Sample records for tropical land-use change

  1. The transparency, reliability and utility of tropical rainforest land-use and land-cover change models.

    PubMed

    Rosa, Isabel M D; Ahmed, Sadia E; Ewers, Robert M

    2014-06-01

    Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the

  2. Land use change and precipitation feedbacks across the Tropics

    NASA Astrophysics Data System (ADS)

    McCurley, K.; Jawitz, J. W.

    2017-12-01

    We investigated the relationship between agricultural land expansion, resulting in deforestation in the Tropics (South America, Africa, and Southeast Asia), and the local/regional hydroclimatic cycle. We hypothesized that changes in physical catchment properties in recent decades have resulted in measurable impacts on elements of the water budget, specifically evapotranspiration and precipitation. Using high resolution, gridded global precipitation and potential evapotranspiration data, as well as discharge time series (1960-2007) from the Global Runoff Data Center, we computed the components of the water budget on a catchment scale from 81 tropical basins that have experienced land use change. We estimated the landscape-driven component of evapotranspiration for two time periods, 1960-1983 and 1984-2007, and compared it to the relative change in forest cover across time. The findings show a negative relationship between the landscape-driven component of evapotranspiration and deforestation, suggesting that a decrease in forest cover causes a decrease in evapotranspiration. We further illustrate how this dynamic implicates basin-scale water availability due to land use change stimulated by agricultural production, including potential negative feedback of agricultural area expansion onto precipitation recycling.

  3. Land use change exacerbates tropical South American drought by sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Eun; Lintner, Benjamin R.; Boyce, C. Kevin; Lawrence, Peter J.

    2011-10-01

    Observations of tropical South American precipitation over the last three decades indicate an increasing rainfall trend to the north and a decreasing trend to the south. Given that tropical South America has experienced significant land use change over the same period, it is of interest to assess the extent to which changing land use may have contributed to the precipitation trends. Simulations of the National Center for Atmospheric Research Community Atmosphere Model (NCAR CAM3) analyzed here suggest a non-negligible impact of land use on this precipitation behavior. While forcing the model by imposed historical sea surface temperatures (SSTs) alone produces a plausible north-south precipitation dipole over South America, NCAR CAM substantially underestimates the magnitude of the observed southern decrease in rainfall unless forcing associated with human-induced land use change is included. The impact of land use change on simulated precipitation occurs primarily during the local dry season and in regions of relatively low annual-mean rainfall, as the incidence of very low monthly-mean accumulations (<10 mm/month) increases significantly when land use change is imposed. Land use change also contributes to the simulated temperature increase by shifting the surface turbulent flux partitioning to favor sensible over latent heating. Moving forward, continuing pressure from deforestation in tropical South America will likely increase the occurrence of significant drought beyond what would be expected by anthropogenic warming alone and in turn compound biodiversity decline from habitat loss and fragmentation.

  4. Theorizing Land Cover and Land Use Changes: The Case of Tropical Deforestation

    NASA Technical Reports Server (NTRS)

    Walker, Robert

    2004-01-01

    This article addresses land-cover and land-use dynamics from the perspective of regional science and economic geography. It first provides an account of the so-called spatially explicit model, which has emerged in recent years as a key empirical approach to the issue. The article uses this discussion as a springboard to evaluate the potential utility of von Thuenen to the discourse on land-cover and land-use change. After identifying shortcomings of current theoretical approaches to land use in mainly urban models, the article filters a discussion of deforestation through the lens of bid-rent and assesses its effectiveness in helping us comprehend the destruction of tropical forest in the Amazon basin. The article considers the adjustments that would have to be made to existing theory to make it more useful to the empirical issues.

  5. Tropical amphibians in shifting thermal landscapes under land-use and climate change.

    PubMed

    Nowakowski, A Justin; Watling, James I; Whitfield, Steven M; Todd, Brian D; Kurz, David J; Donnelly, Maureen A

    2017-02-01

    Land-cover and climate change are both expected to alter species distributions and contribute to future biodiversity loss. However, the combined effects of land-cover and climate change on assemblages, especially at the landscape scale, remain understudied. Lowland tropical amphibians may be particularly susceptible to changes in land cover and climate warming because many species have narrow thermal safety margins resulting from air and body temperatures that are close to their critical thermal maxima (CT max ). We examined how changing thermal landscapes may alter the area of thermally suitable habitat (TSH) for tropical amphibians. We measured microclimates in 6 land-cover types and CT max of 16 frog species in lowland northeastern Costa Rica. We used a biophysical model to estimate core body temperatures of frogs exposed to habitat-specific microclimates while accounting for evaporative cooling and behavior. Thermally suitable habitat area was estimated as the portion of the landscape where species CT max exceeded their habitat-specific maximum body temperatures. We projected changes in TSH area 80 years into the future as a function of land-cover change only, climate change only, and combinations of land-cover and climate-change scenarios representing low and moderate rates of change. Projected decreases in TSH area ranged from 16% under low emissions and reduced forest loss to 30% under moderate emissions and business-as-usual land-cover change. Under a moderate emissions scenario (A1B), climate change alone contributed to 1.7- to 4.5-fold greater losses in TSH area than land-cover change only, suggesting that future decreases in TSH from climate change may outpace structural habitat loss. Forest-restricted species had lower mean CT max than species that occurred in altered habitats, indicating that thermal tolerances will likely shape assemblages in changing thermal landscapes. In the face of ongoing land-cover and climate change, it will be critical to

  6. Carbon emissions caused by land-use change in tropical forests of Borneo island

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.

    2016-12-01

    Tropical forests in Borneo island have disappeared by 1.5%/year during the last decade. Land-use changes have been mainly caused by plantation and wild fire in Borneo island. We estimated regional scale carbon balance of Borneo island by using a terrestrial ecosystem model, VISIT. We took into account a land-use change map developed by using MODIS data. The land-use change map includes when wild fire occurred and when artificial trees (e.g. oil palm) were planted. Southern part of Borneo island was strongly affected by wild fire. Especially in 2002, 2006 and 2015, wild fire was spread widely because of ENSO. Carbon emissions in these years were larger than other year. Carbon emission in northern part of Borneo was mainly caused by conversion from forest to oil palm.

  7. Land Use Change and Hydrologic Processes in High-Elevation Tropical Watersheds of the Northern Andes

    NASA Astrophysics Data System (ADS)

    Avery, W. A.; Riveros-Iregui, D. A.; Covino, T. P.; Peña, C.

    2013-12-01

    The humid tropics cover one-fifth of the Earth's land surface and generate the greatest amount of runoff of any biome globally, but remain poorly understood and understudied. Humid tropical regions of the northern and central Andes have experienced greater anthropogenic land-use/land-cover (LULC) change than nearly any other high mountain system in the world. Vast expanses of this region are currently undergoing rapid transformation to farmland for production of potatoes and pasture for cattle grazing. Although the humid tropics have some of the highest runoff ratios, precipitation, and largest river flows in the world, there is a lack of scientific literature that addresses hydrologic processes in these regions and very few field observations are available to inform management strategies to ensure the sustainability of water resources of present and future generations. We seek to improve understanding of hydrologic processes and feedbacks in the humid tropics using existing and new information from two high-elevation watersheds that span a LULC gradient in the Andes Mountains of Colombia. One site is located in the preserved Chingaza Natural National Park in Central Colombia (undisturbed). The second site is located ~60 km to the northwest and has experienced considerable LULC change over the last 40 years. Combined, these watersheds deliver over 80% of the water resources to Bogotá and neighboring communities. These watersheds have similar climatological characteristics (including annual precipitation), but have strong differences in LULC which result in substantial differences in hydrologic response and streamflow dynamics. We present an overview of many of the pressing issues and effects that land degradation and climate change are posing to the long-term sustainability of water resources in the northern Andes. Our overarching goal is to provide process-based knowledge that will be useful to prevent, mitigate, or respond to future water crises along the Andean

  8. Large rainfall changes consistently projected over substantial areas of tropical land

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  9. Practical approaches for assessing local land use change and conservation priorities in the tropics

    NASA Astrophysics Data System (ADS)

    Rivas, Cassandra J.

    Tropical areas typically support high biological diversity; however, many are experiencing rapid land-use change. The resulting loss, fragmentation, and degradation of habitats place biodiversity at risk. For these reasons, the tropics are frequently identified as global conservation hotspots. Safeguarding tropical biodiversity necessitates successful and efficient conservation planning and implementation at local scales, where land use decisions are made and enforced. Yet, despite considerable agreement on the need for improved practices, planning may be difficult due to limited resources, such as funding, data, and expertise, especially for small conservation organizations in tropical developing countries. My thesis aims to assist small, non-governmental organizations (NGOs), operating in tropical developing countries, in overcoming resource limitations by providing recommendations for improved conservation planning. Following a brief introduction in Chapter 1, I present a literature review of systematic conservation planning (SCP) projects in the developing tropics. Although SCP is considered an efficient, effective approach, it requires substantial data and expertise to conduct the analysis and may present challenges for implementation. I reviewed and synthesized the methods and results of 14 case studies to identify practical ways to implement and overcome limitations for employing SCP. I found that SCP studies in the peer-reviewed literature were primarily implemented by researchers in large organizations or institutions, as opposed to on-the-ground conservation planners. A variety of data types were used in the SCP analyses, many of which data are freely available. Few case studies involved stakeholders and intended to implement the assessment; instead, the case studies were carried out in the context of research and development, limiting local involvement and implementation. Nonetheless, the studies provided valuable strategies for employing each step of

  10. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review

    NASA Astrophysics Data System (ADS)

    Hergoualc'h, Kristell; Verchot, Louis V.

    2011-06-01

    The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire-damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha-1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha-1 in rice fields to 436.2 ± 77.0 Mg C ha-1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input-output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha-1 yr-1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha-1 or 17.1 ± 3.6 Mg C ha-1 yr-1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.

  11. Quantifying the impacts of land use change on soil organic carbon losses in tropical peatlands

    NASA Astrophysics Data System (ADS)

    Farmer, J.; Smith, J.; Smith, P.; Matthews, R.

    2012-04-01

    The challenge of collecting field measurements of soil carbon dioxide (CO2) efflux and soil carbon (C) in tropical peatlands creates an opportunity for the use of SOC models for predicting local and regional impacts of land use and climate change on these soils, offering a way of translating this limited data into tangible results. Previously, no soil C model existed for use in non-steady state sites such as those found on tropical peats- in particular peat swamp forests which accumulate C, and oil palm plantations which are grown for 20-25 years between re-plantings. A simple, user friendly model has been created for use by scientists, policy makers and plantation managers. This model uses only limited inputs to predict the changes to soil C from land use and climate change. The model runs on the assumption that plant inputs can be related to yield, and that this can be used to derive the decomposition of SOM. It uses a simple decomposition response to determine the changes to the soil C. The model can run in a basic form if data is very limited, or a more complex form with modifiers for temperature, pH, salinity and soil moisture if this data is available. Using measured CO2 efflux and soil C values from peat cores, combined with literature values, we demonstrate the efficacy of the model, showing how we have identified and addressed some of the issues related to modelling soil C losses from tropical peat soils under land use change. Key challenges addressed included quantifying the effects of drainage when peat swamp forests are converted to oil palm plantations, and comparing field results between sites because in oil palm plantations the original soil conditions prior to conversion from peat swamp forest were largely unknown.

  12. Effects of land cover change on the tropical circulation in a GCM

    NASA Astrophysics Data System (ADS)

    Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan

    2010-09-01

    Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.

  13. Effects of Land Use Change on Tropical Coastal Systems are Exacerbated by the Decline of Marine Mega-Herbivores

    NASA Astrophysics Data System (ADS)

    Lamers, L. P.; Christianen, M. J.; Govers, L. L.; Kiswara, W.; Bouma, T.; Roelofs, J. G.; Van Katwijk, M. M.

    2011-12-01

    Land use changes in tropical regions such as deforestation, mining activities, and shrimp farming, not only affect freshwater and terrestrial ecosystems, but also have a strong impact on coastal marine ecosystems. The increased influx of sediments and nutrients affects these ecosystems in multiple ways. Seagrass meadows that line coastal marine ecosystems provide important ecosystem services, e.g. sediment trapping, coastal protection and fisheries. Based on studies in East Kalimantan (Indonesia) we have shown that seagrass meadow parameters may provide more reliable indicators of land use change than the sampling of either marine sediments or water quality chemical parameters. Observations of changes in ecosystem functioning are particularly valuable for those areas where flux values are lacking and rapid surveys are needed. Time series of estuarine seagrass transects can show not only the intensity, but also the radius of action of land use change on coastal marine systems. Marine mega-herbivores pose a strong top-down control in seagrass ecosystems. We will provide a conceptual model, based on experimental evidence, to show that the global decline of marine mega-herbivore populations (as a result of large-scale poaching) may decrease the resilience of seagrass systems to increased anthropogenic forcing including land use changes. These outcomes not only urge the need for better regulation of land use change, but also for the establishment of marine protected areas (MPA's) in tropical coastal regions.

  14. A monitoring protocol for the ecohydrological effects of land use changes in tropical mountain ecosystems

    NASA Astrophysics Data System (ADS)

    Flórez, C. P.; León, J. D.; Villegas, J. C.; Betancur, T.; Suescún, D.; García-Leoz, V.; Cardona, A. I.; Martin, Á. M.

    2014-12-01

    In tropical mountain regions, the societal demands for ecosystem services has led to pressure over ecosystems that, in ocassions, may threaten the capacity of ecosystems to provide services. More specifically, global-change processes such as land use change and climate dynamics may lead to uncertainties about the stability of ecosystem functions on which services rely on. Of particular interest are the effects of land cover changes on the hydrological dynamics of the soil, that support multiple regulation and provision services, critical for a large portion of the population settled in mountain regions of the world. In this work, we present a protocol for the combined monitoring of ecohydrological, biogeochemical and sediment dynamics in a group of instrumented plots representing a typical gradient of human intervention in a tropical mountain ecosystem. Land cover categories include: a mature forest, secondary forest, early successional stage, recently abandoned agricultural field, a cattle pasture, permanent cropland, a high rotation cropland. On each plot, water fluxes from the top of the canopy to 1.5 m below soil surface are measured using a diverse array of instruments, along with measurements of sediment load in runoff waters and nutrient loads for all hydrologic compartments (measurements include Ca, Mg, K, P, NH4, NO3, Mn, Fe). Our preliminary results indicate that although rainfall does not vary significantly among plots, runoff generation does, with higher values ocurring in the pasture. Conversely, infiltration rates are highest in both types of forests, particularly for shallower layers of the soil. Chemical analysis indicate higher nutrient loads in runoff generating from croplands, highlighting the potential loss of soil fertility and potentially leading to eutrophication in water bodies downstream. After completion, our results will provide land managers tools to assess larger-scale effects of land use changes on the capacity of ecosystems to provide

  15. Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs.

