration rate and sucrose concentration of Rhizoctonia-infected sugarbeet roots  

Technology Transfer Automated Retrieval System (TEKTRAN)

The negative impact of Rhizoctonia crown and root rot (RCRR) on postharvest respiration, sugar concentration, and beet quality for roots with disease ratings of 2 or 3 is relatively small and would have only a small, and maybe immeasurable, effect on factory efficiency when mixed with healthy roots....

32

Postharvest respiration rate and sucrose content of Rhizoctonia-infected sugarbeet roots  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizotonia crown and root rot of sugarbeet, caused by Rhizoctonia solani AG 2-2, is increasing in Minnesota and North Dakota. As the disease increases in prevalence and severity, more diseased roots are being stored in piles where they affect storability and postharvest quality. The objective of th...

33

Effect of Plant Spacing on Microclimate and Rhizoctonia Web Blight Development in Container Grown Azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight is a reoccurring problem in compact varieties of container-grown azalea (Rhododendron sp.) in the Gulf Coast States. During the summers of 2002 and 2003, disease severity was measured weekly in the inoculated center plant of plots consisting of 49 ‘Gumpo’ azalea plants. Plant ...

34

MOLECULAR AND PATHOLOGICAL CHARACTERIZATION OF THE RICE SHEATH BLIGHT PATHOGEN RHIZOCTONIA SOLANI IN ARKANSAS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rice sheath blight, caused by the fungal pathogen Rhizoctonia solani (AG1-IA), is an economically important disease in Arkansas. To identify the sheath blight resistance gene(s) an extensive molecular and pathological characterization of R., solani was initiated. A wide range of pathogen isolates ...

35

Influence of rhizoctonia-bacterial root rot complex on storability of sugarbeet  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Rhizoctonia-bacterial root rot complex can lead to yield loss in the field but may also lead to problems with sucrose loss in storage. Thus, studies were conducted to investigate if placing sugarbeet roots suffering from root rot together with healthy roots could compromise the ability of the h...

36

Chemical and Hot Water Treatments to Control Rhizoctonia on Infected Azalea Stem Cuttings  

Technology Transfer Automated Retrieval System (TEKTRAN)

Spring shoot growth of azalea 'Gumpo White' used for propagation of stem cuttings can harbor binucleate Rhizoctonia species that cause web blight, thus the pathogen is unsuspectingly propagated with the plant. The objective of this study was to evaluate efficacy of disinfesting methods (commercially...

37

Rhizoctonia solani as a component in the bottom rot complex of glasshouse lettuce  

Microsoft Academic Search

The basal parts of maturing glasshouse lettuce can be attacked by several soil fungi, which cause bottom rot. Until recently quintozene was generally applied against this disease complex. The study of the causal fungi - especially Rhizoctonia solani - and their control was undertaken in view of the need for quintozene replacing fungicides.A survey revealed that Botrytis cinerea was the

T. Kooistra

1983-01-01

38

RL-SAGE ANALYSIS OF THE RICE DEFENSE TRANSCRIPTOME DURING RICE AND RHIZOCTONIA SOLANI INTERACTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sheath blight caused by the fungal pathogen Rhizoctonia solani is an emerging problem in rice production worldwide. To elucidate the molecular basis of rice defense to the pathogen, two RL-SAGE libraries were made from the R. solani infected and control plants of Jasmine 85, which is moderately resi...

39

A fungal growth model fitted to carbon-limited dynamics of Rhizoctonia solani.  

PubMed

Here, a quasi-steady-state approximation was used to simplify a mathematical model for fungal growth in carbon-limiting systems, and this was fitted to growth dynamics of the soil-borne plant pathogen and saprotroph Rhizoctonia solani. The model identified a criterion for invasion into carbon-limited environments with two characteristics driving fungal growth, namely the carbon decomposition rate and a measure of carbon use efficiency. The dynamics of fungal spread through a population of sites with either low (0.0074 mg) or high (0.016 mg) carbon content were well described by the simplified model with faster colonization for the carbon-rich environment. Rhizoctonia solani responded to a lower carbon availability by increasing the carbon use efficiency and the carbon decomposition rate following colonization. The results are discussed in relation to fungal invasion thresholds in terms of carbon nutrition. PMID:18312538

Jeger, M J; Lamour, A; Gilligan, C A; Otten, W

2008-01-01

40

Degradation ofChlorbromuron andRelated Compounds bytheFungus Rhizoctonia solani  

Microsoft Academic Search

Theability ofthesoil fungus Rhizoctonia solani todegrade phenyl-substi- tuted ureaherbicides was investigated. Thefungus was able totransform chlor- bromuron(3-(3-chloro-4-bromophenyl)-1-methyl-1-methoxyurea) tothedeme- thylated product (3-(3-chloro-4-bromophenyl)-1-methoxyurea), which was iso- lated andidentified. Evidence was obtained thatfurther degradation ofchlor- bromuron occurred. Several other phenylurea compounds (chloroxuron, diuron, fenuron, fluometuron, linuron, metobromuron, neburon, andsiduron) were also metabolized bythefungus, indicating thatR.solani may possessa generalized ability toattack this groupofherbicides. Biochemical

1972-01-01

41

RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection  

Microsoft Academic Search

Sheath blight caused by the fungal pathogen Rhizoctonia solani is an emerging problem in rice production worldwide. To elucidate the molecular basis of rice defense to the pathogen, RNA\\u000a isolated from R. solani-infected leaves of Jasmine 85 was used for both RL-SAGE library construction and microarray hybridization. RL-SAGE sequence\\u000a analysis identified 20,233 and 24,049 distinct tags from the control and

R. C. Venu; Yulin Jia; Malali Gowda; Melissa H. Jia; Chatchawan Jantasuriyarat; Eric Stahlberg; Huameng Li; Andrew Rhineheart; Prashanth Boddhireddy; Pratibha Singh; Neil Rutger; David Kudrna; Rod Wing; James C. Nelson; Guo-Liang Wang

2007-01-01

42

Characterization of Rhizoctonia solani Isolates Associated with Patch Diseases on Turfgrass  

Microsoft Academic Search

Cultural characteristics and pathogenicity of Rhizoctonia solani isolates obtained from brown patch on creeping bentgrass, Agrostis pulustris Huds. and large patch on zoysiagrass, Zoysia japonica Steud, were evaluated and compared with known R. solani anastomosis groups: AG-2-2III-B, AG-2-2IV, AG-1-IA, AG-4, and AG-5. Bentgrass and zoysiagrass isolates were obtained from infected grass leaf sheaths along disease patch margins. The bentgrass and

Stacy R. Blazier; Kenneth E. Conway

43

Timing of fungicides in relation to calendar date, weather, and disease thresholds to control Rhizoctonia web blight on container-grown azalea  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia web blight, caused by binucleate Rhizoctonia spp., is an annual problem in the southern United States on container-grown azaleas (Rhododendron spp.) that receive daily irrigation. Fungicides are the only practical control method, but a guideline for timing of fungicides is not available....

44

Cropping Systems and Cultural Practices Determine the Rhizoctonia Anastomosis Groups Associated with Brassica spp. in Vietnam  

PubMed Central

Ninety seven Rhizoctonia isolates were collected from different Brassica species with typical Rhizoctonia symptoms in different provinces of Vietnam. The isolates were identified using staining of nuclei and sequencing of the rDNA-ITS barcoding gene. The majority of the isolates were multinucleate R. solani and four isolates were binucleate Rhizoctonia belonging to anastomosis groups (AGs) AG-A and a new subgroup of A-F that we introduce here as AG-Fc on the basis of differences in rDNA-ITS sequence. The most prevalent multinucleate AG was AG 1-IA (45.4% of isolates), followed by AG 1-ID (17.5%), AG 1-IB (13.4%), AG 4-HGI (12.4%), AG 2-2 (5.2%), AG 7 (1.0%) and an unknown AG related to AG 1-IA and AG 1-IE that we introduce here as AG 1-IG (1.0%) on the basis of differences in rDNA-ITS sequence. AG 1-IA and AG 1-ID have not been reported before on Brassica spp. Pathogenicity tests revealed that isolates from all AGs, except AG-A, induced symptoms on detached leaves of several cabbage species. In in vitro tests on white cabbage and Chinese cabbage, both hosts were severely infected by AG 1-IB, AG 2-2, AG 4-HGI, AG 1-IG and AG-Fc isolates, while under greenhouse conditions, only AG 4-HGI, AG 2-2 and AG-Fc isolates could cause severe disease symptoms. The occurrence of the different AGs seems to be correlated with the cropping systems and cultural practices in different sampling areas suggesting that agricultural practices determine the AGs associated with Brassica plants in Vietnam. PMID:25372406

Soltaninejad, Saman; Höfte, Monica

2014-01-01

45

Degradation of Chlorbromuron and Related Compounds by the Fungus Rhizoctonia solani1  

PubMed Central

The ability of the soil fungus Rhizoctonia solani to degrade phenyl-substituted urea herbicides was investigated. The fungus was able to transform chlorbromuron [3-(3-chloro-4-bromophenyl)-1-methyl-1-methoxyurea] to the demethylated product [3-(3-chloro-4-bromophenyl)-1-methoxyurea], which was isolated and identified. Evidence was obtained that further degradation of chlorbromuron occurred. Several other phenylurea compounds (chloroxuron, diuron, fenuron, fluometuron, linuron, metobromuron, neburon, and siduron) were also metabolized by the fungus, indicating that R. solani may possess a generalized ability to attack this group of herbicides. Images PMID:4640737

Weinberger, Martin; Bollag, Jean-Marc

1972-01-01

46

Rhizoctonia wilt suppression of brinjal (Solanum melongena L) and plant growth activity by Bacillus BS2.  

PubMed

An antibiotic-producing and hydrogen-cyanide-producing rhizobacteria strain Bacillus BS2 showed a wide range of antifungal activity against many Fusarium sp. and brinjal wilt disease pathogen Rhizoctonia solani. Seed bacterization with the strain BS2 promoted seed germination and plant growth in leguminous plants Phaseolus vulgaris and non-leguminous plants Solanum melongena L, Brassica oleracea var. capitata, B. oleraceae var. gongylodes and Lycopersicon esculentum Mill in terms of relative growth rate, shoot height, root length, total biomass production and total chlorophyll content of leaves. Yield of bacterized plants were increased by 10 to 49% compared to uninoculated control plants. Brinjal sapling raised through seed bacterization by the strain BS2 showed a significantly reduced wilt syndrome of brinjal caused by Rhizoctonia solani. Control of wilt disease by the bacterium was clue to the production of antibiotic-like substances, whereas plant growth-promotion was due to the activity of hydrogen cyanide. Root colonization study confirmed that the introduced bacteria colonized the roots and occupied 23-25% of total aerobic bacteria, which was confirmed using dual antibiotic (nalidixic acid and streptomycin sulphate) resistant mutant strain. The results obtained through this investigation suggested the potentiality of the strain BS2 to be used as a plant growth promoter and suppressor of wilt pathogen. PMID:15266911

Boruah, H P Deka; Kumar, B S Dileep

2003-06-01

47

Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. ...

48

Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a  

Technology Transfer Automated Retrieval System (TEKTRAN)

Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two ...

49

Draft Genome Sequence of the Plant-Pathogenic Soil Fungus Rhizoctonia solani Anastomosis Group 3 Strain Rhs1AP  

PubMed Central

The soil fungus Rhizoctonia solani is a pathogen of agricultural crops. Here, we report on the 51,705,945 bp draft consensus genome sequence of R. solani strain Rhs1AP. A comprehensive understanding of the heterokaryotic genome complexity and organization of R. solani may provide insight into the plant disease ecology and adaptive behavior of the fungus. PMID:25359908

Cubeta, Marc A.; Dean, Ralph A.; Jabaji, Suha; Neate, Stephen M.; Tavantzis, Stellos; Toda, Takeshi; Vilgalys, Rytas; Bharathan, Narayanaswamy; Fedorova-Abrams, Natalie; Pakala, Suman B.; Pakala, Suchitra M.; Zafar, Nikhat; Joardar, Vinita; Losada, Liliana; Nierman, William C.

2014-01-01

50

Pathogenicity, characterization and comparative virulence of Rhizoctonia spp. from insect-galled roots of Lepidium draba in Europe  

Technology Transfer Automated Retrieval System (TEKTRAN)

The association of Rhizoctonia spp. with insect-damaged and diseased tissue of the invasive perennial Lepidium draba was documented throughout the range of L. draba that was surveyed in Europe, including Hungary, Austria, Switzerland and France. Samples that could be both maintained under cooled con...

51

A version of this article appeared in GreenMaster 41(3):28-30 (June 2006) A New Rhizoctonia Fungus on Turfgrass in Ontario  

E-print Network

on Turfgrass in Ontario By Tom Hsiang, Darcy Olds and Russ Gowan The fungal genus Rhizoctonia contains many, 2003, 2004). It has not been previously documented in any other part of Canada. Outbreak in Ontario

Hsiang, Tom

52

E¡ect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term e¡ects on nontarget microorganisms  

Microsoft Academic Search

The aim of this study was to assess the biocontrol efficacy against Rhizoctonia solani of three bacterial antagonists introduced into naturally Rhizoctonia-infested lettuce fields and to analyse their impact on the indigenous plant-associated bacteria and fungi. Lettuce seedlings were inoculated with bacterial suspensions of two endophytic strains, Serratia plymuthica 3Re4-18 and Pseudomonas trivialis 3Re2-7, and with the rhizobacterium Pseudomonas fluorescens

Katja Scherwinski; Rita Grosch; Gabriele Berg

53

Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani.  

PubMed

In this study, the biocontrol abilities of water-soluble and volatile metabolites of three different isolates of Trichoderma (T. asperellum, T. harzianum and Trichoderma spp.) against soil borne plant pathogen Rhizoctonia solani were investigated both in vitro and in vivo. The results showed for the first time that mycelial growth inhibition of the pathogen was 74.4-67.8% with water-soluble metabolites as compared to 15.3-10.6% with volatile metabolites in vitro. In vivo antagonistic activity of Trichoderma isolates against R. solani was evaluated on bean plants under laboratory and greenhouse conditions. We observed that T. asperellum was more effective and consistent, lowering disease incidence up to 19.3% in laboratory and 30.5% in green house conditions. These results showed that three isolates of Trichoderma could be used as effective biocontrol agents against R. solani. PMID:25033669

Asad, Saeed Ahmad; Ali, Naeem; Hameed, Abdul; Khan, Sabaz Ali; Ahmad, Rafiq; Bilal, Muhammad; Shahzad, Muhammad; Tabassum, Ayesha

2014-01-01

54

Postharvest dark skin spots in potato tubers are an oversuberization response to Rhizoctonia solani infection.  

PubMed

Israeli farmers export 250,000 tons of potato tubers annually, ?40,000 tons of which are harvested early, before skin set. In recent years, there has been an increase in the occurrence of dark skin spots on early-harvested potato tubers ('Nicola') packed in large bags containing peat to retain moisture. The irregular necrotic spots form during storage and overseas transport. Characterization of the conditions required for symptom development indicated that bag temperature after packing is 11 to 13°C and it reaches the target temperature (8°C) only 25 days postharvest. This slow decrease in temperature may promote the establishment of pathogen infection. Isolates from typical lesions were identified as Rhizoctonia spp., and Koch's postulates were completed with 25 isolates by artificial inoculation performed at 13 to 14°C. Phylogenetic analysis, using the internal transcribed spacer sequences (ITS1 and ITS2) of rDNA genes, assigned three isolates to anastomosis group 3 of Rhizoctonia solani. Inoculation of wounded tubers with mycelium of these R. solani isolates resulted in an oversuberization response in the infected area. With isolate Rh17 of R. solani, expression of the suberin biosynthesis-related genes StKCS6 and CYP86A33 increased 6.8- and 3.4-fold, respectively, 24 h postinoculation, followed by a 2.9-fold increase in POP_A, a gene associated with wound-induced suberization, expression 48 h postinoculation, compared with the noninoculated tubers. We suggest that postharvest dark spot disease is an oversuberization response to R. solani of AG-3 infection that occurs prior to tuber skin set. PMID:21391824

Buskila, Yossi; Tsror Lahkim, Leah; Sharon, Michal; Teper-Bamnolker, Paula; Holczer-Erlich, Orly; Warshavsky, Shimon; Ginzberg, Idit; Burdman, Saul; Eshel, Dani

2011-04-01

55

Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani.  

PubMed

Rhizoctonia solani is an important necrotrophic fungal pathogen which causes disease on diverse plant species. It has been classified into 14 genetically distinct anastomosis groups (AGs), however, very little is known about their genomic diversity. AG1-IA causes sheath blight disease in rice and controlling this disease remains a challenge for sustainable rice cultivation. Recently the draft genome sequences of AG1-IA (rice isolate) and AG1-IB (lettuce isolate) had become publicly available. In this study, using comparative genomics, we report identification of 3,942 R. solani genes that are uniquely present in AG1-IA. Many of these genes encode important biological, molecular functions and exhibit dynamic expression during in-planta growth of the pathogen in rice. Based upon sequence similarity with genes that are required for plant and human/zoonotic diseases, we identified several putative virulence/pathogenicity determinants amongst AG1-IA specific genes. While studying the expression of 19 randomly selected genes, we identified three genes highly up-regulated during in-planta growth. The detailed in silico characterization of these genes and extent of their up-regulation in different rice genotypes, having variable degree of disease susceptibility, suggests their importance in rice-Rhizoctonia interactions. In summary, the present study reports identification, functional characterization of AG1-IA specific genes and predicts important virulence determinants that might enable the pathogen to grow inside hostile plant environment. Further characterization of these genes would shed useful insights about the pathogenicity mechanism of AG1-IA on rice. PMID:25070039

Ghosh, Srayan; Gupta, Santosh Kumar; Jha, Gopaljee

2014-11-01

56

Wide Variation in Virulence and Genetic Diversity of Binucleate Rhizoctonia Isolates Associated with Root Rot of Strawberry in Western Australia  

PubMed Central

Strawberry (Fragaria×ananassa) is one of the most important berry crops in the world. Root rot of strawberry caused by Rhizoctonia spp. is a serious threat to commercial strawberry production worldwide. However, there is no information on the genetic diversity and phylogenetic status of Rhizoctonia spp. associated with root rot of strawberry in Australia. To address this, a total of 96 Rhizoctonia spp. isolates recovered from diseased strawberry plants in Western Australia were characterized for their nuclear condition, virulence, genetic diversity and phylogenetic status. All the isolates were found to be binucleate Rhizoctonia (BNR). Sixty-five of the 96 BNR isolates were pathogenic on strawberry, but with wide variation in virulence, with 25 isolates having high virulence. Sequence analysis of the internal transcribed spacers of the ribosomal DNA separated the 65 pathogenic BNR isolates into six distinct clades. The sequence analysis also separated reference BNR isolates from strawberry or other crops across the world into clades that correspond to their respective anastomosis group (AG). Some of the pathogenic BNR isolates from this study were embedded in the clades for AG-A, AG-K and AG-I, while other isolates formed clades that were sister to the clades specific for AG-G, AG-B, AG-I and AG-C. There was no significant association between genetic diversity and virulence of these BNR isolates. This study demonstrates that pathogenic BNR isolates associated with root rot of strawberry in Western Australia have wide genetic diversity, and highlights new genetic groups not previously found to be associated with root rot of strawberry in the world (e.g., AG-B) or in Australia (e.g., AG-G). The wide variation in virulence and genetic diversity identified in this study will be of high value for strawberry breeding programs in selecting, developing and deploying new cultivars with resistance to these multi-genetic groups of BNR. PMID:23405226

Fang, Xiangling; Finnegan, Patrick M.; Barbetti, Martin J.

2013-01-01

57

Draft Genome Sequence of Pseudomonas simiae Strain 2-36, an In Vitro Antagonist of Rhizoctonia solani and Gaeumannomyces graminis.  

PubMed

Pseudomonas simiae 2-36, isolated from a field plot under long-term mineral fertilization, exhibited strong in vitro antagonistic activities against Rhizoctonia solani and Gaeumannomyces graminis. We report here the draft genome sequence of Pseudomonas simiae 2-36, consisting of 6.4 Mbp with a 60.25% G+C content and 5,790 predicted protein-coding sequences. PMID:25657286

Adam, Zaky; Chen, Qing; Xu, Renlin; Diange, Adolf E; Bromfield, Eden S P; Tambong, James Tabi

2015-01-01

58

Effect of thiol redox state modulators on oxidative stress and sclerotial differentiation of the phytopathogenic fungus Rhizoctonia solani  

Microsoft Academic Search

This study showed that sclerotial differentiation in the filamentous phytopathogenic fungus Rhizoctonia solani is directly related to oxidative stress and thiol redox state (TRS). Sclerotial differentiation is modulated by the availability\\u000a of non-cytotoxic ?SH groups as was shown by the inhibition of sclerorial differentiation by the TRS modulator N-acetyl cysteine\\u000a (AcCSH), and not necessarily with those of the TRS reduced

Nikolaos Patsoukis; Christos D. Georgiou

2007-01-01

59

Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43  

Microsoft Academic Search

Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Micrographs were used to investigate the ability of Bacillus pumilus (B. pumilus) SQR-N43 to control Rhizoctonia solani (R. solani) Q1 in cucumbers. The root colonization ability of B. pumilus SQR-N43 was analyzed in vivo with a green fluorescent protein (GFP) tag. A pot experiment was performed to

Xinqi Huang; Nan Zhang; Xiaoyu Yong; Xingming Yang; Qirong Shen

60

Reaction of selected soybean cultivars to Rhizoctonia root rot and other damping-off disease agents.  

PubMed

Eight soybean cultivars; Giza 21. Giza 22, Giza 35, Giza 82, Giza 83, Crawford, Holladay and Toamo were evaluated to Rhizoctonia root rot using agar plate and potted plant techniques. Data cleared that, in agar plate assay all soybean cultivars were moderately susceptible (MS), although the differences between them were significant (P=0.05). Generally, in potted assay, the reactions were resistant (R) or moderately resistant (MR) to root rots. Also, the differences between cultivars were significant (P=0.05). These cultivars were inoculated under greenhouse conditions with Fusarium solani, Macrophomina phaseolina, Rhizoctonia solani and Sclerotium rolfsii Generally, G21 had the least pre-emergence damping-off followed by Giza 35, Crawford and Giza 83 with averages of 19.0, 20.0, 20.5 and 21.5%, respectively. In case of post-emergence, Giza 35 had the least values, followed by Giza 21, Crawford and Giza 82 with averages 3.95, 4.10, 4.10 and 4.25%, respectively. Under naturally infested soil in the field conditions the reactions of the same cultivars to damping-off were evaluated in two successive seasons. In 2002 season, G35 had the least pre-emergence damping-off % followed by Giza 21 and Giza 22 with averages of 22.61, 24.33 and 29.33%, respectively. Also, G35 had the least post-emergence damping-off % followed by Toamo and Giza 21 with averages of 9.40, 10.33 and 10.41%, respectively. In 2003 season, the same trend was appeared with light grade where Giza 35 had the least pre-emergence damping of % followed by Giza 22 and Giza 21 with averages of 30.67, 31.00 and 36.67%, respectively and Giza 35 was the most resistant cultivar against post-emergence damping-off, followed by Giza 21 and Giza 22 with averages of 10.91, 11.32 and 11.80%, respectively. Generally, Giza 21 significantly surpassed the other cultivars in plant height, number of pods per plant and 100-seed weight. Moreover, also it had second grade with the other traits. PMID:16637203

Amer, M A

2005-01-01

61

Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani.  

PubMed

Several volatile organic compounds (VOCs) producing endophyte bacteria were isolated from the leaves of olive trees and tested for their antifungal activity against several pathogenic fungi. An antagonistic strain called P2 showed 97 % of homology with Pseudomonas sp. strains on the basis of its 16S rDNA sequence and biochemical properties. P2 strain drastically inhibited the growth of Rhizoctonia solani mycelia (86 %) at 5 day-post-confrontation (dpc) and strongly reduced fungi infection on potato slices at 10(7) bacteria ml(-1) for 3 and 7 dpc. P2 strain was also positive for protease activity as well as siderophore production. Light microscopy analysis showed that treatment of R. solani mycelia with P2 strain induced thickening of the cell-wall, vesiculation of protoplasm and blockage of fungal hyphae branching. VOCs analysis using GC-MS allowed the detection of two major products with m/z of 93.9910 and 125.9630 corresponding to dimethyl disulfide and dimethyl trisulfide respectively. VOCs-producing P2 strain could be a promising agent in the protection of tuber crops against fungal diseases. PMID:25384611

Elkahoui, Salem; Djébali, Naceur; Yaich, Najeh; Azaiez, Sana; Hammami, Majdi; Essid, Rym; Limam, Ferid

2015-01-01

62

Chitosan-cinnamon beads enhance suppressive activity against Rhizoctonia solani and Meloidogyne incognita in vitro.  

PubMed

A novel chitosan-cinnamon bead carrier was prepared in this study. Chitosan was mixed with cinnamon powder (CP) and cinnamon extract (CE) to obtain chitosan-cinnamon powder (CCP) beads and chitosan-cinnamon extracted (CCE) beads, respectively. The potential antifungal and nematicidal activities of CCP and CCE were investigated against Rhizoctonia solani and Meloidogyne incognita in vitro. Relative antifungal activity of the CCP (5% CP) bead-treated R. solani was 30.9 and 23.9% after 1 and 2 day incubations, respectively. Relative antifungal activity of the CCE (0.5% CE) bead-treated R. solani was 4.3, 3.0 and 4.2% after 1, 2 and 3 days of incubation. Inhibition of hatch by CCP beads with CP of 5% was 78.8%. Inhibition of hatch by CCE beads with CE of 0.5% was 82.0%. J2 mortality following the CCP (5% CP) and CCE (0.5% CE) bead treatments was 85.0 and 95.8%, respectively against M. incognita after 48 h incubations. PMID:24417978

Seo, Dong-Jun; Nguyen, Dang-Minh-Chanh; Park, Ro-Dong; Jung, Woo-Jin

2014-01-01

63

Molecular characterization of the genome of a partitivirus from the basidiomycete Rhizoctonia solani.  

PubMed

The bisegmented genome of a double-stranded (ds) RNA virus from the fungus Rhizoctonia solani isolate Rhs 717 was characterized. The larger segment, dsRNA 1, is 2363 bases long whereas the smaller segment, dsRNA 2, has 2206 bases. The 5' ends of the coding strands of dsRNA 1 and dsRNA 2 are highly conserved (100% identity over 47 bases), and contain inverted repeats capable of forming stable stem-loop structures. Analysis of the coding potential of each of the two segments showed that dsRNAs 1 and 2 could code for polypeptides of 730 aa (bases 86-2275; molecular mass 86 kDa) and 683 aa (bases 79-2130; molecular mass 76 kDa), respectively. The 86 kDa polypeptide has all the motifs of dsRNA RNA-dependent RNA polymerases (RDRP), and has significant homology with putative RDRPs of partitiviruses from Fusarium poae and Atkinsonella hypoxylon. The 76 kDa protein shows homology with the putative capsid proteins (CP) of the same viruses. Northern blot analysis revealed no subgenomic RNA species, consistent with the fact that the long open reading frames encoding the putative RDRP and CP cover the entire length of the respective dsRNAs. PMID:10644855

Strauss, E E; Lakshman, D K; Tavantzis, S M

2000-02-01

64

The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome  

PubMed Central

Lettuce belongs to the most commonly raw eaten food worldwide and its microbiome plays an important role for both human and plant health. Yet, little is known about the impact of potentially occurring pathogens and beneficial inoculants of the indigenous microorganisms associated with lettuce. To address this question we studied the impact of the phytopathogenic fungus Rhizoctonia solani and the biological control agent Bacillus amyloliquefaciens FZB42 on the indigenous rhizosphere and phyllosphere community of greenhouse-grown lettuce at two plant stages. The rhizosphere and phyllosphere gammaproteobacterial microbiomes of lettuce plants showed clear differences in their overall and core microbiome composition as well as in corresponding diversity indices. The rhizosphere was dominated by Xanthomonadaceae (48%) and Pseudomonadaceae (37%) with Rhodanobacter, Pseudoxanthomonas, Dokdonella, Luteimonas, Steroidobacter, Thermomonas as core inhabitants, while the dominating taxa associated to phyllosphere were Pseudomonadaceae (54%), Moraxellaceae (16%) and Enterobacteriaceae (25%) with Alkanindiges, Pantoea and a group of Enterobacteriaceae unclassified at genus level. The preferential occurrence of enterics in the phyllosphere was the most significant difference between both habitats. Additional enhancement of enterics on the phyllosphere was observed in bottom rot diseased lettuce plants, while Acinetobacter and Alkanindiges were identified as indicators of healthy plants. Interestingly, the microbial diversity was enhanced by treatment with both the pathogen, and the co-inoculated biological control agent. The highest impact and bacterial diversity was found by Rhizoctonia inoculation, but FZB42 lowered the impact of Rhizoctonia on the microbiome. This study shows that the indigenous microbiome shifts as a consequence to pathogen attack but FZB42 can compensate these effects, which supports their role as biocontrol agent and suggests a novel mode of action. PMID:24795707

Erlacher, Armin; Cardinale, Massimiliano; Grosch, Rita; Grube, Martin; Berg, Gabriele

2014-01-01

65

Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis?  

PubMed

There is growing evidence that the application of biocontrol organisms (e.g., Pseudomonas and Bacillus spp., arbuscular mycorrhizal fungi-AMF) is a feasible option to reduce incidence of plant pathogens in an integrated control strategy. However, the utilization of these microorganisms, in particular AMF, may be threatened by the application of fungicides, a widely-used measure to control Rhizoctonia solani in various crops among which potato. Prior to their application, it is thus important to determine the impact of fungicides on AMF. The present study investigated, under in vitro controlled conditions, the impact of azoxystrobin (a systemic broad-spectrum fungicide), flutolanil (a systemic Basidiomycota-specific fungicide), and pencycuron (a contact Rhizoctonia-specific fungicide) and their respective formulations (Amistar, Monarch, and Monceren) on the growth and development of the AMF Rhizophagus irregularis MUCL 41833 (spore germination, root colonization, extraradical mycelium development, and spore production) at doses used to control R. solani. Results demonstrated that azoxystrobin and its formulation Amistar, at threshold values for R. solani control (estimated by the half maximal inhibitory concentration, IC50, on a dry weight basis), did not affect spore germination and potato root colonization by R. irregularis, while the development of extra-radical mycelium and spore production was reduced at 10 times the threshold value. Flutolanil and its formulation Monarch at threshold value did not affect spore germination or extra-radical development but decreased root colonization and arbuscule formation. At threshold value, pencycuron and its formulation Monceren, did not affect spore germination and intra- or extraradical development of R. irregularis. These results suggest that azoxystrobin and pencycuron do not affect the AMF at threshold concentrations to control R. solani in vitro, while flutolanil (as formulation) impacts the intraradical phase of the fungus. These fungicides and R. irregularis thus have the potential to be used in parallel against Rhizoctonia disease in potato. PMID:25312740

Buysens, Catherine; Dupré de Boulois, Hervé; Declerck, Stéphane

2014-10-15

66

Influence of Rotation Crops on the Strawberry Pathogens Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae  

PubMed Central

Field microplot, small plot, and greenhouse experiments were conducted to determine the effects of rotation crops on Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae populations. Extraction of P. penetrans from roots and soil in microplots and field plots planted to rotation crops was highest for Garry oat, lowest for Triple S sorgho-sudangrass and Saia oat, and intermediate for strawberry, buckwheat, and canola. Isolation of R. fragariae from bait roots was highest for strawberry and canola after 2 years of rotation and lowest for Saia oat. Nematode extraction from roots of rotation crops in field soils was generally higher than from roots in microplots. Grasses were nonhosts of M. hapla. Strawberry, canola, and buckwheat supported root-knot populations over time, but there were no differences in nematode numbers regardless of crop after one season of strawberry growth. Garry oat, canola, and, to a lesser extent, buckwheat supported large populations of P. penetrans without visible root symptoms. Strawberry plants supported fewer nematodes due to root damage. Nematode numbers from soil were less than from roots for all crops. While there were similar trends for pathogen recovery after more than 1 year of strawberry growth following rotation, differences in pathogen density and fruit yield were not significant. In the greenhouse, P. penetrans populations in roots and soil in pots were much higher for Garry oat than for Saia oat. Total P. penetrans adult and juvenile numbers per pot ranged from 40 to 880 (mean = 365.6) for Garry oat and 0 to 40 (mean = 8.7) for Saia oat. Production of Saia oat as a rotation crop may be a means of managing strawberry nematodes and black root rot in Connecticut. PMID:19270931

LaMondia, J. A.

1999-01-01

67

RESIDENT BACTERIA, NITRIC OXIDE EMISSION AND PARTICLE SIZE MODULATE THE EFFECT OF BRASSICA NAPUS SEED MEAL ON DISEASE INCITED BY RHIZOCTONIA SOLANI AND PYTHIUM SPP.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Brassica tissues are often promoted as a soil amendment for control of soilborne plant disease due to their production of glucosinolates, which yield anti-microbial compounds upon hydrolysis. Studies demonstrated that control of Rhizoctonia root rot of apple in response to Brassica napus seed meal ...

68

Efficacy of fungicides to manage onion stunting caused by Rhizoctonia spp. in the Columbia Basin of Oregon and Washington, 2011-2012  

Technology Transfer Automated Retrieval System (TEKTRAN)

Onion stunting, caused by Rhizoctonia spp., has become a significant soilborne problem of onion bulb crops planted in sandy soils in the semi-arid Columbia Basin of Oregon and Washington following winter cereal cover crops. Research on the epidemiology and management of this disease is in progress. ...

69

Yield responses of three onion cultivars to stunting caused by Rhizoctonia spp. in the Columbia Basin of Oregon and Washington, 2012.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rhizoctonia spp. cause patches of stunted onion plants in onion bulbs crop in the Columbia Basin of Washington and Oregon when onion crops are planted in sandy soils of this semi-arid region following winter cereal cover crops. A herbicide application is used to kill the cereal cover crop, usually ...

70

Enzyme Diffusion from Trichoderma atroviride (= T. harzianum P1) to Rhizoctonia solani Is a Prerequisite for Triggering of Trichoderma ech42 Gene Expression before Mycoparasitic Contact  

Microsoft Academic Search

A plate confrontation experiment is commonly used to study the mechanism by which Trichoderma spp. antagonize and parasitize other fungi. Previous work with chitinase gene expression (ech42) during the precontact period of this process in which cellophane and dialysis membranes separated Trichoderma harzia- num and its host Rhizoctonia solani resulted in essentially opposite results. Here, we show that cellophane membranes

CORNELIA KULLNIG; ROBERT L. MACH; MATTEO LORITO; CHRISTIAN P. KUBICEK

2000-01-01

71

Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.  

PubMed

An investigation was made to manage strawberry black root rot caused by Rhizoctonia solani (R. solani) through the integration of Trichoderma harzianum (T. harzianum) isolate STA7, mustard oil cake and Provax 200. A series of preliminary experiments were conducted to select a virulent isolate of R. solani, an effective isolate of T. harzianum, a suitable organic amendment, and a suitable fungicide before setting the experiment for integration. The pathogenicity of the selected four isolates of R. solani was evaluated against strawberry and isolate SR1 was selected as the test pathogen due to its highest virulent (95.47% mortality) characteristics. Among the 20 isolates of T. harzianum, isolate STA7 showed maximum inhibition (71.97%) against the test pathogen (R. solani). Among the fungicides, Provax-200 was found to be more effective at lowest concentration (100ppm) and highly compatible with Trichoderma isolates STA7. In the case of organic amendments, maximum inhibition (59.66%) of R. solani was obtained through mustard oil cake at the highest concentration (3%), which was significantly superior to other amendments. Minimum percentages of diseased roots were obtained with pathogen (R. solani)+Trichoderma+mustard oil cake+Provax-200 treatment, while the highest was observed with healthy seedlings with a pathogen-inoculated soil. In the case of leaf and fruit rot diseases, significantly lowest infected leaves as well as fruit rot were observed with a pathogen+Trichoderma+mustard oil cake+Provax-200 treatment in comparison with the control. A similar trend of high effectiveness was observed by the integration of Trichoderma, fungicide and organic amendments in controlling root rot and fruit diseases of strawberry. Single application of Trichoderma isolate STA7, Provax 200 or mustard oil cake did not show satisfactory performance in terms of disease-free plants, but when they were applied in combination, the number of healthy plants increased significantly. The result of the current study suggests the superiority of our integrated approach to control the sclerotia forming pathogen R. solani compared to the individual treatment either by an antagonist or by a fungicide or by mustard oil cake. PMID:25595298

Asad-Uz-Zaman, Md; Bhuiyan, Mohammad Rejwan; Khan, Mohammad Ashik Iqbal; Alam Bhuiyan, Md Khurshed; Latif, Mohammad Abdul

2015-02-01

72

Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3.  

