Science.gov

Sample records for triplet state spectra

  1. Triplet excited state energies and phosphorescence spectra of (bacterio)chlorophylls.

    PubMed

    Hartzler, Daniel A; Niedzwiedzki, Dariusz M; Bryant, Donald A; Blankenship, Robert E; Pushkar, Yulia; Savikhin, Sergei

    2014-07-01

    (Bacterio)Chlorophyll ((B)Chl) molecules play a major role in photosynthetic light-harvesting proteins, and the knowledge of their triplet state energies is essential to understand the mechanisms of photodamage and photoprotection, as the triplet excitation energy of (B)Chl molecules can readily generate highly reactive singlet oxygen. The triplet state energies of 10 natural chlorophyll (Chl a, b, c2, d) and bacteriochlorophyll (BChl a, b, c, d, e, g) molecules and one bacteriopheophytin (BPheo g) have been directly determined via their phosphorescence spectra. Phosphorescence of four molecules (Chl c2, BChl e and g, BPheo g) was characterized for the first time. Additionally, the relative phosphorescence to fluorescence quantum yield for each molecule was determined. The measurements were performed at 77K using solvents providing a six-coordinate environment of the Mg(2+) ion, which allows direct comparison of these (B)Chls. Density functional calculations of the triplet state energies show good correlation with the experimentally determined energies. The correlation determined computationally was used to predict the triplet energies of three additional (B)Chl molecules: Chl c1, Chl f, and BChl f. PMID:24896677

  2. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  3. Assignments of Lowest Triplet State in Ir Complexes by Observation of Phosphorescence Excitation Spectra at 6 K

    NASA Astrophysics Data System (ADS)

    Kodate, Satoshi; Suzuka, Isamu

    2006-01-01

    We tried the assignment of the origin of phosphorescent bands in Ir complexes. It is important to elucidate the luminescent mechanism in order to design organic light-emitting devices (OLEDs) besed on new materials. The Stokes shift between the phosphorescence and phosphorescence excitation spectra of Ir complexes such as fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3], fac-tris(2-(2-thienyl)pyridine) iridium(III) [Ir(thpy)3], bis(2-phenylpyridine) iridium(III)benzo[h]quinoline [Ir(ppy)2bzq], fac-tris(benzo[h]quinoline) iridium(III) [Ir(bzq)3] and bis[(4,6-difluorophenyl)pyridinato](picolinato) iridium(III) [FIrpic] was measured in a solution and (phenyl)4Sn at 6 K. The amount of Stokes shift corresponds to the nature of the lowest triplet state. We discovered that the amount of Stokes shift clearly differs depending on whether the lowest triplet state of each Ir complex is triplet metal-to-ligand charge transfer (3MLCT) or 3?-?*. Namely, the case of 3MLCT shows a large shift, while the case of 3?-?* shows a small shift. We also present the resolved phosphorescence and phosphorescence excitation spectra of Ir complexes in (phenyl)4Sn. The sharp bands were assigned to the 3?-?* transition, and the broad bands were assigned to the 3MLCT state. The nature of the lowest triplet state is also discussed on the basis of resolved spectra.

  4. Fullerene triplet states in solution

    NASA Astrophysics Data System (ADS)

    Ausman, Kevin Douglas

    Triplet state pre-equilibration by reversible energy transfer has been observed by transient-absorption spectroscopy in mixed toluene solutions of C70 and C60 and of C70 and C60(CH 3)2. The equilibrium constants governing the asymptotic partitioning of triplet energy in these mixtures were determined as a function of temperature. The enthalpies of these excited states were found from van't Hoff plots of the equilibrium constant data to be -0.1 +/- 0.2 and -3.4 +/- 0.3 kJ mol-1 for C60 and C60 (CH3)2 respectively relative to a C70 triplet energy exchange partner. The corresponding relative entropies are 5.8 +/- 0.5 and -4.0 +/- 1.0 kJ mol-1 K-1 respectively. Transient spectra from high temperature C70/C60(CH3)2 mixed samples revealed evidence of a third, unidentified transient absorber that exhibited different kinetics from the pre-equilibrated triplet pool. Triplet state transient difference spectra and intrinsic decay kinetics were measured and compared for C60 and several derivatives of C 60. These derivatives were C60H2, C60(CH 3)2, ortho-xylyl-C60, N,N'-dimethyl-1,2-ethylenediamine- C 60, C60C(COOCH2CH3)2, and C60O. The spectral locations of the main triplet-triplet absorption peak for these compounds correlates linearly with the observed intrinsic intersystem crossing rate constant. The triplet state persistence of C60 was measured in toluene solution as a function of both ground state concentration and solution temperature. The unimolecular intersystem crossing deactivation channel shows very little thermal activation, whereas the observed bimolecular self-quenching decay channel is found to be highly activated. At room temperature, the deduced exponential lifetime of the solvent-caged encounter complex between triplet and ground state molecules is three orders of magnitude shorter than that of the isolated monomer triplet state. This suggests that the self-quenching process is not a simple perturbation of an isolated molecule's intersystem crossing, but rather occurs through a qualitatively different mechanism. The kinetic data are examined in light of the proposed excimer mechanism for triplet self-quenching. Finally, the self-quenching process is interpreted as a low-probability ``mis-step'' during energy transfer.

  5. Lowest excited triplet state of 2,5-dimethyl-1,3,5-hexatriene: Resonance Raman spectra and quantum chemical calculations

    SciTech Connect

    Negri, F.; Orlandi, G. ); Brouwer, A.M. ); Langkilde, F.W. ); Moeller, S.; Wilbrandt, R. )

    1991-09-05

    Theoretical and Raman spectroscopic studies are presented of the ground and lowest triplet states of (E)- and (Z)-2,5-dimethyl-1,3,5-hexatriene and their 3,4-dideuterio and 3-deuterio isotopomers. The T{sub 1} and S{sub 0} states. Energies of higher triplet levels are computed and oscillator strengths for the T{sub 1} {yields} T{sub n} transitions are determined. The displacements in equilibrium geometries between the T{sub 1} and the T{sub n} level corresponding to the strongest T{sub 1} {yields} T{sub n} transition are calculated and are used to estimate the intensities of the resonance Raman spectra of the T{sub 1} state under the assumption of a predominant Franck-Condon scattering mechanism. The influence of the ground-state conformation around C-C single bonds on T{sub 1} resonance Raman spectra is considered in detail for the two isomers. It is found that for the E isomers the tEt and for the Z isomers the tEc forms are the predominant ones in the T{sub 1} state. The Z forms are at considerable higher energy than the E forms in the E forms in the T{sub 1} state due to nonbonded interaction. A good agreement is found between theoretically calculated and experimental spectra. The results are compared with previously published data for 1,3,5-hexatriene.

  6. Laser-induced temperature dependent triplet state lifetime of rubreneperoxide.

    PubMed

    Bayrakçeken, Fuat; Sevinç, Papatya C

    2007-12-31

    A number of photophysical properties of three different types of rubreneperoxides have been measured experimentally by flash spectroscopy technique, including the two-photon absorption, fluorescence, delayed fluorescence and temperature dependent triplet-triplet absorption spectra. Excited singlet and triplet state lifetimes are temperature dependent. Lowest triplet state lifetimes were measured from 77 K to 50 degrees C. Experimental observations showed that as we decreased the temperature of rubreneperoxides, most of the molecules migrate to the lowest vibrational and rotational energy levels of the ground electronic state. Similar migration is also observed for the lowest triplet state. Therefore at 77 K, we can get the clean absorption an emission spectra and decay curves for the lowest triplet state. At 50 degrees C, due to the P- and/or E-type of delayed fluorescences, decay of T(1) state, in other words disappearance of the T(1) state is becoming faster than at low temperature (below room temperature). PMID:17561439

  7. Electron paramagnetic resonance detection of carotenoid triplet states

    SciTech Connect

    Frank, H.A.; Bolt, J.D.; de B. Costa, S.M.; Sauer, K.

    1980-07-16

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain ..beta..-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm/sup -1/ and /E/ = 0.0044 +-0.0006 cm/sup -1/, in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm/sup -1/ and /E/ = 0.0032 +- 0.004 cm/sup -1/. Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of ..beta..-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles ..beta..-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm/sup -1/ and /E/ = 0.0037 +- 0.0010 cm/sup -1/. 6 figures, 1 table.

  8. Triplet-state energies and substituent effects of excited aroyl compounds in the gas phase

    NASA Astrophysics Data System (ADS)

    Lin, Zhong-Ping; Aue, Walter A.

    2000-01-01

    Triplet-state energy values obtained from the gas phase are still scarce. In this study, the triplet-state energies of 58 aroyl compounds, introduced as gas chromatographic peaks at atmospheric pressure and typically 473 K, have been determined from the 0-0 bands of their n→π* type phosphorescence spectra in excited nitrogen. Correlations of those gas-phase triplet-state energies with Hammett constants could be observed for substituted acetophenones, benzaldehydes and benzophenones.

  9. Properties of the Triplet State of Coumarin Substituted Compounds

    NASA Astrophysics Data System (ADS)

    Bryantseva, N. G.; Gadirov, R. M.; Nikonov, S. Yu.; Sokolova, I. V.

    2015-03-01

    The absorption spectra of the triplet excited state of coumarin sensitizers are investigated both theoretically and experimentally. The most intense triplet-triplet (TT) absorption bands are determined. The experimental spectra of the T-T absorption are compared with the theoretical T-T transitions. The phosphorescence spectra of five compounds are measured at a temperature of 77 K. The quantum phosphorescence yield is determined by the method of comparison with an etalon (8-methoxypsoralen). The phosphorescence lifetime is determined for the examined molecules at a temperature of 77 K. For 3,4-phenyl-4',5'-cyclohexylpsoralen, 4'-methyl-3,4-cycloheptylpsoralen, and 4'5'-dimethyl-3,4-cyclohexylpsoralen compounds, this time is equal to 1.1, 1.25, and 2.5 s, respectively. The main energy deactivation channel for all examined compounds is the phosphorescence. The positions of the lower excited triplet states, calculated by the quantum-chemical method of intermediate neglect of differential overlap with spectroscopic parameterization (INDO/S), are confirmed by the available experimental data.

  10. Resonance Raman Spectroscopy of the T1 Triplet Excited State of Oligothiophenes.

    PubMed

    Wang, Chen; Angelella, Maria; Doyle, Samantha J; Lytwak, Lauren A; Rossky, Peter J; Holliday, Bradley J; Tauber, Michael J

    2015-09-17

    The characterization of triplet excited states is essential for research on organic photovoltaics and singlet fission. We report resonance Raman spectra of two triplet oligothiophenes with n-alkyl substituents, a tetramer and hexamer. The spectra of the triplets are more complex than the ground state, and we find that density functional theory calculations are a useful starting point for characterizing the bands. The spectra of triplet tetrathiophene and hexathiophene differ significantly from one another. This observation is consistent with a T1 excitation that is delocalized over at least five rings in long oligomers. Bands in the 500-800 cm(-1) region are greatly diminished for an aggregated sample of hexathiophene, likely caused by fast electronic dephasing. These experiments highlight the potential of resonance Raman spectroscopy to unequivocally detect and characterize triplets in thiophene materials. The vibrational spectra can also serve as rigorous standards for evaluating computational methods for excited-state molecules. PMID:26291623

  11. Triplet state dipole moments of aminobenzonitriles.

    PubMed

    Demeter, Attila; Zachariasse, Klaas A

    2008-02-21

    The triplet state dipole moments mu(T) of a series of 4-amino- and 3-aminobenzonitriles in cyclohexane, benzene, and 1,4-dioxane are recalculated from previously published [J. Phys. Chem. 1992, 96, 10809] time-resolved microwave conductivity data, on the basis of newly measured intersystem crossing yields. For 4-(dimethylamino)benzonitrile (DMABN), the following values are now determined for mu(T): 8.3 D (cyclohexane), 8.9 D (benzene), and 9.7 D (1,4-dioxane), as compared with the previously reported dipole moment of 12 D for the first and the last solvent. With the other aminobenzonitriles, similar mu(T) data are obtained, between 6.9 D for 4-aminobenzonitrile (ABN) in n-hexane and 10.0 D for 4-(di-n-decylamino)benzonitrile (DDABN) in 1,4-dioxane. The increase of mu(T) observed for all aminobenzonitriles when going from cyclohexane via benzene to 1,4-dioxane may indicate that their triplet dipole moments become larger with increasing solvent polarity. The present mu(T) of DMABN, between 8.3 and 9.7 D, although larger than the ground state dipole moment mu(0) of 6.6 D, is somewhat smaller than that of the locally excited (LE) state (9.9 D) but considerably smaller than the dipole moment of the intramolecular charge transfer (ICT) state (17 D). By comparing these mu(X) data with the frequency (CN) of the cyano vibration in each state, it appears that at least for DMABN in the triplet state (CN) is not a reliable indication of the extent of charge transfer as compared with the other states S0, LE, and ICT. PMID:18217728

  12. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants.

    PubMed Central

    Peterman, E J; Dukker, F M; van Grondelle, R; van Amerongen, H

    1995-01-01

    Laser-flash-induced transient absorption measurements were performed on trimeric light-harvesting complex II to study carotenoid (Car) and chlorophyll (Chl) triplet states as a function of temperature. In these complexes efficient transfer of triplets from Chl to Car occurs as a protection mechanism against singlet oxygen formation. It appears that at room temperature all triplets are being transferred from Chl to Car; at lower temperatures (77 K and below) the transfer is less efficient and chlorophyll triplets can be observed. In the presence of oxygen at room temperature the Car triplets are partly quenched by oxygen and two different Car triplet spectral species can be distinguished because of a difference in quenching rate. One of these spectral species is replaced by another one upon cooling to 4 Ki demonstrating that at least three carotenoids are in close contact with chlorophylls. The triplet minus singlet absorption (T-S) spectra show maxima at 504-506 nm and 517-523 nm, respectively. In the Chl Qy region absorption changes can be observed that are caused by Car triplets. The T-S spectra in the Chl region show an interesting temperature dependence which indicates that various Car's are in contact with different Chl a molecules. The results are discussed in terms of the crystal structure of light-harvesting complex II. PMID:8599673

  13. Photocyclization Reactions of Diarylethenes via the Excited Triplet State.

    PubMed

    Murata, Ryutaro; Yago, Tomoaki; Wakasa, Masanobu

    2015-11-12

    Cyclization reactions of three diarylethene derivatives, 1,2-bis(2-methyl-3-benzothienyl)perfluorocyclopentene (BT), 1,2-bis(2-hexyl-3-benzothienyl)perfluorocyclopentene (BTHex), and 1,2-bis(2-isopropyl-3-benzothienyl)perfluorocyclopentene (BTiPr), via their excited triplet states were studied by means of steady-state and nanosecond transient absorption spectroscopy. The excited triplet states of BT, BTHex, and BTiPr were generated by energy transfer from the photoexcited triplet states of sensitizers such as xanthone, phenanthrene, and pyrene. The single-step quantum yields of the cyclization reactions from the excited triplet states of BT, BTHex, and BTiPr were determined to be 0.34, 0.53, and 0.65, respectively. The triplet energies of these three BTs were estimated to be 190-200 kJ mol(-1). PMID:26490486

  14. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  15. Triplet excitons: Bringing dark states to light

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.

    2014-11-01

    Semiconducting quantum dots have been used to harvest triplet excitons produced through singlet fission in organic semiconductors. These hybrid organic-inorganic materials may boost the efficiency of solar cells.

  16. Bacteriochlorophyll protein structure - studies with polarized light and triplet state electron paramagnetic resonance

    SciTech Connect

    Bolt, J.D.

    1980-02-01

    Light harverting bacteriochlorophyll-protein complexes from Rhodopseudomonas sphaeroides 2.4.1 (B800 + 850) and R-26 (LH-R26) mutant are solubiliized in SDS and imbedded in polyvinyl alcohol. Stretching induces orientation, and the linear dichroism of visible and near infrared absorption is analyzed. Based on a simple model, angles between the particle axis system and the transition dipole moments are found. Reaction centers of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26, give rise to large triplet state EPR signals upon illumination at low temperature (11 K). Utilizing monochromatic polarized light to generate the EPR spectra (magnetophotoselection), it is shown that the intensities of the observed triplet signals are strongly dependent upon the wavelength and polarization direction of the excitation. Triplet states of carotenoids have been detected by EPR and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain ..beta..-carotene. The carotenoid triplet state is detected in reaction centers of Rhodopseudomonas sphaeroides 2.4.1 (wild type), which contain the carotenoid spheroidene.

  17. Direct Spectroscopic Detection and EPR Investigation of a Ground State Triplet Phenyl Oxenium Ion.

    PubMed

    Li, Ming-De; Albright, Toshia R; Hanway, Patrick J; Liu, Mingyue; Lan, Xin; Li, Songbo; Peterson, Julie; Winter, Arthur H; Phillips, David Lee

    2015-08-19

    Oxenium ions are important reactive intermediates in synthetic chemistry and enzymology, but little is known of the reactivity, lifetimes, spectroscopic signatures, and electronic configurations of these unstable species. Recent advances have allowed these short-lived ions to be directly detected in solution from laser flash photolysis of suitable photochemical precursors, but all of the studies to date have focused on aryloxenium ions having closed-shell singlet ground state configurations. To study alternative spin configurations, we synthesized a photoprecursor to the m-dimethylamino phenyloxenium ion, which is predicted by both density functional theory and MRMP2 computations to have a triplet ground state electronic configuration. A combination of femtosecond and nanosecond transient absorption spectroscopy, nanosecond time-resolved Resonance Raman spectroscopy (ns-TR(3)), cryogenic matrix EPR spectroscopy, computational analysis, and photoproduct studies allowed us to trace essentially the complete arc of the photophysics and photochemistry of this photoprecursor and permitted a first look at a triplet oxenium ion. Ultraviolet photoexcitation of this precursor populates higher singlet excited states, which after internal conversion to S1 over 800 fs are followed by bond heterolysis in ∼1 ps, generating a hot closed-shell singlet oxenium ion that undergoes vibrational cooling in ∼50 ps followed by intersystem crossing in ∼300 ps to generate the triplet ground state oxenium ion. In contrast to the rapid trapping of singlet phenyloxenium ions by nucleophiles seen in prior studies, the triplet oxenium ion reacts via sequential H atom abstractions on the microsecond time domain to ultimately yield the reduced m-dimethylaminophenol as the only detectable stable photoproduct. Band assignments were made by comparisons to computed spectra of candidate intermediates and comparisons to related known species. The triplet oxenium ion was also detected in the ns-TR(3) experiments, permitting a more clear assignment and identifying the triplet state as the π,π* triplet configuration. The triplet ground state of this ion was further supported by photolysis of the photoprecursor in an ethanol glass at ∼4 K and observing a triplet species by cryogenic EPR spectroscopy. PMID:26198984

  18. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF (360 ns), whereas those of PcD-4Ph were quite similar in both solvent. PMID:26930127

  19. Chlorophyll a triplet-state ESR in frozen phosphatidylcholine vesicles

    SciTech Connect

    Hiromitsu, I.; Kevan, L.

    1988-05-19

    Photoexcited chlorophyll a (Chla) triplet state in rapidly frozen egg phosphatidylcholine (EPC) vesicles is investigated at 77 K by electron spin resonance (ESR) spectroscopy using light intensity modulation. The electron spin polarization (ESP) intensity is stronger for 0.2 mM Chla than for 1.0 mM Chla. The absolute values of the zero field splitting parameter, D, are 283 (+/-1) x 10/sup -4/ and 276 (+/-2) x 10/sup -4/ cm/sup -1/, and the average depopulation rates of the triplet state are 0.671 +/- 0.052 and 1.054 +/- 0.036 ms/sup -1/ for 0.2 mM Chla and 1.0 mM Chla, respectively. This difference can be consistently attributed to faster triplet-state migration between adjacent Chla's at the higher 1.0 mM Chla concentration. A characteristic migration time of 2.6 ms is obtained. The ESP pattern of the Chla triplet state in the frozen EPC vesicles resembles that in polycrystals more than that in glasses. This suggests that the local environment around Chla in the vesicles is more structured than in glasses.

  20. Photoexcited triplet states of UV-B absorbers: ethylhexyl triazone and diethylhexylbutamido triazone.

    PubMed

    Tsuchiya, Takumi; Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-04-01

    The excited states of UV-B absorbers, ethylhexyl triazone (EHT) and diethylhexylbutamido triazone (DBT), have been studied through measurements of UV absorption, fluorescence, phosphorescence, triplet-triplet absorption and electron paramagnetic resonance spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states and quantum yields of fluorescence and phosphorescence of EHT and DBT were determined. In ethanol at 77 K, the deactivation process of EHT and DBT is predominantly fluorescence, however, a significant portion of the S1 molecules undergoes intersystem crossing to the T1 state. The observed phosphorescence spectra, T1 lifetimes and zero-field splitting parameters suggest that the T1 state of EHT can be assigned to a locally excited (3)ππ* state within p-(N-methylamino)benzoic acid, while the T1 state of DBT can be assigned to a locally excited (3)ππ* state within p-(N-methylamino)benzoic acid or p-amino-N-methylbenzamide. The quantum yields of singlet oxygen generation by EHT and DBT were determined by time-resolved near-IR phosphorescence measurements in ethanol at room temperature. EHT and DBT did not exhibit significantly antioxidative properties by quenching singlet oxygen, in contrast to the study by Lhiaubet-Vallet et al. PMID:25653197

  1. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study.

    PubMed

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva

    2016-03-21

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T1 and T2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S0, T1, and T2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ(∗) triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. PMID:27004870

  2. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, Venkatraman; Ariese, Freek; Umapathy, Siva

    2016-03-01

    The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T1 and T2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S0, T1, and T2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ∗ triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents.

  3. Direct Observation of Triplet-State Population Dynamics in the RNA Uracil Derivative 1-Cyclohexyluracil.

    PubMed

    Brister, Matthew M; Crespo-Hernández, Carlos E

    2015-11-01

    Investigation of the excited-state dynamics in nucleic acid monomers is an area of active research due to the crucial role these early events play in DNA and RNA photodamage. The dynamics and rate at which the triplet state is populated are key mechanistic pathways yet to be fully elucidated. Direct spectroscopic evidence is presented in this contribution for intersystem crossing dynamics in a uracil derivative, 1-cyclohexyluracil. It is shown that intersystem crossing to the triplet manifold occurs in one picosecond or less in acetonitrile solution-at least an order of magnitude faster than previously estimated experimentally. Broadband transient absorption measurements also reveal the primary electronic relaxation pathways of the uracil chromophore, including the absorption spectra of the (1)ππ*, (1)nπ*, and (3)ππ* states and the rates of vibrational cooling in the ground and (3)ππ* states. The experimental results are supported by density functional calculations. PMID:26538051

  4. On-chip generation of photon-triplet states.

    PubMed

    Krapick, Stephan; Brecht, Benjamin; Herrmann, Harald; Quiring, Viktor; Silberhorn, Christine

    2016-02-01

    Efficient sources of many-partite non-classical states are key for the advancement of quantum technologies and for the fundamental testing of quantum mechanics. We demonstrate the generation of time-correlated photon triplets at telecom wavelengths via pulsed cascaded parametric down-conversion in a monolithically integrated source. By detecting the generated states with success probabilities of (6.25 ± 1.09) × 10-11 per pump pulse at injected powers as low as 10 μW, we benchmark the efficiency of the complete system and deduce its high potential for scalability. Our source is unprecedentedly long-term stable, it overcomes interface losses intrinsically due to its monolithic architecture, and the photon-triplet states dominate uncorrelated noise significantly. These results mark crucial progress towards the proliferation of robust, scalable, synchronized and miniaturized quantum technology. PMID:26906852

  5. Photosensitized Thymine Dimerization via Delocalized Triplet Excited States.

    PubMed

    Miro, Paula; Lhiaubet-Vallet, Virginie; Marin, M Luisa; Miranda, Miguel A

    2015-11-16

    A new mechanism of photosensitized formation of thymine (Thy) dimers is proposed, which involves generation of a delocalized triplet excited state as the key step. This is supported by chemical evidence obtained by combining one benzophenone and two Thy units with different degrees of freedom, whereby the photoreactivity is switched from a clean Paternò-Büchi reaction to a fully chemo-, regio-, and stereoselective [2+2] cycloaddition. PMID:26462463

  6. The lowest triplet states of bridged cis-2,2'-bithiophenes - theory vs. experiment.

    PubMed

    Andrzejak, Marcin; Szczepanik, Dariusz W; Orzeł, Łukasz

    2015-02-21

    Theoretical methods that were previously used to give a good quantitative description of the 3(1)Bu state of trans-2,2'-bithiophene are applied to characterize the lowest triplet states of three bridged cis-2,2'-bithiophenes: 3,3'-cyclopentadithiophene (CPDT), 3,3'-dithienylpyrrole (DTP), and 3,3'-dithienylthiophene (DTT). By obtaining highly accurate reproductions of the phosphorescence spectra of all three compounds, we rationalize the observed vibronic activity, further explore the performance of the applied theoretical methods, and address the quality of the reported experimental spectra. Over the course of this study we have, first, characterized the changes in the electronic structures between the ground state and the lowest triplet state and, second, expressed the related geometrical differences in terms of the Huang-Rhys factors. The Huang-Rhys factors have then been used to generate theoretical emission spectra with vibronic resolution. The applied procedure has yielded quantitative reproductions of the previously reported experimental phosphorescence spectra of DTT and DTP. The experimental spectrum of CPDT, on the other hand, turned out to be considerably narrower and intensity-deficient in its low energy region when compared with the theoretical results. Our experimental reinvestigation of the CPDT phosphorescence has given a refined spectrum that is significantly wider than the previously reported one, and is in nearly quantitative agreement with the theoretical prediction. This enabled us to attribute the observed discrepancy to an experimental artifact associated with the sensitivity characteristics of the commonly used photomultipliers. PMID:25609244

  7. Triplet exciton state and related phenomena in the β -phase of poly(9,9-dioctyl)fluorene

    NASA Astrophysics Data System (ADS)

    Rothe, C.; King, S. M.; Dias, F.; Monkman, A. P.

    2004-11-01

    Using both time-resolved emission and cw photoinduced absorption spectroscopy as a function of temperature, the aggregation phenomena ( β -phase formation) observed in poly(9,9-dioctyl)fluorene is studied. All spectra of the β phase, including absorption, prompt and delayed fluorescence, phosphorescence, and photoinduced triplet absorption feature very narrow linewidths, which are unique within the class of conjugated polymers. From the comparison of the latter data with amorphous polyfluorene, poly(9,9-diethylhexyl)fluorene, as well as with the fully planar ladder-type poly(paraphenylene), we conclude that the origin of the β phase cannot simply be an extended intrachain conjugation, but interchain interactions are involved. Furthermore, the β phase acts as an energetic trap for both singlet and triplet excitons initially created on amorphous chain segments. The delayed fluorescence kinetics of the β phase were measured at different temperatures. From the analysis of these decays within the framework of dispersive triplet migration in a Gaussian density of states distribution, further evidence is provided that the delayed fluorescence originates from triplet-triplet annihilation. At room temperature, it is clear that triplet excitons migrate over large distances, exceeding that of singlet excitons. Also, the segregation time between dispersive triplet migration and classical thermally activated hopping, is in the case of β -phase containing samples, dependent on the separation of the β -phase domains.

  8. Room temperature triplet state spectroscopy of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Reineke, Sebastian; Baldo, Marc A.

    2014-01-01

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is `dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  9. Room temperature triplet state spectroscopy of organic semiconductors

    PubMed Central

    Reineke, Sebastian; Baldo, Marc A.

    2014-01-01

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices. PMID:24445870

  10. Room temperature triplet state spectroscopy of organic semiconductors.

    PubMed

    Reineke, Sebastian; Baldo, Marc A

    2014-01-01

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices. PMID:24445870

  11. The triplet state of tanshinone I and its synergic effect on the phototherapy of cancer cells with curcumin.

    PubMed

    Zhang, Chenchen; Jiang, Shan; Li, Kun; Wang, Mei; Zhu, Rongrong; Sun, Xiaoyu; Wang, Qingxiu; Wang, ShiLong

    2015-11-01

    The excited triplet state of tanshinone I (Tan I) extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge was characterized by laser flash photolysis. The synergic effect of Tan I on the phototherapy of cancer cells with curcumin (Cur) was also investigated by MTT assay because the excited energy transfer from the triplet state of Tan I ((3)Tan I(∗)) to Cur occurred. At the same time, the characteristic absorption spectra of (3)Tan I(∗) were recorded, and its molar absorption coefficient and rate constants for several excited energy transfers were obtained. The photo-therapeutic effect of Cur is enhanced by combination with Tan I. PMID:26046496

  12. Triplet acetylenes as synthetic equivalents of 1,2-bicarbenes: phantom n,pi state controls reactivity in triplet photocycloaddition.

    PubMed

    Zeidan, Tarek A; Kovalenko, Serguei V; Manoharan, Mariappan; Clark, Ronald J; Ghiviriga, Ion; Alabugin, Igor V

    2005-03-30

    Diaryl acetylenes, in which one of the aryl groups is either a pyridine or a pyrazine, undergo efficient triplet state photocycloaddition to 1,4-cyclohexadiene with formation of 1,5-diaryl substituted tetracyclo[3.3.0.0(2,8).0(4,6)]octanes (homoquadricyclanes). In the case of pyrazinyl acetylenes, the primary homoquadricyclane products undergo a secondary photochemical rearangement leading to diaryl substituted tricyclo[3.2.1.0(4,6)]oct-2-enes. Mechanistic and photophysical studies suggest that photocycloaddition proceeds through an electrophilic triplet excited state whereas the subsequent rearrangement to the tricyclooctenes proceeds through a singlet excited state. Chemical and quantum yields for the cycloaddition, in general, correlate with the electron acceptor character of aryl substituents but are attenuated by photophysical factors, such as the competition between the conversion of acetylene singlet excited state into the reactive triplet excited states (intersystem crossing: ISC) and/or to the radical-anion (photoelectron transfer from the diene to the excited acetylene: PET). Dramatically enhanced ISC between pi-pi S(1) state and "phantom" n,pi triplet excited state is likely to be important in directing reactivity to the triplet pathway. The role of PET can be minimized by the judicious choice of reaction conditions (solvent, concentration, etc.). From a practical perspective, such reactions are interesting because "capping" of the triple bond with the polycyclic framework orients the terminal aryl (4-pyridyl, 4-tetrafluoropyridyl, phenyl, etc.) groups in an almost perfect 60 degrees angle and renders such molecules promising supramolecular building blocks, especially in the design of metal coordination polymers. PMID:15783209

  13. Pulse ESR of triplet states of large molecular π systems

    NASA Astrophysics Data System (ADS)

    Knorr, S.; Grupp, A.; Mehring, M.; Wehmeier, M.; Herwig, P.; Iyer, V. S.; Müllen, K.

    1998-08-01

    We report on the electronic properties of flat, disc-type molecules with extended π systems, which are designed as well-defined graphite subunit molecules by a new synthetic route. In our contribution, we have investigated the excited states of three benzenoid hydrocarbons—namely hexa-peri-hexabenzocoronene and two higher homologues—with time-resolved electron spin resonance (ESR) and optical techniques. After applying a laser flash to shock-frozen solutions of these molecules, we find excited states with lifetimes in the range of seconds. We have examined the fine-structure parameters of the triplet states in two molecules and furthermore observed the luminescence in the third one.

  14. Excited triplet states as photooxidants in surface waters

    NASA Astrophysics Data System (ADS)

    Canonica, S.

    2012-12-01

    The chromophoric components of dissolved organic matter (DOM) are generally the main absorbers of sunlight in surface waters and therefore a source of transient reactants under irradiation. Such short-lived species can be relevant for the fate of various classes of chemical contaminants in the aquatic environment. The present contribution focuses on the role of excited triplet states of chromophoric DOM, 3CDOM*, as transient photooxidants initiating the transformation and degradation of organic chemical contaminants. An early study [1] indicated that 3CDOM* may play a dominant role in the photo-induced transformation of electron-rich phenols, a conclusion which was later fortified by the results of transient absorption investigations using aromatic ketones as model photosensitizers [2] and by a recent careful analysis of the effect of oxygen concentration on transformation rates [3]. The variety of aquatic contaminants shown to be affected by triplet-induced oxidation has kept increasing, phenylurea herbicides [4], sulfonamide antibiotics [5] and some phytoestrogens [6] being prominent examples. Recent research has shown that the triplet-induced transformation of specific contaminants, especially aromatic nitrogen compounds, could be inhibited by the presence of DOM, very probably due to its antioxidant moieties [7]. While such moieties are not relevant for the quenching of 3CDOM*, they are expected to react with it in a similar way as the studied contaminants. Analogous reactions can be postulated to occur in liquid or solid phases of the atmospheric environment, as demonstrated in the case of HONO formation [8]. References 1. Canonica, S.; Jans, U.; Stemmler, K.; Hoigné, J. Transformation kinetics of phenols in water: Photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 1995, 29 (7), 1822-1831. 2. Canonica, S.; Hellrung, B.; Wirz, J. Oxidation of phenols by triplet aromatic ketones in aqueous solution. J. Phys. Chem. A 2000, 104 (6), 1226-1232. 3. Golanoski, K. S.; Fang, S.; Del Vecchio, R.; Blough, N. V. Investigating the mechanism of phenol photooxidation by humic substances. Environ. Sci. Technol. 2012, 46 (7), 3912-3920. 4. Gerecke, A. C.; Canonica, S.; Müller, S. R.; Schärer, M.; Schwarzenbach, R. P. Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes. Environ. Sci. Technol. 2001, 35 (19), 3915-3923. 5. Boreen, A. L.; Arnold, W. A.; McNeill, K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2 extrusion photoproduct. Environ. Sci. Technol. 2005, 39 (10), 3630-3638. 6. Felcyn, J. R.; Davis, J. C. C.; Tran, L. H.; Berude, J. C.; Latch, D. E. Aquatic photochemistry of isoflavone phytoestrogens: Degradation kinetics and pathways. Environ. Sci. Technol. 2012, 46 (12), 6698-6704. 7. Wenk, J.; Canonica, S. Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution. Environ. Sci. Technol. 2012, 46 (10), 5455-5462. 8. George, C.; Strekowski, R. S.; Kleffmann, J.; Stemmler, K.; Ammann, M. Photoenhanced uptake of gaseous NO2 on solid-organic compounds: a photochemical source of HONO? Faraday Discuss. 2005, 130, 195-210.

  15. Aromaticity Reversal in the Lowest Excited Triplet State of Archetypical Möbius Heteroannulenic Systems.

    PubMed

    Oh, Juwon; Sung, Young Mo; Kim, Woojae; Mori, Shigeki; Osuka, Atsuhiro; Kim, Dongho

    2016-05-23

    The aromaticity reversal in the lowest triplet state (T1 ) of a comparable set of Hückel/Möbius aromatic metalated expanded porphyrins was explored by optical spectroscopy and quantum calculations. In the absorption spectra, the T1 states of the Möbius aromatic species showed broad, weak, and ill-defined spectral features with small extinction coefficients, which is in line with typical antiaromatic expanded porphyrins. In combination with quantum calculations, these results indicate that the Möbius aromatic nature of the S0 state is reversed to Möbius antiaromaticity in the T1 state. This is the first experimental observation of aromaticity reversal in the T1 state of Möbius aromatic molecules. PMID:27079620

  16. Synthesis of Aza-m-Xylylene diradicals with large singlet-triplet energy gap and statistical analyses of their EPR spectra

    SciTech Connect

    Olankitwanit, Arnon; Pink, Maren; Rajca, Suchada; Rajca, Andrzej

    2014-10-08

    We describe synthesis and characterization of a derivative of aza-m-xylylene, diradical 2, that is persistent in solution at room temperature with the half-life measured in minutes (~80–250 s) and in which the triplet ground state is below the lowest singlet state by >10 kcal mol⁻¹. The triplet ground states and ΔEST of 2 in glassy solvent matrix are determined by a new approach based on statistical analyses of their EPR spectra. Characterization and analysis of the analogous diradical 1 are carried out for comparison. Statistical analyses of their EPR spectra reliably provide improved lower bounds for ΔEST (from >0.4 to >0.6 kcal mol⁻¹) and are compatible with a wide range of relative contents of diradical vs monoradical, including samples in which the diradical and monoradical are minor and major components, respectively. This demonstrates a new powerful method for the determination of the triplet ground states and ΔEST applicable to moderately pure diradicals in matrices.

  17. Carotenoid triplet states in photosystem II: coupling with low-energy states of the core complex.

    PubMed

    Santabarbara, Stefano; Agostini, Alessandro; Casazza, Anna Paola; Zucchelli, Giuseppe; Carbonera, Donatella

    2015-02-01

    The photo-excited triplet states of carotenoids, sensitised by triplet-triplet energy transfer from the chlorophyll triplet states, have been investigated in the isolated Photosystem II (PSII) core complex and PSII-LHCII (Light Harvesting Complex II) supercomplex by Optically Detected Magnetic Resonance techniques, using both fluorescence (FDMR) and absorption (ADMR) detection. The absence of Photosystem I allows us to reach the full assignment of the carotenoid triplet states populated in PSII under steady state illumination at low temperature. Five carotenoid triplet ((3)Car) populations were identified in PSII-LHCII, and four in the PSII core complex. Thus, four (3)Car populations are attributed to β-carotene molecules bound to the core complex. All of them show associated fluorescence emission maxima which are relatively red-shifted with respect to the bulk emission of both the PSII-LHCII and the isolated core complexes. In particular the two populations characterised by Zero Field Splitting parameters |D|=0.0370-0.0373 cm(-1)/|E|=0.00373-0.00375 cm(-1) and |D|=0.0381-0.0385 cm(-1)/|E|=0.00393-0.00389 cm(-1), are coupled by singlet energy transfer with chlorophylls which have a red-shifted emission peaking at 705 nm. This observation supports previous suggestions that pointed towards the presence of long-wavelength chlorophyll spectral forms in the PSII core complex. The fifth (3)Car component is observed only in the PSII-LHCII supercomplex and is then assigned to the peripheral light harvesting system. PMID:25481107

  18. Automatic stellar spectra parameterisation in the IR Ca ii triplet region

    NASA Astrophysics Data System (ADS)

    Kordopatis, G.; Recio-Blanco, A.; de Laverny, P.; Bijaoui, A.; Hill, V.; Gilmore, G.; Wyse, R. F. G.; Ordenovic, C.

    2011-11-01

    Context. Galactic archaeology aims to determine the evolution of the Galaxy from the chemical and kinematical properties of its individual stars. This requires the analysis of data from large spectroscopic surveys, with sample sizes in tens of thousands at present, with millions of stars being reached in the near future. Such large samples require automated analysis techniques and classification algorithms to obtain robust estimates of the stellar parameter values. Several on-going and planned spectroscopic surveys have selected their wavelength region to contain the IR Ca ii triplet (~λλ 8500 Å) and the work presented in this paper focuses on the automatic analysis of such spectra. Aims: We aim to develop and test an automatic method by which one can obtain estimates of values of the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) from a stellar spectrum. We also explore the degeneracies in parameter space, estimate the uncertainties in the derived parameter values and investigate the consequences of these limitations for achieving the goals of galactic archaeology. Methods: We investigated two algorithms, both of which compare the observed spectrum to a grid of synthetic spectra, but each uses a different mathematical approach for finding the optimum match and hence the best values of the stellar parameters. Our investigation of these algorithms' robustness can be widely applied because it amplifies the main problems that the other methods can encounter. The first algorithm, MATISSE, derives the values of each stellar parameter through a local fit to the spectrum such that each pixel in wavelength space is treated separately. The sensitivity of the flux at each wavelength to the value of a given stellar parameter is determined from the synthetic spectra. The observed spectrum is then projected using these sensitivity vectors to give an estimated value of the stellar parameters. This value depends on finding the true minimum in the fit and the algorithm must avoid being trapped in false local minima. The second algorithm, DEGAS, uses a pattern-recognition approach and consequently has a more global vision of the parameter space. The best-fit synthetic spectrum is derived through a series of comparisons between the observed and synthetic spectra, summed over wavelength pixels, with additional refinements in the set of synthetic spectra after each stage, i.e. a decision tree. Results: We identified physical degeneracies in different regions of the H - R diagram: hot dwarf and giant stars share the same spectral signatures. Furthermore, it is very difficult to determine an accurate value for the surface gravity of cooler dwarfs. These effects are intensified when the lack of information increases, which happens for low-metallicity stars or spectra with low signal-to-noise ratios (SNRs). Our results demonstrate that the local projection method is preferred for spectra with high SNR, whereas the decision-tree method is preferred for spectra of lower SNR. We therefore propose a hybrid approach, combining these methods, and demonstrate that sufficiently accurate results for the purposes of galactic archaeology studies are retrieved down to SNR ~ 20 for typical parameter values of stars belonging to the local thin or thick disc, and for SNR down to ~50 for the more metal-poor giant stars of the halo. Conclusions: If unappreciated, degeneracies in stellar parameters can introduce biases and systematic errors in derived quantities for target stars such as distances and full space motions. These can be minimised using the knowledge gained by thorough testing of the proposed stellar classification algorithm, which in turn lead to robust automated methods for the coming extensive spectroscopic surveys of stars in the Local Group.

  19. Direct Observation of Thermal Equilibrium of Excited Triplet States of 9,10-Phenanthrenequinone. A Time-Resolved Resonance Raman Study.

    PubMed

    Kumar, Venkatraman Ravi; Rajkumar, Nagappan; Ariese, Freek; Umapathy, Siva

    2015-10-01

    The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR(3)) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (?s). Interestingly, TR(3) spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ, assigned to n?* and ??* of which the ??* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (?2 ns) between the T(2)(1(3)n?*) and T(1)(1(3)??*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents [ J. Chem. Phys. 2015 , 142 , 24305 ] suggest that the lowest n?* and ??* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism. PMID:26381591

  20. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  1. Multiphoton ionization spectroscopy of triplet states and radicals created in a supersonic beam

    NASA Astrophysics Data System (ADS)

    Johnson, P. M.; Sharpe, S. W.

    1986-08-01

    Substantial quantities of triplet metastables and radicals are produced in a pulsed supersonic expansion by a pulsed electric discharge. Multiphoton ionization transititions of nitrogen molecule are seen originating from various metastable states throughout the visible and ultraviolet regions. Among these are the np←E3∑+g Rydberg transition. This constitutes the first identification of a triplet Rydberg series in nitrogen. Triplet states have also been studied in benzene. Radicals produced in the supersonic discharge include CC1, where the vibrational and rotational constants of the B state have been established by the resolution of higher vibrational levels for the first time.

  2. Transient EPR Reveals Triplet State Delocalization in a Series of Cyclic and Linear π-Conjugated Porphyrin Oligomers

    PubMed Central

    2015-01-01

    The photoexcited triplet states of a series of linear and cyclic butadiyne-linked porphyrin oligomers were investigated by transient Electron Paramagnetic Resonance (EPR) and Electron Nuclear DOuble Resonance (ENDOR). The spatial delocalization of the triplet state wave function in systems with different numbers of porphyrin units and different geometries was analyzed in terms of zero-field splitting parameters and proton hyperfine couplings. Even though no significant change in the zero-field splitting parameters (D and E) is observed for linear oligomers with two to six porphyrin units, the spin polarization of the transient EPR spectra is particularly sensitive to the number of porphyrin units, implying a change of the mechanism of intersystem crossing. Analysis of the proton hyperfine couplings in linear oligomers with more than two porphyrin units, in combination with density functional theory calculations, indicates that the spin density is localized mainly on two to three porphyrin units rather than being distributed evenly over the whole π-system. The sensitivity of the zero-field splitting parameters to changes in geometry was investigated by comparing free linear oligomers with oligomers bound to a hexapyridyl template. Significant changes in the zero-field splitting parameter D were observed, while the proton hyperfine couplings show no change in the extent of triplet state delocalization. The triplet state of the cyclic porphyrin hexamer has a much decreased zero-field splitting parameter D and much smaller proton hyperfine couplings with respect to the monomeric unit, indicating complete delocalization over six porphyrin units in this symmetric system. This surprising result provides the first evidence for extensive triplet state delocalization in an artificial supramolecular assembly of porphyrins. PMID:26035477

  3. Higher triplet state of fullerene C70 revealed by electron spin relaxation.

    PubMed

    Uvarov, Mikhail N; Behrends, Jan; Kulik, Leonid V

    2015-12-28

    Spin-lattice relaxation times T1 of photoexcited triplets (3)C70 in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30-100 K, the temperature dependence of T1 was fitted by the Arrhenius law with an activation energy of 172 cm(-1). This indicates that the dominant relaxation process of (3)C70 is described by an Orbach-Aminov mechanism involving the higher triplet state t2 which lies 172 cm(-1) above the lowest triplet state t1. Chemical modification of C70 fullerene not only decreases the intrinsic triplet lifetime by about ten times but also increases T1 by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in (3)C70 and its absence in triplet C70 derivatives. The presence of the higher triplet state in C70 is in good agreement with the previous results from phosphorescence spectroscopy. PMID:26723678

  4. Identifying the efficient inter-conversion between singlet and triplet charge-transfer states by magneto-electroluminescence study

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Peng, Qiming; Yao, Liang; Gao, Na; Li, Feng

    2013-02-01

    Using the magneto-electroluminescence (MEL) as a tool, we demonstrated the efficient inter-conversion between singlet and triplet charge-transfer (CT) states in exciplex-based organic light-emitting diodes (OLEDs). Results show that the MEL of exciplex-based device is larger than that of exciton-based device by a factor of 3.2. The emission of exciplex-based devices comes from the direct intermolecular electron-hole pair recombination and their spin exchange energy is much smaller, which causes the efficient inter-conversion between singlet and triplet states. This argument was supported by the consistent evolutions of the MEL and EL spectra versus applied bias and donor concentrations. Finally, the bandgap effects on the MEL as well as the external quantum efficiency of exciplex-based devices were discussed. Our findings of MEL may offer a feasible way to unravel underlying mechanisms that limit the EL efficiency in the OLEDs.

  5. Photoexcited singlet and triplet states of a UV absorber ethylhexyl methoxycrylene.

    PubMed

    Kikuchi, Azusa; Hata, Yuki; Kumasaka, Ryo; Nanbu, Yuichi; Yagi, Mikio

    2013-01-01

    The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR B(min) signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the (3)ππ* character in the T1 state. The zero-field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm(-1). PMID:23136952

  6. The "non-reaction" of ground-state triplet carbon atoms with water revisited.

    PubMed

    Schreiner, Peter R; Reisenauer, H Peter

    2006-04-10

    We introduce a novel experimental setup for the generation of carbon atoms by means of pulsed laser ablation with a pulse rate optimized to avoid warming of the matrix. The combination of this technique with annealing of the matrix, recooling, and spectral recording (e.g. IR) allowed us to differentiate between the reactivity of triplet and singlet carbon atoms towards water under matrix-isolation conditions. Our experimental procedure assures the relaxation of all unreacted carbon atoms to their triplet ground state in the 10 K matrix before spectral recording. In agreement with CCSD(T)/cc-pVTZ+ZPVE computational data and earlier lower level results, we find that triplet carbon atoms indeed do not react with water, despite their high initial energy. Intersystem crossing of the triplet to singlet states of hydroxy carbene are less important, as the barriers for rearrangement of the initial complex of triplet carbon atoms and water to covalently bound species are too high, and dissociation is more likely. We found no evidence for a direct O--H bond-insertion path for triplet carbon atoms. Self-condensation reactions of triplet carbon atoms are clearly favored and yield carbon clusters that show reactivity of their own. The proposed formation of aldoses in extraterrestrial environments can therefore only derive from "hot" carbon atoms or through photoreactions. PMID:16596611

  7. Valley spin-orbit interaction for the triplet and doublet 1sground states of lithium donor center in monoisotopic {sup 28}Si

    SciTech Connect

    Ezhevskii, Alexander A.; Popkov, Sergey A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Konakov, Anton A.; Abrosimov, Nikolai V.; Riemann, Helge

    2013-12-04

    Valley spin-orbit interaction for the triplet and doublet 1s-ground states of lithium donor center in monoisotopic {sup 28}Si was studied in order to determine its contribution to the electron spin relaxation rate. We observed new electron paramagnetic resonance spectra of lithium in monoisotopic silicon with g<2.000 and found the spin Hamiltonian parameters for it. Using our experimental results and taking into account spin-orbit coupling between the triplet states and the triplet and doublet states we found that the lithium donor electron spectrum and g-factors for its states strongly depend on both the internal strains in the crystal and the intervalley spin-orbit interactions.

  8. Singlet-Triplet Ground-State Instability in Square Quantum Dot

    NASA Astrophysics Data System (ADS)

    Negishi, Yuki; Ishizuki, Masamu; Tsubaki, Atsushi; Takeda, Kyozaburo; Asari, Yusuke; Ohno, Takahisa

    2011-12-01

    We theoretically study the spin multiplicity in the ground state of the square quantum dot (SQD) including four electrons, and discuss a possibility of the singlet-triplet (S/T) instability in the quantum system. As predicted by Hund's rule, the ground-state triplet appears when the DQD has a point group symmetry of D4h. This ground-state triplet is also found even in the deformed SQD (D2h) if the confinement length L is elongated. Consequently, the S/T instability is expected along these boundary lines. It is also worthwhile to notice that the present DFT as well as UHF calculation predicts the spin-singlet ground-state when the inter-electron interaction is strengthened (larger L) even though the SQD maintains its geometrical form of D4h. The strong electron-localization causes the destabilization in the orbital (kinetic) energies, and produces this characteristic "anti-Hund" state.

  9. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity.

    PubMed

    Wei, Yu-Jia; He, Yu; He, Yu-Ming; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven; McCutcheon, Dara P S; Nazir, Ahsan

    2014-08-29

    We investigate temperature-dependent resonance fluorescence spectra obtained from a single self-assembled quantum dot. A decrease of the Mollow triplet sideband splitting is observed with increasing temperature, an effect we attribute to a phonon-induced renormalization of the driven dot Rabi frequency. We also present first evidence for a nonperturbative regime of phonon coupling, in which the expected linear increase in sideband linewidth as a function of temperature is canceled by the corresponding reduction in Rabi frequency. These results indicate that dephasing in semiconductor quantum dots may be less sensitive to changes in temperature than expected from a standard weak-coupling analysis of phonon effects. PMID:25216004

  10. Excited state kinetics in crystalline solids: self-quenching in nanocrystals of 4,4'-disubstituted benzophenone triplets occurs by a reductive quenching mechanism.

    PubMed

    Kuzmanich, Gregory; Simoncelli, Sabrina; Gard, Matthew N; Spänig, Fabian; Henderson, Bryana L; Guldi, Dirk M; Garcia-Garibay, Miguel A

    2011-11-01

    We report an efficient triplet state self-quenching mechanism in crystals of eight benzophenones, which included the parent structure (1), six 4,4'-disubstituted compounds with NH(2) (2), NMe(2) (3), OH (4), OMe (5), COOH (6), and COOMe (7), and benzophenone-3,3',4,4'-tetracarboxylic dianhydride (8). Self-quenching effects were determined by measuring their triplet-triplet lifetimes and spectra using femtosecond and nanosecond transient absorption measurements with nanocrystalline suspensions. When possible, triplet lifetimes were confirmed by measuring the phosphorescence lifetimes and with the help of diffusion-limited quenching with iodide ions. We were surprised to discover that the triplet lifetimes of substituted benzophenones in crystals vary over 9 orders of magnitude from ca. 62 ps to 1 ms. In contrast to nanocrystalline suspensions, the lifetimes in solution only vary over 3 orders of magnitude (1-1000 μs). Analysis of the rate constants of quenching show that the more electron-rich benzophenones are the most efficiently deactivated such that there is an excellent correlation, ρ = -2.85, between the triplet quenching rate constants and the Hammet σ(+) values for the 4,4' substituents. Several crystal structures indicate the existence of near-neighbor arrangements that deviate from the proposed ideal for "n-type" quenching, suggesting that charge transfer quenching is mediated by a relatively loose arrangement. PMID:21936539

  11. Hole-burning and phosphorescence line-narrowing of the triplet ππ * state in glassy matrices

    NASA Astrophysics Data System (ADS)

    Riesen, Hans; Krausz, Elmars

    1991-08-01

    The low-temperature hole-burning spectra of the triplet ππ * state of coronene in 1-bromobutane: ethyliodide 4:1 (v/v) and 5-bromoacenaphthene and 2-iodoquinoline in 1-bromobutane are reported. The coronene system is unique in showing distinct sideholes. The lack of sideholes in the other two systems is attributed to a noncorrelation of the zero-field splitting within the probed isoenergetic component of the inhomogeneous distribution. This aspect is further pursued by phosphorescence-line-narrowing experiments for the 2-iodoquinoline/1-bromobutane system in magnetic fields up to 0.83 T.

  12. The lowest triplet state of azulene- h8 and azulene- d8 in liquid solution. I. Survey, kinetic considerations, experimental technique, and temperature dependence of triplet decay

    NASA Astrophysics Data System (ADS)

    Nickel, Bernhard; Klemp, Dieter

    1993-08-01

    The decay rate constant k for the lowest triplet state of azulene (T 1) can be determined from the time dependence of three kinetically different delayed luminescences: (1) delayed S 2 → S 0 fluorescence due to hetero triplet-triplet annihilation T 1+T' 1 ⇝ S 2+S' 0, where T' 1 is the lowest triplet state of a sensitizer; (2) delayed S 2→S 0 fluorescence due to thermally activated homo triplet-triplet annihilation T 1+T 1⇝S 2+S 0; (3) phosphorescence and E-type delayed S 1→S 0 fluorescence. The kinetic and experimental conditions for the reliable determination of k are treated in detail. k has been determined between 130 and 270 K for azulene- h8 and azulene- d8 in isopentane. The temperature dependence of k can be represented by k= k0+ k1 exp(- Ea/ kBT). The values of k0, k1 and Ea are significantly different for azulene- h8 and azulene- d8.

  13. Triplet state formation in photovoltaic blends of DPP-type copolymers and PC71 BM.

    PubMed

    Ochsmann, Julian R; Chandran, Deepak; Gehrig, Dominik W; Anwar, Husna; Madathil, Pramod Kandoth; Lee, Kwang-Sup; Laquai, Frédéric

    2015-06-01

    The exciton dynamics in pristine films of two structurally related low-bandgap diketopyrrolopyrrole (DPP)-based donor-acceptor copolymers and the photophysical processes in bulk heterojunction solar cells using DPP copolymer:PC71 BM blends are investigated by broadband transient absorption (TA) pump-probe experiments covering the vis-near-infrared spectral and fs-μs dynamic range. The experiments reveal surprisingly short exciton lifetimes in the pristine poly-mer films in conjunction with fast triplet state formation. An in-depth analysis of the TA data by multivariate curve resolution analysis shows that in blends with fullerene as acceptor ultrafast exciton dissociation creates charge carriers, which then rapidly recombine on the sub-ns timescale. Furthermore, at the carrier densities created by pulsed laser excitation the charge carrier recombination leads to a substantial population of the polymer triplet state. In fact, virtually quantitative formation of triplet states is observed on the sub-ns timescale. However, the quantitative triplet formation on the sub-ns timescale is not in line with the power conversion efficiencies of devices indicating that triplet state formation is an intensity-dependent process in these blends and is reduced under solar illumination conditions, as free charge carriers can be extracted from the photoactive layer in devices. PMID:25923668

  14. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    NASA Astrophysics Data System (ADS)

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-01

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  15. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer

    SciTech Connect

    Wu, Tony C.; Congreve, Daniel N.; Baldo, Marc A.

    2015-07-20

    The ability to upconvert light is useful for a range of applications, from biological imaging to solar cells. But modern technologies have struggled to upconvert incoherent incident light at low intensities. Here, we report solid state photon upconversion employing triplet-triplet exciton annihilation in an organic semiconductor, sensitized by a thermally activated-delayed fluorescence (TADF) dye. Compared to conventional phosphorescent sensitizers, the TADF dye maximizes the wavelength shift in upconversion due to its small singlet-triplet splitting. The efficiency of energy transfer from the TADF dye is 9.1%, and the conversion yield of sensitizer exciton pairs to singlet excitons in the annihilator is 1.1%. Our results demonstrate upconversion in solid state geometries and with non-heavy metal-based sensitizer materials.

  16. Investigation of the triplet state of chlorophylls. Technical progress report, May 1, 1979-April 30, 1980

    SciTech Connect

    Clarke, R.H.

    1980-01-01

    The triplet state of chlorophyll has been utilized as a nondestructive probe into the structural and dynamical nature of the photosynthetic apparatus, both in vitro and in isolated in vivo subunits. During the past year, using zero-field triplet state optically detected magnetic resonance spectroscopy, the research program has examined triplet energy transfer between photosynthetic pigments in solution; has isolated and studied subchloroplast particles enriched with photo-system I and the light harvesting chlorophyll protein (antenna) system; and has examined model chlorophyll-protein systems, specifically chlorophyll protein 668 and the reconstituted myoglobins. The overall aim of the research program has been to detail the physical features and interactions of the photosynthetic pigment systems through examination of structural subunits of the photosynthetic apparatus and model systems which represent them.

  17. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    NASA Astrophysics Data System (ADS)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the optimization of the performance of molecular photovoltaic devices. I will present the state of the art in this field and discuss the mechanisms of polaron pair generation and recombination in the novel low band gap polymer-fullerene blends as well as in high-efficiency SC. This work was financially supported by the German Research Council (DFG) within the SPP1355 Project ``Elementary processes in organic photovoltaics'' under contract DY18/6.