    PubMed

    Dislich, Claudia; Hettig, Elisabeth; Salecker, Jan; Heinonen, Johannes; Lay, Jann; Meyer, Katrin M; Wiegand, Kerstin; Tarigan, Suria

    2018-01-01

    Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as

  16. Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.

    PubMed

    García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo

    2004-12-01

    Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.

  17. Sustainable landscapes in a world of change: tropical forests, land use and implementation of REDD+: Part I

    Treesearch

    Richard Birdsey; Yude Pan; Richard Houghton

    2013-01-01

    Tropical forests play a critical role in the Earth system; however, tropical landscapes have changed greatly in recent decades because of increasing demand for land to support agriculture and timber production, fuel wood, and other pressures of population and human economics. The observable results are a legacy of persistent deforestation, forest degradation, increased...

  18. Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs

    PubMed Central

    Dislich, Claudia; Hettig, Elisabeth; Heinonen, Johannes; Lay, Jann; Meyer, Katrin M.; Wiegand, Kerstin; Tarigan, Suria

    2018-01-01

    Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as

  19. Optimal use of land surface temperature data to detect changes in tropical forest cover

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, T. T.; Frank, A. J.; Jin, Y.; Smyth, P.; Goulden, M.; van der Werf, G.; Randerson, J. T.

    2011-12-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the build up of atmospheric CO2. Here we examined different ways to use remotely sensed land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05×0.05 degree Terra MODerate Resolution Imaging Spectroradiometer (MODIS) observations of LST and PRODES (Program for the Estimation of Deforestation in the Brazilian Amazon) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10×10 degree included most of the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (~1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pan-tropical deforestation classifiers. Combined with the normalized difference vegetation index (NDVI), a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST difference decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES. The use of day-night LST differences may be particularly valuable for use with satellites that do not have spectral bands that allow for the estimation of NDVI or other vegetation indices.

  20. Challenges in Global Land Use/Land Cover Change Modeling

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2011-12-01

    For the purposes of projecting and anticipating human-induced land use change at the global scale, much work remains in the systematic mapping and modeling of world-wide land uses and their related dynamics. In particular, research has focused on tropical deforestation, loss of prime agricultural land, loss of wild land and open space, and the spread of urbanization. Fifteen years of experience in modeling land use and land cover change at the regional and city level with the cellular automata model SLEUTH, including cross city and regional comparisons, has led to an ability to comment on the challenges and constraints that apply to global level land use change modeling. Some issues are common to other modeling domains, such as scaling, earth geometry, and model coupling. Others relate to geographical scaling of human activity, while some are issues of data fusion and international interoperability. Grid computing now offers the prospect of global land use change simulation. This presentation summarizes what barriers face global scale land use modeling, but also highlights the benefits of such modeling activity on global change research. An approach to converting land use maps and forecasts into environmental impact measurements is proposed. Using such an approach means that multitemporal mapping, often using remotely sensed sources, and forecasting can also yield results showing the overall and disaggregated status of the environment.

  1. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, S.; Gaston, G.; Daniels, R.C.

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s landmore » surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.« less

  2. Effects of land-use change on the carbon balance of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Goodale, C. L.

    Most changes in land use affect the amount of carbon held in vegetation and soil, thereby, either releasing carbon dioxide (a greenhouse gas) to, or removing it from, the atmosphere. The greatest fluxes of carbon result from conversion of forests to open lands (and vice versa). Model-based estimates of the flux of carbon attributable to land-use change are highly variable, however, largely as a result of uncertainties in the areas annually affected by different types of land-use change. Uncertain rates of tropical deforestation, for example, account for more than half of the range in estimates of the global carbon flux. Three other factors account for much of the rest of the uncertainty: (1) the initial stocks of carbon in ecosystems affected by land-use change (i.e., spatial heterogeneity), (2) per hectare changes in carbon stocks in response to different types of land-use change, and (3) legacy effects; that is, the time it takes for carbon stocks to equilibrate following a change in land use. For the tropics, recent satellite-based estimates of deforestation are lower than previous estimates and yield calculated carbon emissions from land-use change that are similar to independently-derived estimates of the total net flux for the region. The similarity suggests that changes in land use account for the net flux of carbon from the tropics. For the northern mid-latitudes, the carbon sink attributed to land-use change is less than the sink obtained by other methods, suggesting either an incomplete accounting of land-use change or the importance of other factors in explaining the current carbon sink in that region.

  3. The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa.

    PubMed

    Ermert, Volker; Fink, Andreas H; Morse, Andrew P; Paeth, Heiko

    2012-01-01

    Climate change will probably alter the spread and transmission intensity of malaria in Africa. In this study, we assessed potential changes in the malaria transmission via an integrated weather-disease model. We simulated mosquito biting rates using the Liverpool Malaria Model (LMM). The input data for the LMM were bias-corrected temperature and precipitation data from the regional model (REMO) on a 0.5° latitude-longitude grid. A Plasmodium falciparum infection model expands the LMM simulations to incorporate information on the infection rate among children. Malaria projections were carried out with this integrated weather-disease model for 2001 to 2050 according to two climate scenarios that include the effect of anthropogenic land-use and land-cover changes on climate. Model-based estimates for the present climate (1960 to 2000) are consistent with observed data for the spread of malaria in Africa. In the model domain, the regions where malaria is epidemic are located in the Sahel as well as in various highland territories. A decreased spread of malaria over most parts of tropical Africa is projected because of simulated increased surface temperatures and a significant reduction in annual rainfall. However, the likelihood of malaria epidemics is projected to increase in the southern part of the Sahel. In most of East Africa, the intensity of malaria transmission is expected to increase. Projections indicate that highland areas that were formerly unsuitable for malaria will become epidemic, whereas in the lower-altitude regions of the East African highlands, epidemic risk will decrease. We project that climate changes driven by greenhouse-gas and land-use changes will significantly affect the spread of malaria in tropical Africa well before 2050. The geographic distribution of areas where malaria is epidemic might have to be significantly altered in the coming decades.

  4. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests.

    PubMed

    Bregman, Tom P; Lees, Alexander C; MacGregor, Hannah E A; Darski, Bianca; de Moura, Nárgila G; Aleixo, Alexandre; Barlow, Jos; Tobias, Joseph A

    2016-12-14

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. © 2016 The Author(s).

  5. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests

    PubMed Central

    Bregman, Tom P.; Lees, Alexander C.; MacGregor, Hannah E. A.; Darski, Bianca; de Moura, Nárgila G.; Aleixo, Alexandre; Barlow, Jos

    2016-01-01

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. PMID:27928045

  6. Toward a whole-landscape approach for sustainable land use in the tropics.

    PubMed

    DeFries, R; Rosenzweig, C

    2010-11-16

    Increasing food production and mitigating climate change are two primary but seemingly contradictory objectives for tropical landscapes. This special feature examines synergies and trade-offs among these objectives. Four themes emerge from the papers: the important roles of both forest and agriculture sectors for climate mitigation in tropical countries; the minor contribution from deforestation-related agricultural expansion to overall food production at global and continental scales; the opportunities for synergies between improved food production and reductions in greenhouse gas emissions through diversion of agricultural expansion to already-cleared lands, improved soil, crop, and livestock management, and agroforestry; and the need for targeted policy and management interventions to make these synergistic opportunities a reality. We conclude that agricultural intensification is a key factor to meet dual objectives of food production and climate mitigation, but there is no single panacea for balancing these objectives in all tropical landscapes. Place-specific strategies for sustainable land use emerge from assessments of current land use, demographics, and other biophysical and socioeconomic characteristics, using a whole-landscape, multisector perspective.

  7. Optimal use of land surface temperature data to detect changes in tropical forest cover

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Thijs T.; Frank, Andrew J.; Jin, Yufang; Smyth, Padhraic; Goulden, Michael L.; van der Werf, Guido R.; Randerson, James T.

    2011-06-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the buildup of atmospheric CO2. Here we examined different ways to use land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05° × 0.05° Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of LST and Program for the Estimation of Deforestation in the Brazilian Amazon (PRODES) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10° × 10° included the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (˜1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pantropical deforestation classifiers. Combined with the normalized difference vegetation index, a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES.

  8. Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis

    NASA Astrophysics Data System (ADS)

    van Lent, J.; Hergoualc'h, K.; Verchot, L. V.

    2015-08-01

    Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (103 studies, 387 N2O and 111 NO case studies), determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (43 studies, 132 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 88) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3-/[NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not overall increase significantly as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability

  9. Regionalisation of Hydrological Indices to Assess Land-Use Change Impacts in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Ochoa Tocachi, B. F.

    2014-12-01

    Andean ecosystems are major water sources for cities and communities located in the Tropical Andes; however, there is a considerable lack of knowledge about their hydrology. Two problems are especially important: (i) the lack of monitoring to assess the impacts of historical land-use and cover change and degradation (LUCCD) at catchment scale, and (ii) the high variability in climatic and hydrological conditions that complicate the evaluation of land management practices. This study analyses how a reliable LUCCD impacts assessment can be performed in an environment of high variability combined with data-scarcity and low-quality records. We use data from participatory hydrological monitoring activities in 20 catchments distributed along the tropical Andes. A set of 46 hydrological indices is calculated and regionalized by relating them to 42 physical catchment properties. Principal Component Analysis (PCA) is performed to maximise available data while minimising redundancy in the sets of variables. Hydrological model parameters are constrained by estimated indices, and different behavioural predictions are assembled to provide a generalised response on which we assess LUCCD impacts. Results from this methodology show that the attributed effects of LUCCD in pair-wise catchment comparisons may be overstated or hidden by different sources of uncertainty, including measurement inaccuracies and model structural errors. We propose extrapolation and evaluation in ungauged catchments as a way to regionalize LUCCD predictions and to provide statistically significant conclusions in the Andean region. These estimations may deliver reliable knowledge to evaluate the hydrological impact of different watershed management practices.

  10. Changes of cloudiness over tropical land during the past few decades and its link to global climate change

    NASA Astrophysics Data System (ADS)

    Arias, P.; Fu, R.; Li, W.

    2007-12-01

    Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease

  11. Implications of land use change in tropical West Africa under global warming

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Claussen, Martin

    2015-04-01

    Northern Africa, and the Sahel in particular, are highly vulnerable to climate change, due to strong exposure to increasing temperature, precipitation variability, and population growth. A major link between climate and humans in this region is land use and associated land cover change, mainly where subsistence farming prevails. But how strongly does climate change affect land use and how strongly does land use feeds back into climate change? To which extent may climate-induced water, food and wood shortages exacerbate conflict potential and lead changes in land use and to migration? Estimates of possible changes in African climate vary among the Earth System Models participating in the recent Coupled Model Intercomparison (CMIP5) exercise, except for the region adjacent to the Mediterranean Sea, where a significant decrease of precipitation emerges. While all models agree in a strong temperature increase, rainfall uncertainties for most parts of the Sahara, Sahel, and Sudan are higher. Here we present results of complementary experiments based on extreme and idealized land use change scenarios within a future climate.. We use the MPI-ESM forced with a strong green house gas scenario (RCP8.5) and apply an additional land use forcing by varying largely the intensity and kind of agricultural practice. By these transient experiments (until 2100) we elaborate the additional impact on climate due to strong land use forcing. However, the differences are mostly insignificant. The greenhouse gas caused temperature increase and the high variability in the West African Monsoon rainfall superposes the minor changes in climate due to land use. While simulated climate key variables like precipitation and temperature are not distinguishable from the CMIP5 RCP8.5 results, an additional greening is simulated, when crops are demanded. Crops have lower water usage than pastureland has. This benefits available soil water, which is taken up by the natural vegetation and makes it more

  12. Studying the Effects of Amazonian Land Cover Change on Glacier Mass Balance in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; Fernandez, A.; Gabrielli, P.; Montenegro, A.; Postigo, J.; Hellstrom, R. A.

    2017-12-01

    Recent research has highlighted several ongoing environmental changes occurring across Tropical South America, including Andean glacier retreat, drought, as well as changes in land-use and land-cover. As the regional climate of the area is mostly characterized by land-ocean interactions, the atmospheric convection in the Amazon, and the effect of the Andes on circulation patterns, it follows that changes in one of those regions may affect the other. Most scholars who have studied the causes of tropical glaciers' fluctuations have not analyzed the linkages with changes in the Amazon with the same attention paid to the influence of Pacific sea surface temperature. Here we study the response of glacier surface mass balance in the Cordillera Blanca, Peru (10°S), to a scenario where the Amazonian rainforest is replaced by savannas. We ran climatic simulations at 2-km spatial resolution utilizing the Weather Research and Forecasting (WRF) model considering two scenarios: (a) control (CRTL), with today's rainforest extent; and (b) land cover change (LCC), where all the rainforest was replaced by savanna. WRF output was in turn ingested into a glacier energy and mass balance (GEMB) model that we validate by reconstructing both the accumulated mass balance from available observations, and the altitudinal distribution of mass balance in the region. Seasonal comparison between CRTL and LCC scenarios indicates that forest replacement by savanna results in more positive glacier mass balance. This shift to more positive mass balance contrasts with a (WRF) modeled rise in the elevation of the freezing line (0°C) between 30 to 120 m for the LCC scenario. Our results are surprising because most previous studies have shown that reducing Amazon forest cover diminishes rainfall and increases temperature, suggesting that glaciers should lose mass. We hypothesize and discuss implications of possible land-atmospheric processes that might drive this tropical glacier response to

  13. The impact of anthropogenic land use and land cover change on regional climate extremes.

    PubMed

    Findell, Kirsten L; Berg, Alexis; Gentine, Pierre; Krasting, John P; Lintner, Benjamin R; Malyshev, Sergey; Santanello, Joseph A; Shevliakova, Elena

    2017-10-20

    Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model's near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2-3 years. In the tropics, long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model's novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.

  14. Land use change and human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Norris, Douglas E.

    Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.