PubMed

The soil fungus Rhizoctonia solani is an economically important pathogen of agricultural and forestry crops. Here, we present the complete sequence and analysis of the mitochondrial genome of R. solani, field isolate Rhs1AP. The genome (235 849 bp) is the largest mitochondrial genome of a filamentous fungus sequenced to date and exhibits a rich accumulation of introns, novel repeat sequences, homing endonuclease genes, and hypothetical genes. Stable secondary structures exhibited by repeat sequences suggest that they comprise functional, possibly catalytic RNA elements. RNA-Seq expression profiling confirmed that the majority of homing endonuclease genes and hypothetical genes are transcriptionally active. Comparative analysis suggests that the mitochondrial genome of R. solani is an example of a dynamic history of expansion in filamentous fungi. PMID:24461055

Losada, Liliana; Pakala, Suman B; Fedorova, Natalie D; Joardar, Vinita; Shabalina, Svetlana A; Hostetler, Jessica; Pakala, Suchitra M; Zafar, Nikhat; Thomas, Elizabeth; Rodriguez-Carres, Marianela; Dean, Ralph; Vilgalys, Rytas; Nierman, William C; Cubeta, Marc A

2014-03-01

73

A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes  

PubMed Central

We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP) protects tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance. PMID:23264779

Borras-Hidalgo, Orlando; Caprari, Claudio; Hernandez-Estevez, Ingrid; Lorenzo, Giulia De; Cervone, Felice

2012-01-01

74

A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes.  

PubMed

We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP) protects tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance. PMID:23264779

Borras-Hidalgo, Orlando; Caprari, Claudio; Hernandez-Estevez, Ingrid; Lorenzo, Giulia De; Cervone, Felice

2012-01-01

75

Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism  

Microsoft Academic Search

Damping-off disease is caused by Rhizoctonia solani and leads to serious loss in many crops. Biological control is an efficient and environmentally friendly way to prevent damping-off\\u000a disease. Optical micrographs, scanning electron micrographs, and the determination of hydrolytic enzymes were used to investigate\\u000a the antagonism of Trichoderma harzianum SQR-T37 (SQR-T37) against R. solani. Experiments were performed in pots to assess

Xinqi Huang; Lihua Chen; Wei Ran; Qirong Shen; Xingming Yang

76

Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis.  

PubMed

Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat. PMID:24149340

Yang, Kun; Rong, Wei; Qi, Lin; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

2013-01-01

77

Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis  

NASA Astrophysics Data System (ADS)

Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.

Yang, Kun; Rong, Wei; Qi, Lin; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

2013-10-01

78

Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.  

PubMed

Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed. PMID:25127238

Simon, Thomas E; Le Cointe, Ronan; Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R; Poggi, Sylvain

2014-01-01

79

Interplay between Parasitism and Host Ontogenic Resistance in the Epidemiology of the Soil-Borne Plant Pathogen Rhizoctonia solani  

PubMed Central

Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i) its susceptibility to the pathogen and (ii) after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed. PMID:25127238

Delarue, Patrick; Morlière, Stéphanie; Montfort, Françoise; Hervé, Maxime R.; Poggi, Sylvain

2014-01-01

80

A novel mycovirus closely related to viruses in the genus Alphapartitivirus confers hypovirulence in the phytopathogenic fungus Rhizoctonia solani.  

PubMed

We report here the biological and molecular attributes of a novel dsRNA mycovirus designated Rhizoctonia solani partitivirus 2 (RsPV2) from strain GD-11 of R. solani AG-1 IA, the causal agent of rice sheath blight. The RsPV2 genome comprises two dsRNAs, each possessing a single ORF. Phylogenetic analyses indicated that this novel virus species RsPV2 showed a high sequence identity with the members of genus Alphapartitivirus in the family Partitiviridae, and formed a distinct clade distantly related to the other genera of Partitiviridae. Introduction of purified RsPV2 virus particles into protoplasts of a virus-free virulent strain GD-118 of R. solani AG-1 IA resulted in a derivative isogenic strain GD-118T with reduced mycelial growth and hypovirulence to rice leaves. Taken together, it is concluded that RsPV2 is a novel dsRNA virus belonging to Alphapartitivirus, with potential role in biological control of R. solani. PMID:24889241

Zheng, Li; Zhang, Meiling; Chen, Qiguang; Zhu, Minghai; Zhou, Erxun

2014-05-01

81

The interaction pattern between a homology model of 40S ribosomal S9 protein of Rhizoctonia solani and 1-hydroxyphenaize by docking study.  

PubMed

1-Hydroxyphenazine (1-OH-PHZ), a natural product from Pseudomonas aeruginosa strain SD12, was earlier reported to have potent antifungal activity against Rhizoctonia solani. In the present work, the antifungal activity of 1-OH-PHZ on 40S ribosomal S9 protein was validated by molecular docking approach. 1-OH-PHZ showed interaction with two polar contacts with residues, Arg69 and Phe19, which inhibits the synthesis of fungal protein. Our study reveals that 1-OH-PHZ can be a potent inhibitor of 40S ribosomal S9 protein of R. solani that may be a promising approach for the management of fungal diseases. PMID:24864254

Dharni, Seema; Sanchita; Samad, Abdul; Sharma, Ashok; Patra, Dharani Dhar

2014-01-01

82

Mycorrhizal fungi and Trichoderma harzianum as biocontrol agents for suppression of Rhizoctonia solani damping-off disease of tomato.  

PubMed

The objective of the present work was to examine the interaction between arbuscular mycorrhizal fungus (AMF) Glomus intraradices and Trichoderma harzianum in soil. Soil application with T. harzianum or/and G. intraradices significantly reduced tomato seedlings damping-off incited by Rhizoctonia solani. Moreover, more pronounced disease suppression was obtained when both bioagents were applied together. Application of T. harzianum to healthy or inoculated seedlings significantly increased phosphorous supply, which resulted in higher yield, associated with the accumulation of high phosphorus levels in tissues of tomato plants (4.7- 6.5-fold), compared with low P supply. Inoculation with both bioagents in the presence or absence of the pathogen gave significant rise (2.1 - 2.2-fold), compared with low P levels. Root length of inoculated plants treated with T. harzianum or G. intraradices appeared longer than those of inoculated untreated plants at all P levels. Phosphorus uptake (mg P/plant) of tomato plant increased in all treatments with increasing of P levels with R. solani, T. harzianum or their combination and untreated plants have vigorous response to phosphorus fertilization. At low P levels, there was a significant difference between treatments, P uptake of tomato plants inoculated with AMF, T. harzianum or in combination, either in absence or in the presence of the tested pathogen showed highly significant increase, compared to untreated plant, infected plants with pathogen, T. harzianum, and their mixture. At high P levels, there was no significant difference between control and both AMF and T. harzianum, either individually in health plants or in combination with the pathogen. Eventually, results presented here substantiate other studies reporting enhanced biocontrol performance. PMID:19226759

Amer, M A; Abou-El-Seoud, I I

2008-01-01

83

Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43.  

PubMed

Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Micrographs were used to investigate the ability of Bacillus pumilus (B. pumilus) SQR-N43 to control Rhizoctonia solani (R. solani) Q1 in cucumbers. The root colonization ability of B. pumilus SQR-N43 was analyzed in vivo with a green fluorescent protein (GFP) tag. A pot experiment was performed to assess the in vivo disease-control efficiency of B. pumilus SQR-N43 and its bio-organic fertilizer. Results indicate that B. pumilus SQR-N43 induced hyphal deformation, enlargement of cytoplasmic vacuoles and cytoplasmic leakage in R. solani Q1 mycelia. A biofilm on the root surface was formed when the roots were inoculated with 10(7)-10(8)cells g(-1) of soil of GFP-tagged B. pumilus SQR-N43. In the pot experiment, the biocontrol reduced the concentration of R. solani. In contrast to applications of only B. pumilus SQR-N43 (N treatment), which produced control efficiencies of 23%, control efficiencies of 68% were obtained with applications of a fermented organic fertilizer inoculated with B. pumilus SQR-N43 (BIO treatment). After twenty days of incubation, significant differences in the number of CFUs and the percentage of spores of B. pumilus SQR-N43 were recorded between the N treatment (2.20×10(7)CFU g(-1) of soil and 79%, respectively) and the BIO treatment (1.67×10(8)CFU g(-1) of soil and 52%, respectively). The results indicate that B. pumilus SQR-N43 is a potent antagonist against R. solani Q1. The BIO treatment was more effective than the N treatment because it stabilized the population and increased the active form of the antagonist. PMID:21775112

Huang, Xinqi; Zhang, Nan; Yong, Xiaoyu; Yang, Xingming; Shen, Qirong

2012-03-20

84

Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato.  

PubMed

To investigate the biocontrol mechanism of two antagonistic Bacillus strains (Bacillus subtilis MB14 and Bacillus amyloliquefaciens MB101), three in vitro antagonism assays were screened and the results were concluded that both strains inhibited Rhizoctonia solani growth in a similar manner by dual culture assay, but the maximum percent of inhibition only resulted with MB101 by volatile and diffusible metabolite assays. Moreover, cell free supernatant (CFS) of MB101 also showed significant (p?>?0.05) growth inhibition as compared to MB14, when 10 and 20% CFS mix with the growth medium of R. solani. After in vitro-validation, both strains were evaluated under greenhouse and the results concluded that strain MB101 had significant biocontrol potential as compared to MB14. Strain MB101 was enhanced the plant height, biomass and chlorophyll content of tomato plant through a higher degree of root colonization. In field trials, strain MB101 showed higher lessening in root rot symptoms with significant fruit yield as compare to strain MB14 and infected control. Next to the field study, the presence of four antibiotic genes (srfAA, fenD, ituC, and bmyB) also concluded the antifungal nature of both Bacillus strains. Phylogenetic analysis of protein sequences revealed a close relatedness of three genes (srfAA, fenD, and ituC) with earlier reported sequences of B. subtilis and B. amyloliquefaciens. However, bmyB showed heterogeneity in among both strains (MB14 and MB101) and it may be concluded that higher degree of antagonism, root colonization and different antibiotic producing genes may play an important role in biocontrol mechanism of strain MB101. PMID:24277414

Solanki, Manoj Kumar; Singh, Rajesh Kumar; Srivastava, Supriya; Kumar, Sudheer; Kashyap, Prem Lal; Srivastava, Alok K

2015-01-01

85

GalNAc/Gal-Binding Rhizoctonia solani Agglutinin Has Antiproliferative Activity in Drosophila melanogaster S2 Cells via MAPK and JAK/STAT Signaling  

PubMed Central

Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC50) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways. PMID:22529896

Hamshou, Mohamad; Van Damme, Els J. M.; Vandenborre, Gianni; Ghesquière, Bart; Trooskens, Geert; Gevaert, Kris; Smagghe, Guy

2012-01-01

86

EMS-treated hexaploid wheat genotype Scarlet has enhanced tolerance to the soilborne necrotrophic pathogens Rhizoctonia solani AG-8 and R. oryzae. 2009. Theor. Appl. Genet. 119(February): 293-303  

Technology Transfer Automated Retrieval System (TEKTRAN)

R. solani AG-8 and R. oryzae cause Rhizoctonia root rot and pre-emergence damping-off, yield-limiting diseases that pose a barrier to the adoption of reduced tillage wheat production systems intended to reduce soil erosion. We report the first genetic resistance to necrotrophic root pathogens Rhizo...

87

EFFECT OF LABEL AND SUBLABEL RATES OF METAM SODIUM IN COMBINATION WITH TRICHODERMA HAMATUM, T. HARZIANUM, T. VIRENS, T. VIRIDE ON SURVIVAL AND SAPROPHYTIC ACTIVITY OF RHIZOCTONIA SOLANI IN SOIL  

Technology Transfer Automated Retrieval System (TEKTRAN)

This work was undertaken to determine the effects of Trichoderma spp. combined with label and sublabel rates of metam sodium on survival and saprophytic activity of Rhizoctonia solani in soil. To study survival, sterile beet seed were colonized with R. solani and used to infest soil. Soils were al...

88

Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.).  

PubMed

The study evaluated the comparative performance of a few microbial antagonists, organic amendments and fungicides and their integration for the management of seedling mortality (Rhizoctonia solani Kühn) and yield improvement in pea (Pisum sativum L.). Before setting the experiment in field microplots, a series of in vitro and in vivo experiments were conducted to select a virulent isolate of R. solani, an effective antagonistic isolate of Trichoderma harzianum, a fungitoxic organic amendment and an appropriate fungicide. A greenhouse pathogenicity test compared differences in seedling mortality in pea inoculated by four isolates of R. solani and identified the isolate RS10 as the most virulent one. Among the 20 isolates screened in dual culture assay on PDA, T. harzianum isolate T-3 was found to show the highest (77.22%) inhibition of the radial growth of R. solani. A complete inhibition (100.00%) of colony growth of R. solani was observed when fungicide Bavistin 50 WP and Provax-200 at the rate of 100 and 250ppm, respectively, were used, while Provax-200 was found to be highly compatible with T. harzianum. Mustard oilcake gave maximum inhibition (60.28%) of the radial growth of R. solani at all ratios, followed by sesame oilcake and tea waste. Integration of soil treatment with T. harzianum isolate T-3 and mustard oilcake and seed treatment with Provax-200 appeared to be significantly superior in reducing seedling mortality and improving seed yield in pea in comparison to any single or dual application of them in the experimental field. The research results will help growers develop integrated disease management strategies for the control of Rhizoctonia disease in pea. The research results show the need for an integrating selective microbial antagonist, organic amendment and fungicide to achieve appropriate management of seedling mortality (R. solani) and increase of seed yield in pea. PMID:25528673

Akhter, Wasira; Bhuiyan, Mohamed Khurshed Alam; Sultana, Farjana; Hossain, Mohamed Motaher

2015-01-01

89

Intraspecific Evolution of Rhizoctonia solani AG1 IA Associated with Soybean and Rice in Brazil based on Polymorphisms at the ITS5.8S rDNA Operon  

Microsoft Academic Search

Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available\\u000a on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification

Maisa B. Ciampi; Eiko E. Kuramae; Roseli C. Fenille; Maurício C. Meyer; Nilton L. Souza; Paulo C. Ceresini

2005-01-01

90

Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice.  

PubMed

Rice sheath blight, caused by the necrotrophic fungus Rhizoctonia solani, is one of the most devastating and intractable diseases of rice, leading to a significant reduction in rice productivity worldwide. In this article, in order to examine sheath blight resistance, we report the generation of transgenic rice lines overexpressing the rice oxalate oxidase 4 (Osoxo4) gene in a green tissue-specific manner which breaks down oxalic acid (OA), the pathogenesis factor secreted by R.?solani. Transgenic plants showed higher enzyme activity of oxalate oxidase (OxO) than nontransgenic control plants, which was visualized by histochemical assays and sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Transgenic rice leaves were more tolerant than control rice leaves to exogenous OA. Transgenic plants showed a higher level of expression of other defence-related genes in response to pathogen infection. More importantly, transgenic plants exhibited significantly enhanced durable resistance to R.?solani. The overexpression of Osoxo4 in rice did not show any detrimental phenotypic or agronomic effect. Our findings indicate that rice OxO can be utilized effectively in plant genetic manipulation for sheath blight resistance, and possibly for resistance to other diseases caused by necrotrophic fungi, especially those that secrete OA. This is the first report of the expression of defence genes in rice in a green tissue-specific manner for sheath blight resistance. PMID:23809026

Molla, Kutubuddin A; Karmakar, Subhasis; Chanda, Palas K; Ghosh, Satabdi; Sarkar, Sailendra N; Datta, Swapan K; Datta, Karabi

2013-12-01

91

Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs).  

PubMed

Rhizoctonia solani is a soil-borne plant pathogenic fungus of the phylum Basidiomycota. It affects a wide range of agriculturally important crops and hence is responsible for economically relevant crop losses. Transcriptome analysis of the bottom rot pathogen R. solani AG1-1B (isolate 7/3/14) by applying high-throughput sequencing and bioinformatics methods addressing Expressed Sequence Tag (EST) data interpretation provided new insights in expressed genes of this fungus. Two normalized cDNA libraries representing different cultivation conditions of the fungus were sequenced on the 454 FLX (Roche) system. Subsequent to cDNA sequence assembly and quality control, ESTs were analysed applying advanced bioinformatics methods. More than 14?000 transcript isoforms originating from approximately 10?000 predictable R. solani AG1-IB 7/3/14 genes are represented in each dataset. Comparative analyses revealed several differentially expressed genes depending on the growth conditions applied. Determinants with predicted functions in recognition processes between the fungus and the host plant were identified. Moreover, many R. solani AG1-IB ESTs were predicted to encode putative cellulose, pectin, and lignin degrading enzymes. Furthermore, genes playing a possible role in mitogen-activated protein (MAP) kinase cascades, 4-aminobutyric acid (GABA) metabolism, melanin synthesis, plant defence antagonism, phytotoxin, and mycotoxin synthesis were detected. PMID:25209639

Wibberg, Daniel; Jelonek, Lukas; Rupp, Oliver; Kröber, Magdalena; Goesmann, Alexander; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

2014-01-01

92

Compositional variability and antifungal potentials of ocimum basilicum, O. tenuiflorum, O. gratissimum and O. kilimandscharicum essential oils against Rhizoctonia solani and Choanephora cucurbitarum.  

PubMed

The composition of hydrodistilled essential oils of Ocimum basilicum L. (four chemovariants), O. tenuiflorum L., O. gratissimum L., and O. kilimandscharicum Guerke were analyzed and compared by using capillary gas chromatography (GC/FID) and GC-mass spectrometry (GC/MS). Phenyl propanoids (upto 87.0%) and monoterpenoids (upto 83.3%) were prevalent constituents distributed in the studied Ocimum taxa. The major constituents of the four distinct chemovariants of O. basilicum were methyl chavicol (86.3%), methyl chavicol (61.5%)/linalool (28.6%), citral (65.9%); and linalool (36.1%)/citral (28.8%). Eugenol (66.5% and 78.0%) was the major constituent of O. tenuiflorum and O. gratissimum. Eugenol (34.0%), ?-bisabolene (15.4%), (E)-?-bisabolene (10.9%), methyl chavicol (10.2%) and 1,8-cineole (8.2%) were the major constituents of O. kilimandscharicum. In order to explore the potential for industrial use, the extracted essential oils were assessed for their antifungal potential through poison food technique against two phytopathogens, Rhizoctonia solani and Choanephora cucurbitarum, which cause root and wet rot diseases in various crops. O. tenuiflorum, O. gratissimum, and O. kilimandscharicum exhibited complete growth inhibition against R. solani and C. cucurbitarum after 24 and 48 h of treatment. O. basilicum chemotypes showed variable levels of growth inhibition (63.0%-100%) against these two phytopathogens. PMID:25522548

Padalia, Rajendra C; Verma, Ram S; Chauhan, Amit; Goswami, Prakash; Chanotiya, Chandan S; Saroj, Arvind; Samad, Abdul; Khaliq, Abdul

2014-10-01

93

Analysis of Phaseolus vulgaris Response to Its Association with Trichoderma harzianum (ALL-42) in the Presence or Absence of the Phytopathogenic Fungi Rhizoctonia solani and Fusarium solani  

PubMed Central

The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. PMID:24878929

Pereira, Jackeline L.; Queiroz, Rayner M. L.; Charneau, Sébastien O.; Felix, Carlos R.; Ricart, Carlos A. O.; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J.; Noronha, Eliane F.

2014-01-01

94

Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.  

PubMed

The antagonistic activity of lipopeptides in Bacillus subtilis 916 has been well documented, yet relatively little is known about their mechanism in biofilm formation and environmental colonization. This study sought to examine the interaction of B. subtilis 916 on Rhizoctonia solani-infected rice sheath to elucidate the mechanism of colonization on plant leaves. Results showed that the mutants ?bac, ?srf, and ?srf?+?bac of B. subtilis 916, deficient in bacillomycin L and surfactin production, respectively, not only altered colony morphology but also changed swarming motility, reduced antagonistic activity, and decreased biofilm formation. In particular, biofilm formation in mutant ?bac, not ?srf or ?srf?+?bac, were restored with addition of surfactin and bacillomycin L at 10 and 50 ?g/mL, respectively. Moreover, surfactin and bacillomycin L were able to restore or enhance swarming motility in the corresponding mutants at 10 ?g/mL, respectively. With the aid of green fluorescent protein tagging, it was demonstrated that B. subtilis 916 formed a robust biofilm on the rice sheath blight lesion and colonized well on R. solani-infected rice sheath, while its corresponding mutants performed poorly. These observations also correlated with the rice cultivar pot experiments, in which B. subtilis 916 exhibited greater biocontrol than its mutants. Our results suggest that surfactin and bacillomycin L contribute differently but synergistically to the biocontrol of rice sheath blight in B. subtilis 916 through its antifungal activity, biofilm formation, and colonization. PMID:25398282

Luo, Chuping; Zhou, Huafei; Zou, Jincheng; Wang, Xiaoyu; Zhang, Rongsheng; Xiang, Yaping; Chen, Zhiyi

2014-11-16

95

Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani.  

PubMed

The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. PMID:24878929

Pereira, Jackeline L; Queiroz, Rayner M L; Charneau, Sébastien O; Felix, Carlos R; Ricart, Carlos A O; da Silva, Francilene Lopes; Steindorff, Andrei Stecca; Ulhoa, Cirano J; Noronha, Eliane F

2014-01-01

96

Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani.  

PubMed

Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity. PMID:23031077

Helliwell, Emily E; Wang, Qin; Yang, Yinong

2013-01-01

97

Characterization of Genes Involved in Biosynthesis of a Novel Antibiotic from Burkholderia cepacia BC11 and Their Role in Biological Control of Rhizoctonia solani  

PubMed Central

Genetic manipulation of fluorescent pseudomonads has provided major insight into their production of antifungal molecules and their role in biological control of plant disease. Burkholderia cepacia also produces antifungal activities, but its biological control activity is much less well characterized, in part due to difficulties in applying genetic tools. Here we report genetic and biochemical characterization of a soil isolate of B. cepacia relating to its production of an unusual antibiotic that is very active against a variety of soil fungi. Purification and preliminary structural analyses suggest that this antibiotic (called AFC-BC11) is a novel lipopeptide associated largely with the cell membrane. Analysis of conditions for optimal production of AFC-BC11 indicated stringent environmental regulation of its synthesis. Furthermore, we show that production of AFC-BC11 is largely responsible for the ability of B. cepacia BC11 to effectively control the damping-off of cotton caused by the fungal pathogen Rhizoctonia solani in a gnotobiotic system. Using Tn5 mutagenesis, we identified, cloned, and characterized a region of the genome of strain BC11 that is required for production of this antifungal metabolite. DNA sequence analysis suggested that this region encodes proteins directly involved in the production of a nonribosomally synthesized lipopeptide. PMID:9758823

Kang, Yaowei; Carlson, Russell; Tharpe, Wendy; Schell, Mark A.

1998-01-01

98

A simple method based on laboratory inoculum and field inoculum for evaluating potato resistance to black scurf caused by Rhizoctonia solani  

PubMed Central

A two-step method was developed to evaluate potato resistance to black scurf caused by Rhizoctonia solani. Tuber piece inoculum was first conducted in the laboratory, which was also first reported in this study. After inoculation with pathogen discs and culture for 48 h, the necrotic spots on the inoculated potato pieces were generated and measured by the crossing method. Further evaluation was conducted through field experiments using a wheat bran inoculum method. The wheat bran inoculum was placed into the pit dispersedly and surrounded seed tubers. Each cultivar or line was subjected to five treatments of 0-, 2-, 3-, 4-, and 5-g soil inoculum. The results showed that 2–4 g of wheat bran inoculum was the optimum for identifying tuber black scurf resistance. The laboratory scores positively correlated with the incidence and severity of black scurf in the field. According to the results in the laboratory, relatively resistant cultivars could be selected for further estimation of tuber black scurf resistance in field experiments. It is a practical and effective screening method for rapid identification of resistant potato germplasm, which can reduce workload in the field, shorten time required for identification. PMID:24987302

Zhang, Xiao-Yu; Yu, Xiao-Xia; Yu, Zhuo; Xue, Yu-Feng; Qi, Li-Peng

2014-01-01

99

Suppression subtractive hybridization and comparative expression of a pore-forming toxin and glycosyl hydrolase genes in Rhizoctonia solani during potato sprout infection.  

PubMed

Rhizoctonia solani is a plant pathogenic fungus that causes black scurf on tubers and stem and stolon canker on underground parts of potato plant. Early in the season, the fungus attacks germinating sprouts underground before they emerge from the soil. Damage at this stage results in delayed emergence of weakened plants with poor and uneven stands. The mechanism underlying this phenomenon has been investigated in this study by coupling a cDNA-suppression subtractive hybridization (SSH) library to differential screening to identify transcripts of R. solani that are down-regulated during infection of potato sprouts. We report on the identification of 33 unique genes with functions related to carbohydrate binding, vitamin synthesis, pathogenicity, translation, ATP and nucleic acid binding and other categories. RACE-PCR was used to clone and characterize the first full-length cDNA clones, RSENDO1 and RSGLYC1 that encode for an eukaryotic delta-endotoxin CytB protein and an intracellular glycosyl hydrolase, respectively. Quantitative real-time PCR revealed the down-regulation of RSENDO1 during infection of potato sprouts and the up-regulation of RSGLYC1 when the fungus was grown on a cellulose-based nutrient medium. In contrast, additional experiments have highlighted the down-regulation of RSENDO1 when R. solani was co-cultured with the mycoparasite Stachybotrys elegans and the bacterial antagonist Bacillus subtilis B26. These results advance our understanding of R. solani-potato interaction in subterranean parts of the plant. Such approaches could be considered in building an efficient integrated potato disease management program. PMID:25472038

Chamoun, Rony; Samsatly, Jamil; Pakala, Suman B; Cubeta, Marc A; Jabaji, Suha

2014-12-01

100

Rhizoctonia Bataticola Lectin (RBL) Induces Caspase-8-Mediated Apoptosis in Human T-Cell Leukemia Cell Lines but Not in Normal CD3 and CD34 Positive Cells  

PubMed Central

We have previously demonstrated immunostimulatory activity of a fungal lectin, Rhizoctonia bataticola lectin (RBL), towards normal human peripheral blood mononuclear cells. The present study aimed to explore the anticancer activities of RBL using human leukemic T-cell lines, Molt-4, Jurkat and HuT-78. RBL exhibited significant binding (>90%) to the cell membrane that was effectively inhibited by complex glycoproteins such as mucin (97% inhibition) and asialofetuin (94% inhibition) but not simple sugars such as N-acetyl-D-galactosamine, glucose and sucrose. RBL induced a dose and time dependent inhibition of proliferation and induced cytotoxicity in the cell lines. The percentage of apoptotic cells, as determined by hypodiploidy, was 33% and 42% in Molt-4 and Jurkat cells, respectively, compared to 3.11% and 2.92% in controls. This effect was associated with a concomitant decrease in the G0/G1 population. Though initiator caspase-8 and -9 were activated upon exposure to RBL, inhibition of caspase-8 but not caspase-9 rescued cells from RBL-induced apoptosis. Mechanistic studies revealed that RBL induced cleavage of Bid, loss of mitochondrial membrane potential and activation of caspase-3. The expression of the anti-apoptotic proteins Bcl-2 and Bcl-X was down regulated without altering the expression of pro-apoptotic proteins- Bad and Bax. In contrast to leukemic cells, RBL did not induce apoptosis in normal PBMC, isolated CD3+ve cells and undifferentiated CD34+ve hematopoietic stem and progenitor cells (HSPCs). The findings highlight the differential effects of RBL on transformed and normal hematopoietic cells and suggest that RBL may be explored for therapeutic applications in leukemia. PMID:24244478

Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh; Barkeer, Srikanth; Reddy, Vishwanath; Swamy, Bale M.; Inamdar, Shashikala R.; Shastry, Padma

2013-01-01

101

Polymorphism of genes coding for nuclear 18S rRNA indicates genetic distinctiveness of anastomosis group 10 from other groups in the Rhizoctonia solani species complex.  

PubMed Central

DNA polymorphism in the 18S nuclear rRNA gene region was investigated by using 11 restriction endonucleases for 161 isolates of 25 intraspecific groups (ISGs) representing 11 reported anastomosis groups (AGs) of Rhizoctonia solani. A PCR-based restriction mapping method in which enzymatically amplified DNA fragments and subfragments were digested with one or two restriction enzymes was employed. Four types of DNA restriction maps of this region were constructed for these 25 ISGs. Map type I of the 18S rDNA region was represented by isolates of a majority of R. solani ISGs. Map types II and III, represented by ISG 2E and 9 isolates and 5C isolates, respectively, differed from map I by the absence of one (map type II) or two (map type III) restriction sites. Map type IV, represented by ISG 10A and B (or AG 10) isolates, showed significant restriction site variations, with five enzymes in this region compared with those of the remaining ISGs or AGs. Ten of the 25 restriction sites in the 18S rRNA gene region were informative and selected for analysis. Previously reported restriction maps of the 5.8S rRNA gene region, including the internal transcribed spacers, were aligned with each other, and 12 informative restriction sites were identified. These data were used alone and in combination to evaluate group relationships. Analyses derived from these data sets by maximum parsimony and likelihood methods showed that AG 10 isolates were distinct and distantly related to the majority isolates of the other AGs of this species complex. PMID:7618879

Liu, Z L; Domier, L L; Sinclair, J B

1995-01-01

102

Characterization of a New Subgroup of Rhizoctonia solani Anastomosis Group 1 (AG-1-ID), Causal Agent of a Necrotic Leaf Spot on Coffee.  

PubMed

ABSTRACT A new foliar disease on coffee leaves was observed in Mindanao, Philippines, in 1996. The symptoms appeared as large circular or irregularly shaped necrotic areas with small circular necrotic spots (1 mm or less in diameter) usually found around the periphery of the large necrotic areas. Rhizoctonia solani was consistently isolated from these diseased coffee leaves. Isolates obtained were multinucleate (3 to 12 nuclei per hyphal cell), had an optimum temperature for hyphal growth at 25 degrees C, prototrophic for thiamine, and anastomosed with tester isolates belonging to R. solani anastomosis group 1 (AG-1). Mature cultures on potato dextrose agar (PDA) were light to dark brown. Sclerotia, light brown to brown, were formed on the surface of PDA and covered the whole mature colony culture. Individual sclerotia often aggregated into large clumps (3 to 8 mm in diameter) and their color was brown to dark brown. In pathogenicity tests, isolates from coffee caused necrotic symptoms on coffee leaves, whereas isolates of AG-1-IA (not isolated from coffee), 1-IB, and 1-IC did not. The results of analyses of restriction fragment length polymorphism of ribosomal DNA internal transcribed spacer, random amplified polymorphism DNA, and fatty acid profiles showed that R. solani isolates from coffee are a population of AG-1 different from AG-1-IA, 1-IB, and 1-IC. These results suggest that R. solani isolates from coffee represent a new subgroup distinct from AG-1-IA, 1-IB, and 1-IC. A new subgroup ID (AG-1-ID) is proposed. PMID:18943440

Priyatmojo, A; Escopalao, V E; Tangonan, N G; Pascual, C B; Suga, H; Kageyama, K; Hyakumachi, M

2001-11-01

103

Phylogeography of the Solanaceae-infecting Basidiomycota fungus Rhizoctonia solani AG-3 based on sequence analysis of two nuclear DNA loci  

PubMed Central

Background The soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89). Results Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (?ST = 0.257, significant at P < 0.05) but not for locus pP42F (?ST = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3. Conclusion The two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species. PMID:17854492

Ceresini, Paulo C; Shew, H David; James, Timothy Y; Vilgalys, Rytas J; Cubeta, Marc A

2007-01-01

104

The Wheat Ethylene Response Factor Transcription Factor PATHOGEN-INDUCED ERF1 Mediates Host Responses to Both the Necrotrophic Pathogen Rhizoctonia cerealis and Freezing Stresses1[C][W][OPEN  

PubMed Central

Sharp eyespot disease (primarily caused by the pathogen Rhizoctonia cerealis) and freezing stress are important yield limitations for the production of wheat (Triticum aestivum). Here, we report new insights into the function and underlying mechanisms of an ethylene response factor (ERF) in wheat, Pathogen-Induced ERF1 (TaPIE1), in host responses to R. cerealis and freezing stresses. TaPIE1-overexpressing transgenic wheat exhibited significantly enhanced resistance to both R. cerealis and freezing stresses, whereas TaPIE1-underexpressing wheat plants were more susceptible to both stresses relative to control plants. Following both stress treatments, electrolyte leakage and hydrogen peroxide content were significantly reduced, and both proline and soluble sugar contents were elevated in TaPIE1-overexpressing wheat, whereas these physiological traits in TaPIE1-underexpressing wheat exhibited the opposite trend. Microarray and quantitative reverse transcription-polymerase chain reaction analyses of TaPIE1-overexpressing and -underexpressing wheat plants indicated that TaPIE1 activated a subset of defense- and stress-related genes. Assays of DNA binding by electrophoretic mobility shift and transient expression in tobacco (Nicotiana tabacum) showed that the GCC boxes in the promoters of TaPIE1-activated genes were essential for transactivation by TaPIE1. The transactivation activity of TaPIE1 and the expression of TaPIE1-activated defense- and stress-related genes were significantly elevated following R. cerealis, freezing, and exogenous ethylene treatments. TaPIE1-mediated responses to R. cerealis and freezing were positively modulated by ethylene biosynthesis. These data suggest that TaPIE1 positively regulates the defense responses to R. cerealis and freezing stresses by activating defense- and stress-related genes downstream of the ethylene signaling pathway and by modulating related physiological traits in wheat. PMID:24424323

Zhu, Xiuliang; Qi, Lin; Liu, Xin; Cai, Shibin; Xu, Huijun; Huang, Rongfeng; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

2014-01-01

105

[Effect of plant residues on the parasitic activity of soil-borne pathogens and the saprophytic microflora of the soil. II. Influence of a second crop cultivation one the incidence of Rhizoctonia solani (author's transl].  