  18. Nonradiative deactivation of the lowest excited triplet state of the dibenzo- p-dioxin molecule

    NASA Astrophysics Data System (ADS)

    Gastilovich, E. A.; Klimenko, V. G.; Volkova, L. V.; Nurmukhametov, R. N.

    2011-11-01

    In the nonadiabatic approximation, we study how intramolecular interactions affect the nonradiative energy degradation T {1/ s } ↝ S 0 of triplet sublevels s of the lowest triplet state of the dibenzo- p-dioxin molecule. We consider the role played in the degradation by the shape of promoting high- and low-frequency vibrational modes and by spin-orbit interactions separately in the carbon backbone of the molecule and in heteroatoms (oxygen). We find that σ-electrons of oxygen that correspond to the lone pair and to valence electrons play different roles in the nonadiabatic interaction.

  19. Triplet state photochemistry and the three-state crossing of acetophenone within time-dependent density-functional theory

    SciTech Connect

    Huix-Rotllant, Miquel Ferré, Nicolas

    2014-04-07

    Even though time-dependent density-functional theory (TDDFT) works generally well for describing excited states energies and properties in the Franck-Condon region, it can dramatically fail in predicting photochemistry, notably when electronic state crossings occur. Here, we assess the ability of TDDFT to describe the photochemistry of an important class of triplet sensitizers, namely, aromatic ketones. We take acetophenone as a test molecule, for which accurate ab initio results exist in the literature. Triplet acetophenone is generated thanks to an exotic three-state crossing involving one singlet and two triplets states (i.e., a simultaneous intersystem crossing and triplet conical intersection), thus being a stringent test for approximate TDDFT. We show that most exchange-correlation functionals can only give a semi-qualitative picture of the overall photochemistry, in which the three-state crossing is rather represented as a triplet conical intersection separated from the intersystem crossing. The best result overall is given by the double hybrid functional mPW2PLYP, which is even able to reproduce quantitatively the three-state crossing region. We rationalize this results by noting that double hybrid functionals include a larger portion of double excitation character to the excited states.

  20. Theoretical study of long oligothiophene dications: bipolaron vs polaron pair vs triplet state.

    PubMed

    Zade, Sanjio S; Bendikov, Michael

    2006-08-17

    A series of oligothiophene dications (from the sexithiophene dication to the 50-mer oligothiophene dication, nT2+, n = 6-50) were studied. Density functional theory (DFT) at the B3LYP/6-31G(d) level and, in some cases, also at BLYP/6-31Gd, was applied to study the singlet and triplet states of the whole series. We found that the singlet state is the ground state for all oligothiophene dications up to the 20-mer, and that the singlet and triplet states are degenerate for longer oligomers. Thus, the triplet state is never a pure ground state for these dications. We found that, for short oligothiophenes dication (e.g., 6T2+), the bipolaron state is the more important state, with only a small contribution made by the polaron pair state. For medium size oligothiophene dications (e.g., 14T2+), both the bipolaron state and the polaron-pair state contribute to the electronic structure. Finally, in long oligothiophene dications, such as 30T2+ and 50T2+, the contribution from the polaron pair state becomes dominant, and these molecules can be considered as consisting of two independent cation radicals or a polaron pair. Results from isodesmic reactions show that the stability of oligothiophene cation radicals over dications is inversely proportional to chain length. Small oligothiophene dications (n = 6-12) were studied at the CASSCF(m,m)/6-31G(d) (m = 4, 6, and 10) level. The major conclusions of this paper regarding the relative energy of the singlet state versus the triplet state and regarding the relative stability of the bipolaron versus the polaron pair were also supported by CASSCF calculations. PMID:16898734

  1. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  2. Triplet-singlet conversion in ultracold Cs{sub 2} and production of ground-state molecules

    SciTech Connect

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier; Pichler, Marin

    2011-02-15

    We propose a process to convert ultracold metastable Cs{sub 2} molecules in their lowest triplet state into (singlet) ground-state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled A {sup 1{Sigma}}{sub u}{sup +}-b {sup 3{Pi}}{sub u} states. Using spectroscopic data and accurate quantum chemistry calculations for Cs{sub 2} potential curves and transition dipole moments, we show that this process competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  3. Aqueous secondary organic aerosol (SOA) production from the oxidation of phenols by triplet excited state organics

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; Zhang, Q.; Anastasio, C.

    2011-12-01

    Recent literature has shown that atmospheric condensed-phase chemistry can play a significant role in the evolution of organic aerosols, including the formation of secondary organic aerosol (SOA). SOA formation from the oxidation of volatile organic compounds (VOCs) in the aqueous phase has largely focused on oxidations involving the hydroxyl radical and other oxidants, such as photochemically created triplet excited states, have not been fully investigated. Phenolic compounds are one of the primary carbon emission classes from biomass and wood combustion and have significant water solubility. Once in the aqueous phase, phenolic compounds can react with the triplet excited states of non-phenolic aromatic carbonyls (NPCs), particle-bound organics that are also emitted in large quantities from wood combustion. The oxidation of phenolic species in the condensed phase by triplet excited states can result in the production of SOA. A main goal of this study was to investigate bulk solution reaction kinetics under atmospherically relevant conditions in order to ascertain how these reactions can impact aqueous-phase SOA production. In our experiments, we studied the reactions of five phenols (phenol, guaiacol, syringol, catechol, and resorcinol) with the triplet state of 3,4-dimethoxybenzaldehyde (34-DMB) during simulated solar radiation. We have characterized the impacts of pH, ionic strength and reactant concentrations on the reaction behavior of this system. In addition, we analyzed the SOA formed using high-resolution aerosol mass spectrometry, ion chromatography, and liquid chromatography-mass spectrometry to infer the reaction mechanisms. Our evidence suggests that under atmospherically relevant conditions, triplet excited states can be the dominant oxidant of phenolics and contribute significantly to the total SOA budget.

  4. Measurements and Analysis of Helium-Like Triplet Ratios in the X-Ray Spectra of O-Type Stars

    SciTech Connect

    Leutenegger, Maurice A.; Paerels, Frits B.S.; Kahn, Steven M.; Cohen, David H.; /Swarthmore Coll.

    2006-06-19

    We discuss new methods of measuring and interpreting the forbidden-to-intercombination line ratios of helium-like triplets in the X-ray spectra of O-type stars, including accounting for the spatial distribution of the X-ray emitting plasma and using the detailed photospheric UV spectrum. Measurements are made for four O stars using archival Chandra HETGS data. We assume an X-ray emitting plasma spatially distributed in the wind above some minimum radius R{sub 0}. We find minimum radii of formation typically in the range of 1.25 < R{sub 0}/R{sub *} < 1.67, which is consistent with results obtained independently from line profile fits. We find no evidence for anomalously low f/i ratios and we do not require the existence of X-ray emitting plasmas at radii that are too small to generate sufficiently strong shocks.

  5. Dual phosphorescence from 2-(2?-hydroxyphenyl)benzoxazole due to keto-enol tautomerism in the metastable triplet state

    NASA Astrophysics Data System (ADS)

    Prieto, M. Flor Rodrguez; Nickel, Bernhard; Grellmann, Karl H.; Mordzi?ski, Andrzej

    1988-05-01

    The photoexcitation of liquid solutions of 2-(2'-hydroxyphenyl)benzoxazole (HBO) in alkanes leads to a dual phosphorescence which can be assigned to the keto and enol forms of HBO. The keto-enol tautomerism in the metastable triplet state of HBO is practically independent of temperature. The keto and enol bands of the phosphorescence from HBO decay monoexponentially with the same rate constant. The experimental data on the phosphorescence from HBO are consistent with those on the transient absorption of HBO. At high triplet concentration and low solvent viscosity, a delayed fluorescence from HBO due to triplet-triplet annihilation is also observed.

  6. Triplet excited state distortions in a pyrazolate bridged platinum dimer measured by X-ray transient absorption spectroscopy.

    PubMed

    Lockard, Jenny V; Rachford, Aaron A; Smolentsev, Grigory; Stickrath, Andrew B; Wang, Xianghuai; Zhang, Xiaoyi; Atenkoffer, Klaus; Jennings, Guy; Soldatov, Alexander; Rheingold, Arnold L; Castellano, Felix N; Chen, Lin X

    2010-12-01

    The excited-state structure of a dinuclear platinum(II) complex with tert-butyl substituted pyrazolate bridging units, [Pt(ppy)(?-(t)Bu(2)pz)](2) (ppy = 2-phenylpyridine; (t)Bu(2)pz = 3,5-di-tert-butylpyrazolate) is studied by X-ray transient absorption (XTA) spectroscopy to reveal the transient electronic and nuclear geometry. DFT calculations predict that the lowest energy triplet excited state, assigned to a metal-metal-to-ligand charge transfer (MMLCT) transition, has a contraction in the Pt-Pt distance. The Pt-Pt bond length and other structural parameters extracted from fitting the experimental XTA difference spectra from full multiple scattering (FMS) and multidimensional interpolation calculations indicates a metal-metal distance decrease by approximately 0.2 in the triplet excited state. The advantages and challenges of this approach in resolving dynamic transient structures of nonbonding or weak-bonding dinuclear metal complexes in solution are discussed. PMID:21067164

  7. Triplet ground state of the neutral oxygen-vacancy donor in rutile TiO2

    NASA Astrophysics Data System (ADS)

    Brant, A. T.; Golden, E. M.; Giles, N. C.; Yang, Shan; Sarker, M. A. R.; Watauchi, S.; Nagao, M.; Tanaka, I.; Tryk, D. A.; Manivannan, A.; Halliburton, L. E.

    2014-03-01

    Electron paramagnetic resonance (EPR) is used to investigate the triplet (S = 1) ground state of the neutral oxygen vacancy in bulk rutile TiO2 crystals. This shallow donor consists of an oxygen vacancy with two nearest-neighbor, exchange-coupled Ti3+ ions located along the [001] direction and equidistant from the vacancy. The spins of the two trapped electrons, one at each Ti3+ ion, align parallel to give the S = 1 state. These neutral oxygen vacancies are formed near 25 K in as-grown oxidized TiO2 crystals by illuminating with sub-band-gap 442 nm laser light. The angular dependence of the EPR spectra provides the principal values and axes for the g and D matrices. Observations of the 47Ti and 49Ti hyperfine lines when the magnetic field is along high-symmetry directions show that the two Ti3+ ions are equivalent; i.e., they have equal hyperfine A matrices. The A matrix for each Ti3+ ion in the neutral S = 1 oxygen vacancy is approximately half of the A matrix reported earlier for the one Ti3+ ion in the singly ionized S = 1/2 oxygen vacancy [Brant et al., J. Appl. Phys. 114, 113702 (2013), 10.1063/1.4819805]. The neutral oxygen vacancies are thermally unstable above 25 K. They release an electron to the conduction band with an activation energy near 63 meV and convert to singly ionized S = 1/2 oxygen vacancies. When undoped TiO2 is sufficiently oxygen deficient (i.e., reduced), this combination of conduction band electrons and singly ionized oxygen vacancies may result in carrier-mediated ferromagnetism at room temperature.

  8. Kinetic Parameters of Photo-Excited Triplet State of Pentacene Determined by Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Kawahara, Tomomi; Sakaguchi, Satoshi; Tateishi, Kenichiro; Tang, Tsz Leung; Uesaka, Tomohiro

    2015-04-01

    The lifetimes and spin-lattice relaxation time of photo-excited triplet electron of pentacene doped in p-terphenyl at room temperature have been investigated. Values of spin-lattice relaxation time previously reported in ESR studies are inconsistent with each other. In this paper, we determined these time constants based on proton signals enhanced by dynamic nuclear polarization using the electrons (Triplet-DNP). The combined analysis of dependences of proton signal intensities on the delay time of polarization transfer and laser pulse structure allows us to disentangle contributions of the lifetimes and spin-lattice relaxation time. The lifetimes of triplet sublevels with ms = 0 and ±1 were determined to be 22.3 and 88 µs, respectively. The spin-lattice relaxation time was found to be longer than 300 µs, hence the time evolution of the electron population in the triplet state is governed by the lifetimes. It was also found that the proton signal enhancement is limited at a high repetition rate by the partial cancellation of the electron spin polarization by the remaining population produced by the preceding laser pulses.

  9. Inter-and intraspecific variation in excited-state triplet energy transfer rates in reaction centers of photosynthetic bacteria.

    SciTech Connect

    Laible, P. D.; Morris, Z. S.; Thurnauer, M. C.; Schiffer, M.; Hanson, D. K.

    2003-08-01

    In protein-cofactor reaction center (RC) complexes of purple photosynthetic bacteria, the major role of the bound carotenoid (C) is to quench the triplet state formed on the primary electron donor (P) before its sensitization of the excited singlet state of molecular oxygen from its ground triplet state. This triplet energy is transferred from P to C via the bacteriochlorophyll monomer B{sub B}. Using time-resolved electron paramagnetic resonance (TREPR), we have examined the temperature dependence of the rates of this triplet energy transfer reaction in the RC of three wild-type species of purple nonsulfur bacteria. Species-specific differences in the rate of transfer were observed. Wild-type Rhodobacter capsulatus RCs were less efficient at the triplet transfer reaction than Rhodobacter sphaeroides RCs, but were more efficient than Rhodospirillum rubrum RCs. In addition, RCs from three mutant strains of R. capsulatus carrying substitutions of amino acids near P and B{sub B} were examined. Two of the mutant RCs showed decreased triplet transfer rates compared with wild-type RCs, whereas one of the mutant RCs demonstrated a slight increase in triplet transfer rate at low temperatures. The results show that site-specific changes within the RC of R. capsulatus can mimic interspecies differences in the rates of triplet energy transfer. This application of TREPR was instrumental in defining critical energetic and coupling factors that dictate the efficiency of this photoprotective process.

  10. First-Principles Study of Muon Trapping in Singlet and Triplet States of Oxyhemoglobin

    NASA Astrophysics Data System (ADS)

    Pink, Roger; Badu, S. R.; Das, T. P.; Sahoo, N.; Chow, Lee; Scheicher, R. H.; Nagamine, K.

    2012-02-01

    There is great current interest in the possibility of magnetic character in oxyhemoglobin (OxyHb) due to the detection [1] of muon spin-lattice relaxation in OxyHb. First-Principles variational Hartree-Fock Many Body Perturbation Theory (VHFMBPT) technique investigations on the singlet and triplet states of pure OxyHb have shown^2 that the triplet state is considerably higher than the singlet state ruling out magnetic character. However the charge distribution obtained by the VHFMBPT procedure in both states show a number of sites that have negative charges where the trapping of muon is being investigated to examine if the energy gap in the ordering of singlet and triplet states can be reduced or reversed leading to magnetic effects. Other possible sources of magnetism in Oxyhemoglobin will also be discussed. 1. K. Nagamine et al. Proc. Japan. Acad. B-Physics 83, 120 (2007); 2. S.R. Badu et al. Reported at Third Joint HFI-NQI International Conference, CERN, Geneva, September 2010.

  11. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    SciTech Connect

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-04-15

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  12. Phosphorescence spectra of bacteriochlorophylls

    SciTech Connect

    Takiff, L.; Boxer, S.G.

    1988-06-22

    The authors wish to report phosphorescence spectra of the lowest triplet state of a number of bacteriochlorophylls (BChls) which provide the first accurate values for the triplet state energies of these chromophores. There have been many previous attempts to estimate the triplet state energies of bacteriochlorins motivated by the possible importance of triplet states in photosynthesis, the utility of these chromophores as sensitizers and quenchers of singlet oxygen, model studies of electron transfer, and intrinsic theoretical interest in the excited state energies of extended conjugated macrocycles.

  13. Investigation of the triplet state of chlorophylls. Progress report, May 1, 1980-April 30, 1981

    SciTech Connect

    Clarke, R.H.

    1980-12-22

    The triplet state of chlorophyll has been utilized as a nondestructive probe into the structural and dynamical nature of the photosynthetic apparatus. During the past year, using zero-field triplet state optically detected magnetic resonance spectroscopy, chlorophyll aggregates were examined in both their natural environment in vivo and in model complexes in vitro. Research efforts have focused on subchloroplast particles extracted from green plants, on chlorophyll monolayers, and on isolated chlorophyll molecules bound to both simple ligands and to complete proteins. The overall aim of the research program is to detail the physical features and interactions of the photosynthetic pigment systems through examination of structural subunits of the photosynthetic apparatus and model systems which represent them.

  14. Probing the C₆₀ triplet state coupling to nuclear spins inside and out.

    PubMed

    Filidou, Vasileia; Mamone, Salvatore; Simmons, Stephanie; Karlen, Steven D; Anderson, Harry L; Kay, Christopher W M; Bagno, Alessandro; Rastrelli, Federico; Murata, Yasujiro; Komatsu, Koichi; Lei, Xuegong; Li, Yongjun; Turro, Nicholas J; Levitt, Malcolm H; Morton, John J L

    2013-09-13

    The photoexcitation of functionalized fullerenes to their paramagnetic triplet electronic state can be studied by pulsed electron paramagnetic resonance (EPR) spectroscopy, whereas the interactions of this state with the surrounding nuclear spins can be observed by a related technique: electron nuclear double resonance (ENDOR). In this study, we present EPR and ENDOR studies on a functionalized exohedral fullerene system, dimethyl[9-hydro (C60-Ih)[5,6]fulleren-1(9H)-yl]phosphonate (DMHFP), where the triplet electron spin has been used to hyperpolarize, couple and measure two nuclear spins. We go on to discuss the extension of these methods to study a new class of endohedral fullerenes filled with small molecules, such as H₂@C₆₀, and we relate the results to density functional calculations. PMID:23918718

  15. The impact of solvents on the singlet and triplet states of selected fluorine corroles - absorption, fluorescence, and optoacoustic studies.

    PubMed

    Bursa, Bartosz; Wróbel, Danuta; Barszcz, Bolesław; Kotkowiak, Michał; Vakuliuk, Olena; Gryko, Daniel T; Kolanowski, Łukasz; Baraniak, Marek; Lota, Grzegorz

    2016-03-01

    This paper examines the influence of aprotic solvents on the spectroscopic properties as well as the energy deactivation of two free-base corrole dyes substituted with C6F5 and/or 4-NO2C6H4 groups. Absorption, fluorescence and laser-induced optoacoustic spectroscopy have been used to follow the singlet and triplet states of fluorine corroles belonging to the A2B and A3 type in toluene (TL), chloroform (CL), dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and also in solvent mixtures. Changes in the absorption and fluorescence spectra are influenced by the type of solvent mixture. The fluorescence behaviors of the two investigated corroles were extremely different - fluorescence of the nitro-corrole in TL is dramatically quenched in the presence of DMF. In contrast, fluorescence quenching of fluorine corroles in DMF-TL mixtures is substantially weakened. Absorption, fluorescence, triplet population as well as singlet oxygen generation parameters are evaluated. The spectral experimental data are supported by quantum chemical calculations - time-dependent density functional theory (TD-DFT) and cyclic voltammetry experiments. The presented results are discussed from a viewpoint of aggregation, tautomerization, and deprotonation effects occurring in the corroles. PMID:26890961

  16. Improved triplet state parameters for indium octacarboxy phthalocyanines when conjugated to quantum dots and magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tshangana, Charmaine; Nyokong, Tebello

    2015-06-01

    Fe3O4 magnetic nanoparticles (MNPs) and glutathione (GSH) capped CdSe@ZnS quantum dots (QDs) were separately coordinated to indium octacarboxy phthalocyanine (InPc(COOH)8) to form ClInPc(COOH)8-MNPs and ClInPc(COOH)8-GSH-CdSe@ZnS, respectively. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were determined for the conjugates. The triplet quantum yields increased from ΦT = 0.49 for InPc(COOH)8 alone to ΦT = 0.61 and 0.56 for InPc(COOH)8 in the conjugates: ClInPc(COOH)8-MNPs and ClInPc(COOH)8-GSH-CdSe@ZnS, respectively. The lifetimes also became longer for the conjugates compared to Pc alone.

  17. Charge transfer and triplet states in OPV materials and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dyakonov, Vladimir

    2015-10-01

    Electron back transfer (EBT), potentially occurring after electron transfer from donor to acceptor may populate the lower lying donor or acceptor triplet state and serve as recombination channel.[1] Here we report on studies of charge transfer and triplet states in blends of highly efficient benzodithiophene PTB7 polymer in combination with the fullerene-derivative PC71BM using the spin sensitive optically detected magnetic resonance (ODMR) technique and compare the results with those obtained in P3HT (poly(3- hexylthiophene):PC61BM blends. Although PTB7:PC71BM absorbers yield much higher power conversion efficiencies in solar cells exceeding 7%, we found a significant increase of triplet exciton generation, which was absent in the P3HT based blends. We discuss this observation within the EBT scenario with the emphasis on the influence of morphology, fullerene load, HOMO/LUMO energy and presence of additives (DIO). Suppressing the EBT process by morphology and/or energetics of polymer and molecules is important to achieve the full potential of highly efficient OPV materials. [1] M. Liedtke, et al., JACS 133, 9088 (2011).

  18. A theoretical study of selected singlet and triplet states of CO molecule

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Langhoff, S. R.

    1981-01-01

    The results of the configuration calculations of six singlet electronic states and one triplet electronic state of CO are presented. The potential energy curves, spectroscopic constants, and electron transition moments are calculated, along with electronic dipole moment functions for three states. The self consistent field and configuration calculations used to obtain the electronic wave functions are described. The theoretical results are found to be in good agreement with the experimental measurements, and in the case of the dipole moment function calculations, preferable to them.

  19. Density of states spectra in ferromagnet/superconductor/ferromagnet heterostructures

    NASA Astrophysics Data System (ADS)

    Meng, Hao; Wen, Lin; Zha, Guo-Qiao; Zhou, Shi-Ping

    2011-06-01

    We investigate density of states (DOS) spectra of a ferromagnet/superconductor/ferromagnet structure by including the interface spin-flip scattering potential into the existing mean-field Hamiltonian. We show that the spin-flip scattering can lead to electron spin mixing in the vicinity of an FS interface, enabling s-wave singlet and odd-frequency triplet pairs conversion and the existence of Andreev bound states with subgap energy (±ɛb) via the intra- and interband Andreev reflections. This adds spin-resolved subgap peaks to the DOS spectrum. The relevant elastic co-tunneling at ±ɛb enhances the local conductance, while its competition with the crossed Andreev reflection will lead to a sign change in the nonlocal differential conductance with the bias energy.

  20. Triplet pair correlations in s-wave superfluids as a signature of the Fulde-Ferrell-Larkin-Ovchinnikov state.

    PubMed

    Zapata, I; Sols, F; Demler, E

    2012-10-12

    We show that antiparallel triplet pairing correlations are generated in superfluids with purely s-wave interactions whenever population imbalance enforces anisotropic Fulde-Ferrell (FF) or inhomogeneous Larkin-Ovchinikov (LO) states. These triplet correlations appear in the Cooper pair wave function, while the triplet part of the gap remains zero. The same set of quasiparticle states contributes to the triplet component and to the polarization, thus spatially correlating them. In the LO case, this set forms a narrow band of Andreev states centered on the nodes of the s-wave order parameter. This picture naturally provides a unifying explanation of previous findings that attractive p-wave interaction stabilizes FFLO states. We also study a similar triplet mixing which occurs when a balanced two-component system displays FFLO-type oscillations due to a spin-dependent optical lattice. We discuss how this triplet component can be measured in systems of ultracold atoms using a rapid ramp across a p-wave Feshbach resonance. This should provide a smoking gun signature of FFLO states. PMID:23102326

  1. Bunched laser cooling of a stored weak 7Li+ ion beam in a pure triplet state

    NASA Astrophysics Data System (ADS)

    Merz, P.; Grieser, R.; Huber, G.; Karpuk, S.; Sebastian, V.; Seelig, P.; Grieser, M.; Grimm, R.; Lauer, I.; Luger, V.; Schwalm, D.; Dax, A.; Engel, T.; Gerlach, M.; Kühl, T.; Winter, H.

    1998-11-01

    A preparation scheme for a 7Li+ ion beam in a storage ring is presented which provides ions in the metastable triplet states with well controlled longitudinal phase space properties. For both state selective preparation and beam cooling, laser- and electron-cooler forces are applied. The spatial- and momentum distributions of the ions are directly detected by a time resolved measurement of the fluorescence light. At low beam intensities, the remaining heating rate of such a beam is completely determined by residual gas scattering.

  2. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    PubMed

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence. PMID:26135028

  3. Excited states of tryptophan in cod parvalbumin. Identification of a short-lived emitting triplet state at room temperature.

    PubMed Central

    Sudhakar, K; Phillips, C M; Williams, S A; Vanderkooi, J M

    1993-01-01

    The fluorescence and phosphorescence spectra of model indole compounds and of cod parvalbumin III, a protein containing a single tryptophan and no tyrosine, were examined in the time scale ranging from subnanoseconds to milliseconds at 25 degrees C in aqueous buffer. For both Ca- bound and Ca-free parvalbumin and for model indole compounds that contained a proton donor, a phosphorescent species emitting at 450 nm with a lifetime of approximately 20-40 ns could be identified. A longer-lived phosphorescence is also apparent; it has approximately the same absorption and emission spectrum as the short-lived triplet molecule. For Ca parvalbumin, the decay of the long-lived triplet tryptophan is roughly exponential with a lifetime of 4.7 ms at 25 degrees C whereas for N-acetyltryptophanamide in aqueous buffer the decay lifetime was 30 microseconds. In contrast, the lifetime of the long-lived tryptophan species is much shorter in the Ca-free protein compared with Ca parvalbumin, and the decay shows complex nonexponential kinetics over the entire time range from 100 ns to 1 ms. It is concluded that the photochemistry of tryptophan must take into account the existence of two excited triplet species and that there are quenching moieties within the protein matrix that decrease the phosphorescence yield in a dynamic manner for the Ca-depleted parvalbumin. In contrast, for Ca parvalbumin, the tryptophan site is rigid on the time scale of milliseconds. PMID:8324187

  4. Prediction of a neutral noble gas compound in the triplet state.

    PubMed

    Manna, Debashree; Ghosh, Ayan; Ghanty, Tapan K

    2015-05-26

    Discovery of the HArF molecule associated with H-Ar covalent bonding [Nature, 2000, 406, 874-876] has revolutionized the field of noble gas chemistry. In general, this class of noble gas compound involving conventional chemical bonds exists as closed-shell species in a singlet electronic state. For the first time, in a bid to predict neutral noble gas chemical compounds in their triplet electronic state, we have carried out a systematic investigation of xenon inserted FN and FP species by using quantum chemical calculations with density functional theory and various post-Hartree-Fock-based correlated methods, including the multireference configuration interaction technique. The FXeP and FXeN species are predicted to be stable by all the computational methods employed in the present work, such as density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster theory (CCSD(T)), and multireference configuration interaction (MRCI). For the purpose of comparison we have also included the Kr-inserted compounds of FN and FP species. Geometrical parameters, dissociation energies, transition-state barrier heights, atomic charge distributions, vibrational frequency data, and atoms-in-molecules properties clearly indicate that it is possible to experimentally realize the most stable state of FXeP and FXeN molecules, which is triplet in nature, through the matrix isolation technique under cryogenic conditions. PMID:25891838

  5. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates

    NASA Astrophysics Data System (ADS)

    O. Obondi, Christopher; Lim, Gary N.; Churchill, Brittani; Poddutoori, Prashanth K.; van der Est, Art; D'Souza, Francis

    2016-04-01

    This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (~13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state.This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (~13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state. Electronic supplementary information (ESI) available: Spectroelectrochemical results of oxidized (TTP)Pd and (TPA)4Pd in benzonitrile; femto- and nanosecond transient spectra of (TTP)Pd in benzonitrile and toluene, (TPA)4Pd in benzonitrile and toluene, compounds 1-3 in toluene; complete experimental details including synthesis, instrumentation and methods; 1H and 13C NMR and MALDI-mass spectrum of the final compounds. See DOI: 10.1039/c6nr01083k

  6. A diffusion quantum Monte Carlo study on the lowest singlet and triplet electronic states of BN molecule.

    PubMed

    Lu, Shih-I

    2005-11-01

    Ab initio calculation of both the lowest singlet and triplet electronic states of BN has been performed by the fixed-node Ornstein-Uhlenbeck diffusion quantum Monte Carlo method with the floating spherical Gaussian orbitals and spherical Gaussian geminals. The Monte Carlo calculation gives equilibrium bond lengths and equilibrium harmonic frequencies of 1.3317(7) A and 1529(7) cm(-1), respectively, for the lowest triplet state and 1.2751(7) A and 1709(8) cm(-1), respectively, for the lowest singlet state. Also, the Monte Carlo calculation reports an energy separation of 178(83) cm(-1) between the two electronic states and recommends the ground state is the lowest triplet state. PMID:16375534

  7. Optimal values of rovibronic energy levels for triplet electronic states of molecular deuterium

    NASA Astrophysics Data System (ADS)

    Lavrov, B. P.; Umrikhin, I. S.

    2008-05-01

    An optimal set of 1050 rovibronic energy levels for 35 triplet electronic states of D2 has been obtained by means of a statistical analysis of all available wavenumbers of triplet-triplet rovibronic transitions studied in emission, absorption, laser and anticrossing spectroscopic experiments of various authors. We used a new method of analysis (Lavrov and Ryazanov 2005 JETP Lett. 81 371-4), which does not need any a priori assumptions concerning the molecular structure, being based on only two fundamental principles: Rydberg-Ritz and maximum likelihood. The method provides the opportunity to obtain the root-mean-square estimates for uncertainties of the experimental wavenumbers independent from those presented in the original papers. A total of 234 from 3822 published wavenumber values were found to be spurious, while the remaining set of the data may be divided into 20 subsets (samples) of uniformly precise data having close to normal distributions of random errors within the samples. New experimental wavenumber values of 125 questionable lines were obtained in the present work. Optimal values of the rovibronic levels were obtained from the experimental data set consisting of 3713 wavenumber values (3588 old and 125 new). The unknown shift between levels of ortho- and para-deuterium was found by least-squares analysis of the a3Σ+g, v = 0, N = 0 ÷ 18 rovibronic levels with odd and even values of N. All the energy levels were obtained relative to the lowest vibro-rotational level (v = 0, N = 0) of the a3Σ+g electronic state, and presented in tabular form together with the standard deviations of the empirical determination. New energy-level values differ significantly from those available in the literature.

  8. Photophysical processes of triplet states and radical ions in pure and molecularly doped polymers. Final report

    SciTech Connect

    Burkhart, R.D.

    1998-01-01

    Both the past and current objectives are to learn how to control the rate and direction of triplet exciton migration in both pure and molecularly doped polymer systems. Since triplet excimers are efficient traps for migrating excitons, a secondary objective has been to characterize these excimers with a view toward their use as rate modifiers or excited state quenchers. Further objectives included those stated above as past and current objectives but with an additional goal. The authors learned that fluid solutions of many of the nitrogen containing chromophores with which they work produce both radical cations and anions upon excimer laser excitation. They also learned that a phosphorus analogue behaves similarly. At this time the mechanism of charge generation in these systems is not well established but they do know that the electronically excited states and radical ions can potentially interconvert. They wanted to find out whether or not the pure or molecularly doped polymer systems could be used in a step-wise sequence involving light absorption followed by charge generation. All of their activities are oriented toward the potential end use of polymeric systems in the conversion of light energy to perform various types of useful work.

  9. Photoformation of Triplet Excited States and Other Oxidants in Fog Waters and Their Impact on Fog Processing of Organic Compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Valsaraj, K. T.; Vempati, H. S.; Vaitilingom, M.

    2014-12-01

    Reactions in fog and cloud drops are important for a number of processes, such as formation of secondary organic aerosol (SOA), cycling of organic carbon and nitrogen, and determining the lifetimes of pollutants. The rates of these processes depend upon the steady-state concentrations of the major photooxidants, namely, hydroxyl radical (.OH), singlet molecular oxygen (1O2*) and triplet excited states of organic compounds (3C*). While there are some past measurements of .OH and 1O2* concentrations in fog and cloud drops, there are no data for the concentrations of triplet excited states. However, there is increasing evidence that triplets might be important for the processing of organics in a cloudy or foggy atmosphere. To address this question, we collected fog water samples from Davis, CA and Baton Rouge, LA, illuminated them with simulated sunlight, and measured the steady-state concentrations of .OH , 1O2* and 3C* . To understand the relative importance of these photooxidants, we also measured the photochemical loss of two added model organic compounds in the illuminated fog waters - syringol (a biomass burning phenol) and methyl jasmonate (a green leaf volatile). Our results show that triplet excited states can play a major role in oxidizing the model compounds, typically accounting for 30 - 90% of the loss of both model compounds. Given that atmospheric triplets are relatively less understood, our results highlight the importance of deeper investigation into their nature.

  10. Identification and Reactivity of the Triplet Excited State of 5-Hydroxytryptophan

    PubMed Central

    Dad, S.; Bisby, R.H.; Clark, I.P.; Parker, A.W.

    2007-01-01

    Both the neurotransmitter serotonin and the unnatural amino acid 5-hydroxytryptophan (5HT), contain the 5-hydroxyindole chromophore. The photochemistry of 5HT is being investigated in relation to the multiphoton excitation of this chromophore to produce a characteristic photoproduct with green fluorescence (‘hyperluminescence’). Laser flash photolysis (308 nm) of 5HT in aqueous solution at neutral pH produces both the neutral 5-indoloxyl radical (λmax 400-420 nm) and another transient absorption with λmax 480 nm and lifetime of 2 μs in deaerated solutions. Based on quenching by oxygen and β-carotene, the species at 480 nm is identified as the triplet excited state of 5HT. In acidic solution a new oxygen-insensitive intermediate with λmax 460 is assigned to the radical cation of 5HT. Time-resolved measurements of luminescence at 1270 nm have shown that the triplet state of 5HT is able to react with oxygen to form singlet excited oxygen (1O2*) with a quantum yield of ∼0.1. However, 5HT has also been found to be an effective quencher of singlet oxygen with a second order rate constant of 1.3 × 108 dm3 mol-1 s-1. The results are discussed in the light of recent observations on the multiphoton-excited photochemistry of serotonin. PMID:15708522

  11. The role of triplet state keto-enol tautomerism in the photodeamination of metamitron.

    PubMed

    Kouras-Hadef, Sofia; de Sainte-Claire, Pascal; ter Halle, Alexandra; Amine-Khodja, Amina; Richard, Claire

    2011-12-22

    Substituted 4-amino-1,2,4-triazin-5-ones undergo photodeamination through cleavage of the N-NH(2) bond in the presence of oxygen and water. To elucidate the mechanism of this reaction, we investigated the photolysis of metamitron (4-amino-6-phenyl-3-methyl-1,2,4-triazin-5-one) by nanosecond laser flash photolysis, steady-state irradiation, and ab initio calculations. Upon pulsed laser excitation of deoxygenated aqueous metamitron, two transient species are clearly detected. The predictions of ab initio results are consistent with experimental results: (i) it is proposed here that the transient species are, respectively, the keto and diradical forms of the metamitron keto-enol tautomerism in the triplet state, and (ii) in water, the activation free energy barrier of enolization is drastically decreased. Thus, the formation of the diradical triplet is enabled in aqueous solvent. A detailed analysis of the intermediate structures that lead to the final products (HNO(2) and deaminometamitron) is provided. PMID:22047469

  12. Accessing the Triplet State in Heavy-Atom-Free Perylene Diimides.

    PubMed

    Yu, Zhenyi; Wu, Yishi; Peng, Qian; Sun, Chunlin; Chen, Jianwei; Yao, Jiannian; Fu, Hongbing

    2016-03-24

    Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1 . Generation of a triplet excited state (T1 ) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy-atom-free strategy to prompt the T1 ←S1 intersystem crossing (ISC) by introducing electron-donating aryl (Ar) groups at the head positions of an electron-deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron-donating ability of head-substituted aryl groups from phenyl (p-PDI) to methoxyphenyl (MeO-PDI) and then to methylthioxyphenyl (MeS-PDI). By enhancing the intramolecular charge-transfer (ICT) interaction from p-PDI to MeO-PDI, and then to MeS-PDI, singlet oxygen generation via energy-transfer reactions from T1 of PDIs to (3) O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet-generating PDIs and related rylene diimides for optoelectronic applications. PMID:26853213

  13. Theoretical radiative properties between states of the triplet manifold of NH radical

    SciTech Connect

    Owono Owono, L. C.; Ben Abdallah, D.; Jaidane, N.; Ben Lakhdar, Z.

    2008-02-28

    Ab initio transition dipole moments between states of the triplet manifold of NH radical are determined at the complete active space self-consistent field, followed by the internally contracted multireference singles plus doubles configuration interaction level of theory with a modified aug-cc-pVTZ basis set that accounts for valence-Rydberg interactions. This enables the computation of various radiative characteristics such as Einstein coefficients, radiative lifetimes, and oscillator strengths. These properties concern as well valence and Rydberg states. For the valence states, only the (0, 0) band of the A {sup 3}{pi}-X {sup 3}{sigma}{sup -} transition has received some important amount of attention. Data for the other transitions are rather scarce and sometimes inexistent. The results obtained in this work show good agreement with the available experimental data in comparison to other theoretical numbers reported in the literature.

  14. Effect of Triplet T 1-State Population on Fluorescence Polarization Kinetics of Organic Fluorophores

    NASA Astrophysics Data System (ADS)

    Stanishevsky, I. V.; Chernyavskii, V. A.

    2015-11-01

    The fluorescence polarization kinetics of fluorescent organic molecules and molecules with two interconverting photoisomeric forms and fixed molecular skeletons were investigated by numerical methods based on the solution of population balance equations. The depolarizing effect of the lowest triplet T 1 state and the polarization time dependence for quasi-continuous-wave (cw) and pulsed photoexcitation were studied using model compounds. The fluorescence depolarization with cw excitation was characterized by times that were shorter than the T 1-state lifetime; for the isomers, also by times that correlated with the photoisomerization times. Intense pulsed photoexcitation distorted significantly the initial oscillator orientation distribution in the singlet S 0 and S 1 states and could lead to sign reversal of the polarization.

  15. Direct optical access to the triplet manifold of states in H2

    NASA Astrophysics Data System (ADS)

    Jungen, Ch.; Glass-Maujean, M.

    2016-03-01

    A number of unassigned lines in the absorption spectrum of diatomic hydrogen are attributed to nominally forbidden transitions from the ground state to the n f manifold of states (Rydberg electron with ℓ =3 orbital momentum). They appear via weak ℓ - mixing interactions leading to local level perturbations. Our analysis is based on multichannel quantum defect theory and uses known theoretical information from the literature. The upper levels of most of these transitions are known to give rise to molecular fluorescence, and they are shown to be singlet-triplet mixed. We conclude that the well-known metastable c 3Πu- state can be populated via one-photon absorption of uv photons followed by cascade emission 4 f →3 d →2 p .

  16. Excited-state dynamics in nitro-naphthalene derivatives: intersystem crossing to the triplet manifold in hundreds of femtoseconds.

    PubMed

    Vogt, R Aaron; Reichardt, Christian; Crespo-Hernández, Carlos E

    2013-08-01

    Femtosecond transient absorption experiments and density functional calculations are presented for 2-methyl-1-nitronaphthalene, 2-nitronaphthalene, and 1-nitronaphthalene in cyclohexane and acetonitrile solutions. Excitation of 2-methyl-1-nitronaphthalene at 340 nm populates the Franck-Condon singlet state, which bifurcates into two barrierless decay channels with sub-200-fs lifetimes. The primary decay channel connects the Franck-Condon singlet excited state with a receiver triplet state, whereas the second, minor channel involves conformational relaxation to populate an intramolecular charge-transfer state, as previously reported for 1-nitronaphthalene (J. Chem. Phys. 2009, 113, 224518). Conversely, the experimental and computational data for 2-nitronaphthalene shows that almost the entire Franck-Condon singlet excited-state population intersystem crosses to the triplet state in less than 200 fs due to a sizable energy barrier of ca. 5 kcal/mol that must be surmounted to access the intramolecular charge-transfer state. Our results lend support to the idea that the probability of population transfer to the triplet manifold in these nitronaphthalene derivatives is controlled not only by the small energy gap between the Franck-Condon singlet excited state and the receiver triplet state but also by the region of configuration space sampled in the singlet excited-state potential energy surface at the time of excitation. It is proposed that the ultrafast intersystem crossing dynamics in these nitronaphthalene molecules most likely occurs between nonequilibrated excited states in the strongly nonadiabatic regime. PMID:23845162

  17. Laser-induced reduction of a dye characterised by a high triplet-state yield and dissolved in a polymer

    SciTech Connect

    Sizykh, A G; Tarakanova, E A; Tatarinova, L L

    2000-01-31

    An investigation was made of the photoreduction kinetics of a dye in a solid polymer solution under the influence of laser radiation corresponding to the band of the first singlet - singlet transition. Participation of higher triplet states was considered in a model of the photoreduction of a dye characterised by a high intersystem crossing yield. An analytic solution was obtained for a system of kinetic equations. This solution takes into account the difference between the photoprocess rates. It is shown that a linear dependence of the effective dye-photoreduction rate on the laser radiation intensity can serve as a test of the participation of higher triplet states in the reaction. A comparison of the theoretical and experimental results obtained in the present study is used to determine the ratio of the photoreduction and deactivation rate constants of the higher triplet state of eosin K. (interaction of laser radiation with matter. laser plasma)

  18. Self-homodyne measurement of a dynamic Mollow triplet in the solid state

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-03-01

    The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.

  19. Photoinduced electron transfer between sulfur-containing carboxylic acids and the 4-carboxybenzophenone triplet state in aqueous solution

    SciTech Connect

    Marciniak, B. A. Mickiewicz Univ., Poznan ); Bobrowski, K.; Hug, G.L. ); Rozwadowski, J. )

    1994-05-05

    The mechanism of photoinduced electron transfer was investigated using laser flash photolysis and steady-state photolysis techniques. Bimolecular rate constants for quenching of the CB triplet state by six sulfur-containing acids, with varying numbers of COO[sup [minus

  20. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Endo, Ayataka; Sato, Keigo; Yoshimura, Kazuaki; Kai, Takahiro; Kawada, Atsushi; Miyazaki, Hiroshi; Adachi, Chihaya

    2011-02-01

    A material possessing a very small energy gap between its singlet and triplet excited states, ΔE1-3, which allows efficient up-conversion of triplet excitons into a singlet state and leads to efficient thermally activated delayed fluorescence (TADF), is reported. The compound, 2-biphenyl-4,6-bis(12-phenylindolo[2,3-a] carbazole-11-yl)-1,3,5-triazine, breaks the restriction of a large energy gap, with a ΔE1-3 of just 0.11 eV, while maintaining a high fluorescent radiative decay rate (kr˜107). The intense TADF provides a pathway for highly efficient electroluminescence.

  1. Dynamics of C[sub 70] in the lowest excited triplet state at low temperatures

    SciTech Connect

    Terazima, Masahide; Sakurada, Keita; Hirota, Noboru ); Shinohara, Hisanori; Saito, Yahachi )

    1993-05-27

    The dynamic behavior of C[sub 70] in the lowest excited triplet state is investigated by the time-resolved EPR (TREPR) method in methylcyclohexane at low temperatures. From the line width of the TREPR spectrum, the distributions of the shortest and middle radii of the distorted rugby ball shape are revealed to be inhomogeneously broadened although the longest radius is relatively constant. The observing time dependence of the spectrum after the laser excitation is examined on the basis of the model involving pseudorotation and molecular rotation. The time dependence calculated based on the pseudorotation around the longest axis fits the observed one well. The activation energy of the dynamic deformation is determined. 16 refs., 4 figs.

  2. Climatic Spectra of Extreme Sea States

    NASA Astrophysics Data System (ADS)

    Boukhanovsky, A.; Lopatoukhin, L.; Sas'kov, K.

    Climatic variability of sea waves is described in the terms of statistical ensemble of directional spectra, dependent from spatial coordinates (x,y) and time t. The major probabilistic characteristics of the ensemble are the climatic spectra, i.e. spectra ap- propriate to certain wavemaking conditions with certain probability. Traditionally the definition of climatic wave spectra is based on a buoy measurements in a point. How- ever such data are restricted, and are unsuitable for estimation of climatic spectra of extreme waves with return period up to 100 years or longer. Hindcasting of statistical ensemble of spectra by mean of some numerical model allows to expand the informa- tion base significantly. In this report the approach to analysis and synthesis of climatic spectra, corresponding to extreme sea states, is proposed. The Barents sea is consid- ered as an example. A set of 43800 directional spectra of wind sea and swell (1970- 1999, every 6 hours) for any of 565 points of regular grid 0.50x1.50 are calculated. Numerical wave model Wave Watch III for computation on the parallel supercomputer Parsytec CC/20 was used. The NCEP/NCAR reanalysis wind fields were used as input data. Statistical analysis of computed spectra allows to separate a set of genetic types appropriate to various stable sea states. For each of types the system of parameters as discriminant variables are proposed. Probabilistic values of these parameters allows to approximate the probabilistic characteristic of all the spectra ensemble in terms of non-random function of random arguments. It allows to synthesize the results of the analysis in terms of multiscale stochastic model of spectral wave climate, with tak- ing into account the temporal nonstationary and spatial inhomogeneity of wave fields. The Monte-Carlo approach is employed for stochastic simulation. Stochastic simu- lation proves the extrapolation procedure for climatic spectra of rare (extreme) sea states. Specific climatic wave spectra (with one or more peaks) with the certain condi- tional probability are estimated. The results of computation of extreme climatic wave spectra and their temporal and spatial variability will be presented. Investigations is supported by INTAS Project 666/99.

  3. Spin-Free CC2 Implementation of Induced Transitions between Singlet Ground and Triplet Excited States.

    PubMed

    Helmich-Paris, Benjamin; Hättig, Christof; van Wüllen, Christoph

    2016-04-12

    In most organic molecules, phosphorescence has its origin in transitions from triplet exited states to the singlet ground state, which are spin-forbidden in nonrelativistic quantum mechanics. A sufficiently accurate description of phosphorescence lifetimes for molecules that contain only light elements can be achieved by treating the spin-orbit coupling (SOC) with perturbation theory (PT). We present an efficient implementation of this approach for the approximate coupled cluster singles and doubles model CC2 in combination with the resolution-of-the-identity approximation for the electron repulsion integrals. The induced oscillator strengths and phosphorescence lifetimes from SOC-PT are computed within the response theory framework. In contrast to previous work, we employ an explicitly spin-coupled basis for singlet and triplet operators. Thereby, a spin-orbital treatment can be entirely avoided for closed-shell molecules. For compounds containing only light elements, the phosphorescence lifetimes obtained with SOC-PT-CC2 are in good agreement with those of exact two-component (X2C) CC2, whereas the calculations are roughly 12 times faster than with X2C. Phosphorescence lifetimes computed for two thioketones with the SOC-PT-CC2 approach agree very well with reference results from experiment and are similar to those obtained with multireference spin-orbit configuration interaction and with X2C-CC2. An application to phosphorescent emitters for metal-free organic light-emitting diodes (OLEDs) with almost 60 atoms and more than 1800 basis functions demonstrates how the approach extends the applicability of coupled cluster methods for studying phosphorescence. The results indicate that other decay channels like vibrational relaxation may become important in such systems if lifetimes are large. PMID:26881830

  4. Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond.

    PubMed

    Kostenko, Arseni; Tumanskii, Boris; Karni, Miriam; Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira; Apeloig, Yitzhak

    2015-10-01

    We report the first direct spectroscopic observation by electron paramagnetic resonance (EPR) spectroscopy of a triplet diradical that is formed in a thermally induced rotation around a main-group π bond, that is, the SiSi double bond of tetrakis(di-tert-butylmethylsilyl)disilene (1). The highly twisted ground-state geometry of singlet 1 allows access to the perpendicular triplet diradical 2 at moderate temperatures of 350-410 K. DFT-calculated zero-field splitting (ZFS) parameters of 2 accurately reproduce the experimentally observed half-field transition. Experiment and theory suggest a thermal equilibrium between 1 and 2 with a very low singlet-triplet energy gap of only 7.3 kcal mol(-1) . PMID:26297814

  5. The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.

    2016-01-01

    Measurements are presented and analysed of the strength of the Ca II triplet lines in red giants in Galactic globular and open clusters, and in a sample of red giants in the LMC disc that have significantly different [Ca/Fe] abundance ratios to the Galactic objects. The Galactic objects are used to generate a calibration between Ca II triplet line strength and [Fe/H], which is then used to estimate [Fe/H]CaT for the LMC stars. The values are then compared with the [Fe/H]spec determinations from high-dispersion spectroscopy. After allowance for a small systematic offset, the two abundance determinations are in excellent agreement. Further, as found in earlier studies, the difference is only a very weak function of the [Ca/Fe] ratio. For example, changing [Ca/Fe] from +0.3 to -0.2 causes the Ca II-based abundance to underestimate [Fe/H]spec by only ˜0.15 dex, assuming a Galactic calibration. Consequently, the Ca II triplet approach to metallicity determinations can be used without significant bias to study stellar systems that have substantially different chemical evolution histories.

  6. Suppressed Andreev reflection and helical Andreev bound states in triplet superconductor three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Khezerlou, M.; Goudarzi, H.

    2015-11-01

    Effect of proximity-induced unconventional p-wave superconductivity in a three-dimensional topological insulator-based S/F/S structure on the Andreev bound states (ABSs) and Josephson supercurrent is studied. We investigate, in detail, the suppression of Andreev reflection and helical ABSs in the presence of three types of triplet superconducting gap. The magnetization of ferromagnetic section is perpendicular to the surface of junction. The influence of such features on the supercurrent flow on the surface of the topological insulator is studied. We carry out our goal by introducing a relevant form of Dirac spinors for gapless renormalized by chemical potential μ excitation states. Therefore, it enables us to consider the virtual Andreev process, simultaneously, and we propose to investigate it in a tunneling conductance junction. It is shown that the results obtained in this case are completely different from those in conventional superconductivity, as s- or d-waves, for example, the magnetization is found to decrease the gap for px and px+ipy case, whereas increase it for py order. Strongly suppressed Andreev reflection is demonstrated.

  7. Triplet-Charge Annihilation versus Triplet-Triplet Annihilation in Organic Semiconductors

    SciTech Connect

    Shao, Ming; Yan, Liang; Li, Mingxing; Ivanov, Ilia N; Hu, Bin

    2013-01-01

    A triplet can annihilate with a charge or a triplet, generating triplet-charge annihilation (TCA) or triplet-triplet annihilation (TTA) in organic semiconductors. On one hand, the TCA and TTA are critical issues to improve optoelectronic responses by using triplet states. On the other hand, the TCA and TTA are important spin-dependent processes to generate magneto-optoelectronic responses. Our experimental studies find that the TCA is a dominant process over TTA in organic semiconductors. Specifically, we separately confine triplets with charges or with triplets towards the generation of TCA and TTA by adjusting triplet density, charge confinement, and charge/exciton ratio based on organic light-emitting diodes. We then use magnetic field effects of electroluminescence (MFEEL), as an experimental tool, to study the generation of TCA and TTA. We observe that the electroluminescence can show negative response to applied magnetic field, generating a negative MFEEL, when triplets and charges are simultaneously confined within close proximity by using interfacial confinement with unbalanced charge/exciton ratio. On contrast, the electroluminescence only exhibits a positive MFEEL when triplets are confined within close proximity by using interfacial confinement without unbalanced charge/exciton ratio. Therefore, it can be concluded from our MFEEL results that the TCA is a major process to annihilate triplets over than TTA. Clearly, this experimental finding provides a new understanding on controlling triplets-related optoelectronic and magneto-optoelectronic processes in organic semiconductors.

  8. Spin-triplet supercurrent carried by quantum Hall edge states through a Josephson junction

    NASA Astrophysics Data System (ADS)

    van Ostaay, J. A. M.; Akhmerov, A. R.; Beenakker, C. W. J.

    2011-05-01

    We show that a spin-polarized Landau level in a two-dimensional electron gas can carry a spin-triplet supercurrent between two spin-singlet superconductors. The supercurrent results from the interplay of Andreev reflection and Rashba spin-orbit coupling at the normal-superconductor (NS) interface. We contrast the current-phase relationship and the Fraunhofer oscillations of the spin-triplet and spin-singlet Josephson effect in the lowest Landau level and find qualitative differences.

  9. Solvent Viscosity Effect on Triplet-Triplet Pair in Triplet Fusion.

    PubMed

    Yokoyama, Kana; Wakikawa, Yusuke; Miura, Tomoaki; Fujimori, Jun-Ichi; Ito, Fuyuki; Ikoma, Tadaaki

    2015-12-31

    The effect of the solvent viscosity dependence of time-resolved magnetoluminescence (ML) on the delayed fluorescence of 9,10-diphenylanthracene (DPA) sensitized by platinum octaethylporphyrin has clarified the structure and dynamics of the triplet-triplet pair (TT), i.e., the transition state of triplet fusion. Phase inversion of the ML effect with time provides evidence for the recycle dynamics of the excited triplet state for DPA in triplet fusion. The electron spin-relaxation by random molecular rotation causes intersystem crossing among the different spin states of the triplet-triplet pair and allows the (3,5)TT to engage in triplet fusion. Therefore, slow-down of the molecular diffusion by an increase in the solvent viscosity can enhance the triplet fusion yield. However, the reduction of the ML effect observed in quite high viscosity solvents suggests that the substantially slow rotational motion decreases the triplet fusion yield due to steric factors in electron exchange from the triplet-triplet pair. PMID:26683847

  10. Spin-Triplet Pairing State of Sr2RuO4 in the c-Axis Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takamatsu, Shuhei; Yanase, Youichi

    2013-06-01

    We investigate the spin-triplet superconducting state of Sr2RuO4 in the magnetic field along the c-axis on the basis of the four-component Ginzburg--Landau (GL) model with a weak spin--orbit coupling. We consider superconducting states described by the d-vector parallel to the ab-plane (\\mbi{d}\\parallel ab), and find that three spin-triplet pairing states are stabilized in the magnetic field--temperature (H--T) phase diagram. Although a helical state is stable at low magnetic fields, a chiral II state is stabilized at high magnetic fields. A non-unitary spin-triplet pairing state appears near the transition temperature owing to the coupling of magnetic field and chirality. We elucidate synergistic and/or competing roles of the magnetic field, chirality, and spin--orbit coupling. It is shown that a fractional vortex lattice is stabilized in the chiral II phase owing to the spin--orbit coupling.

  11. Light Absorption by Secondary Organic Aerosol Produced from Aqueous Reaction of Phenols with an Organic Excited Triplet State and Hydroxyl Radical

    NASA Astrophysics Data System (ADS)

    Smith, J.; Yu, L.; George, K.; Ruthenburg, T. C.; Dillner, A. M.; Zhang, Q.; Anastasio, C.

    2012-12-01

    Although reactions in atmospheric condensed phases can form and transform secondary organic aerosol (SOA), these reactions are not well represented in many air quality models. Previous experiments have focused on hydroxyl radical-mediated oxidation of low molecular weight precursors such as gyloxal and methylglyoxal. In our work we are examining aqueous SOA formed from phenols, which are emitted from biomass burning and formed from the oxidation of anthropogenic aromatics such as benzene and toluene. In this work we examine aqueous SOA production from oxidation of three phenols (phenol, guaiacol, syringol) and three benzene-diols (catechol, resorcinol, 1,4-hydroquinone) by hydroxyl radical (OH) and the triplet excited state of 3,4-dimethoxybenzaldehyde (DMB). Our focus is on light absorption by the reaction products, which we characterized by measuring UV-Vis spectra and calculating mass absorption coefficients. To understand the elemental and molecular composition of the SOA, we also analyzed the samples with high resolution mass spectrometry and infrared spectroscopy. Our results indicate that aqueous oxidation of phenols and benzene-diols via OH and triplet excited states efficiently produce SOA that is highly absorbing in the UV-A wavelengths, consists of both small and large molecular weight products, and is highly oxidized.

  12. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    PubMed

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. PMID:26997657

  13. Photoexcited triplet state provides a quantitative measure of intercalating drug-DNA binding energies

    NASA Astrophysics Data System (ADS)

    Maki, August H.; Alfredson, T. V.; Waring, M. J.

    1992-04-01

    A linear correlation between spectroscopic and thermodynamic properties of systems is rarely encountered. In triplet state ODMR studies of various DNA complexes of echinomycin, a quinoxaline-containing cyclic depsipeptide bis-intercalating antibiotic, and its biosynthesized quinoline analogs, such correlations are observed. The zero field splitting D-parameter of the intercalated quinoxaline or quinoline residue varies linearly with the free energy of drug-DNA complexing. From previous work, the DNA sequence specificity of echinomycin analogs is known to be influenced by the identity of the intercalating residue (e.g., quinoxaline vs. quinoline). The present results strongly suggest that the DNA sequence-specificity of these drugs is controlled largely by the intercalated residue, and that the energetics of the peptide- DNA interaction, although considerable, are relatively sequence independent. These conclusions run counter to the generally accepted idea that DNA recognition by sequence- seeking proteins is controlled by specific hydrogen bonding interactions. The high degree of N-methylation of the echinomycin peptide portion severely restricts these interactions, however. A simple theoretical model is presented to support the experimentally observed linear correlation between (Delta) D and (Delta) G.