  15. Climate change and tropical biodiversity: a new focus.

    PubMed

    Brodie, Jedediah; Post, Eric; Laurance, William F

    2012-03-01

    Considerable efforts are focused on the consequences of climate change for tropical rainforests. However, potentially the greatest threats to tropical biodiversity (synergistic interactions between climatic changes and human land use) remain understudied. Key concerns are that aridification could increase the accessibility of previously non-arable or remote lands, elevate fire impacts and exacerbate ecological effects of habitat disturbance. The growing climatic change literature often fails to appreciate that, in coming decades, climate-land use interactions might be at least as important as abiotic changes per se for the fate of tropical biodiversity. In this review, we argue that protected area expansion along key ecological gradients, regulation of human-lit fires, strategic forest-carbon financing and re-evaluations of agricultural and biofuel subsidies could ameliorate some of these synergistic threats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effects of land-use change on community composition of tropical amphibians and reptiles in Sulawesi, Indonesia.

    PubMed

    Wanger, Thomas C; Iskandar, Djoko T; Motzke, Iris; Brook, Barry W; Sodhi, Navjot S; Clough, Yann; Tscharntke, Teja

    2010-06-01

    Little is known about the effects of anthropogenic land-use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land-use modification gradient stretching from primary forest, secondary forest, natural-shade cacao agroforest, planted-shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land-use modification gradient, but reptile richness and abundance peaked in natural-shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf-litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long-term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.

  17. Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape.

    PubMed

    Ponette-González, A G; Weathers, K C; Curran, L M

    2010-10-01

    In tropical regions, the effects of land-cover change on nutrient and pollutant inputs to ecosystems remain poorly documented and may be pronounced, especially in montane areas exposed to elevated atmospheric deposition. We examined atmospheric deposition and canopy interactions of sulfate-sulfur (SO4(2-)-S), chloride (Cl-), and nitrate-nitrogen (NO(3-)-N) in three extensive tropical montane land-cover types: clearings, forest, and coffee agroforest. Bulk and fog deposition to clearings was measured as well as throughfall (water that falls through plant canopies) ion fluxes in seven forest and five coffee sites. Sampling was conducted from 2005 to 2008 across two regions in the Sierra Madre Oriental, Veracruz, Mexico. Annual throughfall fluxes to forest and coffee sites ranged over 6-27 kg SO4(2-)-S/ha, 12-69 kg Cl-/ha, and 2-6 kg NO(3-)-N/ha. Sulfate-S in forest and coffee throughfall was higher or similar to bulk S deposition measured in clearings. Throughfall Cl- inputs, however, were consistently higher than Cl- amounts deposited to cleared areas, with net Cl- fluxes enhanced in evergreen coffee relative to semi-deciduous forest plots. Compared to bulk nitrate-N deposition, forest and coffee canopies retained 1-4 kg NO(3-)-N/ha annually, reducing NO(3-)-N inputs to soils. Overall, throughfall fluxes were similar to values reported for Neotropical sites influenced by anthropogenic emissions, while bulk S and N deposition were nine- and eightfold greater, respectively, than background wet deposition rates for remote tropical areas. Our results demonstrate that land-cover type significantly alters the magnitude and spatial distribution of atmospheric inputs to tropical ecosystems, primarily through canopy-induced changes in fog and dry deposition. However, we found that land cover interacts with topography and climate in significant ways to produce spatially heterogeneous patterns of anion fluxes, and that these factors can converge to create deposition hotspots

  18. Upscaling Empirically Based Conceptualisations to Model Tropical Dominant Hydrological Processes for Historical Land Use Change

    NASA Astrophysics Data System (ADS)

    Toohey, R.; Boll, J.; Brooks, E.; Jones, J.

    2009-12-01

    Surface runoff and percolation to ground water are two hydrological processes of concern to the Atlantic slope of Costa Rica because of their impacts on flooding and drinking water contamination. As per legislation, the Costa Rican Government funds land use management from the farm to the regional scale to improve or conserve hydrological ecosystem services. In this study, we examined how land use (e.g., forest, coffee, sugar cane, and pasture) affects hydrological response at the point, plot (1 m2), and the field scale (1-6ha) to empirically conceptualize the dominant hydrological processes in each land use. Using our field data, we upscaled these conceptual processes into a physically-based distributed hydrological model at the field, watershed (130 km2), and regional (1500 km2) scales. At the point and plot scales, the presence of macropores and large roots promoted greater vertical percolation and subsurface connectivity in the forest and coffee field sites. The lack of macropores and large roots, plus the addition of management artifacts (e.g., surface compaction and a plough layer), altered the dominant hydrological processes by increasing lateral flow and surface runoff in the pasture and sugar cane field sites. Macropores and topography were major influences on runoff generation at the field scale. Also at the field scale, antecedent moisture conditions suggest a threshold behavior as a temporal control on surface runoff generation. However, in this tropical climate with very intense rainstorms, annual surface runoff was less than 10% of annual precipitation at the field scale. Significant differences in soil and hydrological characteristics observed at the point and plot scales appear to have less significance when upscaled to the field scale. At the point and plot scales, percolation acted as the dominant hydrological process in this tropical environment. However, at the field scale for sugar cane and pasture sites, saturation-excess runoff increased as

  19. Implications of changes in tropical shifting cultivation intensification on land productivity and GHG-related biogeochemistry

    NASA Astrophysics Data System (ADS)

    Bustier, Bernard; Ngoy, Alfred; Pietsch, Stephan; Mosnier, Aline

    2017-04-01

    Traditional shifting cultivation used to be a sustainable type of land use for the subsistence of populations in tropical rainforests. The vast resource of moist tropical forests together with low population densities allowed for long fallow periods on sparsely distributed slash and burn parcels with large areas of untouched forest in between. Population growth and concomitant increase in land demand for subsistence as well as increasing infrastructure development for commercial forestry, cash crops and mining, however, altered the picture over recent decades. As a result, fallow periods were reduced due to lack of pristine land. In this study we use field data and modeling results from the Congo Basin to assess the impacts of reduced fallow periods on Carbon sequestration dynamics using a BGC model calibrated and validated with > 150 research plots distributed over the western Congo Basin and representing different management and land use histories. We find that the average carbon sequestration rate reduces over the number of cultivation cycles and that a reduction of the fallow from 10 years to 7 years reduce the average carbon sequestration between 13 and 21% and from 7 years to 4 years between 23 and 29% depending on soil fertility. Results will be discussed in the context of population growth and changes in environmetal conditions.

  20. Global and regional fluxes of carbon from land use and land cover change 1850-2015

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Nassikas, Alexander A.

    2017-03-01

    The net flux of carbon from land use and land cover change (LULCC) is an important term in the global carbon balance. Here we report a new estimate of annual fluxes from 1850 to 2015, updating earlier analyses with new estimates of both historical and current rates of LULCC and including emissions from draining and burning of peatlands in Southeast Asia. For most of the 186 countries included we relied on data from Food and Agriculture Organization to document changes in the areas of croplands and pastures since 1960 and changes in the areas of forests and "other land" since 1990. For earlier years we used other sources of information. We used a bookkeeping model that prescribed changes in carbon density of vegetation and soils for 20 types of ecosystems and five land uses. The total net flux attributable to LULCC over the period 1850-2015 is calculated to have been 145 ± 16 Pg C (1 standard deviation). Most of the emissions were from the tropics (102 ± 5.8 Pg C), generally increasing over time to a maximum of 2.10 Pg C yr-1 in 1997. Outside the tropics emissions were roughly constant at 0.5 Pg C yr-1 until 1940, declined to zero around 1970, and then became negative. For the most recent decade (2006-2015) global net emissions from LULCC averaged 1.11 (±0.35) Pg C yr-1, consisting of a net source from the tropics (1.41 ± 0.17 Pg C yr-1), a net sink in northern midlatitudes (-0.28 ± 0.21 Pg C yr-1), and carbon neutrality in southern midlatitudes.

  1. The impact of CO2 fertilization and historical land use/land cover change on regional climate extremes

    NASA Astrophysics Data System (ADS)

    Findell, Kirsten; Berg, Alexis; Gentine, Pierre; Krasting, John; Lintner, Benjamin; Malyshev, Sergey; Santanello, Joseph; Shevliakova, Elena

    2017-04-01

    Recent research highlights the role of land surface processes in heat waves, droughts, and other extreme events. Here we use an earth system model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the regional impacts of historical anthropogenic land use/land cover change (LULCC) and the vegetative response to changes in atmospheric CO2 on combined extremes of temperature and humidity. A bivariate assessment allows us to consider aridity and moist enthalpy extremes, quantities central to human experience of near-surface climate conditions. We show that according to this model, conversion of forests to cropland has contributed to much of the upper central US and central Europe experiencing extreme hot, dry summers every 2-3 years instead of every 10 years. In the tropics, historical patterns of wood harvesting, shifting cultivation and regrowth of secondary vegetation have enhanced near surface moist enthalpy, leading to extensive increases in the occurrence of humid conditions throughout the tropics year round. These critical land use processes and practices are not included in many current generation land models, yet these results identify them as critical factors in the energy and water cycles of the midlatitudes and tropics. Current work is targeted at understanding how CO2 fertilization of plant growth impacts water use efficiency and surface flux partitioning, and how these changes influence temperature and humidity extremes. We use this modeling work to explore how remote sensing can be used to determine how different forest ecosystems in different climatological regimes are responding to enhanced CO2 and a warming world.

  2. Role of land use change in landslide-related sediment fluxes in tropical mountain regions

    NASA Astrophysics Data System (ADS)

    Guns, M.; Vanacker, V.; Demoulin, A.

    2012-04-01

    Tropical mountain regions are characterised by high denudation rates. Landslides are known to be recurrent phenomena in active mountain belts, but their contribution to the overall sedimentary fluxes is not yet well known. Previous studies on sedimentary cascades have mostly focused on natural environments, without considering the impact of human and/or anthropogenic disturbances on sedimentary budgets. In our work, we hypothesise that human-induced land use change might alter the sediment cascade through shifts in the landslide magnitude-frequency relationship. We have tested this assumption in the Virgen Yacu catchment (approximately 11km2), in the Ecuadorian Cordillera Occidental. Landslide inventories and land use maps were established based on a series of sequential aerial photos (1963, 1977, 1984 and 1989), a HR Landsat image (2001) and a VHR WorldView2 image (2010). Aerial photographs were ortho-rectified, and coregistred with the WorldView2 satellite image. Field campaigns were realised in 2010 and 2011 to collect field-based data on landslide type and geometry (depth, width and length). This allowed us to establish an empirical relationship between landslide area and volume, which was then applied to the landslide inventories to estimate landslide-related sediment production rates for various time periods. The contribution of landslides to the overall sediment flux of the catchment was estimated by comparing the landslide-related sediment production to the total sediment yield. The empirical landslide area-volume relationship established here for the Ecuadorian Andes is similar to that derived for the Himalayas. It suggests that landslides are the main source of sediment in this mountainous catchment. First calculations indicate that human-induced land use change alters the magnitude-frequency relationship through strong increase of small landslides.

  3. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis

    NASA Astrophysics Data System (ADS)

    van Lent, J.; Hergoualc'h, K.; Verchot, L. V.

    2015-12-01

    Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3- / [NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen

  4. Litter decomposition, N2-fixer abundance, and microbial dynamics govern tropical dry forest recovery to land use change

    NASA Astrophysics Data System (ADS)

    Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.

    2017-12-01

    As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming

  5. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning.

    PubMed

    Barnes, Andrew D; Jochum, Malte; Mumme, Steffen; Haneda, Noor Farikhah; Farajallah, Achmad; Widarto, Tri Heru; Brose, Ulrich

    2014-10-28

    Our knowledge about land-use impacts on biodiversity and ecosystem functioning is mostly limited to single trophic levels, leaving us uncertain about whole-community biodiversity-ecosystem functioning relationships. We analyse consequences of the globally important land-use transformation from tropical forests to oil palm plantations. Species diversity, density and biomass of invertebrate communities suffer at least 45% decreases from rainforest to oil palm. Combining metabolic and food-web theory, we calculate annual energy fluxes to model impacts of land-use intensification on multitrophic ecosystem functioning. We demonstrate a 51% reduction in energy fluxes from forest to oil palm communities. Species loss clearly explains variation in energy fluxes; however, this relationship depends on land-use systems and functional feeding guilds, whereby predators are the most heavily affected. Biodiversity decline from forest to oil palm is thus accompanied by even stronger reductions in functionality, threatening to severely limit the functional resilience of communities to cope with future global changes.

  6. Land-use intensification impact on phosphorus fractions in highly weathered tropical soils

    NASA Astrophysics Data System (ADS)

    Maranguit, Deejay; Guillaume, Thomas; Kuzyakov, Yakov

    2016-04-01

    Deforestation and land-use intensification in tropics have increased over the past decades, driven by the demand for agricultural products. Despite the fact that phosphorus (P) is one of the main limiting nutrients for agricultural productivity in the tropics, the effect of land-use intensification on P availability remains unclear. The objective was to assess the impacts of land-use intensification on soil inorganic and organic P fractions of different availability (Hedley sequential fractionation) and P stocks in highly weathered tropical soils. We compared the P availability under extensive land-use (rubber agroforest) and intensive land-use with moderate fertilization (rubber monoculture plantations) or high fertilization (oil palm monoculture plantations) in Indonesia. The phosphorus stock was dominated by inorganic forms (60 to 85%) in all land-use types. Fertilizer application increased easily-available inorganic P (i.e., H2O-Pi, NaHCO3-Pi) in intensive rubber and oil palm plantations compared to agroforest. However, the easily-available organic P (NaHCO3-extractable Po) was reduced by half under oil palm and rubber. The decrease of moderately available and non-available P by land-use intensification means that fertilization maintains only short-term soil fertility that is not sustainable in the long run due to the depletion of P reserves. The mechanisms of this P reserve depletion are: soil erosion (here assessed by C/P ratio), mineralization of soil organic matter (SOM) and export of P with yield products. Easily-available P fractions (i.e., H2O-Pi, NaHCO3-Pi and Po) and total organic P were strongly positively correlated with carbon content suggesting that SOM plays a critical role in maintaining P availability. Therefore, the ecologically based management is necessary in mitigating SOM losses to increase the sustainability of agricultural production in P limited highly weathered tropical soils.

  7. Effects of land use change on soil organic carbon: a pan-tropic study

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Wolf, K.; Corre, M. D.