PubMed

In a more years-lasting field trial the influence of a second crop cultivation of rye and rape in winter time on the incidence of Rhizoctonia solani Kühn on potato or mustard as indicator plants was studied. The second crops were ploughed in during spring time. On part of the trial was artificially infested by this causal agent. Three crop rotations with different proportions of host plants (potato) were compared. The results obtained demonstrate the following: 1. On the part of experimental area arficially infested the incidence rate was higher for 3 till 4 years than on the control plots, but later it became equally to the control one, which also was very high (approximately 50). 2. In the last very dry year (1969) the disease developed only a little. 3. The second crop cultivation decreased the incidence of R. solani in 7 (rye) or 8 (rape) of 10 cases, but mostly the rate of decreasing was low. 4. A high weed density induced by a diminished mechanical cultivation increased the incidence of R. solani at the end of the experiment (1969), specially in the rotation with 80% host plants. 5. The number of soil bacteria, the respiration rate, and partly also the activity of dehydrogenase and the soil acidity were increased by green manuring of the second crop, however, the number of the actinomycetes, and the cellulolytic activity didn't be influenced remarkably. 6. The second crop cultivation ist nounced as a measure stimulating the soil fertiligy and discussed in connection with the microbial processes taking place in soil. PMID:602482

Naumann, K; Lange-de la Camp, M

1977-01-01

106

Rhizoctonia and Bacterial Root Rot in Sugarbeet  

Technology Transfer Automated Retrieval System (TEKTRAN)

Root rot in sugarbeet can cause losses approaching 50% or more in Idaho. To assess the distribution of root rot fungi and their relationship to bacterial root rot, commercial sugar beet roots were collected at harvest time in the Intermountain West (IMW). Isolations for both fungi and bacteria wer...

107

77 FR 18806 - Fluxapyroxad; Receipt of Application for Emergency Exemption for Use on Rice in Louisiana...  

Federal Register 2010, 2011, 2012, 2013

...to control sheath blight caused by the fungus, Rhizoctonia solani. The applicant proposes...to control sheath blight caused by the fungus Rhizoctonia solani. Information in accordance...control sheath blight in rice caused by the fungus Rhizoctonia solani. Rhizoctonia...

2012-03-28

108

SUPPRESSION OF RHIZOCTONIA ROOT ROT BY STREPTOMYCES IN BRASSICA SEED MEAL-AMENDED SOIL  

E-print Network

, introduced either as a cover crop or soil amendment, have acquired significant use as a disease control The use of plant-based organic residue as soil amendments offers a realistic alternative to broad spectrum on the use of these plants as a "biofumigant", where incorporation of residues into soil ultimately results

Cohen, Michael F.

109

Expression of a Chitinase Gene from Metarhizium anisopliae in Tobacco Plants Confers Resistance against Rhizoctonia solani  

Microsoft Academic Search

The chit1 gene from the entomopathogenic fungus Metarhizium anisopliae, encoding the endochitinase CHIT42, was placed under the control of the CaMV 35S promoter, and the resulting construct was\\u000a transferred to tobacco. Seventeen kanamycin-resistant transgenic lines were recovered, and the presence of the transgene was\\u000a confirmed by polymerase chain reactions and Southern blot hybridization. The number of chit1 copies was determined

Marcelo Fernando Kern; Simone de Faria Maraschin; Débora Vom Endt; Augusto Schrank; Marilene Henning Vainstein; Giancarlo Pasquali

2010-01-01

110

Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani  

Microsoft Academic Search

The production of enzymes capable of degrading the cell walls of invading phytopathogenic fungi is an important component of the defense response of plants. The timing of this natural host defense mechanism was modified to produce fungal-resistant plants. Transgenic tobacco seedlings constitutively expressing a bean chitinase gene under control of the cauliflower mosaic virus 35S promoter showed an increased ability

Karen Broglie; Ilan Chet; Mark Holliday; Robert Cressman; Phyllis Biddle; Susan Knowlton; C. Jeffry Mauvais; Richard Broglie

1991-01-01

111

Effects of methamidophos on the community structure, antagonism towards Rhizoctonia solani, and phlD diversity of soil Pseudomonas  

Microsoft Academic Search

A microcosm incubation study using an aquic brown soil from northeast China (a Cambisol in the UN Food and Agriculture Organization FAO Soil Taxonomy) was conducted to examine the effects of different concentrations (0, 50, 150, and 250 mg kg) of methamidophos (O,S-dimethyl phosphoramidothioato) on Pseudomonas, one of the most important gram-negative bacteria in soil. Amplified ribosomal DNA restriction analysis

Minna Wu; Xinyu Li; Huiwen Zhang; Yinghui Cai; Chenggang Zhang

2010-01-01

112

Single Plant Selection as a Screening Method for Resistance to Rhizoctonia solani and Pythium ultimum in Cotton  

E-print Network

selections resulted in three generations, C_(0) (original families or Cycle 0) C_(1), selected from the C_(0) family, and C_(2), selected from the C_(1) generation. C_(1) and C_(2) were putative resistant families after one or two generation(s) of selection...

Jones, Whitney M

2014-04-15

113

Rhizoctonia spp. associated with brown patch of St. Augustinegrass: isolate characterization, host range, and screening for resistance  

E-print Network

postemergence damping-off in two cul- tivars of Festuca arundinacea (Rebel and Kentucky 31) and three cul- tivars of Lolium ~erenne (Barry, Citadel, and Loretta) and pre- and postemergence dsmping-off in two cultivars of L. ~erenne (Celebrity and Venloma... 01009 Seedling Survival(%%d) ~e Isolate Control 01002 01009 P Kentucky bluegrass. Birka Kimono P. trivialis Rough bluegrass Sabre A~i el t ~ Creeping bentgrass Penncross Festuca arundinacea Tall fescue Rebel Kentucky 31 F. commutate...

Hurd, Bernadette Murphy

1982-01-01

114

Lack of interaction between glyphosate and fungicide treatments on Rhizoctonia crown and root rot in glyphosate-resistant sugarbeet  

Technology Transfer Automated Retrieval System (TEKTRAN)

A field experiment was conducted in 2008 and 2009 in the Saginaw Valley region of Michigan to determine if there were potential interactions between applications of glyphosate and the fungicide azoxystrobin and to determine the effectiveness of foliar and in-furrow azoxystrobin applications when Rhi...

115

The influence of cropping systems on inoculum density of Rhizoctonia solani and sheath blight of rice (Oryza sativa)  

E-print Network

is initiated during permanent flood when buoyant sclerotia float to the water surface and produce mycelium to infect tillers at the water line (15). A greater loss in the yield of rice occurs when plants become infected during the vegetative and early... for the second year of the study. The inoculum density was highly correlated to disease incidence. These data suggested that overall for the fields surveyed during 1984 and 1985, that sclerotia of R. salani were responsible for causing sheath blight of rice...

Belmar, Scott Bradley

2012-06-07

116

First Report of Rhizoctonia spp. causing a root rot of the invasive rangeland weed Lepidium draba in North America.  

Technology Transfer Automated Retrieval System (TEKTRAN)

The exotic, invasive perennial rangeland weed Lepidium draba spreads rapidly and reduces native species diversity. The extensive root system of L. draba constitutes 76% of plant biomass. Thus searches have been done for biocontrol agents that target root tissue or that may interact with a weevil, Ce...

117

Biochemical Characterization of a ?-1,3Glucanase from Trichoderma koningii Induced by Cell Wall of Rhizoctonia solani  

Microsoft Academic Search

Trichoderma species are readily isolated from Brazilian cerrado soil by conventional methods and some of them were characterized as Trichoderma koningii. The effect of carbon source on the production of ?-1,3-glucanases in the culture filtrates of a specific Trichoderma koningii strain (ALL 13) was investigated. Enzyme activity was detected in all carbon sources tested and only one band of ?-1,3-glucanase

Valdirene Neves Monteiro; Cirano José Ulhoa

2006-01-01

118

Biochemical characterization of a beta-1,3-glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani.  

PubMed

Trichoderma species are readily isolated from Brazilian cerrado soil by conventional methods and some of them were characterized as Trichoderma koningii. The effect of carbon source on the production of beta-1,3-glucanases in the culture filtrates of a specific Trichoderma koningii strain (ALL 13) was investigated. Enzyme activity was detected in all carbon sources tested and only one band of beta-1,3-glucanase was detected in non-denaturing PAGE. This enzyme was purified by Sephacryl S-200 gel filtration and Phenyl Sepharose CL 4B chromatography. A typical procedure provided 105-fold purification with 13.4% yield. The molecular weight of the purified enzyme was 75 kDa as estimated by SDS-PAGE. The enzyme hydrolyzed laminarin in an endo-like fashion to form small oligosaccharides and glucose. The Km and Vmax values for beta-1,3-glucanase, using laminarin as substrate, were 0.148 mg.mL-1 and 0.159 U.min-1, respectively. The pH optimum for the enzyme was pH 4.6 and maximum activity was obtained at 50 degrees C. Hg2+ inhibited the purified enzyme. PMID:16450064

Monteiro, Valdirene Neves; Ulhoa, Cirano José

2006-02-01

119

The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani  

Microsoft Academic Search

The role of extracellular chitinase in the biocontrol activity of Trichoderma virens was examined using genetically manipulated strains of this fungus. The T. virens strains in which the chitinase gene (cht42) was disrupted (KO) or constitutively over-expressed (COE) were constructed through genetic transformation. The resulting\\u000a transformants were stable and showed patterns similar to the wild-type (WT) strain with respect to

Jong-Min Baek; Charles R. Howell; Charles M. Kenerley

1999-01-01

120

REGISTRATION OF FC720, FC722, AND FC722CMS MONOGERM SUGARBEET GERMPLASM RESISTANT TO RHIZOCTONIA ROOT ROT AND MODERATELY RESISTANT TO CERCOSPORA LEAF SPOT.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sugarbeet (Beta vulgaris L.) germplasms FC720, FC722, and FC722CMS (PI 636335, PI 636336, and PI 636337) were developed by the USDA-ARS, at Fort Collins, CO, in cooperation with the Beet Sugar Development Foundation (BSDF), Denver, CO. FC720 has good resistance to root-rotting strains (AG-2-2) of R...

121

The Evaluation of High Tannin Cotton Lines and Their Use in Breeding for Resistance to Xanthomonas axonopodis pv. malvacearum, Pythium aphanidermatum and Rhizoctonia solani  

E-print Network

lines developed and released in 1989 by Texas A&M AgriLife Research may possess resistance to these three diseases. In this research, the usefulness of these high tannin lines in breeding for resistance to these pathogens as well as the role of tannin...

Kennett, Raymond

2012-02-14

122

Registration of FC723 and FC723 CMS Monogerm Sugarbeet Germplasm Resistant to Rhizoctonia Root Rot and moderately Resistant to Cercospora Leaf Spot.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sugarbeet (Beta vulgaris L.) germplasms FC723 and FC723CMS (Reg. nos. GP-GP-, PI 639917 and PI 639918, respectively) were developed by the USDA-ARS, at Fort Collins, Colorado, in cooperation with the Beet Sugar Development Foundation, Denver, CO. FC723 has good resistance to root-rotting strains (A...

123

Response of azalea cuttings to leaf damage and leaf removal  

Technology Transfer Automated Retrieval System (TEKTRAN)

Binucleate Rhizoctonia species, the pathogens that cause azalea web blight, can be carried on stem cuttings, perpetuating the disease through subsequent crops. Previous studies have demonstrated that submerging Rhizoctonia-infested stem pieces of 'Gumpo White' azalea in 122°F (50°C) water for 20 min...

124

Fungicide timing rules to prevent azalea web blight damage  

Technology Transfer Automated Retrieval System (TEKTRAN)

This article provides directions for timing fungicide applications to control Rhizoctonia web blight. Research has shown that many azalea cultivars are infested with the web blight pathogen (binucleate Rhizoctonia). The fungus lives 12 months of the year on azaleas, yet does not harm the plant most...

125

Rooting Response of Azalea Cultivars Using Hot Water Treatments to Control Pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Azalea web blight is an annual problem on some evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. The binucleate Rhizoctonia species, which cause the disease, are spread on new shoot growth harvested for propagation. Rhizoctonia can be eli...

126

Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon?  

PubMed

The roots of orchids associate with mycorrhizal fungi, the rhizoctonias, which are considered to exchange mineral nutrients against plant carbon. The recent discovery that rhizoctonias grow endophytically in non-orchid plants raises the possibility that they provide carbon to orchids, explaining why some orchids differ in isotopic abundances from autotrophic plants. PMID:25278267

Selosse, Marc-André; Martos, Florent

2014-09-29

127

IDENTIFICATION OF PYTHIUM SPECIES ON WEST TEXAS PEANUTS AND SENSITIVITY OF ISOLATES TO MEFENOXAM AND AZOXYSTROBIN IN PETRI DISH ASSAYS.  

Technology Transfer Automated Retrieval System (TEKTRAN)

A survey was conducted in 107 peanut fields to determine the incidence of Rhizoctonia or Pythium pod rot. Rhizoctonia solani and Pythium spp. were isolated from rotted pods in 35 and 39% of the fields, respectively. Isolates of Pythium were collected and some were identified to species. The three...

128

Control effect of lanthanum against plant disease  

Microsoft Academic Search

Effect of La on emergence, growth and development of Isatis indigotica Fort. and Festuca arundinacea seedlings was researched by pot experiments of inoculating Rhizoctonia solani and with the mixture of Rhizoctonia solani and Fusarium solani in disinfected soil after the seeds were soaked in the solution with different concentrations of La3+. The results indicated that infection rate decreased and there

Yajia LIU; Yan WANG; Fubin WANG; Yuming LIU; Jianyu CUI; Lin HU; Kangguo MU

2008-01-01

129

Spore viability bioassay, in vitro and greenhouse evaluation of six potential methyl bromide alternatives  

Technology Transfer Automated Retrieval System (TEKTRAN)

Six test compounds were evaluated in vitro for their effectiveness in control of Phytophthora capsici, P. nicotianae, Pythium aphanidermatum, P. myriotylum, Sclerotinia sclerotiorum, Athelia rolfsii, Fusarium oxysporum, Colletotrichum acutatum, Rhizoctonia solani and Verticillium albo-atrum. Four o...

130

Orchid Mycorrhizae Development and Anatomy  

E-print Network

associates may be saprotrophic, but some Rhizoctonia spp. are ectomycorrhizal (jelly fungi); many others that are ectomycorrhizal fungi ( also a few saprotrophs). Lee Taylor 3-Way Symbiosis Taylor and Bruns 1997 Sugar transport

Horton, Tom

131

Development and Anatomy The fungal symbionts  

E-print Network

(teleopmorph, think fruitbody) was not seen ­ Orchid associates may be saprotrophic, but some Rhizoctonia spp ( also a few saprotrophs). Lee Taylor Taylor and Bruns 1997 C from Nitrogen Source? · Note the fungus

Horton, Tom

132

EVALUATION OF FUNGICIDES FOR CONTROLLING BOTTOM ROT OF ICEBERG LETTUCE, 2001 AND 2002  

Technology Transfer Automated Retrieval System (TEKTRAN)

Application of fungicides such as Quadris, Pristin, Flint Rovral and Switch to the base of young lettuce plants after thinning and one week later reduced the incidence of disease caused by Rhizoctonia solani....

133

Dose response of soilborne plant pathogens and Meloidogyne incognita to citrus-based experimental compounds.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Two novel citrus-based compounds have been tested in vitro against Colletotrichum gleosporioides, Fusarium oxysporum, Sclerotinia sclerotiorum, Sclerotium rolfsii, Rhizoctonia solani, Verticillium albo-atrum, Pythium aphanidermatum, P. myriotilum, Phytophthora nicotianae and P. capsici. One of the...

134

Comparison of immunological reactivity of polygalacturonases from different fungi  

Microsoft Academic Search

Homogeneous endo-polygalacturonases (PGs) from Aspergillus niger and Fusarium moniliforme were used to prepare rabbit antisera. IgG were purified from antisera by Protein A-sepharose chromatography. Purified IgG were tested against endopolygalacturonases from Sclerotium rolfsii, Sclerotinia sclerotiorum, Rhizoctonia solani, Rhizoctonia fragariae and Fusarium oxysporum. Double immunodiffusion tests, ELISA tests and Western blottings showed that all the enzymes react with both antisera suggesting

G. De Lorenzo; F. Scala; G. Salvi; F. Cervone

1988-01-01

135

Synthesis, Characterization, and Antifungal Studies of Cr(III) Complex of Norfloxacin and Bipiridyl Ligand  

PubMed Central

A novel slightly distorted octahedral complex of Cr(III) of norfloxacin (Nor) with the formula [CrIII(Nor)(Bipy)Cl2]Cl·2CH3OH has been synthesized hydrothermally in the presence of a N-containing heterocyclic compound 2,2?-bipyridyl (Bipy). The complex was characterized with FT-IR, elemental analysis, UV-visible spectroscopy, and X-ray crystallography. Spectral studies suggest that the Nor acts as a deprotonated bidentate ligand. Thermal studies were also carried out. The synthesised complex was screened against four fungi Pythium aphanidermatum (PA), Sclerotinia rolfsii (SR), Rhizoctonia solani (RS), and Rhizoctonia bataticola (RB). PMID:25276111

Debnath, Anamika; Hussain, Firasat; Masram, Dhanraj T.

2014-01-01

136

www.ext.vt.edu Produced by Communications and Marketing, College of Agriculture and Life Sciences,  

E-print Network

die, especially if there is inadequate moisture shortly after transplanting. If infected plants remain. Fig. 2. Head rot, caused by Rhizoctonia solani, on cabbage. (Photo by R. L.Wick-U. Mass.) Fig. 1. Wire stem symptoms on lower stem of broccoli plant. (Photo by R. L. Wick-U. Mass.) #12;2 Bottom rot becomes

Liskiewicz, Maciej

137

Seedling disease resistance screening assays  

Technology Transfer Automated Retrieval System (TEKTRAN)

A number of pathogens can cause early season stand loss in sugar beet. Fungi such as Rhizoctonia solani AG-2-2 and AG-4 and Fusarium oxysporum are able to cause post-emergence damping-off in sugar beet. Recent work has identified some sugar beet germplasms which show reduced damage from isolates of ...

138

BIOLOGICAL CONTROL OF SUGAR BEET DAMPING-OFF WITH TRICHODERMA SPP.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Biological control of damping-off in sugar beet seedlings with Trichoderma species. Isolates of Trichoderma virens and other Trichoderma species are effective biocontrol agents for diseases of several crops. Control of damping-off caused by Rhizoctonia solani has been observed in a number of c...

139

The effect of Pseudomonas fluorescens strain q2-87 in pathogen inhibition and growth promotion of slash pine seedlings  

Technology Transfer Automated Retrieval System (TEKTRAN)

Pseudomonas fluorescens strain Q2-87 showed significant antagonistic activity against the damping-off pathogens of slash pine (Pinus elliottii), including Rhizoctonia solani, Alternaria alternata and Fusarium oxysporum. In vitro assays showed that strain Q2-87, which has an inhibition index higher t...

140

Timing of fungicide sprays to prevent azalea web blight symptoms  

Technology Transfer Automated Retrieval System (TEKTRAN)

Azalea web blight is an annual problem on evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. Fungicides are the only approach currently used to control Rhizoctonia web blight; however, control is poor in some years because the specifics of...

141

Cutting propagation of azaleas using hot water treatments to control pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Azalea web blight, caused by certain binucleate species of Rhizoctonia, occurs yearly on some azalea cultivars during nursery production in the southern and eastern U.S. Azalea shoots collected for cutting propagation can harbor the pathogen, thus allowing the disease to be perpetuated during the cu...

142

Azalea Web Blight Control: Fungicide Timing in the Nursery and Hot Water Treatment of Stem Cuttings  

Technology Transfer Automated Retrieval System (TEKTRAN)

Azalea web blight is an annual problem on some evergreen azalea cultivars grown in containerized nursery production in the southern and eastern United States. Multiple control strategies are being investigated to control the binucleate Rhizoctonia species that cause web blight. The disease will deve...

143

Podredumbres basales de Gypsophila paniculata (Caryophyllaceae): Agentes causales y su patogenicidad potencial sobre Dianthus caryophyllus (Caryophyllaceae)  

Microsoft Academic Search

Summary: Basal rots of Gypsophila paniculata (Caryophyllaceae). Causal agents and its potential pathogenicity on Dianthus caryophyllus (Caryophyllaceae) The aims of the paper were to determine the causal agents of basal rots of Gypsophila paniculata in Argentina, and to evaluate its possible pathogenicity on Dianthus caryophyllus. Fusarium solani, F. oxysporum, Phytophthora nicotianae, Rhizoctonia solani, F. graminearum, F. verticilloides, F. equiseti and

SILVIA MARÍA WOLCAN; LÍA RONCO; GLADYS ALBINA LORI

144

Rapeseed rotation, compost and biocontrol amendments reduce soilborne diseases and increase tuber yield in conventional and organic potato production systems  

Technology Transfer Automated Retrieval System (TEKTRAN)

Three different potential disease-suppressive management practices, including a Brassica napus (rapeseed) green manure rotation crop, a conifer-based compost amendment, and three biological control organisms (Trichoderma virens, Bacillus subtilis, and Rhizoctonia solani hypovirulent isolate Rhs1A1)...

145

Molecular Characterization of Pseudomonas aeruginosa UPM P3 from Oil Palm Rhizosphere  

Microsoft Academic Search

Problem statement: Pseudomonas aeruginosa has been used in agriculture as biological agents. It has shown substantial control of a varie ty of soil-borne plant pathogens including Macrophomina phaseolina , Botrytis cinerea , Rhizoctonia solani , Colletotrichum truncatum , Pythium , Fusarium and others. Species aggregate of Pseudomonas aeruginosa strain UPM P3 was shown to have potential as a biocontrol agent

Badri Fariman Azadeh; Sariah Meon

2009-01-01

146

DEVELOPMENT OF HIGH-YIELDING DISEASE-RESISTANT COMMON BEAN GERMPLASM LINES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Single-plant selections in compacted and infested (Rhizoctonia solani and Fusarium solani) field plots were made among and within populations of common bean (Phaseolus vulgaris L.) based on general plant vigor. The following year, geometric means for seed yield of compacted/infested field plots and...

147

MAPPING R-GENES IN RICE WILD RELATIVES (ORYZA SPP.)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rice sheath blight caused by Rhizoctonia solani Kühn and leaf blast caused by Magnaporthe grisea (T.T. Herbert) Yaegashi & Udagawa are major fungal diseases of cultivated rice (Oryza sativa L.). Rice wild relatives (Oryza spp.) are the source of several resistance (R-) genes including those for bla...

148

RICE GERMPLASM CHARACTERIZED FOR R-GENES AND POPULATION STRUCTURE  

Technology Transfer Automated Retrieval System (TEKTRAN)

In the USA, newly introduced rice germplasm is one source of novel resistance genes to blast, Magnaporthe grisea, and sheath blight, Rhizoctonia solani, major fungal diseases of irrigated rice (Oryza sativa). Resistance to U.S. blast races was observed in 91 of approximately 1,000 newly introduced ...

149

Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soilborne potato diseases are persistent problems in potato production and alternative management practices are needed. In this research, biocontrol agents (Bacillus subtilis GB03 and Rhizoctonia solani hypovirulent isolate Rhs1A1) and compost amendments (from different source material), were evalua...

150

Seedling damping-off in sugar beet in Michigan  

Technology Transfer Automated Retrieval System (TEKTRAN)

A number of pathogens can cause early season stand loss in sugar beet. In an ongoing survey, the most commonly identified damping-off pathogens were Rhizoctonia solani, Aphanomyces cochlioides, and Fusarium species. Pythium and Phoma also were isolated every year, but never as the sole or most commo...

151

South Carolina Pest Management Handbook for Field Crops -2013 PEANUT DISEASE CONTROL  

E-print Network

South Carolina Pest Management Handbook for Field Crops - 2013 177 PEANUT DISEASE CONTROL W. Scott Monfort, Extension Peanut Specialist Seedling Diseases: All peanut seed should be treated with a fungicide diseases such as Cylindrocladium, Aspergillus crown rot, Pythium, and Rhizoctonia. Vitavax PC (Captan

Stuart, Steven J.

152

Promises and challenges of genomics for rice pathology  

Technology Transfer Automated Retrieval System (TEKTRAN)

Publically available genome sequences of Magnaporthe oryzae, Rhizoctonia solani, and Oryza sativa are being used to study host-pathogen interactions. Comparative genomic analyses on natural alleles of major resistance (R) genes and the corresponding avirulence (AVR) genes have provided new clues for...

153

Molecular dynamics of interactions of rice with rice blast and sheath blight pathogens  

Technology Transfer Automated Retrieval System (TEKTRAN)

In an effort to develop the molecular strategies to control rice (Oryzae sativa) diseases, molecular interactions of rice with rice blast [Magnaporthe oryzae, formerly (Magnaporthe grisea] and sheath blight (Rhizoctonia solani) fungi were analyzed. The interaction of rice with M. oryzae follows a b...

154

Antifungal activity in seed coat extracts of woodland plants  

Microsoft Academic Search

Aqueous extracts from seeds of four woodland ground flora species (Hyacinthoides non-scripta, Allium ursinum, Digitalis purpurea and Hypericum pulchrum) were tested for antifungal activity using a petriplate technique. Four species of fungi were investigated. The growth of three of these (Trichoderma viride, Rhizoctonia solani and Pythium sp.) was not affected by any of the seed coat extracts. The growth of

Susan J. Warr; Ken Thompson; Martin Kent

1992-01-01

155

EFFECT OF GREEN SPROUTING AND BIOCONTROL PRODUCTS ON SOILBORNE DISEASES OF POTATO 2002  

Technology Transfer Automated Retrieval System (TEKTRAN)

Green sprouting (GS) of potato seedpieces to enhance rapid and early emergence was used in combination with a bacterial and fungal biocontrol product and compared with non-sprouted seed (NS)and pathogen-treated and nontreated controls for their effects on symptoms of Rhizoctonia and other soilborne ...

156

EFFECT OF SEED QUALITY AND FUNGICIDE/TRICHODERMA SPP. SEED TREATMENTS ON PRE- AND POST-EMERGENCE DAMPING-OFF IN COTTON  

Technology Transfer Automated Retrieval System (TEKTRAN)

Good quality seeds of cotton cultivars often escaped pre-emergence damping-off incited by Pythium spp. and Rhizopus oryzae, and they were resistant to post-emergence damping-off incited by Rhizoctonia solani. Poor quality seed, however, were highly susceptible to both phases of seedling disease and...

157

BIODIVERSIDAD FUNGOSA EN LA MARCHITEZ DEL CHILE Y ALGUNOS FACTORES INVOLUCRADOS, EN TLACOTEPEC DE JOSÉ MANZO, EL VERDE, PUEBLA FUNGI BIODIVERSITY ON PEPPER WILT, AND SOME RELATED FACTORS, IN TLACOTEPEC DE JOSÉ MANZO, EL VERDE, PUEBLA  

Microsoft Academic Search

En Tlacotepec de José Manzo, el Verde, Pue., la marchitez del chile ha causado pérdidas (70% a total) del cultivo. Los hongos Fusarium spp., Macrophomina spp., Phytophthora capsici., Pythium spp., Rhizoctonia solani., y Sclerotium rolfsii, causan marchitez y perdida en producción. El objetivo de este estudio fue identificar, por su morfología y caracterización molecular, a los hongos causantes de marchitez;

Enrique González-Pérez; María J. Yáñez-Morales; Víctor Santiago-Santiago; Ángel Montero-Pineda

158

Biological control of damping-off on American ginseng (Panax quinquefolius) by Clonostachys rosea f. catenulata (= Gliocladium catenulatum)  

Microsoft Academic Search

Seedling damping-off caused by several soilborne fungal pathogens is a recurring problem for commercial growers of American ginseng (Panax quinquefolius) throughout the major production areas of Canada. The pathogens isolated from diseased seedling roots during 2001 and 2002 included Pythium ultimum and other Pythium species, Phytophthora cactorum, Fusarium solani and other Fusarium species, Rhizoctonia solani, and Cylindrocarpon destructans. Four commercially

Mahfuzur Rahman; Zamir K. Punja

2007-01-01

159

EVALUATING RICE WILDE RELATIVES (ORYZA SPP.) FOR DISEASE RESISTANCE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rice wild relatives (Oryza spp.) are an important source of novel pest resistance genes, as well as tolerance to abiotic stresses and yield enhancing traits. Rice sheath blight caused by Rhizoctonia solani Kühn and leaf blast, Magnaporthe grisea (T.T. Herbert) Yaegashi & Udagawa, are major fungal d...

160

Current progress on genetic interactions of rice with rice blast and sheath blight fungi  

Technology Transfer Automated Retrieval System (TEKTRAN)

Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Presently dozens of ri...

161

Increases in snap bean and soybean seedling diseases associated with a chloride salt and changes in the micro-partitioning of tap root calcium  

Technology Transfer Automated Retrieval System (TEKTRAN)

In a series of field experiments from 1995 through 2010, the incidence of seedling diseases of snap bean and soybean caused by Rhizoctonia solani, Macrophomina phaseolina, Pythium spp., and Fusarium spp. was greater with an application of KCl than with K2SO4 applied at 93 kg K/ha. To determine if th...

162

Composition and in vitro Antifungal Activity of Essential Oils of Erigeron canadensis and Myrtus communis from France  

Microsoft Academic Search

Essential oils of Erigeron canadensis L. and Myrtus communis L. were tested in vitro as growth inhibitors against phytopathogenic fungi Rhizoctonia solani Kuhn, Fusarium solani (Mart.) Sacc. and Colletotrichum lindemuthianum (Sacc. & Magn.) Briosi & Cav. Both showed weak fungicidal acitivity, except the essential oil of M. communis that exerted a 60% growth inhibition against R. Solani at a dose

M. Curini; A. Bianchi; F. Epifano; R. Bruni; L. Torta; A. Zambonelli

2003-01-01

163

Sheath-blight resistance QTLs and in japonica rice germplasm  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sheath blight (SB), caused by Rhizoctonia solani, is one of the most serious diseases of cultivated rice (Oryza sativa L.) and genetic resistance is in demand by rice breeders. With the goal of resistance-QTL discovery in U. S. japonica breeding material, a set of 197 F1 doubled-haploid lines (DHLs)...

164

Mapping quantitative trait loci responsible for resistance to rice sheath blight disease using greenhouse assays  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rice sheath blight (RSB) caused by the soil-borne pathogen Rhizoctonia solani, is one of the most destructive diseases of rice, causing severe losses in yield and quality annually. Quantitative trait loci (QTL) responsible for RSB resistance were analyzed using field phenotypic data in literature re...

165

Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria  

Microsoft Academic Search

Bacterial antagonism, responsible for biological control, may operate by antiobiosis, competition or parasitism. Parasitism relies on lytic enzymes for the degradation of cell walls of pathogenic fungi. Serratia marcescens was found to be an efficient biocontrol agent of Sclerotium rolfsii and Rhizoctonia solani under greenhouse conditions. Populations of 105 or 106 colony forming units g-1 soil were the most effective.

I. Chet; A. Ordentlich; R. Shapira; A. Oppenheim

1990-01-01

166

Effect of neem (Azardirachta indica A. Juss) seeds and leaves extract on some plant pathogenic fungi.  

PubMed

In this study plant pathogenic fungi Alternaria solani, Fusarium oxysporum, Rhizoctonia solani and Sclerotinia sclerotiorum were chosen to study the effect of ethanolic, hexane and methanolic extracts of neem seeds and leaves. Antifungal effects of neem leave and seed extracts obtained by ethanol, hexane and ptrolium ether were examined separately in vitro against Fusarium oxysporum, Rhizoctonia solani, Alternaria solani and Sclerotinia sclerotiorum. Results indicated that seeds and leaves extracts could cause growth inhibition of tested fungi, although the rate of inhibition of tested fungi varied with different extracts and concentrations. But all these extracts and concentrations of extract inhibited the growth of pathogenic fungi at a significant level. Azadirachtin, nimonol and expoxyazdirodione were detected from neem extract by using High Performance Liquid Chromatography (HPLC). We can conclude that neem leave and seed extracts were effective as antifungal against all tested fungi but F. oxysporum and R. solani were the most sensitive fungi. PMID:19947185

Moslem, M A; El-Kholie, E M

2009-07-15

167

Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi.  

PubMed

Interaction between arbuscular mycorrhizal fungi as a bio-agent and Rhizoctonia root rot disease of common bean plant was investigated in this study under natural conditions in pot experiment. A mixture of Egyptian formulated AM (Multi-VAM) in suspension form (1 × 10(6) unit L(-1) in concentration) was used at dilution of 5 ml L(-1) water. The results demonstrated that colonization of bean plants with AM fungi significantly increased growth parameters, yield parameters and mineral nutrient concentrations and reduced the negative effects on these parameters as well as both disease severity and disease incidence. Different physical and biochemical mechanisms have been shown to play a role in enhancement of plant resistance against Rhizoctonia solani, namely, improved plant nutrition, improved plant growth, increase in cell wall thickening, cytoplasmic granulation, and accumulation of some antimicrobial substances (phenolic compounds and defense related enzymes). PMID:20630727

Abdel-Fattah, G M; El-Haddad, S A; Hafez, E E; Rashad, Y M

2011-05-20

168

Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance  

Microsoft Academic Search

Plant growth promoting rhizobacteria (PGPR) confer disease resistance in many agricultural crops. In the case of Bacillus subtilis (UFLA285) isolated from the cotton producing state of Mato Grosso (Brazil), in addition to inducing foliar and root growth,\\u000a disease resistance against damping-off caused by Rhizoctonia solani was observed. The aim of this cotton study was to identify gene transcriptional events altered

Flavio H. V. Medeiros; Ricardo M. Souza; Fernanda C. L. Medeiros; Huiming Zhang; Terry Wheeler; Paxton Payton; Henrique M. Ferro; Paul W. Paré

169

Antimicrobial activity of some coumarin containing herbal plants growing in Finland  

Microsoft Academic Search

Antimicrobial screening against selected Gram-positive and Gram-negative bacteria, yeasts, mold, as well as plant pathogenic fungi, with emphasis on method optimization was carried out on methanol extracts prepared from seven plants grown in Finland. Sensitivity to the extracts was found to vary considerably among the micro-organisms, the extract from Petroselinum crispum and Ruta graveolens showing the highest toxicity against Rhizoctonia

Tiina Ojala; Susanna Remes; Pasi Haansuu; Heikki Vuorela; Raimo Hiltunen; Kielo Haahtela; Pia Vuorela

2000-01-01

170

Bronze Wilt of Cotton  

E-print Network

of secondary roots. Distinguishing Bronze Wilt from Other Diseases The above-ground symptoms of bronze wilt may resemble those of Fusarium and Verticillium wilts; Macrophomina and Phymatotrichum root rots; damage from root knot, reniform, stunt or lance... with Fusarium or Verticillium wilt (Fig.11, right). Fungal root rots cause discoloration and rotting, first of the bark and then of the entire root. Rhizoctonia causes girdling of the stem at the soil line and black discoloration of the pith in both the stem...

Bell, Alois A.; Nichols, Robert L.; Lemon, Robert G.

2002-02-12

171

Antimicrobial activity of methanol extract of Origanum majorana L. (Sweet marjoram).  

PubMed

In-vitro microbicidal activity of the methanol extract of Origanum majorana L. was tested against seven fungi (Fusarium solani, Candida albicans, Aspergillus niger, A. parasiticus, Rhizopus oryzae, Rhizoctonia otyzae-sativae and Altemaria brassicicola) and six bacteria (Bacillus subtilis, B. megaterium, Escherichia coil, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus). The methanol extract of O. majorana can be used as an effective herbal protectant against different pathogenic bacteria and fungi. High toxicity against the growth of Aspergillus niger was diagnosed. PMID:17718003

Leeja, L; Thoppil, J E

2007-01-01

172

Mungin, a novel cyclophilin-like antifungal protein from the mung bean.  