  14. Kinetics of triplet-triplet annihilation in liquid solutions

    SciTech Connect

    Sapunov, V.V.

    1995-10-01

    Kinetic analysis of the triplet-triplet annihilation (TTA) involving the formation of excited complexes of two molecules in triplet states is performed. The dependence of the instant deactivation rate K of the triplet state on the molecular concentration [T] in the ground triplet state upon the formation of such complexes is shown to be nonlinear. A method is proposed for measuring the rate constant K{sub T} of the triplet-state quenching due to TTA from the slope of the linear part of the dependence of K on [T] for small [T]. It is shown that, in the method of stationary concentrations, the deactivation kinetics of the triplet state with the formation of triplet-triplet (TT) and triplet-singlet (TS) complexes corresponds to the kinetics of one-stage TTA and triplet-state quenching by molecules in the groundstate. The technique of flash photolysis was used to study the deactivation kinetics of the triplet state in a number of tetrapyrrole compounds and perylene in liquid solutions. The experimental data obtained are in agreement with the results of the kinetic analysis of the mechanism of TTA via the formation of TT complexes. In particular, it is shown that dependences of K on [T] are nonlinear. The rate constants of formation and decomposition of TT complexes and K{sub T} are measured. It is concluded that the triplet-state quenching due to TTA in the compounds studied is not controlled by diffusion of molecules in solution, that molecules weakly interact within the complex, and the TT complexes are of the exciplex (excimer) type. 29 refs., 4 figs., 1 tab.

  15. Triplet states with unusual spin polarization resulting from radical ion pair recombination at short distances

    SciTech Connect

    Wiederrecht, G.P.; Svec, W.A.; Wasielewski, M.R.

    1999-08-25

    Covalently bound electron donor-acceptor, [D-A], molecules that undergo photoinduced charge separation from a photoexcited singlet state to form radical ion pairs that subsequently undergo back electron transfer to yield a triplet state are very rare. Apart from their importance in the general context of electro-transfer reactions, these molecules provide insights into the primary photochemistry of photosynthetic reaction centers. Photoexcitation of [D-A] produces {sup 1}*[D-A], which undergoes rapid charge separation to yield {sup 1}[D{sup {sm{underscore}bullet}{plus}}-A{sup {sm{underscore}bullet}{minus}}]. At [D{sup {sm{underscore}bullet}{plus}}-A{sup {sm{underscore}bullet}(minus)}] distances {ge}20 A, the exchange integral, J, between the two radicals is generally {le}10{sup {minus}4} cm{sup {minus}1}. This weak interaction allows radical pair intersystem crossing (RP-ISC) within {sup 1}[D{sup {sm{underscore}bullet}{plus}}-A{sup {sm{underscore}bullet}(minus)}] to occur, which leads to the formation of a spin-correlated radical pair {sup 3}[D{sup {sm{underscore}bullet}{plus}}-A{sup {sm{underscore}bullet}{minus}}]. Radical ion pair recombination within {sub 3}[D{sup {sm{underscore}bullet}{plus}}-A{sup {sm{underscore}bullet}{minus}}]. In all of these reactions the spins remain correlated, which results in non-Boltzmann populations of the spin states within each intermediate. The authors report here the first example of a covalently bound [D-A] molecule in which a single electron-transfer step produces a [D{sup {sm{underscore}bullet}{plus}}-A{sup {sm{underscore}bullet}{minus}}] pair at a short 11 {angstrom} distance with a large J value that leads to efficient {sup 3}*[D-A] formation.

  16. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad

    SciTech Connect

    Liddell, P.A.; Kuciauskas, D.; Sumida, J.P.; Nash, B.; Nguyen, D.; Moore, A.L.; Moore, T.A.; Gust, D.

    1997-02-12

    A molecular triad consisting of a diarylporphyrin (P) covalently linked to a carotenoid polyene (C) and a fullerene (C{sub 60}) has been prepared and studied using time-resolved spectroscopic methods. In 2-methyltetrahydrofuran solution, the triad undergoes photoinduced electron transfer to yield C-P{sup .+}-C{sub 60}{sup .-}, which evolves into C{sup .+}-P-C{sub 60}{sup .-} with an overall quantum yield of 0.14. This state decays by charge recombination to yield the carotenoid triplet state with a time constant of 170 ns. Even in a glass at 77 K, C{sup .+}-P-C{sub 60}{sup .-} is formed with a quantum yield of nearly 0.10 and again decays mainly by charge recombination to give {sup 3}C-P-C{sub 60}. The fullerene triplet, formed through normal intersystem crossing, is also observed at 77K. the generation in the triad of a long-lived charge separated state by photoinduced electron transfer, the low-temperature electron transfer behavior, and the formation of a triplet state by charge recombination are phenomena previously observed mostly in photosynthetic reaction centers. 36 refs., 5 figs.

  17. Excitation wavelength-dependent EPR study on the influence of the conformation of multiporphyrin arrays on triplet state delocalization.

    PubMed

    Tait, Claudia E; Neuhaus, Patrik; Peeks, Martin D; Anderson, Harry L; Timmel, Christiane R

    2016-02-21

    The optoelectronic properties of conjugated porphyrin arrays render them excellent candidates for use in a variety of molecular electronic devices. Understanding the factors controlling the electron delocalization in these systems is important for further developments in this field. Here, we use transient EPR and ENDOR (Electron Nuclear Double Resonance) to study the extent of electronic delocalization in the photoexcited triplet states of a series of butadiyne-linked porphyrin oligomers. We are able to distinguish between planar and twisted arrangements of adjacent porphyrin units, as the different conformations are preferentially excited at different wavelengths in the visible range. We show that the extent of triplet state delocalization is modulated by the torsional angle between the porphyrins and therefore by the excitation wavelength. These results have implications for the design of supramolecular systems with fine-tuned excitonic interactions and for the control of charge transport. PMID:26814427

  18. Monte Carlo simulations of triplet-state photophysics for super-resolution imaging of fluorophore-labeled gold nanorods

    NASA Astrophysics Data System (ADS)

    Titus, Eric J.; Blythe, Karole L.; Willets, Katherine A.

    2015-08-01

    Super-resolution imaging has previously been used to identify the position of individual fluorescently-labeled DNA molecules bound to the surface of gold nanorods. In order to isolate and fit emission from individual fluorophores, a stochastic photoswitching technique based on shelving the fluorophores into triplet states is used. However, the reconstructed super-resolution images of the fluorescently-labeled gold nanorods are consistently smaller than the expected size of the gold nanorod supports. Here, Monte Carlo simulations are used to probe how smaller-than-expected reconstructed images may be obtained by simultaneous emission events based on short triplet state lifetimes and/or a high density of fluorescently-labeled DNA on the gold nanorod surface.

  19. Does electron-transfer theory explain large rate differences in singlet and triplet excited state electron-transfer reactions?

    SciTech Connect

    Zusman, L.D.; Kurnikov, I.V.; Beratan, D.N.

    1995-12-31

    Gray and coworkers have shown that intramolecular electron-transfer rates from singlet and triplet excited states in iridium(spacer)pyridinium complexes can be vastly different (>5 orders of magnitude). We have analyzed the possible sources of these differences, including effects that may arise from reorganization energies, free energies, and tunneling matrix elements. When distance dependent reorganization energies and energy dependent tunneling matrix elements are included, a systematic framework emerges to describe these electron-transfer reactions.

  20. An isotope dependent study of acetone in its lowest excited triplet state

    NASA Astrophysics Data System (ADS)

    Gehrtz, M.; Bräuchle, Chr.; Voitländer, J.

    The lowest excited triplet state T1 of acetone-h6 and acetone-d6 was investigated with a pulsed dye laser equipped ODMR spectrometer. The results obtained with this prototypic aliphatic carbonyl compound are discussed mainly with reference to a recent ab initio calculation on formaldehyde. Acetone is found to be bent in T1 and the out-of-plane distortion angle is estimated to be ≈ 38°, similar to the formaldehyde value. In view of the fact that T1 is of nπ* nature, the observed zero-field splitting (ZFS) is surprisingly small. Both the spin-spin and the spin-orbit (SO) contribution to the ZFS are evaluated and the pertinent axis systems, which do not coincide owing to the non-planar geometry, are specified. The SO tensor contribution is calculated from a correlation between the deuterium effects on the ZFS parameters and the population rates. The sub-level selective kinetics of the acetone T1 is largely determined by the mixing of the x- and z-level characteristics owing to magnetic axis rotation caused by the excited state out-of-plane distortion. Considerable deuterium effects are observed on the kinetic data and on the microwave transition frequencies. In all cases the spinspecific isotope effects (due to the promoting modes) and the global effects (due to the Franck-Condon factors) are specified. For the population rates and the SO contribution to ZFS, the inverse global isotope effect (deuterium factor >1) was found for the first time. Based on the isotope dependence of the rates, the mechanisms of (vibrationally induced) SO coupling in acetone are discussed. It is concluded that non-adiabatic contributions have to be taken into account for the smallest population rate only, but that otherwise the adiabatic SO coupling mechanisms by far dominates in the acetone photophysics.

  1. Lasing action in a family of perylene derivatives: Singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calcuations

    SciTech Connect

    Sadrai, M.; Hadel, L.; Sauers, R.R.

    1992-10-01

    The authors present experimental and computational determination of the excited-state properties in several perylene dyestuffs that are potential candidates for use as laser dyes. Attention is focused on the following species derived from 3,4,9,10-perylenetetracarboxylic acid dianhydride: the bis ((2,6-dimethylphenyl)imide) (1b, DXP); the bis(methylimide) (1c, DMP); both 1,6,7,12-tetrachloro- (1d, Cl{sub 4}DMP) and 1,2,5,6,7,8,11,12-octachloro- (1e, Cl{sub 8}DMP) derivatives. Soluble derivatives of seven-ringed or larger aromatic systems are produced by the introduction of relatively rigid out-of-plane substituents that prevent intermolecular close packing. Chiral distortions in ring-chlorinated perylene derivatives significantly alter the shape of the absorption bands, a consequence of symmetry breaking. Triplet-triplet absorptions and oxygen-quenching rates are observed under the conditions found in a dye laser cavity. Semiempirical molecular orbital calculations (INDO/S) provide detailed mapping of the singlet and triplet excited state manifolds of DMP, Cl{sub 4}DMP, and Cl{sub 8}DMP. Computed transition energies and intensities are used in the interpretation of the spectral features, in particular the observed T{sub 1} {yields} T{sub n} and potential S{sub 1} {yields} S{sub n} absorptions. The authors conclude the perylene-3,4,9,10-tetracarboxylic acid diimide chromophores may be solubilized and utilized in laser materials exhibiting superior performance in terms of power output, tuning range, and light stability. 42 refs., 5 figs., 7 tabs.

  2. A new graphical version of STROTAB: The analysis and fitting of singlet triplet spectra of asymmetric top molecules in the prolate or oblate limits

    NASA Astrophysics Data System (ADS)

    Kodet, John; Judge, Richard H.

    2007-05-01

    The original version of STROTAB has been modified to run under Microsoft Windows using the C++ programming language. The new version takes full advantage of the Microsoft Foundation Classes available within the Microsoft Visual C++ Version 6 development environment. Specifically, windows can be created that edit the input file, summarize the results of the least-squares fit, display the calculated and observed spectra, display whole or partial sections of the calculated spectra as a stick or Gaussian de-convoluted spectrum. A listing of the rotational quantum numbers in the cases (a) and (b) limits for each of the displayed lines is provided. A branch annotating routine provides a quick visual guide to the assignment of the spectrum. A new eigenvalue sorting method has been added as an option that complements the existing method based on the eigenvector coefficients. The new sorting method has eliminated some difficulties that may arise using the existing "Least Ambiguous Method". The program has been extended to handle near-oblate asymmetric tops using a type III r representation. New version summaryTitle of program: STROTAB Version number: 2 Catalogue identifier:ADCA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCA_v2_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Reference in CPC to previous version: 93 (1996) 241-264 Catalog identifier of previous version: ADCA Authors of previous version: R.H. Judge, E.D. Womeldorf, R.A. Morris, D.E. Shimp, D.J. Clouthier, D.L. Joo, D.C. Moule Does the new version supersede the original program: Yes Computers for which the program is designed and others on which it has been tested: Pentium Xenon, Pentium Pro and Later Operating systems or monitors under which program has been tested: Windows 98, Windows 2000, Windows XP Programming language used in the new version: ANSI C, C++, Microsoft Foundation Class (MFC) No. of lines in distributed program, including test data, etc.:11 913 No. of bytes in distributed program, including test data, etc.: 2 816 652 Memory required to execute with typical data: 7 Meg No of bits in a word: 16 No of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.: ˜3.2 MB (compressed) Distribution format: zip file Additional keywords:near oblate top, bootstrap eigenvalue sorting, graphical environment, band contour Nature of physical problem: The least-squares/band contour fitting of the singlet-triplet spectra of asymmetric tops of orthorhombic symmetry using a basis set appropriate to the symmetric top limit (prolate or oblate) of the molecule in either Hund's case (a) or case (b) coupling situations. Method of solution: The calculation of the eigenvectors and eigenvalues remains unchanged from the earlier version. An option to sort the eigenvalues of the current J by fitting them to regular progressions formed from earlier J values (bootstrap method) can be used as an option in place of the existing method based on eigenvector coefficients. Reasons for the new version: The earlier version can only handle oblate tops by diagonalizing using the prolate limit. This has turned out to be unacceptable. An improved method of sorting eigenvalues under certain conditions is also needed. A graphical interface has been added to ease the use of the program. Summary of revisions: The Hamiltonian can now be constructed in a limit appropriate the representation for of the molecule. Sorting by an alternate method is now offered. Numerous graphical features have been added. Restrictions on complexity of the problem: The rotational quantum number restrictions are J⩽255 and K (or P) ⩽127. The allowed transition frequency minus the band origin frequency must be in the range of ±10 000 cm -1. Up to five decimal places may be reported. The number of observed lines is limited by the dynamic memory and the amount of disk space available. Only molecules of symmetry D 2h, D 2 and C 2v can be accommodated in this version. Only constants of the excited triplet state may be varied.

  3. The role played by some factors of intramolecular interaction in nonradiative deactivation of the lowest triplet state of octachlorodibenzo- p-dioxin

    NASA Astrophysics Data System (ADS)

    Gastilovich, E. A.; Klimenko, V. G.; Volkova, L. V.; Nurmukhametov, R. N.

    2012-11-01

    We have studied how intramolecular interactions, such as vibronically induced spin-orbit (VISO) and nonadiabatic interactions, which are governed by different structural elements of the octachlorodibenzo- p-dioxin (OCDD) molecule, affect the deactivation of its lowest triplet state. In the nonadiabatic approximation, taking into account out-of-plane vibrational modes as promoting ones, we have estimated the values of rate constant K {dg/s} of the nonradiative energy deactivation of in-plane triplet sublevels ( s = z, y) of the triplet state of the OCDD molecule.

  4. Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: Application to the fullerenes

    NASA Astrophysics Data System (ADS)

    Baleizão, Carlos; Berberan-Santos, Mário N.

    2007-05-01

    In efficient thermally activated delayed fluorescence (TADF) the excited chromophore alternates randomly between the singlet and triplet manifolds a large number of times before emission occurs. In this work, the average number of cycles n¯ is obtained and is shown to have a simple experimental meaning: n¯+1 is the intensification factor of the prompt fluorescence intensity, owing to the occurrence of TADF. A new method of data analysis for the determination of the quantum yield of triplet formation, combining steady-state and time-resolved data in a single plot, is also presented. Application of the theoretical results to the TADF of [70]fullerenes shows a general good agreement between different methods of fluorescence analysis and allows the determination of several photophysical parameters.

  5. Zero-field magnetic resonance of the photo-excited triplet state of pentacene at room temperature

    NASA Astrophysics Data System (ADS)

    Yang, Tran-Chin; Sloop, David J.; Weissman, S. I.; Lin, Tien-Sung

    2000-12-01

    The pulsed EPR free induction decay (FID) signals of the photo-excited pentacene triplet state are reported for three mixed crystals at room temperature: pentacene-h14 in p-terphenyl, pentacene-h14 in benzoic acid, and pentacene-d14 in p-terphenyl. The recorded FID signals have relatively long decay times of about four microseconds, presumably due to the reduced hyperfine interactions in the zero magnetic field. The time domain FID signals transform to spectral components typically narrower than 500 kHz, allowing us to determine the pentacene triplet zero field splitting parameters to better accuracy than previously reported. Further, a new experimental technique using the high speed magnetic field jumping capability enables us to examine the anisotropic hyperfine and quadrupole interactions.

  6. Nonradiative deactivation of the lowest triplet state of tetrachlorodibenzo- p-dioxin

    NASA Astrophysics Data System (ADS)

    Gastilovich, E. A.; Klimenko, V. G.; Volkova, L. V.; Nurmukhametov, R. N.

    2014-03-01

    In the nonadiabatic approximation, we have studied how the shape of promoting out-of-plane vibrational modes and vibronically induced spin-orbit interactions in structural elements of the 2,3,7,8-tetrachlorodibenzo- p-dioxin molecule affect the energy degradation rate constants K {dg/ s } of triplet T {1/ s } sublevels.

  7. Triplet-state conformational changes in 15-cis-spheroidene bound to the reaction center from Rhodobacter sphaeroides 2.4.1 as revealed by time-resolved EPR spectroscopy: strengthened hypothetical mechanism of triplet-energy dissipation.

    PubMed

    Kakitani, Yoshinori; Fujii, Ritsuko; Koyama, Yasushi; Nagae, Hiroyoshi; Walker, Lee; Salter, Bruce; Angerhofer, Alexander

    2006-02-21

    Time-resolved EPR spectra of 15-cis-spheroidene bound to the reaction center from Rhodobacter sphaeroides 2.4.1 were recorded at low temperatures. (1) A three-component analysis of the spectral-data matrices by singular-value decomposition followed by global fitting identified the transformation of the triplet carotenoid, (3)Car(I) --> (3)Car(II); during this process, the leak of the triplet population was suggested. A four-component analysis suggested the presence of a representative intermediate, (3)Car(R), that forms a leak channel of the triplet population. (2) A theoretical calculation of the zero-field splitting parameters, |D| and |E|, by the use of a polyene model, showed that the transformation, (3)Car(I) --> (3)Car(R) --> (3)Car(II), accompanies the conformational changes of (0 degrees , 0 degrees , 0 degrees ) --> (+20 degrees , -20 degrees , +20 degrees ) --> (+45 degrees , -40 degrees , +40 degrees ) around the central cis C15=C15', trans C13=C14, and trans C11=C12 bonds, respectively. (3) The initial, rapid decrease followed by the inversion of spin polarization along the z axis of (3)Car was observed, which was correlated with a change in the spin angular momentum. (4) In reference to the binding pocket of the Car, determined by X-ray crystallography, the conformational changes were ascribed to the intrinsic isomerization property of 15-cis (3)Car as well as the Car-peptide intermolecular interaction; a detailed picture was proposed. All of the above results support the mechanism of triplet-energy dissipation proposed previously: the rotational motions around the central double bonds cause a change in the orbital angular momentum and, through the spin-orbit coupling, a change in the spin angular momentum, which enhances the T(1) --> S(0) intersystem crossing dissipating the triplet energy. PMID:16475794

  8. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates.

    PubMed

    O Obondi, Christopher; Lim, Gary N; Churchill, Brittani; Poddutoori, Prashanth K; van der Est, Art; D'Souza, Francis

    2016-04-14

    This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (∼13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state. PMID:27043704

  9. The lowest triplet state of azulene- h8 and azulene- d8 in liquid solution. . II. Phosphorescence and E-type delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nickel, Bernhard; Klemp, Dieter

    1993-08-01

    In liquid isopentane the lowest triplet (T 1) state of azulene- h8 and azulene- d8 can be populated by triplet energy transfer from phenazine. At low temperatures (≲ 150 K) two delayed luminescences are observed: phosphorescence and E-type delayed S 1→ S 0 fluorescence (EDF) due to thermally activated intersystem crossing (ISC) T 1⇝S 1. At higher temperature (≳ 200 K) the EDF dominates. The temperature dependence of the EDF is in accord with ISC T 1⇝S 1 being the only temperature-dependent triplet decay process. Light-atom out-of-plane bending modes are likely to be the promoting modes. The literature on the lowest triplet state of azulene is reviewed.

  10. Generation of Phosphorescent Triplet States via Photoinduced Electron Transfer: Energy and Electron Transfer Dynamics in Pt Porphyrin-Rhodamine B Dyads

    PubMed Central

    Mani, Tomoyasu; Niedzwiedzki, Dariusz M.; Vinogradov, Sergei A.

    2012-01-01

    Control over generation and dynamics of excited electronic states is fundamental to their utilization in all areas of technology. We present the first example of multichromophoric systems in which emissive triplet states are generated via a pathway involving photoinduced electron transfer (ET), as opposed to local intrachromophoric processes. In model dyads, PtP-Phn-pRhB+ (1-3, n=1-3), comprising platinum(II) meso-tetraarylporphyrin (PtP) and rhodamine B piperazine derivative (pRhB+), linked by oligo-p-phenylene bridges (Phn), upon selective excitation of pRhB+ at a frequency below that of the lowest allowed transition of PtP, room-temperature T1→S0 phosphorescence of PtP was observed. The pathway leading to the emissive PtP triplet state includes excitation of pRhB+, ET with formation of the singlet radical pair, intersystem crossing within that pair and subsequent radical recombination. Due to the close proximity of the triplet energy levels of PtP and pRhB+, reversible triplet-triplet (TT) energy transfer between these states was observed in dyads 1 and 2. As a result, the phosphorescence of PtP was extended in time by the long decay of the pRhB+ triplet. Observation of ET and TT in the same series of molecules enabled direct comparison of the distance attenuation factors β between these two closely related processes. PMID:22400988

  11. Structures and dynamics of the lowest excited triplet states and cation radicals of phenothiazine and 2-chlorophenothiazine: transient resonance Raman and absorption study

    NASA Astrophysics Data System (ADS)

    Sarata, Gaku; Noda, Yoshihiro; Sakai, Makoto; Takahashi, Hiroaki

    1997-09-01

    Transient resonance Raman and absorption spectra of the lowest excited triplet states T 1 and the cation radicals of phenothiazine and 2-chlorophenothiazine were measured. It was found that in the photoreaction of 2-chlorophenothiazine a transient exhibiting an absorption band at 556 nm was generated from the cation radical. The corresponding transient was not observed in the absorption spectrum of phenothiazine, a fact which suggests a possibility of phenothiazinyl radical generation for 2-chlorophenothiazine by photoinduced dechlorination. Vibrational assignments of the T 1 states and the cation radicals of the both compounds were made based on the frequency shifts on isotopic substitutions. Unusually large low-frequency shifts of the phenyl 8a and 8b modes were observed in the T 1 state but no appreciable shifts were detected in the cation radical, indicating that the phenyl rings are drastically weakened, and therefore, the phenyl C-C bonds are very much lengthened in the T 1 state. This implies that the excitation is strongly localized on the phenyl rings and the T 1 state has an n - π character.

  12. An apparatus for pulsed ESR and DNP experiments using optically excited triplet states down to liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; Haag, M.; van den Brandt, B.; Hautle, P.; Wenckebach, W. Th.; Jannin, S.; van der Klink, J. J.; Comment, A.

    2013-09-01

    In standard Dynamic Nuclear Polarization (DNP) electron spins are polarized at low temperatures in a strong magnetic field and this polarization is transferred to the nuclear spins by means of a microwave field. To obtain high nuclear polarizations cryogenic equipment reaching temperatures of 1 K or below and superconducting magnets delivering several Tesla are required. This equipment strongly limits applications in nuclear and particle physics where beams of particles interact with the polarized nuclei, as well as in neutron scattering science. The problem can be solved using short-lived optically excited triplet states delivering the electron spin. The spin is polarized in the optical excitation process and both the cryogenic equipment and magnet can be simplified significantly. A versatile apparatus is described that allows to perform pulsed dynamic nuclear polarization experiments at X-band using short-lived optically excited triplet sates. The efficient 4He flow cryostat that cools the sample to temperatures between 4 K and 300 K has an optical access with a coupling stage for a fiber transporting the light from a dedicated laser system. It is further designed to be operated on a neutron beam. A combined pulse ESR/DNP spectrometer has been developed to observe and characterize the triplet states and to perform pulse DNP experiments. The ESR probe is based on a dielectric ring resonator of 7 mm inner diameter that can accommodate cubic samples of 5 mm length needed for neutron experiments. NMR measurements can be performed during DNP with a coil integrated in the cavity. With the presented apparatus a proton polarization of 0.5 has been achieved at 0.3 T.

  13. Direct observation of the solvent effects on the low-lying n?* and ??* excited triplet states of acetophenone derivatives in thermal equilibrium.

    PubMed

    Narra, Sudhakar; Shigeto, Shinsuke

    2015-03-01

    Low-lying excited triplet states of aromatic carbonyl compounds exhibit diverse photophysical and photochemical properties of fundamental importance. Despite tremendous effort in studying those triplet states, the effects of substituents and solvents on the energetics of the triplet manifold and on photoreactivity remain to be fully understood. We have recently studied the ordering of the low-lying n?* and ??* excited triplet states and its substituent dependence in acetophenone derivatives using nanosecond time-resolved near-IR (NIR) spectroscopy. Here we address the other important issue, the solvent effects, by directly observing the electronic bands in the NIR that originate from the lowest n?* and ??* states of acetophenone derivatives in four solvents of different polarity (n-heptane, benzene, acetonitrile, and methanol). The two transient NIR bands decay synchronously in all the solvents, indicating that the lowest n?* and ??* states are in thermal equilibrium irrespective of the solvent polarity studied here. We found that the ??* band increases in intensity relative to the n?* band as solvent polarity increases. These results are compared with the photoreduction rate constant for the acetophenone derivatives in the solvents to which 2-propanol was added as a hydrogen-atom donor. Based on the present findings, we present a comprehensive, solvent- and substituent-dependent energy level diagram of the low-lying n?* and ??* excited triplet states. PMID:25686256

  14. Collective modes, ac response, and magnetic properties of the three-dimensional Dirac semimetal in the triplet superconducting state

    NASA Astrophysics Data System (ADS)

    Rosenstein, B.; Shapiro, B. Ya.; Shapiro, I.

    2015-08-01

    It was recently shown that conventional phonon-electron interactions may induce a triplet pairing state in time-reversal invariant three-dimensional Dirac semimetals. Starting from the microscopic model of the isotropic Dirac semimetal, the Ginzburg-Landau equations for the vector order parameter is derived using the Gor'kov technique. The collective modes including gapless Goldstone modes and gapped Higgs modes of various polarizations are identified. They are somewhat analogous to the modes in the B phase of He3, although in the present case quantitatively there is a pronounced difference between longitudinal and transverse components. The difference is caused by the vector nature of the order parameter leading to two different coherence lengths or penetration depths. The system is predicted to be highly dissipative due to the Goldstone modes. The time-dependent Ginzburg-Landau model in the presence of external fields is used to investigate some optical and magnetic properties of such superconductors. The ac conductivity of a clean sample depends on the orientation of the order parameter. It is demonstrated that the difference between the penetration depths results in rotation of the polarization vector of microwave passing a slab made of this material. The upper critical magnetic field Hc 2 was found. It turns out that at fields close to Hc 2 the order parameter orients itself perpendicular to the field direction. In certain range of parameters the triplet superconducting phase persists at arbitrarily high magnetic field like in some p -wave superconductors.

  15. Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system

    NASA Astrophysics Data System (ADS)

    Hofkens, Johan; Schroeyers, Wouter; Loos, Davey; Cotlet, Mircea; Köhn, Fabian; Vosch, Tom; Maus, Michael; Herrmann, A.; Müllen, K.; Gensch, Thomas; De Schryver, F. C.

    2001-09-01

    Energy transfer in antenna systems, ordered arrays of chromophores, is one of the key steps in the photosynthetic process. The photophysical processes taking place in such multichromophoric systems, even at the single molecule level, are complicated and not yet fully understood. Instead of directly studying individual antenna systems, we have chosen to focus first on systems for which the amount of chromophores and the interactions among the chromophores can be varied in a systematic way. Dendrimers with a controlled number of chromophores at the rim fulfill those requirements perfectly. A detailed photophysical study of a second-generation dendrimer, containing eight peryleneimide chromophores at the rim, was performed 'J. Am. Chem. Soc., 122 (2000) 9278'. One of the most intriguing findings was the presence of collective on/off jumps in the fluorescence intensity traces of the dendrimers. This phenomenon can be explained by assuming a simultaneous presence of both a radiative trap (energetically lowest chromophoric site) and a non-radiative trap (triplet state of one chromophore) within one individual dendrimer. It was shown that an analogue scheme could explain the collective on/off jumps in the fluorescence intensity traces of the photosynthetic pigment B-phycoerythrin (B-PE) ( Porphyridium cruentum). The different values of the triplet lifetime that could be recovered for a fluorescence intensity trace of B-PE were correlated with different intensity levels in the trace, suggesting different chromophores acting as a trap as function of time.

  16. Triplet states as non-radiative traps in multichromophoric entities: single molecule spectroscopy of an artificial and natural antenna system.

    PubMed

    Hofkens, J; Schroeyers, W; Loos, D; Cotlet, M; Köhn, F; Vosch, T; Maus, M; Herrmann, A; Müllen, K; Gensch, T; De Schryver, F C

    2001-09-14

    Energy transfer in antenna systems, ordered arrays of chromophores, is one of the key steps in the photosynthetic process. The photophysical processes taking place in such multichromophoric systems, even at the single molecule level, are complicated and not yet fully understood. Instead of directly studying individual antenna systems, we have chosen to focus first on systems for which the amount of chromophores and the interactions among the chromophores can be varied in a systematic way. Dendrimers with a controlled number of chromophores at the rim fulfill those requirements perfectly. A detailed photophysical study of a second-generation dendrimer, containing eight peryleneimide chromophores at the rim, was performed 'J. Am. Chem. Soc., 122 (2000) 9278'. One of the most intriguing findings was the presence of collective on/off jumps in the fluorescence intensity traces of the dendrimers. This phenomenon can be explained by assuming a simultaneous presence of both a radiative trap (energetically lowest chromophoric site) and a non-radiative trap (triplet state of one chromophore) within one individual dendrimer. It was shown that an analogue scheme could explain the collective on/off jumps in the fluorescence intensity traces of the photosynthetic pigment B-phycoerythrin (B-PE) (Porphyridium cruentum). The different values of the triplet lifetime that could be recovered for a fluorescence intensity trace of B-PE were correlated with different intensity levels in the trace, suggesting different chromophores acting as a trap as function of time. PMID:11603833

  17. Geminate and Nongeminate Recombination of Triplet Excitons Formed by Singlet Fission

    NASA Astrophysics Data System (ADS)

    Bayliss, Sam L.; Chepelianskii, Alexei D.; Sepe, Alessandro; Walker, Brian J.; Ehrler, Bruno; Bruzek, Matthew J.; Anthony, John E.; Greenham, Neil C.

    2014-06-01

    We report the simultaneous observation of geminate and nongeminate triplet-triplet annihilation in a solution-processable small molecule TIPS-tetracene undergoing singlet exciton fission. Using optically detected magnetic resonance, we identify recombination of triplet pairs directly following singlet fission, as well as recombination of triplet excitons undergoing bimolecular triplet-triplet annihilation. We show that the two processes give rise to distinct magnetic resonance spectra, and estimate the interaction between geminate triplet excitons to be 60 neV.

  18. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: properties of the triplet state and singlet oxygen photogeneration and quenching

    NASA Technical Reports Server (NTRS)

    Krasnovsky, A. A. Jr; Cheng, P.; Blankenship, R. E.; Moore, T. A.; Gust, D.

    1993-01-01

    Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.

  19. Probing triplet-triplet annihilation zone and determining triplet exciton diffusion length by using delayed electroluminescence

    NASA Astrophysics Data System (ADS)

    Luo, Yichun; Aziz, Hany

    2010-05-01

    The literature shows that triplet-triplet annihilation (TTA) can provide a substantial contribution to the electroluminescence (EL) of fluorescent organic light-emitting devices (OLEDs). In this study, we utilized delayed EL measurements to probe the TTA emission zone of archetypical 8-hydroxyquinoline aluminum (Alq3) based OLEDs. The results demonstrate that the TTA emission zone of these devices is much larger than the prompt emission zone of singlet states that are formed in the electron-hole recombination. The larger TTA emission zone is attributed to the longer diffusion length of the Alq3 triplet states (60 nm) than that of Alq3 singlet states (20 nm).

  20. Aromatic C-H Activation in the Triplet Excited State of Cyclometalated Platinum(II) Complexes Using Visible Light.

    PubMed

    Juliá, Fabio; González-Herrero, Pablo

    2016-04-27

    The visible-light driven cyclometalation of arene substrates containing an N-donor heteroaromatic moiety as directing group by monocyclometalated Pt(II) complexes is reported. Precursors of the type [PtMe(C^N)(N^CH)], where N^CH is 2-phenylpyridine (ppyH) or related compunds with diverse electronic properties and C^N is the corresponding cyclometalated ligand, afford homoleptic cis-[Pt(C^N)2] complexes upon irradiation with blue LEDs at room temperature with evolution of methane. Heteroleptic derivatives cis-[Pt(ppy)(C'^N')] are obtained analogously from [PtMe(ppy)(N'^C'H)], where N'^C'H represents an extended set of heteroaromatic compounds. Experimental and computational studies demonstrate an unprecedented C-H oxidative addition, which is initiated by a triplet excited state of metal-to-ligand charge-transfer (MLCT) character and leads to a detectable Pt(IV) methyl hydride intermediate. PMID:27058394

  1. Non-adiabatic and intersystem crossing dynamics in SO2. II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations.

    PubMed

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2014-05-28

    The importance of triplet states in the photorelaxation dynamics of SO2 is studied by mixed quantum-classical dynamics simulations. Using the SHARC method, standing for Surface Hopping including ARbitrary Couplings, intersystem crossing (ISC) processes caused by spin-orbit coupling are found occurring on an ultrafast time scale (few 100 fs) and thus competing with internal conversion. While in the singlet-only dynamics only oscillatory population transfer between the (1)B1 and (1)A2 states is observed, in the dynamics including singlet and triplet states we find additionally continuous ISC to the (3)B2 state and to a smaller extent to the (3)B1/(3)A2 coupled states. The populations obtained from the dynamics are discussed with respect to the overall nuclear motion and in the light of recent TRPEPICO studies [I. Wilkinson, A. E. Boguslavskiy, J. Mikosch, D. M. Villeneuve, H.-J. Wörner, M. Spanner, S. Patchkovskii, and A. Stolow, "Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy," J. Chem. Phys. 140, 204301 (2014)]. PMID:24880275

  2. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    PubMed

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1nm and of 1.65±0.05ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. PMID:27040752

  3. Toward the Understanding of the Photophysics and Photochemistry of 1-Nitronaphthalene under Solar Radiation: The First Theoretical Evidence of a Photodegradation Intramolecular Rearrangement Mechanism Involving the Triplet States.

    PubMed

    Giussani, Angelo

    2014-09-01

    1-Nitronaphthalene belongs to the class of nitrated polycyclic aromatic hydrocarbons, and constitutes an atmospheric pollutant commonly found in urban environments due to its production during incomplete combustions. On the basis of CASPT2//CASSCF quantum chemical calculations, the photophysics and photochemistry of the system under solar exposure have for the first time been studied. According to the characteristics of the incident radiation (either UVA or UVB, both present in the portion of the solar spectrum reaching the earth), a different excited state will be mainly populated. In both cases, the main decay path undertaken by the corresponding bright state leads to an efficient intersystem crossing process toward the (3)(πOπ*) triplet excited state. The population of the triplet manifold is then identified as the primary photoinduced process in the title molecule, not only after UVA interaction but also under UVB exposure. From the (3)(πOπ*) state, the system can either decay in a radiationless manner to the original ground state minimum, or undergo a photodegradation process mediated by the presence of an accessible singlet-triplet crossing region characterized by the formation of a oxaziridine ring. The determination of such a photodegradation path constitutes the first theoretical evidence supporting the hypothesis formulated almost 50 years ago in the seminal work of Chapman et al. (J. Am. Chem. Soc. 1966, 88, 5550), according to which the photolysis undertaken by nitrated polycyclic aromatic hydrocarbons proceeds through an intramolecular rearrangement mechanism, here characterized on the triplet manifold. PMID:26588542

  4. Influence of ionic strength on triplet-state natural organic matter loss by energy transfer and electron transfer pathways.

    PubMed

    Parker, Kimberly M; Pignatello, Joseph J; Mitch, William A

    2013-10-01

    Triplet state excited natural organic matter chromophores ((3)NOM*) are important reactive intermediates in indirect photochemical processes, yet the impact of salt concentrations relevant to estuarine and marine environments on (3)NOM* is poorly understood. The formation rates, pseudo-first-order loss rate constants, and steady-state concentration of (3)NOM* were monitored using the sorbate probe method in synthetic matrices with increasing ionic strength (IS) to seawater values using seawater halides or other salts. The steady-state concentration of (3)NOM* approximately doubled at seawater IS, regardless of the salt used, due to a decrease in the (3)NOM* decay rate constant. The electron transfer-mediated degradation of 2,4,6-trimethylphenol (TMP) by (3)NOM* was significantly slowed at higher IS. A model is proposed wherein high IS slows intra-organic matter electron transfer pathways, an important (3)NOM* loss pathway, leading to longer (3)NOM* lifetimes. Although IS did not appear to impact energy transfer pathways directly, the higher (3)NOM* steady-state concentrations promote energy transfer interactions. The observed decrease in decay rate constant, increase in steady-state concentration of (3)NOM* at high IS, and the inhibition of electron transfer pathways should be considered when determining the fate of organic pollutants in estuarine and marine environments. PMID:23952218

  5. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation. PMID:22891949

  6. Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach.

    PubMed Central

    Schödel, R; Irrgang, K D; Voigt, J; Renger, G

    1998-01-01

    In the present study the rate of triplet transfer from chlorophyll to carotenoids in solubilized LHCII was investigated by flash spectroscopy using laser pulses of approximately 2 ns for both pump and probe. Special attention has been paid to calibration of the experimental setup and to avoid saturation effects. Carotenoid triplets were identified by the pronounced positive peak at approximately 507 nm in the triplet-singlet difference spectra. DeltaOD (507 nm) exhibits a monoexponential relaxation kinetics with characteristic lifetimes of 2-9 micros (depending on the oxygen content) that was found to be independent of the pump pulse intensity. The rise of DeltaOD (507 nm) was resolved via a pump probe technique where an optical delay of up to 20 ns was used. A thorough analysis of these experimental data leads to the conclusion that the kinetics of carotenoid triplet formation in solubilized LHCII is almost entirely limited by the lifetime of the excited singlet state of chlorophyll but neither by the pulse width nor by the rate constant of triplet-triplet transfer. Within the experimental error the rate constant of triplet-triplet transfer from chlorophyll to carotenoids was estimated to be kTT > (0.5 ns)-1. This value exceeds all data reported so far by at least one order of magnitude. The implications of this finding are briefly discussed. PMID:9826635

  7. Benchmark calculations on the lowest-energy singlet, triplet, and quintet states of the four-electron harmonium atom

    SciTech Connect

    Cioslowski, Jerzy; Strasburger, Krzysztof; Matito, Eduard

    2014-07-28

    For a wide range of confinement strengths ω, explicitly-correlated calculations afford approximate energies E(ω) of the ground and low-lying excited states of the four-electron harmonium atom that are within few μhartree of the exact values, the errors in the respective energy components being only slightly higher. This level of accuracy constitutes an improvement of several orders of magnitude over the previously published data, establishing a set of benchmarks for stringent calibration and testing of approximate electronic structure methods. Its usefulness is further enhanced by the construction of differentiable approximants that allow for accurate computation of E(ω) and its components for arbitrary values of ω. The diversity of the electronic states in question, which involve both single- and multideterminantal first-order wavefunctions, and the availability of the relevant natural spinorbitals and their occupation numbers make the present results particularly useful in research on approximate density-matrix functionals. The four-electron harmonium atom is found to possess the {sup 3}P{sub +} triplet ground state at strong confinements and the {sup 5}S{sub −} quintet ground state at the weak ones, the energy crossing occurring at ω ≈ 0.0240919.

  8. Theory of triplet optical absorption in oligoacenes: From naphthalene to heptacene

    SciTech Connect

    Chakraborty, Himanshu Shukla, Alok

    2014-10-28

    In this paper, we present a detailed theory of the triplet states of oligoacenes containing up to seven rings, i.e., starting from naphthalene all the way up to heptacene. In particular, we present results on the optical absorption from the first triplet excited state 1{sup 3}B{sub 2u}{sup +} of these oligomers, computed using the Pariser-Parr-Pople model Hamiltonian, and a correlated electron approach employing the configuration-interaction methodology at various levels. Excitation energies of various triplets states obtained by our calculations are in good agreement with the experimental results, where available. The computed triplet spectra of oligoacenes exhibits rich structure dominated by two absorption peaks of high intensities, which are well separated in energy, and are caused by photons polarized along the conjugation direction. This prediction of ours can be tested in future experiments performed on oriented samples of oligoacenes.

  9. Fine-Tuning of β-Substitution to Modulate the Lowest Triplet Excited States: A Bioinspired Approach to Design Phosphorescent Metalloporphyrinoids.

    PubMed

    Ke, Xian-Sheng; Zhao, Hongmei; Zou, Xiaoran; Ning, Yingying; Cheng, Xin; Su, Hongmei; Zhang, Jun-Long

    2015-08-26

    Learning nature's approach to modulate photophysical properties of NIR porphyrinoids by fine-tuning β-substituents including the number and position, in a manner similar to naturally occurring chlorophylls, has the potential to circumvent the disadvantages of traditional "extended π-conjugation" strategy such as stability, molecular size, solubility, and undesirable π-π stacking. Here we show that such subtle structural changes in Pt(II) or Pd(II) cis/trans-porphodilactones (termed by cis/trans-Pt/Pd) influence photophysical properties of the lowest triplet excited states including phosphorescence, Stokes shifts, and even photosensitization ability in triplet-triplet annihilation reactions with rubrene. Prominently, the overall upconversion capability (η, η = ε·Φ(UC)) of Pd or Pt trans-complex is 10(4) times higher than that of cis-analogue. Nanosecond time-resolved infrared (TR-IR) spectroscopy experiments showed larger frequency shift of ν(C═O) bands (ca. 10 cm(-1)) of cis-complexes than those of trans-complexes in the triplet excited states. These spectral features, combining with TD-DFT calculations, suggest the strong electronic coupling between the lactone moieties and the main porphyrin chromophores and thus the importance of precisely positioning β-substituents by mimicking chlorophylls, as an alternative to "extended π-conjugation", in designing NIR active porphyrinoids. PMID:26247480

  10. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots

    PubMed Central

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-01-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556

  11. Radio frequency measurements of tunnel couplings and singlet-triplet spin states in Si:P quantum dots

    NASA Astrophysics Data System (ADS)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-11-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.

  12. Time-resolved EPR studies of charge recombination and triplet-state formation within donor-bridge-acceptor molecules having wire-like oligofluorene bridges.

    PubMed

    Miura, Tomoaki; Carmieli, Raanan; Wasielewski, Michael R

    2010-05-13

    Spin-selective charge recombination of photogenerated radical ion pairs within a series of donor-bridge-acceptor (D-B-A) molecules, where D = phenothiazine (PTZ), B = oligo(2,7-fluorenyl), and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), PTZ-FL(n)-PDI, where n = 1-4 (compounds 1-4), is studied using time-resolved electron paramagnetic resonance (TREPR) spectroscopy in which the microwave source is either continuous-wave or pulsed. Radical ion pair TREPR spectra are observed for 3 and 4 at 90-294 K, while the neutral triplet state of PDI ((3)*PDI) is observed at 90-294 K for 2-4 and at 90 K for 1. (3)*PDI is produced by three mechanisms, as elucidated by its zero-field splitting parameters and spin polarization pattern. The mechanisms are spin-orbit-induced intersystem crossing (SO-ISC) in PDI aggregates, direct spin-orbit charge-transfer intersystem crossing (SOCT) from the singlet radical pair within 1, and radical pair intersystem crossing (RP-ISC) as a result of S-T(0) mixing of the radical ion pair states in 2-4. The temperature dependence of the spin-spin exchange interaction (2J) shows a dramatic decrease at low temperatures, indicating that the electronic coupling between the radical ions decreases due to an increase in the average fluorene-fluorene dihedral angle at low temperatures. The charge recombination rates for 3 and 4 decrease at low temperature, but that for 2 is almost temperature-independent. These results strongly suggest that the dominant mechanism of charge recombination for n >or= 3 is incoherent thermal hopping, which results in wire-like charge transfer. PMID:20392075

  13. Effect of SiO2 and zeolite surfaces on the excited triplet state of benzophenone, BT; a spectroscopic and kinetic study.

    PubMed

    Thomas, J Kerry

    2004-05-01

    Laser flash photolysis has been used to study the triplet excited state of benzophenone B(T), on various surfaces, SiO(2), zeolites NaY, KY, NaX and KX, and in rigid media at room temperature, polyethylene and polymethylmethacrylate. The studies point to similarities of the spectroscopy and kinetics of B(T) in fluid solution, in a solid matrix (polymers) and on a SiO(2) surface. However, stark differences are observed for B(T) in zeolites where the absorption spectrum mimics that of the protonated ketone, and the reactivities of B(T) with C(6)H(12) and CH(3)OH are an order of magnitude smaller than those in liquid C(6)H(12) and CH(3)OH. Inclusion of ammonia, which blocks acidic sites in the zeolite, produces a triplet spectrum which is similar to that in polar solution. The reactivity of the triplet with ammonia in a zeolite is also comparable to that observed for this reaction in polar solution. These data are discussed in terms of the interaction of benzophenone with acidic sites in the zeolites, and to restrictions placed on the reactants in the zeolite cages. The blocking of the zeolite acidic sites by ammonia produces spectral and kinetic data (reactivity with NH(3)) of the triplet that are comparable to those observed in solution. This is one of the few cases where zeolites inhibit rather than promote reactions of a solute adsorbed in them. PMID:15122366

  14. Low temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides

    PubMed Central

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2008-01-01

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rb. sphaeroides R-26.1, 2.4.1 and two double mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the A and B branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1 and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260) indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  15. Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen)

    SciTech Connect

    Wouters, Sebastian Van Speybroeck, Veronique; Van Neck, Dimitri; Bogaerts, Thomas; Van Der Voort, Pascal

    2014-06-28

    We use CHEMPS2, our free open-source spin-adapted implementation of the density matrix renormalization group (DMRG) [S. Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck, Comput. Phys. Commun. 185, 1501 (2014)], to study the lowest singlet, triplet, and quintet states of the oxo-Mn(Salen) complex. We describe how an initial approximate DMRG calculation in a large active space around the Fermi level can be used to obtain a good set of starting orbitals for subsequent complete-active-space or DMRG self-consistent field calculations. This procedure mitigates the need for a localization procedure, followed by a manual selection of the active space. Per multiplicity, the same active space of 28 electrons in 22 orbitals (28e, 22o) is obtained with the 6-31G{sup *}, cc-pVDZ, and ANO-RCC-VDZP basis sets (the latter with DKH2 scalar relativistic corrections). Our calculations provide new insight into the electronic structure of the quintet.

  16. Twofold spin-triplet pairing states and tunneling conductance in ferromagnet/ferromagnet/iron pnictide superconductor heterojunctions

    SciTech Connect

    Yang, X.; Tao, Y.C.; Dong, Z.C.; Hu, J.G.

    2013-06-15

    By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energies are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional s-wave SC are also presented, which may help with experimentally probing and identifying the antiphase s-wave pairing symmetry in the iron-based SC. -- Highlights: •An eight-component Bogoliubov–de Gennes (BDG) equation. •Twofold novel ARs and twofold usual ARs. •Conversions of conductance between the zero-bias peak and valley at zero energy. •Conversions of conductance between peaks and dips at two gap energies. •The importance of the interband coupling strength in the SC.

  17. Some calculations on the ground and lowest-triplet state of helium in the fixed-nucleus approximation

    SciTech Connect

    Cox, H. ); Smith, S.J.; Sutcliffe, B.T. )

    1994-06-01

    The series solution method developed by Pekeris [Phys. Rev. 112, 1649 (1958); 115, 1216 (1959)] for the Schroedinger equation for two-electron atoms, as generalized by Frost [ital et] [ital al]. [J. Chem. Phys. 41, 482 (1964)] to handle any three particles with a Coulomb interaction, has been used. The wave function is expanded in triple orthogonal set in three [ital perimetric] coordinates. From the Schroedinger equation an explicit recursion relation for the coefficients in the expansion is obtained, and the vanishing of the determinant of these coefficients provides the condition for the energy eigenvalues and for the eigenvectors. The Schroedinger equation is solved and the matrix elements are produced algebraically by using the computer algebra system MAPLE. The substitutions for a particular atom and diagonalization were performed by a program written in the C language. Since the determinant is sparse, it is possible to go to the order of 1078 as Pekeris did without using excessive memory or computer CPU time. By using a nonlinear variational parameter in the expression used to remove the energy, nonrelativistic energies, within the fixed-nucleus approximation, have been obtained. For the ground-state singlet 1 [sup 1][ital S] state, this is of the accuracy claimed by Frankowski and Pekeris [Phys. Rev. 146, 46 (1966); 150, 366(E) (1966)] using logarithmic terms for [ital Z] from 1 to 10, and for the triplet 2 [sup 3][ital S] state, energies have been obtained to 12 decimal places of accuracy, which, with the exception of [ital Z]=2, are lower than any previously published, for all [ital Z] from 3 to 10.

  18. Statistical Enrichment of Epigenetic States Around Triplet Repeats that Can Undergo Expansions

    PubMed Central

    Essebier, Alexandra; Vera Wolf, Patricia; Cao, Minh Duc; Carroll, Bernard J.; Balasubramanian, Sureshkumar; Bodén, Mikael

    2016-01-01

    More than 30 human genetic diseases are linked to tri-nucleotide repeat expansions. There is no known mechanism that explains repeat expansions in full, but changes in the epigenetic state of the associated locus has been implicated in the disease pathology for a growing number of examples. A comprehensive comparative analysis of the genomic features associated with diverse repeat expansions has been lacking. Here, in an effort to decipher the propensity of repeats to undergo expansion and result in a disease state, we determine the genomic coordinates of tri-nucleotide repeat tracts at base pair resolution and computationally establish epigenetic profiles around them. Using three complementary statistical tests, we reveal that several epigenetic states are enriched around repeats that are associated with disease, even in cells that do not harbor expansion, relative to a carefully stratified background. Analysis of over one hundred cell types reveals that epigenetic states generally tend to vary widely between genic regions and cell types. However, there is qualified consistency in the epigenetic signatures of repeats associated with disease suggesting that changes to the chromatin and the DNA around an expanding repeat locus are likely to be similar. These epigenetic signatures may be exploited further to develop models that could explain the propensity of repeats to undergo expansions. PMID:27013954

  19. Wavelength-dependent photochemistry of W(CO){sub 4}(en) (en = ethylenediamine): Evidence for distinct chemical reactivities from singlet and triplet ligand field excited states

    SciTech Connect

    Panesar, R.S.; Dunwoody, N.; Lees, A.J.

    1998-04-06

    Studies of the photophysical and photochemical properties of organometallic compounds have now been extensively performed for over 25 years. In considering the photoreactivity of such complexes, it has usually been assumed that their singlet excited states are extremely short-lived and unreactive as a consequence of effective intersystem crossing mechanisms facilitated by the heavy metal and rapid internal conversions to the ground state. In this paper the authors report quantitative photochemical measurements obtained for W(CO){sub 4}(en) (en = ethylenediamine) following excitation into the lowest energy LF absorption manifold at several wavelengths. This system is of particular significance because, unlike most other substituted metal carbonyl complexes, its lowest lying LF absorption band is well removed from other electronic transitions and the lowest energy LF triplet absorption is a distinctive feature of the spectrum. Following excitation at various wavelengths, therefore, it is possible to populate the LF single and triplet energy levels exclusively and determine their quantitative photochemical reactivities directly. The results for W(CO){sub 4}(en) demonstrate conclusively that the LF excited states undergo separate photosubstitutional pathways and that reaction from the lowest lying LF triplet state takes place with a substantially reduced photoefficiency.

  20. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2004-11-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  1. Is Nitrate Anion Photodissociation Mediated by Singlet-Triplet Absorption?

    PubMed

    Svoboda, Ond?ej; Slav?ek, Petr

    2014-06-01

    Photolysis of the nitrate anion is involved in the oxidation processes in the hydrosphere, cryosphere, and stratosphere. While it is known that the nitrate photolysis in the long-wavelength region proceeds with a very low quantum yield, the mechanism of the photodissociation remains elusive. Here, we present the quantitative modeling of singlet-singlet and singlet-triplet absorption spectra in the atmospherically relevant region around 300 nm, and we argue that a spin-forbidden transition between the singlet ground state and the first triplet state contributes non-negligibly to the nitrate anion photolysis. We further propose that the nitrate anion excited into the first singlet excited state relaxes nonradiatively into its ground state. The full understanding of the nitrate anion photolysis can improve modeling of the asymmetric solvation in the atmospheric processes, e.g., photolysis on the surfaces of ice or snow. PMID:26273880

  2. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    SciTech Connect

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  3. Overview of helium-like structure measurements: A focus on the N = 2 triplet states

    SciTech Connect

    Berry, H.G.; Dunford, R.W.

    1992-01-01

    We present a comprehensive analysis of existing measurements of the 1s2s [sup 3]S[sub 1] [minus] 1s2p[sup 3]P[sub 0,1,2] transition energies in heliumlike ions for nuclear charges Z=2 to Z=92. We find agreement with the standard unified calculations of [vert bar]Drake except for the transitions from the 1s2p [sup 3]P[sub o] state. We find a deviation equal to 2.3x(Z/10)[sup 4] cm[sup [minus]1] for the most precise existing measurements.

  4. Photochemistry on surfaces: Fluorescence emission of monomers and dimers and triplet state absorption of acridine orange adsorbed on microcrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Wilkinson, F.; Worrall, D. R.; Ferreira, L. F. Vieira

    1992-02-01

    Prompt fluorescence as well as delayed fluorescence emission of acridine orange was detected at room temperature from samples where this dye is adsorbed on microcrystalline cellulose. Ground state absorption studies provided evidence for dimer formation of the dye when adsorbed on cellulose, and the equilibrium constant for dimerisation was determined as 1.6±0.1 × 10 6mol -1g. At low loadings of acridine orange on cellulose (<1 μmol g -1) the fluorescence emission is mainly due to the monomer and is similar to that observed in ethanolic solutions where little aggregation occurs, and peaks at 530 nm. A linear dependence of the fluorescence intensity on the amount of light absorbed by the dye was established for these "diluted" samples. However, at higher loadings (>20 μmol g -1), the fluorescence intensity decreases, and the emission is broad with its maximum at 620 nm, and is mainly due to the dimer. By assuming that the excited monomer and dimer of acridine orange are the only emitting species, it was possible to determine the fluorescence quantum yields for these two species when adsorbed on microcrystalline cellulose as 0.95±0.05 and 0.40±0.10, respectively. Pulsed emission studies at room temperature in the millisecond time-range also revealed monomer and dimer emissions on this longer time-scale. These are shown to be due to thermally activated delayed fluorescence arising from the triplet states of monomer and dimer acridine orange as confirmed by diffuse reflectance transient absorption studies.

  5. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-12-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors.

  6. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  7. Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass.

    PubMed

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns(2)-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn(2+)-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  8. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial constants, while the economical unrestricted Perdew-Burke-Ernzerhof exchange-correlation hybrid functional (UPBE0) technique performs nearly as well.

  9. Addition of ketene silyl acetals to the triplet excited state of C{sub 60} via photoinduced electron transfer leading to the fullereneacetates

    SciTech Connect

    Mikami, Koichi; Matsumoto, Shoji; Ishida, Akito; Takamuku, Setsue; Suenobu, Tomoyoshi; Fukuzumi, Shunichi

    1995-11-15

    The photochemical carbon-carbon bond formation of C{sub 60} with ketene silyl acetals is described to give a new way for fullerene functionalization chemistry. The photoaddition of ketene silyl acetals to C{sub 60} occurs efficiently under irradiation of the visible light in benzene as well as benzonitrile to yield the fullereneacetates. The comparison of the observed rate constants determined from the dependence of the quantum yields on the concentrations of ketene silyl acetals as well as the quenching of triplet excited state of C{sub 60} by ketene silyl acetals with those predicted for the electron transfer processes indicates that the photoaddition proceeds via photoinduced electron transfer from ketene silyl acetals to the triplet excited state of C{sub 60}. The negative shift in the one-electron reduction potentials by the adduct formation of C{sub 60} is examined by the cyclic voltammetry measurements. The factors to control the formation of mono- and bisadducts of C{sub 60} are clarified based on the rates of photoinduced electron transfer from ketene silyl acetals to the triplet excited states of C{sub 60} and the adducts. 40 refs., 7 figs., 2 tabs.

  10. The effect of the structure and conformational dynamics on quenching of triplet states of porphyrins and their chemical dimers by molecular oxygen and on singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Ivashin, N. V.; Shchupak, E. E.; Sagun, E. I.