    2012-04-01

    Tropical forest deforestation is recognized as one of the major contributors to anthropogenic greenhouse gas emissions. In contrast to aboveground carbon stocks, comparatively little is known on deforestation's effect on the magnitude and the factors affecting soil organic carbon (SOC). In this regional scale study, we focused on tropical sites with deeply weathered, low-activity clays soils in three countries: Indonesia, Cameroon and Peru. Using a clustered sampling design we compared soil carbon stocks in the top 3 m of soil in undisturbed forests (the reference) with converted land uses that had been deforested. The most predominant land use trajectories relevant for each region were investigated. These included (a) conversions from forest to cash-crop plantations (rubber, oil palm, cacoa), (b) conversions from forest to cattle grazing pastures and (c) conversion from forest to shifting cultivation. Preliminary results from the Indonesian case study, found that the conversion of forests to oil palm plantation caused a loss of 20.1 ± 4.4 Mg C ha-1 within 20 years from the top 3 m of soil, while deforestation followed by the establishment of rubber plantations caused a release of 7.2 ± 4.2 Mg C ha-1 for the same time period and depth. SOC losses were most pronounced in the top 30 cm, and less so below. Additionally, regional scale constraints such as soil physical and chemical characteristics (texture, CEC, pH) and climate (precipitation, temperature) effect on SOC emissions have been identified using multivariate statistical methods. The results from the Cameroon and Peru case studies are expected imminently.

  8. Modelling land use change in the Ganga basin

    NASA Astrophysics Data System (ADS)

    Moulds, Simon; Mijic, Ana; Buytaert, Wouter

    2014-05-01

    Over recent decades the green revolution in India has driven substantial environmental change. Modelling experiments have identified northern India as a "hot spot" of land-atmosphere coupling strength during the boreal summer. However, there is a wide range of sensitivity of atmospheric variables to soil moisture between individual climate models. The lack of a comprehensive land use change dataset to force climate models has been identified as a major contributor to model uncertainty. This work aims to construct a monthly time series dataset of land use change for the period 1966 to 2007 for northern India to improve the quantification of regional hydrometeorological feedbacks. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Aqua and Terra satellites provides near-continuous remotely sensed datasets from 2000 to the present day. However, the quality and availability of satellite products before 2000 is poor. To complete the dataset MODIS images are extrapolated back in time using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) modelling framework, recoded in the R programming language to overcome limitations of the original interface. Non-spatial estimates of land use area published by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for the study period, available on an annual, district-wise basis, are used as a direct model input. Land use change is allocated spatially as a function of biophysical and socioeconomic drivers identified using logistic regression. The dataset will provide an essential input to a high-resolution, physically-based land-surface model to generate the lower boundary condition to assess the impact of land use change on regional climate.

  9. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  10. Impacts of Land use and Cover Change on Soil Hydraulic Properties, Rondonia, Brazil

    NASA Astrophysics Data System (ADS)

    Schultz, K. J.; McGlynn, B. L.; Elsenbeer, H.

    2004-05-01

    There is a great deal of concern in the scientific community and the popular media about the global impacts of tropical rainforest deforestation. Soil quality does not receive that same media coverage but is greatly affected by deforestation and is a major concern in the tropics, especially in areas undergoing rapid land use and land cover change. Deforestation can lead to changes in the hydrologic regime, loss of topsoil, increased sediment and nutrient loads in waterways, and decreased soil fertility. These impacts are often related to a soil's infiltration capacity and hydraulic conductivity (Ksat). Our research site, Rancho Grande, Rondonia, Brazil, lies in the heart of the most rapid tropical rainforest deforestation in the world. Two watersheds of similar size, comparable topographic relief, and same soil type, were tested for differences in hydraulic conductivity. The two watersheds are differentiated by land use and land cover; one in a primary forest and the other in an actively grazed pasture. We measured infiltration capacity at 13 locations in the primary forest watershed and at 24 locations in the actively grazed pasture. Approximately 150 measurements of Ksat were made at regular depth intervals in both watersheds. Our research focuses on assessing the impact of land use and land cover change (primary rainforest to pasture/grazing) on soil infiltration capacity and subsurface saturated hydraulic conductivity. Statistically significant differences in infiltration capacity and hydraulic conductivity were detected between the pasture and forest sites at depths of 0, 12.5, and 20 cm. Differences between the two sites at depths of 50 and 90cm were not significant. These results demonstrate that the affect of land cover and land use change on soil hydraulic conductivity was confined to shallower depths in the soil profile. Coupled with ongoing watershed runoff studies at Rancho Grande, this research will help clarify how land cover change affects soil

  11. Tropical Land Use Conversion Effects on Soil Microbial Community Structure and Function: Emerging Patterns and Knowledge Gaps

    NASA Astrophysics Data System (ADS)

    Seeley, M.; Marin-Spiotta, E.

    2016-12-01

    Modifications in vegetation due to land use conversions (LUC) between primary forests, pasture, cropping systems, tree plantations, and secondary forests drive shifts in soil microbial communities. These microbial community alterations affect carbon sequestration, nutrient cycling, aboveground biomass, and numerous other soil processes. Despite their importance, little is known about soil microbial organisms' response to LUC, especially in tropical regions where LUC rates are greatest. This project identifies current trends and uncertainties in tropical soil microbiology by comparing 56 published studies on LUC in tropical regions. This review indicates that microbial biomass and functional groups shifted in response to LUC, supporting demonstrated trends in changing soil carbon stocks due to LUC. Microbial biomass was greatest in primary forests when compared to secondary forests and in all forests when compared to both cropping systems and tree plantations. No trend existed when comparing pasture systems and forests, likely due to variations in pasture fertilizer use. Cropping system soils had greater gram positive and less gram negative bacteria than forest soils, potentially resulting in greater respiration of older carbon stocks in agricultural soils. Bacteria dominated primary forests while fungal populations were greatest in secondary forests. To characterize changes in microbial communities resulting from land use change, research must reflect the biophysical variation across the tropics. A chi-squared test revealed that the literature sites represented mean annual temperature variation across the tropics (p-value=0.66).

  12. Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions

    NASA Astrophysics Data System (ADS)

    Bayer, Anita D.; Lindeskog, Mats; Pugh, Thomas A. M.; Anthoni, Peter M.; Fuchs, Richard; Arneth, Almut

    2017-02-01

    Land-use and land-cover (LUC) changes are a key uncertainty when attributing changes in measured atmospheric CO2 concentration to its sinks and sources and must also be much better understood to determine the possibilities for land-based climate change mitigation, especially in the light of human demand on other land-based resources. On the spatial scale typically used in terrestrial ecosystem models (0.5 or 1°) changes in LUC over time periods of a few years or more can include bidirectional changes on the sub-grid level, such as the parallel expansion and abandonment of agricultural land (e.g. in shifting cultivation) or cropland-grassland conversion (and vice versa). These complex changes between classes within a grid cell have often been neglected in previous studies, and only net changes of land between natural vegetation cover, cropland and pastures accounted for, mainly because of a lack of reliable high-resolution historical information on gross land transitions, in combination with technical limitations within the models themselves. In the present study we applied a state-of-the-art dynamic global vegetation model with a detailed representation of croplands and carbon-nitrogen dynamics to quantify the uncertainty in terrestrial ecosystem carbon stocks and fluxes arising from the choice between net and gross representations of LUC. We used three frequently applied global, one recent global and one recent European LUC datasets, two of which resolve gross land transitions, either in Europe or in certain tropical regions. When considering only net changes, land-use-transition uncertainties (expressed as 1 standard deviation around decadal means of four models) in global carbon emissions from LUC (ELUC) are ±0.19, ±0.66 and ±0.47 Pg C a-1 in the 1980s, 1990s and 2000s, respectively, or between 14 and 39 % of mean ELUC. Carbon stocks at the end of the 20th century vary by ±11 Pg C for vegetation and ±37 Pg C for soil C due to the choice of LUC

  13. Land use history, environment, and tree composition in a tropical forest

    Treesearch

    Jill Thompson; Nicholas Brokaw; Jess K. Zimmerman; Robert B. Waide; Edwin M. III Everham; D. Jean Lodge; Charlotte M. Taylor; Diana Garcia-Montiel; Marcheterre Fluet

    2002-01-01

    The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved...

  14. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  15. Land Use and Land Cover Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  16. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    PubMed

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  17. Biodiversity evaluation in tropical agricultural systems - How will rubber cultivation and land use change effect species diversity in SW China

    NASA Astrophysics Data System (ADS)

    Cotter, M.; Grenz, J.; Sauerborn, J.

    2012-04-01

    The Greater Mekong Subregion is a known hotspot of biodiversity, which faces drastic changes due to human impact particularly with regard to infrastructure and economy. Within the framework of the Sino-German research project "Living Landscapes China" (LILAC), we have developed a biodiversity evaluation tool based on the combination of approaches from landscape ecology with detailed empirical data on species diversity and habitat characteristics of tropical plant and arthropod communities in a Geographical Information System. We use field ecological data to assess different spatial and qualitative aspects of the diversity and spatial distribution of species throughout the research area, a watershed in south-western Yunnan province, PR China. In addition, scenarios on the impact of land use change have been analyzed and compared in order to highlight the implications these possible future scenarios would have on species diversity within the research area. The aim of the presented tool is to provide scientists and policy makers who have to evaluate the consequences of scenarios of future land use with information on the current and likely future state of biodiversity in their research area or administrative region. This will enable them to assess the likely impacts of land use changes on structural and ecological diversity and allow for informed land use planning. The methodology developed for this tool can also be applied outside of the Greater Mekong Subregion, as the model structure allows for an easy adaption to other research areas and challenges, be it oil palm production in Southeast Asia or small scale farming in central Africa or the Amazon basin.

  18. Relationship between Trends in Land Precipitation and Tropical SST Gradient

    NASA Technical Reports Server (NTRS)

    Chung, Chul Eddy; Ramanathan, V.

    2007-01-01

    In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.

  19. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics.

    PubMed

    Meyer Steiger, Dagmar B; Ritchie, Scott A; Laurance, Susan G W

    2016-07-07

    Anthropogenic land use changes have contributed considerably to the rise of emerging and re-emerging mosquito-borne diseases. These diseases appear to be increasing as a result of the novel juxtapositions of habitats and species that can result in new interchanges of vectors, diseases and hosts. We studied whether the mosquito community structure varied between habitats and seasons and whether known disease vectors displayed habitat preferences in tropical Australia. Using CDC model 512 traps, adult mosquitoes were sampled across an anthropogenic disturbance gradient of grassland, rainforest edge and rainforest interior habitats, in both the wet and dry seasons. Nonmetric multidimensional scaling (NMS) ordinations were applied to examine major gradients in the composition of mosquito and vector communities. We captured ~13,000 mosquitoes from 288 trap nights across four study sites. A community analysis identified 29 species from 7 genera. Even though mosquito abundance and richness were similar between the three habitats, the community composition varied significantly in response to habitat type. The mosquito community in rainforest interiors was distinctly different to the community in grasslands, whereas forest edges acted as an ecotone with shared communities from both forest interiors and grasslands. We found two community patterns that will influence disease risk at out study sites, first, that disease vectoring mosquito species occurred all year round. Secondly, that anthropogenic grasslands adjacent to rainforests may increase the probability of novel disease transmission through changes to the vector community on rainforest edges, as most disease transmitting species predominantly occurred in grasslands. Our results indicate that the strong influence of anthropogenic land use change on mosquito communities could have potential implications for pathogen transmission to humans and wildlife.

  20. Land-use intensification effects on functional properties in tropical plant communities.

    PubMed

    Carreño-Rocabado, Geovana; Peña-Claros, Marielos; Bongers, Frans; Díaz, Sandra; Quetier, Fabien; Chuviña, José; Poorter, Lourens

    2016-01-01

    There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive

  1. Understanding the drivers of agricultural land use change in south-central Senegal

    USGS Publications Warehouse

    Wood, E. C.; Tappan, G. Gray; Hadj, Amadou

    2004-01-01

    Described is (1) the land use and land cover changes that have taken place in the Department of Velingara, an area of tropical dry woodland in south-central Senegal, (2) the biophysical and socio-economic drivers of those changes with an emphasis on transition to agricultural use, and (3) an assessment of the likelihood of intensification of agriculture in the Department. Results indicate that land devoted to agriculture, either in active cultivation or short-term fallow, is increasing. There is little evidence of agricultural intensification in most of Velingara, with extensification coming largely at the cost of reduction in both upland woodlands and riparian forest.

  2. Land cover change or land-use intensification: simulating land system change with a global-scale land change model.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2013-12-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970-2000 period and projections of other global and regional land change models. © 2013 John Wiley & Sons Ltd.

  3. Baselines For Land-Use Change In The Tropics: Application ToAvoided Deforestation Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sandra; Hall, Myrna; Andrasko, Ken

    2007-06-01

    Although forest conservation activities particularly in thetropics offer significant potential for mitigating carbon emissions,these types of activities have faced obstacles in the policy arena causedby the difficulty in determining key elements of the project cycle,particularly the baseline. A baseline for forest conservation has twomain components: the projected land-use change and the correspondingcarbon stocks in the applicable pools such as vegetation, detritus,products and soil, with land-use change being the most difficult toaddress analytically. In this paper we focus on developing and comparingthree models, ranging from relatively simple extrapolations of pasttrends in land use based on simple drivers such as population growthmore » tomore complex extrapolations of past trends using spatially explicitmodels of land-use change driven by biophysical and socioeconomicfactors. The three models of the latter category used in the analysis atregional scale are The Forest Area Change (FAC) model, the Land Use andCarbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD)model. The models were used to project deforestation in six tropicalregions that featured different ecological and socioeconomic conditions,population dynamics, and uses of the land: (1) northern Belize; (2) SantaCruz State, Bolivia; (3) Parana State in Brazil; (4) Campeche, Mexico;(5) Chiapas, Mexico; and (6) Michoacan, Mexico. A comparison of all modeloutputs across all six regions shows that each model produced quitedifferent deforestation baseline. In general, the simplest FAC model,applied at the national administrative-unit scale, projected the highestamount of forest loss (four out of six) and the LUCS model the leastamount of loss (four out of five). Based on simulations of GEOMOD, wefound that readily observable physical and biological factors as well asdistance to areas of past disturbance were each about twice as importantas either sociological/demographic or economic

  4. Influence of land use change on soil carbon stability in tropical savannas: evidence from the carbon isotopic composition of respired CO2

    NASA Astrophysics Data System (ADS)

    Wynn, J. G.; Duvert, C.; Hutley, L. B.; Setterfield, S. A.; Bird, M. I.; Munksgaard, N.