PubMed

A protein designated mungin, isolated from mung bean (Phaseolus mungo) seeds, possessed activity against the fungi Rhizoctonia solani, Coprinus comatus, Mycosphaerella arachidicola, Botrytis cinerea, and Fusarium oxysporum. The 18-kDa protein also possessed a novel N-terminal sequence with similarity to cyclophilins. It exerts an inhibitory action against alpha- and beta-glucosidases suppresses [(3)H]thymidine in corporation by mouse splenocytes. PMID:10891380

Ye, X Y; Ng, T B

2000-07-14

173

Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere  

Microsoft Academic Search

Glucanolytic bacteria from barley rhizosphere soil were isolated by a procedure selecting for isolates with ?-glucosidase activity. Almost all isolates were fast-growing, Gram-positive rods. Sixteen out of 100 isolates showed in vitro fungal antagonism against widely different plant-pathogenic microfungi (Aphanomyces cochleoides, Pythium ultimum and Rhizoctonia solani). The 16 isolates shared a characteristic profile of cell-wall-degrading enzymes, comprising glucanolytic (cellulase, mannanase

Preben Nielsen; Jan Sørensen

1997-01-01

174

Microbial degradation of pendimethalin  

Microsoft Academic Search

Microbial degradation of pendimethalin (N?(l?Ethylpropyl)?3, 4?dimethyl?2, 6?dinitroaniline) in vitro was studied. Fusarium oxysporum and Paecilomyces varioti, two soil fungi, in culture media degraded pendimethalin to two metabolites namely N?(1?Ethylpro?pyl)?3, 4?dimethyl?2?nitrobenzene?l, 6?diamine (II) and 3, 4?Dimethyl?2, 6?dinitroaniline (IV). Rhizoctonia bataticola, another soil fungus, decomposed pendimethalin yielding only the latter metabolite (IV). Fungal decomposition of pendimethalin involved nitro reduction and dealkylation.

S. B. Singh; G. Kulshrestha

1991-01-01

175

Take-All Root Rot of Turfgrass  

E-print Network

can be lifted easily from the soil because of the poor root system. Nodes may be discolored. The yel - lowish foliage eventually dies and turns brown. Take-all root rot may be mistaken for Rhizoctonia brown patch or chinch bug injury on St.... Augustine - grass. If you suspect your grass has possibility of these other problems. Chinch bug infestation. To check for chinch bugs, mix 2 tablespoons of a liquid dishwashing detergent in a gallon of water and use a water - ing can to pour it evenly...

Krausz, Joseph P.

2005-04-21

176

Phytophthora tropicalis on Hedera helix and Epipremnum aureum in Polish greenhouses.  

PubMed

Phytophthora tropicalis was isolated from Hedera helix and Epipremnum aureum showing discoloration of leaves, necrosis of shoot base, spread upwards and on roots. The species was detected from 7/8 plants of Hedera and 3/4 of Epipremnum. Additionally Botrytis cinerea, Fusarium avenaceum and Rhizoctonia solani were recovered from some of diseased plants. P. tropicalis caused leaf necrosis of 13 plant species and tomato seedlings. The quickest spread of necrosis was observed on leaves of Peperomia magnoliaefolia, Pelargonium zonale and Phalaenopsis x hybridum. The disease developed at temperature ranged from 10 degrees to 32.5 degrees C with optimum 30 degrees C. PMID:17390874

Orlikowski, L B; Trzewik, A; Wiejacha, K

2006-01-01

177

Design, synthesis, anti-TMV, fungicidal, and insecticidal activity evaluation of 1,2,3,4-tetrahydro-?-carboline-3-carboxylic acid derivatives based on virus inhibitors of plant sources.  

PubMed

By drawing the creation ideas of botanical pesticides, a series of tetrahydro-?-carboline-3-carboxylic acid derivatives were designed and synthesized, and first evaluated for their anti-TMV, fungicidal and insecticidal activities. Most of these derivatives exhibited good antiviral activity against TMV both in vitro and in vivo. Especially, the activities of compounds 8 and 15 in vivo were higher than that of ribavirin. The compound 8 exhibited more than 70% fungicidal activities against Cercospora arachidicola Hori, Alternaria solani, Bipolaris maydis, and Rhizoctonia solani at 50mg/kg, compounds 16 and 20 exhibited more than 60% insecticidal activities against Mythimna separate and Ostrinia nubilalis. PMID:25442317

Song, Hong-jian; Liu, Yong-xian; Liu, Yu-xiu; Huang, Yuan-qiong; Li, Yong-qiang; Wang, Qing-min

2014-11-15

178

Penn State: Plant Pathology Fact Sheets  

NSDL National Science Digital Library

This selection of online fact sheets concerned with plant diseases was compiled by Professor Gary W. Moorman, a Professor of Plant Pathology at Penn State. The concise fact sheets address "common diseases of plants frequently grown in greenhouses, interiorscapes, and in outdoor landscapes and nurseries in the northeastern U.S." The sheets are organized under categories for Woody Ornamental, and Floral and Foliage Plants, as well as a General Information category. Factsheets address such diseases as Bacterial Leaf Scorch, Pythium Root Rot, Botrytis Blight, Rhizoctonia, and more. There are sheets for a wide variety of plants and trees including Iris, Tulip, Maple, and Oak, to name a few.

179

Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29*  

PubMed Central

An antifungal protein was isolated from a culture of Bacillus subtilis strain B29. The isolation procedure comprised ion exchange chromatography on diethylaminoethyl (DEAE)-52 cellulose and gel filtration chromatography on Bio-Gel® P-100. The protein was absorbed on DEAE-cellulose and Bio-Gel® P-100. The purified antifungal fraction was designated as B29I, with a molecular mass of 42.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), pI value 5.69 by isoelectric focusing (IEF)-PAGE, and 97.81% purity by high performance liquid chromatography (HPLC). B29I exhibited inhibitory activity on mycelial growth in Fusarium oxysporum, Rhizoctonia solani, Fusarium moniliforme, and Sclerotinia sclerotiorum. The 50% inhibitory concentrations (IC50) of its antifungal activity toward Fusarium oxysporum and Rhizoctonia solani were 45 and 112 ?mol/L, respectively. B29I also demonstrated an inhibitory effect on conidial spore germination of Fusarium oxysporum and suppression of germ-tube elongation, and induced distortion, tumescence, and rupture of a portion of the germinated spores. PMID:19353744

Li, Jing; Yang, Qian; Zhao, Li-hua; Zhang, Shu-mei; Wang, Yu-xia; Zhao, Xiao-yu

2009-01-01

180

Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113.  

PubMed

Burkholderia vietnamiensis P418 is a plant growth-promoting rhizobacteria. A chitinase gene from Bacillus subtilis was cloned and stably integrated into the chromosome of using the transposon delivery vector, pUTkm1. Chitinase activity was detected in recombinant P418-37 but not in wild type P418. Recombinant P418-37 retained the in vitro growth rate, N(2)-fixation and phosphate and potassium-solubilizing characteristics of the wild type. P418-37 significantly (P < 0.05) increased in vitro inhibition of the plant pathogenic fungi Rhizoctonia solani, Fusarium oxysporum f.sp. vasinfectum, Rhizoctonia cerealis, Bipolaris sorokiniana, Verticillium dahliae and Gaeumannomyces graminis var. tritici compared with P418. In planta disease suppression assays indicated that P418-37 significantly (P < 0.05) enhanced suppression of wheat sheath blight (R. cerealis), cotton Fusarium wilt (F. oxysporium f.sp. vasinfectum) and tomato gray mould (Botrytis cinerea), relative to the wild type. PMID:21972146

Zhang, Xinjian; Huang, Yujie; Harvey, Paul R; Ren, Yan; Zhang, Guangzhi; Zhou, Hongzi; Yang, Hetong

2012-02-01

181

Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi.  

PubMed

A strain of Coprinellus curtus (designated GM-21), a basidiomycete that suppressed bottom-rot disease of Chinese cabbage, 'pak-choi' (Brassica campestris), caused by the pathogen Rhizoctonia solani Pak-choi 2 was isolated. The mechanism of plant disease suppression was discovered to be hyphal interference, a combative fungal interaction between strain GM-21 and the pathogen. The antifungal spectrum of strain GM-21 was shown to include R. solani and Fusarium sp., i.e. strain GM-21 showed disease-suppressive ability against bottom-rot disease of lettuce and Rhizoctonia-patch disease of mascarene grass caused by strains of R. solani. In addition, clear evidence of hyphal interference between strain GM-21 and Fusarium pathogens that cause crown (foot) and root-rot disease of tomato and Fusarium wilt of melon, respectively, was demonstrated. It was thus considered that GM-21 is effective for suppressing soil-borne pathogens, and that GM-21 presents new possibilities for biological control of vegetable diseases. PMID:17850327

Nakasaki, Kiyohiko; Saito, Miyuki; Suzuki, Nobuaki

2007-10-01

182

Fungi associated with the southern Eurasian orchid Spiranthes spiralis (L.) Chevall.  

PubMed

The hitherto unknown relationships between the European orchid Spiranthes spiralis (L.) Chevall and its internally associated fungi were explored by a combined approach involving microscopy-based investigations at a morpho-histological level as well as by molecular analyses of the identity of the eukaryotic endophytes present in the root tissue of the plant. We found that this orchid which is currently reported to have a vulnerable status in northern Italy, can host and interact with at least nine types of fungi. Some of these fungi show similarity to mycorrhizal genera found in orchids such as the Ceratobasidium-Rhizoctonia group. Other fungi found are from the genera Davidiella (Ascomycota), Leptosphaeria (Ascomycota), Alternaria (Ascomycota), and Malassezia (Basidiomycota), some of which until have not previously been reported to have an endophytic relationship with plants. The repeated occurrence of often pathogenic fungi such as Fusarium oxysporum, Bionectria ochroleuca, and Alternaria sp., within healthy specimens of this orchid suggests a tempered interaction with species that are sometimes deleterious to non-orchid plants. The fact is reminiscent of the symbiotic compromise established by orchids with fungi of the rhizoctonia group. PMID:22483052

Tondello, Alessandra; Vendramin, Elena; Villani, Mariacristina; Baldan, Barbara; Squartini, Andrea

2012-04-01

183

Endocarpic Microorganisms of Two Types of Windrow-Dried Peanut Fruit (Arachis hypogaea L.) 1  

PubMed Central

The endocarpic microorganisms of peanut fruit dried in either a random windrow (plants left as they fell from the digger) or an inverted windrow (plants inverted to expose fruit to sunlight) were different from that of freshly dug fruit. Chaetomium, Penicillium, Trichoderma, Rhizoctonia, and Fusarium were the dominant fungi found associated with shells (pericarp) of freshly dug fruit. The dominant fungi of shells of windrowed fruit included Chaetomium, Rhizoctonia, Fusarium, Sclerotium, and Alternaria. Seeds of freshly dug fruit were dominated by Penicillium and Aspergillus. The only dominant species in seed of windrowed fruit was Penicillium. Microorganisms were isolated from shells and seed of freshly dug fruit at a frequency of 79% and 52%, respectively. The percentage of infestation was reduced by drying in the field. This was particularly true of the inverted windrow. The proportion of shells and seed infested with a microorganism was reduced 13% and 36%, respectively, after field drying for 5 to 7 days in random and inverted windrows. Microorganisms were isolated much more frequently from shell pieces (73%) than from seed (36%). Images PMID:5466133

Porter, D. Morris; Garren, Kenneth H.

1970-01-01

184

A Metabolic Profiling Strategy for the Dissection of Plant Defense against Fungal Pathogens  

PubMed Central

Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, ?-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries. PMID:25369450

Aliferis, Konstantinos A.; Faubert, Denis; Jabaji, Suha

2014-01-01

185

Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents.  

PubMed

Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (10(6)-10(8) CFU g(-1) dry soil) to high (>10(8) CFU g(-1) dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (10(3)-10(6) CFU g(-1) dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents the first report of protection of soil fungi against antagonistic agents present in the soil provided by fungal-associated Burkholderia terrae cells. PMID:25426111

Nazir, Rashid; Tazetdinova, Diana I; van Elsas, Jan Dirk

2014-01-01

186

Zoosporicidal metabolites from an endophytic fungus Cryptosporiopsis sp. of Zanthoxylum leprieurii.  

PubMed

Two polyketides, cryptosporiopsin A (1) and hydroxypropan-2',3'-diol orsellinate (3), and a natural cyclic pentapeptide (4), together with two known compounds were isolated from the culture of Cryptosporiopsis sp., an endophytic fungus from leaves and branches of Zanthoxylum leprieurii (Rutaceae). The structures of these metabolites were elucidated on the basis of their spectroscopic and spectrometric data. Cryptosporiopsin A and the other metabolites exhibited motility inhibitory and lytic activities against zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 10-25?g/mL. In addition, the isolated compounds displayed potent inhibitory activity against mycelial growth of two other peronosporomycete phytopathogens, Pythium ultimum, Aphanomyces cochlioides and a basidiomycetous fungus Rhizoctonia solani. Weak cytotoxic activity on brine shrimp larvae was observed. PMID:22883958

Talontsi, Ferdinand Mouafo; Facey, Petrea; Tatong, Michel D Kongue; Tofazzal Islam, M; Frauendorf, Holm; Draeger, Siegfried; Tiedemann, Andreas von; Laatsch, Hartmut

2012-11-01

187

Mycoflora of tuber surface of white yam (Dioscorea rotundata Poir) and postharvest control of pathogens with Bacillus subtilis.  

PubMed

Bacillus subtilis (Enrenberg) Cohn was investigated for its antagonistic properties against surface mycoflora of yam (Dioscorea rotundata Poir) tubers in storage. Yam tubers inoculated with a spore suspension of B. subtilis in potato dextrose broth using a knapsack sprayer showed a drastic reduction in the range and number of mycoflora, including pathogens of the tuber surface in contrast to the control tubers, during the five-month storage period in a traditional yam barn. However, B. subtilis maintained a high frequency of occurrence during the same period. Botryodiploidia theobromae Pat, Fusarium moniliforme Wollen and Reink., Penicillium sclerotigenum Yamamoto, and Rhizoctonia sp. were displaced completely on the treated tubers. The antagonism of B. subtilis was so effective that the normal tuber surface mycoflora was greatly reduced throughout the storage period of five months by a simple initial application of the antagonist. PMID:12733628

Okigbo, Ralph N

2003-01-01

188

Disease-reducing effect of Chromolaena odorata extract on sheath blight and other rice diseases.  

PubMed

Sheath blight caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a major cause of crop loss in intensive rice production systems. No economically viable control methods have been developed. We screened aqueous extracts of common herbal plants that could reduce sheath blight lesions and found that foliar spraying and seed soaking application of extracts of either fresh or dried leaves of Chromolaena odorata gave up to 68% reduction in sheath blight lesion lengths under controlled and semi-field conditions. The observed reductions were not dependent on growth conditions of C. odorata and rice cultivar. The effect was observed until 21 days after inoculation and was not dependent on microbial activity. Under semi-field conditions, extracts also reduced severity of other important rice diseases, i.e., blast (Pyricularia oryzae) using foliar spray (up to 45%), brown spot (Bipolaris oryzae) using seed treatment (up to 57%), and bacterial blight (Xanthomonas oryzae pv. oryzae) using both application methods (up to 50%). PMID:20839964

Khoa, Nguyen ?ac; Thuy, Phan Thi Hong; Thuy, Tran Thi Thu; Collinge, David B; Jørgensen, Hans Jørgen Lyngs

2011-02-01

189

Isolation and characterization of genetic variability in bacteria with ?-hemolytic and antifungal activity isolated from the rhizosphere of Medicago truncatula plants.  

PubMed

In the present study, we analyzed the frequency of hemolytic and antifungal activities in bacterial isolates from the rhizosphere of Medicago truncatula plants. Of the 2000 bacterial colonies, 96 showed ?-hemolytic activities (frequency, 4.8 x 10(-2)). Hemolytic isolates were analyzed for their genetic diversity by using random amplification of polymorphic DNA, yielding 88 haplotypes. The similarity coefficient of Nei and Li showed a polymorphic diversity ranging from 0.3 to 1. Additionally, 8 of the hemolytic isolates showed antifungal activity toward plant pathogens, Diaporthe phaseolorum, Colletotrichum acutatum, Rhizoctonia solani, and Fusarium oxysporum. The 16S ribosomal sequencing analysis showed that antagonistic bacterial isolates corresponded to Bacillus subtilis (UM15, UM33, UM42, UM49, UM52, and UM91), Bacillus pumilus (UM24), and Bacillus licheniformis (UM88). The present results revealed a higher genetic diversity among hemolytic isolates compared to that of isolates with antifungal action. PMID:25062484

Hernández-Salmerón, J E; Prieto-Barajas, C M; Valencia-Cantero, E; Moreno-Hagelsieb, G; Santoyo, G

2014-01-01

190

Pathogenicity of Criconemoides xenoplax to Prune and Plum Rootstocks  

PubMed Central

Elimination of Criconemoides xenoplax from a prune orchard soil by fumigation with ethylene dibromide at the rate of 42 ?liter/liter of soil (equivalent to about 13 gal/acre) improved the growth of Myrobalan plum, Addition of this nematode to Myrobalan seedlings or young 'Marianna 2624' plants propagated from cuttings resulted in destruction of cortical root tissue, darkening of roots, alteration of water stress, lowering of nutrient levels in leaves, and reduction in plant weight. C. xenoplax increased on all nine Prunus cerasifera varieties and hybrids tested, including those used commonly as rootstocks for prunes and plums. Rhizoctonia solani isolated from Myrobalan seedlings infected with C. xenoplax caused lesions on the hypocotyls of young Myrobalan seedlings in the laboratory, but had no effect on older seedlings in the greenhouse, and did not alter the effect of C. xenoplax. PMID:19308143

Mojtahedi, H.; Lownsbery, B. F.

1975-01-01

191

The post-harvest fruit rots of tomato (Lycopersicum esculentum) in Nigeria.  

PubMed

A survey of the post-harvest fruit rot diseases of tomato was conducted in five states of Nigeria. During severe infections, the diseases could cause 25% loss at harvest and 34% loss of the remaining product in transit, storage and market stalls; thus giving an overall loss of about 50% of the product. Two types of rots, soft and dry were recognised. The soft rot was found to account for about 85% and the dry rot about 15% of the overall loss. Erwinia carotovora, Rhizopus oryzae, R. stolonifer, Fusarium equiseti, F. nivale and F. oxysporum were established as the soft rot pathogens; while Aspergillus aculeatus, A. flavus, Cladosporium tenuissimum, Corynespora cassiicola, Curvularia lunata, Penicillium expansum P. multicolor and Rhizoctonia solani were established as the dry rot pathogens of tomato fruits in Nigeria. PMID:471028

Fajola, A O

1979-01-01

192

A new furoquinoline alkaloid with antifungal activity from the leaves of Ruta chalepensis L.  

PubMed

Bioassay-guided separation with an eye toward antifungal activity led to the isolation of the new alkaloid 5-(1?,1?-dimethylallyl)-8-hydroxyfuro[2-3-b] quinoline (1) and the known biscoumarin daphnoretin (2) as the active constituents of the chloroform extract obtained from the leaves of Ruta chalepensis. The structures of the metabolites were elucidated on the basis of their spectral characteristics (NMR, UV, and MS) and were compared with the literature. The antifungal activity of the isolated compounds was evaluated against the phytopathogenic fungi Rhizoctonia solani, Sclerotium rolfsii, and Fusarium solani, which cause root-rot and wilt diseases in several economically important food crops such as potato, sugar beet, and tomato. PMID:22491304

Emam, A; Eweis, M; Elbadry, M

2010-12-01

193

Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight.  

PubMed

Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani. PMID:12582865

Datta, K; Baisakh, N; Thet, K Maung; Tu, J; Datta, S K

2002-12-01

194

Synthesis and antifungal activity of 1,2,3-triazole phenylhydrazone derivatives.  

PubMed

A series of 1,2,3-triazole phenylhydrazone derivatives were designed and synthesized as antifungal agents. Their structures were determined based on (1)H-NMR spectroscopy, MS, elemental analysis and X-ray single-crystal diffraction. The antifungal activities were evaluated against four phytopathogenic fungi including Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium graminearum and Phytophthora capsici, by the mycelium growth inhibition method in vitro. Compound 5p exhibited significant anti-phytopathogenic activity, with the EC50 values of 0.18, 2.28, 1.01, and 1.85 ?g mL(-1), respectively. In vivo testing demonstrated that 5p was effective in the control of rice sheath blight, rape sclerotinia rot and fusarium head blight. A 3D-QSAR model was built for a systematic SAR profile to explore more potent 1,2,3-triazole phenylhydrazone analogs as novel fungicides. PMID:25374053

Dai, Zhi-Cheng; Chen, Yong-Fei; Zhang, Mao; Li, Sheng-Kun; Yang, Ting-Ting; Shen, Li; Wang, Jian-Xin; Qian, Shao-Song; Zhu, Hai-Liang; Ye, Yong-Hao

2015-01-14

195

Secondary metabolites: applications on cultural heritage.  

PubMed

Biological sciences and related bio-technology play a very important role in research projects concerning protection and preservation of cultural heritage for future generations. In this work secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga) ICMP 11096 strain and crude extract of glycoalkaloids from Solanaceae plants, were tested against a panel of microorganisms isolated from calcarenite stones of two historical bridges located in Potenza and in Campomaggiore (Southern Italy). The isolated bacteria belong to Bacillus cereus and Arthrobacter agilis species, while fungi belong to Aspergillus, Penicillium, Coprinellus, Fusarium, Rhizoctonio and Stemphylium genera. Bga broth (unfiltered) and glycoalkaloids extracts were able to inhibit the growth of all bacterial isolates. Bga culture was active against fungal colonies, while Solanaceae extract exerted bio-activity against Fusarium and Rhizoctonia genera. PMID:25145230

Sasso, S; Scrano, L; Bonomo, M G; Salzano, G; Bufo, S A

2013-01-01

196

Antibacterial and antifungal activities of Otanthus maritimus (L.) Hoffmanns. & Link essential oil from Sicily.  

PubMed

The chemical composition of the essential oil obtained from the flowers of Otanthus maritimus L., a perennial plant growing wild in maritime sands in the Mediterranean region, was investigated by GC and GC-MS analyses. Totally 66 were identified. The oil was dominated by the high content of monoterpene compounds, especially oxygenated monoterpenes which accounted for 73.1%. The most abundant components were yomogi alcohol (20.8%), camphor (15.8%), artemisyl acetate (15.3%) and artemisia alcohol (13.7%). The oil was tested against two Gram (+) and six Gram (-) bacterial strains, both American Type Culture Collection standard strains and clinically isolated (CI), one potentially pathogenic yeast (Candida albicans CI) and two filamentous phytopathogenic fungi (Botrytis cinerea and Rhizoctonia solani). The results show that the oil from O. maritimus exerts strong antibacterial and antifungal activities. PMID:23126552

Basile, Adriana; Rigano, Daniela; Sorbo, Sergio; Conte, Barbara; Rosselli, Sergio; Bruno, Maurizio; Senatore, Felice

2013-01-01

197

Control and possible applications of a novel carrot-spoilage basidiomycete, Fibulorhizoctonia psychrophila  

PubMed Central

A novel cold-tolerant fungus, Fibulorhizoctonia psychrophila, was isolated from a refrigerated carrot storage facility and identified as an anamorph of Athelia, often classified in Rhizoctonia s.l. Growth of this fungus was observed between 0 and 20°C with an optimum at 9–12°C, while incubation of mycelium grown at 15–32°C resulted in absence of growth even after the fungus was transferred back to 15°C. Growth was inhibited in the presence of the antifungals sorbic acid or natamycin, in particular when the fungus was incubated at 18°C. F. psychrophila produces polysaccharide degrading enzymes that, when compared to enzymes from the ascomycete fungus Aspergillus niger, retain a larger proportion of their activity at lower temperatures. This indicates that F. psychrophila could be used as a source for novel industrial enzymes that are active at 4–15°C. PMID:18183497

de Lange, Elvira S.; Wösten, Han A. B.; Stalpers, Joost A.

2008-01-01

198

Design, synthesis, and bioactivities screening of a diaryl ketone-inspired pesticide molecular library as derived from natural products.  

PubMed

Three natural products, 1,5-diphenylpentan-1-one, 1,5-diphenylpent-2-en-1-one, and 3-hydroxy-1,5-diphenylpentan-1-one, with good insecticidal activities were extracted from Stellera chamaejasme L. Based on their shared diaryl ketone moiety as 'pharmacophores', a series of diaryl ketones were synthesized and tested for insecticidal activity, acetylcholinesterase inhibitory activity, and antifungal activity. All synthesized compounds showed poor insecticidal and acetylcholinesterase inhibitory activities. Compound III with a furyl ring showed strong activities against plant pathogenic fungi. The IC(50) of compound (E)-1-(2,4-dichlorophenyl)-3-(furan-2-yl)- -prop-2-en-1-one (III(2) ) was 1.20 mg/L against Rhizoctonia solani, suggesting its strong potential as a novel antifungal drug. PMID:21457470

Zhang, Hong; Jin, Hong; Ji, Lan-zhu; Tao, Ke; Liu, Wei; Zhao, Hao-yu; Hou, Tai-ping

2011-07-01

199

The evolution and pathogenic mechanisms of the rice sheath blight pathogen  

PubMed Central

Rhizoctonia solani is a major fungal pathogen of rice (Oryza sativa L.) that causes great yield losses in all rice-growing regions of the world. Here we report the draft genome sequence of the rice sheath blight disease pathogen, R. solani AG1 IA, assembled using next-generation Illumina Genome Analyser sequencing technologies. The genome encodes a large and diverse set of secreted proteins, enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, which probably reflect an exclusive necrotrophic lifestyle. We find few repetitive elements, a closer relationship to Agaricomycotina among Basidiomycetes, and expand protein domains and families. Among the 25 candidate pathogen effectors identified according to their functionality and evolution, we validate 3 that trigger crop defence responses; hence we reveal the exclusive expression patterns of the pathogenic determinants during host infection. PMID:23361014

Zheng, Aiping; Lin, Runmao; Zhang, Danhua; Qin, Peigang; Xu, Lizhi; Ai, Peng; Ding, Lei; Wang, Yanran; Chen, Yao; Liu, Yao; Sun, Zhigang; Feng, Haitao; Liang, Xiaoxing; Fu, Rongtao; Tang, Changqing; Li, Qiao; Zhang, Jing; Xie, Zelin; Deng, Qiming; Li, Shuangcheng; Wang, Shiquan; Zhu, Jun; Wang, Lingxia; Liu, Huainian; Li, Ping

2013-01-01

200

Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.  

PubMed

Trichoderma spp. are used for biocontrol of several plant pathogens. However, their efficient interaction with the host needs to be accompanied by production of secondary metabolites and cell wall-degrading enzymes. Three parameters were evaluated after interaction between four Trichoderma species and plant-pathogenic fungi: Fusarium solani, Rhizoctonia solani and Sclerotinia sclerotiorum. Trichoderma harzianum and T. asperellum were the most effective antagonists against the pathogens. Most of the Trichoderma species produced toxic volatile metabolites, having significant effects on growth and development of the plant pathogens. When these species were grown in liquid cultures with cell walls from these plant pathogens, they produced and secreted ?-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases and alginate lyase. PMID:23690037

Qualhato, Thiago Fernandes; Lopes, Fabyano Alvares Cardoso; Steindorff, Andrei Stecca; Brandão, Renata Silva; Jesuino, Rosália Santos Amorim; Ulhoa, Cirano José

2013-09-01

201

Cuevaenes C-E: Three new triene carboxylic derivatives from Streptomyces sp. LZ35?gdmAI.  

PubMed

Two pairs of geometrical isomers - cuevaenes A (1) and C (3) as well as cuevaenes D (4) and E (5) - and cuevaene B (2) were isolated from gdmAI-disrupted Streptomyces sp. LZ35. The constitution of cuevaene C (3) was found to be identical to cuevaene A (1) by means of NMR spectroscopy and high resolution mass spectrometry. However, the relative configurations of the triene side chain moieties were determined to be different. It was established on the basis of spectroscopic data that cuevaenes D (4) and E (5) are amides and geometrical isomers. Cuevaenes A-C (1-3) displayed moderate activity against Gram-positive bacteria (e.g., Bacillus subtilis strain ATCC 11060) and modest activity against fungi (e.g., Fusarium verticillioides strain S68 and Rhizoctonia solani strain GXE4). However, cuevaenes D (4) and E (5) showed no inhibitory activity against any of the tested microbes. PMID:24778741

Deng, Jing-Jing; Lu, Chun-Hua; Li, Yao-Yao; Li, Shan-Ren; Shen, Yue-Mao

2014-01-01

202

[Antibiotic activity of some fungi].  

PubMed

Biological activity of pure extracts of cultural filtrates of Aspergillus niveus 2411, Myrothecium cinctum 910, Ulocladium consortiale 960, Penicillium sp. 10-51 concerning wide spectrum of test-organisms was investigated. It was shown that the extracts had high levels of antibacterial activity against Gram-positive microorganisms, especially against Bacillus genus. But their activity against Gram-negative bacteria was a bit lower. On the other hand, metabolites of M. cinctum 910 and Penicillium sp. 10-51 did show the activity concerning phytopathogenic bacteria. Extracts of fungi showed fungistatic activity against yeasts, but they were not so active concerning fungal test-cultures. Extracts of A. niveus 2411, Penicillium sp. 10-51 suppressed the growth of Phoma betae. The highest level of fungistatic activity was shown by metabolites of M. cinctum 910. They showed activity against Aspergillus genus strains and phytopathogenic isolates of Fusarium lactis, Rhizoctonia solani and Botrytis cinerea. PMID:24479314

Savchuk, Ia I; Tsyganenko, K S; Za?chenko, O M

2013-01-01

203

Isolation of antifungal bacteria from Japanese fermented soybeans, natto.  

PubMed

An inhibitory effect of a traditional Japanese fermented food, natto, was found against plant pathogens such as Rhizoctonia solani and Fusarium oxysporum, and the bacteria which showed inhibition were isolated from the natto. Among isolated bacteria, BC-1 and GAc exhibited a strong antagonistic effect in vitro against plant pathogens on an agar medium. The supernatant of bacterial culture also showed strong activity against R. solani, which meant the antimicrobial substances were produced and secreted into the medium. Both of the bacteria were estimated as Bacillus amyloliquefaciens from a partial sequence of the 16s rRNA gene. High performance liquid chromatography analysis clearly showed the production of the lipopeptide antibiotic iturin A by BC-1 and GAc. PMID:25078814

Murata, Daichi; Sawano, Sayaka; Ohike, Tatsuya; Okanami, Masahiro; Ano, Takashi

2013-12-01

204

Screening of endophytic bacteria against fungal plant pathogens.  

PubMed

Bacterial endophytes were found from 6 plant leaves among 35 plant leaves screened. Two of the isolated bacteria showed antagonistic activity against fungal plant pathogens. An isolate named KL1 showed the clear inihibition against plant pathogens, Fusarium oxysporum and Rhizoctonia solani, on PDA as well as TSA plate. Supernatant of the bacterial culture also showed the clear inhibition against the fungal growth on the plate and the antibiotic substance was identified as iturin A by HPLC analysis. KL1 was identified as Bacillus sp. from the 16S rRNA gene analysis. Very thin hyphae of R. solani was miccroscopically observed when the fungus was co-cultivated with KL1. PMID:25078813

Ohike, Tatsuya; Makuni, Kohei; Okanami, Masahiro; Ano, Takashi

2013-12-01

205

Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol  

PubMed Central

The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus. PMID:25506308

Kang, Yunhee; Lee, Seung-Ho; Lee, Jungkwan

2014-01-01

206

Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil.  

PubMed

A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind. PMID:22561863

Dharni, Seema; Alam, Mansoor; Kalani, Komal; Abdul-Khaliq; Samad, Abdul; Srivastava, Santosh Kumar; Patra, Dharani Dhar

2012-05-01

207

Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) by selected fungi. Groupe pour l'Etude du Devenir des Xénobiotiques dans l'Environnement (GEDEXE).  

PubMed

In order to enhance 2,4-D and 2,4-DCP degradation by four selected fungi (Cunninghamella elegans, C. echinulata, Rhizoctonia solani and Verticillium lecanii), three culture parameters (initial chemical concentration, amounts of glucose and nitrogen) were varied. The levels of both xenobiotics in the culture media were monitored by HPLC analysis after five days of cultivation. The best results were obtained at low initial concentration (20 mg.L-1 vs 100) and with low amounts of glucose (5 g.L-1 vs 10) and nitrogen (2.4 mM vs 24). When these two elements were lacking from the culture media, biodegradation was not suppressed, but took place to a lesser extent. Thus, initial chemical concentration and amounts of carbon and nitrogen, in the culture medium, were shown to strongly influence the extent of 2,4-D and 2,4-DCP removal by fungi. PMID:10481243

Vroumsia, T; Steiman, R; Seigle-Murandi, F; Benoit-Guyod, J L

1999-10-01

208

Effects of elevated CO2 on biomass and fungi associated with two ecotypes of ragweed (Ambrosia artemisiifolia L.).  

PubMed

Herbicide resistant weed populations have developed due to the repeated application of herbicides. Elevated concentrations of atmospheric CO2 can have positive effects on weed growth, but how rising CO2 might affect herbicide resistant weeds is not known. Ragweed (Ambrosia artemisiifolia L.) ecotypes known to be resistant or susceptible to glyphosate herbicide were exposed to either ambient or elevated (ambient +200 ? mol mol(-1)) concentrations of CO2 in open top chambers. Plants were harvested following 8 weeks of CO2 exposure; at this time, they had begun to exhibit disease symptoms including spots on leaves and stems. Elevated CO2 significantly increased top, root, and total plant biomass. Also, glyphosate resistant plants had significantly greater top, root, and total biomass than plants susceptible to the herbicide. There were no significant CO2 by ecotype interactions. Fungi from 13 genera were associated with ragweed, several of which can be either pathogens (i.e., Alternaria, Fusarium, Rhizoctonia), aiding the decline in health of the ragweed plants, or saprophytes existing on dead plant tissues. The common foliar disease powdery mildew was significantly higher on susceptible compared with resistant ragweed. Susceptible plants also showed an increased frequency of Rhizoctonia on leaves and Alternaria on stems; however, Fusarium occurred more frequently on resistant ragweed leaves. Fungi were not affected by CO2 concentration or its interaction with ecotype. This study reports the first information on the effects of elevated CO2 on growth of herbicide resistant weeds. This is also the first study examining the impact of herbicide resistance and elevated CO2 on fungi associated with weeds. What effects herbicide resistance might have on plant diseases and how rising atmospheric CO2 might impact these effects needs to be addressed, not only with important weeds but also with crops. PMID:25309569

Runion, G Brett; Prior, Stephen A; Price, Andrew J; McElroy, J Scott; Torbert, H Allen

2014-01-01

209

Fungal Community Structure in Disease Suppressive Soils Assessed by 28S LSU Gene Sequencing  

PubMed Central

Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils ‘suppressive’ or ‘non-suppressive’ for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ?994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. PMID:24699870

Penton, C. Ryan; Gupta, V. V. S. R.; Tiedje, James M.; Neate, Stephen M.; Ophel-Keller, Kathy; Gillings, Michael; Harvey, Paul; Pham, Amanda; Roget, David K.

2014-01-01

210

Efficacy of microorganisms selected from compost to control soil-borne pathogens.  

PubMed

Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results confirmed the good suppressive activity of the compost under study against soil-borne pathogens. The selection of antagonists from compost is a promising strategy for the development of new biological control agents against soil-borne pathogens. PMID:21534476

Pugliese, M; Gullino, M L; Garibaldi, A

2010-01-01

211

Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes.  