    2015-01-01

    Quantum-chemical calculations are performed to analyze the factors affecting rate constant k T of quenching of the lowest triplet state by molecular oxygen and quantum yield γΔ of singlet oxygen generation in chemical dimers of porphyrins bound by phenyl spacers at one of the meso positions (OEP)2-Ph, (TPP)2, and their Zn complexes. It is established that, for both types of dimers, the triplet excitation is localized on one of the macrocycles. The steric hindrance of macrocycles at the site of the phenyl ring of (OEP)2-Ph, (ZnOEP)2-Ph, and their monomeric analogues OEP-Ph and ZnOEP-Ph facilitates its rotation by 90° in the triplet state. The lowest triplet state energy in this ( U) conformation is lower than 7800 cm-1, which makes impossible electronic excitation energy transfer to molecular oxygen. The potential barrier of transformation to the U conformation is considerably lower for dimers than for monomers. Because of this, the rate of conformational transformations for dimers is higher and some of the (OEP)2-Ph and (ZnOEP)2-Ph molecules have time to transform into the new U conformation before diffusion collision with O2 molecules in solution. This leads to a noticeable decrease in γΔ in accordance with experimental data. It is shown that the behavior of k T in the series of the studied dimers, their monomeric analogues, and relative compounds corresponds to the model of dipole-dipole electronic excitation energy transfer 1(3M⋯3Σ{g/-}) → 1(1M0⋯1Δg) in collisional complexes.

  11. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Costa, Silvia M. B.; Lopes, J. M.; Serralha, F. N.; Ribeiro, F. Ramôa

    2000-08-01

    The ground-state and transient absorption, prompt and delayed fluorescence of tetraphenylporphyrin (TPP) adsorbed onto the external surface of different zeolites was monitored using diffuse-reflectance steady-state and laser flash photolysis. The delayed fluorescence (DF) of TPP detected in the presence of O 2 is attributed to the energy transfer from 3TPP to 3O 2 to form 1O 2 and subsequent energy transfer from 1O 2 to some other 3TPP within the organised molecular ensembles on the zeolite surface. The spectroscopic and kinetic parameters, namely the yield of DF (2-20% relative to prompt fluorescence), depend on the zeolite properties: the observed differences were correlated with the acid-base properties of the two zeolite series studied in this work (KA, NaA, CaA) and (NaA, NaX, NaY).

  12. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface.

    PubMed

    Levin, P P; Costa, S M; Lopes, J M; Serralha, F N; Ribeiro, F R

    2000-08-01

    The ground-state and transient absorption, prompt and delayed fluorescence of tetraphenylporphyrin (TPP) adsorbed onto the external surface of different zeolites was monitored using diffuse-reflectance steady-state and laser flash photolysis. The delayed fluorescence (DF) of TPP detected in the presence of O2 is attributed to the energy transfer from 3TPP to 3O2 to form 1O2 and subsequent energy transfer from 1O2 to some other 3TPP within the organised molecular ensembles on the zeolite surface. The spectroscopic and kinetic parameters, namely the yield of DF (2-20% relative to prompt fluorescence), depend on the zeolite properties: the observed differences were correlated with the acid-base properties of the two zeolite series studied in this work (KA, NaA, CaA) and (NaA, NaX, NaY). PMID:10952136

  13. Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n -3He

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Arif, M.; Chen, W. C.; Gentile, T. R.; Hussey, D. S.; Black, T. C.; Pushin, D. A.; Shahi, C. B.; Wietfeldt, F. E.; Yang, L.

    2014-12-01

    We report a determination of the n -3He scattering length difference Δ b'=b1'-b0'=[-5.411 ±0.031 (statistical)±0.039 (systematic)] fm between the triplet and singlet states using a neutron interferometer. This revises our previous result Δ b'=[-5.610 ±0.027 (statistical)±0.032 (systematic)] fm obtained using the same technique in 2008 [Huber et al., Phys. Rev. Lett. 102, 200401 (2009), 10.1103/PhysRevLett.102.200401; Huber et al., Phys. Rev. Lett. 103, 179903(E) (2009), 10.1103/PhysRevLett.103.179903]. This revision is attributable to a reanalysis of the 2008 experiment that now includes a systematic correction caused by magnetic-field gradients near the 3He cell which had been previously underestimated. Furthermore, we more than doubled our original data set from 2008 by acquiring 6 months of additional data in 2013. Both the new data set and a reanalysis of the older data are in good agreement. Scattering lengths of low-Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models, and, in the case of 3He, aid in the interpretation of neutron scattering from quantum liquids. The difference Δ b' was determined by measuring the relative phase shift between two incident neutron polarizations caused by the spin-dependent interaction with a polarized 3He target. The target 3He gas was sealed inside a small, flat-windowed glass cell that was placed in one beam path of the interferometer. The relaxation of 3He polarization was monitored continuously with neutron transmission measurements. The neutron polarization and spin-flipper efficiency were determined separately using 3He analyzers and two different polarimetry analysis methods. A summary of the measured scattering lengths for n -3He with a comparison to nucleon interaction models is given.

  14. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.

    PubMed

    Richards-Henderson, Nicole K; Pham, Andrew T; Kirk, Benjamin B; Anastasio, Cort

    2015-01-01

    Vegetation emits a class of oxygenated hydrocarbons--the green leaf volatiles (GLVs)--under stress or damage. Under foggy conditions GLVs might be a source of secondary organic aerosol (SOA) via aqueous reactions with hydroxyl radical (OH), singlet oxygen ((1)O2*), and excited triplet states ((3)C*). To examine this, we determined the aqueous kinetics and SOA mass yields for reactions of (3)C* and (1)O2* with five GLVs: methyl jasmonate (MeJa), methyl salicylate (MeSa), cis-3-hexenyl acetate (HxAc), cis-3-hexen-1-ol (HxO), and 2-methyl-3-butene-2-ol (MBO). Second-order rate constants with (3)C* and (1)O2* range from (0.13-22) × 10(8) M(-1) s(-1) and (8.2-60) × 10(5) M(-1) s(-1) at 298 K, respectively. Rate constants with (3)C* are independent of temperature, while values with (1)O2* show significant temperature dependence (Ea = 20-96 kJ mol(-1)). Aqueous SOA mass yields for oxidation by (3)C* are (84 ± 7)%, (80 ± 9)%, and (38 ± 18)%, for MeJa, MeSa, and HxAc, respectively; we did not measure yields for other conditions because of slow kinetics. The aqueous production of SOA from GLVs is dominated by (3)C* and OH reactions, which form low volatility products at a rate that is approximately half that from the parallel gas-phase reactions of GLVs. PMID:25426693

  15. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ?OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ?OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ?OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 ?g mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol. PMID:25797024

  16. Photophysics of singlet and triplet intraligand excited states in [ReCl(CO)3(1-(2-pyridyl)-imidazo[1,5-α]pyridine)] complexes.

    PubMed

    Blanco-Rodríguez, Ana María; Kvapilová, Hana; Sýkora, Jan; Towrie, Michael; Nervi, Carlo; Volpi, Giorgio; Záliš, Stanislav; Vlček, Antonín

    2014-04-23

    Excited-state characters and dynamics of [ReCl(CO)3(3-R-1-(2-pyridyl)-imidazo[1,5-α]pyridine)] complexes (abbreviated ReGV-R, R = CH3, Ph, PhBu(t), PhCF3, PhNO2, PhNMe2) were investigated by pico- and nanosecond time-resolved infrared spectroscopy (TRIR) and excited-state DFT and TD-DFT calculations. Near UV excitation populates the lowest singlet state S1 that undergoes picosecond intersystem crossing (ISC) to the lowest triplet T1. Both states are initially formed hot and relax with ∼20 ps lifetime. TRIR together with quantum chemical calculations reveal that S1 is predominantly a ππ* state localized at the 1-(2-pyridyl)-imidazo[1,5-α]pyridine (= impy) ligand core, with impy → PhNO2 and PhNMe2 → impy intraligand charge-transfer contributions in the case of ReGV-PhNO2 and ReGV-PhNMe2, respectively. T1 is predominantly ππ*(impy) in all cases. It follows that excited singlet and corresponding triplet states have to some extent different characters and structures even if originating nominally from the same preponderant one-electron excitations. ISC occurs with a solvent-independent (CH2Cl2, MeCN) 20-30 ps lifetime, except for ReGV-PhNMe2 (10 ps in CH2Cl2, 100 ps in MeCN). ISC is 200-300 times slower than in analogous complexes with low-lying MLCT states. This difference is interpreted in terms of spin-orbit interaction and characters of orbitals involved in one-electron excitations that give rise to S1 and T1 states. ReGV-R present a unique case of octahedral heavy-metal complexes where the S1 lifetime is long enough to allow for separate spectroscopic characterization of singlet and triplet excited states. This study provides an insight into dynamics and intersystem crossing pathways of low-lying singlet and triplet excited states localized at bidentate ligands bound directly to a heavy metal atom. Rather long (1)IL lifetimes indicate the possibility of photonic applications of singlet excited states. PMID:24669762

  17. In Gap Excitations and Triplet Lifetime Broadening in the Dilute Singlet Ground State System SrCu2-xMgx(BO3)2

    NASA Astrophysics Data System (ADS)

    Haravifard, S.; Dunsiger, S. R.; Gaulin, B. D.; Dabkowska, H. A.; Telling, M. T. F.; El Shawish, S.; Bonca, J.

    2006-03-01

    We have carried out high resolution time-of-flight neutron scattering measurements on a new high quality single crystal of SrCu2-xMgx(BO3)2 with x = 0.1. These studies revealed the presence of new excitations within the singlet-triplet gap of this quasi-two dimensional, dilute, singlet ground state system. These new excitations showed little or no shift in energy with increasing applied magnetic field. In addition, we observe substantial broadening of the three triplet excitations in the dilute single crystal, as compared with pure SrCu2(BO3)2.^1 The triplet excitations in doped SrCu2-xMgx(BO3)2 therefore possess finite lifetimes at low temperatures in the range that can be measured with cold neutron spectroscopy. We have also calculated the dynamical spin structure factor using the zero temperature Lanczos method, and solving a Shastry-Sutherland model at zero and finite doping for different strengths of external magnetic field. This theory reproduces all the qualitative features observed in the experiments on SrCu2-xMgx(BO3)2. ^1 B.D. Gaulin et al., Phys. Rev. Lett., 93, 267202, 2004.

  18. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.

    PubMed Central

    Angiolillo, P J; Vanderkooi, J M

    1995-01-01

    The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K. PMID:7647253

  19. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    NASA Astrophysics Data System (ADS)

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H]2- after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet 1A2u state and concomitant rise in population of the triplet 3A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet 1A2u state takes only a few picoseconds, ESETD from the triplet 3A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H]2- is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  20. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion.

    PubMed

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H](2-) after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet (1)A2u state and concomitant rise in population of the triplet (3)A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet (1)A2u state takes only a few picoseconds, ESETD from the triplet (3)A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H](2-) is the first example of a photoexcited multianion for which ESETD has been observed following ISC. PMID:26851919

  1. Triplet properties and interactions of the primary electron donor and antenna chromophores in membranes of Heliobacterium chlorum, studied with ADMR spectroscopy.

    PubMed

    Vrieze, J; van de Meent, E J; Hoff, A J

    1998-10-20

    The triplet states of antenna and reaction center bacteriochlorophyll (BChl) g in membranes of Heliobacterium chlorum were studied by optically detected magnetic resonance in zero magnetic field, using absorbance detection. A variety of triplet states was detected, which were all localized on single BChl g chromophores as concluded from a comparison with the triplet state of monomeric BChl g in organic solvents. With the aid of the microwave-induced absorbance difference spectra, we assign a triplet state with zero-field splitting parameters |D| = 727.5 and |E| = 254. 5 MHz to that of the primary donor. The low |E| value indicates that the BChls of the primary donor are monoligated. The intensities of the zero-field transitions were strongly dependent on the redox state of the secondary electron acceptors. A triplet state with |D| = 690-705 MHz and |E| =230 MHz, present under all redox conditions, is associated with antenna BChl g absorbing at 814 nm. Its triplet yield was independent of the redox conditions; we conclude therefore that the antenna chromophores absorbing at 814 nm are not connected with the reaction center at cryogenic temperatures (1.2 K). In addition, relatively strong signals were detected belonging to triplet states with |D| and |E| of 663-680 and 220-227 MHz, respectively, whose amplitudes were dependent on the redox conditions. Triplet states with these zero-field splitting parameters are located on antenna chromophores absorbing between 798-814 nm; their zero-field transitions and absorbance difference spectra indicate a considerable heterogeneity. The concentration of triplet states of antenna chromophores absorbing around 800 nm decreased markedly upon prolonged excitation at 1.2 K. This phenomenon is attributed to quenching of excitations on antenna pigments by stable charge separation in the closely connected reaction center, possibly involving a low-quantum yield menaquinone electron acceptor. PMID:9778366

  2. Raman spectra of selected transuranium trihalides in the solid state

    SciTech Connect

    Wilmarth, W.R.; Begun, G.M.; Haire, R.G.; Peterson, J.R.

    1988-10-15

    Raman spectral data have been obtained from a number of transuranium trihalides in the solid state. The Raman spectra of these actinide compounds are reported and compared to the published Raman spectra of isostructural compounds. Tentative symmetry assignments have been made for the observed Raman-active lattice vibrations based on nuclear site symmetry analysis of their respective crystal structures and comparisons to the symmetry assignments made for isostructural lanthanide compounds. The Raman spectral data obtained in this study represent a partial data base for the use of Raman spectroscopy for identifying the crystal structures exhibited by these and isostructural compounds.

  3. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    SciTech Connect

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen; López Navarrete, Juan T.; Casado, Juan

    2014-02-07

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  4. Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

    NASA Astrophysics Data System (ADS)

    Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen; Sun, Zhe; Li, Yuan; López Navarrete, Juan T.; Wu, Jishan; Casado, Juan

    2014-02-01

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.

  5. Zethrene biradicals: how pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states.

    PubMed

    Zafra, José Luis; González Cano, Rafael C; Ruiz Delgado, M Carmen; Sun, Zhe; Li, Yuan; López Navarrete, Juan T; Wu, Jishan; Casado, Juan

    2014-02-01

    A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics. PMID:24511967

  6. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-01

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7-12 thousand cm-1 of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T1 states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry adapted cluster-configuration interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  7. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    SciTech Connect

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm⁻¹ of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T₁ states. The laser power dependences (slopes of log-log power plots) of the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry Adapted Cluster-Configuration Interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.

  8. Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers

    DOE PAGESBeta

    Johnson, Philip M.; Sears, Trevor J.

    2015-07-28

    Naphthalene, anthracene, and phenanthrene are shown to have very long-lived triplet lifetimes when the isolated molecules are excited with nanosecond pulsed lasers resonant with the lowest singlet state. For naphthalene, triplet state populations are created only during the laser pulse, excluding the possibility of normal intersystem crossing at the one photon level, and all molecules have triplet lifetimes greater than hundreds of microseconds, similar to the behavior previously reported for phenylacetylene. Although containing 7–12 thousand cm⁻¹ of vibrational energy, the triplet molecules have ionization thresholds appropriate to vibrationless T₁ states. The laser power dependences (slopes of log-log power plots) ofmore » the excited singlet and triplet populations are about 0.7 for naphthalene and about 0.5 for anthracene. Kinetic modeling of the power dependences successfully reproduces the experimental results and suggests that the triplet formation mechanism involves an enhanced spin orbit coupling caused by sigma character in states at the 2-photon level. Symmetry Adapted Cluster-Configuration Interaction calculations produced excited state absorption spectra to provide guidance for estimating kinetic rates and the sigma character present in higher electronic states. It is concluded that higher excited state populations are significant when larger molecules are excited with pulsed lasers and need to be taken into account whenever discussing the molecular photodynamics.« less

  9. The photoexcited triplet state of sapphyrin dication: Unusual spin alignment in monomers and spin delocalization in dimers

    SciTech Connect

    Levanon, H. |; Michaeli, S.; Regev, A.; Galili, T.; Cyr, M.; Sessler, J.L.

    1990-01-31

    Sapphyrin (Sap) and its stable dicationic form, Sap{sup 2+}, originally prepared by Woodawrd and Johnson, are large porphyrin-like systems which exhibit unique photophysical and photochemical properties. We report on the triplet diode detection, by time-resolved CW EPR, of (Sap{sup 2+}){sup T} randomly oriented in toluene (as monomers), ethanol (as dimers), and partially oriented in a nematic liquid crystal (as monomers). The substantial reduction of both zero-field splitting (ZFS) parameters (D and E) in the dimer, is interpreted in terms of spin delocalization (charge transfer) among the monomers within the dimer, (Sap{sup 2+}){sub 2}. The EPR line shape of Sap{sup 2+} in the liquid crystal suggests that, unlike other known porphyrinoid systems, the ZFS term D is associated with the in-plane alignment of the triplet spins along the C{sub 2v} symmetry axis, Z.

  10. Magnetism and experimental consequences of pz-wave spin triplet state in quasi-one-dimensional A2Cr3As3 superconductors

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Yang, Fan; Le, Congcong; Yuan, Jing; Qin, Shengshan; Fan, Heng; Hu, Jiangping

    The recently discovered quasi-one dimensional superconductors A2Cr3As3(A=K,Rb,Cs), are found to possess strong frustrated magnetic fluctuations and are nearby a novel in-out co-planar magnetic ground state. Then, we find that the triplet pz-wave pairing is strongly favored. Finally, with pz wave pairing state, we obtain the specific heat, superfluid density, Knight shift and spin relaxation rate and find that all these properties at low temperature (T <state in this quasi-one dimensional system is anisotropic: the in-plane superfluid density varies as Δρ∥ ~ T but the out-plane one varies as Δρ⊥ ~T3 at low temperature. The anisotropic upper critical field reported in experiment is consistent with the Sz = 0 (i.e,(↑ ↓ + ↓ ↑)) pz-wave pairing state. We also suggest the phase-sensitive dc-SQUID measurements to pin down the triplet pz-wave pairing state.

  11. Electronic excited states and electronic spectra of biphenyl: a study using many-body wavefunction methods and density functional theories.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro

    2013-10-28

    The low-lying electronic excited states of biphenyl were studied using the symmetry-adapted cluster-configuration interaction (SAC-CI), complete active space self-consistent field (CASSCF), complete active space perturbation theory of the second-order (CASPT2), and the time-dependent density functional theory (TDDFT). The molecular geometries in the ground and excited states were optimized using the SAC-CI and TDDFT for singlet and triplet states. The energies of vertical excitations, emissions, and adiabatic transitions were calculated. The TDDFT calculations significantly underestimated the excitation energy of the 1(1)B1 state, while the SAC-CI and CASPT2 provided essentially similar results. The present SAC-CI and CASPT2 calculations concluded that the lowest singlet state of isolated biphenyl is the 1(1)B3 state that takes a planar geometry and the second lowest state is the 1(1)B2 state with a twisted geometry. The present results were consistent with the previous experimental findings. The 1(1)B1 state that has a charge-separated biracial character in the vertical excitation relaxed into a planar quinoid structure in which bond alternations were emphasized. The other states took a benzenoid structure. The ultraviolet (UV) absorption and circular dichroism (CD) spectra below 7 eV were calculated with the SAC-CI method. The valence-Rydberg mixings were found to be significant in the second and higher series of excited states. PMID:24022338

  12. Geminate and nongeminate recombination of triplet excitons formed by singlet fission.

    PubMed

    Bayliss, Sam L; Chepelianskii, Alexei D; Sepe, Alessandro; Walker, Brian J; Ehrler, Bruno; Bruzek, Matthew J; Anthony, John E; Greenham, Neil C

    2014-06-13

    We report the simultaneous observation of geminate and nongeminate triplet-triplet annihilation in a solution-processable small molecule TIPS-tetracene undergoing singlet exciton fission. Using optically detected magnetic resonance, we identify recombination of triplet pairs directly following singlet fission, as well as recombination of triplet excitons undergoing bimolecular triplet-triplet annihilation. We show that the two processes give rise to distinct magnetic resonance spectra, and estimate the interaction between geminate triplet excitons to be 60 neV. PMID:24972236

  13. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  14. Unimolecular photodissociation dynamics of ketene (CH{sub 2}CO): The singlet/triplet branching ratio and experimental observation of the vibrational level thresholds of the transition-state

    SciTech Connect

    Kim, S.K.

    1993-05-01

    The rotational distributions of CO products from the dissociation of ketene at photolysis energies 10 cm{sup {minus}1} below, 56, 110, 200, 325, 425, 1,107, 1,435, 1,720, and 2,500 cm{sup {minus}1} above the singlet threshold, are measured in a supersonic free jet of ketene. The CO(v{double_prime} = 0) rotational distributions at 56, 110, 200, 325, and 425 cm{sup {minus}1} are bimodal. The peaks at low J`s, which are due to CO from the singlet channel, show that the product rotational distribution of CO product from ketene dissociation on the singlet surface is well described by phase space theory (PST). For CO(v{double_prime} = 0) rotational distributions at higher excess energies, the singlet and triplet contributions are not clearly resolved, and the singlet/triplet branching ratios are estimated by assuming that PST accurately predicts the CO rotational distribution from the singlet channel and that the distribution from the triplet channel changes little from that at 10 cm{sup {minus}1} below the singlet threshold. At 2,500 cm{sup {minus}1} excess energy, the CO(v{double_prime} = 1) rotational distribution is obtained, and the ratio of CO(v{double_prime} = 1) to CO(v{double_prime} = 0) products for the singlet channel is close to the variational RRKM calculation, 0.038, and the separate statistical ensembles (SSE) prediction, 0.041, but much greater than the PST prediction, 0.016. Rate constants for the dissociation of ketene (CH{sub 2}CO) and deuterated ketene (CD{sub 2}CO) have been measured at the threshold for the production of the CH(D){sub 2} and CO. Sharp peaks observed in photofragment excitation (PHOFEX) spectra probing CO (v = 0, J = 2) product are identified with the C-C-O bending mode of the transition state. RRKM calculations are carried out for two limiting cases for the dynamics of K-mixing in highly vibrationally excited reactant states.

  15. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  16. Understanding the Photoreactivity of Dissolved Organic Carbon in Natural Waters: The Role of the Triplet Excited-State of Allochthonous and Autochthonous DOC

    NASA Astrophysics Data System (ADS)

    Cottrell, B. A.; Timko, S. A.; Robinson, A. K.; Weiden, L. M.; Cooper, W.

    2012-12-01

    The photochemical reactivity of DOC in sunlit waters is a major factor for the in situ processing of DOC itself and trace contaminants in streams, lakes and the ocean. There is an increasing interest in the use of wetlands to mitigate contaminant removal. Laser flash photolysis is used to determine the reaction rate constants of dissolved organic carbon (DOC) with emerging contaminants in natural waters. DOC, produced by the decomposition of plant and microbial material, is one of the most complex naturally occurring mixtures. DOC plays a major role in the global carbon cycle, the sequestration and transport of trace chemicals and contaminants, and the biogeochemistry of natural waters. Hydrolysis, direct photolysis and reactions with singlet oxygen and the hydroxyl radical account for up to 25% of the photo reactivity of natural organic matter. The remaining 75% is attributed to reactions with the triplet-excited state of DOC (3DOC*). In this study, 1H NMR is used to characterize DOC from the Black River (NC), the San Joaquin Wetlands (Irvine, CA), and coastal seawater (Crystal Cove, CA). These sites encompass both allochthonous and autochthonous organic matter from catchment, wetlands, and marine waters. We then determine the reaction rate constants of known triplet state reactants and pharmaceuticals with the 3DOC* in the natural waters and with the DOC isolated by solid phase extraction. Studies of 3DOC* could provide a measure of DOC reactivity, essential in the design of constructed wetlands for contaminant removal.

  17. Infrared absorption spectra of various doping states in cuprate superconductors

    SciTech Connect

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-02-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs.

  18. Infrared absorption spectra of various doping states in cuprate superconductors

    SciTech Connect

    Yonemitsu, K.; Bishop, A.R. ); Lorenzana, J. )

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs.

  19. On the solid-state NMR spectra of naproxen

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří

    2015-01-01

    Two previous measurements of the 13C and 1H NMR isotropic chemical shifts in crystalline naproxen, which is an important pharmaceutical compound, are confronted with the results obtained from several theoretical approaches capable of the proper treatment of solid-phase effects. In the underlying geometrical optimizations, two crystal structures are considered. The agreement between the data sets is quantified, including an evaluation of the similarity between the experimental solid-state NMR spectra. The 13C-1H heteronuclear correlations are analyzed, and their various assignments are discussed employing the statistical treatment of the differences between the measured and theoretical isotropic chemical shifts.

  20. Narrow chaotic compound autoionizing states in atomic spectra

    SciTech Connect

    Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F.

    1996-09-01

    Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound autoionizing states (AIS). These states are almost chaotic superpositions of large numbers of many-electron basis states built of single-electron orbitals. The mean level spacing {ital D} between such states is very small (e.g., {ital D}{lt}0.01 eV for the numerical example of {ital J}{sup {pi}}=4{sup {minus}} states of Ce just above the ionization threshold). The autoionization widths of these states estimated by perturbations, {gamma}=2{pi}{vert_bar}{ital W}{vert_bar}{sup 2}, where {ital W} is the Coulomb matrix element coupling the AIS to the continuum, are also small, but comparable with {ital D} in magnitude: {gamma}{approximately}{ital D}. Hence the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly the widths of the autoionizing resonances ({Gamma}{approx_equal}{ital D}{sup 2}/3{gamma}{lt}{ital D}), and leads to the emergence of a {open_quote}{open_quote}collective{close_quote}{close_quote} doorway state which accumulates a large share of the total width. This state is in essence a modified single-particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close to Gaussian. {copyright} {ital 1996 The American Physical Society.}

  1. Favorable performance of the DFT methods in predicting the minimum-energy structure of the lowest triplet state of WF{sub 4}

    SciTech Connect

    Gutowski, M.

    1999-06-15

    The tetrahedral structure of the lowest triplet state of the WF{sub 4} complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T{sub d} structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C{sub 2v} leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T{sub d} and C{sub 2v} stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively.

  2. Quenching of triplet states of organic compounds by copper(II) and nickel(II) 1,3-diketonates in acetonitrile solution. Energy and/or electron transfer

    SciTech Connect

    Hug, G.L. ); Marciniak, B. A. Mickiewicz Univ., Poznan )

    1994-08-04

    Rate constants for quenching of the triplet states of 15 organic compounds by copper(II) bis(2,4-pentanedionate), Cu(acac)[sub 2], copper(II) bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate), Cu(hfac)[sub 2], Ni(II) bis(2,4-pentanedionate), Ni(acac)[sub 2], and Ni(II) bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate), Ni(hfac)[sub 2], in acetonitrile solution have been measured using the nanosecond laser flash photolysis technique. The quenching data were interpreted in terms of energy or electron transfer alone or in terms of both as competitive processes. With a classical framework for energy and electron transfer, the correlations of the quenching rate constants with the standard free energy changes for energy and electron transfer were used to evaluate appropriate intrinsic barriers and transmission coefficients for both processes. In acetonitrile, quenching by Cu(acac)[sub 2] was suggested to occur mainly by electron transfer, whereas quenching by Cu(hfac)[sub 2] was shown to involve energy transfer to the ligand-localized triplet in combination with electron transfer. 58 refs., 4 figs., 5 tabs.

  3. Aromaticity Changes along the Lowest-Triplet-State Path for C?C Bond Rotation of Annulenyl-Substituted Olefins Probed by the Electron Localization Function

    NASA Astrophysics Data System (ADS)

    Villaume, Sbastien; Ottosson, Henrik

    2009-10-01

    The ?-contribution to the electron localization function (ELF?) was used to analyze changes in the aromaticity of annulenyl-substituted olefins in their lowest triplet state (T1) when the structure around the olefin C?C bond is twisted from planar to a structure (3p*) at which the planes of the two RR'C units are perpendicular. The ring closure bifurcation value and the range in the bifurcation values of the ELF? basins serve as (anti)aromaticity indicators directly linked to the electronic structure. Both Hckel's 4n + 2 ?-electron rule for aromaticity in the singlet ground state (S0) and Baird's 4n ?-electron rule for aromaticity in the lowest ??* triplet state are applied. Three olefins with S0 aromatic (T1 antiaromatic) substituents and four olefins with T1 aromatic (S0 antiaromatic) substituents were studied using the ELF? topology at the OLYP/6-311G(d,p) density functional theory level. The changes in the substituent ELF? bifurcation values upon rotation about the olefin bond in the T1 state reveal that aromatic character is recovered for the first three olefins and that it is reduced for the latter ones. These changes in aromatic character are reflected in the shapes of the T1 potential energy surfaces as a twist away from planar structures in olefins with T1 antiaromatic substituents is energetically favorable, but that in olefins with T1 aromatic substituents is unfavorable. Hence, aromaticity change is a driver for a photochemical reaction as for many ground-state reactions.

  4. Quasiclassical asymptotics and coherent states for bounded discrete spectra

    SciTech Connect

    Gorska, K.; Penson, K. A.; Horzela, A.; Blasiak, P.; Duchamp, G. H. E.; Solomon, A. I.

    2010-12-15

    We consider discrete spectra of bound states for nonrelativistic motion in attractive potentials V{sub {sigma}}(x)=-|V{sub 0}| |x|{sup -}{sigma}, 0<{sigma}{<=}2. For these potentials the quasiclassical approximation for n{yields}{infinity} predicts quantized energy levels e{sub {sigma}}(n) of a bounded spectrum varying as e{sub {sigma}}(n){approx}-n{sup -}2{sigma}/(2-{sigma}). We construct collective quantum states using the set of wavefunctions of the discrete spectrum assuming this asymptotic behavior. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For {sigma} in the range 0 < {sigma}{<=} 2/3 we present exact implementations of such states for the parametrization {sigma}= 2(k-l)/(3k-l) with k and l positive integers satisfying k>l.

  5. The Predicted Spectrum and Singlet-Triplet Interaction of the Hypermetallic Molecule SrOSr

    NASA Astrophysics Data System (ADS)

    Ostojić, B.; Jensen, Per; Schwerdtfeger, P.; Bunker, P. R.

    2013-10-01

    In accordance with previous studies in our group on Be, Mg, and Ca hypermetallic oxides, we find that SrOSr has a linear X-1Σg+ ground electronic state and a very low lying first excited -3Σu+ triplet electronic state. No gas-phase spectrum of this molecule has been assigned yet, and to encourage and assist in its discovery we present a complete ab initio simulation, with absolute intensities, of the infrared absorption spectrum for both electronic states. The three-dimensional potential energy surfaces and the electric dipole moment surfaces of the X-1Σg+ and -3Σu+ electronic states are calculated using a multireference configuration interaction (MRCISD) approach in combination with internally contracted multireference perturbation theory (RS2C) based on complete active space self-consistent field (CASSCF) wave functions applying a Sadlej pVTZ basis set for both O and Sr and the Stuttgart relativistic small-core effective core potential for Sr. The infrared spectra are simulated using the MORBID program system. We also calculate vertical excitation energies and transition moments for several excited singlet and triplet electronic states in order to predict the positions and intensities of the most prominent singlet and triplet electronic absorption bands. Finally, for this heavy molecule, we calculate the singlet-triplet interaction matrix elements between close-lying vibronic levels of the X- and - electronic states and find them to be very small.

  6. Low-energy chlorophyll states in the CP43 antenna protein complex: simulation of various optical spectra. II.

    PubMed

    Reppert, Mike; Zazubovich, Valter; Dang, Nhan C; Seibert, Michael; Jankowiak, Ryszard

    2008-08-14

    The CP43 protein complex of the core antenna of higher plant photosystem II (PSII) has two quasidegenerate "red" absorption states. It has been shown in the accompanying paper I (Dang, N. C., et al. J. Phys. Chem. B 2008, 112, 9921.) that the site distribution functions (SDFs) of red-states A and B are uncorrelated and the narrow holes are burned in subpopulations of chlorophylls (Chls) from states A and B that are the lowest-energy pigments in their particular CP43 complexes and cannot further transfer energy downhill. In this work, we present the results of a series of Monte Carlo simulations using the 3.0-A structure of the PSII core complex from cyanobacteria (Loll, B., et al. Nature 2005, 303, 1040.) to model absorption, emission, persistent, and transient hole burned (HB) spectra. At the current structural resolution, we found calculated site energies (obtained from INDO/S calculations) to be only suggestive because their values are different for the two monomers of CP43 in the PS II dimer. As a result, to probe the excitonic structure, a simple fitting procedure was employed to optimize Chl site energies from various starting values corresponding to different A/B pigment combinations to provide simultaneously good fits to several types of optical spectra. It is demonstrated that the shape of the calculated absorption, emission, and transient/persistent hole-burned spectra is consistent with experimental data and our model for excitation energy transfer between two quasi-degenerate lowest-E states (A and B) with uncorrelated SDFs discussed in paper I. Calculations revealed that absorption changes observed near 670 nm in the non-line-narrowed persistent HB spectra (assigned to photoconversion involving Chl-protein hydrogen-bonding by Hughes (Biochemistry 2006, 45, 12345.) are most likely the result of nonphotochemical hole-burning (NPHB) accompanied by the redistribution of oscillator strength due to modified excitonic interactions. We argue that a unique redistribution of oscillator strength during the NPHB process helps to assign Chls contributing to the low-energy states. It is demonstrated that the 4.2 K asymmetric triplet-bottleneck (transient) hole is mostly contributed to by both A and B states, with the hole profile described by a subensemble of pigments, which are the lowest-energy pigments (B s- and A s-type) in their complexes. The same lowest-energy Chls contribute to the observed fluorescence spectra. On the basis of our excitonic calculations, the best Chl candidates that contribute to the low-energy A and B states are Chl 44 and Chl 37, respectively. PMID:18642950

  7. Assignment of IR bands of isolated and protein-bound Peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mezzetti, Alberto; Kish, Elizabeth; Robert, Bruno; Spezia, Riccardo

    2015-06-01

    The vibrational properties of Peridinin in its fundamental state and in the excited triplet state have been investigated by DFT calculations and static and time-resolved FTIR spectroscopy. The infrared spectrum of Peridinin in its fundamental state has been explored in the whole 2000-600 cm-1 range, and interpreted in term of molecular vibrations. In particular, new infrared bands have been identified and assigned to specific molecular vibrations. 3Peridinin molecular vibrations have also been investigated by DFT calculations. In addition, putative IR bands belonging to Peridinin and 3Peridinin have been identified in the step-scan FTIR difference spectrum of the Peridinin-Chlorophyll a-Protein from Amphidinium carterae, where light induce formation of a triplet state localized on one or more Peridinins. The exact nature of the triplet state formed in Peridinin-Chlorophyll a-Protein from dinoflagellates, in particular the possible involvement in this triplet state of 3Chlorophyll a, has been largely debated in the last few years (see Carbonera et al., 2014 [3]); time-resolved differential FTIR experiments have played a key role in this debate. Identification of IR marker bands for the main molecule (Peridinin) implicated in this photophysical process is therefore particularly important and makes this study a significant step towards the full understanding of Peridinin-Chlorophyll-a-Proteins photophysics.

  8. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals.

    PubMed

    Thompson, Nicholas J; Wilson, Mark W B; Congreve, Daniel N; Brown, Patrick R; Scherer, Jennifer M; Bischof, Thomas S; Wu, Mengfei; Geva, Nadav; Welborn, Matthew; Voorhis, Troy Van; Bulović, Vladimir; Bawendi, Moungi G; Baldo, Marc A

    2014-11-01

    Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from 'dark' triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to 'brighten' low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells. PMID:25282507

  9. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas J.; Wilson, Mark W. B.; Congreve, Daniel N.; Brown, Patrick R.; Scherer, Jennifer M.; Bischof, Thomas S.; Wu, Mengfei; Geva, Nadav; Welborn, Matthew; Voorhis, Troy Van; Bulović, Vladimir; Bawendi, Moungi G.; Baldo, Marc A.

    2014-11-01

    Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from ‘dark’ triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to ‘brighten’ low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

  10. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.

    PubMed

    Kvíčalová, Zuzana; Alster, Jan; Hofmann, Eckhard; Khoroshyy, Petro; Litvín, Radek; Bína, David; Polívka, Tomáš; Pšenčík, Jakub

    2016-04-01

    Room temperature transient absorption spectroscopy with nanosecond resolution was used to study quenching of the chlorophyll triplet states by carotenoids in two light-harvesting complexes of the dinoflagellate Amphidinium carterae: the water soluble peridinin-chlorophyll protein complex and intrinsic, membrane chlorophyll a-chlorophyll c2-peridinin protein complex. The combined study of the two complexes facilitated interpretation of a rather complicated relaxation observed in the intrinsic complex. While a single carotenoid triplet state was resolved in the peridinin-chlorophyll protein complex, evidence of at least two different carotenoid triplets was obtained for the intrinsic light-harvesting complex. Most probably, each of these carotenoids protects different chlorophylls. In both complexes the quenching of the chlorophyll triplet states by carotenoids occurs with a very high efficiency (~100%), and with transfer times estimated to be in the order of 0.1ns or even faster. The triplet-triplet energy transfer is thus much faster than formation of the chlorophyll triplet states by intersystem crossing. Since the triplet states of chlorophylls are formed during the whole lifetime of their singlet states, the apparent lifetimes of both states are the same, and observed to be equal to the carotenoid triplet state rise time (~5ns). PMID:26801214

  11. Thiol-Activatable Triplet-Triplet Annihilation Upconversion with Maleimide-Perylene as the Caged Triplet Acceptor/Emitter.

    PubMed

    Mahmood, Zafar; Zhao, Jianzhang

    2016-01-15

    Efficient thiol-activated triplet-triplet annihilation (TTA) upconversion system was devised with maleimide-caged perylene (Py-M) as the thiol-activatable triplet acceptor/emitter and with diiodoBodipy as the triplet photosensitizer. The photophysical processes were studied with steady-state UV-vis absorption spectroscopy, fluorescence spectroscopy, electrochemical properties, and nanosecond transient absorption spectroscopy. The triplet acceptor/emitter Py-M shows week fluorescence (ΦF = 0.8%), and no upconversion (ΦUC = 0%) was observed. The quenching of fluorescence of Py-M is due to photoinduced electron-transfer (PET) process from perylene to maleimide-caging unit, which quenches the singlet excited state of perylene. The fluorescence of Py-M was enhanced by 200-fold (ΦF = 97%) upon addition of thiols such as 2-mercaptoethanol, and the ΦUC was increased to 5.9%. The unique feature of this thiol-activated TTA upconversion is that the activation is based on addition reaction of the thiols with the caged acceptor/emitter, and no side products were formed. The previously reported cleavage approach gives side products which are detrimental to the TTA upconversion. With nanosecond transient absorption spectroscopy, we found that the triplet excited state of Py-M was not quenched by any PET process, which is different from singlet excited state (fluorescence) of Py-M. The results are useful for study of the triplet excited states of organic chromophores and for activatable TTA upconversion. PMID:26694534

  12. Electronic states and spectra of BiH

    NASA Astrophysics Data System (ADS)

    Setzer, Klaus-Dieter; Fink, Ewald H.; Hill, Christian; Brown, John M.

    2015-06-01

    Emission spectra of bismuth monohydride (BiH) radicals excited by energy transfer from O2(a1Δg) or NF(a1Δ) or by a DC discharge in a mixture of bismuth vapor and hydrogen in a fast-flow system were studied in the wavenumber range from 4000 to 25 000 cm-1 with a Fourier-transform spectrometer. The X21 → X10+ transition between the spin components of the X3Σ- ground state was remeasured at high spectral resolution and signal/noise. Six bands of the Δv = 0 and +1 sequences near 4950 and 6600 cm-1 have been observed. The low-J lines of these bands are split into up to 10 hfs components due to magnetic hyperfine structure splitting of the X21 levels. In addition to the previously observed electric dipole lines, weak magnetic dipole lines show up in the Δv = 0 but not in the Δv = +1 bands. The intensities of the Δv = +1 bands are about a factor of 10 higher than expected from Franck-Condon factors indicating that the electric dipole transition moment μX2-X1 shows a strong dependence on internuclear distance. Near 5450 cm-1, the 0-0 and 1-1 bands of the transition a2 → X21 from the hitherto unknown first excited state a1Δ(a2) to the upper component of the ground state have been observed. The lines in these bands show the magnetic hfs splitting of both the a2 and X21 states. In the visible range near 21 300 and 16 300 cm-1, the 0-0 and 1-1 bands of the b0+ → X10+ system and the 0-0 band of the b0+ → X21 transition likewise have been measured at high resolution. The lines of the latter band also show the hfs splitting of the X21 state. Least-squares fits have yielded rotational and vibrational constants of the X10+, X21, a2, and b0+ states as well as hfs parameters of the X21 and a2 states and the electronic energy of the hitherto unknown a1Δ(a2) level.

  13. Quantitative comparison of villin headpiece subdomain simulations and triplettriplet energy transfer experiments

    PubMed Central

    Beauchamp, Kyle A.; Ensign, Daniel L.; Das, Rhiju; Pande, Vijay S.

    2011-01-01

    As the fastest folding protein, the villin headpiece (HP35) serves as an important bridge between simulation and experimental studies of protein folding. Despite the simplicity of this system, experiments continue to reveal a number of surprises, including structure in the unfolded state and complex equilibrium dynamics near the native state. Using 2.5ms of molecular dynamics and Markov state models, we connect to current experimental results in three ways. First, we present and validate a novel method for the quantitative prediction of triplettriplet energy transfer experiments. Second, we construct a many-state model for HP35 that is consistent with previous experiments. Finally, we predict contact-formation time traces for all 1,225 possible triplettriplet energy transfer experiments on HP35. PMID:21768345

  14. Photochemical transformations. 37. Electron-transfer requirements for photosolvolysis and photo-Wagner-Meerwein reactions of some dichlorodibenzobicyclo(2. 2. 2)octadienes in singlet and triplet excited states

    SciTech Connect

    Cristol, S.J.; Bindel, T.H.; Hoffmann, D.; Aeling, E.O.

    1984-06-29

    Substituted trans-7,8-dichloro-10-X-2,3:5,6-dibenzobicyclo(2.2.2)octa-2,5-dienes (X = COCH/sub 3/, CN, and NO/sub 2/) and corresponding dinitro-substituted compounds (10,15-dinitro) were solvolyzed with silver acetate in acetic acid and were irradiated in glacial acetic acid or acetonitrile with 254- and 300-nm light. The structures of the monoring-substituted diastereoisomeric dichlorides were demonstrated by proof of structures of the daughter solvolysis products. Unlike compounds previously studied, these compounds were either photochemically inert or photoinactive with respect to Wagner-Meerwein rearrangement or to solvolysis. These results have been rationalized in terms of the inability of the excited states of the light-absorbing chromophores in these compounds to transfer electrons to the carbon-chlorine bonds remote from these chromophores. While triplet states of a variety of cis- and trans-7,8-dichloro-2,3:5,6-dibenzobicyclo(2.2.2)octa-2,5-dienes are reported to be similarly inert, the 10,11-dimethoxy derivatives all were photoactive with acetone sensitization. The migration stereochemistries of the sensitized reactions were quite different from those of direct irradiations or of ground-state reactions. Estimations of the free energies of electron transfer were consistent with these and previously reported results. 26 references, 1 table.

  15. Properties of the short-lived triplet states of pyridazine and 3,6-dichloropyridazine studied by a time-resolved EPR method

    NASA Astrophysics Data System (ADS)

    Terazima, Masahide; Yamauchi, Seigo; Hirota, Noboru

    1986-04-01

    The magnetic and decay properties of the short-lived triplet (T1) states of pyridazine and 3,6-dichloropyridazine (DCP) were studied by means of time-resolved EPR with laser excitation. The zfs of DCP in the p-dibromobenzene (DBB) host are X=0.094 cm-1, Y=-0.164 cm-1, and Z=0.070 cm-1, and the nitrogen hfcc are Ax=27 G, Ay=18 G, and Az=25 G, which confirms the nπ* character of the T1 state. Similar zfs were obtained for DCP and pyridazine in other environments. The sublevel decay rate constants and the relative populating rates were determined from the analysis of the transient EPR signals measured at 3.0 K where the effect of the spin lattice relaxation can be neglected. It was found in both systems that ky is much greater than kx, kz as predicted by a simple group theoretical consideration. ky of DCP and pyridazine were determined to be on the order of 106 s-1, being larger than that of pyrimidine by a factor of ˜104. The reasons for the large ky are discussed, particularly, in terms of the distorted potential of the T1 state.

  16. The Missing C1-C5 Cycloaromatization Reaction: Triplet State Antiaromaticity Relief and Self-Terminating Photorelease of Formaldehyde for Synthesis of Fulvenes from Enynes.

    PubMed

    Mohamed, Rana K; Mondal, Sayantan; Jorner, Kjell; Delgado, Thais Faria; Lobodin, Vladislav V; Ottosson, Henrik; Alabugin, Igor V

    2015-12-16

    The last missing example of the four archetypical cycloaromatizations of enediynes and enynes was discovered by combining a twisted alkene excited state with a new self-terminating path for intramolecular conversion of diradicals into closed-shell products. Photoexcitation of aromatic enynes to a twisted alkene triplet state creates a unique stereoelectronic situation, which is facilitated by the relief of excited state antiaromaticity of the benzene ring. This enables the usually unfavorable 5-endo-trig cyclization and merges it with 5-exo-dig closure. The 1,4-diradical product of the C1-C5 cyclization undergoes internal H atom transfer that is coupled with the fragmentation of an exocyclic C-C bond. This sequence provides efficient access to benzofulvenes from enynes and expands the utility of self-terminating aromatizing enyne cascades to photochemical reactions. The key feature of this self-terminating reaction is that, despite the involvement of radical species in the key cyclization step, no external radical sources or quenchers are needed to provide the products. In these cascades, both radical centers are formed transiently and converted to the closed-shell products via intramolecular H-transfer and C-C bond fragmentation. Furthermore, incorporating C-C bond cleavage into the photochemical self-terminating cyclizations of enynes opens a new way for the use of alkenes as alkyne equivalents in organic synthesis. PMID:26536479

  17. Ab initio study of nonhomogeneous broadening of the zero-field splitting of triplet guest molecules in diluted glasses

    NASA Astrophysics Data System (ADS)

    Loboda, Oleksandr; Minaev, Boris; Vahtras, Olav; Ruud, Kenneth; gren, Hans

    2003-08-01

    Nonhomogeneous broadening of phosphorescence lines and microwave signals in optical detection of magnetic resonance (ODMR) has been calculated using multiconfigurational self-consistent field wave functions and the polarized continuum model. The solvent effects on the zero-field splitting (ZFS) parameters in the low-lying triplet states of aza-aromatic molecules are found to be linearly dependent on the solvent-induced shifts in the phosphorescence frequency in agreement with experimental data. The main contribution to the ZFS originates in the dipolar interaction of the two electron spins, the spin-spin coupling. The spin-orbit coupling (SOC) contribution to the ZFS parameter is much larger for the 3n?* state of pyrazine compared to the 3??* states of quinoline. The second-order SOC contribution to the splitting of the 3n?* state in the pyrazine molecule does not show any appreciable dependence on the dielectric constant of the solvent. This raises doubts about earlier theories for explaining the inhomogeneous broadening in triplet-state spectra based exclusively on the SOC-induced mixing of the singlet and triplet states. We complete the interpretation of the ODMR spectrum of pyrazine by calculating the hyperfine coupling (HFC) tensors in the lowest triplet state using the UB3LYP hybrid functional. An appreciable solvent-induced rotation of the anisotropic HFC tensor axes has been obtained for the 3n?* state of pyrazine, in particular for 13C and 14N nuclei. This produces additional nonhomogeneous broadening not only in electron-nuclear double resonance spectra, but also in electron paramagnetic resonance signals because the anisotropic HFC perturbation results in an intensity redistribution among the magnetic transitions between the spin sublevels. A small in-plane rotation of the ZFS tensor axes upon solvation has been predicted for quinoline. Rotation of the magnetic axes induced by the interaction with isotropic solvents can provide a new mechanism for spin-lattice relaxation in the triplet state.

  18. Mimicking the photosynthetic triplet energy-transfer relay

    SciTech Connect

    Gust, D.; Moore, T.A.; Moore, A.L.; Krasnovsky, A.A. Jr.; Liddell, P.A.; Nicodem, D.; DeGraziano, J.M.; Kerrigan, P.; Makings, L.R.; Pessiki, P.J. )

    1993-06-30

    In the reaction centers of photosynthetic organisms, chlorophyll triplet states are sometimes formed by recombination of charge-separated intermediates. These triplets are excellent sensitizers for singlet oxygen formation. Carotenoid polyenes can provide photoprotection from singlet oxygen generation by rapidly quenching chlorophyll triplet states via triplet-triplet energy transfer. Because in bacteria the reaction center carotenoid is not located adjacent to the bacteriochlorophyll special pair, which is the origin of the charge separation, it has been postulated that quenching may occur via a triplet relay involving an intermediate chlorophyll monomer. We now report the synthesis and spectroscopic study of a covalently linked carotenoid (C)-porphyrin (P)-pyropheophorbide (Ppd) triad molecule which mimics this triplet relay. The pyropheophorbide singlet-state C-P-[sup 1]Ppd (generated by direct excitation or energy transfer from the attached porphyrin) undergoes intersystem crossing to the triplet C-P-[sup 3]Ppd. In oxygen-free solutions, this triplet decays to [sup 3]C-p-Ppd through a triplet-transfer relay involving an intermediate C-[sup 3]P-Ppd species. In aerated solutions, quenching of C-P-[sup 3]Ppd by the attached carotenoid competes with singlet oxygen sensitization and thus provides a degree of photoprotection. In a similar traid containing a zinc porphyrin moiety, triplet transfer is slow due to the higher energy of the C-[sup 3]P[sub Zn]-Ppd intermediate, and photoprotection via the relay is nonexistent. The triplet relay ceases to function at low temperatures in both the natural and biomimetic cases due to the endergonicity of the first step. 37 refs., 6 figs., 1 tab.

  19. Direct observation of triplet energy transfer from semiconductor nanocrystals.

    PubMed

    Mongin, Cédric; Garakyaraghi, Sofia; Razgoniaeva, Natalia; Zamkov, Mikhail; Castellano, Felix N

    2016-01-22

    Triplet excitons are pervasive in both organic and inorganic semiconductors but generally remain confined to the material in which they originate. We demonstrated by transient absorption spectroscopy that cadmium selenide semiconductor nanoparticles, selectively excited by green light, engage in interfacial Dexter-like triplet-triplet energy transfer with surface-anchored polyaromatic carboxylic acid acceptors, extending the excited-state lifetime by six orders of magnitude. Net triplet energy transfer also occurs from surface acceptors to freely diffusing molecular solutes, further extending the lifetime while sensitizing singlet oxygen in an aerated solution. The successful translation of triplet excitons from semiconductor nanoparticles to the bulk solution implies that such materials are generally effective surrogates for molecular triplets. The nanoparticles could thereby potentially sensitize a range of chemical transformations that are relevant for fields as diverse as optoelectronics, solar energy conversion, and photobiology. PMID:26798011

  20. Gas phase dynamics of triplet formation in benzophenone.

    PubMed

    Spighi, Gloria; Gaveau, Marc-André; Mestdagh, Jean-Michel; Poisson, Lionel; Soep, Benoît

    2014-05-28

    Benzophenone is a prototype molecule for photochemistry in the triplet state through its high triplet yield and reactivity. We have investigated its dynamics of triplet formation under the isolated gas phase conditions via femtosecond and nanosecond time resolved photoelectron spectroscopy. This represents the complete evolution from the excitation in S2 to the final decay of T1 to the ground state S0. We have found that the triplet formation can be described almost as a direct process in preparing T1, the lowest reacting triplet state, from the S1 state after S2 → S1 internal conversion. The molecule was also deposited by a pick-up technique on cold argon clusters providing a soft relaxation medium without evaporation of the molecule and the mechanism was identical. This cluster technique is a model for medium influenced electronic relaxation and provides a continuous transition from the isolated gas phase to the relaxation dynamics in solution. PMID:24728443

  1. Photoinduced electron transfer and electron-mediating systems from aromatic amines to triplet states of C60 and C70 in the presence of a viologen dication.

    PubMed

    Sasaki, Yoshiko; Araki, Yasuyuki; Fujitsuka, Mamoru; Ito, Osamu; Hirao, Akiko; Nishizawa, Hideyuki

    2003-02-01

    Photoinduced electron transfer between fullerenes (C60 and C70) and various aromatic amines (AA's) in the absence and presence of a viologen dication has been studied by the transient absorption method in the visible and near-IR regions. Electron-transfer takes place from AA's to the triplet states of fullerenes (3C60* and 3C70*) giving the anion radicals of fullerenes (C60*- and C70*-) and the radical cations of AA's (AA*+). The rate constants and efficiencies of electron transfer are quite high, because of the high electron-donor abilities of AA's as their low oxidation potentials indicate. The absorption bands of AA*+ appeared also in the near-IR region indicating that the radical-cation center (hole) delocalizes over the entire region of each AA. On addition of an octylviologen dication (OV2+) to C60/C70-AA systems, the electron-mediating process from C60*- and C70*- to OV2+ occurs yielding the viologen radical cation (OV*+) with longer lifetime. PMID:12664974

  2. Degradation of organic pollutants in/on snow and ice by singlet molecular oxygen (¹O₂*) and an organic triplet excited state.

    PubMed

    Bower, Jonathan P; Anastasio, Cort

    2014-04-01

    Singlet molecular oxygen (¹O₂*) can be a significant sink for a variety of electron-rich pollutants in surface waters and atmospheric drops. We recently found that ¹O₂* concentrations are enhanced by up to a factor of 10(4) on illuminated ice compared to in the equivalent liquid solution, suggesting that ¹O₂* could be an important oxidant for pollutants in snow. To examine this, here we study the degradation of three model organic pollutants: furfuryl alcohol (to represent furans), tryptophan (for aromatic amino acids), and bisphenol A (for phenols). Each compound was studied in illuminated aqueous solution and ice containing Rose Bengal (RB, a sensitizer for ¹O₂*) and sodium chloride (to adjust the concentration of total solutes). The RB-mediated loss of each organic compound is enhanced on illuminated ice compared to in solution, by factors of 6400 for furfuryl alcohol, 8300 for tryptophan, and 50 for bisphenol A for ice containing 0.065 mM total solutes. Rates of loss of furfuryl alcohol and tryptophan decrease at a higher total solute concentration, in qualitative agreement with predictions from freezing-point depression. In contrast, the loss of bisphenol A on ice is independent of total solute concentration. Relative to liquid tests, the enhanced loss of tryptophan on ice during control experiments made with deoxygenated solutions and solutions in D₂O show that the triplet excited state of Rose Bengal may also contribute to loss of pollutants on ice. PMID:24487942

  3. Dependence of the Efficiency of Triplet-Triplet Energy Transfer on the Distance Between the Donor and Acceptor

    NASA Astrophysics Data System (ADS)

    Ibraev, N. Kh.; Seliverstova, E. V.; Artyukhov, V. Ya.

    2015-01-01

    The triplet-triplet and singlet-singlet energy transfer is investigated both experimentally and theoretically in the anthracene - Nile red system. Quantum-chemical investigations of the special features in the formation of electronically excited states and photoprocesses in the donor-acceptor pair are performed. It is demonstrated that atypical distance dependence of the efficiency of triplet-triplet energy transfer in the Langmuir-Blodgett multilayered thin films is caused by additional quenching of donor particles due to the process of energy transfer to acceptor centers by the inductive-resonant mechanism.

  4. Triplet-sensitized and thermal isomerization of all-trans, 7-cis, 9-cis, 13-cis, and 15-cis isomers of. beta. -carotene: Configurational dependence of the quantum yield of isomerization via the T sub 1 state

    SciTech Connect

    Kuki, Michitaka; Koyama, Yasushi ); Nagae, Hiroyoshi )

    1991-09-19

    The products of triplet-sensitized photoisomerization (excitation at 337 mn of the sensitizer, anthracene) and thermal isomerization of {beta}-carotene in {eta}-hexane, starting from the all-trans, 7-cis, 9-cis, 13-cis, and 15-cis isomers, were analyzed by HPLC. Direct photoisomerization (excitation at 488 and 337 mn) was also examined for comparison. Three different isomerization patterns were found in both triplet-sensitized and thermal isomerization: pattern A, cis to trans isomerization around each cis bond; pattern B, trans to cis isomerization in the central part of the conjugated chain; and pattern C, cis to another cis isomerization. In the T{sub 1} state, the pattern A isomerization was predominant even for the peripheral-cis (7-cis and 9-cis) isomers and its efficiency was extremely high for the central-cis (13-cis and 15-cis) isomers. In the S{sub 0} state, the pattern B isomerization, instead, was predominant for the peripheral-cis isomers, and the pattern A isomerization was predominant only for the central-cis isomers. The quantum yields of triplet-sensitized isomerization (decrease of the starting isomer per triplet species generated) were determined to be as follows: all-trans, 0.04; 7-cis, 0.12; 9-cis, 0.15; 13-cis, 0.87; and 15-cis, 0.98. Carbon-carbon {pi} bond orders of model polyenes in the T{sub 1} and S{sub 0} states were calculated by using the Pariser-Parr-Pople CI theory; bond lengths were optimized by using a bond order-bond length relationship. Isomerization characteristics in the T{sub 1} and S{sub 0} states observed were discussed based on the results of the calculations.

  5. Triplet dark matter from leptogenesis

    NASA Astrophysics Data System (ADS)

    Heo, Jae Ho; Kim, C. S.