    2017-12-01

    Globally, tropical savannas are undergoing rapid conversion to other land uses, but the impacts of such changes on terrestrial carbon stores and fluxes are not well understood. Land use change in the savanna biome can be considered in terms of a tree-grass continuum, with native savannas consisting of a mix of C3 and C4 vegetation that are being transformed by some combination of planting, removal or invasion to endmembers such C3-dominant forestry plantation or C4-dominant pasture. Previous work has suggested that soil organic carbon derived from C4 plants decomposes at a faster rate than that derived from C3 plants, and this may have important consequences for terrestrial carbon storage and fluxes under such land use change scenarios. Here we report on long-term soil incubations used to test the hypothesis that, in the absence of fresh biomass input, the relative contributions of C3 and C4 biomass to soil organic carbon remain stable during later stages of decomposition. Soil cores were collected in both native and transformed savanna sites of tropical northern Australia and incubated over a 15-month period. Heterotrophic respiration rates and the carbon isotopic composition of respired CO2 (δ13Cr) were measured on a monthly to quarterly basis. The soils incubated span large differences in δ13Cr values; from -31‰ in C3-forestry plantation to -15‰ in C4-weed-invaded pasture, while native mixed C3-C4 savannas range from -26 to -18‰. These differences correspond roughly to observed differences in C3-C4 vegetation history and isotopic composition of bulk soil organic carbon at each site. While respiration rates consistently decreased by roughly an order of magnitude for all land uses over the course of the experiment, we observed no consistent long-term temporal trends in the δ13Cr time-series. We also assessed uncertainties resulting from the determination of δ13Cr from intact soil cores and using our experimental design. Uncertainty related to the Keeling

  5. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  6. Modeling tropical land-use and land-cover change related to sugarcane crops using remote sensing and soft computing techniques

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Zullo, J.; Victoria, D.; Gomes, D.; Bayma, G.

    2013-12-01

    Agriculture is closely related to land-use/cover changes (LUCC). The increase in demand for ethanol necessitates the expansion of areas occupied by corn and sugar cane. In São Paulo state, the conversion of this land raises concern for impacts on food security, such as the decrease in traditional food crop production areas. We used remote sensing data to train and evaluate future land-cover scenarios using a machine-learning algorithm. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey, covering three time periods over twenty years (1990 - 2010). Landsat images were segmented into homogeneous objects, which represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. Based on the object shape, texture and spectral characteristics, land use/cover was visually identified, considering the following classes: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. Results for the western regions of São Paulo state indicate that sugarcane crop area advanced mostly upon pasture areas with few areas of food crops being replaced by sugarcane.

  7. Long-term effects of climate and land cover change on freshwater provision in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.

    2015-06-01

    Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974-2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.

  8. Land Use Dynamics in the Brazilian Amazon

    Treesearch

    Robert Walker

    1996-01-01

    The articles presented in this special issue of Ecological Economics address the important theme of land use dynamics as it pertains to the Brazilian Amazon. Much environmental change is an ecological artifact of human agency, and such agency is often manifested in land use impacts, particularly in tropical areas. The critical problem of tropical deforestation is but...

  9. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (and updated for the year 2000) (NDP-055)

    DOE Data Explorer

    Brown, Sandra [University of Illinois, Urbana, IL (USA); Winrock International, Arlington, Virginia (USA); Gaston, Greg [University of Illinois, Urbana, IL (USA); Oregon State University; Beaty, T. W. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN (USA); Olsen, L. M. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN (USA)

    2001-01-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10E6 km2 of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo,Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO (TM geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  10. Land Use and Land Cover Change Modeling Using Remote Sensing and Soft Computing Approach to Assess Sugarcane Expansion Impacts in Tropical Agriculture

    NASA Astrophysics Data System (ADS)

    Vicente, L. E.; Koga-Vicente, A.; Friedel, M. J.; Victoria, D.; Zullo, J., Jr.; Gomes, D.; Bayma-Silva, G.

    2014-12-01

    Agriculture is related with land-use/cover changes (LUCC) over large areas and, in recent years, increase in demand of ethanol fuel has been influence in expansion of areas occupied with corn and sugar cane, raw material for ethanol production. Nevertheless, there´s a concern regarding the impacts on food security, such as, decrease in areas planted with food crops. Considering that the LUCC is highly dynamic, the use of Remote Sensing is a tool for monitoring changes quickly and precisely in order to provide information for agricultural planning. In this work, Remote Sensing techniques were used to monitor the LUCC occurred in municipalities of São Paulo state- Brazil related with sugarcane crops expansion in order to (i) evaluate and quantify the previous land cover in areas of sugarcane crop expansion, and (ii) provide information to elaborate a future land cover scenario based on Self Organizing Map (SOM) approach. The land cover classification procedure was based on Landsat 5 TM images, obtained from the Global Land Survey. The Landsat images were then segmented into homogeneous objects, with represent areas on the ground with similar spatial and spectral characteristics. These objects are related to the distinct land cover types that occur in each municipality. The segmentation procedure resulted in polygons over the three time periods along twenty years (1990-2010). The land cover for each object was visually identified, based on its shape, texture and spectral characteristics. Land cover types considered were: sugarcane plantations, pasture lands, natural cover, forest plantation, permanent crop, short cycle crop, water bodies and urban areas. SOM technique was used to estimate the values for the future land cover scenarios for the selected municipalities, using the information of land change provided by the remote sensing and data from official sources.

  11. Tropical wetlands, climate, and land-use change: adaptation and mitigation opportunities

    Treesearch

    Randy Kolka; D. Murdiyarso; J. B. Kauffman; Richard Birdsey

    2016-01-01

    Tropical wetland ecosystems, especially mangroves and peatlands, are carbon (C) rich ecosystems. Globally, tropical mangroves store about 20 PgC, however, deforestation has contributed 10 % of the total global emissions from tropical deforestation, even though mangroves account for only about 0.7 % of the world’s tropical forest area (Donato et al. 2011). Meanwhile,...

  12. Climate change and land use drivers of fecal bacteria in tropical Hawaiian rivers

    Treesearch

    Ayron M. Strauch; Richard A. Mackenzie; Gregory L. Bruland; Ralph Tingley; Christian P. Giardina

    2014-01-01

    Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500–4500 mm) of mean annual rainfall...

  13. Using High-Resolution Data to Assess Land Use Impact on Nitrate Dynamics in East African Tropical Montane Catchments

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne R.; Weeser, Björn; Guzha, Alphonce C.; Rufino, Mariana C.; Butterbach-Bahl, Klaus; Windhorst, David; Breuer, Lutz

    2018-03-01

    Land use change alters nitrate (NO3-N) dynamics in stream water by changing nitrogen cycling, nutrient inputs, uptake and hydrological flow paths. There is little empirical evidence of these processes for East Africa. We collected a unique 2 year high-resolution data set to assess the effects of land use (i.e., natural forest, smallholder agriculture and commercial tea plantations) on NO3-N dynamics in three subcatchments within a headwater catchment in the Mau Forest Complex, Kenya's largest tropical montane forest. The natural forest subcatchment had the lowest NO3-N concentrations (0.44 ± 0.043 mg N L-1) with no seasonal variation. NO3-N concentrations in the smallholder agriculture (1.09 ± 0.11 mg N L-1) and tea plantation (2.13 ± 0.19 mg N L-1) subcatchments closely followed discharge patterns, indicating mobilization of NO3-N during the rainy seasons. Hysteresis patterns of rainfall events indicate a shift from subsurface flow in the natural forest to surface runoff in agricultural subcatchments. Distinct peaks in NO3-N concentrations were observed during rainfall events after a longer dry period in the forest and tea subcatchments. The high-resolution data set enabled us to identify differences in NO3-N transport of catchments under different land use, such as enhanced NO3-N inputs to the stream during the rainy season and higher annual export in agricultural subcatchments (4.9 ± 0.3 to 12.0 ± 0.8 kg N ha-1 yr-1) than in natural forest (2.6 ± 0.2 kg N ha-1 yr-1). This emphasizes the usefulness of our monitoring approach to improve the understanding of land use effects on riverine N exports in tropical landscapes, but also the need to apply such methods in other regions.

  14. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover

    PubMed Central

    Coomes, Oliver T.; Takasaki, Yoshito; Rhemtulla, Jeanine M.

    2011-01-01

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time—with community enclosure—by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of “land-use” poverty traps—a “subsistence crop” trap and a “short fallow” trap—and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  15. Land Use and Land Cover Change in Forest Frontiers: The Role of Household Life Cycles

    NASA Technical Reports Server (NTRS)

    Walker, Robert

    2002-01-01

    Tropical deforestation remains a critical issue given its present rate and a widespread consensus regarding its implications for the global carbon cycle and biodiversity. Nowhere is the problem more pronounced than in the Amazon basin, home to the world's largest intact, tropical forest. This article addresses land cover change processes at household level in the Amazon basin, and to this end adapts a concept of domestic life cycle to the current institutional environment of tropical frontiers. In particular, it poses a risk minimization model that integrates demography with market-based factors such as transportation costs and accessibility. In essence, the article merges the theory of Chayanov with the household economy framework, in which markets exist for inputs (including labor), outputs, and capital. The risk model is specified and estimated, using survey data for 261 small producers along the Transamazon Highway in the eastern sector of the Brazilian Amazon.

  16. Consequences of land use and land cover change

    USGS Publications Warehouse

    Slonecker, E. Terrence; Barnes, Christopher; Karstensen, Krista; Milheim, Lesley E.; Roig-Silva, Coral M.

    2013-01-01

    The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, national, and global scales. These data are analyzed to understand the causes and consequences of changing land cover, such as economic impacts, effects on water quality and availability, the spread of invasive species, habitats and biodiversity, carbon fluctuations, and climate variability. USGS scientists are among the leaders in the study of land cover, which is a term that generally refers to the vegetation and artificial structures that cover the land surface. Examples of land cover include forests, grasslands, wetlands, water, crops, and buildings. Land use involves human activities that take place on the land. For example, "grass" is a land cover, whereas pasture and recreational parks are land uses that produce a cover of grass.

  17. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant

  18. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant

  19. Ecosystems and Land Use Change

    NASA Astrophysics Data System (ADS)

    DeFries, Ruth S.; Asner, Gregory P.; Houghton, Richard A.

    Land use is at the center of one of the most vexing challenges for the coming decades: to provide enough food, fiber and shelter for the world's population; raise the standard of living for the billion people currently below the poverty line; and simultaneously sustain the world's ecosystems for use by humans and other species. The intended consequence of cropland expansion, urban growth, and other land use changes is to satisfy demands from the increasing appetite of the world's population. Unintended consequences, however, can alter ecological processes and have far-reaching and long-term effects that potentially compromise the basic functioning of ecosystems. Recently, the scientific community has begun to confront such issues. Several national and international programs have been at the forefront of scientific enquiry on the causes and consequences of land use change, including: the Land Use and Land Cover Change Program of the National Aeronautics and Space Administration, the Land Use program element in the interagency U.S. Climate Change Science Program, and the International Geosphere-Biosphere's Land Use and Cover Change (LUCC) core project. The result has been significant advances in understanding the complex socioeconomic, technological, and biophysical factors that drive land use change worldwide.

  20. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  1. Modeling Land Use Change In A Tropical Environment Using Similar Hydrologic Response Units

    NASA Astrophysics Data System (ADS)

    Guardiola-Claramonte, M.; Troch, P.

    2006-12-01

    Montane mainland South East Asia comprises areas of great biological and cultural diversity. Over the last decades the region has overcome an important conversion from traditional agriculture to cash crop agriculture driven by regional and global markets. Our study aims at understanding the hydrological implications of these land use changes at the catchment scale. In 2004, networks of hydro-meteorological stations observing water and energy fluxes were installed in two 70 km2 catchments in Northern Thailand (Chiang Mai Province) and Southern China (Yunnan Province). In addition, a detailed soil surveying campaign was done at the moment of instrument installation. Land use is monitored periodically using satellite data. The Thai catchment is switching from small agricultural fields to large extensions of cash crops. The Chinese catchment is replacing the traditional forest for rubber plantations. A first comparative study based on catchments' geomorphologic characteristics, field observations and rainfall-runoff response revealed the dominant hydrologic processes in the catchments. Land use information is then translated into three different Hydrologic Response Units (HRU): rice paddies, pervious and impervious surfaces. The pervious HRU include different land uses such as different stages of forest development, rubber plantations, and agricultural fields; the impervious ones are urban areas, roads and outcrops. For each HRU a water and energy balance model is developed incorporating field observed hydrologic processes, measured field parameters, and literature-based vegetation and soil parameters to better describe the root zone, surface and subsurface flow characteristics without the need of further calibration. The HRU water and energy balance models are applied to single hillslopes and their integrated hydrologic response are compared for different land covers. Finally, the response of individual hillslopes is routed through the channel network to represent

  2. Political ecology of land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Novira, Nina

    2014-05-01

    Indonesia had once around 10% of the world's rain forest. Many accuse shifting cultivation and poverty to be responsible to tropical deforestation and land use change. Without denying the importance of these factors, this paper tries to see the problem from a different angel. Massive deforestation first took place when the Dutch colonials decided to develop coffee, tea and later rubber and oil palm plantation in the late 19th century. During the Independence Era, land use change can be divided into 3 periods: 1950 - 1975 period of agricultural expansion, mainly government program; 1975 - 1990 period of commercial logging concession, mainly private concession with government's endorsement; and 1990 to date period of land use change to cash crop, settlement, and business area, a more complex process involving private company, government program and endorsement, and personal action. The first two periodization shows clearly that land use change in Indonesia has a strong connection to political decision and power at certain period of time, which also influenced by international market tendencies at the given period. The last period has actually not so much difference. This paper seeks to explain land use change in Indonesia especially in the last period of 1990 to present. This period can be divided again into 3 sub-periods: later New Order Era, early Reformation Era, and the Regional Autonomy Era. The case study was conducted in Labuhan Batu Utara District of North Sumatera. Semi-structured interview was done with various actors in different levels. It is argued that government's policies and arrangements along with government's reaction to international market and politics plays a substantially important role in land use change. In the first sub-period (1990 - 1998), it is the fading power of Suharto's regime that increases farmers' courage to violate the strict prohibition of rice field conversion to other uses. Another important factor is the introduction of

  3. Land-use protection for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp

    2014-12-01

    Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.

  4. Can future land use change be usefully predicted?

    NASA Astrophysics Data System (ADS)

    Ramankutty, N.; Coomes, O.

    2011-12-01

    There has been increasing recognition over the last decade that land use and land cover change is an important driver of global environmental change. Consequently, there have been growing efforts to understanding processes of land change from local-to-global scales, and to develop models to predict future changes in the land. However, we believe that such efforts are hampered by limited attention being paid to the critical points of land change. Here, we present a framework for understanding land use change by distinguishing within-regime land-use dynamics from land-use regime shifts. Illustrative historical examples reveal the significance of land-use regime shifts. We further argue that the land-use literature predominantly demonstrates a good understanding (with predictive power) of within-regime dynamics, while understanding of land-use regime shifts is limited to ex post facto explanations with limited predictive capability. The focus of land use change science needs to be redirected toward studying land-use regime shifts if we are to have any hope of making useful future projections. We present a preliminary framework for understanding land-use regime-shifts, using two case studies in Latin America as examples. We finally discuss the implications of our proposal for land change science.