PubMed

The efficacies of three nematophagous fungi, Paecilomyces lilacinus, Plectosphaerella cucumerina and Pochonia chlamydosporia, for controlling potato cyst nematodes (PCN) as part of an Integrated Pest Management (IPM) regime were studied. The compatibility of the nematophagous fungi with commonly used chemical pesticides and their ability to compete with the soil fungi Rhizoctonia solani, Chaetomium globosum, Fusarium oxysporum, Penicillium bilaii and Trichoderma harzianum were tested in vitro. Paecilomyces lilacinus was the most successful competitor when the ability to grow and inhibit growth of an opposing colony at both 10 and 20 degrees C was considered. P. lilacinus also showed potential for control of the soil-borne fungal pathogen R. solani, releasing a diffusable substance in vitro which inhibited its growth and caused morphological abnormalities in its hyphae. Pochonia chlamydosporia was least susceptible to growth inhibition by other fungi at 20 degrees in vitro, but the isolate tested did not grow at 10 degrees. Plectosphaerella cucumerina was a poor saprophytic competitor. Radial growth of Paecilomyces lilacinus and Plectosphaerella cucumerina was slowed, but not prevented, when grown on potato dextrose agar incorporating the fungicides fenpiclonil and tolclofos-methyl, and was not inhibited by the addition of pencycuron or the nematicide oxamyl. Radial growth of Pochonia chlamydosporia was partially inhibited by all the chemical pesticides tested. The efficacy of Paecilomyces lilacinus as a control agent for R. solani was further investigated in situ. Treatment with P. lilacinus significantly reduced the symptoms of Rhizoctonia disease on potato stems in a pot trial. The effectiveness of P. lilacinus and P. cucumerina against PCN was also tested in situ. Three application methods were compared; incorporating the fungi into alginate pellets, Terra-Green inoculated with the fungi and applying conidia directly to the tubers. Both formulations containing P. lilacinus and formulation mixtures alone, particularly alginate pellets, significantly reduced multiplication of PCN in soil. We conclude that P. lilacinus showed the greatest potential for use in combination with selected fungicides and nematicides as part of an IPM programme for the control of PCN, but further work is required to confirm whether it is effective against PCN in soil. PMID:12735243

Jacobs, Helen; Gray, Simon N; Crump, David H

2003-01-01

212

Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens.  

PubMed

Through bioassay-guided fractionation, the EtOAc extract of a culture broth of the endophytic fungus Phoma species ZJWCF006 in Arisaema erubescens afforded a new ?-tetralone derivative, (3S)-3,6,7-trihydroxy-?-tetralone (1), together with cercosporamide (2), ?-sitosterol (3), and trichodermin (4). The structures of compounds were established on the basis of spectroscopic analyses. Compounds 1, 2, and 3 were obtained from Phoma species for the first time. Additionally, the compounds were subjected to bioactivity assays, including antimicrobial activity, against four plant pathogenic fungi (Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gloeosporioides, and Magnaporthe oryzae) and two plant pathogenic bacteria (Xanthomonas campestris and Xanthomonas oryzae), as well as in vitro antitumor activities against HT-29, SMMC-772, MCF-7, HL-60, MGC80-3, and P388 cell lines. Compound 1 showed growth inhibition against F. oxysporium and R. solani with EC?? values of 413.22 and 48.5 ?g/mL, respectively. Additionally, compound 1 showed no cytotoxicity, whereas compound 2 exhibited cytotoxic activity against the six tumor cell lines tested, with IC?? values of 9.3?±?2.8, 27.87?±?1.78, 48.79?±?2.56, 37.57?±?1.65, 27.83?±?0.48, and 30.37?±?0.28 ?M, respectively. We conclude that endophytic Phoma are promising sources of natural bioactive and novel metabolites. PMID:21814808

Wang, Li-Wei; Xu, Bai-Ge; Wang, Jia-Ying; Su, Zhen-Zhu; Lin, Fu-Cheng; Zhang, Chu-Long; Kubicek, Christian P

2012-02-01

213

Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions.  

PubMed Central

A 10 mM concentration of Zn2+ decreased the survival of Escherichia coli; enhanced the survival of Bacillus cereus; did not significantly affect the survival of Pseudomonas aeruginosa, Norcardia corallina, and T1, T7, P1, and phi80 coliphages; completely inhibited mycelial growth of Rhizoctonia solani; and reduced mycelial growth of Fusarium solani, Cunninghamella echinulata, Aspergillus niger, and Trichoderma viride. The toxicity of zinc to the fungi, bacteria, and coliphages was unaffected, lessened, or increased by the addition of high concentrations of NaCl. The increased toxicity of zinc in the presence of high concentrations of NaCl was not a result of a synergistic interaction between Zn2+ and elevated osmotic pressures but of the formation of complex anionic ZnCl species that exerted greater toxicities than did cationic Zn2+. Conversely, the decrease in zinc toxicity with increasing concentrations of NaCl probably reflected the decrease in the levels of Zn2+ due to the formation of Zn-Cl species, which was less inhibitory to these microbes than was Zn2+. A. niger tolerated higher concentrations of zinc in the presence of NaCl at 37 than at 25 degrees C. PMID:736544

Babich, H; Stotzky, G

1978-01-01

214

Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens  

PubMed Central

Three Enterobacter agglomerans strains which produce and excrete proteins with chitinolytic activity were found while screening soil-borne bacteria antagonistic to fungal plant pathogens. The chitinolytic activity was induced when the strains were grown in the presence of colloidal chitin as the sole carbon source. It was quantitated by using assays with chromogenic p-nitrophenyl analogs of disaccharide, trisaccharide, and tetrasaccharide derivatives of N-acetylglucosamine. A set of three fluorescent substrates with a 4-methylumbelliferyl group linked by (beta)-1,4 linkage to N-acetylglucosamine mono- or oligosaccharides were used to identify the chitinolytic activities of proteins which had been renatured following their separation by electrophoresis. This study provides the most complete evidence for the presence of a complex of chitinolytic enzymes in Enterobacter strains. Four enzymes were detected: two N-acetyl-(beta)-d-glucosaminidases of 89 and 67 kDa, an endochitinase with an apparent molecular mass of 59 kDa, and a chitobiosidase of 50 kDa. The biocontrol ability of the chitinolytic strains was demonstrated under greenhouse conditions. The bacteria decreased the incidence of disease caused by Rhizoctonia solani in cotton by 64 to 86%. Two Tn5 mutants of one of the isolates, which were deficient in chitinolytic activity, were unable to protect plants against the disease. PMID:16535017

Chernin, L.; Ismailov, Z.; Haran, S.; Chet, I.

1995-01-01

215

Rhizobacteria of Cotton and Their Repression of Seedling Disease Pathogens  

PubMed Central

During the 1983 field season, the rhizobacteria (including organisms from rhizosphere soil and the root rhizoplane) of cotton plants at one location in Mississippi were inventoried at different plant growth stages. Isolates (1,000) were identified to the genus level and characterized for repression of Pythium ultimum and Rhizoctonia solani. Cotton seedlings were initially colonized by bacteria of many different genera, and populations quickly reached 108 CFU/g of root tissue. As the season progressed, the bacterial populations declined as root mass increased and the roots became more woodlike in consistency. Fluorescent pseudomonads were the most numerous gram-negative rhizobacterial isolates of those that were randomly collected and identified, and they provided the largest number of isolates with fungal repressive activity. Several other gram-negative bacterial genera were recovered throughout the growing season, and some gram-positive bacteria were also isolated routinely, but at lower numbers. There was no correlation between the proportion of rhizobacterial isolates that possessed fungal repressive activity and the plant growth stage from which the isolates were obtained. Approximately twice as many bacterial isolates demonstrated fungal repression in the agar assay compared with the inplanta assay, and isolates were found more frequently with fungal repressive activity against P. ultimum than against R. solai. PMID:16348043

Hagedorn, C.; Gould, W. D.; Bardinelli, T. R.

1989-01-01

216

Isolation and identification of antagonistic bacteria from phylloplane of rice as biocontrol agents for sheath blight.  

PubMed

A total of 325 bacteria were isolated from both healthy and sheath blight infected leaf samples of rice plants, collected from different places of Malaysia, following dilution technique. Sheath blight pathogen was isolated from infected samples by tissue plating method. Out of 325, 14 isolates were found to be antagonist against the pathogen in pre evaluation test. All the 14 isolates were morphologically characterized. Antagonistic activity of these isolates was further confirmed by adopting the standard dual culture and extracellular metabolite tests. The best isolates were selected, based on the results. In dual culture test, the selected bacterial isolates KMB25, TMB33, PMB38, UMB20 and BMB42 showed 68.44%, 60.89%, 60.22%, 50.00% and 48.22% fungal growth inhibition, respectively and in extracellular metabolite test these bacterial isolates exhibited 93.33%, 84.26%, 69.82%, 67.96% and 39.26% of the same, respectively. Biochemical tests of selected isolates were performed following standard procedure. These bacterial isolates were tentatively identified as fluorescent pseudomonas by morphological and biochemical characterization. The identities were further confirmed by Biolog microstation system as P. fluorescens (UMB20), P. aeruginosa (KMB25, TMB33 and PMB38) and P. asplenii (BMB42) with similarity index ranging from 0.517 to 0.697. The effective bacterial isolates obtained from the present study can be used in the management of soil borne fungal pathogen Rhizoctonia solani, causing sheath blight of rice. PMID:25522511

Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd; Elmahdi, Salha

2014-11-01

217

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi.  

PubMed

The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi. PMID:25288992

Xu, Sheng Jun; Hong, Sae Jin; Choi, Woobong; Kim, Byung Sup

2014-03-01

218

Coastal Bermudagrass Rotation and Fallow for Management of Nematodes and Soilborne Fungi on Vegetable Crops  

PubMed Central

The efficacy of clean fallow, bermudagrass (Cynodon dactylon) as a rotational crop, and fenamiphos for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus), snapbean (Phaseolus vulgaris), and pepper (Capsicum annuum) production was evaluated in field tests from 1993 to 1995. Numbers of M. incognita in the soil and root-gall indices were greater on okra than on snapbean or pepper. Application of fenamiphos at 6.7 kg a.i./ha did not suppress numbers of nematodes on any sampling date when compared with untreated plots. The lack of efficacy could be the result of microbial degradation of the nematicide. Application of fenamiphos suppressed root-gall development on okra following fallow and 1-year sod in 1993, but not thereafter. A few galls were observed on roots of snapbean following 2- and 3-year fallow but none following 1-, 2-, and 3-year bermudagrass sod. Population densities of Pythium aphanidermatum, P. myriotylum, and Rhizoctonia solani in soil after planting vegetables were suppressed by 2- or 3-year sod compared with fallow but were not affected by fenamiphos. Yields of snapbean, pepper, and okra did not differ between fallow and 1-year sod. In the final year of the study, yields of all crops were greater following 3-year sod than following fallow. Application of fenamiphos prior to planting each crop following fallow or sod did not affect yields. PMID:19274273

Johnson, A. W.; Burton, G. W.; Sumner, D. R.; Handoo, Z.

1997-01-01

219

Coastal bermudagrass rotation and fallow for management of nematodes and soilborne fungi on vegetable crops.  

PubMed

The efficacy of clean fallow, bermudagrass (Cynodon dactylon) as a rotational crop, and fenamiphos for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus), snapbean (Phaseolus vulgaris), and pepper (Capsicum annuum) production was evaluated in field tests from 1993 to 1995. Numbers of M. incognita in the soil and root-gall indices were greater on okra than on snapbean or pepper. Application of fenamiphos at 6.7 kg a.i./ha did not suppress numbers of nematodes on any sampling date when compared with untreated plots. The lack of efficacy could be the result of microbial degradation of the nematicide. Application of fenamiphos suppressed root-gall development on okra following fallow and 1-year sod in 1993, but not thereafter. A few galls were observed on roots of snapbean following 2- and 3-year fallow but none following 1-, 2-, and 3-year bermudagrass sod. Population densities of Pythium aphanidermatum, P. myriotylum, and Rhizoctonia solani in soil after planting vegetables were suppressed by 2- or 3-year sod compared with fallow but were not affected by fenamiphos. Yields of snapbean, pepper, and okra did not differ between fallow and 1-year sod. In the final year of the study, yields of all crops were greater following 3-year sod than following fallow. Application of fenamiphos prior to planting each crop following fallow or sod did not affect yields. PMID:19274273

Johnson, A W; Burton, G W; Sumner, D R; Handoo, Z

1997-12-01

220

Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic.  

PubMed

An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus. PMID:22524528

Rakotoniriana, Erick Francisco; Chataigné, Gabrielle; Raoelison, Guy; Rabemanantsoa, Christian; Munaut, Françoise; El Jaziri, Mondher; Urveg-Ratsimamanga, Suzanne; Marchand-Brynaert, Jacqueline; Corbisier, Anne-Marie; Declerck, Stéphane; Quetin-Leclercq, Joëlle

2012-05-01

221

Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity.  

PubMed

A bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from Actinoplanes sp. HBDN08. The structure of the antifungal metabolite was elucidated as 5-hydroxyl-5-methyl-2-hexenoic acid on the basis of spectral analysis. This compound showed strong in vitro antifungal activity against Botrytis cinerea, Cladosporium cucumerinum and Corynespora cassiicola, with an IC(50) of 32.45, 27.17, and 30.66 mg/L, respectively; however, it only moderately inhibited hyphal growth of Rhizoctonia solani with an IC(50) of 61.64 mg/L. The in vivo antifungal activity under greenhouse conditions demonstrated that 5-hydroxyl-5-methyl-2-hexenoic acid could effectively control the diseases caused by B. cinerea, C. cucumerinum and C. cassiicola with 71.42%, 78.63% and 65.13% control values at 350 mg/L, respectively. This strong antifungal activity suggests that 5-hydroxyl-5-methyl-2-hexenoic acid might be a promising candidate for new antifungal agents. PMID:20584599

Zhang, Ji; Wang, Xiang-Jing; Yan, Yi-Jun; Jiang, Ling; Wang, Ji-Dong; Li, Bao-Ju; Xiang, Wen-Sheng

2010-11-01

222

Heterologous expression of the antifungal ?-chitin binding protein CBP24 from bacillus thuringiensis and its synergistic action with bacterial chitinases.  

PubMed

The genome sequence analysis of Bacillus thuringiensis serovar konkukian S4 has shown to contain two chitinases (Chi74, Chi39) and two chitin-binding proteins (CBP50 and CBP24). The Chi74, Chi39 and CBP50 have been characterized previously. The chitin-binding protein CBP24 was cloned and heterologously expressed in Escherichia coli. The recombinant protein was purified using a Ni-NTA purification system. The purified protein was used to study its substrate binding activity using crystalline chitin variants as substrates. The Bmax and Kd values have shown that it preferably binds to ?-type of the crystalline chitin at a range of pH with peak activity between 5.5-7.5. To elucidate the role of CBP24 in the chitin degradation system of S4, the purified chitinases Chi74, Chi39 along with the ChiA from Serratia proteamcualans were used in different combinations with the CBP24 and chitinolytic activity was assayed. It was shown that the CBP24 acts synergistically with chitin degradation activity of bacterial chitinases non-specifically. Moreover, the CBP24 has shown antifungal activity against plant pathogenic fungi Fusarium oxysporum and Rhizoctonia solani. The present study will lead us to develop a technology for environmental friendly conversion of chitin to valuable products. PMID:25182053

Mehmood, Muhammad A; Latif, Mamoona; Hussain, Khadim; Gull, Munazza; Latif, Farooq; Rajoka, Muhammad I

2015-01-01

223

Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity.  

PubMed

We studied the potential of the humus layer of the Norway spruce stands to supply beneficial rhizobacteria to birch (Betula pendula), alder (Alnus incana) and fescue grass (Festuca rubra), representatives of pioneer vegetation after clear-cutting of the coniferous forest. Axenically grown seedlings of these species were inoculated with the acid spruce humus, pH 3.7-5.3. Actinorhizal propagules, capable of nodulating alder, were present in high density (10(3) g(-1)) in humus of long-term limed plots, whereas plots with nitrogen fertilization contained almost none (Rhizoctonia sp., Botrytis cinerea and Fusarium culmorum. The antagonistic isolates also commonly produced siderophores and/or cell wall degrading enzymes. PMID:10640667

Elo; Maunuksela; Salkinoja-Salonen; Smolander; Haahtela

2000-02-01

224

Partial purification, characterization, and kinetic studies of a low-molecular-weight, alkali-tolerant chitinase enzyme from Bacillus subtilis JN032305, A potential biocontrol strain.  

PubMed

A new alkalophilic low-molecular-mass chitinase of 14 kD from the potent biocontrol agent Bacillus subtilis JN032305 was partially purified and enzymology of the chitinase was studied. The enzyme showed optimal pH of 9.0 and temperature of 50°C. The enzyme was found stable during the 60-min incubation at 50 °C. The chitinase was inhibited by group specific agents like IAA, DAN, TLCK, and SDS and metal ions Mg(2+), Ca(2+), Fe(2+), Mn(2+), Ba(2+), and Hg(2+), whereas Zn(2+) did not show significant inhibitory effect against the chitinase. PMSF partially inhibited the enzyme. Substrates specificity tests indicated that the enzyme showed 75% of relative activity on glycol chitin, 58% on carboxymethylcellulose (CMC), 33% on chitin flakes, and 166% laminarin compared to that on colloidal chitin. The enzyme also hydrolyzed 4-methylumbelliferyl-N-acetyl-D-glucosaminide, indicating its chitobiase activity. The chitinase of this study has broad specificity, which could hydrolyze not only the glycosidic bond in GlcNAc-GlcNAc but also that of related carbohydrates with glycosidic linkages. The partially purified chitinase not only showed antifungal activity against Rhizoctonia solani and Colletotrichum gloeosporioides, two potent phytopathogens of chilli, but also increased the germination of chilli seeds when infected with the two potent phytopathogenic fungi. PMID:24499366

Shivakumar, Srividya; Karmali, Anika Nayak; Ruhimbana, Charles

2014-01-01

225

Effects of Rapeseed and Vetch as Green Manure Crops and Fallow on Nematodes and Soil-borne Pathogens  

PubMed Central

In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop. PMID:19283212

Johnson, A. W.; Golden, A. M.; Auld, D. L.; Sumner, D. R.

1992-01-01

226

Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences  

PubMed Central

LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens. PMID:17922518

Padliya, Neerav D.; Garrett, Wesley M.; Campbell, Kimberly B.; Tabb, David L.; Cooper, Bret

2010-01-01

227

Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol.  

PubMed

The enantioselective bioactivity, acute toxicity and stereoselective degradation of the chiral triazole fungicide flutriafol in vegetables were investigated for the first time using the (R)-, (S)- and rac-flutriafol. The order of the bioactivity against five target pathogens (Rhizoctonia solani, Alternaria solani, Pyricularia grisea, Gibberella zeae, Botrytis cinerea) was found to be (R)-flutriafol>rac-flutriafol>(S)-flutriafol. The fungicidal activity of (R)-flutriafol was 1.49-6.23 times higher than that of (S)-flutriafol. The (R)-flutriafol also showed 2.17-3.52 times higher acute toxicity to Eisenia fetida and Scenedesmus obliquus than (S)-flutriafol. The stereoselective degradation of flutriafol in tomato showed that the active (R)-flutriafol degraded faster, resulting in an enrichment of inactive (S)-form, and the half-lives were 9.23 d and 10.18 d, respectively. Inversely, the (S)-flutriafol, with a half-life of 4.76 d, was preferentially degraded in cucumber. In conclusion, the systemic assessments of the triazole fungicide flutriafol stereoisomers on the enantioselective bioactivity, acute toxicity and environmental behavior may have implications for better environmental and ecological risk assessment. PMID:25463219

Zhang, Qing; Hua, Xiu-de; Shi, Hai-Yan; Liu, Ji-Song; Tian, Ming-Ming; Wang, Ming-Hua

2015-03-01

228

Plant growth promoting bacteria from cow dung based biodynamic preparations.  

PubMed

Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and 'Cow pat pit' (CPP) showed high counts of lactobacilli (10(9) ml(-1)) and yeasts (10(4) ml(-1)). Actinomycetes were present only in CPP (10(4) ml(-1)) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysinibacillus xylanilyticus (BD3) and Bacillus licheniformis (CPP1). This is the first report of L. xylanilyticus and B. licheniformis in biodynamic preparations. Only three carbon sources-dextrose, sucrose and trehalose out of 21 tested were utilized by all the bacteria. None could utilize arabinose, dulcitol, galactose, inositol, inulin, melibiose, raffinose, rhamnose and sorbitol. All the strains produced indole acetic acid (1.8-3.7 ?g ml(-1) culture filtrate) and ammonia. None could fix nitrogen; but all except B. safensis and B. licheniformis could solubilize phosphorous from insoluble tri-calcium phosphate. All the strains except L. xylaniliticus exhibited antagonism to the plant pathogen Rhizoctonia bataticola whereas none could inhibit Sclerotium rolfsi. In green house experiment in soil microcosms, bacterial inoculation significantly promoted growth of maize; plant dry weight increased by ~21 % due to inoculation with B. cereus (PG2). Results provide a basis for understanding the beneficial effects of biodynamic preparations and industrial deployment of the strains. PMID:25320439

Radha, T K; Rao, D L N

2014-12-01

229

Resistance to Multiple Tuber Diseases Expressed in Somaclonal Variants of the Potato Cultivar Russet Burbank  

PubMed Central

Multiple disease resistance is an aim of many plant breeding programs. Previously, novel somatic cell selection was used to generate potato variants of “Russet Burbank” with resistance to common scab caused by infection with an actinomycete pathogen. Coexpression of resistance to powdery scab caused by a protozoan pathogen was subsequently shown. This study sought to define whether this resistance was effective against additional potato tuber diseases, black scurf, and tuber soft rot induced by fungal and bacterial pathogens. Pot trials and in vitro assays with multiple pathogenic strains identified significant resistance to both tuber diseases across the potato variants examined; the best clone A380 showed 51% and 65% reductions in disease severity to tuber soft rot and black scurf, respectively, when compared with the parent line. The resistance appeared to be tuber specific as no enhanced resistance was recorded in stolons or stem material when challenged Rhizoctonia solani that induces stolon pruning and stem canker. The work presented here suggests that morphological characteristics associated with tuber resistance may be the predominant change that has resulted from the somaclonal cell selection process, potentially underpinning the demonstrated broad spectrum of resistance to tuber invading pathogens. PMID:24523639

Thangavel, Tamilarasan; Steven Tegg, Robert; Wilson, Calum Rae

2014-01-01

230

Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes.  

PubMed

Trichoderma species produce trichothecenes, most notably trichodermin and harzianum A (HA), by a biosynthetic pathway in which several of the involved proteins have significant differences in functionality compared to their Fusarium orthologues. In addition, the genes encoding these proteins show a genomic organization differing from that of the Fusarium tri clusters. Here we describe the isolation of Trichoderma arundinaceum IBT 40837 transformants which have a disrupted or silenced tri4 gene, a gene encoding a cytochrome P450 monooxygenase that oxygenates trichodiene to give rise to isotrichodiol, and the effect of tri4 gene disruption and silencing on the expression of other tri genes. Our results indicate that the tri4 gene disruption resulted in a reduced antifungal activity against Botrytis cinerea and Rhizoctonia solani and also in a reduced ability to induce the expression of tomato plant defense-related genes belonging to the salicylic acid (SA) and jasmonate (JA) pathways against B. cinerea, in comparison to the wild-type strain, indicating that HA plays an important function in the sensitization of Trichoderma-pretreated plants against this fungal pathogen. Additionally, the effect of the interaction of T. arundinaceum with B. cinerea or R. solani and with tomato seedlings on the expressions of the tri genes was studied. PMID:22562989

Malmierca, M G; Cardoza, R E; Alexander, N J; McCormick, S P; Hermosa, R; Monte, E; Gutiérrez, S

2012-07-01

231

Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria.  

PubMed

Four commercial composts were added to soil to study their effect on plant growth, total rhizosphere microflora, and incidence of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of tomato plants. Three of the compost treatments significantly improved plant growth, while one compost treatment significantly depressed it. Compost amendments caused only small variations in the total numbers of bacteria, actinomycetes, and fungi in the rhizosphere of tomato plants. A total of 709 bacteria were isolated from the four compost treatments and the soil control to determine the percentage of PGPR in each treatment. The PGPR tests measured antagonism to soilborne root pathogens, production of indoleacetic acid, cyanide, and siderophores, phosphate solubilization, and intrinsic resistance to antibiotics. Our results show that the addition of some composts to soil increased the incidence in the tomato rhizosphere of bacteria exhibiting antagonism towards Fusarium oxysporum f. sp. radicis-lycopersici, Pyrenochaeta lycopersici, Pythium ultimum, and Rhizoctonia solani. The antagonistic effects observed were associated with marked increases in the percentage of siderophore producers. No significant differences were observed in the percentage of cyanogens, whereas the percentages of phosphate solubilizers and indoleacetic acid producers were affected, respectively, by one and two compost treatments. Intrinsic resistance to antibiotics was only marginally different among the rhizobacterial populations. Our results suggest that compost may stimulate the proliferation of antagonists in the rhizosphere and confirm previous reports indicating that the use of composts in container media has the potential to protect plants from soilborne root pathogens. PMID:16534902

de Brito, A M; Gagne, S; Antoun, H

1995-01-01

232

Lactoferrin-derived resistance against plant pathogens in transgenic plants.  

PubMed

Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications. PMID:23889215

Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

2013-12-01

233

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi  

PubMed Central

The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi. PMID:25288992

Xu, Sheng Jun; Hong, Sae Jin; Choi, Woobong; Kim, Byung Sup

2014-01-01

234

Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba.  

PubMed

Muscodor yucatanensis, an endophytic fungus, was isolated from the leaves of Bursera simaruba (Burseraceae) in a dry, semideciduous tropical forest in the Ecological Reserve El Eden, Quintana Roo, Mexico. We tested the mixture of volatile organic compounds (VOCs) produced by M. yucatanensis for allelochemical effects against other endophytic fungi, phytopathogenic fungi and fungoids, and plants. VOCs were lethal to Guignardia mangifera, Colletotrichum sp., Phomopsis sp., Alternaria solani, Rhizoctonia sp., Phytophthora capsici, and P. parasitica, but had no effect on Fusarium oxysporum, Xylaria sp., the endophytic isolate 120, or M. yucatanensis. VOCs inhibited root elongation in amaranth, tomato, and barnyard grass, particularly those produced during the first 15 days of fungal growth. VOCs were identified by gas chromatography/mass spectrometry and included compounds not previously reported from other Muscodor species and the previously reported compounds octane, 2-methyl butyl acetate, 2-pentyl furan, caryophyllene, and aromadendrene. We also evaluated organic extracts from the culture medium and mycelium of M. yucatanensis on the same endophytes, phytopathogens, and plants. In general, extracts inhibited plants more than endophytic or phytopathogens fungi. G. mangifera was the only organism that was significantly stimulated by both extracts regardless of concentration. Compounds in both organic extracts were identified by gas chromatography/mass spectrometry. We discuss the possible allelopathic role that metabolites of M. yucatanensis play in its ecological interactions with its host plant and other organisms. PMID:20809145

Macías-Rubalcava, Martha L; Hernández-Bautista, Blanca E; Oropeza, Fabiola; Duarte, Georgina; González, María C; Glenn, Anthony E; Hanlin, Richard T; Anaya, Ana Luisa

2010-10-01

235

Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray.  

PubMed

Detection, identification and quantification of plant pathogens are the cornerstones of preventive plant disease management. To detect multiple pathogens in a single assay, DNA array technology currently is the most suitable technique. However, for sensitive detection, polymerase chain reaction (PCR) amplification before array hybridization is required. To evaluate whether DNA array technology can be used to simultaneously detect and quantify multiple pathogens, a DNA macroarray was designed and optimized for accurate quantification over at least three orders of magnitude of the economically important vascular wilt pathogens Verticillium albo-atrum and Verticillium dahliae. A strong correlation was observed between hybridization signals and pathogen concentrations for standard DNA added to DNA from different origins and for infested samples. While accounting for specific criteria like amount of immobilized detector oligonucleotide and controls for PCR kinetics, accurate quantification of pathogens was achieved in concentration ranges typically encountered in horticultural practice. Subsequently, quantitative assessment of other tomato pathogens (Fusarium oxysporum, Fusarium solani, Pythium ultimum and Rhizoctonia solani) in environmental samples was performed using DNA array technology and correlated to measurements obtained using real-time PCR. As both methods of quantification showed a very high degree of correlation, the reliability and robustness of the DNA array technology is shown. PMID:16232285

Lievens, Bart; Brouwer, Margreet; Vanachter, Alfons C R C; Lévesque, C André; Cammue, Bruno P A; Thomma, Bart P H J

2005-11-01

236

Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings.  

PubMed

Biological control of plant pathogens is receiving increasing relevance, as compared to chemical methods, as they are eco-friendly, economical and indirectly improve plant quality and yield attributes. An investigation was undertaken to evaluate the potential of antagonistic cyanobacteria (Anabaena variabilis RPAN59 and A. oscillarioides RPAN69) fortified formulations for suppressing damping off disease in tomato seedlings challenged by the inoculation of a fungal consortium (Pythium debaryanum, Fusarium oxysporum lycopersici, Fusarium moniliforme and Rhizoctonia solani). Treatment with A. variabilis amended formulations recorded significantly higher plant growth parameters, than other treatments, including biological control (Trichoderma formulation) and chemical control (Thiram-Carbendazim). The A. variabilis amended compost-vermiculite and compost formulations exhibited 10-15 % lower disease severity and 40-50 % higher values than chemical and biological control treatments in terms of fresh weight and height of the plants. In future, in depth analyses regarding the mechanism involved in biocontrol by cyanobacteria and evaluation of these formulations under field conditions are proposed to be undertaken. PMID:22869418

Chaudhary, Vidhi; Prasanna, Radha; Nain, Lata; Dubey, S C; Gupta, Vishal; Singh, Rajendra; Jaggi, Seema; Bhatnagar, Ashok Kumar

2012-12-01

237

Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides.  

PubMed

The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed. PMID:15184126

Biondi, Natascia; Piccardi, Raffaella; Margheri, M Cristina; Rodolfi, Liliana; Smith, Geoffrey D; Tredici, Mario R

2004-06-01

238

Mycotoxicoses of ruminants and horses.  

PubMed

In the current study, mycotoxicoses of ruminants and horses are reviewed, with an emphasis on the occurrence of these diseases in South America. The main mycotoxicoses observed in grazing cattle include intoxications by indole-diterpenoid mycotoxins (Paspalum spp. contaminated by Claviceps paspali, Lolium perenne infected by Neotyphodium lolii, Cynodon dactylon infected by Claviceps cynodontis, and Poa huecu), gangrenous ergotism and dysthermic syndrome (hyperthermia) caused by Festuca arundinacea (syn. Festuca elatior) infected by Neotyphodium coenophialum (syn. Acremonium coenophialum), and photosensitization in pastures contaminated by toxigenic Pithomyces chartarum. Other mycotoxicoses in grazing cattle include slaframine toxicity in clover pastures infected by Rhizoctonia leguminicola and diplodiosis in cattle grazing in corn stubbles. The mycotoxicoses caused by contaminated concentrated food or byproducts in cattle include poisoning by toxins of Aspergillus clavatus, which contaminate barley or sugar beetroot by-products, gangrenous ergotism or dysthermic syndrome caused by wheat bran or wheat screenings contaminated with Claviceps purpurea, and acute respiratory distress caused by damaged sweet potatoes (Ipomoea batatas). The main mycotoxicosis of horses is leukoencephalomalacia caused by the fumonisins B1 and B2 produced by Fusarium spp. Poisoning by C. purpurea and F. elatior infected by N. coenophialum has also been reported as a cause of agalactia and neonatal mortality in mares. Slaframine toxicosis caused by the ingestion of alfalfa hay contaminated by R. leguminicola has also been reported in horses. PMID:24091682

Riet-Correa, Franklin; Rivero, Rodolfo; Odriozola, Ernesto; Adrien, Maria de Lourdes; Medeiros, Rosane M T; Schild, Ana Lucia

2013-11-01

239

Microemulsion Formulation of Carbendazim and Its In Vitro Antifungal Activities Evaluation  

PubMed Central

The fungus Rhizoctonia solani Kuhn is a widespread and destructive plant pathogen with a very broad host range. Although various pathogens, including R. solani, have been traditionally controlled using chemical pesticides, their use faces drawbacks such as environmental pollution, development of pesticide resistance, and other negative effects. Carbendazim is a well-known antifungal agent capable of controlling a broad range of plant diseases, but its use is hampered by its poor aqueous solubility. In this study, we describe an environmentally friendly pharmaceutical microemulsion system using carbendazim as the active ingredient, chloroform and acetic acid as solvents, and the surfactants HSH and 0204 as emulsifiers. This system increased the solubility of carbendazim to 30 g/L. The optimal microemulsion formulation was determined based on a pseudo-ternary phase diagram; its physicochemical characteristics were also tested. The cloud point was greater than 90°C and it was resistant to freezing down to ?18°C, both of which are improvements over the temperature range in which pure carbendazim can be used. This microemulsion meets the standard for pesticide microemulsions and demonstrated better activity against R. solani AG1-IA, relative to an aqueous solution of pure carbendazim (0.2 g/L). The mechanism of activity was reflected in the inhibition of against R. solani AG1-IA including mycelium growth, and sclerotia formation and germination were significantly better than that of 0.2 g/L carbendazim water solution according to the results of t-test done by SPSS 19. PMID:25310219

Leng, Pengfei; Zhang, Zhiming; Li, Qian; Zhao, Maojun; Pan, Guangtang

2014-01-01

240

Comparative Analyses of Exoproteinases Produced by Three Phytopathogenic Microorganisms  

PubMed Central

Proteinases secreted by the oomycete Phytophthora infestans (Mont.) de Bary, Rhizoctonia solani, and Fusarium culmorum belonging to different families of fungi have been studied to determine if the exoenzyme secretion depends on the environmental conditions and the phylogenetic position of the pathogen. The substrate specificity of the extracellular proteinases of F. culmorum, R. solani, and P. infestans and their sensitivity to the action of synthetic and protein inhibitors suggest that they contain trypsin-like and subtilisin-like enzymes regardless of culture medium composition. The relation of trypsin-like and subtilisin-like enzymes is dependent on the culture medium composition, especially on the form of nitrogen nutrition, particularly in the case of the exoenzymes secreted by R. solani. Phylogenetic analyses have shown that the exoproteinase set of ascomycetes and oomycetes has more similarities than basidiomycetes although they are more distant relatives. Our data suggests that the multiple proteinases secreted by pathogenic fungi could play different roles in pathogenesis, increasing the adaptability and host range, or could have different functions in survival in various ecological habitats outside the host. PMID:22567343

Valueva, Tatiana A.; Kudryavtseva, Natalia N.; Sof'in, Alexis V.; Revina, Tatiana A.; Gvozdeva, Ekaterina L.; Ievleva, Elena V.

2011-01-01

241

Lignin and lignans in plant defence: insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus.  

PubMed

Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignol, the main component of lignin. Lignins, deposited in the secondary cell wall, play a role in plant defence against pathogens. We re-analysed the phylogeny of CAD/CAD-like genes using sequences from recently sequenced genomes, and analysed the temporal and spatial expression profiles of CAD/CAD-like genes in Populus trichocarpa healthy and infected plants. Three fungal pathogens (Rhizoctonia solani, Fusarium oxysporum, and Cytospora sp.), varying in lifestyle and pathogenicity, were used for plant infection. Phylogenetic analyses showed that CAD/CAD-like genes were distributed in classes represented by all members from angiosperm lineages including basal angiosperms and Selaginella. The analysed genes showed different expression profiles during development and demonstrated that three genes were involved in primary xylem maturation while five may function in secondary xylem formation. Expression analysis following inoculation with fungal pathogens, showed that five genes were induced in either stem or leaves. These results add further evidence that CAD/CAD-like genes have evolved specialised functions in plant development and defence against various pest and pathogens. Two genes (PoptrCAD11 and PoptrCAD15), which were induced under various stresses, could be treated as universal markers of plant defence using lignification or lignan biosynthesis. PMID:25443838

Bagniewska-Zadworna, Agnieszka; Barakat, Abdelali; Lakomy, Piotr; Smoli?ski, Dariusz J; Zadworny, Marcin

2014-12-01

242

Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12.  