    2014-04-01

    A triplet dark matter candidate from thermal leptogenesis is considered with building a model. The model is based on the standard two-Higgs-doublet model and seesaw mechanism with Higgs triplets. The parameters (couplings and masses) are adjusted for the observed small neutrino mass and the leptogenesis. Dark matter particles can annihilate and decay in this model. The time evolution of the dark matter number is governed by (co)annihilations in the expanding universe, and its mass is constrained by the observed relic density. The dark matter can decay into final states with three leptons (two charged leptons and one neutrino). We investigate whether the decay in a galaxy can account for cosmic ray anomalies in the positron and electron spectrum. A noticeable point is that if the dark matter decays into each lepton with different branching ratios, cosmic ray anomalies in AMS-02 measurements of the positron fraction and the Fermi LAT measurements of the electrons-plus-positrons flux could be simultaneously accounted for from its decay products.

  6. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGESBeta

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified,more » including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  7. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGESBeta

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenatedmore » molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  8. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-08-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (\\centerdot OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than \\centerdot OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  9. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  10. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    SciTech Connect

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

    2014-01-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than •OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  11. Mapping Agricultural Crops with AVIRIS Spectra in Washington State

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pavri, Betina; Roberts, Dar; Ustin, Susan

    2000-01-01

    Spectroscopy is used in the laboratory to measure the molecular components and concentrations of plant constituents to answer questions about the plant type, status, and health. Imaging spectrometers measure the upwelling spectral radiance above the Earth's surface as images. Ideally, imaging spectrometer data sets should be used to understand plant type, plant status, and health of plants in an agricultural setting. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set was acquired over agricultural fields near Wallula, Washington on July 23rd, 1997. AVIRIS measures upwelling radiance spectra through 224 spectral channels with contiguous 10-nm sampling from 400 to 2500 run in the solar-reflected spectrum. The spectra are measured as images of 11 by up to 800 km with 20-m spatial resolution. The spectral images measured by AVIRIS represent the integrated signal resulting from: the solar irradiance; two way transmittance and scattering of the atmosphere; the absorptions and scattering of surface materials; as well as the spectral, radiometric and spatial response functions of AVIRIS. This paper presents initial research to derive properties of the agricultural fields near Wallula from the calibrated spectral images measured by AVIRIS near the top of the atmosphere.

  12. Mapping Agricultural Crops with AVIRIS Spectra in Washington State

    NASA Technical Reports Server (NTRS)

    Green, Robert; Pavri, Betina; Roberts, Dar; Ustin, Susan

    1998-01-01

    Spectroscopy is used in the laboratory to measure the molecular components and concentrations of plant constituents to answer questions about the plant type, status, and health. Imaging spectrometers measure the upwelling spectral radiance above the Earth's surface as images. Ideally, imaging spectrometer data sets should be used to understand plant type, plant status, and health of plants in an agricultural setting. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set was acquired over agricultural fields near Wallula, Washington on July 23rd, 1997. AVIRIS measures upwelling radiance spectra through 224 spectral channels with contiguous 10-nm sampling from 400 to 2500 nm in the solar-reflected spectrum. The spectra are measured as images of 11 by up to 800 km with 20-m spatial resolution. The spectral images measured by AVIRIS represent the integrated signal resulting from: the solar irradiance; two way transmittance and scattering of the atmosphere; the absorptions and scattering of surface materials; as well as the spectral, radiometric and spatial response functions of AVIRIS. This paper presents initial research to derive properties of the agricultural fields near Wallula from the calibrated spectral images measured by AVIRIS near the top of the atmosphere.

  13. Spin polarization in quantum Hall state obtained by Kerr rotation spectra

    SciTech Connect

    Ito, H.; Seo, M.; Fukuoka, D.; Oto, K.; Muro, K.; Hirayama, Y.; Kumada, N.

    2011-12-23

    We developed a novel system for a high sensitive measurement of Kerr rotation spectra, and Kerr rotation spectra of quantum Hall system in AlGaAs/GaAs 17 nm quantum well were measured. Spin polarization of quantum Hall states was obtained by integrating the spectra, since Kerr rotation spectra reflect spin population of electrons. The spin polarization decreased rapidly on both sides of {nu} = 1, which is ascribed to Skyrmion effect. However, the spin polarization present a flat region around {nu} = 1 which means a quantum Hall ferromagnet is not fully spin polarized.

  14. Localization length scales of triplet excitons in singlet fission materials

    NASA Astrophysics Data System (ADS)

    Bayliss, Sam L.; Thorley, Karl J.; Anthony, John E.; Bouchiat, Hélène; Greenham, Neil C.; Chepelianskii, Alexei D.

    2015-09-01

    We measure the dielectric confinement length scales of triplet excitons in organic semiconductors by jointly measuring their microwave-domain electric and magnetic susceptibilities. We apply this technique to characterize triplet excitons in two singlet fission materials with distinct solid-state packing and correlate the extracted localization length scales with the role of the excitonic environment. By using the magnetic susceptibility simultaneously determined through our experiments, we compare the independently extracted dielectric and spin-spin localization length scales, highlighting the role of local anisotropy on the properties of excitonic triplet states.

  15. Anharmonicity Effects in IR Spectra of [Re(X)(CO)3(α-diimine)] (α-diimine = 2,2'-bipyridine or pyridylimidazo[1,5-a]pyridine; X = Cl or NCS) Complexes in Ground and Excited Electronic States.

    PubMed

    Kvapilová, Hana; Vlček, Antonín; Barone, Vincenzo; Biczysko, Malgorzata; Záliš, Stanislav

    2015-10-01

    Infrared spectra of [Re(X)(CO)(3)(α-diimine)] (α-diimine = 2,2'-bipyridine, X = Cl, NCS, or pyridylimidazo[1,5-a]pyridine, X = Cl) in the ground and the lowest triplet electronic states were calculated by a global hybrid density functional going beyond the harmonic level by means of second-order vibrational perturbation theory (VPT2) and including bulk solvent effects by the polarizable continuum model (PCM). The full-dimensionality (FD) VPT2 is compared with the reduced-dimensionality (RD) model, where only selected vibrational modes are calculated anharmonically. The simulated difference IR spectra (excited state minus ground state) in the ν(CO) region closely match experimental time-resolved infrared (TRIR) spectra. Very good agreement was also obtained for ground-state spectra in the fingerprint region. In comparison with the harmonic simulated spectra, the calculated anharmonic frequencies are closer to experimental values and do not require scaling when the B3LYP functional is used. Several spectral features due to combination bands have been identified by VPT2 simulations in the ν(CO) spectral region, which are of importance for a correct interpretation of TRIR experiments. PMID:26367031

  16. Thermally induced excited-state coherent raman spectra of solids

    NASA Astrophysics Data System (ADS)

    Andrews, J. R.; Hochstrasser, R. M.

    1981-09-01

    A difference frequency resonance has been observed for the 747 cm -1 vibration in the first excited singlet state of pentacene in benzoic acid. The resonance is absent at low temperature (4.5 K) and its appearance is exponentially activated with an activation energy of 13.8 cm -1. These observations are compared to theoretical expectations.

  17. State flip at exceptional points in atomic spectra

    NASA Astrophysics Data System (ADS)

    Menke, Henri; Klett, Marcel; Cartarius, Holger; Main, Jörg; Wunner, Günter

    2016-01-01

    We study the behavior of nonadiabatic population transfer between resonances at an exceptional point in the spectrum of the hydrogen atom. It is known that, when the exceptional point is encircled, the system always ends up in the same state, independent of the initial occupation within the two-dimensional subspace spanned by the states coalescing at the exceptional point. We verify this behavior for a realistic quantum system, viz., the hydrogen atom in crossed electric and magnetic fields. It is also shown that the nonadiabatic hypothesis can be violated when resonances in the vicinity are taken into account. In addition, we study nonadiabatic population transfer in the case of a third-order exceptional point, in which three resonances are involved.

  18. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach

    NASA Astrophysics Data System (ADS)

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-01

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  19. Experimental Study of the Triplet Synchronization of Coupled Nonidentical Mechanical Metronomes

    PubMed Central

    Jia, Ji; Song, Zhiwen; Liu, Weiqing; Kurths, Jürgen; Xiao, Jinghua

    2015-01-01

    Triplet synchrony is an interesting state when the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled nonidentical mechanical metronomes. A more direct method based on the phase diagram is proposed to observe and determine triplet synchronization. Our results show that the stable triplet synchrony is observed in several intervals of the parameter space. Moreover, the experimental results are verified according to the theoretical model of the coupled metronomes. The outcomes are useful to understand the inner regimes of collective dynamics in coupled oscillators. PMID:26598175

  20. Rotational spectra of the X 2Sigma(+) states of CaH and CaD

    NASA Technical Reports Server (NTRS)

    Frum, C. I.; Oh, J. J.; Cohen, E. A.; Pickett, H. M.

    1993-01-01

    The rotational spectra of the 2Sigma(2+) ground states of calcium monohydride and monodeuteride have been recorded in absorption between 250 and 700 GHz. The gas phase free radicals have been produced in a ceramic furnace by the reaction of elemental calcium with molecular hydrogen or deuterium in the presence of an electrical discharge. The molecular constants including the rotational constant, centrifugal distortion constants, spin-rotation constants, and magnetic hyperfine interaction constants have been extracted from the spectra.

  1. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    PubMed

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light. PMID:18764888

  2. Triplet-extinction coefficients of some laser dyes. 1

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1989-03-01

    For flashlamp-pumped dye lasers, the negative effect of triplet-state losses on laser action efficiency is well known. Oscilloscope traces of laser pulses showed that laser action diminishes much sooner than the flashlamp excitation pulse. This effect was attributed to the buildup of triplet-state dye molecules during the excitation from the flashlamp pulse. Triplet-extinction coefficients epsilon(T) were measured over the laser-action spectral region of Rhodamine 6G; Rhodamine B; Rhodamine 110; Fluorol-7GA; Coumarin 540A; Coumarin 522; Coumarin 1; Coumarin 120; 4,4'-diphenyl stilbene; and 2,7-bis(4-methoxy-phenyl)-9,9-dipropylfluorene. The different lines from an argon-ion cw laser were employed for excitation. McClure's method was used to obtain the triplet extinction coefficients Epsilon(T). The method requires the measurement of triplet optical densities OD(T) as a function of different cw laser-excitation intensities (powers) I(ex). The importance of triplet-state losses on dye-laser efficiency is reviewed. The laser action properties of the laser dyes studied are briefly discussed as they relate to the measured epsilon=(T) values.

  3. Peculiarity of triplet-triplet energy transfer from 2-(2'-hydroxy-phenyl)benzoxazole to diacetyl. Evidence for radiative keto-enol transitions 3K∗→ 1E and 1E→ 1K∗

    NASA Astrophysics Data System (ADS)

    Nickel, Bernhard; Walla, Peter J.

    1998-10-01

    In the triplet-triplet energy transfer (TTET) from a donor D to an acceptor A, 3D∗+ 1A→ 1D+ 3A∗, the maximum transferable energy is equal to the maximum energy that can be emitted as phosphorescence 3D∗→ 1D. A peculiarity was expected for the TTET from 2-(2'-hydroxyphenyl)benzoxazole (HBO), which has two isoenergetic lowest triplet states, an enol triplet state 3E∗ and a keto triplet state 3K∗, with completely different phosphorescence spectra: 3E∗→ 1E (origin at 22400 cm -1) and 3K∗→ 1K (origin at ˜17500 cm -1). If the triplet energy of an acceptor A is between these two origin values, like in the case of diacetyl (19700 cm -1), then the TTET from HBO to A should be predominantly due to the process 3E∗+ 1A→ 1E+ 3A∗. The TTET from HBO, meta-methyl-HBO ( m-MeHBO, 3K∗≳300 cm -1 above 3E∗) and ortho-methyl-HBO ( o-MeHBO, 3K∗≳600 cm -1 below 3E∗) to diacetyl was studied in 3-methylpentane from 110 to 280 K, which corresponds to a viscosity range of more than three orders of magnitude. The postulated peculiarity of TTET was observed at low viscosity. At low temperature and high viscosity, however, the kinetic differences in the TTET from the three donors disappear. The TTET from o-MeHBO to diacetyl at low temperature is assigned to the process 3K∗+ 1A→ 1E+ 3A∗, which corresponds to a keto-enol phosphorescence 3K→ 1E. The temperature dependence of the second-order rate constant for TTET can be satisfactorily described with a kinetic model, whose distinctive feature is a finite rate of the triplet-state tautomerization 3K∗⇌ 3E∗. The only essentially donor-specific parameter is the energy difference between 3E∗ and 3K∗. The principal possibility of radiative keto-enol or enol-keto transitions has been verified: The phosphorescence excitation spectrum of m-MeHBO in a xenon matrix exhibits in the near UV a weak band that can be assigned to the transition 1E→ 1K∗.

  4. Ground and Excited State Alkyl CH Stretch IR Spectra of Straight-Chain Alkylbenzenes

    NASA Astrophysics Data System (ADS)

    Hewett, Daniel M.; Korn, Joseph A.; Zwier, Timothy S.

    2015-06-01

    Vibrational spectra of alkanes in the CH stretch region are often complicated by Fermi resonance with the overtone of the CH bends. This complication has made the CH stretch region difficult to use as a spectroscopic tool for assigning structures to experimental infrared spectra. A first-principles model accounting for Fermi resonance has been developed by Sibert and co-workers, and has been successfully implemented to predict the CH stretch region of alkyl groups in a variety of settings (both -CH2- and -CH3). We have recorded jet-cooled, single-conformation infrared spectra of a series of straight chain alkylbenzenes having chain lengths of two carbons and longer, serving as a foundation for further tests and refinement of the theoretical model. Ground and excited state IR spectra of these alkylbenzenes were acquired using fluorescence dip infrared spectroscopy. A novel approach for taking the excited state spectra that utilizes the gain of a second, infrared-induced fluorescence peak will be discussed and compared to the typical depletion spectra, using ethylbenzene as a prototypical system.

  5. Matrix Isolation Spectroscopy and Photochemistry of Triplet 1,3-DIMETHYLPROPYNYLIDENE (MeC3Me)

    NASA Astrophysics Data System (ADS)

    Knezz, Stephanie N.; Waltz, Terese A.; Haenni, Benjamin C.; Burrmann, Nicola J.; McMahon, Robert J.

    2015-06-01

    Acetylenic carbenes and conjugated carbon chain molecules of the HCnH family are relevant to the study of combustion and chemistry in the interstellar medium (ISM). Propynylidene (HC3H) has been thoroughly studied and its structure and photochemistry determined. Here, we produce triplet diradical 1,3-dimethylpropynylidene (MeC3Me) photochemically from a precursor diazo compound in a cryogenic matrix (N2 or Ar) at 10 K, and spectroscopic analysis is carried out. The infrared, electronic absorption, and electron paramagnetic resonance spectra were examined in light of the parent (HC3H) system to ascertain the effect of alkyl substituents on delocalized carbon chains of this type. Computational analysis, EPR, and infrared analysis indicate a triplet ground state with a quasilinear structure. Infrared experiments reveal photochemical reaction to penten-3-yne upon UV irradiation. Further experimental and computational results pertaining to the structure and photochemistry will be presented. Seburg, R. A.; Patterson, E. V.; McMahon, R. J., Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers. Journal of the American Chemical Society 2009, 131 (26), 9442-9455.

  6. Twins, Triplets, and Other Multiples

    MedlinePlus

    ... what? Pregnancy This information in Spanish ( en español ) Twins, triplets, and other multiples How twins are formed ... can increase the likelihood of multiple births. How twins are formed Twins form in one of two ...

  7. Venus - Stein Triplet Crater

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Magellan synthetic aperture radar (SAR) imaged this unique 'triplet crater,' or 'crater field' during orbits 418-421 on 21 September 1990. These craters are 14 kilometers, 11 kilometers, and 9 kilometers in diameter, respectively, and are centered at latitude -30.1 degrees south and longitude 345.5 degrees east. The Magellan Science Team has proposed the name Stein for this crater field after the American author, Gertrude Stein. This name has not yet been approved by the International Astronomical Union. The crater field was formed on highly fractured plains. The impacts generated a considerable amount of low viscosity 'flows' thought to consist largely of shock-melted target material along with fragmented debris from the crater. The three craters appear to have relatively steep walls based on the distortion in the image of the near and far walls of the craters in the Magellan radar look direction (from the left). The flow deposits from the three craters extend dominantly to the northeast (upper right).

  8. Triplet extinction coefficients of some laser dyes I

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1988-07-15

    We measured the triplet extinction coefficients epsilon/sub T/ over the laser action spectral region of Rhodamine 6G; Rhodamine B; Rhodamine 110; Fluorol-7GA; Coumarin 540A; Coumarin 522; Coumarin 1; Coumarin 120; 4,4'-diphenyl stilbene; and 2,7-bis-(4-methoxy-phenyl)-9,9-dipropylfluorene. We employed the different lines from an argon ion cw laser for excitation. McClure's method was used to obtain the triplet extinction coefficients epsilon/sub T/. The method requires the measurement of triplet optical densities OD/sub T/ as a function of different cw laser excitation intensities (powers) I/sub ex/ . The importance of triplet-state losses on dye laser efficiency is reviewed. The laser action properties of the laser dyes we studied are briefly discussed as they relate to the measured epsilon/sub T/ values.

  9. The electronic spectrum of Si3 I: triplet D(3h) system.

    PubMed

    Reilly, N J; Kokkin, D L; Zhuang, X; Gupta, V; Nagarajan, R; Fortenberry, R C; Maier, J P; Steimle, T C; Stanton, J F; McCarthy, M C

    2012-05-21

    We report the measurement of a jet-cooled electronic spectrum of the silicon trimer. Si(3) was produced in a pulsed discharge of silane in argon, and the excitation spectrum examined in the 18 000-20 800 cm(-1) region. A combination of resonant two-color two-photon ionization (R2C2PI) time-of-flight mass spectroscopy, laser-induced fluorescence/dispersed fluorescence, and equation-of-motion coupled-cluster calculations have been used to establish that the observed spectrum is dominated by the 1(3)A(1)" - ã (3)A(2)' transition of the D(3h) isomer. The spectrum has an origin transition at 18,600 ± 4 cm(-1) and a short progression in the symmetric stretch with a frequency of ∼445 cm(-1), in good agreement with a predicted vertical transition energy of 2.34 eV for excitation to the 1(3)A(1)" state, which has a calculated symmetric stretching frequency of 480 cm(-1). In addition, a ∼505 cm(-1) ground state vibrational frequency determined from sequence bands and dispersed fluorescence is in agreement with an earlier zero-electron kinetic energy study of the lowest D(3h) state and with theory. A weaker, overlapping band system with a ∼360 cm(-1) progression, observed in the same mass channel (m/z = 84) by R2C2PI but under different discharge conditions, is thought to be due to transitions from the (more complicated) singlet C(2v) ground state ((1)A(1)) state of Si(3). Evidence of emission to this latter state in the triplet dispersed fluorescence spectra suggests extensive mixing in the excited triplet and singlet manifolds. Prospects for further spectroscopic characterization of the singlet system and direct measurement of the energy separation between the lowest singlet and triplet states are discussed. PMID:22612095

  10. NC-(CF2)4-CNSSN radical containing 1,2,3,5-dithiadiazolyl radical dimer exhibiting triplet excited states at low temperature and thermal hysteresis on melting-solidification: structural, spectroscopic, and magnetic characterization.

    PubMed

    Shuvaev, Konstantin V; Decken, Andreas; Grein, Friedrich; Abedin, Tareque S M; Thompson, Laurence K; Passmore, Jack

    2008-08-14

    A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid). PMID:18648707

  11. Dimethyl ether: laboratory spectra up to 2.1 THz. Torsion-rotational spectra within the vibrational ground state

    NASA Astrophysics Data System (ADS)

    Endres, C. P.; Drouin, B. J.; Pearson, J. C.; Müller, H. S. P.; Lewen, F.; Schlemmer, S.; Giesen, T. F.

    2009-09-01

    Dimethyl ether (CH_3OCH_3) is one of the largest organic molecules detected in the interstellar medium. As an asymmetric top molecule with two methyl groups which undergo large amplitude motions and a dipole moment of μ=1.3 D, it conveys a dense spectrum throughout the terahertz region and contributes to the spectral line confusion in astronomical observations at these frequencies. In this paper, we present rotational spectra of dimethyl ether in its ground vibrational states, which have been measured in the laboratory and analyzed covering frequencies up to 2.1 THz. The analysis is based on an effective Hamiltonian for a symmetric two-top rotor and includes experimental data published so far. Frequency predictions are presented up to 2.5 THz for astronomical applications with accuracies better than 1 MHz. Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/635

  12. Triplet-Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design.

    PubMed

    Jiang, Xinpeng; Guo, Xinyan; Peng, Jiang; Zhao, Dahui; Ma, Yuguo

    2016-05-11

    Efficient visible-to-UV photon upconversion via triplet-triplet annihilation (TTA) is accomplished in polyurethane (PU) films by developing new, powerful photosensitizers fully functional in the solid-state matrix. These rationally designed triplet sensitizers feature a bichromophoric scaffold comprising a tris-cyclometalated iridium(III) complex covalently tethered to a suitable organic small molecule. The very rapid intramolecular triplet energy transfer from the former to the latter is pivotal for achieving the potent sensitizing ability, because this process out-competes the radiative and nonradiative decays inherent to the metal complex and produces long-lived triplet excitons localized with the acceptor moiety readily available for intermolecular transfer and TTA. Nonetheless, compared to the solution state, the molecular diffusion is greatly limited in solid matrices, which even creates difficulty for the Dexter-type intramolecular energy transfer. This is proven by the experimental results showing that the sensitizing performance of the bichromophoric molecules strongly depends on the spatial distance separating the donor (D) and acceptor (A) units and that incorporating a longer linker between the D and A evidently curbs the TTA upconversion efficiency in PU films. Using a rationally optimized sensitizer structure in combination with 2,7-di-tert-butylpyrene as the annihilator/emitter, the doped polyurethane (PU) films demonstrate effective visible-to-UV upconverted emission signal under noncoherent-light irradiation, attaining an upconversion quantum yield of 2.6%. Such quantum efficiency is the highest value so far reported for the visible-to-UV TTA systems in solid matrices. PMID:27082767

  13. Sensitized and heavy atom induced production of acenaphthylene triplet: A laser flash photolysis study

    SciTech Connect

    Samanta, A.; Fessenden, R.W. )

    1989-07-27

    The triplet state of acenaphthylene has been examined by nanosecond laser flash photolysis using sensitization and heavy atom perturbation techniques. Although acenaphthylene does not form any observable triplet upon direct flash excitation, a transient with microsecond lifetime ({lambda}{sub max} = 315 nm) is observable when a solution of the sample is excited by sensitizers (benzophenone, thioxanthone, benzil). This transient is ascribed to the triplet of acenaphthylene on the basis of its quenching behavior toward oxygen, ferrocene, azulene, and {beta}-carotene. Quantitative data concerning the triplet-triplet absorption and quenching constants are presented. The triplet energy is estimated to lie between 46 and 47 kcal/mol. The triplet can also be produced by direct excitation in solvents containing heavy atoms (ethyl bromide, ethyl iodide). The triplet yield is found to increase with an increase of the amount of the heavy atom containing solvent. No saturation limit is obtained. These facts together with the effect of heavy atoms on the T{sub 1} {yields} S{sub 0} process allow the differing behavior of ethyl bromide and ethyl iodide on the photodimerization process of acenaphthylene to be explained. Triplet-state parameters (extinction coefficient and triplet yield) have been estimated in these solvents by the energy-transfer technique and actinometry.

  14. Spectra of random operators with absolutely continuous integrated density of states

    SciTech Connect

    Rio, Rafael del E-mail: delriomagia@gmail.com

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  15. Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase

    PubMed Central

    Andris, Erik; Jašík, Juraj; Gómez, Laura

    2016-01-01

    Abstract Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state. PMID:26878833

  16. Spectroscopic Characterization and Reactivity of Triplet and Quintet Iron(IV) Oxo Complexes in the Gas Phase.

    PubMed

    Andris, Erik; Jašík, Juraj; Gómez, Laura; Costas, Miquel; Roithová, Jana

    2016-03-01

    Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen-transfer and oxygen-transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass-selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state. PMID:26878833

  17. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  18. Binding energies of the ground triplet state a{sup 3}Σ{sub u}{sup +} of Rb{sub 2} and Cs{sub 2} in terms of the generalized Le Roy–Bernstein near-dissociation expansion

    SciTech Connect

    Sovkov, V. B.; Ivanov, V. S.

    2014-04-07

    Formulae of Le Roy–Bernstein near-dissociation theory are derived in a general isotope–invariant form, applicable to any term in the rotational expansion of a diatomic ro-vibrational term value. It is proposed to use the generalized Le Roy–Bernstein expansion to describe the binding energies (ro-vibrational term values) of the ground triplet state a{sup 3}Σ{sub u}{sup +} of alkali metal dimers. The parameters of this description are determined for Rb{sub 2} and Cs{sub 2} molecules. This approach gives a recipe to calculate the whole variety of the binding energies with characteristic accuracies from ∼1 × 10{sup −3} to 1 × 10{sup −2} cm{sup −1} using a relatively simple algebraic equation.

  19. Time-resolved resonance Raman spectra of free-base tetraarylporphyrins: effects of the peripheral substituents

    NASA Astrophysics Data System (ADS)

    Jeoung, Sae Chae; Kim, Dongho; Ahn, Kwang-Hyun; Cho, Dae Won; Yoon, Minjoong

    1995-08-01

    Time-resolved resonance Raman spectra of free-base tetraarylporphyrins were obtained to investigate the peripheral substituent effect on the structural changes in the excited states. The aryl mode of H 2-tetratoluylporphyrin in the excited triplet state was more strongly enhanced relative to that of H 2-tetramesitylporphyrin. These results are discussed in terms of the difference in the steric hindrance inhibiting the electron delocalization of the porphyrin in the excited states.

  20. 'Blueberry' Triplets Born in Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This microscopic image, taken at the outcrop region dubbed 'Berry Bowl' near the Mars Exploration Rover Opportunity's landing site, shows the sphere-like grains or 'blueberries' that fill Berry Bowl. Of particular interest is the blueberry triplet, which indicates that these geologic features grew in pre-existing wet sediments. Other sphere-like grains that form in the air, such as impact spherules or ejected volcanic material called lapilli, are unlikely to fuse along a line and form triplets. This image was taken by the rover's microscopic imager on the 46th martian day, or sol, of its mission.

  1. Wide range double photoionisation spectra of N2 and CO2

    NASA Astrophysics Data System (ADS)

    Eland, J. H. D.; Plogmaker, S.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Nicolas, C.; Robert, E.; Miron, C.; Feifel, R.

    2016-02-01

    Using a magnetic bottle time-of-flight electron spectrometer we have measured double photoionisation spectra of N2 and CO2 covering the range from threshold up to the triple ionisation energies. The experiments demonstrate the use of a new asynchronous chopper in eight-bunch mode of the synchrotron radiation source SOLEIL. For CO22+ some broad bands in the Auger spectra are found to have multiple resolved counterparts in the photoionisation spectrum. All the bands in the Auger spectra have counterparts in the photoionisation spectra, where extra bands attributed to triplet states are present. In the spectrum of N22+ we suggest reassignment of one band.

  2. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  3. Symmetry breaking gives rise to energy spectra of three states of matter

    PubMed Central

    Bolmatov, Dima; Musaev, Edvard T.; Trachenko, K.

    2013-01-01

    A fundamental task of statistical physics is to start with a microscopic Hamiltonian, predict the system's statistical properties and compare them with observable data. A notable current fundamental challenge is to tell whether and how an interacting Hamiltonian predicts different energy spectra, including solid, liquid and gas phases. Here, we propose a new idea that enables a unified description of all three states of matter. We introduce a generic form of an interacting phonon Hamiltonian with ground state configurations minimising the potential. Symmetry breaking SO(3) to SO(2), from the group of rotations in reciprocal space to its subgroup, leads to emergence of energy gaps of shear excitations as a consequence of the Goldstone theorem, and readily results in the emergence of energy spectra of solid, liquid and gas phases. PMID:24077388

  4. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    NASA Astrophysics Data System (ADS)

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-02-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range.

  5. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Ruotsalainen, Kari O; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  6. Bringing light into the dark triplet space of molecular systems.

    PubMed

    Ge, Jing; Zhang, Qun; Jiang, Jun; Geng, Zhigang; Jiang, Shenlong; Fan, Kaili; Guo, Zhenkun; Hu, Jiahua; Chen, Zongwei; Chen, Yang; Wang, Xiaoping; Luo, Yi

    2015-05-21

    A molecule or a molecular system always consists of excited states of different spin multiplicities. With conventional optical excitations, only the (bright) states with the same spin multiplicity of the ground state could be directly reached. How to reveal the dynamics of excited (dark) states remains the grand challenge in the topical fields of photochemistry, photophysics, and photobiology. For a singlet-triplet coupled molecular system, the (bright) singlet dynamics can be routinely examined by conventional femtosecond pump-probe spectroscopy. However, owing to the involvement of intrinsically fast decay channels such as intramolecular vibrational redistribution and internal conversion, it is very difficult, if not impossible, to single out the (dark) triplet dynamics. Herein, we develop a novel strategy that uses an ultrafast broadband white-light continuum as a excitation light source to enhance the probability of intersystem crossing, thus facilitating the population flow from the singlet space to the triplet space. With a set of femtosecond time-reversed pump-probe experiments, we report on a proof-of-concept molecular system (i.e., the malachite green molecule) that the pure triplet dynamics can be mapped out in real time through monitoring the modulated emission that occurs solely in the triplet space. Significant differences in excited-state dynamics between the singlet and triplet spaces have been observed. This newly developed approach may provide a useful tool for examining the elusive dark-state dynamics of molecular systems and also for exploring the mechanisms underlying molecular luminescence/photonics and solar light harvesting. PMID:25916946

  7. Sn(IV) Schiff base complexes: triplet photosensitizers for photoredox reactions.

    PubMed

    Grusenmeyer, Tod A; King, Albert W; Mague, Joel T; Rack, Jeffrey J; Schmehl, Russell H

    2014-12-21

    We present the synthesis and characterization of a series of four fluorescent Sn(iv) Schiff base complexes, which also possess long-lived triplet excited states. The complexes absorb visible light (λmax = 420 to 462 nm) and the optical properties are easily tunable without laborious synthetic elaboration. The triplet excited states are not luminescent, but can be observed and followed using nanosecond transient absorption spectroscopy. The lifetimes of the triplet excited states are on the order of 500 μs-10 ms in PMMA matrices. The triplet state energies were estimated via energy transfer reactions with a series of organic triplet acceptors. In addition, the photoexcited complexes react with electron donors and acceptors in solution. These results demonstrate the potential for the development of photosensitizers based on main group elements with high spin orbit coupling constants. PMID:25043697

  8. Spectra in Coherent States with Excited-de Sitter Mode during Inflation

    NASA Astrophysics Data System (ADS)

    Mohsenzadeh, M.; Yusofi, E.

    2016-03-01

    We use an excited-de Sitter mode as the fundamental mode function for the far past time limit during inflation, to study the corrections of spectra of curvature perturbation. Excited-de Sitter mode is actually the approximate solution of the inflaton field equation that asymptotically approaches to the de Sitter mode function in the first approximation. We build coherent state over excited-de Sitter mode. Then, we compute spectrum of the curvature perturbation with this coherent state as the initial state. We show that in this case, the spectrum of curvature perturbation is scale dependent. As a important result of using this coherent state, we find a non-zero non-Gaussian one-point function as a possible tiny source for generation of anisotropy in CMB from the initial mode in the string or Planck scale.

  9. ELECTRONIC SOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATION STATES (III) TO (VI) IN ANHYDROUS HYDROGEN FLUORIDE

    SciTech Connect

    Baluka, M.; Edelstein, N.; O'Donnell, T. A.

    1980-10-01

    Spectra have been recorded for solutions in anhydrous hydrogen fluoride (AHF) of uranium and neptunium in oxidation states (III) to (VI). The spectra for U(III), Np(III) and Np(IV) in AHF are very similar to those in acidified aqueous solution, but that for U(IV) suggests that the cationic species is UF{sub 2}{sup 2+}. The AHF spectra for the elements in oxidation states (V) and (VI) are not comparable with those of the formally analogous aqueous solutions, where the elements exist as well-defined dioxo-cations. However, the AHF spectra can be related to spectra in the gas phase, in the solid state or in non-aqueous solvents for each element in its appropriate oxidation state.

  10. A tetramethoxybenzophenone as efficient triplet photocatalyst for the transformation of diazo compounds.

    PubMed

    Pastor-Pérez, Lourdes; Wiebe, Christine; Pérez-Prieto, Julia; Stiriba, Salah-Eddine

    2007-02-16

    The aromatic ketone 2,2',4,4'-tetramethoxybenzophenone has a strong absorption band between 300 and 375 nm, and its pi,pi* triplet excited-state is selectively populated in methanol. Both facts make this aromatic ketone a versatile and efficient triplet photocatalyst for the transformation of alpha-diazo carbonyl compounds into mainly the cyclopropanation product. PMID:17288402

  11. Identification of a triplet pair intermediate in singlet exciton fission in solution.

    PubMed

    Stern, Hannah L; Musser, Andrew J; Gelinas, Simon; Parkinson, Patrick; Herz, Laura M; Bruzek, Matthew J; Anthony, John; Friend, Richard H; Walker, Brian J

    2015-06-23

    Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley-Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]--tetracene we find rapid (<100 ps) formation of excimers and a slower (∼ 10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process. PMID:26060309

  12. Identification of a triplet pair intermediate in singlet exciton fission in solution

    PubMed Central

    Stern, Hannah L.; Musser, Andrew J.; Gelinas, Simon; Parkinson, Patrick; Herz, Laura M.; Bruzek, Matthew J.; Anthony, John; Friend, Richard H.; Walker, Brian J.

    2015-01-01

    Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (<100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process. PMID:26060309

  13. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates

    SciTech Connect

    Ritschel, Gerhard; Mbius, Sebastian; Eisfeld, Alexander; Suess, Daniel; Strunz, Walter T.

    2015-01-21

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

  14. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates

    NASA Astrophysics Data System (ADS)

    Ritschel, Gerhard; Suess, Daniel; Möbius, Sebastian; Strunz, Walter T.; Eisfeld, Alexander

    2015-01-01

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

  15. Triplet-sensitized cycloreversion of the endoperoxides of dimethylhomöocoerdianthrone and heterocoerdianthrone

    NASA Astrophysics Data System (ADS)

    Katscher, U.; Schmidt, R.; Brauer, H.-D.

    1989-09-01

    The quantum yield for cycloreversion of the endoperoxide of dimethylhomöocoerdianthrone (HOCDPO) occurring from the triplet manifold was determined by triplet sensitization with benzophenone as sensitizer to be 0.31. The T 2(ππ *) state of HOCDPO is the reactive state. In contrast we found that triplet sensitization of the structurally related endoperoxide of heterocoerdianthrone (HECDPO) does not lead to cycloreversion. The reason for the different behavior is most probably that the unreactive nπ * triplet lies below the ππ * triplet for HECDPO whereas for HOCDPO the sequence is reversed. The energy of the T 2(ππ *) state of HOCDPO is estimated to be 260 kJ/mol.

  16. Fluorescence excitation spectra of all-trans-1,6-diphenylhexatriene conformers: Adiabatic conformer equilibration in the 21Ag state

    NASA Astrophysics Data System (ADS)

    Turek, Andrzej M.; Krishna, Tallapragada S. R.; Brela, Mateusz; Saltiel, Jack

    2016-03-01

    Fluorescence spectra of all-trans-1,6-diphenyl-1,3,5-hexatriene were measured in n-hexadecane at 99 °C by varying λexc in the 294-404 nm range. Resolution of this spectral matrix into s-trans,s-trans and s-cis,s-trans conformer fluorescence spectra yields the λexc dependence of fractional contributions which are converted to conformer specific fluorescence excitation spectra. Conformer absorption spectra obtained from the fluorescence excitation spectra are remarkably similar, but differ significantly from absorption spectra derived from a spectrothermal absorption spectral matrix measured in n-alkanes under isopolarizability conditions. The results reveal substantial conformer equilibration in the excited state. Theory is consistent with adiabatic conformer equilibration in the 21Ag state.

  17. 6-Aminouracil: Geometries and spectra in the isolated state and in the solid state simulation. A comparison with 5-aminouracil

    NASA Astrophysics Data System (ADS)

    Palafox, M. Alcolea; Rastogi, V. K.

    2016-03-01

    FT-IR and FT-Raman spectra of 6-aminouracil were recorded in the solid state in the regions 3500-0 cm-1 and 4000-400 cm-1, respectively. The unit cell reported by X-ray in the crystal was reproduced theoretically by density functional theoretical calculations as a tetramer form. To correct the overestimation of the theoretical wavenumbers of 6-aminouracil were used specific scaling equations determined from the molecule of uracil. These scaled frequencies obtained were employed in the reassignment of several Raman and Infrared experimental bands. In the comparison of these experimental values the percentage of error is very small in most of the wavenumbers. A correlation between the geometric parameters, charge distribution and vibrational spectra of 6-aminouracil and 5-aminouracil molecules was shown.

  18. Long-lived, colour-triplet scalars from unnaturalness

    NASA Astrophysics Data System (ADS)

    Barnard, James; Cox, Peter; Gherghetta, Tony; Spray, Andrew

    2016-03-01

    Long-lived, colour-triplet scalars are a generic prediction of unnatural, or split, composite Higgs models where the spontaneous global-symmetry breaking scale f ≳ 10 TeV and an unbroken SU(5) symmetry is preserved. Since the triplet scalars are pseudo NambuGoldstone bosons they are split from the much heavier composite-sector resonances and are the lightest exotic, coloured states. This makes them ideal to search for at colliders. Due to discrete symmetries the triplet scalar decays via a dimension-six term and given the large suppression scale f is often metastable. We show that existing searches for collider-stable R-hadrons from Run-I at the LHC forbid a triplet scalar mass below 845 GeV, whereas with 300 fb-1 at 13 TeV triplet scalar masses up to 1.4 TeV can be discovered. For shorter lifetimes displaced-vertex searches provide a discovery reach of up to 1.8 TeV. In addition we present exclusion and discovery reaches of future hadron colliders as well as indirect limits that arise from modifications of the Higgs couplings.

  19. Electronic spectra of carbon nanotubes: Excitonic states, chemical doping, and chiral interactions

    NASA Astrophysics Data System (ADS)

    Dukovic, Gordana

    2006-04-01

    This Thesis is concerned with three distinct aspects of the electronic states in semiconducting single-walled carbon nanotubes. The first part focuses on the correct physical description of the excited states in these molecules. The most common description of nanotube electronic transitions has involved electron excitation from valence to conduction bands. However, due to the enhanced Coulomb interactions in this one-dimensional molecule, it has been expected that the bound electron-hole pairs (excitons) should be observed in the electronic spectra. Here, excitonic states are identified experimentally using two-photon excitation spectroscopy, proving that the peaks commonly observed in the nanotube spectra are due to the lowest-energy exciton, which is bound by hundreds of meV. The variation of binding energy with nanotube structure is also explored and found to scale inversely with nanotube diameter. The second part focuses on reversible oxidation of semiconducting nanotubes and the resulting doping as reflected in the absorption and fluorescence spectra. The proposed oxide structure is an endoperoxide, which at low pH values becomes protonated, placing positive charges (holes) in nanotube valence band. Nanotube fluorescence is particularly sensitive to the presence of the protonated oxides, as the delocalized holes recombine non-radiatively with the excited electron-hole pairs to quench the luminescence. The endoperoxide functionalities are inherently present on the sidewalls of solubilized nanotubes, and the origin of this oxidation remains an open question. Finally, chiral nanotubes wrapped with DNA are studied by circular dichroism (CD) spectroscopy. In nanotube synthesis, chiral nanotubes are presumably produced as a racemic mixture, but the wrapping with DNA, which itself is chiral, is expected to introduce a chiral perturbation and possibly favor one enantiomer over the other. The CD spectra of DNA-wrapped nanotubes are found to resemble the theoretically predicted nanotube spectra, but the CD signal disappears when DNA is replaced by a non-chiral surfactant, suggesting no substantial chiral separation. The measured CD is attributed to the quantum mechanical coupling of DNA and nanotube transition moments, which due to the intrinsic DNA chirality, is more constructive for one enantiomer over the other, resulting in an overall non-zero CD intensity.

  20. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    NASA Astrophysics Data System (ADS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S1 and S0 spectra of trans-azobenzene in n-hexane. The S1 spectra were also measured conventionally, upon nπ* (S0 → S1) actinic excitation. The results are discussed and compared to earlier reports.

  1. Infrared Spectra and Density Functional Calculations for Singlet CH2═SiX2 and Triplet HC-SiX3 and XC-SiX3 Intermediates in Reactions of Laser-Ablated Silicon Atoms with Di-, Tri-, and Tetrahalomethanes.

    PubMed

    Cho, Han-Gook; Andrews, Lester

    2016-03-21

    Reactions of laser-ablated silicon atoms with di-, tri-, and tetrahalomethanes in excess argon were investigated, and the products were identified from the matrix infrared spectra, isotopic shifts, and density functional theory energy, bond length, and frequency calculations. Dihalomethanes produce planar singlet silenes (CH2═SiX2), and tri- and tetrahalomethanes form triplet halosilyl carbenes (HC-SiX3 and XC-SiX3). The Si-bearing molecules identified are the most stable, lowest-energy product in the reaction systems. While the C-Si bond in the silene is a true double bond, the C-Si bond in the carbene is a shortened single bond enhanced by hyperconjugation of the two unpaired electrons on C to σ*(Si-X) orbitals, which contributes stabilization through a small amount of π-bonding and reduction of the HCSi or XCSi angles. The C-Si bond lengths in these carbenes (1.782 Å for HC-SiF3) are between the single-bond length in the unobserved first insertion intermediate (1.975 Å for CHF2-SiF) and the double-bond length in the silene (1.704 Å for CHF═SiF2). The silicon s(2)p(2) and titanium s(2)d(2) electron configurations produce similar primary products, but the methylidyne with Ti has a bond to carbon stronger than that of the halosilyl carbene. PMID:26918739

  2. Triplet-triplet energy transfer and protection mechanisms against singlet oxygen in photosynthesis

    NASA Astrophysics Data System (ADS)

    Kihara, Shigeharu

    In photosynthesis, (bacterio)chlorophylls ((B)Chl) play a crucial role in light harvesting and electron transport. (B)Chls, however, are known to be potentially dangerous due to the formation of the triplet excited state which forms the singlet oxygen (1O2*) when exposed to the sunlight. Singlet oxygen is highly reactive and all modern organisms incorporate special protective mechanisms to minimize the oxidative damage. One of the conventional photoprotective mechanisms used by photosynthetic organisms is by the nearby carotenoids quenching the excess energy and releasing it by heat. In this dissertation, two major aspects of this process are studied. First, based on experimental data and model calculations, the oxygen content in a functioning oxygenic photosynthetic oxygen cell was determined. These organisms perform water splitting and as a result significant amount of oxygen can be formed within the organism itself. It was found, that contrary to some published estimates, the excess oxygen concentration generated within an individual cell is extremely low -- 0.025 ... 0.25 microM, i.e. about 103-104 times lower than the oxygen concentration in air saturated water. Such low concentrations imply that the first oxygenic photosynthetic cells that evolved in oxygen-free atmosphere of the Earth ~2.8 billion years ago might have invented the water splitting machinery (photosystem II) without the need for special oxygen-protective mechanisms, and the latter mechanisms could have evolved in the next 500 million years during slow rise of oxygen in the atmosphere. This result also suggests that proteins within photosynthetic membranes are not exposed to significant O2 levels and thus can be studied in vitro under the usual O2 levels. Second, the fate of triplet excited states in the Fenna Matthew Olson (FMO) pigment-protein complex is studied by means of time-resolved nanosecond spectroscopy and exciton model simulations. For the first time, the properties of several individual BChl pigments within that photosynthetic antenna complex are accessed via their triplet state dynamics. It is found that the currently used exciton model of FMO needs to be revised. It is also shown that triplet excited states can be readily transferred between the molecules. It is proposed that the triplet energy transfer between the BChl molecules can also serve as a protection mechanism. Finally, it is inferred that at least one of the BChl molecules within the FMO has a triplet state energy that is lower than that of singlet oxygen. This effectively prevents the formation of singlet oxygen and protects the complex from oxidative damage. The energy of BChl is apparently lowered by the specific protein environment, as in solution its energy is measured to be somewhat higher than the energy of singlet oxygen. Finally, the results of the triplet energy transfer within the cytochrome b6f complex are presented. This part of the work is not conclusive, and some of the problems encountered in experiments are described, as well as a new method of sample degassing developed for this type of study is presented.

  3. Analysis of PANDA Passive Containment Cooling Steady-State Tests with the Spectra Code

    SciTech Connect

    Stempniewicz, Marek M

    2000-07-15

    Results of post test simulation of the PANDA passive containment cooling (PCC) steady-state tests (S-series tests), performed at the PANDA facility at the Paul Scherrer Institute, Switzerland, are presented. The simulation has been performed using the computer code SPECTRA, a thermal-hydraulic code, designed specifically for analyzing containment behavior of nuclear power plants.Results of the present calculations are compared to the measurement data as well as the results obtained earlier with the codes MELCOR, TRAC-BF1, and TRACG. The calculated PCC efficiencies are somewhat lower than the measured values. Similar underestimation of PCC efficiencies had been obtained in the past, with the other computer codes. To explain this difference, it is postulated that condensate coming into the tubes forms a stream of liquid in one or two tubes, leaving most of the tubes unaffected. The condensate entering the water box is assumed to fall down in the form of droplets. With these assumptions, the results calculated with SPECTRA are close to the experimental data.It is concluded that the SPECTRA code is a suitable tool for analyzing containments of advanced reactors, equipped with passive containment cooling systems.

  4. Phase states of the gypsum thermal-annealing derivatives according to electron spin resonance spectra

    NASA Astrophysics Data System (ADS)

    Khasanov, R. A.; Nizamutdinov, N. M.; Khasanova, N. M.; Salimov, R. I.; Kadyrov, R. I.; Vinokurov, V. M.

    2014-05-01

    The electron spin resonance (ESR) spectra of SO{3/-} and SO{2/-} radical ions with a linewidth Δ H ≈ 2.7 G and SO{3/-}( A 1) and SO{3/-}( A 2) centers with superhyperfine splitting due to the interaction with protons in platelike gypsum single crystals under X-ray irradiation have been analyzed at 25°C. Dehydrated regions with a radius >4 Å are revealed in gypsum. The ESR spectra of SO{3/-} radical ions and atomic hydrogen with Δ H ≈ 0.3 G are found in the products of isothermal annealing of gypsum kept for 30 min after X-ray irradiation at 25°C. The dependences of the intensities of these spectra on the annealing temperature are studied in the range of 100-450°C. The temperature range of formation of α- and β-phase states of bassanite and γ-anhydrite are determined. The process of residual water redistribution between the channel systems of the α- and β-phase types of γ-CaSO4 in gypsum thermal derivatives is established.

  5. Influence of the projectile charge state on electron emission spectra from a Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Archubi, C. D.; Silkin, V. M.; Gravielle, M. S.

    2015-09-01

    Double differential electron emission distributions produced by grazing impact of fast dressed ions on a Cu(111) surface are investigated focusing on the effects of the electronic band structure. The process is described within the Band-Structure-Based approximation, which is a perturbative method that includes an accurate representation of the electron-surface interaction, incorporating information of the electronic band structure of the solid. Differences in the behavior of the emission spectra for He+ q, Li+ q, Be+ q and C+ q projectiles with different charge states q are explained by the combined effect of the projectile trajectory and the projectile charge distribution.

  6. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying ??(?) states.

    PubMed

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S1?S0 absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S1 origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of ??(?) character in the vicinity of the lowest valence ??(?) state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ??(?) and a nearby dissociative ??(?) state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H2O)n clusters (n = 1-11), intensities of a number of ??(?) states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical behavior. PMID:25978887

  7. Heavy vector triplets: bridging theory and data

    NASA Astrophysics Data System (ADS)

    Pappadopulo, Duccio; Thamm, Andrea; Torre, Riccardo; Wulzer, Andrea

    2014-09-01

    We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the Standard Model (SM) group for illustration. The method is based on a simplified phenomenological Lagrangian which reproduces a large class of explicit models. Firstly, this allows us to derive robust model-independent phenomenological features and, conversely, to identify the peculiarities of different explicit realizations. Secondly, limits on σ × BR can be converted into bounds on a few relevant parameters in a fully analytic way, allowing for an interpretation in any given explicit model. Based on the available 8 TeV LHC analyses, we derive current limits and interpret them for vector triplets arising in weakly coupled (gauge) and strongly coupled (composite) extensions of the SM. We point out that a model-independent limit setting procedure must be based on purely on-shell quantities, like σ × BR. Finite width effects altering the limits can be considerably reduced by focusing on the on-shell signal region. We illustrate this aspect with a study of the invariant mass distribution in di-lepton searches and the transverse mass distribution in lepton-neutrino final states. In addition to this paper we provide a set of online tools available at a dedicated webpage [1].

  8. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    SciTech Connect

    Gotoh, Hideki Sanada, Haruki; Yamaguchi, Hiroshi; Sogawa, Tetsuomi

    2014-10-15

    Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL) method in a coherently coupled exciton-biexciton system in a single quantum dot (QD). PL and photoluminescence excitation spectroscopy (PLE) are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  9. The singlet-triplet absorption and photodissociation of the HOCl, HOBr, and HOI molecules calculated by the MCSCF quadratic response method

    SciTech Connect

    Minaev, B.F.

    1999-09-09

    The molecular absorption spectra of hypochlorous, hypobromous, and hypoiodous acids have been studied by multiconfiguration self-consistent field (MCSCF) calculations with linear and quadratic response techniques. The complete form of the spin-orbit coupling (SOC) operator is accounted. The singlet-triplet transition to the lowest triplet state {sup 3}A{double{underscore}prime} {l{underscore}arrow} X{sup 1}A{prime} is shown to be responsible for the weak long-wavelength tail absorption and photodissociation in these molecules. The transition is polarized along the O-X bond (X = Cl, Br, I) and has an oscillator strength equal 6 x 10{sup {minus}6}, 8 x 10{sup {minus}5}, and 2 x 10{sup {minus}4} for hypochlorous, hypobromous, and hypoiodous acids, respectively. The second singlet-triplet transition {sup 3}A{prime} {l{underscore}arrow} X{sup 1}A{prime} comes to the region of the first singlet-singlet {sup 1}A{double{underscore}prime} {l{underscore}arrow} X{sup 1}A{prime} absorption and contributes significantly to the total cross-section at wavelengths {lambda} {approx} 300--320 nm (X = Cl), {lambda} {approx} 340--360 nm (X = Br), and {lambda} {approx} 400 nm (X = I). In the last case the singlet-triplet transition {sup 3}A{prime} {l{underscore}arrow} X{sup 1}A{prime} produces predominant contribution to HOI absorption in the visible region. All states are dissociative, so the singlet-triplet absorption contributes to the yield of photolysis in the important near-UV and visible region close to the intense solar actinic flux. Contributions to the removal mechanisms for atmospheric HOCl, HOBr, and HOI species are shortly discussed. The minor loss process of ozone in troposphere because of the HOI reservoir sink is getting evident on the ground of this calculations. The importance of SOC accounting for atmospheric photochemistry problems is stressed.

  10. Infrared laser spectroscopy of jet-cooled carbon clusters: structure of triplet C6

    NASA Technical Reports Server (NTRS)

    Hwang, H. J.; Van Orden, A.; Tanaka, K.; Kuo, E. W.; Heath, J. R.; Saykally, R. J.

    1993-01-01

    We report the first structural characterization of the triplet isomer of C6. Forty-one rovibrational/fine structure transitions in the nu 4(sigma u) antisymmetric stretch fundamental of the C6 cluster have been measured by diode laser absorption spectroscopy of a supersonic carbon cluster beam. The observed spectrum is characteristic of a centrosymmetric linear triplet state with cumulene-type bonding. The measured ground state rotational constant B0 = 0.048 479 (10)cm-1 and the effective bond length r(eff) = 1.2868 (1) angstroms are in good agreement with ab initio predictions for the linear triplet (3 sigma g-) state of C6.

  11. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods

    NASA Astrophysics Data System (ADS)

    Ren, Sijin; Caricato, Marco

    2016-05-01

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.

  12. Polar propagating optical phonon states and their dispersive spectra in wurtzite nitride superlattices: Quantum size effect

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, Peng-Ming

    2010-12-01

    The polar optical phonon states of propagating (PR) modes in wurtzite GaN/Al xGa 1- xN superlattices (SLs) are investigated within the dielectric continuum model framework. It is proved that the PR phonon modes only appear in wurtzite GaN/Al xGa 1- xN SL with a small x Al mole ratio concentration (such as x<0.34). The analytical phonon states of PR modes and their dispersive equation in the wurtzite GaN/Al xGa 1- xN SL structures are obtained. Numerical calculations on the dispersive spectra of PR modes and their electrostatic potential properties as well as the quantum size effect are performed for a wurtzite GaN/Al 0.15Ga 0.85N SL. Results reveal that dispersive curves of PR modes in SLs form frequency bands. As the well width of GaN well-layer increases, the frequency bands of PR modes become steeper and narrower. The discussion of electrostatic potentials shows that the wavelength of PR phonon modes with a phase qL=π (0) is 2L ( L). With the increase of the SL well width, the wave-node number of the PR phonon modes in the barrier regions increases. The present theoretical scheme and numerical results are quite useful for analyzing the dispersive spectra of PR phonon modes and their polaronic effect in wurtzite GaN/AlGaN SL structures.

  13. Influence of wetting state on optical reflectance spectra of Si nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Gwon, Minji; Kim, Sujung; Li, Jiaqi; Xu, Xiumei; Kim, Sun-Kyung; Lee, Eunsongyi; Kim, Dong-Wook; Chen, Chang

    2015-12-01

    Finite-difference time-domain (FDTD) simulations showed that the reflectance spectra of crystalline Si nanopillar (NP) arrays with diameters of 40, 70, 100, and 130 nm differed depending on wetting state. The observed reflectance dips of the 40-nm-diameter NP array were in good agreement with those estimated from destructive interference conditions at the top and bottom of the NPs: the NP arrays were treated as a homogeneous medium with an effective permittivity according to the effective medium approximation model. In contrast, the dip positions of the FDTD-simulated spectra for 70-, 100-, and 130-nm-diameter NP arrays deviated from the results of interference calculations, particularly for short wavelengths. This suggested that Mie resonances in individual NPs significantly increased the absorption cross-section at the resonant wavelengths, which was sensitive to the refractive index of the surrounding medium (i.e., the wetting state). Optical reflectance measurements provide an easy and efficient means of inspecting the wetting behavior of non-flat surfaces.

  14. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods.

    PubMed

    Ren, Sijin; Caricato, Marco

    2016-05-14

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory. PMID:27179466

  15. Experimental and theoretical study of the electronic states and spectra of SbNa

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Liebermann, H.-P.; Buenker, R. J.; Alekseyev, A. B.

    2015-12-01

    Gas-phase emission spectra of the hitherto unknown free radical SbNa were measured in the NIR region with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which antimony vapor in argon or neon carrier gas was passed through a microwave discharge and mixed with sodium vapor in an observation tube. Seven transitions from five low-lying excited states A12, A21, A30+, A40-, and B2 to the X10+ and/or X21 components of the X3Σ- ground state have been observed and analyzed. In parallel to the experiments, relativistic configuration interaction calculations of potential energy curves, vibrational constants, bond lengths, transition moments and radiative lifetimes were carried out to aid in the analysis of the experimental data.

  16. Investigating Velocity Spectra at the Hugoniot State of Shock Loaded Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Jeff; Borg, John; Stewart, Sarah; Thadhani, Naresh

    2015-06-01

    Hugoniot states achieved in heterogeneous materials have shown oscillations in particle velocity about an averaged state for both experimental and simulated data. These oscillations arise from the scattering of the transmitted shock wave due to the presence of internal interfaces within heterogeneous materials. The goal of this work is to determine if the spectra of oscillatory behavior can be associated to characteristic length scales of the corresponding un-shocked heterogeneous material. Similarities between different types of shock-loaded materials are compared such as sand, concrete, aluminum foam, and layered composites. I would like to acknowledge the AFOSR under grant: FA9550-12-1-0128, ``Dynamic High-Pressure Behavior of Hierarchical Heterogenous Geological Granular Materials'' and the D.o.D. Supercomputing Resource Center.

  17. Experimental and theoretical study of the electronic states and spectra of NaAs

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2016-02-01

    Gas-phase emission spectra of the hitherto unknown free radical NaAs were measured in the NIR region with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which arsenic vapor in argon carrier gas was passed through a microwave discharge and mixed with sodium vapor in an observation tube. Seven transitions from all five Ω components of the low-lying A3Π and a1Δ excited states (A12, A21, A30+, A40-, a2) to the X10+ and/or X21 components of the X3Σ- ground state have been observed and analysed. With the help of parallel relativistic configuration interaction calculations all observed spectral features could be assigned and analyzed.