  5. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon.

    PubMed

    Souza-Filho, Pedro Walfir M; de Souza, Everaldo B; Silva Júnior, Renato O; Nascimento, Wilson R; Versiani de Mendonça, Breno R; Guimarães, José Tasso F; Dall'Agnol, Roberto; Siqueira, José Oswaldo

    2016-02-01

    Long-term human-induced impacts have significantly changed the Amazonian landscape. The most dramatic land cover and land use (LCLU) changes began in the early 1970s with the establishment of the Trans-Amazon Highway and large government projects associated with the expansion of agricultural settlement and cattle ranching, which cleared significant tropical forest cover in the areas of new and accelerated human development. Taking the changes in the LCLU over the past four decades as a basis, this study aims to determine the consequences of land cover (forest and savanna) and land use (pasturelands, mining and urban) changes on the hydroclimatology of the Itacaiúnas River watershed area of the located in the southeastern Amazon region. We analyzed a multi-decadal Landsat dataset from 1973, 1984, 1994, 2004 and 2013 and a 40-yr time series of water discharge from the Itacaiúnas River, as well as air temperature and relative humidity data over this drainage area for the same period. We employed standard Landsat image processing techniques in conjunction with a geographic object-based image analysis and multi-resolution classification approach. With the goal of detecting possible long-term trends, non-parametric Mann-Kendall test was applied, based on a Sen slope estimator on a 40-yr annual PREC, TMED and RH time series, considering the spatial average of the entire watershed. In the 1970s, the region was entirely covered by forest (99%) and savanna (∼0.3%). Four decades later, only ∼48% of the tropical forest remains, while pasturelands occupy approximately 50% of the watershed area. Moreover, in protected areas, nearly 97% of the tropical forest remains conserved, while the forest cover of non-protected areas is quite fragmented and, consequently, unevenly distributed, covering an area of only 30%. Based on observational data analysis, there is evidence that the conversion of forest cover to extensive and homogeneous pasturelands was accompanied by systematic

  6. Biofuels, causes of land-use change, and the role of fire in greenhouse gas emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, Keith L; Dale, Virginia H

    2008-07-01

    IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE ('LAND CLEARING AND THE BIOFUEL CARBON debt,' J. Fargione et al., p. 1235, and 'Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,' T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture. However, field research, including a meta-analysis of 152 case studies, consistently finds that land-use change and associatedmore » carbon emissions are driven by interactions among cultural, technological, biophysical, political, economic, and demographic forces within a spatial and temporal context rather than by a single crop market. Searchinger et al. assert that soybean prices accelerate clearing of rainforest based on a single citation for a study not designed to identify the causal factors of land clearing. The study analyzed satellite imagery from a single state in Brazil over a 4-year period and focused on land classification after deforestation. Satellite imagery can measure what changed but does little to tell us why. Similarly, Fargione et al. do not rely on primary empirical studies of causes of land-use change. Furthermore, neither fire nor soil carbon sequestration was properly considered in the Reports. Fire's escalating contribution to global climate change is largely a result of burning in tropical savannas and forests. Searchinger et al. postulate that 10.8 million hectares could be needed for future biofuel, a fraction of the 250 to 400 million hectares burned each year between 2000 and 2005. By offering enhanced employment and incomes, biofuels can help establish economic stability and thus reduce the recurring use of fire on previously cleared land as well as pressures to clear more land. Neither Searchinger et al. nor

  7. Modeling Land Use Change Impacts on Water Resources in a Tropical West African Catchment (dano, Burkina Faso)

    NASA Astrophysics Data System (ADS)

    Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.

    2015-12-01

    This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007 and 2013. A reclassification procedure of the maps permitted to assess the major land use changes in the catchment from 1990 to 2013. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during the calibration and the validation ranged between 0.9 and 0.6 for total discharge, soil moisture, and groundwater level, indicating satisfying to good agreements between observed and simulated variables. After a successful multi-criteria validation the model was run with the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment in 2013 it can be assumed that savannah was mainly converted to cropland. The increase in cropland area results from the population growth and the farming system in the catchment. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high discharge and peak flow, suggesting (i) an increase in water resources that is not available for plant growth and the

  8. Seasonal changes of CO(2), CH(4) and N(2)O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan.

    PubMed

    Inubushi, K; Furukawa, Y; Hadi, A; Purnomo, E; Tsuruta, H

    2003-07-01

    Tropical peatland could be a source of greenhouse gases emission because it contains large amounts of soil carbon and nitrogen. However these emissions are strongly influenced by soil moisture conditions. Tropical climate is characterized typically by wet and dry seasons. Seasonal changes in the emission of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O) were investigated over a year at three sites (secondary forest, paddy field and upland field) in the tropical peatland in South Kalimantan, Indonesia. The amount of these gases emitted from the fields varied widely according to the seasonal pattern of precipitation, especially methane emission rates were positively correlated with precipitation. Converting from secondary forest peatland to paddy field tended to increase annual emissions of CO(2) and CH(4) to the atmosphere (from 1.2 to 1.5 kg CO(2)-C m(-2)y(-1) and from 1.2 to 1.9 g CH(4)-C m(-2)y(-1)), while changing land-use from secondary forest to upland tended to decrease these gases emissions (from 1.2 to 1.0 kg CO(2)-C m(-2)y(-1) and from 1.2 to 0.6 g CH(4)-C m(-2)y(-1)), but no clear trend was observed for N(2)O which kept negative value as annual rates at three sites.

  9. Land use and land cover (LULC) of the Republic of the Maldives: first national map and LULC change analysis using remote-sensing data.

    PubMed

    Fallati, Luca; Savini, Alessandra; Sterlacchini, Simone; Galli, Paolo

    2017-08-01

    The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields and new built-up areas. All these changes happened without a proper monitoring and urban planning strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map was obtained by visual interpretation and manual digitization of land-use patches. The images used, dated 2011, were obtained from Digital Globe's WorldView 1 and WorldView 2 satellites. Nine land-use classes and 18 subclasses were identified and mapped. During a field survey, ground control points were collected to test the geographic and thematic accuracy of the land-use map. The final product's overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps were created using images from the early 2000s derived from Google Earth historical imagery. Post-classification comparison of the classified maps showed that growth of built-up and agricultural areas resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef habitat. The LULC map of the Republic of the Maldives produced in this study can be used by government authorities to make sustainable land-use planning decisions and to provide better management of land use and land cover.

  10. Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest.

    PubMed

    Both, Sabine; Elias, Dafydd M O; Kritzler, Ully H; Ostle, Nick J; Johnson, David

    2017-11-01

    In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced

  11. Forcings and feedbacks by land ecosystem changes on climate change

    NASA Astrophysics Data System (ADS)

    Betts, R. A.

    2006-12-01

    Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.

  12. Climate change impacts on global agricultural land availability

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Cai, Ximing

    2011-01-01

    Climate change can affect both crop yield and the land area suitable for agriculture. This study provides a spatially explicit estimate of the impact of climate change on worldwide agricultural land availability, considering uncertainty in climate change projections and ambiguity with regard to land classification. Uncertainty in general circulation model (GCM) projections is addressed using data assembled from thirteen GCMs and two representative emission scenarios (A1B and B1 employ CO2-equivalent greenhouse gas concentrations of 850 and 600 ppmv, respectively; B1 represents a greener economy). Erroneous data and the uncertain nature of land classifications based on multiple indices (i.e. soil properties, land slope, temperature, and humidity) are handled with fuzzy logic modeling. It is found that the total global arable land area is likely to decrease by 0.8-1.7% under scenario A1B and increase by 2.0-4.4% under scenario B1. Regions characterized by relatively high latitudes such as Russia, China and the US may expect an increase of total arable land by 37-67%, 22-36% and 4-17%, respectively, while tropical and sub-tropical regions may suffer different levels of lost arable land. For example, South America may lose 1-21% of its arable land area, Africa 1-18%, Europe 11-17%, and India 2-4%. When considering, in addition, land used for human settlements and natural conservation, the net potential arable land may decrease even further worldwide by the end of the 21st century under both scenarios due to population growth. Regionally, it is likely that both climate change and population growth will cause reductions in arable land in Africa, South America, India and Europe. However, in Russia, China and the US, significant arable land increases may still be possible. Although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are regionally consistent.

  13. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams

    PubMed Central

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches. PMID:26934113

  14. Land Use Influences Niche Size and the Assimilation of Resources by Benthic Macroinvertebrates in Tropical Headwater Streams.

    PubMed

    Parreira de Castro, Diego Marcel; Reis de Carvalho, Débora; Pompeu, Paulo dos Santos; Moreira, Marcelo Zacharias; Nardoto, Gabriela Bielefeld; Callisto, Marcos

    2016-01-01

    It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.

  15. Ecological and socio-economic functions across tropical land use systems after rainforest conversion.

    PubMed

    Drescher, Jochen; Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I Nengah S; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-05-19

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. © 2016 The Authors.

  16. Ecological and socio-economic functions across tropical land use systems after rainforest conversion

    PubMed Central

    Rembold, Katja; Allen, Kara; Beckschäfer, Philip; Buchori, Damayanti; Clough, Yann; Faust, Heiko; Fauzi, Anas M.; Gunawan, Dodo; Hertel, Dietrich; Irawan, Bambang; Jaya, I. Nengah S.; Klarner, Bernhard; Kleinn, Christoph; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Krishna, Vijesh; Leuschner, Christoph; Lorenz, Wolfram; Meijide, Ana; Melati, Dian; Nomura, Miki; Pérez-Cruzado, César; Qaim, Matin; Siregar, Iskandar Z.; Steinebach, Stefanie; Tjoa, Aiyen; Tscharntke, Teja; Wick, Barbara; Wiegand, Kerstin; Kreft, Holger; Scheu, Stefan

    2016-01-01

    Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes. PMID:27114577

  17. The Impact of Land Use Changes on Soil Erosion and Sediment Cycle Using Distributed Modeling in A Tropical Watershed in Indonesia

    NASA Astrophysics Data System (ADS)

    Yudha Siswanto, Shantosa; Francés, Félix

    2017-04-01

    High precipitation amount in tropical rainforest such as in West Java, Indonesia, results a massive run off and increase the possibility of erosion, sedimentation and floods. These conditions are aggravated by improper land use management such as deforestation. The objective of the present study is to identify the effect land use change on erosion and sediment. In order to shed more light on the problem, a distributed hydrological-sediment model, called TETIS, has been implemented. The model used 30 years of Hydro meteorological data. The required parameters were estimated using GIS. Three historical land uses (LU 1994, LU 2009 and LU 2014) and three scenarios (Indonesian government plan, conservation and natural vegetation) have been implemented. The return period of flood quantiles were calculated by the Maximum-Likelihood-method. Annual historical bathymetries in the reservoir were used to calibrate and validate the sediment sub-model involving Miller's density evolution and trap efficiency of Brune's equation. The actual evapotranspiration from 1994 to 2014 has reduced 11.0%, the overland flow has increased 17.5%, and meanwhile water yield has increased from 853.8 mm/yr to 963.6 mm/yr. The range of potential erosion was vary from 0 to 16.690 t/ha/yr with 37.26% of area higher than tolerable erosion (TE = 13.5 t/ha/yr). The percentage of actual erosion rate based on Hammer classification for low, moderate, high and severe were recorded as follow: 67, 8, 5 and 20% for LU 1994; 65, 9, 6 and 21% for LU 2009; 66, 8, 5 and 21% for LU 2014; 77, 7, 4 and 13% for Indonesian government plan scenario; 83, 9, 6 and 2% for conservation scenario and 98, 2, 0 and 0% for natural vegetation scenario, respectively. Meanwhile, the percentage of actual erosion rate that higher than tolerable erosion for LU 1994, LU 2009, LU 2014, Indonesian government plan, conservation and natural vegetation were 17,81%, 18.68%, 18.68%, 11.3%, 0.01% and 0%, respectively. The sediment yield

  18. Fingerprinting the impacts of global change on tropical forests.

    PubMed

    Lewis, Simon L; Malhi, Yadvinder; Phillips, Oliver L

    2004-03-29

    Recent observations of widespread changes in mature tropical forests such as increasing tree growth, recruitment and mortality rates and increasing above-ground biomass suggest that 'global change' agents may be causing predictable changes in tropical forests. However, consensus over both the robustness of these changes and the environmental drivers that may be causing them is yet to emerge. This paper focuses on the second part of this debate. We review (i) the evidence that the physical, chemical and biological environment that tropical trees grow in has been altered over recent decades across large areas of the tropics, and (ii) the theoretical, experimental and observational evidence regarding the most likely effects of each of these changes on tropical forests. Ten potential widespread drivers of environmental change were identified: temperature, precipitation, solar radiation, climatic extremes (including El Niño-Southern Oscillation events), atmospheric CO2 concentrations, nutrient deposition, O3/acid depositions, hunting, land-use change and increasing liana numbers. We note that each of these environmental changes is expected to leave a unique 'fingerprint' in tropical forests, as drivers directly force different processes, have different distributions in space and time and may affect some forests more than others (e.g. depending on soil fertility). Thus, in the third part of the paper we present testable a priori predictions of forest responses to assist ecologists in attributing particular changes in forests to particular causes across multiple datasets. Finally, we discuss how these drivers may change in the future and the possible consequences for tropical forests.

  19. Review of Land Use and Land Cover Change research progress

    NASA Astrophysics Data System (ADS)

    Chang, Yue; Hou, Kang; Li, Xuxiang; Zhang, Yunwei; Chen, Pei

    2018-02-01

    Land Use and Land Cover Change (LUCC) can reflect the pattern of human land use in a region, and plays an important role in space soil and water conservation. The study on the change of land use patterns in the world is of great significance to cope with global climate change and sustainable development. This paper reviews the main research progress of LUCC at home and abroad, and suggests that land use change has been shifted from land use planning and management to land use change impact and driving factors. The development of remote sensing technology provides the basis and data for LUCC with dynamic monitoring and quantitative analysis. However, there is no uniform standard for land use classification at present, which brings a lot of inconvenience to the collection and analysis of land cover data. Globeland30 is an important milestone contribution to the study of international LUCC system. More attention should be paid to the accuracy and results contrasting test of land use classification obtained by remote sensing technology.

  20. Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Sartohadi, J.; Setiawan, M. A.; Shrestha, D. B. P.; Jetten, V. G.