PubMed

Trichoderma species are ubiquitous soil fungi that hold enormous potential for the development of credible alternatives to agrochemicals and synthetic fertilizers in sustainable crop production. In this paper, we show that substantial improvements in plant productivity can be met by genetic modification of a plant-growth-promoting and biocontrol strain of Trichoderma hamatum, but that these improvements are obtained in the absence of disease pressure only. Using a quantitative monoclonal antibody-based ELISA, we show that an N-acetyl-?-d-glucosaminidase-deficient mutant of T. hamatum, generated by insertional mutagenesis of the corresponding gene, has impaired saprotrophic competitiveness during antagonistic interactions with Rhizoctonia solani in soil. Furthermore, its fitness as a biocontrol agent of the pre-emergence damping-off pathogen Sclerotinia sclerotiorum is significantly reduced, and its ability to promote plant growth is constrained by the presence of both pathogens. This work shows that while gains in T. hamatum-mediated plant-growth-promotion can be met through genetic manipulation of a single beneficial trait, such a modification has negative impacts on other aspects of its biology and ecology that contribute to its success as a saprotrophic competitor and antagonist of soil-borne pathogens. The work has important implications for fungal morphogenesis, demonstrating a clear link between hyphal architecture and secretory potential. Furthermore, it highlights the need for a holistic approach to the development of genetically modified Trichoderma strains for use as crop stimulants and biocontrol agents in plant agriculture. PMID:21835878

Ryder, Lauren S; Harris, Beverley D; Soanes, Darren M; Kershaw, Michael J; Talbot, Nicholas J; Thornton, Christopher R

2012-01-01

243

Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease.  

PubMed

A total of 132 actinomycetes was isolated from different rice rhizosphere soils of Tamil Nadu, India, among which 57 showed antagonistic activity towards Rhizoctonia solani, which is sheath blight (ShB) pathogen of rice and other fungal pathogens such as Macrophomina phaseolina, Fusarium oxysporum, Fusarium udum and Alternaria alternata with a variable zone of inhibition. Potential actinomycete strain VSMGT1014 was identified as Streptomyces aurantiogriseus VSMGT1014 based on the morphological, physiological, biochemical and 16S rRNA sequence analysis. The strain VSMGT1014 produced lytic enzymes, secondary metabolites, siderophore, volatile substance and indole acetic acid. Crude metabolites of VSMGT1014 showed activity against R. solani at 5 µg ml(-1); however, the prominent inhibition zone was observed from 40 to 100 µg ml(-1). Reduced lesion heights observed in culture, cells-free filtrate, crude metabolites and carbendazim on challenge with pathogen in the detached leaf assay. The high content screening test clearly indicated denucleation of R. solani at 5 µg ml(-1) treatment of crude metabolite and carbendazim respectively. The results conclude that strain VSMGT1014 was found to be a potential candidate for the control of ShB of rice as a bio fungicide. PMID:25304022

Harikrishnan, Hariharan; Shanmugaiah, Vellasamy; Balasubramanian, Natesan; Sharma, Mahaveer P; Kotchoni, Simeon O

2014-12-01

244

Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community  

PubMed Central

The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g?1 root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community. PMID:23935892

Rändler, Manuela; Schmid, Michael; Junge, Helmut; Borriss, Rainer; Hartmann, Anton; Grosch, Rita

2013-01-01

245

Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers.  

PubMed

Essential oils from the stems/leaves (L) and flowers (F) of Lavandula stoechas L. ssp. stoechas growing wild in southern Sardinia (Italy) were extracted by hydrodistillation and analyzed by gas chromatography coupled with flame ionization detector and ion trap mass spectrometry. The major compound was fenchone, accounting for, on average, 52.60% in L and 66.20% in F, followed by camphor (13.13% versus 27.08%, in L and F, respectively). F essential oil yields (volume per dry weight) decreased from the beginning to the end of the flowering stage, whereas L yields remained constant during the year. The nine main compounds derived from two different subpathways, A and B. The compounds that belong to the same subpathway showed a similar behavior during the year. The essential oils were tested for their antifungal activity using the paper disk diffusion method. The essential oils tested were effective on the inactivation of Rhizoctonia solani and Fusarium oxysporum and less effective against Aspergillus flavus. Among the single compounds tested, fenchone, limonene, and myrtenal appeared to be the more effective on the inhibition of R. solani growth. PMID:16756368

Angioni, Alberto; Barra, Andrea; Coroneo, Valentina; Dessi, Sandro; Cabras, Paolo

2006-06-14

246

Synthesis, fungicidal activity, and structure-activity relationship of spiro-compounds containing macrolactam (macrolactone) and thiadiazoline rings.  

PubMed

Two series of novel spiro-compounds containing macrolactam or macrolactone and thiadiazoline rings, 1-thia-2-alkylimino-3,4,9-triaza-10-oxospiro[4.15]eicosyl-3-ene (4F) and 1-thia-2-alkylimino-3,4-diaza-9-oxa-10-oxospiro[4.15]eicosyl-3-ene (4G), were synthesized from 12-oxo-1,15-pentadecanlactam and 12-oxo-1,15-pentadecanlactone, respectively. Their structures were confirmed by elemental analysis, (1)H NMR, and (13)C NMR. The conformation of compounds 4F was determined via the crystal structure of a representative compound (4F(6)). The bioassay showed that compounds 4F have much better fungicidal activity against five fungi ( Botrytis cinerea Pers., Sclerotinia sclerotiorum , Rhizoctonia solani Kuhn., Phomopsis asparagi Sacc., and Pyricularia oryzae Cav.) than compounds 4G. The fact above showed that the presence of a hydrogen-bonding donor for the fungicidal activity of macrocyclic compounds is very important. 4F(6) showed excellent fungicidal activity against P. oryzae, which is much better than the commercial fungicide isoprothiolane, and 4F(13) showed excellent fungicidal activity against P. oryzae and good fungicidal activity against P. asparagi. PMID:20041703

Li, Jian-Jun; Liang, Xiao-Mei; Jin, Shu-Hui; Zhang, Jian-Jun; Yuan, Hui-Zhu; Qi, Shu-Hua; Chen, Fu-Heng; Wang, Dao-Quan

2010-03-10

247

Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping.  

PubMed

ABSTRACT A new method for the control of soilborne plant pathogens was tested for its efficacy in two field experiments during two years. Plots were amended with fresh broccoli or grass (3.4 to 4.0 kg fresh weight m(-2)) or left nonamended, and covered with an airtight plastic cover (0.135 mm thick) or left noncovered. In plots amended with broccoli or grass and covered with plastic sheeting, anaerobic and strongly reducing soil conditions developed quickly, as indicated by rapid depletion of oxygen and a decrease in redox potential values to as low as -200 mV. After 15 weeks, survival of Fusarium oxysporum f. sp. asparagi, Rhizoctonia solani, and Verticillium dahliae in inoculum samples buried 15 cm deep was strongly reduced in amended, covered plots in both experiments. The pathogens were not or hardly inactivated in amended, noncovered soil or nonamended, covered soil. The latter indicates that thermal inactivation due to increased soil temperatures under the plastic cover was not involved in pathogen inactivation. The results show the potential for this approach to control various soilborne pathogens and that it may serve as an alternative to chemical soil disinfestation for high-value crops under conditions where other alternatives, such as solarization or soil flooding, are not effective or not feasible. PMID:18944617

Blok, W J; Lamers, J G; Termorshuizen, A J; Bollen, G J

2000-03-01

248

Biological Role of Trichoderma harzianum-Derived Platelet-Activating Factor Acetylhydrolase (PAF-AH) on Stress Response and Antagonism  

PubMed Central

We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions. PMID:24964161

Yu, Chuanjin; Fan, Lili; Wu, Qiong; Fu, Kehe; Gao, Shigang; Wang, Meng; Gao, Jinxin; Li, Yaqian; Chen, Jie

2014-01-01

249

Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10  

PubMed Central

Summary Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial–plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR–MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 ?mol), whereas decan-2-one at 100 ?mol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose. PMID:22563356

Weise, Teresa; Kai, Marco; Gummesson, Anja; Troeger, Armin; von Reuß, Stephan; Piepenborn, Silvia; Kosterka, Francine; Sklorz, Martin; Zimmermann, Ralf; Francke, Wittko

2012-01-01

250

Composition and antipathogenic activities of the twig essential oil of Chamaecyparis formosensis from Taiwan.  

PubMed

In this study, antipathogenic activities of the twig essential oil and its constituents from Chamaecyparis formosensis Matsum were evaluated in vitro against six plant pathogenic fungi. The essential oil from the fresh twigs was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Twenty-five compounds were identified, representing 98.9% of the oil. The main components were beta-eudesmol (25.1%), tau-muurolol (21.6%), elemol (15.0%), totarol (14.9%), and alpha-cadinol (12.4%). The twig oil (500 mcirog/mL) showed growth inhibitory activity against the phytopathogenic fungi, Fusarium oxysporum, Pestalotiopsis funereal, and Ganoderma austral, with antifungal indices of 92.7%, 71.1%, and 87.7%, respectively. In addition, the oil suppressed totally the growth of Rhizoctonia solani, Colletotrichum gloeosporioides, and Fusarium solani. In order to ascertain the source compounds of these antipathogenic activities, the main components were individually evaluated. Tau-Muurolol and alpha-cadinol exhibited excellent activity against F. oxysporum, R. solani, C. gloeosporioides, and F. solani, with IC50 < 50 microg/mL. These compounds also efficiently inhibited the mycelial growths of P. funereal and G. austral. Thus, alpha-cadinol and tau-muurolol could be considered as potential natural fungicides for controlling fungal pathogens and worth. PMID:22908586

Ho, Chen-Lung; Hua, Kuo-Feng; Hsu, Kuan-Ping; Wang, Eugene I-chen; Su, Yu-Chang

2012-07-01

251

Evaluation of antimicrobial activity of endophytic fungi from Camptotheca acuminata (Nyssaceae).  

PubMed

Agricultural research of plant-derived endophytic fungi has grown in recent decades. We isolated 26 endophytic fungi from the leaves, stems and fruits of "the tree of life", Camptotheca acuminata, and tested them for antimicrobial activities based on growth inhibition measurements in a modified agar diffusion method. Fermentation broths from most of the isolates exhibited antifungal activity and 50% exhibited antibacterial activity; some of them also exhibited strong broad-spectrum antimicrobial activity. The strongest antimicrobial activity was exhibited by strains XSY10 and XSY15 against Rhizoctonia solani and Fusarium oxysporum f. sp. vasinfectum, with 75% and 67% inhibition, respectively. Strain XSJ01 gave strong activity against pathogenic bacteria, with inhibition zones more than 20 mm in diameter. The isolates were identified by molecular methods as belonging to nine taxa: Nigrospora, Diaporthe, Alternaria, Colletotrichum, Pestalotiopsis, Sordariomycete, Guignardiai, Penicillium, and Zythia. Based on these results, we conclude that the endophytic fungi of C. acuminata are promising sources of novel bioactive compounds. PMID:21038296

Ding, T; Jiang, T; Zhou, J; Xu, L; Gao, Z M

2010-01-01

252

Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae).  

PubMed

The seed germination of orchids under natural conditions requires association with mycorrhizal fungi. Dendrobium nobile and Dendrobium chrysanthum are threatened orchid species in China where they are considered medicinal plants. For conservation and application of Dendrobium using symbiosis technology, we isolated culturable endophytic and mycorrhizal fungi colonized in the protocorms and adult roots of two species plants and identified them by morphological and molecular analyses (5.8S and nrLSU). Of the 127 endophytic fungi isolated, 11 Rhizoctonia-like strains were identified as Tulasnellales (three strains from protocorms of D. nobile), Sebacinales (three strains from roots of D. nobile and two strains from protocorms of D. chrysanthum) and Cantharellales (three strains from roots of D. nobile), respectively. In addition, species of Xylaria, Fusarium, Trichoderma, Colletotrichum, Pestalotiopsis, and Phomopsis were the predominant non-mycorrhizal fungi isolated, and their probable ecological roles in the Dendrobium plants are discussed. These fungal resources will be of great importance for the large-scale cultivation of Dendrobium plants using symbiotic germination technology and for the screening of bioactive metabolites from them in the future. PMID:21779810

Chen, Juan; Wang, Hui; Guo, Shun-Xing

2012-05-01

253

Detection and Assessment of Chemical Hormesis on the Radial Growth In Vitro of Oomycetes and Fungal Plant Pathogens  

PubMed Central

Although plant diseases can be caused by bacteria, viruses, and protists, most are caused by fungi and fungus-like oomycetes. Intensive use of fungicides with the same mode of action can lead to selection of resistant strains increasing the risk of unmanageable epidemics. In spite of the integrated use of nonchemical plant disease management strategies, agricultural productivity relies heavily on the use of chemical pesticides and biocides for disease prevention and treatment and sanitation of tools and substrates. Despite the prominent use of fungi in early hormesis studies and the continuous use of yeast as a research model, the relevance of hormesis in agricultural systems has not been investigated by plant pathologists, until recently. A protocol was standardized for detection and assessment of chemical hormesis in fungi and oomycetes using radial growth as endpoint. Biphasic dose-responses were observed in Pythium aphanidermatum exposed to sub-inhibitory doses of ethanol, cyazofamid, and propamocarb, and in Rhizoctonia zeae exposed to ethanol. This report provides an update on chemical hormesis in fungal plant pathogens and a perspective on the potential risks it poses to crop productivity and global food supply. PMID:23983664

Flores, Francisco J.; Garzon, Carla D.

2013-01-01

254

Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity.  

PubMed

Plant-pathogenic fungi produce cellulases. However, little information is available on cellulase as an elicitor in plant-pathogen interactions. Here, an endocellulase (EG1) was isolated from Rhizoctonia solani. It contains a putative protein of 227 amino acids with a signal peptide and a family-45 glycosyl hydrolase domain. Its aspartic acid (Asp) residue at position 32 was changed to alanine (Ala), resulting in full loss of its catalytic activity. Wild-type and mutated forms of the endoglucanase were expressed in yeast and purified to homogeneity. The purified wild-type and mutant forms induced cell death in maize, tobacco and Arabidopsis leaves, and the transcription of three defence marker genes in maize and tobacco and 10 genes related to defence responses in maize. Moreover, they also induced the accumulation of reactive oxygen species (ROS), medium alkalinization, Ca(2+) accumulation and ethylene biosynthesis of suspension-cultured tobacco cells. Similarly, production of the EG1 wild-type and mutated forms in tobacco induced cell death using the Potato virus X (PVX) expression system. In?vivo, expression of EG1 was also related to cell death during infection of maize by R.?solani. These results provide direct evidence that the endoglucanase is an elicitor, but its enzymatic activity is not required for its elicitor activity. PMID:24844544

Ma, Yanan; Han, Chao; Chen, Jinyin; Li, Haiyun; He, Kun; Liu, Aixin; Li, Duochuan

2015-01-01

255

Endophytic bacterial communities in ginseng and their antifungal activity against pathogens.  

PubMed

Plant roots are associated with diverse communities of endophytic bacteria which do not exert adverse effects. The diversity of bacterial endophytes associated with ginseng roots cultivated in three different areas in Korea was investigated. Sixty-three colonies were isolated from the interior of ginseng roots. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to three major phylogenetic groups: the high G+C Gram-positive bacteria (HGCGPB), low G+C Gram-positive bacteria (LGCGPB), and the Proteobacteria. The dominant species at the three different ginseng growing areas were: HGCGPB at Ganghwa (55.0%), LGCGPB at Geumsan (45.5%), and Proteobacteria at Jinan (61.9%). Most cellulase-, xylanase-, and pectinase-producing colonies among the isolates belong to the LGCGPB group, except for Pectobacterium carotovora which belonged to the Proteobacteria. The 13 isolates belonging to LGCGPB and Proteobacteria were assessed for their antifungal activity against phytopathogenic fungi such as Rhizoctonia solani. Among them, Paenibacillus polymyxa GS01, Bacillus sp. GS07, and Pseudomonas poae JA01 show potential activity as biocontrol agents against phytopathogenic fungi. Finally, most of the low G+C Gram-positive bacteria with antifungal activity against phytopathogenic microorganisms showed cellulolytic enzyme activity while some Proteobacteria with the antifungal activity and the high G+C Gram-positive bacteria did not show any cellulolytic activity. PMID:17492474

Cho, Kye Man; Hong, Su Young; Lee, Sun Mi; Kim, Yong Hee; Kahng, Goon Gjung; Lim, Yong Pyo; Kim, Hoon; Yun, Han Dae

2007-08-01

256

Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.).  

PubMed

A novel pathogen defense strategy by thiamine priming was evaluated for its efficacy against sheath blight pathogen, Rhizoctonia solani AG-1A, of rice and compared with that of systemic fungicide, carbendazim (BCM). Seeds of semidwarf, high yielding, basmati rice variety Vasumati were treated with thiamine (50 mM) and BCM (4 mM). The pot cultured plants were challenge inoculated with R. solani after 40 days of sowing and effect of thiamine and BCM on rice growth and yield traits was examined. Higher hydrogen peroxide content, total phenolics accumulation, phenylalanine ammonia lyase (PAL) activity and superoxide dismutase (SOD) activity under thiamine treatment displayed elevated level of systemic resistance, which was further augmented under challenging pathogen infection. High transcript level of phenylalanine ammonia lyase (PAL) and manganese superoxide dismutase (MnSOD) validated mode of thiamine primed defense. Though minimum disease severity was observed under BCM treatment, thiamine produced comparable results, with 18.12 per cent lower efficacy. Along with fortifying defense components and minor influence on photosynthetic pigments and nitrate reductase (NR) activity, thiamine treatment significantly reduced pathogen-induced loss in photosynthesis, stomatal conductance, chlorophyll fluorescence, NR activity and NR transcript level. Physiological traits affected under pathogen infection were found signatory for characterizing plant's response under disease and were detectable at early stage of infection. These findings provide a novel paradigm for developing alternative, environmentally safe strategies to control plant diseases. PMID:22705591

Bahuguna, Rajeev Nayan; Joshi, Rohit; Shukla, Alok; Pandey, Mayank; Kumar, J

2012-08-01

257

Pr-1, a novel antifungal protein from pumpkin rinds.  

PubMed

A novel antifungal protein, M(r) = ca. 40 kDa, was isolated from pumpkin rind and designated Pr-1. When purified by anion exchange chromatography and HPLC, it inhibited growth of several fungi including Botrytis cinerea, Fusarium oxysporum, Fusarium solani and Rhizoctonia solani, as well as the yeast, Candida albicans, at 10-20 microM. It did not inhibit growth of Escherichia coli or Staphylococcus aureus even at 200 microM. Laser scanning microscopy of fungal cells exposed to rhodamine-labeled Pr-1 revealed that the protein accumulated and was localized on the cell surface. Uptake of the vital stain, SYTOX Green, was enhanced when fungal conidia were treated with Pr-1 suggesting that the protein has membrane permeabilization activity. Pr-1 was thermostable at 70 degrees C and did not lyse human red blood cells at 128 microM suggesting that the protein may be useful as an antifungal agent with little, if any human cytotoxicity. PMID:19760117

Park, Seong-Cheol; Lee, Jung Ro; Kim, Jin-Young; Hwang, Indeok; Nah, Jae-Woon; Cheong, Hyeonsook; Park, Yoonkyung; Hahm, Kyung-Soo

2010-01-01

258

Isolation and partial characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5.  

PubMed

An antibacterial metabolite was isolated from Paenibacillus polymyxa HKA-15, a soybean bacterial endophyte. The purification of the crude metabolite from Paenibacillus polymyxa HKA-15 was done by column chromatography. In TLC, a spot with an R ( f ) value of 0.86 (±0.02) from the purified fraction showed bioactivity against Xanthomonas campestris pv. phaseoli M-5. In SDS-PAGE, the purified antibiotic was separated in the molecular weight range of 3.5 kDa. The exact molecular weight of the active compound was identified as 1,347.7 Da using MS-MS analysis. Infra red spectrum and (1)H NMR analysis showed the presence of amino acids and fatty acids in the active compound. The characterization of the antibacterial compound revealed its lipopeptide nature. In an agar diffusion assay, the crude metabolite showed a broad spectrum of activity, being able to inhibit the growth of the fungal pathogen, Rhizoctonia bataticola, Macrophomina phaseolina and Fusarium udum. A stronger inhibition was observed against bacterial pathogens viz., X. campestris pv.phaseoli M-5, X. campestris pv. phaseoli CP-1-1, Xanthomonas oryzae, Ralstonia solanacearum and Micrococcus luteus. PMID:22805811

Mageshwaran, Vellaichamy; Walia, Suresh; Annapurna, Kannepalli

2012-03-01

259

The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems.  

PubMed

Sustainable farming systems strive to minimise the use of synthetic pesticides and to optimise the use of alternative management strategies to control soil-borne pathogens. Arbuscular mycorrhizal (AM) fungi are ubiquitous in nature and constitute an integral component of terrestrial ecosystems, forming symbiotic associations with plant root systems of over 80% of all terrestrial plant species, including many agronomically important species. AM fungi are particularly important in organic and/or sustainable farming systems that rely on biological processes rather than agrochemicals to control plant diseases. Of particular importance is the bioprotection conferred to plants against many soil-borne pathogens such as species of Aphanomyces, Cylindrocladium, Fusarium, Macrophomina, Phytophthora, Pythium, Rhizoctonia, Sclerotinium, Verticillium and Thielaviopsis and various nematodes by AM fungal colonisation of the plant root. However, the exact mechanisms by which AM fungal colonisation confers the protective effect are not completely understood, but a greater understanding of these beneficial interactions is necessary for the exploitation of AM fungi within organic and/or sustainable farming systems. In this review, we aim to discuss the potential mechanisms by which AM fungi may contribute to bioprotection against plant soil-borne pathogens. Bioprotection within AM fungal-colonised plants is the outcome of complex interactions between plants, pathogens and AM fungi. The use of molecular tools in the study of these multifaceted interactions may aid the optimisation of the bioprotective responses and their utility within sustainable farming systems. PMID:14971681

Harrier, Lucy A; Watson, Christine A

2004-02-01

260

Fe(III)-complexes of the tripodal trishydroxamate siderophore basidiochrome: potential biological implications.  

PubMed

One method of mobilization of iron by mycorrhizal organisms is through the secretion of small organic chelators called siderophores. Hydroxamate donor chelators are a common type of siderophore that is frequently used by fungal organisms. The primary siderophore that is produced by fungi from the genera Ceratobasidium and Rhizoctonia is the tripodal trishydroxamate siderophore basidiochrome. To gain some insight into the iron uptake mechanisms of these symbiotic fungi, the iron binding characteristics of basidiochrome were determined. It was found that basidiochrome exhibits a log ?(110) of 27.8±0.1 and a pFe value of 25.0. These values are similar to those of another fungal trishydroxamate siderophore, ferrichrome. The similarity in iron affinity between the two siderophores suggests that the structure of the backbone has little influence in complex formation due to the length of the pendant arms, although the identity of the terminating groups of the pendant arms is likely related to complex stability. The role of basidiochrome in the biogeochemical cycling of iron is also discussed. PMID:22079978

Harrington, James M; Winkelmann, Günther; Haselwandter, Kurt; Crumbliss, Alvin L

2011-12-01

261

A novel fungal metabolite with beneficial properties for agricultural applications.  

PubMed

Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction. PMID:25006784

Vinale, Francesco; Manganiello, Gelsomina; Nigro, Marco; Mazzei, Pierluigi; Piccolo, Alessandro; Pascale, Alberto; Ruocco, Michelina; Marra, Roberta; Lombardi, Nadia; Lanzuise, Stefania; Varlese, Rosaria; Cavallo, Pierpaolo; Lorito, Matteo; Woo, Sheridan L

2014-01-01

262

Biological role of Trichoderma harzianum-derived platelet-activating factor acetylhydrolase (PAF-AH) on stress response and antagonism.  

PubMed

We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions. PMID:24964161

Yu, Chuanjin; Fan, Lili; Wu, Qiong; Fu, Kehe; Gao, Shigang; Wang, Meng; Gao, Jinxin; Li, Yaqian; Chen, Jie

2014-01-01

263

Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum.  

PubMed

Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense responses. In the present work, we have shown that disruption of the T. arundinaceum tri5 gene, which encodes a terpene synthase, stops the production of HA, alters the expression of other tri genes involved in HA biosynthesis, and alters the expression of hmgR, dpp1, erg9, erg1, and erg7, all genes involved in terpene biosynthetic pathways. An increase in the level of ergosterol biosynthesis was also observed in the tri5 disrupted transformant in comparison with the wild type strain. The loss of HA also resulted in a drastic reduction of the biocontrol activity of the transformants against the phytopathogenic fungi Botrytis cinerea and Rhizoctonia solani. Finally, the effect of tri5 gene disruption on the regulation and balance of intermediates in terpene biosynthetic pathways, as well as the hypothetical physiological role of trichothecenes, both inter- and intracellularly, on regulation and biocontrol, are discussed. PMID:23454546

Malmierca, Mónica G; Cardoza, Rosa Elena; Alexander, Nancy J; McCormick, Susan P; Collado, Isidro G; Hermosa, Rosa; Monte, Enrique; Gutiérrez, Santiago

2013-04-01

264

An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds.  

PubMed

A 30-residue antimicrobial peptide Ar-AMP was isolated from the seeds of amaranth Amaranthus retroflexus L. essentially by a single step procedure using reversed-phase HPLC, and its in vitro biological activities were studied. The complete amino acid sequence of Ar-AMP was determined by Edman degradation in combination with mass spectrometric methods. In addition, the cDNA encoding Ar-AMP was obtained and sequenced. The cDNA encodes a precursor protein consisting of the N-terminal putative signal sequence of 25 amino acids, a mature peptide of 30 amino acids and a 34-residue long C-terminal region cleaved during post-translational processing. According to sequence similarity the Ar-AMP belongs to the hevein-like family of antimicrobial peptides with six cysteine residues. In spite of the fact that seeds were collected in 1967 and lost their germination capacity, Ar-AMP retained its biological activities. It effectively inhibited the growth of different fungi tested: Fusarium culmorium (Smith) Sacc., Helminthosporium sativum Pammel., King et Bakke, Alternaria consortiale Fr., and Botrytis cinerea Pers., caused morphological changes in Rhizoctonia solani Kühn at micromolar concentrations and protected barley seedlings from H. sativum infection. PMID:16126239

Lipkin, Aleksey; Anisimova, Veronika; Nikonorova, Aleksandra; Babakov, Aleksey; Krause, Eberhardt; Bienert, Mikhael; Grishin, Eugene; Egorov, Tsezi

2005-10-01

265

Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production.  

PubMed

Bacillus amyloliquefaciens SQR9 exhibited predominantly antagonistic activities against a broad range of soilborne pathogens. The fungi-induced SQR9 extracts possess stronger antifungal activities compared with SQR9 monoculture extracts. To investigate how SQR9 fine-tunes lipopeptides (LPs) and a siderophore bacillibactin production to control different fungal pathogens, LPs and bacillibactin production and transcription of the respective encoding genes in SQR9 were measured and compared with six different soilborne fungal pathogens. SQR9 altered its spectrum of antifungal compounds production responding to different fungal pathogen. Bacillomycin D was the major LP produced when SQR9 was confronted with Fusarium oxysporum. Fengycin contributed to the antagonistic activity against Verticillium dahliae kleb, Fusarium oxysporum, Fusarium solani, and Phytophthora parasitica. Surfactin participated in the antagonistic process against Sclerotinia sclerotiorum, Rhizoctonia solani, and Fusarium solani. Bacillibactin was up-regulated when SQR9 was confronted with all tested fungi. The reduction in antagonistic activities of three LP and bacillibactin deficient mutants of SQR9 when confronted with the six soilborne fungal pathogens provided further evidence of the contribution of LPs and bacillibactin in controlling fungal pathogens. These results provide a new understanding of specific cues in bacteria-fungi interactions and provide insights for agricultural applications. PMID:25484880

Li, Bing; Li, Qing; Xu, Zhihui; Zhang, Nan; Shen, Qirong; Zhang, Ruifu

2014-01-01

266

Bioassays guided isolation of compounds from Chaetomium globosum.  

PubMed

The aim of the present study was to evaluate different biological activities of the fungus Chaetomium globosum (family Chaetomiaceae). The evaluation was done through testing its antimicrobial, antioxidant and anticancer effects. C. globosum was isolated from the Cucumber soil (rhizosphere) and caused inhibition of the mycelial growth of Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii in the biculture test. Petroleum ether and ethyl acetate extracts of the liquid culture of C. globosum showed potent in vitro antioxidant activity. C. globosum proved potent antibacterial activity against Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens. It also recorded significant antifungal activity against Candida albicans, F. solani, Fusarium oxysporum, R. solani and Pythium ultimum. It exerted cytotoxic effect on human hepatocellular carcinoma cell line (HepG2). Unsaponifiable and saponifiable matters of the petroleum ether extract showed the presence of hydrocarbons, sterols and fatty acids. The ethyl acetate extract showed the presence of prenisatin, chrysophanol, chrysazin, chaetoviridin A and B. The isolated secondary metabolites proved significant antioxidant and antimicrobial activity on B. subtilis, E. coli and R. solani. In conclusion, this fungus showed different biological activities. Further studies must be done to apply its use in the agricultural and medicinal field. PMID:24361402

Awad, N E; Kassem, H A; Hamed, M A; El-Naggar, M A A; El-Feky, A M M

2014-06-01

267

Purification and identification of two antifungal cyclic dipeptides from Bacillus cereus subsp. thuringiensis associated with a rhabditid entomopathogenic nematode especially against Fusarium oxysporum.  

PubMed

The cell-free culture filtrate of Bacillus cereus subsp. thuringiensis associated with an entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain two cyclic dipeptides (CDPs). The structure and absolute stereochemistry of this compound were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclo(D-Pro-L-Met) and cyclo(D-Pro-D-Tyr). CDPs showed significantly higher activity than the standard fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum. The highest activity of 2 µg/ml by cyclo(D-Pro-D-Tyr) was recorded against F. oxysporum, a plant pathogen responsible for causing fusarium wilt followed by R. solani, a pathogen that causes root rot and P. expansum. To our knowledge, this is the first report on the isolation of these compounds from Rhabditis EPN bacterial strain Bacillus cereus subsp. thuringiensis. PMID:23402421

Kumar, S Nishanth; Nambisan, Bala; Mohandas, C

2014-04-01

268

Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabditid [corrected] entomopathogenic nematode and its antimicrobial properties.  

PubMed

Entomopathogenic nematodes (EPN) are well-known as biological control agents and are found to have associated bacteria which can produce a wide range of bioactive secondary metabolites. We report herewith isolation of six proline containing cyclic dipeptides cyclo(D-Pro-L-Leu), cyclo(L-Pro-L-Met), cyclo(D-Pro-L-Phe), cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-D-Tyr) from ethyl acetate extract of the Luria Broth (LB) cell free culture filtrate of Bacillus sp. strain N associated with a new EPN Rhabditis sp. from sweet potato weevil grubs collected from Central Tuber Crops Research Institute farm. Antimicrobial studies of these 2,5-diketopiperazines (DKPs) against both medicinally and agriculturally important bacterium and fungi showed potent inhibitory values in the range of ?g/mL. Cyclic dipeptides showed significantly higher activity than the commercial fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani, and Pencillium expansum. The highest activity of 2 ?g/mL by cyclo(L-Pro-L-Phe) was recorded against P. expansum, a plant pathogen responsible for causing post harvest decay of stored apples and oranges. To our knowledge, this is the first report on the isolation of these DKPs from Rhabditis EPN bacterial strain Bacillus sp. PMID:23065379

Kumar, Nishanth; Mohandas, C; Nambisan, Bala; Kumar, D R Soban; Lankalapalli, Ravi S

2013-02-01

269

Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens.  

PubMed

The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria 'probable endobacteria' (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200??m). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores. PMID:23213368

Cruz, Andre Freire; Ishii, Takaaki

2012-01-15

270

Bayesian analysis of botanical epidemics using stochastic compartmental models.  

PubMed

A stochastic model for an epidemic, incorporating susceptible, latent, and infectious states, is developed. The model represents primary and secondary infection rates and a time-varying host susceptibility with applications to a wide range of epidemiological systems. A Markov chain Monte Carlo algorithm is presented that allows the model to be fitted to experimental observations within a Bayesian framework. The approach allows the uncertainty in unobserved aspects of the process to be represented in the parameter posterior densities. The methods are applied to experimental observations of damping-off of radish (Raphanus sativus) caused by the fungal pathogen Rhizoctonia solani, in the presence and absence of the antagonistic fungus Trichoderma viride, a biological control agent that has previously been shown to affect the rate of primary infection by using a maximum-likelihood estimate for a simpler model with no allowance for a latent period. Using the Bayesian analysis, we are able to estimate the latent period from population data, even when there is uncertainty in discriminating infectious from latently infected individuals in data collection. We also show that the inference that T. viride can control primary, but not secondary, infection is robust to inclusion of the latent period in the model, although the absolute values of the parameters change. Some refinements and potential difficulties with the Bayesian approach in this context, when prior information on parameters is lacking, are discussed along with broader applications of the methods to a wide range of epidemiological systems. PMID:15302941

Gibson, G J; Kleczkowski, A; Gilligan, C A

2004-08-17

271

The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi  

NASA Technical Reports Server (NTRS)

We have studied the effects of two polyamine biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA), and of polyamines (PAs), alone and in combination, on mycelial growth and morphology of four phytopathogenic fungi: Botrytis sp, B. cinerea, Rhizoctonia solani and Monilinia fructicola. The inhibitors were added to a Czapek agar medium to get final concentrations of 0.1, 0.5 and 1.0 mM. DFMO and DFMA, suicide inhibitors of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) respectively, inhibited mycelial growth strongly; the effect was generally more pronounced with DFMA than with DFMO, but each fungus had its own response pattern. The addition of the PAs putrescine (Put) and spermidine (Spd) to the culture medium resulted in a promotion of growth. In Botrytis sp and Monilinia fructicola exposed to inhibitors plus PAs, mycelial growth was actually increased above control values. Mycelial morphology was altered and cell size dramatically reduced in plates containing inhibitors alone, whereas with PAs alone, or in combination with inhibitors, morphology was normal, but cell length and diameters increased considerably. These results suggest that PAs are essential for growth in fungal mycelia. The inhibition caused by DFMA may be due to its arginase-mediated conversion to DFMO.

Rajam, M. V.; Galston, A. W.

1985-01-01

272

Catalytic analysis of the validamycin glycosyltransferase (ValG) and enzymatic production of 4''-epi-validamycin A.  

PubMed

ValG is a glycosyltransferase (GT) that is responsible for the glucosylation of validoxylamine A to validamycin A. To explore the potential utilization of ValG as a tool for the production of validamycin analogues, a number of nucleotidyldiphosphate-sugars were evaluated as alternative substrates for ValG. The results indicated that in addition to its natural substrate, UDP-glucose, ValG also efficiently utilized UDP-galactose as sugar donor and resulted in the production of an unnatural compound, 4''-epi-validamycin A. The new compound demonstrated a moderate growth inhibitory activity against the plant fungal pathogen Rhizoctonia solani (= Pellicularia sasakii). A comparative analysis of ValG with its homologous proteins revealed that ValG contains an unusual DTG motif, in place of the DXD motif proposed for metal ion binding and/or NDP-sugar binding and commonly found in other glycosyltransferases. Site-directed mutagenesis of the DTG motif of ValG to DCD altered its preferences for metal ion binding, but did not seem to affect its substrate specificity. PMID:18563934

Xu, Hui; Minagawa, Kazuyuki; Bai, Linquan; Deng, Zixin; Mahmud, Taifo

2008-07-01

273

In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi  

PubMed Central

The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga). The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs), which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl)-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors. PMID:23208371

Elshafie, Hazem S.; Camele, Ippolito; Racioppi, Rocco; Scrano, Laura; Iacobellis, Nicola S.; Bufo, Sabino A.