  18. Magnetic chains on a triplet superconductor.

    PubMed

    Sacramento, P D

    2015-11-11

    The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective 1d system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes. PMID:26459719

  19. A singlet - triplet T+ based qubit

    NASA Astrophysics Data System (ADS)

    Ribeiro, Hugo; Petta, Jason; Burkard, Guido

    2010-03-01

    We theoretically show that the electronic two-spin states singlet and triplet T+ are promising candidates for the implementation of a qubit in GaAs double quantum dots (DQD). A coherent superposition of the two-spin states is obtained by finite time Landau-Zener-St"uckelberg interferometry [1] and the single qubit rotations are performed by means of an external magnetic field with a typical amplitude of about 100 mT. In such a system, the coherent manipulation of the qubit takes place in a time scale of about 1 ns. We also study the nuclear induced decoherence, mainly due to hyperfine contact coupling between the electronic and nuclear spins, and compute the decoherence time T2^* ˜10 ns. [4pt] [1] H. Ribeiro and G. Burkard, Phys. Rev. Lett. 102, 216802 (2009)

  20. Triplet excitations in graphene-based systems

    NASA Astrophysics Data System (ADS)

    Posvyanskiy, V.; Arnarson, L.; Hedegård, P.

    2015-02-01

    In this paper we investigate the excitations in a single graphene layer and in a single-walled carbon nanotube, i.e. the spectrum of magnetic excitations is calculated. In the absence of interactions in these systems there is a unique gap in the electron-hole continuum. We show that in the presence of Coulomb correlations bound states, magnons, appear in this forbidden region. The Coulomb interaction is examined in the context of the Pariser-Parr-Pople (PPP) model which takes into account the long-range nature of the interaction. The energy of the new bound states depends on the strength of the Coulomb forces. The calculations are performed for arbitrary electron-hole (e\\text-h) momentum q . In the end, this work finally settles the discussion sabout the existence of triplet excitations in graphene which has been lasting for a decade in the literature.

  1. Non-Thermal Signatures in Low State Spectra of Black Hole X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Esin, A. A.; Tomsick, J. A.

    2001-05-01

    Many transient and persistent Black Hole X-ray Binaries (BHXBs) show characteristic state transitions between low/hard and high/soft spectral states. A typical low/hard state X-ray spectrum, as seen for example in Cyg X-1 and GRO J0422+32, is a power-law with a photon index of order 1.4-1.6 and an exponential cutoff with a characteristic e-folding energy ~ 100 keV. These spectra are generally interpreted as emission from hot thermal plasma modeled either as an accretion disk corona, or as a hot accretion flow inside a truncated thin disk. We show that low state spectra of three transient BHXBs, XTE J1118+480, XTE J1550-564, and 4U1630-47, do not show the characteristic hard X-ray turnover. The absence of the turnover is difficult to understand in the context of the thermal Comptonization models, and argues for the presence of non-thermal emission in these systems. We propose that a typical hard power-law spectrum can be produced both in the (thermal) accretion flow or in the (non-thermal) jet (as suggested by Fender et al. 2000). The strength of the jet emission relative to that from the accretion flow (and therefore whether we observe the thermal cutoff in the spectrum or not) can depend on several parameters, e.g. inclination of the jet with respect to the binary and the observer, mass accretion rate, accretion flow configuration. This work was supported by Chandra Postdoctoral Fellowship grant #PF8-10002 awarded by the Chandra X-Ray Center, which is operated by the SAO for NASA under contract NAS8-39073, and by a CASS Postdoctoral Fellowship.

  2. Influence of ground-state scattering properties on photoassociation spectra near the intercombination line of bosonic ytterbium

    SciTech Connect

    Borkowski, M.; Ciurylo, R.; Tojo, S.; Enomoto, K.; Takahashi, Y.

    2010-10-29

    We study theoretically the properties of photoassociation spectra near the {sup 1}S{sub 0}-{sup 3}P{sub 1} inter-combination line of bosonic ytterbium. We construct a mass scaled model of the excited state interaction potential that well describes bound state energies obtained in a previous photoassociation experiment. We then use it to calculate theoretical photoassociation spectra in a range of ultracold temperatures using semianalytical theory developed by Bohn and Julienne.Photoassociation spectra not only give us the energies of excited bound states, but also provide information about the behavior of the ground state wavefunction. In fact, it can be shown that within the so-called reflection approximation the line intensity is proportional to the ground state wavefunction at the transition's Condon point. We show that in the case of ytterbium, the rotational structure of the photoassociation spectra depends heavily on the behavior of the ground-state wavefunction. The change of the scattering length from one isotope to another and the resulting occurence of shape resonances in higher partial waves determines the appearance and disapperance of rotational components, especially in the deeper lying states, whose respective Condon points lie near the ground state centrifugal barrier. Thus, photoassociation spectra differ qualitatively between isotopes.

  3. Influence of ground-state scattering properties on photoassociation spectra near the intercombination line of bosonic ytterbium

    NASA Astrophysics Data System (ADS)

    Borkowski, M.; Ciury?o, R.; Julienne, P. S.; Tojo, S.; Enomoto, K.; Takahashi, Y.

    2010-10-01

    We study theoretically the properties of photoassociation spectra near the 1S0-3P1 inter-combination line of bosonic ytterbium. We construct a mass scaled model of the excited state interaction potential that well describes bound state energies obtained in a previous photoassociation experiment. We then use it to calculate theoretical photoassociation spectra in a range of ultracold temperatures using semianalytical theory developed by Bohn and Julienne. Photoassociation spectra not only give us the energies of excited bound states, but also provide information about the behavior of the ground state wavefunction. In fact, it can be shown that within the so-called reflection approximation the line intensity is proportional to the ground state wavefunction at the transition's Condon point. We show that in the case of ytterbium, the rotational structure of the photoassociation spectra depends heavily on the behavior of the ground-state wavefunction. The change of the scattering length from one isotope to another and the resulting occurence of shape resonances in higher partial waves determines the appearance and disapperance of rotational components, especially in the deeper lying states, whose respective Condon points lie near the ground state centrifugal barrier. Thus, photoassociation spectra differ qualitatively between isotopes.

  4. Reactivity of aromatic amines with triplet 1,8-dihydroxyanthraquinone: A laser flash photolysis study

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Gao, Yuhe; Yan, Lei; Pan, Hu; Chen, Jiafu; Yu, Shuqin

    2007-01-01

    The property of the lowest excited triplet states of 1,8-dihydroxyanthraquinone (DHAQ) was investigated by using time-resolved laser flash photolysis at 355 nm in organic solvents, i.e. acetonitrile and cyclohexane. The transient absorption spectra of the excited triplet DHAQ were obtained in acetonitrile, which have an absorption maximum at 480 nm and two broad absorption bands around 350 and 650 nm. 3DHAQ * is efficiently quenched by triphenylamine (TPA) via photoinduced electron transfer pathway, which was testified by the finding of TPA radical cation. In addition, aniline derivatives such as N, N-dimethylaniline (DMA), 3,5, N, N-tetramethylaniline (TMA), 4-dimethylaminobenzoic acid (DMABA) and dimethyl- p-toluidine (DMT) could also quench 3DHAQ * rapidly. Evidence for electron transfer interaction with anilines in acetonitrile was obtained from transient spectral characterization of formed radicals. Experimental kq values approach the diffusion-controlled rate limit, and decrease significantly from DMT (1.85 10 10 M -1 s -1) to DMABA (1.95 10 9 M -1 s -1). These kq values depend on the charge density on the "N" atom of anilines, which could be quantified by Hammett ? constant.

  5. Ultrafast dissociation of triplets in pentacene induced by an electric field

    NASA Astrophysics Data System (ADS)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria; Lanzani, Guglielmo

    2014-08-01

    Singlet fission into a pair of triplet excitons in pentacene is envisaged to be a potential carrier multiplication route in organic photovoltaics. In order to shed light on the dissociation dynamics of the triplet states we performed electric field induced pump-probe experiments on polycrystalline films of pentacene. We find that the nascent triplet pair formed immediately after the fission process is susceptible to dissociation in the presence of the electric field. By measuring the temporal dynamics of the dissociation, we estimate its binding energy to be approximately 320 meV. After about 2 ps the triplets diffuse away from each other and the field assisted dissociation is substantially reduced. Our results suggest that if the nascent triplet pairs could be harvested at the interface in a device, the efficiency of the process would be higher.

  6. Photosensitization of triplet carotenoid in photosynthetic light-harvesting complex of photosystem II

    SciTech Connect

    Nechushtai, R.; Thornber, J.P.; Patterson, L.K.; Fessenden, R.W.; Levanon, H.

    1988-03-10

    A laser photolysis study, on the nanosecond time scale, has been carried out on the major light-harvesting chlorophyll-protein complex of photosystem II (LHC II..beta..). The transient triplet absorption of the isolated LHC II..beta.. has been compared to those of its constituent chromophores in dilute micellar aqueous solutions, namely, chlorophyll a, chlorophyll b, chlorophyll a + chlorophyll b, and chlorophyll a + ..beta..-carotene. The results indicate that the carotenoid in the LHC II..beta.. is photosensitized by triplet chlorophyll a and that the decay of the transient triplet absorption exhibits two transients, one in the approx. 50-ns range and the other in the approx. 10..mu..s time scales. The former transient is light-intensity dependent and is attributed to an annihilation process between two triplets of chlorophyll a, while the latter is due to the decay of the triplet carotenoid to its ground state.

  7. Understanding Singlet and Triplet Excitons in Acene Crystals from First Principles

    NASA Astrophysics Data System (ADS)

    Rangel Gordillo, Tonatiuh; Sharifzadeh, Sahar; Kronik, Leeor; Neaton, Jeffrey

    2014-03-01

    Singlet fission, a process in which two triplet excitons are formed from a singlet exciton, has the potential to increase the solar cell efficiencies above 100%. Efficient singlet fission has been reported in larger acene crystals, such as tetracene and pentacene, in part attributable to their low-lying triplet energies. In this work, we use many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation approach to compute quasiparticle gaps, low-lying singlet and and triplet excitations, and optical absorption spectra across the entire acene family of crystals, from benzene to hexacene. We closely examine the degree of localization and charge-transfer character of the low-lying singlets and triplets, and their sensitivity to crystal environment, and discuss implications for the efficiency of singlet fission in this systems. This work supported by DOE and computational resources provided by NERSC.

  8. Triplet energy transfers in electrostatic host-guest assemblies of unsaturated organometallic cluster cations and carboxylate-containing porphyrin pigments.

    PubMed

    Aly, Shawkat M; Ayed, Charfedinne; Stern, Christine; Guilard, Roger; Abd-El-Aziz, Alaa S; Harvey, Pierre D

    2008-11-01

    The unsaturated cyclic [M3(dppm)3(CO)](2+) clusters (M = Pt, Pd; dppm = Ph2PCH2PPh2; such as PF6(-) salt) exhibit a cavity formed by the six dppm-phenyl groups placed like a picket fence above the unsaturated triangular M3 dicationic center. Electrostatic interactions of the M(3+) units inside this cavity with the carboxylate anion RCO2(-) [R = tetraphenylporphyrinatozinc(II), ZnTPP; p-phenyltritolylporphyrinatozinc(II), ZnTTPP; p-phenyltritolylporphyrinatopalladium(II), PdTTPP] form dyads for through-space triplet energy transfers. The binding constants are on the order of 20,000 M(-1) in all six cases (298 K). The energy diagram built upon absorption and emission spectra at 298 and 77 K places the [Pt3(dppm)3(CO)](2+) and [Pd3(dppm)3(CO)](2+) as triplet energy donors, respectively, with respect to the ZnTPPCO2(-), ZnTTPPCO2(-), and PdTTPPCO2(-) pigments, which act as acceptors. Evidence for energy transfer is provided by the transient absorption spectra at 298 K, where triplet-triplet absorption bands of the metalloporphyrin chromophores are depicted at all time (at 298 K) with total absence of the charge-separated state in the nanosecond to microsecond time scale. Rates for energy transfer (ranging in the 10(4) s(-1) time scale) are extracted from the emission lifetimes of the [Pt3(dppm)3(CO)](2+) donor in the free chromophore and the host-guest assemblies. The emission intensity of [Pd3(dppm)3(CO)](2+) is too weak to measure its spectrum and emission lifetime in the presence of the strongly luminescent metalloporphyrin-containing materials. For the [Pd3(dppm)3(CO)](2+)...metalloporphyrin dyads, evidence for fluorescence and phosphorescence lifetime quenching of the porphyrin chromophore at 298 K is provided. These quenchings, exhibiting rates of 10(4) (triplet) and 10(8) s(-1) (singlet), are attributed to a photoinduced electron transfer from the metalloporphyrin to the cluster due to the low reduction potential. PMID:18844340

  9. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    PubMed

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers. PMID:26510600

  10. Formation of ultracold {sup 7}Li{sup 85}Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy

    SciTech Connect

    Altaf, Adeel Dutta, Sourav; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P.; Elliott, D. S.

    2015-03-21

    We report the formation of ultracold {sup 7}Li{sup 85}Rb molecules in the a{sup 3}Σ{sup +} electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ∼62 cm{sup −1} below the {sup 7}Li 2s {sup 2}S{sub 1/2} + {sup 85}Rb 5p {sup 2}P{sub 1/2} asymptote. In addition, we use REMPI spectroscopy to probe the a{sup 3}Σ{sup +} state and excited electronic 3{sup 3}Π and 4{sup 3}Σ{sup +} states and identify a{sup 3}Σ{sup +} (v″ = 7–13), 3{sup 3}Π (v{sub Π}′ = 0–10), and 4{sup 3}Σ{sup +} (v{sub Σ}′ = 0–5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  11. Triplet exciton dynamics in rubrene single crystals

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr; Biaggio, Ivan

    2011-11-01

    The decay of the photoluminescence excited in rubrene single crystals by picosecond pulses is measured over 7 orders of magnitude and more than 4 time decades. We identify the typical decay dynamics due to triplet-triplet interaction. We show that singlet exciton fission and triplet fusion quantum yields in rubrene are both very large, and we directly determine a triplet exciton lifetime of 100±20 μs, which explains the delayed buildup of a large photocurrent that has been reported earlier for low excitation densities.

  12. Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state

    NASA Astrophysics Data System (ADS)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Nakajima, Masakazu; Endo, Yasuki

    2015-12-01

    We observed microwave absorption spectra of some deuterated benzenes and accurately determined the rotational constants of all H/D isotopomers in the ground vibrational state. Using synthetic analysis assuming that all bond angles are 120°, the mean bond lengths were obtained to be r0(C-C) = 1.3971 Å and r0(C-H) = r0(C-D) = 1.0805 Å. It has been concluded that the effect of deuterium substitution on the molecular structure is negligibly small and that the mean bond lengths of C-H and C-D are identical unlike small aliphatic hydrocarbons, in which r0(C-D) is about 5 mÅ shorter than r0(C-H). It is considered that anharmonicity is very small in the C-H stretching vibration of aromatic hydrocarbons.

  13. Spectroscopic study on deuterated benzenes. I. Microwave spectra and molecular structure in the ground state.

    PubMed

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki; Nakajima, Masakazu; Endo, Yasuki

    2015-12-28

    We observed microwave absorption spectra of some deuterated benzenes and accurately determined the rotational constants of all H/D isotopomers in the ground vibrational state. Using synthetic analysis assuming that all bond angles are 120°, the mean bond lengths were obtained to be r0(C-C) = 1.3971 Å and r0(C-H) = r0(C-D) = 1.0805 Å. It has been concluded that the effect of deuterium substitution on the molecular structure is negligibly small and that the mean bond lengths of C-H and C-D are identical unlike small aliphatic hydrocarbons, in which r0(C-D) is about 5 mÅ shorter than r0(C-H). It is considered that anharmonicity is very small in the C-H stretching vibration of aromatic hydrocarbons. PMID:26723666

  14. Lowest triplet (n,π{sup *}) state of 2-cyclohexen-1-one: Characterization by cavity ringdown spectroscopy and quantum-chemical calculations

    SciTech Connect

    McAnally, Michael O.; Zabronsky, Katherine L.; Stupca, Daniel J.; Phillipson, Kaitlyn; Pillsbury, Nathan R.; Drucker, Stephen

    2013-12-07

    The cavity ringdown (CRD) absorption spectrum of 2-cyclohexen-1-one (2CHO) was recorded over the range 401.5–410.5 nm in a room-temperature gas cell. The very weak band system (ε ⩽ 0.1 M{sup −1} cm{sup −1}) in this spectral region is due to the T{sub 1}(n, π*) ← S{sub 0} electronic transition. The 0{sub 0}{sup 0} origin band was assigned to the feature observed at 24 558.8 ± 0.3 cm{sup −1}. We have assigned 46 vibronic transitions in a region extending from −200 to +350 cm{sup −1} relative to the origin band. For the majority of these transitions, we have made corresponding assignments in the spectrum of the deuterated derivative 2CHO-2,6,6-d{sub 3}. From the assignments, we determined fundamental frequencies for several vibrational modes in the T{sub 1}(n, π{sup *}) excited state of 2CHO, including the lowest ring-twisting (99.6 cm{sup −1}) and ring-bending (262.2 cm{sup −1}) modes. These values compare to fundamentals of 122.2 cm{sup −1} and 251.9 cm{sup −1}, respectively, determined previously for the isoconfigurational S{sub 1}(n, π{sup *}) excited state of 2CHO and 99 cm{sup −1} and 248 cm{sup −1}, respectively, for the S{sub 0} ground state. With the aid of quantum-mechanical calculations, we have also ascertained descriptions for these two modes, thereby resolving ambiguities appearing in the previous literature. The ring-twisting mode (ν{sub 39}) contains a significant contribution from O=C–C=C torsion, whereas the ring-bending mode (ν{sub 38} in the ground state) involves mainly the motion of C-5 with respect to the plane containing the other heavy atoms. The CRD spectroscopic data for the T{sub 1}(n, π{sup *}) state have allowed us to benchmark several computational methods for treating excited states, including time-dependent density functional theory and an equation-of-motion coupled cluster method. In turn, the computational results provide an explanation for observed differences in the T{sub 1}(n, π{sup *}) vs. S{sub 1}(n, π{sup *}) ring frequencies.

  15. Generation of long-lived methylviologen radical cation in the triplet-state mediated electron transfer in a β-cyclodextrin based supramolecular triad

    NASA Astrophysics Data System (ADS)

    Rakhi, Arikkottira M.; Gopidas, Karical R.

    2015-01-01

    A novel tris(bipyridyl)ruthenium-pyrene-methylviologen supramolecular triad was assembled through inclusion complexation of adamantane-linked Ru(II)-Py dyad in MV2+-linked β-cyclodextrin. Excitation of the Ru(II) chromophore populated its 3MLCT which upon energy transfer gave 3Py, which donates an electron to MV2+ to give Ru(II)-Pyrad +-MVrad +. A second electron transfer then occurs from Ru(II) to Pyrad + to give the supramolecular Ru(III)-Py-MVrad + charge separated state. Laser flash photolysis experiments confirmed formation of MVrad + which exhibited 100 μs lifetime. Steady state irradiation of the self-assembled system in the presence of sacrificial donor also led to formation of long-lived MVrad +.

  16. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  17. Charge Prediction Machine: A tool for inferring precursor charge states of Electron Transfer Dissociation tandem mass spectra

    PubMed Central

    Carvalho, Paulo C; Cociorva, Daniel; Wong, Catherine; Carvalho, Maria da Gloria da C; Barbosa, Valmir C; Yates, John R

    2010-01-01

    Electron Transfer Dissociation (ETD) can dissociate highly charged ions. Efficient analysis of ions dissociated with ETD requires accurate determination of charge states for calculation of molecular weight. We created an algorithm to assign the charge state of ions often used for ETD. The program, Charge Prediction Machine (CPM), uses Bayesian decision theory to account for different charge reduction processes encountered in ETD, and can also handle multiplex spectra. CPM correctly assigned charge states to 98% of the 13,097 MS2 spectra from a combined dataset of four experiments. In a comparison between CPM and a competing program, Charger (ThermoFisher), CPM produced half the mistakes. PMID:19203245

  18. The Rotational Spectra of Propyne in the Ground, V(10) = 1, V(10) = 2, and V(9) = 1 Vibrational States

    NASA Astrophysics Data System (ADS)

    Ware, John Matthew

    The problem of a vibrating-rotating polyatomic molecule is treated, with emphasis given to the case of molecules with C(,3V) sym- metry. It is shown that several of the gross features of the rotational spectra of polyatomic molecules in excited vibrational states can be predicted by group theoretical considerations. Expressions for the rotational transition frequencies of molecules of C(,3V) symmetry in the ground vibrational state, singly excited degenerate vibrational states, and doubly excited degenerate vibrational states are given. The deri- vation of these expressions by fourth order perturbation theory as given by Amat, Nielsen, and Tarrago is discussed. The ground and V(,10) = 1 rotational spectra of propyne have been investigated in the 17 to 70 GHz, and 17 to 53 GHz regions, respec- tively, and compared with predictions based on higher frequency measurements. The V(,9) = 1 and V(,10) = 2 rotational spectra of propyne have been investigated and assigned for the first time. A perturbation of the V(,9) = 1 rotational spectra for K = -L has been discovered and discussed. Methods of assignment for excited vibrational state spectra are discussed in detail. The methods of assignment given here allow the analysis of spectra where only a relatively small number of experi- mental points are available. A discrepancy has been found in the interpretation of recently reported infrared results on the rotational spectra of propyne in the V(,10) = 1, 2, 3, and 4 vibrational states. The constants of anharmoni- city which describe the change of the rotational constant, B, with the level of excitation of the V(,10) vibrational mode are rederived from microwave data. It is shown that microwave measurements increase the accuracy of one of these constants by over an order of magnitude.

  19. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  20. Singlet, triplet, electron and hole transport along single polymer chains

    NASA Astrophysics Data System (ADS)

    Bird, Matthew; Mauro, Gina; Zaikowski, Lori; Li, Xiang; Reid, Obadiah; Karten, Brianne; Asaoka, Sadayuki; Chen, Hung-Cheng; Cook, Andrew R.; Rumbles, Garry; Miller, John R.

    2015-08-01

    The diffusion of singlet and triplet excitons along single polyfluorene chains in solution has been studied by monitoring their transport to end traps. Time-resolved transient absorption and steady state fluorescence were used to determine fractions of excitons that reach the end caps. In order to accurately determine the singlet diffusion coefficient, the fraction of polymer ends that have end traps was determined through a combination of NMR and triplet quenching experiments. The distributions of polymer lengths were also taken into account and the resulting analysis points to a surprisingly long singlet diffusion length of 34 nm. Experiments on triplet transport also suggest that the entire 100nm+ chain is accessible to the triplet during its lifetime suggesting a lack of hindrance by defects or traps on this timescale. Time Resolved Microwave Conductivity measurements were also performed on a series of different length oligo- and polyfluorenes in solution allowing a global fit to be performed to extract an accurate intrachain mobility of 1.1 cm2/Vs.

  1. Analysis of source spectra, attenuation, and site effects from central and eastern United States earthquakes

    SciTech Connect

    Lindley, G.

    1998-02-01

    This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10{sup 20} dyne-cm to 690 bars at 10{sup 25} dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q{sub Lg} as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M{sub b} 5.6, 14 April, 1995, West Texas earthquake.

  2. Asynchronous MASSLF spectroscopy: A convenient method for assigning solid-state carbon-13 CPMAS spectra

    SciTech Connect

    Webb, G.G.; Zilm, K.W. )

    1989-03-29

    A two-dimensional solid-state NMR technique is presented which permits assignment of {sup 13}C CPMAS spectra on the basis of the number of protons bonded to a carbon center. The method is similar to several other methods that have become popular for accurately determining C-H or N-H bond distances in solids and for following molecular motions in polymers. These techniques, referred to collectively as MASSLF spectroscopy, rely on the use of MAS NMR to resolve dipolar coupled patterns that would normally overlap in static one-dimensional spectra. The dipolar coupled patterns generated by these techniques are sufficiently sensitive that small variations in C-H distances in organic solids can be accurately measured. The patterns are, however, much more sensitive to the number of protons directly bonded to the carbon center. Under conditions of fast magic angle spinning, methylenes typically exhibit twice the number of sidebands as methines, and rapidly rotating methyl groups and nonprotonated carbons usually exhibit only one set of sidebands. The method presented here determines the number of methylenes, methines, and methyl plus nonprotonated carbons contributing to a resonance by taking advantage of the fact that the dipolar patterns have characteristic and predictable relative sideband intensities. A new MASSLF pulse sequence is used in this work that differs from previous sequences by not requiring synchronization with the MAS rotation. In addition the sequence conveniently allows for a much wider bandwidth in the dipolar dimension and produces the effect of quadrature detection in this frequency domain without the need for multiple data sets.

  3. Observation of Triplet Exciton Formation in a Platinum-Sensitized Organic Photovoltaic Device.

    PubMed

    Roberts, Sean T; Schlenker, Cody W; Barlier, Vincent; McAnally, R Eric; Zhang, Yuyuan; Mastron, Joseph N; Thompson, Mark E; Bradforth, Stephen E

    2011-01-20

    Organic photovoltaics (OPVs) constitute a promising new technology due to their low production costs. However, OPV efficiencies remain low because excitons typically diffuse only ∼5-20 nm during their lifetime, limiting the effective thickness of the light-absorbing layer. One strategy to improve OPVs is to increase exciton lifetimes by converting them into triplet states, which typically persist 10(3)-10(5) times longer than singlet excitons. We present femtosecond transient absorption and steady-state photovoltaic measurements of a model OPV system consisting of diphenyltetracene (DPT) films doped with platinum tetraphenylbenzoporphyrin (Pt(TPBP)). Photoexcitation of Pt(TPBP) creates a singlet excitation that rapidly intersystem crosses to a triplet state before transferring to the DPT host matrix. This transfer is rapid and efficient, occurring in 35 ps with an 85% conversion ratio of porphyrin singlets to DPT triplets. These triplet excitons lead to enhanced photocurrent response that increases with device thickness. PMID:26295520

  4. Doublet-triplet fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Dedes, Athanasios; Karamitros, Dimitrios

    2014-06-01

    We extend the Standard Model (SM) by adding a pair of fermionic SU(2) doublets with opposite hypercharge and a fermionic SU(2) triplet with zero hypercharge. We impose a discrete Z2 symmetry that distinguishes the SM fermions from the new ones. Then, gauge invariance allows for two renormalizable Yukawa couplings between the new fermions and the SM Higgs field, as well as for direct masses for the doublet (MD) and the triplet (MT). After electroweak symmetry breaking, this model contains, in addition to SM particles, two charged Dirac fermions and a set of three neutral Majorana fermions, the lightest of which contributes to dark matter (DM). We consider a case where the lightest neutral fermion is an equal admixture of the two doublets with mass MD close to the Z-boson mass. This state remains stable under radiative corrections thanks to a custodial SU(2) symmetry and is consistent with the experimental data from oblique electroweak corrections. Moreover, the amplitudes relevant to spin-dependent or spin-independent nucleus-DM particle scattering cross sections both vanish at tree level. They arise at one loop at a level that may be observed in near future DM direct detection experiments. For Yukawa couplings comparable to the top quark, the DM particle relic abundance is consistent with observation, not relying on coannihilation or resonant effects, and has a mass at the electroweak scale. Furthermore, the heavier fermions decay to the DM particle and to electroweak gauge bosons making this model easily testable at the LHC. In the regime of interest, the charged fermions suppress the Higgs decays to diphotons by 45%-75% relative to SM prediction.

  5. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    SciTech Connect

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Frutos, Luis Manuel; Acuña, A. Ulises

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  6. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine

    NASA Astrophysics Data System (ADS)

    Jansen, P.; Vergossen, D.; Renner, D.; John, W.; Götze, J.

    2015-11-01

    An alternative method for determining the state of charge (SOC) on lithium iron phosphate cells by impedance spectra classification is given. Methods based on the electric equivalent circuit diagram (ECD), such as the Kalman Filter, the extended Kalman Filter and the state space observer, for instance, have reached their limits for this cell chemistry. The new method resigns on the open circuit voltage curve and the parameters for the electric ECD. Impedance spectra classification is implemented by a Support Vector Machine (SVM). The classes for the SVM-algorithm are represented by all the impedance spectra that correspond to the SOC (the SOC classes) for defined temperature and aging states. A divide and conquer based search algorithm on a binary search tree makes it possible to grade measured impedances using the SVM method. Statistical analysis is used to verify the concept by grading every single impedance from each impedance spectrum corresponding to the SOC by class with different magnitudes of charged error.

  7. Dominant second harmonic in the Josephson current--phase relation: Manifestation of the long-range spin-triplet proximity effect in SFF'S junctions

    NASA Astrophysics Data System (ADS)

    Radovic, Zoran; Trifunovic, Luka; Knezevic, Milos

    2012-02-01

    We present theoretical study of the Josephson effect and pairing correlations in planar SFF'S junctions that consist of conventional superconductors connected through two metallic monodomain ferromagnets. Both singlet and triplet pair amplitudes, the Josephson current-phase relations, and density of states for arbitrary orientation of magnetizations are calculated from the self-consistent solutions of Eilenberger equations in the clean limit and for moderate disorder in ferromagnets. We find that in highly asymmetric SFF'S junctions the long-range spin-triplet proximity effect manifests itself as a dominant second harmonic in the Josephson current-phase relation [1] and gives distinctive tunneling conductance spectra [2]. Unambiguous detection of the long-range spin-triplet proximity effect by tunneling spectroscopy and experimental realization of the Josephson junctions ground state degeneracy (like at 0-pi transtions) is accessible for small interface roughness and moderate disorder in ferromagnets at low temperatures. [4pt] [1] L. Trifunovic, Z. Popovic and Z. Radovic, Phys. Rev. B 84, 064511 (2011).[0pt] [2] M. Knezevic, L. Trifunovic, and Z. Radovic (to be published).

  8. Singlet and triplet instability theorems.

    PubMed

    Yamada, Tomonori; Hirata, So

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree-Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree-Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree-Fock-theory-based explanations of Hund's rule, a singlet instability in Jahn-Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions. PMID:26395692

  9. Polaron pair mediated triplet generation in polymer/fullerene blends

    PubMed Central

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields. PMID:25735188

  10. Perturbations to the intersystem crossing of proflavin upon binding to DNA and poly d(A-IU) from triplet-delayed emission spectroscopy.

    PubMed Central

    Lee, W E; Galley, W C

    1988-01-01

    The steady-state prompt fluorescence, phosphorescence and delayed fluorescence spectra and triplet lifetimes of free proflavin and proflavin bound to native DNA and alternating poly d(A-IU) were obtained as a function of temperature in a buffer-glycerol solvent. The intensity of the proflavin E-type delayed fluorescence (DF) relative to both the phosphorescence (Ph) and the prompt fluorescence (F) was observed to increase with temperature, and plots of both ln (DF/Ph) and ln (DF/(F.tau T] as a function of 1/T were linear over a wide range of temperatures. Although the activation energies for the thermal repopulation of the proflavin excited singlet state from the triplet obtained from the slopes of these plots were essentially unchanged on binding, perturbations to the S1----T1 intersystem crossing rate constants extracted from the intercepts at infinite temperature were observed. The marked enhancement of the intersystem crossing that occurs with binding to the iodinated polynucleotide reflects an external heavy atom perturbation upon the intercalated dye which also induces a shortening in the triplet lifetime. With proflavin bound to DNA an enhancement to the S1----T1 intersystem crossing, though lesser in magnitude than for poly d(A-IU), is observed but with no change to the triplet lifetime. The well-studied fluorescence quenching of DNA-bound proflavin is a result of this increase in the intersystem crossing. It is proposed that these non-heavy atom enhancements in the intersystem crossing are due to distortions of the molecular plane of the bound proflavin molecule. In total these analyses provide a complete description of the excited state processes of the proflavin molecule and their variations with temperature. PMID:3224148

  11. Acquiring impedance spectra from diode-coupled primary batteries to determine health and state of charge

    NASA Astrophysics Data System (ADS)

    Christophersen, Jon P.; Morrison, John L.; Morrison, William H.

    The U.S. Army uses BA5590 Lithium Sulfur Dioxide primary batteries for portable electronic systems. There remains a need, however, for technology that can rapidly assess these batteries and estimate their remaining state of health after being used without degrading them to determine if there is remaining useful life for additional missions. This allows the full range of charge to be consumed before the battery is recycled or disposed. Impedance spectroscopy measurements have been shown to be a useful diagnostic tool, but standard methods cannot be applied to the BA5590 batteries because of the up-front electronics. The BA5590 module is diode-coupled and a charge-neutral excitation signal would be half-wave rectified and completely corrupt the results. However, a rapid impedance spectrum measurement technique has been developed that can be used for the BA5590s based on the addition of a small discharge bias load super-imposed on the sinusoidal excitation signal. The feasibility of this approach was initially simulated and then successfully applied to cell strings on four fresh BA5590 modules. The results clearly showed consistent and repeatable impedance spectra with no significant impact on the SOC as a result of the measurement. Details of this measurement technique and discussion of the preliminary results are presented.

  12. Exchange Interaction Makes Superconductivity in 3D Dirac Semi-metal Triplet

    NASA Astrophysics Data System (ADS)

    Rosenstein, B.; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.

    2015-04-01

    Conventional electron-phonon coupling induces either odd (triplet) or even (singlet) pairing states in a time reversal and inversion invariant Dirac semi-metal. In a certain range of the chemical potential and parameters characterizing the pairing attraction (effective electron-electron coupling constant and the Debye energy ) the energy of the singlet although always lower, prevails by a very slim margin over the triplet. This means that interactions that are small but discriminate between the spin singlet and the spin triplet determine the nature of the superconducting order there. It is shown that in materials close enough to the Dirac point ( ) a moderate exchange constant (below Stoner instability to ferromagnetism) stabilizes the odd pairing superconducting state. The 3D quantum critical point at of transition to the triplet superconductivity governs the physics of the superconductor.

  13. A designed room-temperature triplet ligand from pyridine-2,6-diyl bis(tert-butyl nitroxide).

    PubMed

    Kawakami, Hinako; Tonegawa, Asato; Ishida, Takayuki

    2016-01-28

    The magnetic study on newly developed 4-mesitylpyridine-2,6-diyl bis(tert-butyl nitroxide) shows that almost the whole population has a ground triplet state at room temperature, and the ability of complex formation as a tridentate triplet ligand was proven with a diamagnetic yttrium(iii) ion. PMID:26615801

  14. Electronic spectra and excited states of neptunyl and its [NpO2Cl4]2- complex.

    PubMed

    Su, Jing; Schwarz, W H E; Li, Jun

    2012-03-01

    Electronic states and spectra of NpO(2)(2+) and NpO(2)Cl(4)(2-) with a Np 5f(1) ground-state configuration, related to low-lying 5f-5f and ligand-to-metal charge-transfer (CT) transitions, are investigated, using restricted-active-space perturbation theory (RASPT2) with spin-orbit coupling. Restrictions on the antibonding orbital occupations have little influence on the 5f-5f transition energies, but an important impact on the CT states with an open bonding orbital shell. The present calculations provide significant improvement over previous literature results. The assignment of the experimental electronic spectra of Cs(2)NpO(2)Cl(4) is refined, based on our calculations of NpO(2)Cl(4)(2-). Assignments on the basis of bare NpO(2)(2+) are less reliable, since the equatorial Cl ligands perturb the excited-state energies considerably. Calculated changes of the Np-O bond lengths are in agreement with the observed short symmetric-stretching progressions in the f-f spectra and longer progressions in the CT spectra of neptunyl. A possible luminescence spectrum of the lowest quartet CT state is predicted. PMID:22360407

  15. Higgs triplets and limits from precision measurements

    SciTech Connect

    Chen, Mu-Chun; Dawson, Sally; Krupovnickas, Tadas; /Brookhaven

    2006-04-01

    In this letter, they present the results on a global fit to precision electroweak data in a Higgs triplet model. In models with a triplet Higgs boson, a consistent renormalization scheme differs from that of the Standard Model and the global fit shows that a light Higgs boson with mass of 100-200 GeV is preferred. Triplet Higgs bosons arise in many extensions of the Standard Model, including the left-right model and the Little Higgs models. The result demonstrates the importance of the scalar loops when there is a large mass splitting between the heavy scalars. It also indicates the significance of the global fit.

  16. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  17. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  18. Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters.

    PubMed

    Kremer, Adrian; Aurisicchio, Claudia; De Leo, Federica; Ventura, Barbara; Wouters, Johan; Armaroli, Nicola; Barbieri, Andrea; Bonifazi, Davide

    2015-10-19

    The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters. PMID:26471446

  19. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    SciTech Connect

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  20. Large isotropic exchange interactions from E.P.R. on doublet-triplet organometallic molecular pairs in diamagnetic host-lattices

    NASA Astrophysics Data System (ADS)

    Hulliger, Jürg

    In order to study exchange interactions between representative paramagnetic metal-π-complexes of the ferrocene type, bis-(benzene)-vanadium(S = 1/2) - nickelocene(S = 1) and cyclopentadienyl-cycloheptatrienyl-vanadium(S = 1/2) - nickelocene(S = 1) doublet-triplet pairs in a diamagnetic ruthenocene lattice have been investigated by low temperature X-band E.P.R. Single crystal and powder spectra of bi-doped ruthenocene (˜1 per cent S = 1/2 and ˜4-12 per cent S = 1) samples clearly revealed the existence of several different ferro- or antiferromagnetically coupled molecules in neighbouring lattice sites (called 'pairs'), and from these experiments surprisingly large isotropic exchange constants J in the range of -4·7 to 7·9 cm-1 (ℌex = JSD · ST) could be determined. Thereby a large axial zero-field splitting of 33·6 cm-1 on nickelocene triplet allowed a pair ground state description in terms of an effective spin hamiltonian with S' = 1/2, I' = 7/2. Due to a strong dependence of the new effective g- and A-tensors on J, (S = 1/2) - nickelocene doublet-triplet molecular pairs have turned out to be unique systems to measure exchange interactions with E.P.R.

  1. Boron Subphthalocyanines as Triplet Harvesting Materials within Organic Photovoltaics.

    PubMed

    Castrucci, Jeffrey S; Josey, David S; Thibau, Emmanuel; Lu, Zheng-Hong; Bender, Timothy P

    2015-08-01

    Singlet fission, the generation of two excited triplet states from a single absorbed photon, is currently an area of significant interest to photovoltaic researchers. In this Letter, we outline how a polychlorinated boron subphthalocyanine, previously hypothesized to be an effective harvester of singlet fission derived triplets from pentacene, is relatively efficient at facilitating the process. As expected, we found a major increase in photocurrent generation at the expense of device voltage. For a direct point of comparison, we also have paired the same polychlorinated boron subphthalocyanine with α-sexithiophene to probe the alternative technique of complementary absorption engineering. The sum of these efforts have let us present new guidelines for the molecular design of boron subphthalocyanine for organic photovoltaic applications. PMID:26267212

  2. Charge separation in triplet C[sub 60]/TMPD exciplexes

    SciTech Connect

    Grzeskowiak, K.N.; Smirnov, S.N.; Braun, C.L. )

    1994-06-02

    A transient dc photoconductivity technique was used to demonstrate the formation of dipolar exciplexes of the triplet C[sub 60] state with N,N,N[prime],N[prime]-tetramethyl-1,4-phenylendiamine (TMPD) in toluene. The dipole moment of the [sup 3]C[sub 60]/TMPD exciplex was measured to be 35 [+-] 4D. Unit charges separated by 7.1 [angstrom] the center-to-center distance estimated for C[sub 60] in van der Waals contact with TMPD, correspond to a dipole moment of 34D. This implies that the triplet exciplex has essentially complete charge transfer. The lifetime of the exciplex was determined to be 7 [+-] 2 ns. 24 refs., 3 figs.

  3. Control of triplet supercurrent in superconductor/ferromagnet hybrid systems

    NASA Astrophysics Data System (ADS)

    Martinez, William; Pratt, W. P., Jr.; Birge, Norman O.

    2015-03-01

    A lot of excitement has been generated in superconductor/ferromagnet (S/F) systems since long-range spin-triplet correlations (LRTCs) were predicted. Despite the many breakthroughs so far in this field, the ability to control the triplet generation reliably still needs to be realized before these devices can be used in technological applications. One possible direction to control the state in such structures is to manipulate the magnetizations of the various F layers within, specifically to switch between colinear and non-colinear directions between the layers. In this work, we report on the progress made to control LRTC generation in such a way. Supported by the DOE-BES under grant DE-FG-02-06ER46341.

  4. DNA Triplet Repeat Expansion and Mismatch Repair

    PubMed Central

    Iyer, Ravi R.; Pluciennik, Anna; Napierala, Marek; Wells, Robert D.

    2016-01-01

    DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway. PMID:25580529

  5. TRIO (Triplet Ionospheric Observatory) Mission

    NASA Astrophysics Data System (ADS)

    Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.

    2009-12-01

    Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  6. Identification of transitions into Rydberg states in the X-ray absorption spectra of condensed long-chain alkanes

    NASA Astrophysics Data System (ADS)

    Bagus, P. S.; Weiss, K.; Schertel, A.; Wöll, Ch.; Braun, W.; Hellwig, C.; Jung, C.

    1996-01-01

    A detailed theoretical analysis of the high-resolution X-ray absorption spectra of condensed long-chain alkane molecules (hexatriacontane, C 36H 74 and heptatriacontane, C 37H 76) suggests that the resonance at 287.7 eV, which is the dominating feature in the near-edge X-ray absorption spectra of saturated long-chain hydrocarbons, is due to transitions into Rydberg states. These findings, which are at variance with the previous interpretation, are corroborated by the identification of a previously unresolved resonance at 288.2 eV in the high-resolution X-ray absorption spectra and of the observation of a strong quenching of the X-ray absorption resonances upon physisorption on a Cu(111)-metal surface.

  7. Infrared and Raman spectra and theoretical calculations for benzocyclobutane in its electronic ground state

    NASA Astrophysics Data System (ADS)

    Ocola, Esther J.; Shin, Hee Won; Laane, Jaan

    2015-02-01

    The infrared and Raman spectra of vapor-phase and liquid-phase benzocyclobutane (BCB) have been recorded and assigned. The structure of the molecule was calculated using the MP2/cc-pVTZ basis set and the vibrational frequencies and spectral intensities were calculated using the B3LYP/cc-pVTZ level of theory. The agreement between experimental and calculated spectra is excellent. In order to allow comparisons with related molecules, ab initio and DFT calculations were also carried out for indan (IND), tetralin (TET), 1,4-benzodioxan (14BZD), 1,3-benzodioxan (13BZD) and 1,4-dihydronaphthalene (14DHN). The ring-puckering, ring-twisting, and ring-flapping vibrations were of particular interest as these reflect the rigidity of the bicyclic ring system. The infrared spectra of BCB show very nice examples of vapor-phase band types and combination bands.

  8. Infrared and Raman spectra and theoretical calculations for benzocyclobutane in its electronic ground state.

    PubMed

    Ocola, Esther J; Shin, Hee Won; Laane, Jaan

    2015-02-01

    The infrared and Raman spectra of vapor-phase and liquid-phase benzocyclobutane (BCB) have been recorded and assigned. The structure of the molecule was calculated using the MP2/cc-pVTZ basis set and the vibrational frequencies and spectral intensities were calculated using the B3LYP/cc-pVTZ level of theory. The agreement between experimental and calculated spectra is excellent. In order to allow comparisons with related molecules, ab initio and DFT calculations were also carried out for indan (IND), tetralin (TET), 1,4-benzodioxan (14BZD), 1,3-benzodioxan (13BZD) and 1,4-dihydronaphthalene (14DHN). The ring-puckering, ring-twisting, and ring-flapping vibrations were of particular interest as these reflect the rigidity of the bicyclic ring system. The infrared spectra of BCB show very nice examples of vapor-phase band types and combination bands. PMID:24507997

  9. Semiconductivity, optical properties, and EPR spectra of phenothiazine derivatives in the solid state

    NASA Astrophysics Data System (ADS)

    Ortiz, A.; Fernández-Alonso, J. I.; Pardo, A.; Llabrés, J.

    1980-07-01

    The optical, EPR, and electrical properties of phenothiazine derivatives have been investigated as a function of R2 substituents. Diffuse reflectance spectra show a charge transfer complex transition between 600 and 1100 nm. The EPR spectra show the existence of the radical cation with an unpaired electron per molecule; also there can be seen a dependence of the bandwidth on the R2 substituents. Measurements of electrical conductivity show a semiconductor behavior in the studied temperature range; the values show as well a dependence of conductivity on R2. The estimation of the drift mobility of charge carriers seems to indicate a hopping mechanism for the charge conduction.

  10. Entanglement and Metrology with Singlet-Triplet Qubits

    NASA Astrophysics Data System (ADS)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the nuclear magnetic field control, as well as new techniques for calibrated measurement of the density matrix in a singlet-triplet qubit to entangle two adjacent single-triplet qubits. We fully characterize the generated entangled states and prove that they are, indeed, entangled. This work opens new opportunities to use qubits as sensors for improved metrological capabilities, as well as for improved quantum information processing. The singlet-triplet qubit is unique in that it can be used to probe two fundamentally different noise baths, which are important for a large variety of solid state qubits. More specifically, this work establishes the singlet-triplet qubit as a viable candidate for the building block of a scalable quantum information processor.

  11. Theoretical Studies of Singlet and Triplet Formation in Polymer LEDs.

    NASA Astrophysics Data System (ADS)

    Mazumdar, Sumit

    2002-03-01

    Spin statistics for electron-hole recombination in polymer LEDs suggest that the singlet excited state is formed with a probability of only 0.25. Recent experiments by several groups, however, indicate, that the probability of formation of the singlet is considerably larger than this. We present a comprehensive theory of the formation cross-sections of the singlet and triplet excitons in conjugated polymers. Within our model, electron correlations influence the relative yields of the singlet and triplet excitons in a profound manner. We have carried out the dynamics of the electron-hole recombination in pair of simple conjugated organic molecules, both with noninteracting electrons and within the Pariser-Parr-Pople model with interacting electrons. The formation cross-section for the singlet exciton is considerably larger than the triplet for the correlated electron case. Numerical results as well as simple physical interpretations of theoretical and experimental results will be presented. This work was supported in part by NSF DMR-0101659 and CSIR, India.

  12. The Pure Rotational Spectra of ZnO in the Excited a^{3}Π_i State

    NASA Astrophysics Data System (ADS)

    Zack, L. N.; Pulliam, R. L.; Ziurys, L. M.

    2009-06-01

    The pure rotational spectra of ZnO in the excited a^{3}Π_i electronic state have been measured using direct absorption sub-millimeter techniques. This molecule was synthesized by reacting zinc vapor with N_2O in the presence of a DC discharge. Nine rotational transitions were recorded for the ^{64}ZnO, ^{66}ZnO, and ^{68}ZnO isotopomers in the v=0 state and data for the main isotopomer was measured in the v=1 state. All three spin components were observed for this state, each exhibiting lambda-doubling. The data were fit with a Hund case(a) Hamiltonian and rotational, spin-orbit, spin-spin, and lambda-doubling constants established. A bond length of 1.8436 Å was determined for this excited state, which is about 0.14 Å larger than that of the ground state.

  13. Scalar triplet flavored leptogenesis: a systematic approach

    SciTech Connect

    Sierra, D. Aristizabal; Dhen, Mikaël; Hambye, Thomas E-mail: mikadhen@ulb.ac.be

    2014-08-01

    Type-II seesaw is a simple scenario in which Majorana neutrino masses are generated by the exchange of a heavy scalar electroweak triplet. When endowed with additional heavy fields, such as right-handed neutrinos or extra triplets, it also provides a compelling framework for baryogenesis via leptogenesis. We derive in this context the full network of Boltzmann equations for studying leptogenesis in the flavored regime. To this end we determine the relations which hold among the chemical potentials of the various particle species in the thermal bath. This takes into account the standard model Yukawa interactions of both leptons and quarks as well as sphaleron processes which, depending on the temperature, may be classified as faster or slower than the Universe Hubble expansion. We find that when leptogenesis is enabled by the presence of an extra triplet, lepton flavor effects allow the production of the B-L asymmetry through lepton number conserving CP asymmetries. This scenario becomes dominant as soon as the triplets couple more to leptons than to standard model scalar doublets. In this case, the way the B-L asymmetry is created through flavor effects is novel: instead of invoking the effect of L-violating inverse decays faster than the Hubble rate, it involves the effect of L-violating decays slower than the Hubble rate. We also analyze the more general situation where lepton number violating CP asymmetries are present and actively participate in the generation of the B-L asymmetry, pointing out that as long as L-violating triplet decays are still in thermal equilibrium when the triplet gauge scattering processes decouple, flavor effects can be striking, allowing to avoid all washout suppression effects from seesaw interactions. In this case the amount of B-L asymmetry produced is limited only by a universal gauge suppression effect, which nevertheless goes away for large triplet decay rates.

  14. Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas

    NASA Technical Reports Server (NTRS)

    Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.

    1991-01-01

    The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.

  15. Triplet lifetime and delayed fluorescence of azulene

    NASA Astrophysics Data System (ADS)

    Kray, Hans-Joachim; Nickel, Bernhard

    1980-11-01

    With solutions of azulene (Az) and fluoranthene (Fl) in isopentane a delayed fluorescence (DF) S 2(Az) → S 0(Az), resulting from hetero-triplet—triplet annihilation T 1(Az) + T 1(Fl) → S 2(Az) + S 0(Fl), can be observed. From the time-dependence of this DF after laser flash excitation the triplet lifetime of azulene can be calculated. The triplet lifetime has been determined in the temperature range from 131 K to 201 K. The temperature-dependence of the triplet lifetime is explained by thermally activated intersystem crossing (ISC) T 1 ⇝ S 1, followed by internal conversion S 1 ⇝ S 0; the corresponding activation energy approximately equals the difference of the excitation energies of S 1 and T 1. The extrapolated low-temperature value of the triplet lifetime (48 ± 2) μs. The quantum efficiency of the ISC S 1 ⇝ T 1 is estimated to be of the order of magnitude of 4 × 10 -6, and for the quantum efficiency of the ISC S 2 ⇝ T 1 an upper bound of 0.04 is obtained. The experimental conditions for the observation of the phosphorescence T 1 ⇝ S 0 and the E-type DF S 1 → S 0 are discussed.

  16. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture. PMID:25273421

  17. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    SciTech Connect

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus; Odelius, Michael

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3−} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3−} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  18. Singlet-triplet annihilation in single LHCII complexes.

    PubMed

    Gruber, J Michael; Chmeliov, Jevgenij; Krger, Tjaart P J; Valkunas, Leonas; van Grondelle, Rienk

    2015-08-14

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (?7 ?s) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime. PMID:26156159

  19. Vibronic structure induced in spin-forbidden transitions in emission and absorption spectra by excited-state coupling

    SciTech Connect

    Wexler, D.; Zink, J.I.

    1992-10-29

    Spectroscopic effects of spin-orbit coupling of excited-state potential surfaces are calculated by using the numerical integration of the time-dependent Schroedinger equation and the time-dependent theory of electronic spectroscopy. Intensity borrowing by a spin-forbidden transition from a nearby spin-allowed transition is calculated in terms of amplitude transfer of the wave packet between states. The main emphasis of the calculations is to analyze the vibronic structure in emission and a absorption spectra arising from coupled surfaces. The coupling causes dramatic changes in both the relative intensities of the vibronic bands and the spacings between members of a progression. These changes are quantitatively calculated, and the theory is applied to the spectra of transition-metal complexes. The intensity and spacing between vibronic peaks in the absorption spectrum of K{sub 2}NiO{sub 2} are calculated and analyzed. A striking example of relative intensities in vibronic peaks in the absorption spectrum of K{sub 2}NiO{sub 2} are calculated and analyzed. A striking example of relative intensities in vibronic peaks induced by spin-orbit coupling is found in the emission spectra of d{sup 2} and d{sup 3} metal ions in octahedral environments where the lowest energy spin-forbidden transitions arise from a change in the spin state with no change in the orbital component. Short progressions in totally symmetric modes are frequently observed even though no changes in the orbital populations, bond properties, or force constants are expected. The vibronic structure in spectra of Ti{sup 2+}, V{sup 3+}, Cr{sup 3+}, and Mn{sup 4+} ions in octahedral halide lattices is analyzed. 32 refs., 8 figs., 1 tab.

  20. Excited state dipole moments of chloroanilines and chlorophenols from solvatochromic shifts in electronic absorption spectra: Support for the concept of excited state group moments

    NASA Astrophysics Data System (ADS)

    Prabhumirashi, L. S.; Satpute, R. S.

    The dipole moments of isomeric o-, m- and p-chloroanilines and chlorophenols in electronically excited L a and L b states are estimated from solvent induced polarization shifts in electronic absorption spectra. It is observed that ? e( L a) > ? e( L b) > ? g, which is consistent with the general theory of polarization red shift. The ? es are found to be approximately co-linear with the corresponding ? gs. The concept of group moments is extended to aromatic molecules in excited states. This approach is found to be useful in understanding correlations among the excited states of mono- and disubstituted benzenes.

  1. Triplet correlation functions in liquid water

    SciTech Connect

    Dhabal, Debdas; Chakravarty, Charusita; Singh, Murari; Wikfeldt, Kjartan Thor

    2014-11-07

    Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.

  2. Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Zhang, Chunfeng; Zhang, Bo; Liu, Yunlong; Wang, Xiaoyong; Xiao, Min

    2015-10-01

    Singlet fission can potentially break the Shockley-Queisser efficiency limit in single-junction solar cells by splitting one photoexcited singlet exciton (S1) into two triplets (2T1) in organic semiconductors. A dark multiexciton state has been proposed as the intermediate connecting S1 to 2T1. However, the exact nature of this multiexciton state, especially how the doubly excited triplets interact, remains elusive. Here we report a quantitative study on the magnetic dipolar interaction between singlet-fission-induced correlated triplets in tetracene crystals by monitoring quantum beats relevant to the multiexciton sublevels at room temperature. The resonances of multiexciton sublevels approached by tuning an external magnetic field are observed to be avoided, which agrees well with the theoretical predictions considering a magnetic dipolar interaction of ~0.008 GHz. Our work quantifies the magnetic dipolar interaction in certain organic materials and marks an important step towards understanding the underlying physics of the multiexciton state in singlet fission.

  3. Solid state photochemistry of polycarbonates

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Rembaum, A.; Moacanin, J.

    1978-01-01

    The quantum yield of photoFries rearrangement in a polycarbonate film has been analyzed as a function of temperature and humidity on the basis of previously reported (Koyler and Mann, 1977) experimental data. Results indicate that in the homogeneous amorphous phase, photoFries rearrangement is a concerted process proceeding either from the pi star reversed arrow n singlet, in which case it must be subject to considerable self quenching, or from a triplet, presumably the first triplet since the lifetime of higher triplets is expected to be very short in the solid phase. If the parent excited state is the first triplet, chain scission is possibly an independent process, probably occurring from the pi star reversed arrow n singlet. Evidence of chain scission on photodegradation in the solid state includes loss of C-O and C-C bond intensities revealed in the Fourier transform infrared spectra, gel permeation chromotography elution profiles of degraded film samples dissolved in CHCl3, and a decrease in tensile strength and T sub g as photodegradation proceeds. Chain scission is apparently inhibited as photoFries products accumulate.

  4. Ultrabright fluorescent OLEDS using triplet sinks

    DOEpatents

    Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

    2013-06-04

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

  5. Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes.

    PubMed

    Jiang, Xinpeng; Peng, Jiang; Wang, Jianchun; Guo, Xinyan; Zhao, Dahui; Ma, Yuguo

    2016-02-17

    The photophysics of a series of bichromophoric molecules featuring an intramolecular triplet energy transfer between a triscyclometalated iridium(III) complex and covalently linked organic group are studied. By systematically varying the energy gap (0.1-0.3 eV) between the donor (metal complex) and acceptor (pyrene unit), reversible triplet energy transfer processes with equilibrium constant K ranging from ca. 500 to 40 000 are established. Unique photophysical consequences of such large K values are observed. Because of the highly imbalanced forward and backward energy transfer rates, triplet excitons dominantly populate the acceptor moiety in the steady state, giving rise to ultralong luminescence lifetimes up to 1-4 ms. Because the triscyclometalated Ir and triplet pyrene groups both impart relatively small nonradiative energy loss, decent phosphorescence quantum yields (Φ = 0.1-0.6) are attained in spite of the exceptionally prolonged excited states. By virtue of such precious combination of long-lived triplet state and high Φ, these bichromophoric molecules can serve as highly sensitive luminescent sensors for detecting trace amount of O2 and as potent photosensitizers for producing singlet oxygen even under low-oxygen content conditions. PMID:26592255

  6. Triplet energies and excimer formation in meta- and para-linked carbazolebiphenyl matrix materials.

    PubMed

    Bagnich, Sergey A; Rudnick, Alexander; Schroegel, Pamela; Strohriegl, Peter; Köhler, Anna

    2015-06-28

    We present a spectroscopic investigation on the effect of changing the position where carbazole is attached to biphenyl in carbazolebiphenyl (CBP) on the triplet state energies and the propensity to excimer formation. For this, two CBP derivatives have been prepared with the carbazole moieties attached at the (para) 4- and 4(')-positions (pCBP) and at the (meta) 3- and 3(')-positions (mCBP) of the biphenyls. These compounds are compared to analogous mCDBP and pCDBP, i.e. two highly twisted carbazoledimethylbiphenyls, which have a high triplet energy at about 3.0 eV and tend to form triplet excimers in a neat film. This torsion in the structure is associated with localization of the excited state onto the carbazole moieties. We find that in mCBP and pCBP, excimer formation is prevented by localization of the triplet excited state onto the central moiety. As conjugation can continue from the central biphenyls into the nitrogen of the carbazole in the para-connected pCBP, emission involves mainly the benzidine. By contrast, the meta-linkage in mCBP limits conjugation to the central biphenyl. The associated shorter conjugation length is the reason for the higher triplet energy of 2.8 eV in mCBP compared with the 2.65 eV in pCBP. PMID:25987578

  7. Adsorption of acridine on silver electrode: SERS spectra potential dependence as a probe of adsorbate state

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Dem'yanchuk, Evgeniya M.; Makarov, Artiom A.; Denisova, Anna S.