    2018-04-01

    Land use change influences the hydrological as well as landscape processes such as runoff and sediment yields. The main objectives of this study are to assess the land use change and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were used to classify the old image. Therefore, the present and the past images are comparable. The influence of the past and present land use on runoff and sediment yield has been compared with field measurement. The effect of land use changes shows the increased surface runoff which is the result of change in the curve number (CN) values. The study shows that it is possible to classify previously obtained image based on spectral characteristics and indices of major land cover types derived from recently obtained image. This avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it also demonstrates that it is possible to link land cover changes with land degradation processes and finally to sedimentation in the reservoir. The only condition is the requirement for having the comparable dataset which should not be difficult to generate. Any variation inherent in the data which are other than surface reflectance has to be corrected.

  1. Detection of Deforestation and Land Conversion in Rondonia, Brazil Using Change Detection Techniques

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Cohen, Warren B,; Kauffman, J. Boone; Peterson, David L. (Technical Monitor)

    2001-01-01

    Fires associated with tropical deforestation, land conversion, and land use greatly contribute to emissions as well as the depletion of carbon and nutrient pools. The objective of this research was to compare change detection techniques for identifying deforestation and cattle pasture formation during a period of early colonization and agricultural expansion in the vicinity of Jamari, Rond6nia. Multi-date Landsat Thematic Mapper (TM) data between 1984 and 1992 was examined in a 94 370-ha area of active deforestation to map land cover change. The Tasseled Cap (TC) transformation was used to enhance the contrast between forest, cleared areas, and regrowth. TC images were stacked into a composite multi-date TC and used in a principal components (PC) transformation to identify change components. In addition, consecutive TC image pairs were differenced and stacked into a composite multi-date differenced image. A maximum likelihood classification of each image composite was compared for identification of land cover change. The multi-date TC composite classification had the best accuracy of 78.1% (kappa). By 1984, only 5% of the study area had been cleared, but by 1992, 11% of the area had been deforested, primarily for pasture and 7% lost due to hydroelectric dam flooding. Finally, discrimination of pasture versus cultivation was improved due to the ability to detect land under sustained clearing opened to land exhibiting regrowth with infrequent clearing.

  2. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Treesearch

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  3. Space versus Place in Complex Human-Natural Systems: Spatial and Multi-level Models of Tropical Land Use and Cover Change (LUCC) in Guatemala

    PubMed Central

    López-Carr, David; Davis, Jason; Jankowska, Marta; Grant, Laura; López-Carr, Anna Carla; Clark, Matthew

    2013-01-01

    The relative role of space and place has long been debated in geography. Yet modeling efforts applied to coupled human-natural systems seemingly favor models assuming continuous spatial relationships. We examine the relative importance of placebased hierarchical versus spatial clustering influences in tropical land use/cover change (LUCC). Guatemala was chosen as our study site given its high rural population growth and deforestation in recent decades. We test predictors of 2009 forest cover and forest cover change from 2001-2009 across Guatemala's 331 municipalities and 22 departments using spatial and multi-level statistical models. Our results indicate the emergence of several socio-economic predictors of LUCC regardless of model choice. Hierarchical model results suggest that significant differences exist at the municipal and departmental levels but largely maintain the magnitude and direction of single-level model coefficient estimates. They are also intervention-relevant since policies tend to be applicable to distinct political units rather than to continuous space. Spatial models complement hierarchical approaches by indicating where and to what magnitude significant negative and positive clustering associations emerge. Appreciating the comparative advantages and limitations of spatial and nested models enhances a holistic approach to geographical analysis of tropical LUCC and human-environment interactions. PMID:24013908

  4. Human-induced climate change: the impact of land-use change

    NASA Astrophysics Data System (ADS)

    Gries, Thomas; Redlin, Margarete; Ugarte, Juliette Espinosa

    2018-02-01

    For hundreds of years, human activity has modified the planet's surface through land-use practices. Policies and decisions on how land is managed and land-use changes due to replacement of forests by agricultural cropping and grazing lands affect greenhouse gas emissions. Agricultural management and agroforestry and the resulting changes to the land surface alter the global carbon cycle as well as the Earth's surface albedo, both of which in turn change the Earth's radiation balance. This makes land-use change the second anthropogenic source of climate change after fossil fuel burning. However, the scientific research community has so far not been able to identify the direction and magnitude of the global impact of land-use change. This paper examines the effects of net carbon flux from land-use change on temperature by applying Granger causality and error correction models. The results reveal a significant positive long-run equilibrium relationship between land-use change and the temperature series as well as an opposing short-term effect such that land-use change tends to lead to global warming; however, a rise in temperature causes a decline in land-use change.

  5. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso)

    NASA Astrophysics Data System (ADS)

    Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.

    2016-06-01

    This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007, and 2013. A reclassification procedure levels out differences between the classification schemes of the four maps. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during calibration and validation ranged between 0.6 and 0.9 for total discharge, soil moisture, and groundwater level, indicating a good agreement between observed and simulated variables. After a successful multivariate validation the model was applied to the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment it can be assumed that savannah was mainly converted to cropland. The conversion rate of savannah was lower than the annual population growth of 3%. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high peak flow, suggesting (i) an increase in water resources that are not available for plant growth and human consumption and (ii) an alteration of flood risk for both the population within and

  6. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  7. Nitrous oxide flux following tropical land clearing

    NASA Technical Reports Server (NTRS)

    Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter

    1989-01-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  8. Nitrous oxide flux following tropical land clearing

    NASA Astrophysics Data System (ADS)

    LuizãO, FláVio; Matson, Pamela; Livingston, Gerald; LuizãO, Regina; Vitousek, Peter

    1989-09-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  9. Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD

    NASA Astrophysics Data System (ADS)

    Gumpenberger, Marlies; Vohland, Katrin; Heyder, Ursula; Poulter, Benjamin; Macey, Kirsten; Rammig, Anja; Popp, Alexander; Cramer, Wolfgang

    2010-01-01

    Deforestation is a major threat to tropical forests worldwide, contributing up to one-fifth of global carbon emissions into the atmosphere. Despite protection efforts, deforestation of tropical forests has continued in recent years. Providing incentives to reducing deforestation has been proposed in the United Nations Framework Convention on Climate Change (UNFCCC) Bali negotiations in 2007 to decelerate emissions from deforestation (REDD—reduced emissions from deforestation and forest degradation). A number of methodological issues such as ensuring permanence, establishing reference emissions levels that do not reward business-as-usual and having a measuring, reporting and verification system in place are essential elements in implementing successful REDD schemes. To assess the combined impacts of climate and land-use change on tropical forest carbon stocks in the 21st century, we use a dynamic global vegetation model (LPJ DGVM) driven by five different climate change projections under a given greenhouse gas emission scenario (SRES A2) and two contrasting land-use change scenarios. We find that even under a complete stop of deforestation after the period of the Kyoto Protocol (post-2012) some countries may continue to lose carbon stocks due to climate change. Especially at risk is tropical Latin America, although the presence and magnitude of the risk depends on the climate change scenario. By contrast, strong protection of forests could increase carbon uptake in many tropical countries, due to CO2 fertilization effects, even under altered climate regimes.

  10. Simulating Land-Use Change using an Agent-Based Land Transaction Model

    NASA Astrophysics Data System (ADS)

    Bakker, M. M.; van Dijk, J.; Alam, S. J.

    2013-12-01

    In the densely populated cultural landscapes of Europe, the vast majority of all land is owned by private parties, be it farmers (the majority), nature organizations, property developers, or citizens. Therewith, the vast majority of all land-use change arises from land transactions between different owner types: successful farms expand at the expense of less successful farms, and meanwhile property developers, individual citizens, and nature organizations also actively purchase land. These land transactions are driven by specific properties of the land, by governmental policies, and by the (economic) motives of both buyers and sellers. Climate/global change can affect these drivers at various scales: at the local scale changes in hydrology can make certain land less or more desirable; at the global scale the agricultural markets will affect motives of farmers to buy or sell land; while at intermediate (e.g. provincial) scales property developers and nature conservationists may be encouraged or discouraged to purchase land. The cumulative result of all these transactions becomes manifest in changing land-use patterns, and consequent environmental responses. Within the project Climate Adaptation for Rural Areas an agent-based land-use model was developed that explores the future response of individual land users to climate change, within the context of wider global change (i.e. policy and market change). It simulates the exchange of land among farmers and between farmers and nature organizations and property developers, for a specific case study area in the east of the Netherlands. Results show that local impacts of climate change can result in a relative stagnation in the land market in waterlogged areas. Furthermore, the increase in dairying at the expense of arable cultivation - as has been observed in the area in the past - is slowing down as arable produce shows a favourable trend in the agricultural world market. Furthermore, budgets for nature managers are

  11. Deforestation and reforestation analysis from land-use changes in North Sumatran Mangroves, 1990-2015

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistiyono, N.

    2018-02-01

    Mangrove forest plays a critical role in the context of climate change in tropical and subtropical regions. The present study analyzed the deforestation and reforestation from land-use and land-cover changes from 1990, 2000, 2009 and 2015 in North Sumatran mangrove forest, Indonesia. The land-use/land-cover consists of thirteen classes namely, primary mangrove forest, secondary mangrove forest, shrub, swamp shrub, swamp, settlement, paddy field, oil palm plantation, aquaculture, dry land farming, mixed dry land farming, mining, and barren land. Results showed that primary mangrove forests significantly decreased 61.21% from 1990 to 2015, mostly deforestation was derived from 1990 to 2000 to be secondary mangrove forest and swamp shrub. During 25 years observed, no reforestation was noted in the primary mangrove forest. Similarly, secondary mangrove forest had been degraded from 56,128.75 ha in 1990 to only 35,768.48 ha in 2015. Drivers of deforestation found in secondary mangrove forests were aquaculture (43.32%), barren land (32.56%), swamp shrub (10.88%), and oil palm plantation (5.17%). On the other hand, reforested activity was occurred only 701.83 ha from 1990 to 2015, while the nonforest use has been increased. These data are likely to contribute towards coastal management planning, conservation, and rehabilitation of degraded mangrove forests.

  12. Spatio-temporal analysis on land transformation in a forested tropical landscape in Jambi Province, Sumatra

    NASA Astrophysics Data System (ADS)

    Melati, Dian N.; Nengah Surati Jaya, I.; Pérez-Cruzado, César; Zuhdi, Muhammad; Fehrmann, Lutz; Magdon, Paul; Kleinn, Christoph

    2015-04-01

    Land use/land cover (LULC) in forested tropical landscapes is very dynamically developing. In particular, the pace of forest conversion in the tropics is a global concern as it directly impacts the global carbon cycle and biodiversity conservation. Expansion of agriculture is known to be among the major drivers of forest loss especially in the tropics. This is also the case in Jambi Province, Sumatra, Indonesia where it is the mainly expansion of tree crops that triggers deforestation: oil palm and rubber trees. Another transformation system in Jambi is the one from natural forest into jungle rubber, which is an agroforestry system where a certain density of forest trees accompanies the rubber tree crop, also for production of wood and non-wood forest products. The spatial distribution and the dynamics of these transformation systems and of the remaining forests are essential information for example for further research on ecosystem services and on the drivers of land transformation. In order to study land transformation, maps from the years 1990, 2000, 2011, and 2013 were utilized, derived from visual interpretation of Landsat images. From these maps, we analyze the land use/land cover change (LULCC) in the study region. It is found that secondary dryland forest (on mineral soils) and secondary swamp forest have been transformed largely into (temporary) shrub land, plantation forests, mixed dryland agriculture, bare lands and estate crops where the latter include the oil palm and rubber plantations. In addition, we present some analyses of the spatial pattern of land transformation to better understand the process of LULC fragmentation within the studied periods. Furthermore, the driving forces are analyzed.

  13. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  14. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  15. Big earth-observation data analytics for modelling pan-tropical land-use change trajectories for newly deforested areas

    NASA Astrophysics Data System (ADS)

    Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn

    2017-04-01

    Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.

  16. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s.

    PubMed

    Gibbs, H K; Ruesch, A S; Achard, F; Clayton, M K; Holmgren, P; Ramankutty, N; Foley, J A

    2010-09-21

    Global demand for agricultural products such as food, feed, and fuel is now a major driver of cropland and pasture expansion across much of the developing world. Whether these new agricultural lands replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. Although the general pattern is known, there still is no definitive quantification of these land-cover changes. Here we analyze the rich, pan-tropical database of classified Landsat scenes created by the Food and Agricultural Organization of the United Nations to examine pathways of agricultural expansion across the major tropical forest regions in the 1980s and 1990s and use this information to highlight the future land conversions that probably will be needed to meet mounting demand for agricultural products. Across the tropics, we find that between 1980 and 2000 more than 55% of new agricultural land came at the expense of intact forests, and another 28% came from disturbed forests. This study underscores the potential consequences of unabated agricultural expansion for forest conservation and carbon emissions.

  17. Mapping Tropical Forest Change in the Greater Marañón and Ucayali regions of Peru using CLASlite

    NASA Astrophysics Data System (ADS)

    Perez-Leiva, P.; Knapp, D. E.; Clark, J. K.; Asner, G. P.

    2012-12-01

    The Carnegie Landsat Analysis System-lite (CLASlite) was used to map and monitor tropical forest change in two large tropical watersheds in Peru: Greater Marañón and Ucayali. CLASlite uses radiometric and atmospheric correction algorithms as well as an Automated Monte Carlo Unmixing (AutoMCU) to obtain consistent fractional land cover per-pixel at high spatial resolution. Fractional land cover is automatically extracted from universal spectral libraries which allow for a differentiation between live photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare substrate (S). Fractional cover information is directly translated to maps of forest cover based in the physical characteristics of the forest canopy. Rates of deforestation and disturbance are estimated through analysis of change in fractional land cover over time. The Greater Marañón and Ucayali watersheds were studied over the period 1985 to 2012, through analysis of 1900 multi-spectral images from Landsat 4, 5 and 7. These images were processed and analyzed using CLASlite to obtain fractional cover and forest cover information for each year within the period. Annualization of the collected maps provided detailed information on the gross rates of disturbance and deforestation throughout the region. Further, net deforestation and disturbance maps were used to show the general forest change in these watersheds over the past 25 years. We found that deforestation accounts for just ~50% of the total forest losses, and that forest disturbance (degradation) is critically important to consider when making forest change estimates associated with losses in habitat and carbon in the region. These results also provide spatially-detailed, temporally-specific information on forest change for nearly three decades. Information provided by this study will assist decision-makers in Peru to improve their regional environmental management. The results, unprecedented in spatial and temporal scope, are

  18. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images

    NASA Astrophysics Data System (ADS)

    Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; Horie, Takeshi; Saito, Kazuki; Dounagsavanh, Linkham

    2010-08-01

    In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1-5 years, whereas 10% for 6-10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha -1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990-2004 periods was estimated to be 42 MgC ha -1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through

  19. Mapping and analysis land-use and land-cover changes during 1996-2016 in Lubuk Kertang mangrove forest, North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Fitri, A.; Harahap, Z. A.