2012-01-01

274

Ocatin. A Novel Tuber Storage Protein from the Andean Tuber Crop Oca with Antibacterial and Antifungal Activities1  

PubMed Central

The most abundant soluble tuber protein from the Andean crop oca (Oxalis tuberosa Mol.), named ocatin, has been purified and characterized. Ocatin accounts for 40% to 60% of the total soluble oca tuber proteins, has an apparent molecular mass of 18 kD and an isoelectric point of 4.8. This protein appears to be found only in tubers and is accumulated only within the cells of the pith and peridermis layers (peel) of the tuber as it develops. Ocatin inhibits the growth of several phytopathogenic bacteria (Agrobacterium tumefaciens, Agrobacterium radiobacter, Serratia marcescens, and Pseudomonas aureofaciens) and fungi (Phytophthora cinnamomi, Fusarium oxysporum, Rhizoctonia solani, and Nectria hematococcus). Ocatin displays substantial amino acid sequence similarity with a widely distributed group of intracellular pathogenesis-related proteins with a hitherto unknown biological function. Our results showed that ocatin serves as a storage protein, has antimicrobial properties, and belongs to the Betv 1/PR-10/MLP protein family. Our findings suggest that an ancient scaffolding protein was recruited in the oca tuber to serve a storage function and that proteins from the Betv 1/PR-10/MLP family might play a role in natural resistance to pathogens. PMID:11950978

Flores, Teresita; Alape-Girón, Alberto; Flores-Díaz, Marietta; Flores, Hector E.

2002-01-01

275

Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ? †  

PubMed Central

The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

2011-01-01

276

DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes  

NASA Astrophysics Data System (ADS)

Few transition metal complexes of tetradentate N2O2 donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL1/KHL2 have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL1/KHL2 are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen (1O2) and superoxide anion radical (O2rad -) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.

Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R.

2012-10-01

277

Benzofurazan derivatives as antifungal agents against phytopathogenic fungi.  

PubMed

A series of benzofurazan derivatives were prepared and evaluated for their biological activities against four important phytopathogenic fungi, namely, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium graminearum and Phytophthora capsici, using the mycelium growth inhibition method. The structures of these compounds were characterized by (1)H NMR, (13)C NMR, and HRMS. N-(3-chloro-4-fluorophenyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (A3) displayed the maximum antifungal activity against R. solani (IC50 = 1.91 ?g/mL), which is close to that of the positive control Carbendazim (IC50 = 1.42 ?g/mL). For other benzofurazan derivatives with nitro group at R(4) position (A series), 9 out of 30 compounds exhibited high antifungal effect against strain R. solani, with IC50 values less than 5 ?g/mL. Most of the derivatives with substituents at R(2) and R(3) positions (B series) displayed moderate growth inhibition against S. sclerotiorum (IC50 < 25 ?g/mL). Also, several benzofuran derivatives with nitro group at R(4) position and another conjugated aromatic ring at the R(1) position of the phenyl ring displayed high antifungal capability against strain R. solani. Compounds with substituents at R(2) and R(3) position had moderate efficacy against strain S. sclerotiorum. PMID:24813881

Wang, Lili; Zhang, Ying-Ying; Wang, Lei; Liu, Feng-you; Cao, Ling-Ling; Yang, Jing; Qiao, Chunhua; Ye, Yonghao

2014-06-10

278

Fungal degradation of fluorene.  

PubMed

A selection of 30 strains of micromycetes known as good degraders of polychlorinated aromatic compounds, mostly isolated from soil and belonging to various taxonomic groups, have been investigated to degrade fluorene. Toxicity assays, first evaluated on solid media, have shown high growth inhibition at concentrations above 0.001 g l-1 only towards 23% of strains. Degradation of fluorene (0.005 g l-1) was then investigated in liquid synthetic medium for 2 days and evaluated by HPLC. Among the 30 strains tested, 12 could be considered as best degraders because of a rate of degradation at 60% or over. 3 strains of Cunninghamella genus were very efficient (mean of degradation: 96%) but different strains from Ascomycetes. Basidiomycetes and Deuteromycetes were also efficient 11 strains are not yet reported in the literature: Aspergillus terreus, Bjerkandera adusta, Ceriporiopsis subvermispora, Colletotrichum dematium, Cryphonectria parasitica, Cunninghamella blakesleeana, C. echinulata, Drechslera spicifera, Embellisia annulata, Rhizoctonia solani and Sporormiella australis. A metabolic approach with standard compounds (9-fluorenol and 9-fluorenone) indicated the presence of these monooxygenated derivatives for most of the strains. PMID:10665449

Garon, D; Krivobok, S; Seigle-Murandi, F

2000-01-01

279

Peptide Synthetase Gene in Trichoderma virens  

PubMed Central

Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated N?-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

2001-01-01

280

Production of bioactive volatiles by different Burkholderia ambifaria strains.  

PubMed

Increasing evidence indicates that volatile compounds emitted by bacteria can influence the growth of other organisms. In this study, the volatiles produced by three different strains of Burkholderia ambifaria were analysed and their effects on the growth of plants and fungi, as well as on the antibiotic resistance of target bacteria, were assessed. Burkholderia ambifaria emitted highly bioactive volatiles independently of the strain origin (clinical environment, rhizosphere of pea, roots of maize). These volatile blends induced significant biomass increase in the model plant Arabidopsis thaliana as well as growth inhibition of two phytopathogenic fungi (Rhizoctonia solani and Alternaria alternata). In Escherichia coli exposed to the volatiles of B. ambifaria, resistance to the aminoglycoside antibiotics gentamicin and kanamycin was found to be increased. The volatile blends of the three strains were similar, and dimethyl disulfide was the most abundant compound. Sulfur compounds, ketones, and aromatic compounds were major groups in all three volatile profiles. When applied as pure substance, dimethyl disulfide led to increased plant biomass, as did acetophenone and 3-hexanone. Significant fungal growth reduction was observed with high concentrations of dimethyl di- and trisulfide, 4-octanone, S-methyl methanethiosulphonate, 1-phenylpropan-1-one, and 2-undecanone, while dimethyl trisulfide, 1-methylthio-3-pentanone, and o-aminoacetophenone increased resistance of E. coli to aminoglycosides. Comparison of the volatile profile produced by an engineered mutant impaired in quorum-sensing (QS) signalling with the corresponding wild-type led to the conclusion that QS is not involved in the regulation of volatile production in B. ambifaria LMG strain 19182. PMID:23832658

Groenhagen, Ulrike; Baumgartner, Rita; Bailly, Aurélien; Gardiner, Amber; Eberl, Leo; Schulz, Stefan; Weisskopf, Laure

2013-07-01

281

Rice WRKY45 plays important roles in fungal and bacterial disease resistance.  

PubMed

Plant 'activators', such as benzothiadiazole (BTH), protect plants from various diseases by priming the plant salicylic acid (SA) signalling pathway. We have reported previously that a transcription factor identified in rice, WRKY45 (OsWRKY45), plays a pivotal role in BTH-induced disease resistance by mediating SA signalling. Here, we report further functional characterization of WRKY45. Different plant activators vary in their action points, either downstream (BTH and tiadinil) or upstream (probenazole) of SA. Rice resistance to Magnaporthe grisea, induced by both types of plant activator, was markedly reduced in WRKY45-knockdown (WRKY45-kd) rice, indicating a universal role for WRKY45 in chemical-induced resistance. Fungal invasion into rice cells was blocked at most attempted invasion sites (pre-invasive defence) in WRKY45-overexpressing (WRKY45-ox) rice. Hydrogen peroxide accumulated within the cell wall underneath invading fungus appressoria or between the cell wall and the cytoplasm, implying a possible role for H(2)O(2) in pre-invasive defence. Moreover, a hypersensitive reaction-like reaction was observed in rice cells, in which fungal growth was inhibited after invasion (post-invasive defence). The two levels of defence mechanism appear to correspond to Type I and II nonhost resistances. The leaf blast resistance of WRKY45-ox rice plants was much higher than that of other known blast-resistant varieties. WRKY45-ox plants also showed strong panicle blast resistance. BTH-induced resistance to Xanthomonas oryzae pv. oryzae was compromised in WRKY45-kd rice, whereas WRKY45-ox plants were highly resistant to this pathogen. However, WRKY45-ox plants were susceptible to Rhizoctonia solani. These results indicate the versatility and limitations of the application of this gene. PMID:21726399

Shimono, Masaki; Koga, Hironori; Akagi, Aya; Hayashi, Nagao; Goto, Shingo; Sawada, Miyuki; Kurihara, Takayuki; Matsushita, Akane; Sugano, Shoji; Jiang, Chang-Jie; Kaku, Hisatoshi; Inoue, Haruhiko; Takatsuji, Hiroshi

2012-01-01

282

Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India).  

PubMed

To study culturable bacterial diversity under subzero temperature conditions and their possible functional annotation, soil and water samples from Leh Ladakh region were analysed. Ten different nutrient combinations were used to isolate the maximum possible culturable morphotypes. A total of 325 bacterial isolates were characterized employing 16S rDNA-Amplified Ribosomal DNA Restriction Analysis with three restriction endonucleases AluI, MspI and HaeIII, which led to formation of 23-40 groups for the different sites at 75 % similarity index, adding up to 175 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 175 bacteria, grouped in four phyla, Firmicutes (54 %), Proteobacteria (28 %), Actinobacteria (16 %) and Bacteroidetes (3 %), and included 29 different genera with 57 distinct species. Overall 39 % of the total morphotypes belonged to the Bacillus and Bacillus derived genera (BBDG) followed by Pseudomonas (14 %), Arthrobacter (9 %), Exiguobacterium (8 %), Alishewanella (4 %), Brachybacterium, Providencia, Planococcus (3 %), Janthinobacterium, Sphingobacterium, Kocuria (2 %) and Aurantimonas, Citricoccus, Cellulosimicrobium, Brevundimonas, Desemzia, Flavobacterium, Klebsiella, Paracoccus, Psychrobacter, Sporosarcina, Staphylococcus, Sinobaca, Stenotrophomonas, Sanguibacter, Vibrio (1 %). The representative isolates from each cluster were screened for their plant growth promoting characteristics at low temperature (5-15 °C). Variations were observed among strains for production of ammonia, hydrogen cyanide, indole-3-acetic acid and siderophore, solubilisation of phosphate, 1-aminocyclopropane-1-carboxylate deaminase activity and biocontrol activity against Rhizoctonia solani and Macrophomina phaseolina. Cold adapted microbes may have application as inoculants and biocontrol agents in crops growing at high altitudes under cold climate condition. PMID:25371316

Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Tyagi, Satya Prakash; Kaushik, Rajeev; Saxena, Anil K

2015-01-01

283

Collophora aceris, a novel antimycotic producing endophyte associated with Douglas Maple.  

PubMed

A novel endophyte designated Collophora aceris, was obtained from stem tissues of Douglas Maple (Acer glabrum var. douglasii) in a Pacific Northwest temperate rainforest. Colonies were slow growing, white, creamy, moist, and translucent to opaque on potato dextrose agar and other media with few aerial hyphae. It also produced solid, dark sclerotia (200-400 ?m) on oatmeal agar and no evidence of pseudopycnidia as per other Collophora spp. Conidia were rod-like in the size ranging from 2.2-8.4?×?0.8-1.8 ?m and produced holoblastically on conidiogenous cells by budding with no collarette at the budding site. Phylogenetic analyses, based on 18S rDNA sequence data, showed that C. aceris possessed 99 % similarity to other Collophora spp. However, ITS-5.8S rDNA sequence data indicated that the organism was potentially related to Allantophomopsis spp. Finally, combined morphological, physiological, and molecular genetics data indicated that this organism is most like Collophora spp. but it is distinctly unique when compared to all other fungi in this group. It is to be noted that this is the first report of any member of this genus existing as an endophyte. This fungus makes a wide spectrum antimycotic agent (Collophorin) with biological activity against such pathogenic fungi as Pythium ultimum, Phytophthora cinnamomi, Phytophthora palmivora, and Rhizoctonia solani. Collophorin was purified to homogeneity and shown to have a unique mass of 120.0639, an empirical formula of C8H8O1, and UV absorption bands at 260 and 378 nm. This work also indicates that C. aceris possesses the biological potential to provide protection of its host against an array of common plant pathogens. PMID:23996143

Xie, Jie; Strobel, Gary A; Mends, Morgan T; Hilmer, Jonathan; Nigg, Jared; Geary, Brad

2013-11-01

284

Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases.  

PubMed

Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and epidemiologists about the timing, extent, and viability of disease control measures for limiting economic loss. PMID:24466153

Leclerc, Melen; Doré, Thierry; Gilligan, Christopher A; Lucas, Philippe; Filipe, João A N

2014-01-01

285

Peanut-Cotton-Rye Rotations and Soil Chemical Treatment for Managing Nematodes and Thrips  

PubMed Central

In the southeastern United States, a cotton-peanut rotation is attractive because of the high value and extensive planting of both crops in the region. The objective of this experiment was to determine the effects of cotton-peanut rotations, rye, and soil chemical treatments on management of plant-parasitic nematodes, thrips, and soilborne fungal diseases and on crop yield. Peanut-cotton-rye rotations were conducted from 1988 to 1994 on Tifton loamy sand (Plinthic Kandiudult) infested primarily with Meloidogyne incognita race 3, Belonolaimus longicaudatus, Sclerotium rolfsii, Rhizoctonia solani, and Fusarium oxysporum. Continuous peanut, continuous cotton, cotton-peanut rotation, or peanut-cotton rotation were used as main plots; winter rye or fallow as sub-plots; and cotton with and without aldicarb (3.36 kg a.i./ha), or peanut with and without aldicarb (3.36 kg a.i./ha) plus flutolanil (1.12 kg a.i./ha), as sub-sub-plots. Population densities of M. incognita and B. longicaudatus declined rapidly after the first crop in continuous peanut and remained low thereafter. Neither rye nor soil chemical treatment affected M. incognita or B. longicaudatus population density on peanut or cotton. Cotton and peanut yields from the cotton-peanut rotation were 26% and 10% greater, respectively, than those from monoculmre over the 7-year study. Cotton and peanut yields were improved 9% and 4%, respectively, following rye vs. fallow. Soil chemical treatments increased yields of cotton 23% and peanut 32% over those of untreated plots. Our data demonstrate the sustainable benefits of using cotton-peanut rotations, winter rye, and soil chemical treatments to manage plant-parasitic nematodes and other pests and pathogens and improve yield of both cotton and peanut. PMID:19274213

Johnson, A. W.; Minton, N. A.; Brenneman, T. B.; Todd, J. W.; Herzog, G. A.; Gascho, G. J.; Baker, S. H.; Bondari, Y.

1998-01-01

286

Isolate Identity Determines Plant Tolerance to Pathogen Attack in Assembled Mycorrhizal Communities  

PubMed Central

Arbuscular mycorrhizal fungi (AMF) are widespread soil microorganisms that associate mutualistically with plant hosts. AMF receive photosynthates from the host in return for various benefits. One of such benefits is in the form of enhanced pathogen tolerance. However, this aspect of the symbiosis has been understudied compared to effects on plant growth and its ability to acquire nutrients. While it is known that increased AMF species richness positively correlates with plant productivity, the relationship between AMF diversity and host responses to pathogen attack remains obscure. The objective of this study was to test whether AMF isolates can differentially attenuate the deleterious effects of a root pathogen on plant growth, whether the richest assemblage of AMF isolates provides the most tolerance against the pathogen, and whether AMF-induced changes to root architecture serve as a mechanism for improved plant disease tolerance. In a growth chamber study, we exposed the plant oxeye daisy (Leucanthemum vulgare) to all combinations of three AMF isolates and to the plant root pathogen Rhizoctonia solani. We found that the pathogen caused an 81% reduction in shoot and a 70% reduction in root biomass. AMF significantly reduced the highly deleterious effect of the pathogen. Mycorrhizal plants infected with the pathogen produced 91% more dry shoot biomass and 72% more dry root biomass relative to plants solely infected with R. solani. AMF isolate identity was a better predictor of AMF-mediated host tolerance to the pathogen than AMF richness. However, the enhanced tolerance response did not result from AMF-mediated changes to root architecture. Our data indicate that AMF communities can play a major role in alleviating host pathogen attack but this depends primarily on the capacity of individual AMF isolates to provide this benefit. PMID:23620744

Lewandowski, Thaddeus J.; Dunfield, Kari E.; Antunes, Pedro M.

2013-01-01

287

Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves.  

PubMed

An antifungal protein, designated MCha-Pr, was isolated from the intercellular fluid of bitter gourd (Momordica charantia) leaves during a screen for potent antimicrobial proteins from plants. The isolation procedure involved a combination of extraction, ammonium sulphate precipitation, gel filtration on Bio-Gel P-6, ion exchange chromatography on CM-Sephadex, an additional gel filtration on HiLoad 16/60 Superdex 30, and finally, HPLC on a SOURCE 5RPC column. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry indicated that the protein had a molecular mass of 25733.46Da. Automated Edman degradation was used to determine the N-terminal sequence of MCha-Pr, and the amino acid sequence was identified as V-E-Y-T-I-T-G-N-A-G-N-T-P-G-G. The MCha-Pr protein has some similarity to the pathogenesis-related proteins from Atropa belladonna (deadly nightshade), Solanum tuberosum (potato), Ricinus communis (castor bean), and Nicotiana tabacum (tobacco). Analysis of the circular dichroism spectra indicated that MCha-Pr predominantly contains ?-helix and ?-sheet structures. MCha-Pr had inhibitory effects towards a variety of fungal species and the 50% inhibition of fungal growth (IC50) for Alternaria brassicae, Cercospora personata, Fusarium oxysporum, Mucor sp., and Rhizoctonia solani are 33?M, 42?M, 37?M, 40?M, and 48?M, respectively. In addition, this antifungal protein can inhibit the germination of A. brassicae spores at 12.5?M. These results suggest that MCha-Pr in bitter gourd leaves plays a protective role against phytopathogens and has a wide antimicrobial spectrum. PMID:25245535

Zhang, Beibei; Xie, Chengjian; Wei, Yunming; Li, Jing; Yang, Xingyong

2015-03-01

288

Post harvest spoilage of sweetpotato in tropics and control measures.  

PubMed

Sweetpotato storage roots are subjected to several forms of post harvest spoilage in the tropical climate during transportation from farmers' field to market and in storage. These are due to mechanical injury, weight loss, sprouting, and pests and diseases. Sweetpotato weevil is the single most important storage pest in tropical regions for which no control measures or resistant variety are yet available. Several microorganisms (mostly fungi) have been found to induce spoilage in stored sweetpotatoes. The most important among them are Botryodiplodia theobromae, Ceratocystis fimbriata, Fusarium spp., and Rhizopus oryzae. The other less frequently occurring spoilage microorganisms include Cochliobolus lunatus (Curvularia lunata), Macrophomina phaseolina, Sclerotium rolfsii, Rhizoctonia solani, Plenodomus destruens. Microbial spoilage of sweetpotato is found associated with decrease in starch, total sugar, organic acid (ascorbic acid and oxalic acid) contents with concomitant increase in polyphenols, ethylene, and in some instances phytoalexins. Several methods are used to control microbial spoilage. Curing to promote wound healing is found as the most suitable method to control microbial spoilage. Curing naturally occurs in tropical climates where mean day temperature during sweetpotato harvesting season (February-April) invariably remains at 32-35 degrees C and relative humidity at 80-95%. Sweetpotato varieties varied in their root dry matter content, and low root dry matter content attributed for their high curing efficiency. Curing efficiency of varieties also differed in response to curing periods. Fungicide treatment, bio-control, gamma irradiation, hydro warming, and storage in sand and saw dust were found to have intermediate impacts in controlling spoilage and enhancing shelf life of sweetpotato roots. Breeding program has to be chalked out to develop new varieties suitable to curing under tropical conditions in addition to developing varieties having multi-spectrum resistance to major post harvest rot pathogens and sweetpotato weevils. PMID:16371331

Ray, R C; Ravi, V

2005-01-01

289

Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce  

PubMed Central

Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected the bottom rot disease severity. PMID:25099168

Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

2014-01-01

290

Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing.  

PubMed

Application of the plant associated bacterium Bacillus amyloliquefaciens FZB42 on lettuce (Lactuca sativa) confirmed its capability to promote plant growth and health by reducing disease severity (DS) caused by the phytopathogenic fungus Rhizoctonia solani. Therefore this strain is commercially applied as an eco-friendly plant protective agent. It is able to produce cyclic lipopeptides (CLP) and polyketides featuring antifungal and antibacterial properties. Production of these secondary metabolites led to the question of a possible impact of strain FZB42 on the composition of microbial rhizosphere communities after its application. Rating of DS and lettuce growth during a field trial confirmed the positive impact of strain FZB42 on the health of the host plant. To verify B. amyloliquefaciens as an environmentally compatible plant protective agent, its effect on the indigenous rhizosphere community was analyzed by metagenome sequencing. Rhizosphere microbial communities of lettuce treated with B. amyloliquefaciens FZB42 and non-treated plants were profiled by high-throughput metagenome sequencing of whole community DNA. Fragment recruitments of metagenome sequence reads on the genome sequence of B. amyloliquefaciens FZB42 proved the presence of the strain in the rhizosphere over 5 weeks of the field trial. Comparison of taxonomic community profiles only revealed marginal changes after application of strain FZB42. The orders Burkholderiales, Actinomycetales and Rhizobiales were most abundant in all samples. Depending on plant age a general shift within the composition of the microbial communities that was independent of the application of strain FZB42 was observed. In addition to the taxonomic profiling, functional analysis of annotated sequences revealed no major differences between samples regarding application of the inoculant strain. PMID:24904564

Kröber, Magdalena; Wibberg, Daniel; Grosch, Rita; Eikmeyer, Felix; Verwaaijen, Bart; Chowdhury, Soumitra P; Hartmann, Anton; Pühler, Alfred; Schlüter, Andreas

2014-01-01

291

Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey  

SciTech Connect

BACKGROUND: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. RESULTS: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. CONCLUSION: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.

Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P.

2010-07-23

292

Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism  

PubMed Central

Background Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. Results The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. Conclusion This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides. PMID:23432824

2013-01-01

293

Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.  

PubMed

Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear. PMID:24760407

Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

2014-06-01

294

The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets.  

PubMed

Cymbidium hybridum is one of the most popular pot orchids and cut flowers worldwide. However, the long vegetative growth period and the discordant blooming retarded its mass production. The mixotrophic nutritional mode of some chlorophyllous Cymbidium suggested the essential role of mycorrhizal fungi in the growth of adult green orchids. Here 34 root-associated endophytes were obtained from wild and cultivated Cymbidium and eight strains exhibited obvious growth-promoting effects on the C. hybridum plantlets with increasing root number, root diameter or new bud initiation. Among these, three isolates CL01, ZH3A-3 and CY5-1 with distinct cultural traits and colonization patterns showed better growth-promoting effects. Internal transcribed spacer sequence analyses and morphological observation revealed isolate CL01 belonged to Tulasnella-like Rhizoctonia, ZH3A-3, Umbelopsis nana and CY5-1, Scytalidium lignicola. Microscopic study showed isolate CL01 formed typical orchid mycorrhiza and isolate CY5-1 formed pseudo-mycorrhiza with orchid, whereas hyphae of isolate ZH3A-3 aggregated in the host velamen cells at regular intervals and caused the hypertrophied nucleus and aggregated cytoplasm of neighboring host cell. These three isolates significantly enhanced the increased percentage of total fresh weight of plantlets compared with un-inoculated control (83, 99 and 75%, respectively). In addition, isolate CL01 increased the N, P, Zn, Cu, Fe contents and ZH3A-3 significantly improved K, Ca, Cu, Mn contents of the symbiotic plantlets compared with control. These results suggested that the mass production of C. hybridum and related orchids could be improved by different beneficial fungi from its parents. PMID:24532077

Zhao, Xiao-Lan; Yang, Jing-Ze; Liu, Shu; Chen, Chun-Li; Zhu, Hai-Yan; Cao, Jun-Xi

2014-07-01

295

Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein.  

PubMed

Plant defensins are small (45 to 54 amino acids) positively charged antimicrobial peptides produced by the plant species, which can inhibit the growth of a broad range of fungi at micro-molar concentrations. These basic peptides share a common characteristic three-dimensional folding pattern with one ?-helix and three ?-sheets that are stabilized by eight disulfide-linked cysteine residues. Instead of using two single-gene constructs, it is beneficial when two effective genes are made into a single fusion gene with one promoter and terminator. In this approach, we have linked two plant defensins namely Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) genes by a linker peptide sequence (occurring in the seeds of Impatiens balsamina) and made into a single-fusion gene construct. We used pET-32a+ vector system to express Tfgd2-RsAFP2 fusion gene with hexahistidine tag in Escherichia coli BL21 (DE3) pLysS cells. Induction of these cells with 1 mM IPTG achieved expression of the fusion protein. The solubilized His6-tagged recombinant fusion protein was purified by immobilized-metal (Ni2+) affinity column chromatography. The final yield of the fusion protein was 500 ng/?L. This method produced biologically active recombinant His6-tagged fusion protein, which exhibited potent antifungal action towards the plant pathogenic fungi (Botrytis cinerea, Fusarium moniliforme, Fusarium oxysporum, Phaeoisariopsis personata and Rhizoctonia solani along with an oomycete pathogen Phytophthora parasitica var nicotianae) at lower concentrations under in vitro conditions. This strategy of combining activity of two defensin genes into a single-fusion gene will definitely be a promising utility for biotechnological applications. PMID:24022215

Karri, Vasavirama; Bharadwaja, Kirti Pulugurtha

2013-11-01

296

Identity, Diversity, and Molecular Phylogeny of the Endophytic Mycobiota in the Roots of Rare Wild Rice (Oryza granulate) from a Nature Reserve in Yunnan, China? †  

PubMed Central

Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions. PMID:20038691

Yuan, Zhi-lin; Zhang, Chu-long; Lin, Fu-cheng; Kubicek, Christian P.

2010-01-01

297

A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase.  

PubMed Central

The nucleotide and amino acids sequences for AP(1) will appear in the GenBank(R) and NCBI databases under accession number AY297449. A novel antimicrobial protein (AP(1)) was purified from leaves of the potato ( Solanum tuberosum, variety MS-42.3) with a procedure involving ammonium sulphate fractionation, molecular sieve chromatography with Sephacryl S-200 and hydrophobic chromatography with Butyl-Sepharose using a FPLC system. The inhibition spectrum investigation showed that AP(1) had good inhibition activity against five different strains of Ralstonia solanacearum from potato or other crops, and two fungal pathogens, Rhizoctonia solani and Alternaria solani from potato. The full-length cDNA encoding AP(1) has been successfully cloned by screening a cDNA expression library of potato with an anti-AP(1) antibody and RACE (rapid amplification of cDNA ends) PCR. Determination of the nucleotide sequences revealed the presence of an open reading frame encoding 343 amino acids. At the C-terminus of AP(1) there is an ATP-binding domain, and the N-terminus exhibits 58% identity with an/the acid phosphatase from Mesorhizobium loti. SDS/PAGE and Western blotting analysis suggested that the AP(1) gene can be successfully expressed in Escherichia coli and recognized by an antibody against AP(1). Also the expressed protein showed an inhibition activity the same as original AP(1) protein isolated from potato. We suggest that AP(1) most likely belongs to a new group of proteins with antimicrobial characteristics in vitro and functions in relation to phosphorylation and energy metabolism of plants. PMID:12927022

Feng, Jie; Yuan, Fenghua; Gao, Yin; Liang, Chenggang; Xu, Jin; Zhang, Changling; He, Liyuan

2003-01-01

298

Chemical composition of the volatile oil from Zanthoxylum avicennae and antimicrobial activities and cytotoxicity  

PubMed Central

Background: Through literature retrieval, there has been no report on the research of the chemical components in Zanthoxylum avicennae (Lam.) DC. This paper extracted and determined the chemical components of the volatile oil in Z. avicennae, and at the same time, measured and evaluated the bioactivity of the volatile oil in Z. avicennae. Materials and Methods: We extract the volatile oil in Z. avicennae by steam distillation method, determined the chemical composition of the volatile oil by GC-MS coupling technique, and adopt the peak area normalization method to measured the relative percentage of each chemical composition in the volatile oil. Meanwhile, we use the Lethal-to-prawn larva bioactivity experiment to screen the cytotoxicity activities of the volatile oil in Z. avicennae, and using the slanting test-tube experiment to determine and evaluate its antibacterial activities in vitro for the eight kinds of plant pathogenic fungi in the volatile oil of the Z. avicennae. Results: The results show that 68 kinds of compounds are determined from the volatile oil of Z. avicennae. The determined part takes up 97.89% of the total peak area. The main ingredients in the volatile oil of Z. avicennae are sesquiterpenoids and monoterpene. The test results show that the volatile oil in Z. avicennae has strong antibacterial activities and cytotoxicity, with the strongest antibacterial activity against the Rhizoctonia solani AG1-1A. Conclusion: This research results will provide reference data for understanding the chemical composition of the volatile oil in the aromatic plant of Z. avicennae and its bioactivity, and for its further development and application. PMID:24914299

Lin, Yin; Han, Wei; Ge, Wei-chen; Yuan, Ke

2014-01-01

299

Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea mariana plants throughout nursery production chronosequences.  

PubMed

Fungal diversity in the rhizosphere of healthy and diseased clonal black spruce (Picea mariana) plants was analyzed with regard to nursery production chronosequences. The four key production stages were sampled: mother plants (MP), 8-week-old cuttings (B + 0), second-year cuttings (B + 1), and third-year cuttings (B + 2). A total of 45 fungal taxa were isolated and identified based on cultural, phenotypic, and molecular characters. Members of phylum Ascomycota dominated, followed by Basidiomycota and Zygomycota. Diagnosis characters and distance analysis of the internal transcribed spacer rDNA sequences allowed the identification of 39 ascomycetous taxa. Many belong to the order Hypocreales, families Hypocreaceae and Nectriaceae, which contain many clusters of potentially pathogenic taxa (Cylindrocladium, Fusarium, and Neonectria) and are also ecologically associated with antagonistic taxa (Chaetomium, Hypocrea, Microsphaeropsis, Penicillium, Paecilomyces, Verticillium, Trichoderma, and Sporothrix). This is also the first report of a Cylindrocladium canadense association with disease symptoms and relation with Pestalotiopsis, Fusarium, Exserochilum, Rhizoctonia, and Xenochalara fungal consortia. Both production chronosequence and plant health considerably influenced fungal taxa assemblages. Unweighted pair-group arithmetic average clustering showed that isolates from MP, B + 0, and B + 1 plant rhizospheres clustered together within healthy or diseased health classes, whereas isolates from healthy and diseased B + 2 plants clustered together. Canonical correspondence analysis revealed substantial alteration in community assemblages with regard to plant health and yielded a principal axis direction that regrouped taxa associated with diseased plant rhizosphere soil, whereas the opposite axis direction was associated with healthy plants. Two diversity indices were defined and applied to assess the fungal taxa contribution (Tc) and persistence (Pi) throughout the production. PMID:17347891

Vujanovic, V; Hamelin, R C; Bernier, L; Vujanovic, G; St-Arnaud, M

2007-11-01

300

Characterization of a novel resistance-related deoxycytidine deaminase from Brassica oleracea var. capitata.  

PubMed

Brassica oleracea deoxycytidine deaminase (BoDCD), a deoxycytidine deaminase (DCD, EC 3.5.4.14) enzyme, is known to play an important role in the Trichoderma harzianum ETS 323 mediated resistance mechanism in young leaves of B. oleracea var. capitata during Rhizoctonia solani infection. BoDCD potentially neutralizes cytotoxic products of host lipoxygenase activity, and thereby BoDCD restricts the hypersensitivity-related programmed cell death induced in plants during the initial stages of infection. To determine the biochemical characteristics and to partially elucidate the designated functional properties of BoDCD, the enzyme was cloned into an Escherichia coli expression system, and its potential to neutralize the toxic analogues of 2'-deoxycytidine (dC) was examined. BoDCD transformants of E. coli cells were found to be resistant to 2'-deoxycytidine analogues at all of the concentrations tested. The BoDCD enzyme was also overexpressed as a histidine-tagged protein and purified using nickel chelating affinity chromatography. The molecular weight of BoDCD was determined to be 20.8 kDa as visualized by SDS-PAGE. The substrate specificity and other kinetic properties show that BoDCD is more active in neutralizing cytotoxic cytosine ?-d-arabinofuranoside than in deaminating 2'-deoxycytinde to 2'-deoxyuridine in nucleic acids or in metabolizing cytidine to uridine. The optimal temperature and pH of the enzyme were 27 °C and 7.5. The Km and Vmax values of BoDCD were, respectively, 91.3 ?M and 1.475 mM for its natural substrate 2'-deoxycytidine and 63 ?M and 2.072 mM for cytosine ?-d-arabinofuranoside. The phenomenon of neutralization of cytotoxic dC analogues by BoDCD is discussed in detail on the basis of enzyme biochemical properties. PMID:24475736

Shibu, Marthandam Asokan; Yang, Hsueh-Hui; Lo, Chaur-Tsuen; Lin, Hong-Shin; Liu, Shu-Ying; Peng, Kou-Cheng

2014-02-26

301

Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes.  

PubMed

The phytotoxic and antimicrobial properties of olive mill wastes have been widely investigated and demonstrated over the past decade. However, their potential utilization as biodegradable pesticides against plant pathogens is still poorly understood. In this study, a series of laboratory bioassays was designed to test the inhibitory effects of sterile water extracts of two-phase olive mill waste (TPOMW) and TPOMW composts with different degrees of stabilization on several different plant pathogens. Fungicidal properties of TPOMW extracts, assayed in a microwell assay format, showed that the growth of Phytophthora capsici was consistently and strongly inhibited by all TPOMW extracts diluted 1:10 (w:v). In contrast, suppression of Pythium ultimum and Botrytis cinerea by the extracts was not as strong and depended on the specific TPOMW sample. Mature compost inhibited P. capsici and B. cinerea at dilutions as great as 1:50, w:v. Neither TPOMW nor TPOMW compost extracts were able to inhibit the growth of the basidiomycete root rot agent Rhizoctonia solani. In addition, studies were conducted on the allelopathic effects of TPOMW extracts on seed germination of four highly invasive and globally distributed weeds (Amaranthus retroflexus, Solanum nigrum, Chenopodium album and Sorghum halepense). Both the TPOMW and immature TPOMW compost extracts substantially inhibited germination of A. retroflexus and S. nigrum, whereas mature composts extracts only partially reduced the germination of S. nigrum. Finally, TPOMW extracts strongly inhibited egg hatch and second-stage juvenile (J2) motility of the root-knot nematode Meloidogyne incognita. However, only higher concentrations of stage-one and stage-two TPOMW compost extracts exerted a suppressive effect on both J2 motility and on egg hatch. The study shows the high potential of naturally occurring chemicals present in TPOMW and TPOMW composts that should be further investigated as bio-pesticides for their use in sustainable agricultural systems. PMID:18471866

Cayuela, M L; Millner, P D; Meyer, S L F; Roig, A

2008-07-25

302

Effect of agricultural management regime on Burkholderia community structure in soil.  