    2013-02-01

    This work investigates acridine adsorption on the silver electrode surface. The dependence of the acridine SERS spectra on the electrode potential proved to be quite different for azaheterocycle molecules, while the pH effect as expected. The changes in the acridine SERS spectrum caused by the double electric layer (DEL) rearrangement can be explained by sorption/desorption rather than the adsorbate molecule reorientation. The presence of chloride anions close to the silver surface is important not only for the SERS-active properties but for the formation of the stabilised surface complexes of the protonated acridine as well.

  8. The excited states of Sr +CO: photofragmentation spectra and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Farantos, S. C.; Filippou, E.; Stamatiadis, S.; Froudakis, G. E.; Mühlhäuser, M.; Peric, M.; Massaouti, M.; Sfounis, A.; Velegrakis, M.

    2003-09-01

    The first absorption band in the photofragmentation spectroscopy of Sr +CO, is recorded in the energy region between 15 600 and 16 200 cm -1. The spectrum is characterized by a sharp peak between two zones with broad peaks. In contrast to this, the second absorption band observed in the energy interval of 19 000-23 000 cm -1 shows a regular vibrational structure accompanied by a low intensity shoulder which covers the energy up to the dissociation. Electronic multi-reference configuration interaction calculations in the 2-D nuclear configuration space with the CO bond frozen provide a qualitative explanation of the spectra.

  9. Enhanced triplet-triplet annihilation in bicomponent organic systems by using a gap plasmon resonator.

    PubMed

    Park, Jun Kue; Lee, Gi Yong; Jung, Kinam; Ko, Doo-Hyun; Han, Il Ki; Ko, Hyungduk

    2015-08-14

    The triplet-triplet annihilation (TTA) efficiency in bicomponent organic systems is investigated by employing a gap plasmon resonator. In our structure, strong absorption peaks arising from coupling between localized surface plasmons and surface plasmon polaritons closely overlap the Q band of porphyrin, leading to higher triplet concentrations within the film. We find that at ultralow excitation intensities on the order of watts per square centimeter (W cm(-2)), TTA becomes predominant for the organic system on a gap plasmon resonator. A strong surface-enhanced Raman scattering intensity is observed in this substrate, verifying the near-field enhancement. PMID:26172422

  10. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kondakov, D. Y.; Pawlik, T. D.; Hatwar, T. K.; Spindler, J. P.

    2009-12-01

    We have demonstrated that the exemplary red fluorescent organic light-emitting diodes (OLEDs) gain as much as half of their electroluminescence from annihilation of triplet states generated by recombining charge carriers. The magnitude of triplet-triplet annihilation (TTA) contribution in combination with the remarkably high total efficiencies [>11% external quantum efficiency (EQE)] indicates that the absolute amount of electroluminescence attributable to TTA substantially exceeds the limit imposed by spin statistics, which was independently confirmed by studying magnetic field effects on delayed luminescence. We determined the value of 1.3 for the ratio of the rate constants of singlet and triplet channels of annihilation, which is indeed substantially higher than the value of 0.33 expected for a purely statistical annihilation process. It is, however, in an excellent quantitative agreement with the extent of the experimental contribution of delayed luminescence to steady-state electroluminescence. The nonstatistical branching ratio of the two annihilation channels is attributed to the favorable relationship between the energies of the excited singlet and triplet states of rubrene—emissive layer host. We surmise that, with the appropriate emissive layer materials, the fluorescent OLED devices are capable of using a considerably larger fraction of triplet states than was previously believed. In principle, the upper limit for the singlet excited state yield in the TTA process is 0.5, which makes the maximum internal quantum efficiency of fluorescent OLEDs to be 25%+0.5×75%=62.5%. The estimates of maximum EQE of the fluorescent OLEDs should be revised to at least 0.2×62.5%=12.5% and, likely, even higher to account for optical outcoupling exceeding 0.2.

  11. Calcium triplet metallicity calibration for stars in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Vásquez, S.; Zoccali, M.; Hill, V.; Gonzalez, O. A.; Saviane, I.; Rejkuba, M.; Battaglia, G.

    2015-08-01

    Aims: We present a new calibration of the calcium II triplet equivalent widths versus [Fe/H], constructed upon K giant stars in the Galactic bulge. This calibration will be used to derive iron abundances for the targets of the GIBS survey, and is in general especially well suited for solar and supersolar metallicity giants, which are typical of external massive galaxies. Methods: About 150 bulge K giants were observed with the GIRAFFE spectrograph at the VLT with a resolution of R ~ 20 000 and at R ~ 6000. In the first case, the spectra allowed us to directly determine the Fe abundances from several unblended Fe lines, deriving what we call here high-resolution [Fe/H] measurements. The low-resolution spectra allowed us to measure equivalent widths of the two strongest lines of the near-infrared calcium II triplet at 8542 and 8662 Å. Results: By comparing the two measurements, we derived a relation between calcium equivalent widths and [Fe/H] that is linear over the metallicity range probed here, - 1 < [Fe/H] < +0.7. By adding a small second-order correction based on literature globular cluster data, we derived the unique calibration equation [Fe/H] CaT = -3.150 + 0.432W' + 0.006W'2, with an rms dispersion of 0.197 dex, valid across the whole metallicity range -2.3 < [Fe/H] < +0.7. Based on observations taken with ESO telescopes at the La Silla Paranal Observatory under programme ID 385.B-0735(B).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A121

  12. One Interesting Family of Diophantine Triplets

    ERIC Educational Resources Information Center

    Deshpande, M. N.

    2002-01-01

    In this note properties of two sequences generated by the recurrence relation G[subscript n] +2 = 4 G[subscript n] +1 - G[subscript n], are studied. It is shown that one of the sequences leads to a family of diophantine triplets. Some interesting properties of these sequences are also established.

  13. Improving Fingerprint Verification Using Minutiae Triplets

    PubMed Central

    Medina-Pérez, Miguel Angel; García-Borroto, Milton; Gutierrez-Rodríguez, Andres Eduardo; Altamirano-Robles, Leopoldo

    2012-01-01

    Improving fingerprint matching algorithms is an active and important research area in fingerprint recognition. Algorithms based on minutia triplets, an important matcher family, present some drawbacks that impact their accuracy, such as dependency to the order of minutiae in the feature, insensitivity to the reflection of minutiae triplets, and insensitivity to the directions of the minutiae relative to the sides of the triangle. To alleviate these drawbacks, we introduce in this paper a novel fingerprint matching algorithm, named M3gl. This algorithm contains three components: a new feature representation containing clockwise-arranged minutiae without a central minutia, a new similarity measure that shifts the triplets to find the best minutiae correspondence, and a global matching procedure that selects the alignment by maximizing the amount of global matching minutiae. To make M3gl faster, it includes some optimizations to discard non-matching minutia triplets without comparing the whole representation. In comparison with six verification algorithms, M3gl achieves the highest accuracy in the lowest matching time, using FVC2002 and FVC2004 databases. PMID:22737016

  14. MEASUREMENTS OF MECHANICAL TRIPLET VIBRATIONS IN RHIC.

    SciTech Connect

    MONTAG,C.; BRENNAN,M.; BUTLER,J.; BONATI,R.; KOELLO,P.

    2002-06-02

    Mechanical vibrations of the RHIC interaction region triplets has been identified as the dominant source of orbit jitter for frequencies up to 20 Hz. We report the results of detailed measurements that were performed to characterize these effects. We discuss the impact on beam dynamics and possible cures.

  15. Synthesis of triplet-triplet annihilation upconversion nanocapsules under protective conditions.

    PubMed

    Katta, Kartheek; Busko, Dmitry; Avlasevich, Yuri; Muñoz-Espí, Rafael; Baluschev, Stanislav; Landfester, Katharina

    2015-06-01

    Triplet-triplet annihilation upconversion (TTA-UC) nanocapsules are synthesized under oxygen-protective conditions (i.e., complete darkness and argon atmosphere) by free-radical miniemulsion polymerization. These conditions help to exclude the oxidation of the emitter molecules caused by singlet oxygen, generated during the synthesis at daylight conditions and oxygen-rich environment. Subsequently, keeping all the other experimental conditions the same, samples synthesized at protective conditions demonstrate substantially increased UC efficiency. These experimental facts strongly support the hypothesis that posterior removing of oxygen from TTA-UC nanocapsules is not sufficient to obtain reproducible and sustainable UC results. The schematic representation shows the influence of sunlight on the formation of singlet oxygen and its effect on the triplet-triplet annihilation upconversion process. PMID:25630569

  16. Observation of mixed singlet-triplet Rb2 Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Böttcher, F.; Gaj, A.; Westphal, K. M.; Schlagmüller, M.; Kleinbach, K. S.; Löw, R.; Liebisch, T. Cubel; Pfau, T.; Hofferberth, S.

    2016-03-01

    We present high-resolution spectroscopy of Rb2 ultralong-range Rydberg molecules bound by mixed singlet-triplet electron-neutral atom scattering. The mixing of the scattering channels is a consequence of the hyperfine interaction in the ground-state atom, as predicted recently by Anderson et al. [Phys. Rev. A 90, 062518 (2014), 10.1103/PhysRevA.90.062518]. Our experimental data enable the determination of the effective zero-energy singlet s -wave scattering length for Rb. We show that an external magnetic field can tune the contributions of the singlet and the triplet scattering channels and therefore the binding energies of the observed molecules. This mixing of molecular states via the magnetic field results in observed shifts of the molecular line which differ from the Zeeman shift of the asymptotic atomic states. Finally, we calculate molecular potentials using a full diagonalization approach including the p -wave contribution and all orders in the relative momentum k , and compare the obtained molecular binding energies to the experimental data.

  17. Quenching excited triplet C{sub 60} fullerene by tetracyanoethylene in benzonitrile

    SciTech Connect

    Nadtochenko, V.A.; Denisov, N.N.; Rubtsov, I.V.; Lobach, A.S.; Moravsky, A.P.

    1994-01-01

    The main photophysical properties of C{sub 60} fullerene: The absorption spectra of excited singlet C{sub 60}, the inter-combinational conversion time, the quantum yield of triplet C{sub 60}, the triplet-triplet absorption spectra, and the channels and rate constants of the deactivation of triplet C{sub 60} have been established. The photochemical properties of C{sub 60} fullerene have been investigated to a lesser degree. C{sub 60} is known to be readily reduced (E{sub 1/2} = {minus}0.4 in relation to Ag/Ag{sup +}), in particular, photochemically. For example, photoexcitation of charge-transfer complexes of C{sub 60} with amines gives the radical anion C{sup {minus}}{sub 60} which is also formed in reactions of photoexcited C{sub 60} fullerene. The formation of the radical cation C{sup +}{sub 60} under the action of light has been detected in the reaction with colloidal TiO{sub 2}. The radical ion C{sup +}{sub 60} has been obtained in a homogeneous photochemical process: the reaction of unexcited C{sub 60} with excited singlet N-methylacridinium hexafluorophosphate or with the biphenyl radical cation generated in the reaction with excited singlet N-methylacridinium hexafluorophosphate. The formation of C{sup +}{sub 60} with an electron acceptor in a homogeneous process has not so far been observed. The purpose of this work has been to study the quenching of triplet {sup 3}C{sub 60} with an electron acceptor, tetracyanoethylene (TCNE), which is known to oxidize unsaturated or aromatic hydrocarbons in photochemical reactions.

  18. The influence of the beam charge state on the analytical calculation of RBS and ERDA spectra

    NASA Astrophysics Data System (ADS)

    Barradas, Nuno P.; Kosmata, Marcel; Hanf, Daniel; Munnik, Frans

    2016-03-01

    Analytical codes dedicated to the analysis of Ion Beam Analysis data rely on the accuracy of both the calculations and of basic data such as scattering cross sections and stopping powers. So far, the effect of the beam charge state of the incoming beam has been disregard by general purpose analytical codes such as NDF. In fact, the codes implicitly assume that the beam always has the equilibrium charge state distribution, by using tabulated stopping power values e.g. from SRIM, which are in principle valid for the effective charge state. The dependence of the stopping power with the changing charge state distribution is ignored. This assumption is reasonable in most cases, but for high resolution studies the actual change of the charge state distribution from the initial beam charge state towards equilibrium as it enters and traverses the sample must be taken into account, as it influences the shape of the observed data. In this work, we present an analytical calculation, implemented in NDF, that takes this effect into account. For elastic recoil detection analysis (ERDA), the changing charge state distribution of the recoils can also be taken into account. We apply the calculation to the analysis of experimental high depth resolution ERDA data for various oxide layers collected using a magnetic spectrometer.

  19. EMITTING ELECTRONS SPECTRA AND ACCELERATION PROCESSES IN THE JET OF Mrk 421: FROM THE LOW STATE TO THE GIANT FLARE STATE

    SciTech Connect

    Yan Dahai; Zhang Li; Fan Zhonghui; Zeng Houdun; Yuan Qiang

    2013-03-10

    We investigate the electron energy distributions (EEDs) and the acceleration processes in the jet of Mrk 421 through fitting the spectral energy distributions (SEDs) in different active states in the frame of a one-zone synchrotron self-Compton model. After assuming two possible EEDs formed in different acceleration models: the shock-accelerated power law with exponential cut-off (PLC) EED and the stochastic-turbulence-accelerated log-parabolic (LP) EED, we fit the observed SEDs of Mrk 421 in both low and giant flare states using the Markov Chain Monte Carlo method which constrains the model parameters in a more efficient way. The results from our calculations indicate that (1) the PLC and LP models give comparably good fits for the SED in the low state, but the variations of model parameters from low state to flaring can be reasonably explained only in the case of the PLC in the low state; and (2) the LP model gives better fits compared to the PLC model for the SED in the flare state, and the intra-day/night variability observed at GeV-TeV bands can be accommodated only in the LP model. The giant flare may be attributed to the stochastic turbulence re-acceleration of the shock-accelerated electrons in the low state. Therefore, we may conclude that shock acceleration is dominant in the low state, while stochastic turbulence acceleration is dominant in the flare state. Moreover, our result shows that the extrapolated TeV spectra from the best-fit SEDs from optical through GeV with the two EEDs are different. It should be considered with caution when such extrapolated TeV spectra are used to constrain extragalactic background light models.

  20. Enhanced triplet-triplet annihilation in bicomponent organic systems by using a gap plasmon resonator

    NASA Astrophysics Data System (ADS)

    Park, Jun Kue; Lee, Gi Yong; Jung, Kinam; Ko, Doo-Hyun; Han, Il Ki; Ko, Hyungduk

    2015-07-01

    The triplet-triplet annihilation (TTA) efficiency in bicomponent organic systems is investigated by employing a gap plasmon resonator. In our structure, strong absorption peaks arising from coupling between localized surface plasmons and surface plasmon polaritons closely overlap the Q band of porphyrin, leading to higher triplet concentrations within the film. We find that at ultralow excitation intensities on the order of watts per square centimeter (W cm-2), TTA becomes predominant for the organic system on a gap plasmon resonator. A strong surface-enhanced Raman scattering intensity is observed in this substrate, verifying the near-field enhancement.The triplet-triplet annihilation (TTA) efficiency in bicomponent organic systems is investigated by employing a gap plasmon resonator. In our structure, strong absorption peaks arising from coupling between localized surface plasmons and surface plasmon polaritons closely overlap the Q band of porphyrin, leading to higher triplet concentrations within the film. We find that at ultralow excitation intensities on the order of watts per square centimeter (W cm-2), TTA becomes predominant for the organic system on a gap plasmon resonator. A strong surface-enhanced Raman scattering intensity is observed in this substrate, verifying the near-field enhancement. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02813b

  1. Electronic spectra and excited-state dynamics of 4-fluoro-N,N-dimethylaniline

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Reichardt, Christian; Aaron Vogt, R.; Crespo-Hernández, Carlos E.; Zgierski, Marek Z.; Lim, Edward C.

    2013-10-01

    Concerted ultrafast time-resolved spectroscopic experiments and ab initio computational (TDDFT) studies of the electronic transitions of 4-fluoro-N,N-dimethylaniline (FDMA) have been performed to investigate the mechanism of photo-induced intramolecular charge transfer (ICT). The compound FDMA shows dual fluorescence from a ππ∗ state and a closely-lying twisted intramolecular charge transfer (TICT) state in both n-hexane and acetonitrile. The very similar lifetimes observed for the two emission bands indicate that the ππ∗ and the TICT states are effectively in thermal equilibrium at room temperature.

  2. Unification without doublet triplet splitting

    NASA Astrophysics Data System (ADS)

    Kilian, W.; Reuter, J.

    2006-11-01

    Matter-Higgs unification in string-inspired supersymmetric grand unified theories predicts the existence of colored states in the Higgs multiplets and calls for two extra generations of Higgs-like fields ('unhiggses'). If these states are present near the TeV scale, gauge-coupling unification points to the existence of two distinct scales, 1015 GeV where right-handed neutrinos and a Pati-Salam symmetry appear, and 1018 GeV where complete unification is achieved. Baryon-number conservation, while not guaranteed, can naturally emerge from an underlying flavor symmetry. Collider signatures and dark-matter physics may be drastically different from the conventional MSSM.

  3. Composite spectra: XX. 45 Cancri. Two stars with very similar masses but quite different evolutionary states

    NASA Astrophysics Data System (ADS)

    Griffin, R. E. M.; Griffin, R. F.

    2015-02-01

    From accurate radial-velocity measurements covering 11 circuits of the orbit of the composite-spectrum binary 45 Cnc, together with high-resolution spectroscopy spanning nearly 3 circuits, we have (i) isolated cleanly the spectrum of the early-type secondary, (ii) classified the component spectra as G8 III and A3 III, (iii) derived the first double-lined orbit for the system and a mass ratio (M_1/M_2) of 1.035 0.01, and (iv) extracted physical parameters for the component stars, deriving the masses and (log) luminosities of the G star and A star as 3.11 and 3.00 M?} R?, and 2.34 and 2.28 L?, respectively, with corresponding uncertainties of 0.10 M? R? and 0.09 L?. Since the mass ratio is close to unity, we argue that the more evolved component is unlikely to have been a red giant long enough to have made multiple ascents of the RGB, an argument that is supported somewhat by the rather high eccentricity of the orbit (e = 0.46) and the evolutionary time-scales of the two components, but chiefly by the presence of significant Li I in the spectrum of the cool giant.

  4. EASY-GOING deconvolution: Combining accurate simulation and evolutionary algorithms for fast deconvolution of solid-state quadrupolar NMR spectra

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.

    2011-08-01

    A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.

  5. Hydrophobic-Radical Influence on the Structure and Vibrational Spectra of Zwitterionic Glycine and Alanine in the Condensed State

    NASA Astrophysics Data System (ADS)

    Ten, G. N.; Kadrov, D. M.; Baranov, V. I.

    2014-05-01

    The structure and vibrational spectra of zwitterionic glycine and alanine in aqueous solution and the solid state were calculated in the B3LYP/6-311++G(d,p) approximation. The environment infl uence was taken into account by two methods, i.e., the self-consistent reaction fi eld (SCRF) model and a clear accounting for the effects of hydrogenbonds (complexes with water molecules). The geometric, energetic, and spectral characteristics required to establish that a hydrophobic radical affected the ability of glycine and alanine to form H-bonds were determined. It was found by comparison with experiment that zwitterionic glycine and alanine in the condensed states had to be surrounded with three water molecules, one of which was situated between the N+H3 and COO- ions, in order to calculate their vibrational (IR and Raman) spectra. The formation energies of the alanine complexes with water were 56.47 kcal/ mol and 12.55 kcal/mol greater than those of glycine for formation of a complex with one water molecule situated between the ionized groups and with three water molecules, respectively.

  6. Singlet and triplet Bardeen-Cooper-Schrieffer pairs in a gas of two-species fermionic polar molecules

    SciTech Connect

    Shi, T.; Zhang, J.-N.; Sun, C.-P.; Yi, S.

    2010-09-15

    Taking into account the deformation of the Fermi surface, we investigate the spin-singlet and -triplet BCS pairings in a mixture of fermionic polar molecules with two different hyperfine states. In particular, we explore the relation between the critical temperatures and the Fock-exchange interaction. We also show that, by tuning short-range interaction between interspecies molecules, the singlet- and triplet-paired superfluids may coexist.

  7. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study.

    PubMed

    Arulmozhiraja, Sundaram; Coote, Michelle L; Hasegawa, Jun-ya

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning's cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n-π(∗) state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π(∗) and n-π(∗) states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm(-1) band in the S1←S0 transition when compared to that of the zero-point level of the S1 state. The present study, however, shows that all the four lowest lying excited states, (1)Lb π-π(∗), (1)La π-π(∗), n-π(∗), and π-σ(∗), cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm(-1) band in the S1←S0 transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S1 excited vibrational level. This multistate mixing, and especially the involvement of π-σ(∗) state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study. PMID:26627956

  8. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    NASA Astrophysics Data System (ADS)

    Arulmozhiraja, Sundaram; Coote, Michelle L.; Hasegawa, Jun-ya

    2015-11-01

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning's cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n-π∗ state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π∗ and n-π∗ states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm-1 band in the S1←S0 transition when compared to that of the zero-point level of the S1 state. The present study, however, shows that all the four lowest lying excited states, 1Lb π-π∗, 1La π-π∗, n-π∗, and π-σ∗, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm-1 band in the S1←S0 transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S1 excited vibrational level. This multistate mixing, and especially the involvement of π-σ∗ state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  9. Excitation spectra of unconventional FQHE states in the SLL from Light Scattering Experiments

    NASA Astrophysics Data System (ADS)

    Wurstbauer, Ursula; Levy, Antonio; Pinczuk, Aron; Watson, John; Gardner, Geoff; Manfra, Michael; West, Ken; Pfeiffer, Loren

    The fascinating interaction physics in the second Landau level (SLL) supports the emergence of exotic quantum phases and unconventional possibly FQHE states such as e.g. at ν = 5/2 and 2 +1/3 and the weaker state at ν = 2 +3/8 and 2 +2/5. We observe clear signatures for gapped collective excitations in inelastic light scattering experiments just for these `magic' filling factors and only for low temperatures substantiating access to the physics of the incompressible quantum fluids. The lowest excitation feature in the spectrum at 2 +1/3 occurs at around 70 μeV. The analysis of spectral lineshapes suggests magnetoroton features that are characteristic of 2D neutral excitations in a perpendicular magnetic field. The striking polarization dependence observable in light scattering experiments in the SLL are consistent with nematic FQHE states. Supported by award NSF-DMR-1306976.

  10. Coherent transient in dressed-state and transient spectra of Autler-Townes doublet

    SciTech Connect

    Zhang Lianshui; Feng Xiaomin; Fu Guangsheng; Li Xiaowei; Han Li; Manson, Neil B.; Wei Changjiang

    2004-12-01

    In this paper we present a theoretical study of the time-dependent probe response in the presence of a strong pump field in a three-level pump-probe configuration. Two situations are investigated: a cw pump with a pulsed probe field and a pulsed pump with a cw probe field. The results are explained as dressed-state nutation and nutation by dynamic Stark switching. Dressed-state quantum beats are also an important feature for both situations. Furthermore, when a 90 deg. phase shift after a {pi}/2 period is introduced in the pulsed probe field, there is a spin locking in the dressed-state transition. Our results give a satisfactory theoretical account of a previous experimental observation [Wei et al., Phys. Rev. Lett. 74, 1083 (1995)].

  11. A comparative study of triplet and radical-anion photoionization of propiophenone

    NASA Astrophysics Data System (ADS)

    Goez, Martin; Zubarev, Valentin

    2004-12-01

    The photoionization of propiophenone via two different routes was investigated by single-pulse and two-pulse laser-flash photolysis with observation of the hydrated electron and the respective photoionizable intermediate, the triplet or the radical anion. From the dependences of the absolute concentrations on the excitation intensity, kinetic constants and quantum yields were obtained. In the presence of a large surplus of a sacrificial electron donor (triethylamine or DABCO), the reaction is cyclic, with the radical anion of the ketone first formed by photoinduced electron transfer, and then ionized by another photon to regenerate the starting material, all within the same laser flash. The quantum yield of photoionization of the radical anion is 0.25 at 308 nm. In the absence of a donor, the ketone triplet is ionized. The intensity dependences indicate a more complex mechanism than a consecutive reaction and provide evidence for an additional photoreaction of the triplet, presumably regeneration of the starting material by reverse intersystem crossing via a chemical pathway. The quantum yield of photoionization of the triplet is 0.05 at 308 nm and 0.02 at 355 nm. As the electronic configurations of the autoionizing upper excited states are very similar, it is proposed that the lower quantum yield in the case of the triplet might be due to competing deactivation channels, which are not open to the upper excited radical anion.

  12. Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls.

    PubMed

    Miro, P; Marin, M L; Miranda, M A

    2016-02-24

    The aim of the present paper is to explore the potential of radical-mediated dehydrogenation of bile salts (BSs), which is reminiscent of the enzymatic action of hydroxysteroid dehydrogenase enzymes (HSDH). The concept has been demonstrated using triplet carbonyls that can be efficiently generated upon selective UVA-excitation. Hydrogen atom transfer (HAT) from BSs to triplet benzophenone (BP) derivatives gave rise to radicals, ultimately leading to reduction of the BP chromophore with concomitant formation of the oxo-analogs of the corresponding BSs. The direct reactivity of triplet BP with BSs in the initial step was evaluated by determining the kinetic rate constants using laser flash photolysis (LFP). The BP triplet decay was monitored (λmax = 520 nm) upon addition of increasing BS concentrations, and the obtained rate constant values indicated a reactivity of the methine hydrogen atoms in the order of C-3 < C-12 < C-7. The steady-state kinetics of the overall process, monitored through the disappearance of the typical BP absorption band at 260 nm, was much faster under N2 than under O2, also supporting the role of the oxygen-quenchable triplet in the dehydrogenation process. Furthermore, irradiation of deaerated aqueous solutions of sodium cholate in the presence of KPMe provided the oxo-analogs, 3[O],7[O]-CA, 3[O]-CA and 7[O]-CA, arising from the HAT process. PMID:26833240

  13. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    PubMed

    Das, Soumyajit; Wu, Jishan

    2015-12-01

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons. PMID:26569547

  14. Quantum Yield of Cyclobutane Pyrimidine Dimer Formation Via the Triplet Channel Determined by Photosensitization.

    PubMed

    Liu, Lizhe; Pilles, Bert M; Gontcharov, Julia; Bucher, Dominik B; Zinth, Wolfgang

    2016-01-21

    UV-induced formation of the cyclobutane pyrimidine dimer (CPD) lesion is investigated by stationary and time-resolved photosensitization experiments. The photosensitizer 2'-methoxyacetophenone with high intersystem crossing efficiency and large absorption cross-section in the UV-A range was used. A diffusion controlled reaction model is presented. Time-resolved experiments confirmed the validity of the reaction model and provided information on the dynamics of the triplet sensitization process. With a series of concentration dependent stationary illumination experiments, we determined the quantum efficiency for CPD formation from the triplet state of the thymine dinucleotide TpT to be 4 ± 0.2%. PMID:26700914

  15. Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes

    PubMed Central

    Chenu, Aurélia; Christensson, Niklas; Kauffmann, Harald F.; Mančal, Tomáš

    2013-01-01

    A vibronic-exciton model is applied to investigate the recently proposed mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom. We study a dimer system to elucidate the role of resonance coupling, site energies, vibrational frequency and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to identify regimes where this enhancement is significant. For a heterodimer representing two coupled bachteriochloropylls of the FMO complex, long-lived vibronic coherences are found to be generated only when the frequency of the mode is in the vicinity of the electronic energy difference. Although the vibronic-exciton coherences exhibit a larger initial amplitude compared to the ground-state vibrational coherences, we conclude that, due to the dephasing of the former, both type of coherences have a similar magnitude at longer population time. PMID:23778355

  16. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ∗ states

    NASA Astrophysics Data System (ADS)

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-01

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S1←S0 absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S1 origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ∗ character in the vicinity of the lowest valence ππ∗ state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ∗ and a nearby dissociative πσ∗ state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H2O)n clusters (n = 1-11), intensities of a number of πσ∗ states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical behavior.

  17. BVRI SURFACE PHOTOMETRY OF ISOLATED GALAXY TRIPLETS

    SciTech Connect

    Hernandez-Toledo, H. M.; Mendez-Hernandez, H.; Aceves, H.; OlguIn, L. E-mail: hmendez@astroscu.unam.mx E-mail: lorenzo@astro.uson.mx

    2011-03-15

    Optical broadband BVRI observations of 54 galaxies selected from the Catalog of Isolated Triplets of Galaxies in the Northern Hemisphere have been carried out at San Pedro Martir National Observatory to evaluate their photometric and morphological properties. We complement our analysis with Two-Micron All Sky Survey (2MASS) and Sloan Digital Sky Survey (SDSS) images and look for signatures likely related to interactions/mergers. We report apparent/absolute BVRI magnitudes and colors for the 54 galaxies. The membership of these galaxies is re-evaluated by imposing a reasonable condition of concordant redshifts upon the original selection criteria, rendering a final sample of 34 galaxies in 13 triplets, 12 galaxies in close pairs, and 8 galaxy outliers. The triplets are spiral-dominated systems in different dynamical stages from loosely interacting to almost merged objects. The incidence fraction of features likely associated with interactions is {approx}56%, similar to those found in northern and southern compact groups. The average fraction of bars is 35% with a mean value of maximum bar ellipticity {epsilon}{sub max} {approx} 0.4. Bars are hosted in the late-type triplet spirals, almost twice more than in early-type spirals. The global fraction of rings is 20%, all in the late-type components. The overdensity of triplets with respect to the background and their current dynamical status, as devised from our estimate of their dynamical parameters, namely the harmonic radius R{sub H} , velocity dispersion {sigma}, dimensionless crossing time H{sub 0{tau}c}, and virial mass M{sub V} , appear to be sufficient to favor galaxy transformations similar to those seen in dense groups and clusters. By contrast, the lower fraction of bonafide ellipticals and the relatively higher fraction of late-type spirals make these triplets essentially different from the Hickson Compact Groups and more representative of the field. A modest 1.6 enhancement factor in the optical luminosity of the late-type triplet components relative to an isolated galaxy control sample is also interpreted as consistent with interactions in physically bounded aggregates. Our results lead us to suggest that non-negligible populations of physical triplets might be found in complete and well-observed samples. We provide individual mosaics for the 54 galaxies containing (1) logarithmic-scaled R-band images, (2) R-band sharp/filtered images, (3) (B - I) color index maps, (4) RGB images from the SDSS database, (5) co-added J + H + K images generated from the 2MASS archives that were also sharp/filtered, and (6) {epsilon}, position angle radial profiles from a surface photometry analysis of (a) the R band and (b) the co-added near-infrared images, all used for the present analysis.

  18. Delayed interval delivery in a triplet gestation

    PubMed Central

    Wooldridge, Rachel J; Oliver, Emily A; Singh, Tulika

    2012-01-01

    A 27-year-old Ghanaian primigravida with a known triamniotic trichorionic triplet pregnancy presented at 17 weeks gestation following a miscarriage of one triplet at home. Examination and investigation revealed no signs of imminent delivery or infection. After careful counselling with regard to prognosis and options available for management, the couple opted for intervention including rescue cerclage. The patient received antibiotic prophylaxis for five days and daily progesterone suppositories until delivery. An ultrasound scan was performed every three weeks to monitor fetal growth and cervical length. At 24 weeks corticosteroids for fetal lung maturity were given. At 31 weeks gestation she experienced spontaneous rupture of membranes followed by active labour and forceps delivery. There were no maternal complications. Both babies were born in a good condition, but required ventilatory support for 72 h. PMID:23188854

  19. Singlets and triplets in hybrid nanodevices

    NASA Astrophysics Data System (ADS)

    Agranovich, V. M.; Dubovskii, O. A.; La Rocca, G. C.

    2014-05-01

    An organic material thin layer can be used to resonantly absorb light and nonradiatively transfer excitation to an adjacent inorganic quantum well the optical nonlinearities of which can in this way be turned on more efficiently than by direct optical pumping. We theoretically consider this process in a hybrid structure based on crystalline tetracene in which the singlet exciton energy is close to twice the one of a triplet exciton and thermally activated singlet exciton fission into two triplets can be efficient. We investigate how the temperature dependence of the singlet exciton diffusion length affects the functional properties of such hybrid organic-inorganic nanostructures based on tetracene. We show how temperature activated fission opens a new possibility to turn on and off the indirect pumping due to energy transfer from the organic into the inorganic subsystem.

  20. Hybrid triplet objective with optimum aberration correction

    NASA Astrophysics Data System (ADS)

    Zajac, Marek; Nowak, Jerzy

    2007-03-01

    This paper is devoted to the design of a hybrid triplet objective consisting of two refractive lenses and a diffractive element analogous to holographic lens. The possibilities of correcting field aberrations are discussedE Several exemplary solutions of achromatic, apochromatic and quasi-superachromatic hybrid objectives with corrected average field curvature or astigmatism are presented. In the best designs coma is also substantially minimized.

  1. Triplet Superconductivity in the One-Dimensional Hubbard Model with Modulated Kinetic Hopping at Weak Coupling

    NASA Astrophysics Data System (ADS)

    Ding, Hanqin; Zhang, Jun

    2015-12-01

    We construct a theoretical model for one-dimensional interacting electrons by modulating electronic kinetic hopping in the weak-coupling regime. The use of bosonization and renormalization group analysis allows us to obtain the phase diagram. The induced three-body attraction gives rise to a triplet superconducting phase in the ground state.

  2. Twin and Triplet Drugs in Opioid Research

    NASA Astrophysics Data System (ADS)

    Fujii, Hideaki

    Twin and triplet drugs are defined as compounds that contain respectively two and three pharmacophore components exerting pharmacological effects in a molecule. The twin drug bearing the same pharmacophores is a "symmetrical twin drug", whereas that possessing different pharmacophores is a "nonsymmetrical twin drug." In general, the symmetrical twin drug is expected to produce more potent and/or selective pharmacological effects, whereas the nonsymmetrical twin drug is anticipated to show both pharmacological activities stemming from the individual pharmacophores (dual action). On the other hand, nonsymmetrical triplet drugs, which have two of the same pharmacophores and one different moiety, are expected to elicit both increased pharmacological action and dual action. The two identical portions could bind the same receptor sites simultaneously while the third portion could bind a different receptor site or enzyme. This review will mainly focus on the twin and triplet drugs with an evaluation of their in vivo pharmacological effects, and will also include a description of their pharmacology and synthesis.

  3. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ{sup ∗} states

    SciTech Connect

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}←S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ{sup ∗} character in the vicinity of the lowest valence ππ{sup ∗} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ{sup ∗} and a nearby dissociative πσ{sup ∗} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of πσ{sup ∗} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical behavior.

  4. Quantum states for quantum processes: A toy model for ammonia inversion spectra

    SciTech Connect

    Arteca, Gustavo A.; Tapia, O.

    2011-07-15

    Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the ''chemical species.'' This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.

  5. Quantum states for quantum processes: A toy model for ammonia inversion spectra

    NASA Astrophysics Data System (ADS)

    Arteca, Gustavo A.; Tapia, O.

    2011-07-01

    Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the “chemical species.” This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.

  6. Dressing effects in the attosecond transient absorption spectra of doubly excited states in helium

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Jimnez-Galn, .; Marante, C.; Ott, C.; Pfeifer, T.; Martn, F.

    2015-06-01

    Strong-field manipulation of autoionizing states is a crucial aspect of electronic quantum control. Recent measurements of the attosecond transient absorption spectrum (ATAS) of helium dressed by a few-cycle visible pulse [C. Ott et al., Nature (London) 516, 374 (2014), 10.1038/nature14026] provide evidence of the inversion of Fano profiles. With the support of accurate ab initio calculations that reproduce the results of the latter experiment, here we investigate the new physics that arise from ATAS when the laser intensity is increased. In particular, we show that (i) previously unnoticed signatures of the dark 2 p21S doubly excited state are observed in the experimental spectrum, (ii) inversion of Fano profiles is predicted to be periodic in the laser intensity, and (iii) the ac Stark shift of the higher terms in the s p2,n + autoionizing series exceeds the ponderomotive energy, which is the result of a genuine two-electron contribution to the polarization of the excited atom.

  7. Plasma diagnostic through the five prominent oxygen triplets

    NASA Astrophysics Data System (ADS)

    Milosavljevic, Vladimir; Ragnoli, Emanuele; Daniels, Stephen; Macgearailt, Niall; McLoone, Shane; Ringwood, John

    2008-10-01

    Oxygen is one of most frequently used gas in plasma discharge. Therefore, determination of plasma parameters through analysis of oxygen emission would be a powerful tool. Fifteen most promenade oxygen spectral lines have been measured at different experimental plasma condition. Those oxygen lines belong to five oxygen triplets: 777, 844, 645, 725 and 615 nm. These fifteen O I spectral lines belong to the different transitions/multiplets and have the different upper energy level. The difference of upper energy levels among these oxygen spectral lines is greater than 2 eV. Also, the spectral lines from triplets 645 nm, 725 nm and 615 nm of O I have an upper energy level very close to dissociation of molecular oxygen (12.06 eV). Data is collected for a range of operator contribution in an Ar-O2-Cl/HBr/C2F6 gas mixture discharge, by Jobin Yvon spectrometers. The emission strengths and profile shapes are found do be dependent on plasma tool settings (power, gas mixture and pressure). Correlation of plasma internal state will be presented.

  8. Exchange-only optimized effective potential calculation of excited state spectra for He and Be atoms.

    SciTech Connect

    Desjarlais, Michael Paul; Muller, Richard Partain

    2006-02-01

    The optimized effective potential (OEP) method allows orbital-dependent functionals to be used in density functional theory (DFT), which, in particular, allows exact exchange formulations of the exchange energy to be used in DFT calculations. Because the exact exchange is inherently self-interaction correcting, the resulting OEP calculations have been found to yield superior band-gaps for condensed-phase systems. Here we apply these methods to the isolated atoms He and Be, and compare to high quality experiments and calculations to demonstrate that the orbital energies accurately reproduce the excited state spectrum for these species. These results suggest that coupling the exchange-only OEP calculations with proper (orbital-dependent or other) correlation functions might allow quantitative accuracy from DFT calculations.

  9. Hindered and modulated rotational states and spectra of adsorbed diatomic molecules

    NASA Astrophysics Data System (ADS)

    Shih, Y. T.; Chuu, D. S.; Mei, W. N.

    1996-10-01

    Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscillatory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also found that the rotational levels were grouped into bands when the azimuthal modulation strength was increased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and agreement with the previous experiment was obtained.

  10. Hindered and modulated rotational states and spectra of adsorbed diatomic molecules

    SciTech Connect

    Shih, Y.T.; Chuu, D.S.; Mei, W.N.

    1996-10-01

    Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscillatory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also found that the rotational levels were grouped into bands when the azimuthal modulation strength was increased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and agreement with the previous experiment was obtained. {copyright} {ital 1996 The American Physical Society.}

  11. Photoemission spectra and thermal desorption characteristics of two states of oxygen on Pd

    NASA Astrophysics Data System (ADS)

    Weissman, D. L.; Shek, M. L.; Spicer, W. E.

    1980-02-01

    Two states of oxygen have been observed on Pd (111). The first is adsorbed on the surface and causes strong changes in the Pd d-band photoemission energy distribution curves (EDCs) at hv = 21.2 eV but no oxygen resonance below the d-bands. The second is identified with oxygen beneath the surface (in accord with the thermal desorption studies of Conrad et al.); it has little effect on the Pd d-band emission but produces a resonance at lower energy (˜5 eV below Ef). Evidence is presented indicating that the case with which oxygen can go beneath the Pd surface depends on the surface perfection of the crystal.

  12. BROADBAND EMISSION SPECTRA FROM THE CYGNUS X-3 JET IN THE SOFT SPECTRAL STATE

    SciTech Connect

    Zhang, Jian-Fu; Lu, Ju-Fu E-mail: lujf@xmu.edu.cn

    2015-02-01

    In order to understand the main observational characteristics of the Galactic X-ray binary Cygnus X-3, we propose a radiation model in which high-energy electrons accelerate in the dissipation zone of a jet and produce nonthermal broadband emissions. Broadband spectral energy distributions are computed to compare the AGILE and Fermi LAT data with the multi-band data during soft X-ray spectral states. By fitting observations at different locations of the jet, we find that the emission region is rather compact and should be located at a distance of about one orbital radius. Our results can explain the current multi-frequency observations and also predict the TeV band emission. The model could be tested by a polarization measurement at IR band, and/or by a correlation study between the GeV and TeV bands once very-high-energy observations are available.

  13. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  14. Triplet correlation in sheared suspensions of Brownian particles

    NASA Astrophysics Data System (ADS)

    Yurkovetsky, Yevgeny; Morris, Jeffrey F.

    2006-05-01

    Triplet microstructure of sheared concentrated suspensions of Brownian monodisperse spherical particles is studied by sampling realizations of a three-dimensional unit cell subject to periodic boundary conditions obtained in accelerated Stokesian dynamics simulations. Triplets are regarded as a bridge between particle pairs and many-particle clusters thought responsible for shear thickening. Triplet-correlation data for weakly sheared near-equilibrium systems display an excluded volume effect of accumulated correlation for equilateral contacting triplets. As the Péclet number increases, there is a change in the preferred contacting isosceles triplet configuration, away from the "closed" triplet where the particles lie at the vertices of an equilateral triangle and toward the fully extended rod-like linear arrangement termed the "open" triplet. This transition is most pronounced for triplets lying in the plane of shear, where the open triplets' angular orientation with respect to the flow is very similar to that of a contacting pair. The correlation of suspension rheology to observed structure signals onset of larger clusters. An investigation of the predictive ability of Kirkwood's superposition approximation (KSA) provides valuable insights into the relationship between the pair and triplet probability distributions and helps achieve a better and more detailed understanding of the interplay of the pair and triplet dynamics. The KSA is seen more successfully to predict the shape of isosceles contacting triplet nonequilibrium distributions in the plane of shear than for similar configurations in equilibrium hard-sphere systems; in the sheared case, the discrepancies in magnitudes of distribution peaks are attributable to two interaction effects when pair average trajectories and locations of particles change in response to real, or "hard," and probabilistically favored ("soft") neighboring excluded volumes and, in the case of open triplets, due to changes in the correlation of the farthest separated pair caused by the fixed presence of the particle in the middle.

  15. Intra-molecular Triplet Energy Transfer is a General Approach to Improve Organic Fluorophore Photostability

    PubMed Central

    Zheng, Qinsi; Jockusch, Steffen; Rodríguez-Calero, Gabriel G.; Zhou, Zhou; Zhao, Hong; Altman, Roger B.; Abruña, Héctor D.; Blanchard, Scott C.

    2015-01-01

    Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability. PMID:26700693

  16. Correlations between metal spin states and vibrational spectra of a trinuclear Fe(II) complex exhibiting spin crossover

    NASA Astrophysics Data System (ADS)

    Gerasimova, Tatiana P.; Katsyuba, Sergey A.; Lavrenova, Ludmila G.; Pelmenschikov, Vladimir; Kaupp, Martin

    2015-12-01

    Combined IR spectroscopic/quantum-chemical analysis of a 4-propyl-1,2,4-triazole trinuclear Fe(II) complex capable of reversible thermal spin crossover has revealed mid-IR bands of the ligand sensitive to the Fe(II) spin state. The character of the correlations found between the intensity and peak position of the triazole bands and the spin state of the metal center depends neither on the identity of the metal nor on the nuclearity of the complex. The found spectral correlations therefore allow analysis of various similar complexes. This is illustrated by the example of experimental IR spectra reported earlier for Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with triazole ligands. Quantum-chemical IR spectral simulations further suggest that certain ligand bands vary between the states with the same total molecular spin, but different distribution of the spin density between the metal centers. However these variations are too subtle to discriminate between the spin transitions of the central and peripheral Fe(II) ions. The experimentally revealed mid-IR markers are therefore conclusive only for the total molecular spin.

  17. Assigning States in the Jahn-Teller Coupled Infrared Spectra of CH_3O and CD_3O

    NASA Astrophysics Data System (ADS)

    Johnson, Britta; Sibert, Edwin

    2014-06-01

    The ground tilde{X}^2E vibrations of the methoxy radical have intrigued both experimentalists and theorists alike due to the presence of a conical intersection at the C3v molecular geometry. This conical intersection causes methoxy's vibrational spectrum to be strongly influenced by Jahn-Teller coupling, this leading to large amplitude vibrations and extensive mixing of the two lowest electronic states. This coupling combined with spin-orbit and Fermi couplings greatly complicates the assignments of states. In this talk we describe our efforts to assign the states of both CH_3O and CD_3O. Using the potential energy force field and calculated spectra of Nagesh and Sibert^1 as a starting point, vibrational mixing is considered using various zero-order representations. When the zero-order states are the diabatic normal mode states, there is sufficient mode mixing that the normal mode quantum numbers are no longer good labels. The mixing of the zero-order states can be reduced by including additional terms in the zero-order Hamiltonian, H^o. We consider the choice of including the first order Jahn-Teller coupling between one of the three degenerate normal modes. As the rocking motion has the largest Jahn-Teller coupling, this is the coupling that is included in H^o. Although the normal mode quantum numbers of the rocking basis functions are no longer good quantum numbers, due to the Jahn-Teller induced vibronic mixing, the zero-order states can be labeled with the linear Jahn-Teller quantum numbers.^2 This work extends these ideas by considering an H^o that includes linear Jahn-Teller coupling between two sets of degenerate vibrations. Plots of the resulting zero-order states are presented, and the spectral transitions recently observed3 for both CH_3O and CD_3O in a p-H_2 matrix are assigned using these basis functions. The extent of state-mixing found for the full Hamiltonian H for various choices of H^o is illustrated via the use of correlation diagrams obtained by plotting the eigenvalues of H^o + δ (H-H^o) as a function of δ where δ varies from zero to one. [^1] Nagesh, J.; Sibert, E. L. J. Phys. Chem. A, 2012, 116, 3846-3855. [^2] Barckholtz, T. A.; Miller, T. A. Int. Revs. in Phys. Chem., 1998, 17, 435-524. [^3] Yu-Fang Lee, Wei-Te Chou, and Yuan-Pern Lee (private communication).

  18. The protein's role in triplet energy transfer in bacterial reaction centers.

    SciTech Connect

    Laible, P. D.

    1998-08-14

    When photosynthetic organisms are subjected to high-light conditions in nature, electron transfer becomes blocked as the rate of conversion of light into charge-separated states in the reaction center (RC) exceeds the capacity of the soluble carriers involved in cyclic electron transfer. In that event, a well-characterized T{sub 0}-polarized triplet state {sup T}P, is formed on the primary donor, P, from the P{sup +}H{sub A}{sup {minus}} state (reviewed in [1]). In an aerobic or semi-aerobic environment, the major role of the carotenoid (C), also bound by the RC, is to quench {sup T}P prior to its sensitization of the {sup 1}{Delta}{sub g} singlet state of oxygen--a potentially damaging biological oxidant. The carotenoid performs this function efficiently in most bacterial RCs by rapidly accepting the triplet state from P and dissipating this excited-state energy into heat through internal conversion. The lowest-lying triplet states of P and the carotenoid are sufficiently different that {sup T}P can promote oxygen to its excited singlet state whereas {sup T}C can quench the {sup T}P state (reviewed in [2]).

  19. The charge-trapping and triplet-triplet annihilation processes in organic light-emitting diodes: A duty cycle dependence study on magneto-electroluminescence

    NASA Astrophysics Data System (ADS)

    Peng, Qiming; Chen, Ping; Li, Feng

    2013-01-01

    We studied the magneto-electroluminescence (MEL) in tri-(8-hydroxyquinoline)-aluminum (Alq3)-based organic light-emitting devices through both steady-state and transient methods. As the magnetic field increases, the MEL exhibits a rapid rise, followed by the saturation tendency at all voltages in the steady-state measurement, but in the transient measurement it first increases to a maximum and then decreases to negative values when the driving voltages are higher than 8V. Furthermore, we found that the MEL strongly depends on the duty cycle of the pulse voltage. Finally, by employing the triplet-triplet annihilation model combined with the charge trapping effects, we explained the duty cycle dependence of MELs.

  20. Skew quadrupole errors in the RHIC IR triplets

    SciTech Connect

    Tepikian, S.; Peggs, S.

    1993-12-31

    From simulation studies of the RHIC lattice, we found that skew quadrupole errors and quadrupole roll misalignments in the IR triplets (where the {beta} function can be large) produce large vertical dispersions. A simple model, using only one triplet, is applied to obtain sensitivities of vertical dispersion to skew quadrupole errors. This study revealed that measuring the vertical dispersion in the triplets is a good tool for the diagnosis of local skew quadrupole correction.

  1. Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 1Δ2 Rydberg state

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, V.

    1991-12-01

    Results of studies of rotational ion distributions in the X 2Π3/2 and X 2Π1/2 spin-orbit states of HCl+ resulting from (2+1') resonance enhanced multiphoton ionization (REMPI) via the S(0) branch of the F 1Δ2 Rydberg state are reported and compared with measured threshold-field-ionization zero-kinetic-energy spectra reported recently [K. S. Haber, Y. Jiang, G. Bryant, H. Lefebvre-Brion, and E. R. Grant, Phys. Rev. A (in press)]. These results show comparable intensities for J+=3/2 of the X 2Π3/2 ion and J+=1/2 of the X 2Π1/2 ion. Both transitions require an angular momentum change of ΔN=-1 upon photoionization. To provide further insight into the near-threshold dynamics of this process, we also show rotationally resolved photoelectron angular distributions, alignment of the ion rotational levels, and rotational distributions for the parity components of the ion rotational levels. About 18% population is predicted to occur in the (+) parity component, which would arise from odd partial-wave contributions to the photoelectron matrix element. This behavior is similar to that in (2+1) REMPI via the S(2) branch of the F 1Δ2 state of HBr and was shown to arise from significant l mixing in the electronic continuum due to the nonspherical molecular ion potential. Rotational ion distributions resulting from (2+1) REMPI via the S(10) branch of the F 1Δ2 state are also shown.

  2. Ultrafast electronic and vibrational dynamics in brominated aluminum corroles: Energy relaxation and triplet formation

    PubMed Central

    Stensitzki, T.; Yang, Y.; Berg, A.; Mahammed, A.; Gross, Z.; Heyne, K.

    2016-01-01

    We combined femtosecond (fs) VIS pump–IR probe spectroscopy with fs VIS pump–supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm−1 is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm−1 and at 1508 cm−1. These marker bands allow a precise identification of triplet dynamics in corrole systems. PMID:27226980

  3. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine

    SciTech Connect

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  4. Ultrafast electronic and vibrational dynamics in brominated aluminum corroles: Energy relaxation and triplet formation.

    PubMed

    Stensitzki, T; Yang, Y; Berg, A; Mahammed, A; Gross, Z; Heyne, K

    2016-07-01

    We combined femtosecond (fs) VIS pump-IR probe spectroscopy with fs VIS pump-supercontinuum probe spectroscopy to characterize the photoreaction of the hexacoordinated Al(tpfc-Br8)(py)2 in a comprehensive way. Upon fs excitation at ∼400 nm in the Soret band, the excitation energy relaxes with a time constant of (250 ± 80) fs to the S2 and S1 electronic excited states. This is evident from the rise time of the stimulated emission signal in the visible spectral range. On the same time scale, narrowing of broad infrared signals in the C=C stretching region around 1500 cm(-1) is observed. Energy redistribution processes are visible in the vibrational and electronic dynamics with time constants between ∼2 ps and ∼20 ps. Triplet formation is detected with a time constant of (95 ± 3) ps. This is tracked by the complete loss of stimulated emission. Electronic transition of the emerging triplet absorption band overlaps considerably with the singlet excited state absorption. In contrast, two well separated vibrational marker bands for triplet formation were identified at 1477 cm(-1) and at 1508 cm(-1). These marker bands allow a precise identification of triplet dynamics in corrole systems. PMID:27226980

  5. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    SciTech Connect

    Warshaw, S I

    2001-07-11

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity {sigma}v is calculated, where {sigma} is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF system, which is in two parts: the code which generates the data file itself from the nuclear reaction cross-sections, and the lookup utilities (bundled in a Fortran 77 subroutine library) which are used to retrieve the appropriate thermonuclear data from the file on demand. Unique approaches to generating, retrieving and looking up the data that were developed will be described in some detail. These developments resulted in an unusually compact data file which can be quickly generated, and from which an enormous amount of thermonuclear reaction rate, output particle energy and particle energy spectrum data can be rapidly retrieved. It is this compactness, speed and relative platform independence that distinguishes the LLNL TDF system from others.

  6. Resistively detected NMR spectra of the crystal states of the two-dimensional electron gas in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Côté, R.; Simoneau, Alexandre M.

    2016-02-01

    Transport experiments on the two-dimensional electron gas (2DEG) confined into a semiconductor quantum well and subjected to a quantizing magnetic field have uncovered a rich variety of uniform and nonuniform phases such as the Laughlin liquids, the Wigner, bubble, and Skyrme crystals, and the quantum Hall stripe state. Optically pumped nuclear magnetic resonance (OP-NMR) has also been extremely useful in studying the magnetization and dynamics of electron solids with exotic spin textures such as the Skyrme crystal. Recently, it has been demonstrated that a related technique, resistively-detected nuclear magnetic resonance (RD-NMR), could be a good tool to study the topography of the electron solids in the fractional and integer quantum Hall regimes. In this work, we compute theoretically the RD-NMR line shapes of various crystal phases of the 2DEG and study the relation between their spin density and texture and their NMR spectra. This allows us to evaluate the ability of the RD-NMR to discriminate between the various types of crystal states.

  7. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  8. Consistency of the triplet seesaw model revisited

    NASA Astrophysics Data System (ADS)

    Bonilla, Cesar; Fonseca, Renato M.; Valle, J. W. F.

    2015-10-01

    Adding a scalar triplet to the Standard Model is one of the simplest ways of giving mass to neutrinos, providing at the same time a mechanism to stabilize the theory's vacuum. In this paper, we revisit these aspects of the type-II seesaw model pointing out that the bounded-from-below conditions for the scalar potential in use in the literature are not correct. We discuss some scenarios where the correction can be significant and sketch the typical scalar boson profile expected by consistency.

  9. Pump-probe photoionization detection of singlet and triplet decay in anisole and p-cresol in a supersonic free jet

    SciTech Connect

    Lipert, R.J.; Colson, S.D.; Sur, A.

    1988-01-14

    The singlet and triplet decay of anisole and p-cresol in a supersonic free jet were determined by delayed photoionization mass spectrometry. A biexponential decay was observed in p-cresol yielding a triplet lifetime of 400 +/- 10 ns and a singlet life less than or equal to 5 ns. Very different behavior was observed for anisole. Evidence suggests the triplet state is decaying at a rate approximately 10 times greater than in p-cresol while the anisole S/sub 1/ state decays at least 5 times more slowly than the p-cresol S/sub 1/.

  10. A new medium for triplet-triplet annihilated upconversion and photocatalytic application.

    PubMed

    Ye, Changqing; Wang, Jingjing; Wang, Xiaomei; Ding, Ping; Liang, Zuoqin; Tao, Xutang

    2016-01-27

    Since the triplet-triplet annihilated upconversion (TTA-UC) materials work efficiently only in degassing organic solvents, it is of significance to find a new medium without toxicity and volatility and that promotes TTA-UC. Here, we firstly reported the effect of an OH-containing medium on low power upconversion and found that in alcohol solvent containing ?-cyclodextrin (?-CD), the phosphorescence lifetime (?p) of the sensitizer (PdTPP) and the fluorescence quantum yield (?f) of the acceptor (DPA) were enhanced with the increase in the number of OH-groups of the medium. A large triplet-triplet quenching constant (kq, 1.91 10(9) M(-1) s(-1)) and high upconversion efficiency (?UC, ?36%) of PdTPP/DPA were obtained under the excitation of a diode laser (532 nm, 60 mW cm(-2)). Under our green-to-blue upconversion irradiation, in a demonstration experiment the photocurrent was recorded at 0.09 ?A cm(-2), resulting from photocatalytic water splitting by a Cd0.7Zn0.3S photoanode and a Pt counter-electrode in a photoelectrochemical cell. The importance of this study suggests that upconversion-powered photoelectrochemistry possesses potential application for hydrogen generation from water under excitation of sun energy. PMID:26580451

  11. Delayed Fluorescence and Related Studies of Triplet-Triplet Annihilation and Other Processes in Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph

    2000-03-01

    Recent studies^1,2 of frequency resolved delayed fluorescence (DF) due to triplet-triplet annihilation to singlet excitons in π-conjugated polymers are reviewed, and the significance of this process is compared to that of other processses affecting the singlet exciton populaton, in particular the nonradiative quenching of such singlets by polarons or triplet excitons. While the DF studies suggest that T-T annihilation typically contributes up to 3total fluorescence, various other studies suggest that quenching of singlets by polarons and triplets may be a very significant process in the films and organic light emitting devices. *Ames Laboratory is operated by ISU for the USDOE under Contract W-7405-Eng-82. ^1J. Partee, E. L. Frankevich, B. Uhlhorn, J. Shinar, Y. Ding, and T. J. Barton, Phys. Rev. Lett. 82, 3673 (1999). ^2J. Shinar, B. L. Uhlhorn, J. Partee, C. H. Kim, M. K. Lee, E. J. W. List, W. Graupner, and G. Leising, in Organic Light-Emitting Materials and Devices, edited by Z. H. Kafafi and G. Leising, SPIE Conf. Proc. 3797, xxx (1999). In collaboration with E. L. Frankevich, J. Partee, B. L. Uhlhorn, C.-H. Kim, E. J. W. List, W. Graupner, and G. Leising.