PubMed

The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history (arable land and permanent grassland) were exposed to three agricultural management regimes (crop rotation, maize monoculture, and grassland). By using a culture-independent approach, based on a Burkholderia-specific polymerase chain reaction-denaturing gradient gel electrophoresis system, it was possible to observe the conversion of Burkholderia communities typical for permanent grassland to those of arable land after four consecutive years. However, the time needed to achieve the reverse transition, i.e., converting the Burkholderia community associated with arable land to that of grassland, was beyond the duration of the field experiment. In addition, by applying principal response curves, the direction and extent of the conversion from grassland to arable land (maize monoculture and to crop rotation) were determined. Hence, the results suggested that agricultural practices, such as fertilization and tillage, were more effective in changing the Burkholderia community structure than agricultural management regime. To determine the effect of agricultural management on the Burkholderia population with biocontrol abilities, the culturable fraction of the Burkholderia community was assessed. The areas under permanent grassland and grassland converted to maize monoculture had the highest percentages of Burkholderia strains with antagonistic activity against Rhizoctonia solani AG-3, mainly Burkholderia pyrrocinia and Burkholderia sp. LMG 22929. The isolation frequency of antagonistic isolates from arable land was extremely low. Our results indicate that (changes in) agricultural management, mainly crop rotation, affect the frequency of isolation of antagonistic Burkholderia strains and that grassland represents a reservoir of Burkholderia species with great potential for agricultural applications. PMID:16897309

Salles, J F; van Elsas, J D; van Veen, J A

2006-08-01

303

Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey  

SciTech Connect

Background: Fungi of the genus Trichoderma are effective mycoparasites an for this reason used as biocontrol agents agents plant pathogenic fungi. The ability to recognize, combat and finally besiege and kill the prey are essential skills for this process. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. This study aims at uncovering transcriptional responses occurring in the mycoparasite Trichoderma atroviride when being confronted with a potential prey. Results: T. atroviride was confronted with two fungal preys, Botrytis cinerea and Rhizoctonia solani, and cDNAs prepared from mycelia immediately before getting into physical contact with them (“onset of mycoparasitism”), and compared with such prepared from mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes each, were obtained from each of these three conditions. 65 genes, represented by 439 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof verified by expression analysis. They comprised 18 KOG groups, but were most abundant from those including posttranslational processing (159 from 183 ESTs), and amino acid metabolism (70 of 84 ESTs), respectively. Several heat shock factors and tRNA synthases were particularly abundant. Metabolic network analysis confirmed the upregulation of the amino acid biosynthesic and the lipid catabolic capacity. Conclusion: Analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions including strong stress response, sensing of nitrogen shortage and lipid catabolism. The data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for breeding of biocontrol strains by recombinant techniques.

Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor V.; Herrera-Estrella, Alfredo; Baker, Scott E.; Kubicek, Christian P.

2009-11-30

304

Biological control of potato black scurf by rhizosphere associated bacteria  

PubMed Central

The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence. PMID:24031515

Tariq, Mohsin; Yasmin, Sumera; Hafeez, Fauzia Y.

2010-01-01

305

Transfer of a plant chitinase gene into a nitrogen-fixing Azospirillum and study of its expression.  

PubMed

Azospirillum is used extensively in rice and other cereal crops as a biofertilizer. There is a substantial opportunity to improve the efficiency of this bacterium through the transfer of genes of agricultural importance from other organisms. Chitinases are antifungal proteins, and expression of chitinase genes in Azospirillum would help to develop strains with potential antifungal activities. So far there are no reports about transfer of plant genes into Azospirillum and their expression. The present study was aimed at expressing an antifungal gene (a rice chitinase) of plant origin in Azospirillum brasilense. A rice chitinase cDNA (RC 7) that codes for a 35 kDa protein was subcloned into a broad host range plasmid pDSK519 under the control of LacZ promoter. The plasmid was mobilized into the nitrogen-fixing bacterium, Azospirillum brasilense strain SP51eFL1, through biparental mating. The conjugation frequency was in the range of 35-40 x 10(-6). The transconjugants grew in nitrogen-free media and fixed gaseous nitrogen in vitro. However, their growth and nitrogen-fixing ability were slightly less than those of the wild-type. Expression of the protein was demonstrated through western blotting of the total cell protein, which detected a 35 kDa band that was immuno-reactive to a barley chitinase antibody. The cell lysates also hydrolyzed various chitin substrates, which resulted in release of free sugars demonstrating the chitinase activity of transconjugants. The expressed protein also had antifungal activity as demonstrated by inhibition of growth of the plant pathogenic fungus, Rhizoctonia solani. PMID:15381976

Jayaraj, Jayaraman; Muthukrishnan, Subbaratnam; Liang, George H

2004-07-01

306

Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A  

PubMed Central

Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. In the following investigation, a novel chitinase with antifungal activity was characterized from a native Serratia marcescens B4A. Partially purified enzyme had an apparent molecular mass of 54 kDa. It indicated an optimum activity in pH 5 at 45°C. Enzyme was stable in 55°C for 20 min and at a pH range of 3–9 for 90 min at 25°C. When the temperature was raised to 60°C, it might affect the structure of enzymes lead to reduction of chitinase activity. Moreover, the Km and Vmax values for chitin were 8.3 mg/ml and 2.4 mmol/min, respectively. Additionally, the effect of some cations and chemical compounds were found to stimulate the chitinase activity. In addition, Iodoacetamide and Idoacetic acid did not inhibit enzyme activity, indicating that cysteine residues are not part of the catalytic site of chitinase. Finally, chitinase activity was further monitored by scanning electronic microscopy data in which progressive changes in chitin porosity appeared upon treatment with chitinase. This enzyme exhibited antifungal activity against Rhizoctonia solani, Bipolaris sp, Alternaria raphani, Alternaria brassicicola, revealing a potential application for the industry with potentially exploitable significance. Fungal chitin shows some special features, in particular with respect to chemical structure. Difference in chitinolytic ability must result from the subsite structure in the enzyme binding cleft. This implies that why the enzyme didn’t have significant antifungal activity against other Fungi. PMID:24031719

Zarei, Mandana; Aminzadeh, Saeed; Zolgharnein, Hossein; Safahieh, Alireza; Daliri, Morteza; Noghabi, Kambiz Akbari; Ghoroghi, Ahmad; Motallebi, Abbasali

2011-01-01

307

Characterization of a Pathogen Induced Thaumatin-Like Protein Gene AdTLP from Arachis diogoi, a Wild Peanut  

PubMed Central

Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants. PMID:24367621

Singh, Naveen Kumar; Kumar, Koppolu Raja Rajesh; Kumar, Dilip; Shukla, Pawan; Kirti, P. B.

2013-01-01

308

Identification of mVOCs from Andean Rhizobacteria and Field Evaluation of Bacterial and Mycorrhizal Inoculants on Growth of Potato in its Center of Origin.  

PubMed

Food security (a pressing issue for all nations) faces a threat due to population growth, land availability for growing crops, a changing climate (leading to increases in both abiotic and biotic stresses), heightened consumer awareness of the risks related to the use of agrichemicals, and also the reliance on depleting fossil fuel reserves for their production. Legislative changes in Europe mean that fewer agrichemicals will be available in the future for the control of crop pests and pathogens. The need for the implementation of a more sustainable agricultural system globally, incorporating an integrated approach to disease management, has never been more urgent. To that end, the Valorizing Andean Microbial Diversity (VALORAM) project ( http://valoram.ucc.ie ), funded under FP7, examined the role of microbial communities in crop production and protection to improve the sustainability, food security, environmental protection, and productivity for rural Andean farmers. During this work, microbial volatile organic compounds (mVOCs) of 27 rhizobacterial isolates were identified using gas chromatography/mass spectrometry (GC/MS), and their antifungal activity against Rhizoctonia solani was determined in vitro and compared to the activity of a selection of pure volatile compounds. Five of these isolates, Pseudomonas palleroniana R43631, Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 trialled in the field in their respective countries of origin, i.e., Bolivia, Peru, and Ecuador, showed significant increase in the yield of potato. The strategy followed in the VALORAM project may offer a template for the future isolation and determination of putative biocontrol and plant growth-promoting agents, useful as part of a low-input integrated pest management system. PMID:25339308

Velivelli, Siva L S; Kromann, Peter; Lojan, Paul; Rojas, Mercy; Franco, Javier; Suarez, Juan Pablo; Prestwich, Barbara Doyle

2014-10-23

309

Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing  

PubMed Central

Application of the plant associated bacterium Bacillus amyloliquefaciens FZB42 on lettuce (Lactuca sativa) confirmed its capability to promote plant growth and health by reducing disease severity (DS) caused by the phytopathogenic fungus Rhizoctonia solani. Therefore this strain is commercially applied as an eco-friendly plant protective agent. It is able to produce cyclic lipopeptides (CLP) and polyketides featuring antifungal and antibacterial properties. Production of these secondary metabolites led to the question of a possible impact of strain FZB42 on the composition of microbial rhizosphere communities after its application. Rating of DS and lettuce growth during a field trial confirmed the positive impact of strain FZB42 on the health of the host plant. To verify B. amyloliquefaciens as an environmentally compatible plant protective agent, its effect on the indigenous rhizosphere community was analyzed by metagenome sequencing. Rhizosphere microbial communities of lettuce treated with B. amyloliquefaciens FZB42 and non-treated plants were profiled by high-throughput metagenome sequencing of whole community DNA. Fragment recruitments of metagenome sequence reads on the genome sequence of B. amyloliquefaciens FZB42 proved the presence of the strain in the rhizosphere over 5 weeks of the field trial. Comparison of taxonomic community profiles only revealed marginal changes after application of strain FZB42. The orders Burkholderiales, Actinomycetales and Rhizobiales were most abundant in all samples. Depending on plant age a general shift within the composition of the microbial communities that was independent of the application of strain FZB42 was observed. In addition to the taxonomic profiling, functional analysis of annotated sequences revealed no major differences between samples regarding application of the inoculant strain. PMID:24904564

Kröber, Magdalena; Wibberg, Daniel; Grosch, Rita; Eikmeyer, Felix; Verwaaijen, Bart; Chowdhury, Soumitra P.; Hartmann, Anton; Pühler, Alfred; Schlüter, Andreas

2014-01-01

310

Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens.  

PubMed

Using a gene disruption strategy, we generated mutants in the gliP locus of the plant-beneficial fungus Trichoderma virens that were no longer capable of producing gliotoxin. Phenotypic assays demonstrated that the gliP-disrupted mutants grew faster, were more sensitive to oxidative stress and exhibited a sparse colony edge compared with the WT strain. In a plate confrontation assay, the mutants deficient in gliotoxin production were ineffective as mycoparasites against the oomycete, Pythium ultimum, and the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, but retained mycoparasitic ability against Rhizoctonia solani. Biocontrol assays in soil showed that the mutants were incapable of protecting cotton seedlings from attack by P. ultimum, against which the WT strain was highly effective. The mutants, however, were as effective as the WT strain in protecting cotton seedlings against R. solani. Loss of gliotoxin production also resulted in a reduced ability of the mutants to attack the sclerotia of S. sclerotiorum compared with the WT. The addition of exogenous gliotoxin to the sclerotia colonized by the mutants partially restored their degradative abilities. Interestingly, as in Aspergillus fumigatus, an opportunistic human pathogen, gliotoxin was found to be involved in pathogenicity of T. virens against larvae of the wax moth, Galleria mellonella. The loss of gliotoxin production in T. virens was restored by complementation with the gliP gene from A. fumigatus. We have, thus, demonstrated that the putative gliP cluster of T. virens is responsible for the biosynthesis of gliotoxin, and gliotoxin is involved in mycoparasitism and biocontrol properties of this plant-beneficial fungus. PMID:25082950

Vargas, Walter A; Mukherjee, Prasun K; Laughlin, David; Wiest, Aric; Moran-Diez, Maria E; Kenerley, Charles M

2014-10-01

311

Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots.  

PubMed Central

The actinomycete Streptomyces lydicus WYEC108 showed strong in vitro antagonism against various fungal plant pathogens in plate assays by producing extracellular antifungal metabolites. When Pythium ultimum or Rhizoctonia solani was grown in liquid medium with S. lydicus WYEC108, inhibition of growth of the fungi was observed. When WYEC108 spores or mycelia were used to coat pea seeds, the seeds were protected from invasion by P. ultimum in an oospore-enriched soil. While 100% of uncoated control seeds were infected by P. ultimum within 48 h after planting, less than 40% of coated seeds were infected. When the coated seeds were planted in soil 24 h prior to introduction of the pathogen, 96 h later, less than 30% of the germinating seeds were infected. Plant growth chamber studies were also carried out to test for plant growth effects and for suppression by S. lydicus WYEC108 of Pythium seed rot and root rot. When WYEC108 was applied as a spore-peat moss-sand formulation (10(8) CFU/g) to P. ultimum-infested sterile or nonsterile soil planted with pea and cotton seeds, significant increases in average plant stand, plant length, and plant weight were observed in both cases compared with untreated control plants grown in similar soils. WYEC108 hyphae colonized and were able to migrate downward with the root as it elongated. Over a period of 30 days, the population of WYEC108 colonized emerging roots of germinating seeds and remained stable (10(5) CFU/g) in the rhizosphere, whereas the nonrhizosphere population of WYEC108 declined at least 100-fold (from 10(5) to 10(3) or fewer CFU/g). The stability of the WYEC108 population incubated at 25 degrees C in the formulation, in sterile soil, and in nonsterile soil was also evaluated. In all three environments, the population of WYEC108 maintained its size for 90 days or more. When pea, cotton, and sweet corn seeds were placed into sterile and nonsterile soils containing 10(6) or more CFU of WYEC108 per g, it colonized the emerging roots. After a 1-week growing period, WYEC108 populations of 10(5) CFU/g (wet weight) of root were found on pea roots in the amended sterile soil environment versus 10(4) CFU/g in amended nonsterile soil. To further study the in vitro interaction between the streptomycete and P. ultimum, mycelia of WYEC108 were mixed with oospores of P. ultimum in agar, which was then used as a film to coat slide coverslips.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7487043

Yuan, W M; Crawford, D L

1995-01-01

312

Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde.  

PubMed

A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 ?m. PMID:22728967

Anitha, C; Sheela, C D; Tharmaraj, P; Sumathi, S

2012-10-01

313

A defensin with highly potent antipathogenic activities from the seeds of purple pole bean.  

PubMed

A 5443 Da peptide with sequence homology to defensins was purified from purple pole beans (Phaseolus vulgaris cv. 'Extra-long Purple Pole bean'). This peptide was isolated by adsorption on an affinity chromatographic medium Affi-Gel Blue gel and ion-exchange chromatographic media SP-Sepharose (sulfopropyl-Sepharose) and Mono S and by gel filtration on Superdex peptide. The peptide inhibited mycelial growth in Mycosphaerella arachidicola, Helminthosporium maydis, Fusarium oxysporum, Verticillium dahliae, Rhizoctonia solani, Candida albicans and Setosphaeria turcica with an IC50 of 0.8, 0.9, 2.3, 3.2, 4.3, 4.8 and 9.8 microM respectively. Its antifungal potency was higher than that of the plant defensin coccinin (IC50>50 microM). It induced membrane permeabilization in C. albicans as evidenced by SYTOX Green uptake, but did not affect erythrocyte membrane permeability. It inhibited growth in M. arachidicola by inducing chitin accumulation at hyphal tips as was shown by Congo Red staining. The antifungal activity was pH stable and thermostable. The peptide inhibited the proliferation of hepatoma (HepG2), breast cancer (MCF7), colon cancer (HT29) and cervical cancer (SiHa) cells but not that of human embryonic liver (WRL68) cells. Its anti-HepG2 activity (IC50=4.1+/-0.8 microM, n=3) was higher than that of another plant defensin, gymnin (IC50>50 microM). Its anti-MCF7 activity (IC50=8.3+/-0.3 microM, n=3) was similar to that of other plant defensins. It reduced the activity of HIV-1 reverse transcriptase with an IC50 of 0.5+/-0.1 microM, n=3, much more potently than other plant defensins (IC50>40 microM). There is the possibility of using the purple pole bean defensin for producing antifungal drugs and/or transgenic plants with fungal resistance. PMID:19335335

Lin, Peng; Wong, Jack Ho; Ng, Tzi Bun

2010-04-01

314

Inhibitory effects of essential oils of medicinal plants from growth of plant pathogenic fungi.  

PubMed

Plant cells produce a vast amount of secondary metabolites. Production of some compounds is restricted to a single species. Some compounds are nearly always found only in certain specific plant organs and during a specific developmental period of the plant. Some secondary metabolites of plants serve as defensive compounds against invading microorganisms. Nowadays, it is attempted to substitute the biological and natural agents with chemically synthesized fungicides. In the present research, the antifungal activities of essential oils of seven medicinal plants on mycelial growth of three soilborne plant pathogenic fungi were investigated. The plants consisted of Zataria multiflora, Thymus carmanicus, Mentha pieperata, Satureja hortensis, Lavandual officinolis, Cuminum cyminum and Azadirachta indica. The first five plants are from the family Labiatae. Examined fungi, Fusarium oxysporum f.sp. lycopersici, Fusarium solani and Rhizoctonia solani are the causal agents of tomato root rot. Essential oils of Z. multiflora, T. carmanicus, M. pieperata, S. hortensis and C. cyminum were extracted by hydro-distillation method. Essential oils of L. officinalis and A. indica were extracted by vapor-distillation method. A completely randomized design with five replicates was used to examine the inhibitory impact of each concentration (300, 600 and 900 ppm) of each essential oil. Poisoned food assay using potato dextrose agar (PDA) medium was employed. Results showed that essential oils of A. indica, Z. multiflora, T. carmanicus and S. hortensis in 900 ppm at 12 days post-inoculation, when the control fungi completely covered the plates, prevented about 90% from mycelial growth of each of the fungi. While, the essential oils of M. pieperata, C. cyminum and L. officinalis in the same concentration and time prevented 54.86, 52.77 and 48.84%, respectively, from F. solani growth. These substances did not prevent from F. oxysporum f.sp. lycopersici and R. solani growth. Minimum inhibitory concentration (MIC) of essential oils of T. carmanicus, Z. multiflora and A. indica from R. solani and F. solani growth was 900 and 600 ppm, respectively. In addition, the MIC of essential oils of these plants and essential oil of S. hortensis from F. oxysporum f.sp. lycopersici growth was 900 ppm. The MIC of essential oils of M. pieperata, C. cyminum and L. officinalis from F. solani growth was 900 ppm. PMID:22702190

Panjehkeh, N; Jahani Hossein-Abadi, Z

2011-01-01

315

Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum.  

PubMed

In the last decades lectins have received a lot of attention as potential tools in pest control. Despite substantial progress in the field not all the factors determining insecticidal potency and selectivity of these proteins have been described. Recently, three lectins, RSA (Rhizoctonia solani agglutinin), SNA-I and SNA-II (Sambucus nigra agglutinin I and II) have been shown to be toxic to aphids and caterpillars. In this project we investigated if these lectins are also toxic against larvae and a cell line of the red flour beetle, Tribolium castaneum, a model organism and important pest of stored products. Furthermore, we analyzed the stability of the lectins in the larval gut and used confocal microscopy to compare their efficiency in passing through the peritrophic matrix (PM). We observed that all three lectins were toxic against the T. castaneum cell line and their effectiveness in vitro was in decreasing order SNA-II>SNA-I>RSA with the respective EC50 being 0.1, 0.5 and 3.6 ?g/ml. Larvae feeding for 16 day on diets containing 2% RSA, 2% SNA-II and 2% SNA-I weighed 0.14 ± 0.07 mg, 0.67 ± 0.44 mg and 1.89 ± 0.38 mg, corresponding to approximately 7%, 36% and 80% of control larvae, respectively. As a consequence, RSA increased the time to adult emergence by over 3-fold, SNA-II by 1.9-fold and SNA-I by 1.2-fold. RSA and SNA-II were stable in the larval gut, while SNA-I was digested and excreted with the feces. Finally, confocal microscopy confirmed that RSA passed through the PM more efficiently than SNA-II. In conclusion, our data suggest that the lectin ability to pass through the PM, governed by molecule dimensions, charge and size of PM pores, is one of the features that determine the toxicity of these insecticidal proteins. PMID:25240534

Walski, Tomasz; Van Damme, Els J M; Smagghe, Guy

2014-11-01

316

Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde  

NASA Astrophysics Data System (ADS)

A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 ?m.

Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

2012-10-01

317

Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea  

PubMed Central

Background Filamentous fungi produce small cysteine rich surface active amphiphilic hydrophobins on the outer surface of cell walls that mediate interactions between the fungus and the environment. The role of hydrophobins in surface hydrophobicity, sporulation, fruit body formation, recognition and adhesion to host surface and virulence have been reported. The aim of the present study was to characterize the biological function of hydrophobins in the fungal biocontrol agent Clonostachys rosea in order to understand their potential roles in biocontrol mechanisms. Results Based on the presence of hydrophobin domains, cysteine spacing patterns and hydropathy plots, we identified three class II hydrophobin genes in C. rosea. Gene expression analysis showed basal expression of Hyd1, Hyd2 and Hyd3 in all conditions tested with the exception of induced Hyd1 expression in conidiating mycelium. Interestingly, up-regulation of Hyd1, Hyd2 and Hyd3 was found during C. rosea self interaction compared to interactions with the fungal plant pathogens Botrytis cinerea or Fusarium graminearum in dual culture assays. Phenotypic analysis of C. rosea deletion and complementation strains showed that Hyd1 and Hyd3 are jointly required for conidial hydrophobicity, although no difference in mycelia hydrophobicity was found between wild type (WT) and mutant strains. Interestingly, mutant strains showed increased growth rates, conidiation and enhanced tolerances of conidia to abiotic stresses. Antagonism tests using in vitro dual culture and detached leaf assays showed that the mutant strains were more aggressive towards B. cinerea, F. graminearum or Rhizoctonia solani, and that aggression was partly related to earlier conidial germination and enhanced tolerance of mutant strains to secreted fungal metabolites. Furthermore, in vitro Arabidopsis thaliana root colonization assays revealed reduced root colonization ability of the ?Hyd3 strain, but not for the ?Hyd1 strain. Furthermore, enhanced root colonization ability for the ?Hyd1?Hyd3 strain was found in comparison to WT. Conclusions These results show a role for hydrophobins in conidial hydrophobicity, control of conidial germination under stress conditions, and in root colonization in C. rosea. However, functional studies of Hyd2 remains to be performed in order to fully assess the role of hydrophobins in C. rosea. PMID:24483277

2014-01-01

318

Field response of some asparagus varieties to rust, Fusarium crown root rot, and violet root rot.  

PubMed

Research was carried out to evaluate the behaviour of some asparagus genotypes against three most important fungal diseases: 1) asparagus rust caused by Puccinia asparagi D.C.; 2) Fusarium crown and root rot caused by Fusarium oxysporum (Schlecht.) f.sp. asparagi (Cohen & Heald) and Fusarium proliferatum (Matstush.) Nirenberg; 3) violet root rot caused by Rhizoctonia violacea Tul. The object of this research was also to found an eventual correlation between the plant susceptibility to asparagus rust and the sensibility to Fusarium crown root rot and violet root rot attacks. Resistant genotypes to rust should be less susceptible to attacks from F. oxysporum f.sp. asparagi, F. proliferatum and R. violacea, a fungal complex causing the plant decline. Asparagus genotypes were compared in a randomized complete block experiment design, replicated four times, in order to search that ones showing the best behaviour to escape the diseases. Phytopathological observations were carried out on November when the control plots showed 100% infected plants. The pathogens were isolated and identified. The diseased plants were registered. According to symptom evaluation scales, all the plants were grouped into infection classes, calculating frequency and McKinney index. Wishing to learn something about the infection trend of F. oxysporum f.sp. asparagi or R. violacea in relation to P. asparagi attack, the relative curvilinear regressions were calculated. The Italian cultivars "Marte" and "Grande" showed significantly the best behaviour in terms of resistance to asparagus rust, exhibiting 37% and 42% of diseased plants. The McKinney index was 9.1% and 15.6%, respectively. The susceptible plots showed 100% of infected plants and different McKinney index: 46% for "Eros", about 60% for "H 519", "Atlas" and "Golia", over 70% for the remainder. "Marte" and "Grande" showed good tolerance to F. oxysporum f.sp. asparagi and to R. violacea exhibiting up to 100% of healthy plants. The regression between plants affected by asparagus rust and those diseased by Fusarium crown root rot showed a linear equation with a regression coefficient b = 1.186 and a correlation coefficient R2 = 0.98. The regression between infection caused by rust and that caused by violet root rot exhibited a regression coefficient b = 1.03 and a coefficient of correlation R2 = 0.9. "Marte" and "Grande" exhibited the best behaviour against the rust attacks. Plants without rust were tolerant to pathogens causing plant decline. PMID:15151301

Fiume, F; Fiume, G

2003-01-01

319

PacC and pH–dependent transcriptome of the mycotrophic fungus Trichoderma virens  

PubMed Central

Background In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4–6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. Results We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ?pacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ?pacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. Conclusions PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ?pacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH. PMID:23445374

2013-01-01

320

Sterol-inhibiting fungicide impacts on soil microbial ecology in Atlantic Coastal Plain soils  

NASA Astrophysics Data System (ADS)

Seventy-five percent of the peanuts (Arachus hypogaia) produced in the United States are grown in the Atlantic Coastal Plain region. Portions of this area, including Alabama and Georgia, exhibit a subtropical climate that promotes soil-borne plant fungal diseases. Most fields receive repeated fungicide applications during the growing season to suppress the disease causing organisms, such as Sclerotium rolfsii, Rhizoctonia solani, and Cylindrocladium parasiticum. Information regarding fungicide effects on the soil microbial community, with components principally responsible for transformation and fate of fungicides and other soil-applied pesticides, is limited. The objectives of the study were to assess soil microbial community response to (1) varying rates of the sterol-inhibiting fungicide tebuconazole (0, single application, season max, 2x season max), and (2) field rates of the sterol-inhibitors cyproconazole, prothioconazole, tebuconazole, and flutriafol, and thiol-competitor chlorothalonil. The sterol-inhibitors exhibited different half lives, as listed in the FOOTPRINT database, ranging from <1 day to >1300 d. Chlorothalonil was chosen because it is the most frequently applied fungicide to peanut. Shifts in the fungi, gram positive and gram negative bacteria, were monitored during the experiments using phospholipid fatty acid (PLFA) profiles. Ergosterol levels and pesticide decay rates were also monitored to evaluate the effectiveness of the fungicide and soil residence time, respectively. In the rate study, the highest rate of tebuconazole reduced the fungal biomarker 18:2?6,9c to 2.6 nmol g-1 dry soil at 17 d, as compared to the control (4.1 nmol g-1 dry soil). However, levels of the fungal PLFA biomarker were similar regardless of rate at 0 and 32 d. The gram negative bacterial PLFA mole percent was greater at 17 d for the two highest rates of tebuconazole, but was similar at 0 and 32 d. Gram positive and fungal mole percents were not affected at any time point. Tebuconazole half life was approximately 10 d regardless of rate. A principle components analysis revealed negligible fungicide impact on PLFA. In the field rate study soil samples were collected immediately following fungicide application to peanut. A laboratory dissipation study, accompanied by PLFA and ergosterol analysis is currently being conducted. Results from the rate experiment indicate that tebuconazole's effect was transient due to rapid dissipation and suggest a gram negative bacterial role. Results obtained from both studies will be useful in predicting the environmental fate and impact of fungicides commonly used for production of peanut and other crops on soil microorganisms.

White, P. M.; Potter, T. L.; Strickland, T. C.

2008-12-01

321

Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescens NBRI2650 in the soil and phytosphere.  

PubMed

Pseudomonas fluorescens NBRI2650 was isolated after screening 360 bacterial strains from the rhizosphere of chickpea (Cicer arietinum L.) grown in fungal-disease-suppressive field soil. The strain was selected because of its high rhizosphere competence and ability to inhibit the growth of Fusarium oxysporum f.sp. ciceri, Rhizoctonia bataticola, and Pythium sp. under in vitro conditions. Survival and colonization of NBRI2650 in the phytosphere of chickpea, cotton (Gossypium hirsutum L.), cucumber (Cucumis sativus L.), and tomato (Lycopersicon seculentum Mill.) were monitored using a chromosomally located rifampicin-marked mutant P. fluorescens NBRI2650R. The strain showed variable ability to invade and survive in the phytosphere of different plants. Chickpea was used as a tester plant for further work, as it was not invaded by NBRI2650R. The interaction between NBRI2650R and F oxysporum fsp. ciceri was studied by both light microscopy and scanning electron microscopy. The lysis of the fungal cell wall by NBRI2650R was clearly demonstrated. Treatment of the chickpea seeds with NBRI2650R in prerelease experiments in the greenhouse using disease-conducive field soils from Jhansi and Kanpur resulted in increased plant growth and did not result in any perturbation of the indigenous microbial community that inhabited the rhizosphere of chickpea compared with nonbacterized seeds. Direct fermentation of diluted NBRI2650R on vermiculite without the need of expensive fermentors offers a reliable process for manufacturing bacterial inoculants in developing countries. Under field conditions, the horizontal and vertical movement of NBRI2650R was restricted to 30 and 60 cm, respectively, and the strain could not survive in the field during the 7 months before the chickpea could be planted for next cropping season. Field trials conducted at Jhansi, Kanpur, and Pantnagar resulted in higher grain yield increase in the bacteria-treated seed compared with the nonbacterized control. Seed and furrow treatment of the two chickpeas ('Radhey' and 'H-208') at Pantnagar resulted in significantly (P = 0.05) greater seedling mortality in nonbacterized seedlings compared with bacterized ones. The seed dry weight and yield for each variety were also significantly higher in bacterized seedlings than in nonbacterized ones. The population of NBRI2650R persisted throughout the growing season of chickpea in the range of 5.4-6.4 log10 CFU/g root. PMID:12224558

Nautlyal, C Shekhar; Johri, J K; Singh, H B

2002-07-01

322

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide  

PubMed Central

Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field. PMID:23610539

2013-01-01

323

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.  

PubMed

Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field. PMID:23610539

Abdel-Monaim, Montaser Fawzy

2013-03-01

324

Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture.  

PubMed

The effects of resveratrol and pterostilbene on in vitro growth of three soybean pathogens were tested to determine whether these stilbenic compounds could potentially be targets to increase innate resistance in transgenic soybean plants. Growth of Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum was measured on solid and in liquid media amended with resveratrol and pterostilbene (concentration in the media of resveratrol at 100 ?g/ml and pterostilbene at 25 ?g/ml). All three fungi were very sensitive to pterostilbene in potato dextrose agar (PDA), which reduced colony area of each of the three pathogens to less than half of the control 3 days after incubation. The three fungal pathogens were less sensitive to resveratrol compared with pterostilbene; however, area under the curve (AUC) calculated from colony areas measured over 3 days was significantly (P < 0.05) less than the control for S. sclerotiorum and R. solani on PDA with resveratrol or pterostilbene. AUC for M. phaseolina on PDA with pterostilbene was significantly (P < 0.05) lower than the control whereas, on PDA with resveratrol, AUC for M. phaseolina was lower than the control but the difference was nonsignificant (P > 0.05). AUC for all three fungi was significantly lower (P < 0.05) on PDA with pterostilbene than with resveratrol. In potato dextrose broth (PDB) shake cultures, AUC for all three fungi was significantly (P < 0.01) lower in pterostilbene than in the control. AUC for R. solani and S. sclerotiorum was significantly lower (P < 0.01) in resveratrol than the control, whereas AUC for M. phaseolina in resveratrol was lower, but not significantly (P > 0.05) different from the control. AUC in pterostilbene was highly significantly (P < 0.01) lower than in resveratrol for M. phaseolina and significantly (P < 0.05) lower for R. solani but the difference for S. sclerotiorum was nonsignificant (P > 0.05). There was a trend for lower mass accumulation of all three fungi in either pterostilbene or resveratrol compared with the control during the course of the experiment; however, S. sclerotiorum appeared to recover from the effects of pterostilbene between days 2 and 4. Results of biochemical analyses of the PDB over time indicated that the three fungi degraded resveratrol, with nearly 75% reduction in concentration in M. phaseolina, 80% in S. sclerotiorum, and 60% in R. solani PDB cultures by day 4 of fungal growth. M. phaseolina and S. sclerotiorum were able to resume growth after early inhibition by resveratrol after its concentration was reduced in the cultures through degradation, whereas R. solani was less efficient in resveratrol degradation and was not able to overcome its inhibitory effects on growth. The capacity to degrade pterostilbene was lowest in M. phaseolina compared with S. sclerotiorum and R. solani and the recovery of M. phaseolina cultures after initial growth inhibition by pterostilbene was minimal. The potential products of resveratrol and pterostilbene degradation by fungi were identified to be dimers and various oxidation products. PMID:24502206

Lygin, Anatoliy V; Hill, Curtis B; Pawlowski, Michelle; Zernova, Olga V; Widholm, Jack M; Hartman, Glen L; Lozovaya, Vera V

2014-08-01

325

Biopesticides from plants: Calceolaria integrifolia s.l.  

PubMed

The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 ?g/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 µg/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maxim

Céspedes, Carlos L; Salazar, Juan R; Ariza-Castolo, Armando; Yamaguchi, Lydia; Avila, José G; Aqueveque, Pedro; Kubo, Isao; Alarcón, Julio

2014-07-01

326

How do microorganisms influence trace element uptake by plants? Screening in an agar model rhizosphere.  

NASA Astrophysics Data System (ADS)

Trace elements (TE) are essential for humans and plants, but they may be toxic if their concentration is too high. For this reason, the management of TE in soils is very important. In some cases it may be necessary to increase the uptake of nutrients or TE by plants, for example in a biofortification perspective. Conversely, in some other cases TE uptake by plants should be decreased, for instance to avoid heavy metals entering the food chain via edible crops. Microorganisms living in the rhizosphere affect trace element (TE) uptake by plants. However, due to the complexity of this space and the variety of microorganisms that occur there, it is difficult to isolate the effect of any particular strain. To overcome this hurdle, we developed a system in which we grew plants under sterile conditions in agar and inoculated their rhizosphere with a single, well-defined microbial strain. For many years, agar has been used as a growth substrate for microorganisms and plant tissues. It is cheap, easy to use, and can be autoclaved to ensure its sterility. Because of its widespread use, an experiment conducted using this substrate can be reproduced under the same conditions in any laboratory. In contrast to soil, there is little interaction between the trace elements and the agar matrix. There are many studies investigating the influence of microorganisms on TE uptake by plants. However, so far only a small variety of microorganisms has been tested on few plant species. Therefore, the first objective of our research was to develop a method to rapidly screen a large variety of microorganisms on various plant species. Once this goal was achieved, we sought to study the effect of single, well-defined microbial strains on TE uptake by sunflower and wheat. The substrate for plants growth was a 10% agar solution prepared with modified Hoagland's solution and a TE solution containing 1 mg/kg Pb and molar equivalents of Cu, Ni and Zn. The agar solution was autoclaved and poured into sterile, transparent plastic boxes, whose lid was equipped with a filter allowing gas exchanges without contamination by external microorganisms. The seed surface was sterilised and the plants grew one week in agar before their rhizosphere was inoculated with LB broth containing a pure bacterial strain or agar plugs colonized by fungal hyphae. We tested 14 strains, with 5 replicates per treatment and a control where the system was inoculated with sterile LB broth. The plants grew for 2 weeks in a climate chamber and their shoots were analysed for their TEs by ICP-OES. Samples of agar and roots were collected to confirm microbial colonization of the rhizosphere, respectively sterile conditions in the control treatments. Concerning the method development, the plants grew without visible toxicity in all the boxes, and the analysis of root and agar samples indicated that the controls were sterile and the strains inoculated were growing along the roots. More than 90% of the TE and nutrients added to the system were in the liquid fraction of the agar medium, thus available for root uptake. The screening showed that the microorganisms in general decreased TE uptake by wheat and sunflower, although some of them had an opposite effect on the plants. However, with the same plant species, the microorganisms had a consistent effect on all TE tested, i.e. a given single strain caused the same effect (increase or decrease of TE uptake) on all TE tested. In sunflower, 3 microorganisms (Paenibacillus polymyxa, Pythium ultimum and Rhizoctonia solani) decreased Cu and Zn uptake by 50% compared to the control treatment. These three species are common soil microorganisms. All three are known to exude auxin, a phytohormone. This hormone can modify root morphology and physiology and thus may affect TE uptake by plants. R. solani and P. ultimum are root pathogens. Their effect was opposite to what we expected. If roots are damaged, TE should have flooded into the plant and accumulate in the tissues, but this was not the case. One explanation could be the biosorption of TE by these mi

Marchetti, M.; Robinson, B. H.; Evangelou, M. W. H.; Vachey, A.; Schwitzguebel, J. P.; Bernier-Latmani, R.; Schulin, R.

2009-04-01