  12. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Tran, Vy; Fei, Ruixiang; Yang, Li

    2015-12-01

    We report first-principles GW-Bethe-Salpeter-equation (BSE) studies of excited-state properties of few-layer black phosphorus (BP) (phosphorene). With improved GW computational methods, we obtained converged quasiparticle band gaps and optical absorption spectra by the single-shot (G0W0) procedure. Moreover, we reveal fine structures of anisotropic excitons, including the series of one-dimensional like wave functions, spin singlet-triplet splitting, and electron-hole binding energy spectra by solving BSE. An effective-mass model is employed to describe these electron-hole pairs, shedding light on estimating the exciton binding energy of anisotropic two-dimensional semiconductors without expensive ab initio simulations. Finally, the anisotropic optical response of BP is explained by using optical selection rules based on the projected single-particle density of states at band edges.

  13. Rydberg-blockade effects in Autler-Townes spectra of ultracold strontium

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Aman, J. A.; Gaul, C.; Pohl, T.; Yoshida, S.; Burgdörfer, J.; Hazzard, K. R. A.; Dunning, F. B.; Killian, T. C.

    2016-02-01

    We present a combined experimental and theoretical study of the effects of Rydberg interactions on Autler-Townes spectra of ultracold gases of atomic strontium. Realizing two-photon Rydberg excitation via a long-lived triplet state allows us to probe the regime where Rydberg state decay presents the dominant decoherence mechanism. The effects of Rydberg interactions are observed in shifts, asymmetries, and broadening of the measured atom-loss spectra. The experiment is analyzed within a one-body density-matrix approach, accounting for interaction-induced level shifts and dephasing through nonlinear terms that approximately incorporate correlations due to the Rydberg blockade. This description yields good agreement with our experimental observations for short excitation times. For longer excitation times, the loss spectrum is altered qualitatively, suggesting additional dephasing mechanisms beyond the standard blockade mechanism based on pure van der Waals interactions.

  14. Far infrared spectra of solid state L-serine, L-threonine, L-cysteine, and L-methionine in different protonation states.

    PubMed

    Gaillard, Thomas; Trivella, Aurlien; Stote, Roland H; Hellwig, Petra

    2015-11-01

    In this study, experimental far infrared measurements of L-serine, L-threonine, L-cysteine, and L-methionine are presented showing the spectra for the 1.0-13.0 pH range. In parallel, solid state DFT calculations were performed on the amino acid zwitterions in the crystalline form. We focused on the lowest frequency far infrared normal modes, which required the most precision and convergence of the calculations. Analysis of the computational results, which included the potential energy distribution of the vibrational modes, permitted a detailed and almost complete assignment of the experimental spectrum. In addition to characteristic signals of the two main acid-base couples, CO2H/CO2(-) and NH3(+)/NH2, specific side chain contributions for these amino acids, including CCO and CCS vibrational modes were analyzed. This study is in line with the growing application of FIR measurements to biomolecules. PMID:26056980

  15. Pd(II) phthalocyanine-sensitized triplet-triplet annihilation from rubrene.

    PubMed

    Singh-Rachford, Tanya N; Castellano, Felix N

    2008-04-24

    Upconverted yellow singlet fluorescence from rubrene (5,6,11,12-tetraphenylnapthacene) was generated from selective excitation (lambdaex = 725 nm) of the red light absorbing triplet sensitizer palladium(II) octabutoxyphthalocyanine, PdPc(OBu)8, in vacuum degassed toluene solutions using a Nd:YAG/OPO laser system in concert with gated iCCD detection. The data are consistent with upconversion proceeding from triplet-triplet annihilation (TTA) of rubrene acceptor molecules. The TTA process was confirmed by the quadratic dependence of the upconverted delayed fluorescence intensity with respect to incident light, measured by integrating the corresponding kinetic traces as a function of the incident excitation power. In vacuum degassed toluene solutions, the red-to-yellow upconversion process is stable under continuous long wavelength irradiation and is readily visualized by the naked eye even at modest laser fluence (0.6 mJ/pulse). In aerated solutions, however, selective excitation of the phthalocyanine sensitizer leads to rapid decomposition of rubrene into its corresponding endoperoxide as evidenced by UV-vis (in toluene), 1H NMR (in d6-benzene), and MALDI-TOF mass spectrometry, consistent with the established reactivity of rubrene with singlet dioxygen. The upconversion process in this triplet sensitizer/acceptor-annihilator combination was preliminarily investigated in solid polymer films composed of a 50:50 mixture of an ethyleneoxide/epichlorohydrin copolymer, P(EO/EP). Films that were prepared under an argon atmosphere and maintained under this inert environment successfully achieve the anticipated quadratic incident power dependence, whereas air exposure causes the film to deviate somewhat from this dependence. To the best of our knowledge, the current study represents the first example of photon upconversion using a phthalocyanine triplet sensitizer, furthering the notion that anti-Stokes light-producing sensitized TTA appears to be a general phenomenon as long as proper energy criteria are met. PMID:18336014

  16. Acceleration of guanine oxidation under visible light irradiation by photon upconversion based on triplet-triplet annihilation.

    PubMed

    Tanaka, Kazuo; Kitamura, Narufumi; Inafuku, Kenichi; Chujo, Yoshiki

    2009-01-01

    We report the fluorescent polymer complex which can show fluorescence emission at 380 nm with the excitation of 520 nm in aqueous media. This photon upconversion based on triplet-triplet annihilation can efficiently take place via inter-molecular energy transfers between the Ru complex as a sensitizer and anthracene molecules as an emitter captured into the water-soluble network polymers. We performed the oxidation reaction of 2'-deoxyguanosine by riboflavin in the presence of the polymer complex with the visible light irradiation. It was clearly indicated that oxidative decomposition can be accelerated by UV light generation via upconversion based on triplet-triplet annihilation. PMID:19749321

  17. Tetralogy of Fallot in monozygotic triplets

    SciTech Connect

    Victorica, B.E.; Kumar, A.; Zori, R.T.

    1994-09-01

    Tetralogy of Fallot (TOF), like most other congenital heart defects, is considered to be of multifactorial inheritance. Occasional families with multiple affected members in one or more generations above been described. A stronger genetic influence in the causation of isolated TOF is also supported by recent demonstration of microdeletions in chromosome 22q11 region. Deletions in this region are also responsible for DiGeorge and velocardiofacial syndrome as well as CHARGE association. We report a set of monozygotic triplets born to healthy parents at 35 weeks of gestation. There was no family history of congenital heart defects. All three had TOF with left aortic arch (documented by cardiac catheterization in 2 and echocardiography in all 3). The degree of right ventricular outflow obstruction varied from mild to complete atresia needing prostaglandin infusion and a subsequent Blalock-Taussig shunt in one. No features of DiGeorge syndrome or any other congenital defects were present. High resolution chromosome analysis of peripheral blood lymphocytes of these infants revealed normal 46,XY male karyotype. Fluorescent in situ hybridization (FISH) using probe D22S75, which maps to chromosome 22q11.2 did not detect any deletion. This pedigree suggests a de novo mutation causing TOF in all 3 monozygotic triplets. Although there is no deletion demonstrable in DiGeorge critical region, a smaller deletion or mutation in this region cannot be excluded.

  18. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  19. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs.

    PubMed

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a "one-way" rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  20. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    NASA Astrophysics Data System (ADS)

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-02-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a ``one-way'' rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved.

  1. Isolation of proximity-induced triplet pairing channel in a superconductor/ferromagnet spin valve

    NASA Astrophysics Data System (ADS)

    Leksin, P. V.; Garif'yanov, N. N.; Kamashev, A. A.; Validov, A. A.; Fominov, Ya. V.; Schumann, J.; Kataev, V.; Thomas, J.; Büchner, B.; Garifullin, I. A.

    2016-03-01

    We have studied the proximity-induced superconducting triplet pairing in CoOx/Py1/Cu/Py2/Cu/Pb spin-valve structure (where Py = Ni0.81Fe0.19 ). By optimizing the parameters of this structure we found a triplet channel assisted full switching between the normal and superconducting states. To observe an "isolated" triplet spin-valve effect we exploited the oscillatory feature of the magnitude of the ordinary spin-valve effect Δ Tc in the dependence of the Py2-layer thickness dP y 2. We determined the value of dP y 2 at which Δ Tc caused by the ordinary spin-valve effect (the difference in the superconducting transition temperature Tc between the antiparallel and parallel mutual orientation of magnetizations of the Py1 and Py2 layers) is suppressed. For such a sample a "pure" triplet spin-valve effect which causes the minimum in Tc at the orthogonal configuration of magnetizations has been observed.

  2. Quantum Monte Carlo study of the singlet-triplet transition in ethylene

    SciTech Connect

    El Akramine, Ouafae; Kollias, Alexander C.; Lester, Jr., William A.

    2003-01-23

    A theoretical study is reported of the transition between the ground state ({sup 1}A{sub g}) and the lowest triplet state (1{sup 3}B{sub 1u}) of ethylene based on the diffusion Monte Carlo (DMC) variant of the quantum Monte Carlo method. Using DMC trial functions constructed from Hartree-Fock, complete active space self-consistent field and multi-configuration self-consistent field wave functions, we have computed the atomization energy and the heat of formation of both states, and adiabatic and vertical energy differences between these states using both all-electron and effective core potential DMC. The ground state atomization energy and heat of formation are found to agree with experiment to within the error bounds of the computation and experiment. Predictions by DMC of the triplet state atomization energy and heat of formation are presented. The adiabatic singlet-triplet energy difference is found to differ by 5 kcal/mol from the value obtained in a recent photodissociation experiment.

  3. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets.

    PubMed

    Zimmerman, Paul M; Bell, Franziska; Casanova, David; Head-Gordon, Martin

    2011-12-14

    Singlet fission (SF) could dramatically increase the efficiency of organic solar cells by producing two triplet excitons from each absorbed photon. While this process has been known for decades, most descriptions have assumed the necessity of a charge-transfer intermediate. This ab initio study characterizes the low-lying excited states in acene molecular crystals in order to describe how SF occurs in a realistic crystal environment. Intermolecular interactions are shown to localize the initially delocalized bright state onto a pair of monomers. From this localized state, nonadiabatic coupling mediated by intermolecular motion between the optically allowed exciton and a dark multi-exciton state facilitates SF without the need for a nearby low-lying charge-transfer intermediate. An estimate of the crossing rate shows that this direct quantum mechanical process occurs in well under 1 ps in pentacene. In tetracene, the dark multi-exciton state is uphill from the lowest singlet excited state, resulting in a dynamic interplay between SF and triplet-triplet annihilation. PMID:22084927

  4. Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: determination of ground and excited state dipole moment.

    PubMed

    Raikar, U S; Renuka, C G; Nadaf, Y F; Mulimani, B G; Karguppikar, A M; Soudagar, M K

    2006-11-01

    Absorption and fluorescence emission spectra of coumarins 6 and 7 were recorded in solvents with different solvent parameters, viz., dielectric constant epsilon and refractive index n. The fluorescence lifetime of these dyes were measured in butanol at higher values of viscosity over temperature. Experimental ground and excited state dipole moments are determined by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was determined that dipole moments of the excited state were higher than those of the ground state in both the molecules. PMID:16524762

  5. Even-parity spin-triplet pairing by purely repulsive interactions for orbitally degenerate correlated fermions

    NASA Astrophysics Data System (ADS)

    Zegrodnik, M.; Bünemann, J.; Spałek, J.

    2014-03-01

    We demonstrate the stability of the spin-triplet paired s-wave (with an admixture of extended s-wave) state for the limit of purely repulsive interactions in a degenerate two-band Hubbard model of correlated fermions. The repulsive interactions limit represents an essential extension of our previous analysis (2013 New J. Phys. 15 073050), regarded here as I. We also show that near the half-filling the considered type of superconductivity can coexist with antiferromagnetism. The calculations have been carried out with the use of the so-called statistically consistent Gutzwiller approximation (SGA) for the case of a square lattice. We suggest that the electron correlations in conjunction with the Hund's rule exchange play the crucial role in stabilizing the real-space spin-triplet superconducting state. A sizable hybridization of the bands suppresses the homogeneous paired state.

  6. Oxygen abundance in halo stars from O i triplet

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Korotin, S. A.; Klochkova, V. G.; Panchuk, V. E.

    2000-01-01

    Oxygen abundance for 14 halo stars through the O I 7774 Ätriplet have been derived from high resolution spectra (R = 25,000; S/N > 100) obtained with echelle-spectrometer of 6-m telescope of Special Astrophysical Observatory of the Russian Academy of Sciences. The effective temperature, metallicity and other parameters have been examined. For example, the effective temperature was found from H_alpha line wings and photometric indices. The abundance analysis was carried out using both LTE and non-LTE conceptions. For this aim, we have specified the oxygen atomic model. The average [O/Fe] value appeared to be 0.61 +/- 0.21 from the non-LTE determination. A trend of oxygen abundance increasing along with the iron abundance decreasing was found. The relation between [O/Fe] and [Fe/H] is linear: [O/Fe]=-0.370x[Fe/H]+0.047. In addition to the sample of our program stars, we also involved in the analysis, 24 targets from Cavallo et al. (\\cite{Cav}). For their original results we have determined the necessary non-LTE corrections. Our data are compared with the results of other works (Tomkin et al., \\cite{Tom}; King & Boesgaard, \\cite{King2}; Boesgaard et al. \\cite{BK2}).

  7. Dual Neutral Variables and Knot Solitons in Triplet Superconductors

    NASA Astrophysics Data System (ADS)

    Babaev, Egor

    2002-04-01

    We derive a dual presentation of a free energy functional for spin-triplet superconductors in terms of gauge-invariant variables. The resulting equivalent model in ferromagnetic phase has a form of a version of the Faddeev model. This allows one, in particular, to conclude that spin-triplet superconductors allow formation of stable finite-length closed vortices (knotted solitons).

  8. Triplet exciton dissociation in singlet exciton fission photovoltaics.

    PubMed

    Jadhav, Priya J; Brown, Patrick R; Thompson, Nicholas; Wunsch, Benjamin; Mohanty, Aseema; Yost, Shane R; Hontz, Eric; Van Voorhis, Troy; Bawendi, Moungi G; Bulović, Vladimir; Baldo, Marc A

    2012-12-01

    Triplet exciton dissociation in singlet exciton fission devices with three classes of acceptors are characterized: fullerenes, perylene diimides, and PbS and PbSe colloidal nanocrystals. Using photocurrent spectroscopy and a magnetic field probe it is found that colloidal PbSe nanocrystals are the most promising acceptors, capable of efficient triplet exciton dissociation and long wavelength absorption. PMID:22968762

  9. Triplet excimer formation of triphenylamine and related chromophores in polystyrene films

    SciTech Connect

    Burkhart, R.D.; Jhon, Namin )

    1991-09-19

    The phosphorescence of triphenylamine (TPA) and of the (N,N-diphenylamino) phenylmethyl ester of 2-methylpropanoic acid (DAPM) was investigated in polystyrene films at temperatures from 20 to 230 k. Their phosphorescence spectra at low temperatures are similar to those recorded in rigid glassy solvents at 77 K, but as the temperature is raised, a new phosphorescence band at 470 mn grows in and the low-temperature band gradually disappears. The new emission is due to an excimeric triplet since it is similar to one found earlier from the polymeric analogue of DAPM and is also similar to the totally excimeric phosphorescence of crystalline TPA at 77K. Rates of excimer formation and dissociation were determined as a function of temperature as were the corresponding activation energies. Triplet exciton migration is not the rate-limiting step in excimer formation. The activation energies for dissociation of the triplet excimers were found to depend upon the concentration of the amine. For DAPM the evidence suggests that excimers formed in dilute samples are in a strained configuration which relaxes slowly compared to the excimer lifetime.

  10. Three-Triplet Model with Double SU(3) Symmetry

    DOE R&D Accomplishments Database

    Han, M. Y.; Nambu, Y.

    1965-01-01

    With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).

  11. Triplet extinction coefficients of some laser dyes. II

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1990-01-01

    We measured the triplet extinction coefficients over the laser action spectral region of DODC, DMC, Sulforhodamine B, Rhodamine 575, Coumarin 523, Coumarin 521, Coumarin 504, Coumarin 498, Coumarin 490, LD466, bis-MSB, and BBO. We employed the different lines from an argon and a krypton ion cw laser for excitation. McClure's method was again employed to measure the triplet extinction coefficients. We provide a simplified derivation of McClure's equation. The triplet extinction coefficient of Rhodamine 575 was also measured by using the depletion method and improving it by reconstructing for true triplet-triplet (T-T) absorption. The ET value obtained is in good agreement with the one obtained by McClure's method.

  12. Metal abundance calibration of the Ca(II) triplet lines in RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Wallerstein, George; Gomez, Thomas; Huang, Wenjin

    2012-09-01

    The Gaia satellite is likely to observe thousands of RR Lyrae Stars with a small spectral range, between 8470 Å to 8750 Å, at a resolution of 11,500. In order to derive metallicity from Gaia, we have obtained numerous spectra of RR Lyrae stars at a resolution of 35,000 with the Apache Point Observatory 3.5 m echelle spectrograph. We have correlated Ca(II) triplet line strengths with metallicity as derived from Fe(II) abundances, analogous to Preston (Astrophys. J., 130:507, 1959) use of the Ca(II) K line to estimate metallicity in RR Lyrae Stars.

  13. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Hu, Feng; Chang, Yu-Qiang; Zhou, Yan; Wang, Peng; Zhang, Jian-Ping

    2015-07-01

    Siphonaxanthin and siphonein are two keto-carotenoids. Upon anthracene-sensitizing, triplet excitation dynamics of these two carotenoids were studied in n-hexane and in methanol, respectively, by ns flash photolysis spectroscopy. In n-hexane, bleaching of the ground state absorption (GSB) and the excitation triplet (3Car*) absorption were observed. In methanol, upon the decay of the 3Car*, the cation dehydrodimer of carotenoid, #[Car]2+, generated by the same rate, while an additional GSB generated synchronously, a polar solvent assisted and anthracene-sensitized mechanism was addressed based on the discussion. The environment-sensitive triplet excitation dynamics imply their potential role in photo-protection in vivo.

  14. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    PubMed

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies. PMID:26574215

  15. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    PubMed

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested. PMID:24733519

  16. Photon upconversion: from two-photon absorption (TPA) to triplet-triplet annihilation (TTA).

    PubMed

    Ye, Changqing; Zhou, Liwei; Wang, Xiaomei; Liang, Zuoqin

    2016-04-20

    Organic upconversion is a unique process in which low-energy light (usually NIR light) is converted to high-energy light through either the two-photon absorption (TPA) mechanism or the triplet-triplet annihilation (TTA) mechanism. Both TPA upconversion (TPA-UC) and TTA upconversion (TTA-UC) have been actively investigated in recent years due to their intriguing applications in optics, biophotonics, and solar energy utilization. Although they show some similarity (i.e., belonging to the nonlinear two-quantum process and needing focused excitation light), TPA-UC and TTA-UC are very different, such as in mechanism, characteristics involved, molecular design and potential applications. Here, we collectively reviewed these two kinds of upconversion processes and compared their respective characteristics and merits. We also present recent advances made in the areas of TPA- and TTA-UC, the remaining challenges and opportunities, with particular emphasis on molecular engineering of these two active upconversion materials. PMID:26843136

  17. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil

    NASA Astrophysics Data System (ADS)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-02-01

    Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine π system. The excited-state photoelectron spectra of 2-thiouracil show bands at much lower energies than in the ground state spectrum, allowing to monitor the excited-state population in time-resolved UV photoelectron spectroscopy experiments. However, the results also reveal that single-photon ionization probe schemes alone will not allow monitoring all photodynamic processes existing in 2-thiouracil. Especially, due to overlapping bands of singlet and triplet states the clear observation of intersystem crossing will be hampered.

  18. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil.

    PubMed

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; Gonzlez, Leticia

    2016-02-21

    Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine ? system. The excited-state photoelectron spectra of 2-thiouracil show bands at much lower energies than in the ground state spectrum, allowing to monitor the excited-state population in time-resolved UV photoelectron spectroscopy experiments. However, the results also reveal that single-photon ionization probe schemes alone will not allow monitoring all photodynamic processes existing in 2-thiouracil. Especially, due to overlapping bands of singlet and triplet states the clear observation of intersystem crossing will be hampered. PMID:26896982

  19. Experimental aspects in acquisition of wide bandwidth solid-state MAS NMR spectra of low-? nuclei with different opportunities on two commercial NMR spectrometers.

    PubMed

    Jakobsen, Hans J; Bildse, Henrik; Gan, Zhehong; Brey, William W

    2011-08-01

    The acquisition and different appearances observed for wide bandwidth solid-state MAS NMR spectra of low-? nuclei, using (14)N as an illustrative nucleus and employing two different commercial spectrometers (Varian, 14.1T and Bruker, 19.6T), have been compared/evaluated and optimized from an experimental NMR and an electronic engineering point of view, to account for the huge differences in these spectra. The large differences in their spectral appearances, employing the recommended/standard experimental set-up for the two different spectrometers, are shown to be associated with quite large differences in the electronic design of the two types of preamplifiers, which are connected to their respective probes through a 50? cable, and are here completely accounted for. This has led to different opportunities for optimum performances in the acquisition of nearly ideal wide bandwidth spectra for low-? nuclei on the two spectrometers by careful evaluation of the length for the 50? probe-to-preamp cable for the Varian system and appropriate changes to the bandwidth (Q) of the NMR probe used on the Bruker spectrometer. Earlier, we reported quite distorted spectra obtained with Varian Unity INOVA spectrometers (at 11.4 and 14.1T) in several exploratory wide bandwidth (14)N MAS NMR studies of inorganic nitrates and amino acids. These spectra have now been compared/evaluated with fully analyzed (14)N MAS spectra correspondingly acquired at 19.6T on a Bruker spectrometer. It is shown that our upgraded version of the STARS simulation/iterative-fitting software is capable of providing identical sets for the molecular spectral parameters and corresponding fits to the experimental spectra, which fully agree with the electronic measurements, despite the highly different appearances for the MAS NMR spectra acquired on the Varian and Bruker spectrometers. PMID:21704544

  20. Zeaxanthin Protects Plant Photosynthesis by Modulating Chlorophyll Triplet Yield in Specific Light-harvesting Antenna Subunits*

    PubMed Central

    Dall'Osto, Luca; Holt, Nancy E.; Kaligotla, Shanti; Fuciman, Marcel; Cazzaniga, Stefano; Carbonera, Donatella; Frank, Harry A.; Alric, Jean; Bassi, Roberto

    2012-01-01

    Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen. PMID:23066020

  1. Triplet excimer formation of some vinylaromatic polymers and their monomeric analogues

    SciTech Connect

    Jhon, N.I.

    1992-01-01

    The temperature-induced interchange between nonexcimeric and excimeric phosphorescence was investigated at temperatures from 20 K to 240 K for poly [N-((vinyloxy)-carbonyl) carbazole] (PFCZ); poly[N-((allyloxy)-carbonyl) carbazole] (PACZ); and poly(3,6-dibromo-N-vinylcarbazole) (3,6PVKBr[sub 2]). The monomeric model compounds such as triphenylamine (TPA); N,N-diphenylamino-phenylmethyl ester of 2-methylpropanoic acid (DAPM); N-ethylcarbazole (NEC); and 3, 6-dibromo-carbazole (3, 6Br[sub 2]Cz) in polystyrene (PS); and polymethylmethacrylate (PMMA) polymer matrices were studied. In most cases phosphorescence spectra at low temperatures were structured, but as the temperature was raised a broad phosphorescence band at about 470 nm appears. The band has no structure and is thought to be due to excimeric triplet; it grows with increasing temperature and the low temperature band gradually disappears. Rates of excimer formation and dissociation were determined as a function of temperature as well as the corresponding activation energies. Activation energies for the trapping of triplet excitons at excimer-forming sites in the matrices were between 1.1 and 2.6 kJ/mol for carbazolyl-containing polymers. For a triphenylamine-containing polymer, PDAPM, the activation energy is 5.1 kJ/mol. The activation energies associated with excimer formation were related to the nature of the chromophore itself rather than to any constraints imposed by the backbone structure of the polymer. The activation energies for dissociation of the triplet excimers were dependent on the concentration of the amine. For DAPM, the evidence suggests that excimers formed in dilute polymer matrices are in a strained configuration which relaxes slowly compared to the excimer lifetime. Triplet exciton migration is not the rate-limiting step in excimer formation. Rather, the rate of trapping is controlled primarily by the action of bond formation in the excimeric species.

  2. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051

  3. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.

    PubMed

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca

    2014-02-01

    The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. PMID:24333386

  4. Doping-Induced Ferromagnetism and Possible Triplet Pairing in d4 Mott Insulators

    NASA Astrophysics Data System (ADS)

    Chaloupka, Ji?; Khaliullin, Giniyat

    2016-01-01

    We study the effects of electron doping in Mott insulators containing d4 ions such as Ru4 +, Os4 +, Rh5 +, and Ir5 + with J =0 singlet ground state. Depending on the strength of the spin-orbit coupling, the undoped systems are either nonmagnetic or host an unusual, excitonic magnetism arising from a condensation of the excited J =1 triplet states of t2g 4. We find that the interaction between J excitons and doped carriers strongly supports ferromagnetism, converting both the nonmagnetic and antiferromagnetic phases of the parent insulator into a ferromagnetic metal, and further to a nonmagnetic metal. Close to the ferromagnetic phase, the low-energy spin response is dominated by intense paramagnon excitations that may act as mediators of a triplet pairing.

  5. Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics

    PubMed Central

    2016-01-01

    The photochemistry of benzophenone, a paradigmatic organic molecule for photosensitization, was investigated by means of surface-hopping ab initio molecular dynamics. Different mechanisms were found to be relevant within the first 600 fs after excitation; the long-debated direct (S1 → T1) and indirect (S1 → T2 → T1) mechanisms for population of the low-lying triplet state are both possible, with the latter being prevalent. Moreover, we established the existence of a kinetic equilibrium between the two triplet states, never observed before. This fact implies that a significant fraction of the overall population resides in T2, eventually allowing one to revisit the usual spectroscopic assignment proposed by transient absorption spectroscopy. This finding is of particular interest for photocatalysis as well as for DNA damages studies because both T1 and T2 channels are, in principle, available for benzophenone-mediated photoinduced energy transfer toward DNA. PMID:26821061

  6. Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics.

    PubMed

    Marazzi, Marco; Mai, Sebastian; Roca-Sanjun, Daniel; Delcey, Mickal G; Lindh, Roland; Gonzlez, Leticia; Monari, Antonio

    2016-02-18

    The photochemistry of benzophenone, a paradigmatic organic molecule for photosensitization, was investigated by means of surface-hopping ab initio molecular dynamics. Different mechanisms were found to be relevant within the first 600 fs after excitation; the long-debated direct (S1 ? T1) and indirect (S1 ? T2 ? T1) mechanisms for population of the low-lying triplet state are both possible, with the latter being prevalent. Moreover, we established the existence of a kinetic equilibrium between the two triplet states, never observed before. This fact implies that a significant fraction of the overall population resides in T2, eventually allowing one to revisit the usual spectroscopic assignment proposed by transient absorption spectroscopy. This finding is of particular interest for photocatalysis as well as for DNA damages studies because both T1 and T2 channels are, in principle, available for benzophenone-mediated photoinduced energy transfer toward DNA. PMID:26821061

  7. Effects of state-selective charge-exchange processes on the He-like spectra from the Alcator C tokamak

    SciTech Connect

    Kato, T.; Masai, K. ); Fujimoto, T. ); Koike, F. ); Kaellne, E. ); Marmar, E.S.; Rice, J.E. )

    1991-11-15

    The effects of a low-energy charge-exchange process between hydrogenlike ions and neutral hydrogen on x-ray spectra of He-like argon ions from the Alcator C tokamak are investigated. Dependences of charge-exchange cross sections on both the principal and angular momentum quantum numbers {ital n} and {ital l} are estimated from the observed spectra, taking cascade effects into account with the use of a collisional radiative model.

  8. Potential energy surface of triplet N2O2.

    PubMed

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances. PMID:26772574

  9. Potential energy surface of triplet N2O2

    NASA Astrophysics Data System (ADS)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.

    2016-01-01

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  10. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    SciTech Connect

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan; Kim, Sunghwan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  11. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    PubMed Central

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  12. Correlation of photocurrent and electroabsorption spectra and their temperature dependence for conjugated light emitting polymers: The origin of the corresponding density of states

    NASA Astrophysics Data System (ADS)

    Tripathi, Awnish K.; Mohapatra, Y. N.

    2011-11-01

    Photocurrent (PC) and electroabsorption (EA) spectra of two different families of light emitting conjugated polymers viz. poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and Arylenevinylene-co-pyrrolenevinylene (C8-AVPV) in standard sandwich diode configuration is measured. It is shown that EA spectra with a dominant positive peak at the onset has identical line shape as that of the first derivative of the PC spectra for both the materials. The temperature dependence of onset EA peak is studied in detail in the temperature range 10-300 K, and show redshift and narrowing with decrease in temperature. The temperature dependence of the signal height in the case of PC follows that of carrier mobility, while EA peak height follows occupancy within the density of states (DOS). At room temperature, the EA peak height shows very slow and nonexponential transients indicating relaxation in occupancy of states. The degree of nonexponentiality is seen to decrease with increase in reverse bias. The set of observations lead to the conclusion that the onset positive peak in both types of spectra is dominated by photoionization of localized states whose occupancy depends on the Fermi level, which in turn is controlled by variation in bias and temperature. A phenomenological model illustrating the origin of equivalence between EA and PC onset features is described. It is argued that the occurrence of a positive peak at the onset in such spectra, obtained for diode structures, is a signature of photoionization of defect states and the line shape corresponds to its polaronic DOS; hence correlation of PC and EA becomes a direct and powerful method of determination of near-gap joint DOS in molecular semiconductors.

  13. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  14. Triplet correlations among similarly tuned cells impact population coding.

    PubMed

    Cayco-Gajic, Natasha A; Zylberberg, Joel; Shea-Brown, Eric

    2015-01-01

    Which statistical features of spiking activity matter for how stimuli are encoded in neural populations? A vast body of work has explored how firing rates in individual cells and correlations in the spikes of cell pairs impact coding. Recent experiments have shown evidence for the existence of higher-order spiking correlations, which describe simultaneous firing in triplets and larger ensembles of cells; however, little is known about their impact on encoded stimulus information. Here, we take a first step toward closing this gap. We vary triplet correlations in small (approximately 10 cell) neural populations while keeping single cell and pairwise statistics fixed at typically reported values. This connection with empirically observed lower-order statistics is important, as it places strong constraints on the level of triplet correlations that can occur. For each value of triplet correlations, we estimate the performance of the neural population on a two-stimulus discrimination task. We find that the allowed changes in the level of triplet correlations can significantly enhance coding, in particular if triplet correlations differ for the two stimuli. In this scenario, triplet correlations must be included in order to accurately quantify the functionality of neural populations. When both stimuli elicit similar triplet correlations, however, pairwise models provide relatively accurate descriptions of coding accuracy. We explain our findings geometrically via the skew that triplet correlations induce in population-wide distributions of neural responses. Finally, we calculate how many samples are necessary to accurately measure spiking correlations of this type, providing an estimate of the necessary recording times in future experiments. PMID:26042024

  15. Triplet correlations among similarly tuned cells impact population coding

    PubMed Central

    Cayco-Gajic, Natasha A.; Zylberberg, Joel; Shea-Brown, Eric

    2015-01-01

    Which statistical features of spiking activity matter for how stimuli are encoded in neural populations? A vast body of work has explored how firing rates in individual cells and correlations in the spikes of cell pairs impact coding. Recent experiments have shown evidence for the existence of higher-order spiking correlations, which describe simultaneous firing in triplets and larger ensembles of cells; however, little is known about their impact on encoded stimulus information. Here, we take a first step toward closing this gap. We vary triplet correlations in small (approximately 10 cell) neural populations while keeping single cell and pairwise statistics fixed at typically reported values. This connection with empirically observed lower-order statistics is important, as it places strong constraints on the level of triplet correlations that can occur. For each value of triplet correlations, we estimate the performance of the neural population on a two-stimulus discrimination task. We find that the allowed changes in the level of triplet correlations can significantly enhance coding, in particular if triplet correlations differ for the two stimuli. In this scenario, triplet correlations must be included in order to accurately quantify the functionality of neural populations. When both stimuli elicit similar triplet correlations, however, pairwise models provide relatively accurate descriptions of coding accuracy. We explain our findings geometrically via the skew that triplet correlations induce in population-wide distributions of neural responses. Finally, we calculate how many samples are necessary to accurately measure spiking correlations of this type, providing an estimate of the necessary recording times in future experiments. PMID:26042024

  16. Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals

    PubMed Central

    Wang, Rui; Zhang, Chunfeng; Zhang, Bo; Liu, Yunlong; Wang, Xiaoyong; Xiao, Min

    2015-01-01

    Singlet fission can potentially break the Shockley–Queisser efficiency limit in single-junction solar cells by splitting one photoexcited singlet exciton (S1) into two triplets (2T1) in organic semiconductors. A dark multiexciton state has been proposed as the intermediate connecting S1 to 2T1. However, the exact nature of this multiexciton state, especially how the doubly excited triplets interact, remains elusive. Here we report a quantitative study on the magnetic dipolar interaction between singlet-fission-induced correlated triplets in tetracene crystals by monitoring quantum beats relevant to the multiexciton sublevels at room temperature. The resonances of multiexciton sublevels approached by tuning an external magnetic field are observed to be avoided, which agrees well with the theoretical predictions considering a magnetic dipolar interaction of ∼0.008 GHz. Our work quantifies the magnetic dipolar interaction in certain organic materials and marks an important step towards understanding the underlying physics of the multiexciton state in singlet fission. PMID:26456368

  17. Quantum dynamics study of singlet-triplet transitions in s-trans-1,3-butadiene

    NASA Astrophysics Data System (ADS)

    Nikoobakht, Behnam; Köppel, Horst

    2016-05-01

    The intersystem crossing dynamics of s-trans-1,3-butadiene in its lowest singlet and triplet states is studied theoretically, employing a fully quantal approach for the first time. The electronic states 21Ag, 11Bu, 13Bu and 13Ag, which interact vibronically and via the spin-orbit coupling are treated in the calculation, thus covering the lowest spin-forbidden electronic transitions. Up to five nuclear degrees of freedom, including out-of-plane dihedral angles are included in our investigation. The calculation of potential energy surfaces relies on the CASPT2 method, and the evaluation of spin-orbit coupling matrix elements using the full two-electron Breit-Pauli Hamiltonian is performed by utilizing the MRCI wavefunction. The latter dependence on the nuclear coordinates is included for the first time. An electronic population transfer on the sub-picosecond time scale due to intersystem crossing is obtained, a mechanism that can contribute to the singlet-triplet transitions in the electron energy loss spectrum of s-trans-1, 3-butadiene. It is found that the dependence of the spin-orbit coupling on the out-of-plane coordinates plays a dominant role in these singlet-triplet transitions. The amount of population transfer to the 13Ag and 13Bu states is roughly of the same order of magnitude.

  18. Magnetic dipolar interaction between correlated triplets created by singlet fission in tetracene crystals.

    PubMed

    Wang, Rui; Zhang, Chunfeng; Zhang, Bo; Liu, Yunlong; Wang, Xiaoyong; Xiao, Min

    2015-01-01

    Singlet fission can potentially break the Shockley-Queisser efficiency limit in single-junction solar cells by splitting one photoexcited singlet exciton (S1) into two triplets (2T1) in organic semiconductors. A dark multiexciton state has been proposed as the intermediate connecting S1 to 2T1. However, the exact nature of this multiexciton state, especially how the doubly excited triplets interact, remains elusive. Here we report a quantitative study on the magnetic dipolar interaction between singlet-fission-induced correlated triplets in tetracene crystals by monitoring quantum beats relevant to the multiexciton sublevels at room temperature. The resonances of multiexciton sublevels approached by tuning an external magnetic field are observed to be avoided, which agrees well with the theoretical predictions considering a magnetic dipolar interaction of ∼ 0.008 GHz. Our work quantifies the magnetic dipolar interaction in certain organic materials and marks an important step towards understanding the underlying physics of the multiexciton state in singlet fission. PMID:26456368

  19. Triplet-sensitized cycloreversion of endoperoxides of aromatic compounds. An adiabatic reaction route

    NASA Astrophysics Data System (ADS)

    Katscher, U.; Schmidt, R.; Brauer, H.-D.

    1993-04-01

    Efficiencies EF Tc of triplet-sensitized cycloversion (T-cycloversion) of several aromatic endoperoxides (APOs) have been determined. From the dependence of EF Tc on the triplet state energy of the sensitizer the energies ET(ππ*) of reactive triplet states of APO are estimated ranging from ET(ππ*)≲ 170 kJ mol -1 for the endoperoxide of mesodiphyenylhelianthrene (MDHPO) to ET(ππ*)≈250 kJ mol -1 for the endoperoxide of rubrene. Quantaum yields QTc of T-cycloversion could be derived from [APO]- dependent measurements of EF Tc Values of QTc=0.07±0.01 for MDHPO and QTc=0.042±0.008 for the endoperoxide of benzodixanthene resulted. T-cycloversion of the endoperoxide of homoeocoerdianthrone (HOCDPO) was found to be an adiabatic and spin-allowed reactions. S 1-excited HOCD and O 2( 3Σ -g are formed in equimolar amounts. Thus T-cycloversion of APOs parallels in an amazing way singlet state cycloreversion.

  20. Triplet diffusion in singlet exciton fission sensitized pentacene solar cells

    NASA Astrophysics Data System (ADS)

    Tabachnyk, Maxim; Ehrler, Bruno; Bayliss, Sam; Friend, Richard H.; Greenham, Neil C.

    2013-10-01

    Singlet fission sensitized photovoltaics have the potential to surpass the Shockley-Queisser limit for a single-junction structure. We investigate the dynamics of triplet excitons resulting from singlet fission in pentacene and their ionization at a C60 heterojunction. We model the generation and diffusion of excitons to predict the spectral response. We find the triplet diffusion length in polycrystalline pentacene to be 40 nm. Poly(3-hexylthiophene) between the electrode and pentacene works both to confine triplet excitons and also to transfer photogenerated singlet excitons into pentacene with 30% efficiency. The lower bound for the singlet fission quantum efficiency in pentacene is 180 ± 15%.

  1. Variational analysis of mass spectra and decay constants for ground state pseudoscalar and vector mesons in the light-front quark model

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Meoyng; Ji, Chueng-Ryong; Li, Ziyue; Ryu, Hui-Young

    2015-11-01

    Using the variational principle, we compute mass spectra and decay constants of ground state pseudoscalar and vector mesons in the light-front quark model (LFQM) with the QCD-motivated effective Hamiltonian including the hyperfine interaction. By smearing out the Dirac δ function in the hyperfine interaction, we avoid the issue of negative infinity in applying the variational principle to the computation of meson mass spectra and provide analytic expressions for the meson mass spectra. Our analysis with the smeared hyperfine interaction indicates that the interaction for the heavy meson sector including the bottom and charm quarks gets more point-like. We also consider the flavor mixing effect in our analysis and determine the mixing angles from the mass spectra of (ω ,ϕ ) and (η ,η') . Our variational analysis with the trial wave function including the two lowest order harmonic oscillator basis functions appears to improve the agreement with the data of meson decay constants and the heavy meson mass spectra over the previous computation handling the hyperfine interaction as perturbation.

  2. Identifying Inter-Residue Resonances in Crowded 2D 13C-13C Chemical Shift Correlation Spectra of Membrane Proteins by Solid-State MAS NMR Difference Spectroscopy

    PubMed Central

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2013-01-01

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional 13C-13C chemical shift correlation spectra is presented. With the analyses of 13C-13C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning (MAS) NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a protonconducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly 13C labeled protein that are consistent with the high resolution structure of the M2 (22–62) protein (Sharma et al. 2010). PMID:23708936

  3. Physical properties and spectra of IO, IO - and HOI studied by ab initio methods

    NASA Astrophysics Data System (ADS)

    Minaev, Boris; Loboda, Oleksandr; Vahtras, Olav; Ågren, Hans; Bilan, Elena

    2002-03-01

    Structure and properties of the IO, IO - and HOI species, which are of potential importance for the ozone destruction catalytic cycle in the troposphere, have been calculated together with the EPR, NMR and UV-visible spectra by ab initio methodology with account of spin-orbit coupling (SOC) effects. Multi-configuration self-consistent field calculations with linear and quadratic response techniques and the multi-reference configuration interaction method have been employed. Photodissociation of these species, crucial for the catalytic ozone-destruction cycle, is critically reviewed and analyzed. Calculations predict that the singlet-triplet ( S- T) transition to the lowest triplet state ( X1A' → 3A″) should be responsible for the weak long-wavelength tail absorption (˜450-560 nm) and photodissociation of the HOI molecule. The second, more intense, band around 400 nm is produced by two overlapping S- S and S- T transitions. In order to check this assignement of the HOI photodissociation the isoelectronic IO - anion and IO radical have been studied by the same methods. Comparison with the EPR spectrum of the IO radical indicates that the methods are reliable which gives credit to the accuracy of the HOI spectral interpretation. NMR spectra of HOI and IO - molecules and some other properties are calculated for the first time.

  4. Collisionally-Mediated Singlet-Triplet Crossing in ˜{a}1A1 CH_2 Revisited: (010) Coupling

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2014-06-01

    Methylene, CH2, possesses a ground ˜{X}3B1 ground electronic state and an excited ˜{a}1A1 state only 3150cm-1 higher in energy. The collision-induced singlet-triplet crossing in the gaseous mixtures is important in determining overall reaction rates and chemical behavior. Accidental near-degeneracies between rotational levels of the singlet state and the vibrationally excited triplet state result in a few gateway rotational levels that mediate collision-induced intersystem crossing. The mixed states can be recognized and quantified by deperturbation, knowing the zero-order singlet and triplet energy levels. Hyperfine structure can be used as alternative indicator of singlet-triplet mixing. Non-zero mixing will induce hyperfine splittings intermediate between the unresolved hyperfine structure of pure singlet and the resolvable (≈50MHz) splittings of pure triplet, arising from the (I\\cdotS) interaction in the ortho states, where nuclear spin I=1. Collision-induced intersystem crossing rates from the (010) state are comparable to those for (000), yet the identities and characters of the presumed gateway states are unknown. A new spectrometer is under construction to investigate triplet mixing rotational levels of ˜{a}1A1(010) by sub-Doppler measurements of perturbation-induced hyperfine splittings. Their observation will permit the identification of gateway states and quantification of the degree of triplet contamination of the singlet wavefunction. Progress in the measurements and the analysis of rotational energy transfer in (010) will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. C.-H. Chang, G. E. Hall, T. J. Sears, J. Chem. Phys 133, 144310(2010) G. E. Hall, A. V. Komissarov, and T. J. Sears, J. Phys. Chem. A 108 7922-7927 (2004)

  5. The Moving Lines on Electron Spectra as Charge Reflexes on Non-equilibrium States of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Mishchuk, Oleg A.

    2016-04-01

    The experimental results present the phenomenon of moving lines on electron spectra which are linked spatially and in time with the localization and durability of the processes of new surface producing in folds and grain boundaries. This effect was also realized for a thin-layer composite "organic on metal films on dielectric substrate" in modeling non-equilibrium conditions which are created by the intensive electron beam pulse impact. It was found that the nature of the inceptive adsorption layer, in addition to the metal film, determines the initial positions of moving lines on the spectra. The main accents in these investigations were in observations of appearance of the moving lines, dynamics of their displacements on the spectra, final stages when these lines vanished, and finding the general regularities between the spontaneous and induced events.

  6. The Moving Lines on Electron Spectra as Charge Reflexes on Non-equilibrium States of Nanostructured Surfaces.

    PubMed

    Mishchuk, Oleg A

    2016-12-01

    The experimental results present the phenomenon of moving lines on electron spectra which are linked spatially and in time with the localization and durability of the processes of new surface producing in folds and grain boundaries. This effect was also realized for a thin-layer composite "organic on metal films on dielectric substrate" in modeling non-equilibrium conditions which are created by the intensive electron beam pulse impact. It was found that the nature of the inceptive adsorption layer, in addition to the metal film, determines the initial positions of moving lines on the spectra. The main accents in these investigations were in observations of appearance of the moving lines, dynamics of their displacements on the spectra, final stages when these lines vanished, and finding the general regularities between the spontaneous and induced events. PMID:27083583

  7. Direct measurements of the current-phase relation in long-range spin-triplet SFS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hamilton, David; van Harlingen, Dale; Wang, Yixing; Birge, Norman

    2015-03-01

    We present direct measurements of the current-phase relation (CPR) of Josephson junctions which use multiple ferromagnetic layers to generate long-range spin-triplet pair correlations. Using a phase-sensitive Josephson interferometry technique, we obtain the phase and temperature dependence of this spin-triplet supercurrent. We also demonstrate the use of an inductive shunt to enhance this technique at higher critical currents. Our data suggest that the current-phase relation of these junctions is harmonic in character. Further measurements are planned in order to determine the ground state phase shift of these junctions.

  8. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    SciTech Connect

    Corona, Maria; Garay-Palmett, Karina; U'Ren, Alfred B.

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  9. Excited-State Photodynamic Studies of Conjugated Molecular Systems for Enhanced Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kanarr, Allison Christine

    Model conjugated organic semiconductors such as pentacene and thiophene-based dendrimers have photophysical properties that could potentially improve the performance of organic photovoltaic devices. Spectroscopic and time-resolved measurements of these materials are used to create kinetic schemes of their excited states. This thesis first presents time-resolved spectra of pentacene on nanostructured films. The excited states of pentacene on these films are found to exhibit an enhanced absorption of visible light due to surface plasmon interactions. Furthermore, the triplet state kinetics are altered in the presence of a surface plasmon active layer, and a strong increase in the yield of triplets is observed. These results indicate that surface plasmon coupling can be used to direct the excited state of such molecular systems to a desired outcome and that potentially such control can be used to improve the efficiency of solar energy conversion. A detailed kinetics analysis is presented of the other conjugated system, thiophene-based dendrimers, first in the experimentally simpler solution form. From femtosecond-resolution transient absorption data, we create a kinetic scheme that includes two cooling processes to convert the initially generated, hot singlet into the geometrically relaxed, first excited singlet. Subsequently, relaxation of this singlet occurs via one of three pathways: radiative decay to yield the ground state, internal conversion to yield the ground state, or intersystem crossing to produce the triplet excited state. Flash photolysis measurements allow the longer time delay necessary to study this long-lived triplet state. The decay time of the triplet decreases with an increase in the arm length of the dendrimer. Finally, steady-state and time-resolved absorption measurements of dendrimer films are presented. These studies follow from those of the dendrimers in solution and provide excited state kinetic information that is more relevant to the application of dendrimers in photovoltaic devices. Steady-state absorption measurements show that spun cast and drop cast dendrimer films follow the same trend as the dendrimers in solution: a red-shift of the absorption with increasing number of thiophene units. Flash photolysis data reveal that the triplet is quenched by oxygen; films in an inert atmosphere have triplet lifetimes on the same order (tens of microseconds) as in solution.

  10. Comparative assessment of density functional methods for evaluating essential parameters to simulate SERS spectra within the excited state energy gradient approximation.

    PubMed

    Mohammadpour, Mozhdeh; Jamshidi, Zahra

    2016-05-21

    The prospect of challenges in reproducing and interpretation of resonance Raman properties of molecules interacting with metal clusters has prompted the present research initiative. Resonance Raman spectra based on the time-dependent gradient approximation are examined in the framework of density functional theory using different methods for representing the exchange-correlation functional. In this work the performance of different XC functionals in the prediction of ground state properties, excitation state energies, and gradients are compared and discussed. Resonance Raman properties based on time-dependent gradient approximation for the strongly low-lying charge transfer states are calculated and compared for different methods. We draw the following conclusions: (1) for calculating the binding energy and ground state geometry, dispersion-corrected functionals give the best performance in comparison to ab initio calculations, (2) GGA and meta GGA functionals give good accuracy in calculating vibrational frequencies, (3) excited state energies determined by hybrid and range-separated hybrid functionals are in good agreement with EOM-CCSD calculations, and (4) in calculating resonance Raman properties GGA functionals give good and reasonable performance in comparison to the experiment; however, calculating the excited state gradient by using the hybrid functional on the hessian of GGA improves the results of the hybrid functional significantly. Finally, we conclude that the agreement of charge-transfer surface enhanced resonance Raman spectra with experiment is improved significantly by using the excited state gradient approximation. PMID:27208944

  11. Triplet dynamics in pentacene crystals: applications to fission-sensitized photovoltaics.

    PubMed

    Poletayev, Andrey D; Clark, Jenny; Wilson, Mark W B; Rao, Akshay; Makino, Yoshitaka; Hotta, Shu; Friend, Richard H

    2014-02-12

    The decay and transport of triplet excitons photogenerated via singlet exciton fission in polycrystalline and single-crystalline pentacene is reported. Using transient absorption spectroscopy, we find evidence for diffusion-mediated triplet-triplet annihilation. We estimate monomolecular lifetimes, bimolecular annihilation rate constants, and triplet exciton diffusion lengths. We discuss these results in the context of current solar cell device architectures. PMID:24375546

  12. Triplet energy management between two signaling units through cooperative rigid scaffolds.

    PubMed

    Miro, Paula; Vayá, Ignacio; Sastre, Germán; Jiménez, M Consuelo; Marin, M Luisa; Miranda, Miguel A

    2015-12-24

    Through-bond triplet exciplex formation in donor-acceptor systems linked through a rigid bile acid scaffold has been demonstrated on the basis of kinetic evidence upon population of the triplet acceptors (naphthalene, or biphenyl) by through-bond triplet-triplet energy transfer from benzophenone. PMID:26561577

  13. Controllable generation of a spin-triplet supercurrent in a Josephson spin valve

    NASA Astrophysics Data System (ADS)

    Iovan, Adrian; Golod, Taras; Krasnov, Vladimir M.

    2014-10-01

    It has been predicted theoretically that an unconventional odd-frequency spin-triplet component of a superconducting order parameter can be induced in multilayered ferromagnetic structures with noncollinear magnetization. In this work, we study experimentally nanoscale devices, in which a ferromagnetic spin valve is embedded into a Josephson junction. We demonstrate two ways of in situ analysis of such Josephson spin valves: via magnetoresistance measurements and via in situ magnetometry based on flux quantization in the junction. We observe that supercurrent through the device depends on the relative orientation of magnetizations of the two ferromagnetic layers and is enhanced in the noncollinear state of the spin valve. We attribute this phenomenon to controllable generation of the spin-triplet superconducting component in a ferromagnet.

  14. Spin-triplet supercurrent in Co/Ni multilayer Josephson junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Gingrich, E. C.; Quarterman, P.; Wang, Yixing; Loloee, R.; Pratt, W. P., Jr.; Birge, Norman O.

    2012-12-01

    We have measured spin-triplet supercurrent in Josephson junctions of the form S/F'/F/F'/S, where S is superconducting Nb, F' is a thin Ni layer with in-plane magnetization, and F is a Ni/[Co/Ni]n multilayer with out-of-plane magnetization. The supercurrent in these junctions decays very slowly with F-layer thickness and is much larger than in similar junctions not containing the two F' layers. Those two features are the characteristic signatures of spin-triplet supercurrent, which is maximized by the orthogonality of the magnetizations in the F and F' layers. Magnetic measurements confirm the out-of-plane anisotropy of the Co/Ni multilayers. These samples have their critical current optimized in the as-prepared state, which will be useful for future applications.

  15. Scalar triplet on a domain wall: an exact solution

    NASA Astrophysics Data System (ADS)

    Gani, Vakhid A.; Lizunova, Mariya A.; Radomskiy, Roman V.

    2016-04-01

    We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect — a domain wall. The wall breaks the global O(3) symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off. We obtain that degrees of freedom localized on the wall can appear or do not appear depending on the parameters of the model.

  16. Ultrafast singlet and triplet dynamics in microcrystalline pentacene films

    NASA Astrophysics Data System (ADS)

    Marciniak, Henning; Pugliesi, Igor; Nickel, Bert; Lochbrunner, Stefan

    2009-06-01

    The exciton dynamics of microcrystalline pentacene films is investigated by femtosecond pump-probe experiments. Measurements are performed with ultrashort laser pulses applied at normal incidence and at an angle of incidence of 65° to disentangle singlet and triplet contributions by exploiting the different orientations of the molecular transition dipoles. The results indicate that the initial 70 fs fast relaxation step transforms the optically excited excitons in a reasonable mobile species with strongly reduced radiative transition strength. Fission into triplet excitons takes place on the picosecond time scale as a secondary, thermally activated process and with a small total yield of approximately 2%. Evidence is provided that the dominant species are singlet excitons with excimer character. To the subsequent dynamics contribute diffusion driven exciton-exciton annihilation and trapping of singlet and triplet excitons. Values for diffusion constants and trap densities are extracted by modeling the measurements with rate equations which include singlet and triplet dynamics.

  17. Odd-Frequency Triplet Josephson Current Through an Exchange Spring

    NASA Astrophysics Data System (ADS)

    Moke, Adam; Baker, Thomas; Richie-Halford, Adam; Bill, Andreas

    2012-11-01

    The existence of an odd-frequency long range triplet component in the order parameter of a proximity system with singlet superconductors is a recent prediction that has garnered great interest. The experimental fingerprint of this phenomenon is difficult to establish. We investigate a hybrid structure in which the emergence of the long range triplet component may be measured and identified. We consider a superconductor - exchange spring - superconductor Josephson junction as a function of increasing twist of the magnetic domain wall in the exchange spring. We show that as the domain wall is generated the long range triplet component emerges and modifies the current flowing through the Josephson junction. The critical temperature is also affected by the increased twist of the domain wall. The calculations lead us to propose an experiment where the long range triplet component can unequivocally be identified.

  18. Epigenetics and Triplet-Repeat Neurological Diseases

    PubMed Central

    Nageshwaran, Sathiji; Festenstein, Richard

    2015-01-01

    The term “junk DNA” has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases. PMID:26733936

  19. Triplet pair amplitude in a trapped s -wave superfluid Fermi gas with broken spin rotation symmetry

    NASA Astrophysics Data System (ADS)

    Endo, Yuki; Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji

    2015-08-01

    We investigate the possibility that the broken spatial inversion symmetry caused by a trap potential induces a spin-triplet Cooper pair amplitude in an s -wave superfluid Fermi gas. Based on symmetry considerations, we clarify that this phenomenon may occur, when a spin rotation symmetry of the system is also broken. We also numerically confirm that a triplet pair amplitude is actually induced under this condition, using a simple model. Our results imply that this phenomenon is already present in a trapped s -wave superfluid Fermi gas with spin imbalance. As an interesting application of this phenomenon, we point out that one may produce a p -wave superfluid Fermi gas by suddenly changing the s -wave pairing interaction to a p -wave one by using the Feshbach resonance technique. Since a Cooper pair is usually classified into a spin-singlet (and even-parity) state and a spin-triplet (and odd-parity) state, our results would be useful in considering how to mix them with each other in a superfluid Fermi gas. Such an admixture has recently attracted much attention in the field of noncentrosymmetric superconductivity, so that our results would also contribute to the further development of this research field, from the viewpoint of cold Fermi gas physics.

  20. Correlated Pair States Formed by Singlet Fission and Exciton-Exciton Annihilation.

    PubMed

    Scholes, Gregory D

    2015-12-24

    Singlet fission to form a pair of triplet excitations on two neighboring molecules and the reverse process, triplet-triplet annihilation to upconvert excitation, have been extensively studied. Comparatively little work has sought to examine the properties of the intermediate state in both of these processes-the bimolecular pair state. Here, the eigenstates constituting the manifold of 16 bimolecular pair excitations and their relative energies in the weak-coupling regime are reported. The lowest-energy states obtained from the branching diagram method are the triplet pairs with overall singlet spin |X1⟩ ≈ (1)[TT] and quintet spin |Q⟩ ≈ (5)[TT]. It is shown that triplet pair states can be separated by a triplet-triplet energy-transfer mechanism to give a separated, yet entangled triplet pair (1)[T···T]. Independent triplets are produced by decoherence of the separated triplet pair. Recombination of independent triplets by exciton-exciton annihilation to form the correlated triplet pair (i.e., nongeminate recombination) happens with 1/3 of the rate of either triplet migration or recombination of the separated correlated triplet pair (geminate recombination). PMID:26595530