    2018-03-01

    Mangrove forest plays a significant role for biogeochemical carbon cycle in the context of climate change along the tropical coastal area. The present study analyzed the land-use and land-cover changes from 1996, 2006 and 2016 in Lubuk Kertang mangrove forest, Langkat, North Sumatra, Indonesia. Mangrove diversity in Lubuk Kertang consists of fifteen species, Acanthus ilicifolius, Avicennia marina, A. lanata, A. officinalis, Bruguiera gymnorrhiza, B. sexangula, Ceriops tagal, Excoecaria agallocha, Lumnitzera racemosa, L. littorea, R. apiculata, R. mucronata, Scyphiphora hydrophyllacea, Sonneratia caseolaris, and Xylocarpus granatum. The land use/land cover consists of seven classes namely, mangrove forest, river, residential, paddy field, oil palm plantation, aquaculture, and open space area. A land use change matrix showed that the decrease of mangrove forest 109.4 ha from 1996-2006 converted to aquaculture 51.5 ha (47.1%). By contrast, mangrove lost 291.2 ha during 2006-2016, with main driver deforestation was oil palm plantation 128.1 ha (44%). During twenty years mangrove forest has been lost more than 400.4 ha, which is equal to 20.02 ha/year. On the other hand, oil palm plantation and aquaculture have been increased 155.3 ha and 114.1 ha during 1996-2016, respectively, suggested that both land-uses are mainly responsible for mangrove deforestation. These data are likely to contribute towards coastal management planning and practice and mitigating actions for emission reduction scenario.

  20. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    PubMed Central

    Tuluri, Francis; Reddy, R. Suseela; Anjaneyulu, Y.; Colonias, John; Tchounwou, Paul

    2010-01-01

    Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes. PMID:20623002

  1. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  2. Synthesis of the Ecohydrology of a Mexican Tropical Montane Cloud Forest and Implications of Land Use and Climate Change

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S. F.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.

    2013-05-01

    Land use conversion and climate change threaten the hydrological services from tropical montane cloud forests (TMCFs), but knowledge about cloud forest ecohydrology and the effects of global change drivers is limited. Here, we present a synthesis of research that traced the hydrologic sources, fluxes and flowpaths under different land cover types degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to elucidate to these ecohydrological processes. Results revealed that CWI was ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions; the water 'gained' from fog suppression was ~80-100 mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating water deficit; but not sufficient to offset the 17% water loss from nighttime E. Trees primarily utilized water from 30-50 cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from 'new' rainwater and plant water. Soils had high infiltration rates and water storage capacity, which contributed to the relatively low rainfall-runoff response, mainly generated from deep subsurface flowpaths. Conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600 mm and 300 mm, respectively, while planting pine on degraded pastures reduced water yield by 365 mm. Our results suggest that the ecophysiological effects of fog via suppressed E and FU have a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and

  3. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics

    NASA Astrophysics Data System (ADS)

    Jantz, Patrick; Goetz, Scott; Laporte, Nadine

    2014-02-01

    A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.

  4. GLOBAL CHANGE RESEARCH NEWS #3: IPCC SPECIAL REPORT ON "LAND USE, LAND USE CHANGE, AND FORESTRY"

    EPA Science Inventory

    ORD is participating in the development of an Intergovernmental Panel on Climate Change (IPCC) Special Report on "Land Use, Land Use Change and Forestry." Preparation of the Special Report was requested by the Conference of the Parties(COP) to the United Nations Framework Conve...

  5. Coupled social and ecological outcomes of land use change and agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions.

    NASA Astrophysics Data System (ADS)

    Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.

    2017-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  6. Coupled social and ecological outcomes of land use change and agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions.

    NASA Astrophysics Data System (ADS)

    Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.

    2016-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  7. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes.

    PubMed

    Nóbrega, Rodolfo L B; Guzha, Alphonce C; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo G; Hughes, Harold J; Jungkunst, Hermann F; Gerold, Gerhard

    2018-09-01

    Studies on the impacts of land-use and land-cover change on stream hydrochemistry in active deforestation zones of the Amazon agricultural frontier are limited and have often used low-temporal-resolution datasets. Moreover, these impacts are not concurrently assessed in well-established agricultural areas and new deforestations hotspots. We aimed to identify these impacts using an experimental setup to collect high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order streams in catchments under contrasting land use and land cover (native vegetation vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the conversion of natural landscapes to pastures increases carbon and nutrient fluxes via streamflow in both biomes. These changes were the greatest in total inorganic carbon in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold increase in the fluxes of each biome, respectively. We found that stormflow, which is often neglected in studies on stream hydrochemistry in the tropics, plays a substantial role in the carbon and nutrient fluxes, especially in the Amazon biome, as its contributions to hydrochemical fluxes are mostly greater than the volumetric contribution to the total streamflow. These findings demonstrate that assessments of the impacts of deforestation in the Amazon and Cerrado biomes should also take into account rapid hydrological pathways; however, this can only be achieved through collection of high-temporal-resolution data. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Land Use Effects on Atmospheric C-13 Imply a Sizable Terrestrial CO2 Sink in Tropical Latitudes

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Tans, Pieter P.; White, James W. C.

    2000-01-01

    Records of atmospheric CO2 and 13-CO2, can be used to distinguish terrestrial vs. oceanic exchanges of CO2 with the atmosphere. However, this approach has proven difficult in the tropics, partly due to extensive land conversion from C-3 to C-4 vegetation. We estimated the effects of such conversion on biosphere-atmosphere C-13 exchange for 1991 through 1999, and then explored how this 'land-use disequilibrium' altered the partitioning of net atmospheric CO2 exchanges between ocean and land using NOAA-CMDL data and a 2D, zonally averaged atmospheric transport model. Our results show sizable CO2 uptake in C-3-dominated tropical regions in seven of the nine years; 1997 and 1998, which included a strong ENSO event, are near neutral. Since these fluxes include any deforestation source, our findings imply either that such sources are smaller than previously estimated, and/or the existence of a large terrestrial CO2 sink in equatorial latitudes.

  9. Exploring Land Use and Land Cover Change and Feedbacks in the Global Change Assessment Model

    NASA Astrophysics Data System (ADS)

    Chen, M.; Vernon, C. R.; Huang, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.

    2017-12-01

    Land Use and Land Cover Change (LULCC) is a major driver of global and regional environmental change. Projections of land use change are thus an essential component in Integrated Assessment Models (IAMs) to study feedbacks between transformation of energy systems and land productivity under the context of climate change. However, the spatial scale of IAMs, e.g., the Global Change Assessment Model (GCAM), is typically larger than the scale of terrestrial processes in the human-Earth system, LULCC downscaling therefore becomes a critical linkage among these multi-scale and multi-sector processes. Parametric uncertainties in LULCC downscaling algorithms, however, have been under explored, especially in the context of how such uncertainties could propagate to affect energy systems in a changing climate. In this study, we use a LULCC downscaling model, Demeter, to downscale GCAM-based future land use scenarios into fine spatial scales, and explore the sensitivity of downscaled land allocations to key parameters. Land productivity estimates (e.g., biomass production and crop yield) based on the downscaled LULCC scenarios are then fed to GCAM to evaluate how energy systems might change due to altered water and carbon cycle dynamics and their interactions with the human system, , which would in turn affect future land use projections. We demonstrate that uncertainties in LULCC downscaling can result in significant differences in simulated scenarios, indicating the importance of quantifying parametric uncertainties in LULCC downscaling models for integrated assessment studies.

  10. Effect of differential forest management on land-use change (LUC) in a tropical hill forest of Malaysia.

    PubMed

    Masum, Kazi Mohammad; Mansor, Asyraf; Sah, Shahrul Anuar Mohd; Lim, Hwee San

    2017-09-15

    Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the

  12. Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter

    2013-04-01

    Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be

  13. The effects of changing land cover on streamflow simulation in Puerto Rico

    Treesearch

    A.E. Van Beusekom; L.E. Hay; R.J. Viger; W.A. Gould; J.A. Collazo; A. Henareh Khalyani

    2014-01-01

    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from...

  14. Land-Cover and Land-Use Change in the Brazilian Amazon: Smallholders, Ranchers and Frontier Stratification

    NASA Technical Reports Server (NTRS)

    Aldrich, Stephen P.; Walker, Robert T.; Arima, Eugenio Y.; Caldas, Marcellus M.; Browder, John O.; Perz, Stephen

    2006-01-01

    Tropical deforestation is a significant driver of global environmental change, given its impacts on the carbon cycle and biodiversity. Loss of the Amazon forest, the focus of this article, is of particular concern because of the size and the rapid rate at which the forest is being converted to agricultural use. In this article, we identify what has been the most important driver of deforestation in a specific colonization frontier in the Brazilian Amazon. To this end, we consider (1) the land-use dynamics of smallholder households, (2) the formation of pasture by large-scale ranchers, and (3) structural processes of land aggregation by ranchers. Much has been written about relations between smallholders and ranchers in the Brazilian Amazon, particularly those involving conflict over land, and this article explicates the implications of such social processes for land cover. Toward this end, we draw on panel data (1996-2002) and satellite imagery (1986-1999) to show the deforestation that is attributable to small- and largeholders, and the deforestation that is attributable to aggregations of property arising from a process that we refer to as frontier stratification. Evidently, most of the recent deforestation in the study area has resulted from the household processes of smallholders, not from conversions to pasture pursuant to the appropriations of smallholders' property by well-capitalized ranchers or speculators.

  15. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  16. Impact of land use change on the land atmosphere carbon flux of South and South East Asia: A Synthesis of Dynamic Vegetation Model Results

    NASA Astrophysics Data System (ADS)

    Cervarich, M.; Shu, S.; Jain, A. K.; Poulter, B.; Stocker, B.; Arneth, A.; Viovy, N.; Kato, E.; Wiltshire, A.; Koven, C.; Sitch, S.; Zeng, N.; Friedlingstein, P.

    2015-12-01

    Understanding our present day carbon cycle and possible solutions to recent increases in atmospheric carbon dioxide is dependent upon quantifying the terrestrial carbon budget. Currently, global land cover and land use change is estimated to emit 0.9 PgC yr-1 compared to emissions due to fossil fuel combustion and cement production of 8.4 PgC yr-1. South and Southeast Asia (India, Nepal, Bhutan, Bangladesh, Burma, Thailand, Laos, Vietnam, Cambodia, Malaysia, Philippines, Indonesia, Pakistan, Myanmar, and Singapore) is a region of rapid land cover and land use change due to the continuous development of agriculture, deforestation, reforestation, afforestation, and the increased demand of land for people to live. In this study, we synthesize outputs of nine models participated in Global Carbon Budget Project to identify the carbon budget of South and southeast Asia, diagnose the contribution of land cover and land use change to carbon emissions and assess areas of uncertainty in the suite of models. Uncertainty is determined using the standard deviation and the coefficient of variation of net ecosystem exchange and its component parts. Results show the region's terrestrial biosphere was a source of carbon emissions from the 1980 to the early 1990s. During the same time period, land cover and land use change increasingly contributed to carbon emission. In the most recent two decades, the region became a carbon sink since emission due to land cover land use changes. Spatially, the greatest total emissions occurred in the tropical forest of Southeast Asia. Additionally, this is the subregion with the greatest uncertainty and greatest biomass. Model uncertainty is shown to be proportional to total biomass. The atmospheric impacts of ENSO are shown to suppress the net biosphere productivity in South and Southeast Asia leading to years of increased carbon emissions.

  17. Tropical forests and the changing earth system.

    PubMed

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  18. Change in land use alters the diversity and composition of Bradyrhizobium communities and led to the introduction of Rhizobium etli into the tropical rain forest of Los Tuxtlas (Mexico).

    PubMed

    Ormeño-Orrillo, Ernesto; Rogel-Hernández, Marco A; Lloret, Lourdes; López-López, Aline; Martínez, Julio; Barois, Isabelle; Martínez-Romero, Esperanza

    2012-05-01

    Nitrogen-fixing bacteria of the Bradyrhizobium genus are major symbionts of legume plants in American tropical forests, but little is known about the effects of deforestation and change in land use on their diversity and community structure. Forest clearing is followed by cropping of bean (Phaseolus vulgaris) and maize as intercropped plants in Los Tuxtlas tropical forest of Mexico. The identity of bean-nodulating rhizobia in this area is not known. Using promiscuous trap plants, bradyrhizobia were isolated from soil samples collected in Los Tuxtlas undisturbed forest, and in areas where forest was cleared and land was used as crop fields or as pastures, or where secondary forests were established. Rhizobia were also trapped by using bean plants. Bradyrhizobium strains were classified into genospecies by dnaK sequence analysis supported by recA, glnII and 16S-23S rDNA IGS loci analyses. A total of 29 genospecies were identified, 24 of which did not correspond to any described taxa. A reduction in Bradyrhizobium diversity was observed when forest was turned to crop fields or pastures. Diversity seemed to recover to primary forest levels in secondary forests that derived from abandoned crop fields or pastures. The shifts in diversity were not related to soil characteristics but seemingly to the density of nodulating legumes present at each land use system (LUS). Bradyrhizobium community composition in soils was dependent on land use; however, similarities were observed between crop fields and pastures but not among forest and secondary forest. Most Bradyrhizobium genospecies present in forest were not recovered or become rare in the other LUS. Rhizobium etli was found as the dominant bean-nodulating rhizobia present in crop fields and pastures, and evidence was found that this species was introduced in Los Tuxtlas forest.

  19. Application of SAR Remote Sensing in Land Surface Processes Over Tropical region

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.

    1996-01-01

    This paper outlines the potential applications of polarimetric SAR systems over tropical regions such as mapping land use and deforestation, forest regeneration, wetland and inundation studies, and mapping land cover types for biodiversity and habitat conservation studies.

  20. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use

    NASA Astrophysics Data System (ADS)

    Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul

    2016-01-01

    The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.

  1. Agro-pastoral expansion and land use/land cover (LU/LC) change dynamics in Central-western Brazil

    NASA Astrophysics Data System (ADS)

    Sanga-Ngoie, K.; Yoshikawa, S.; Kanae, S.

    2011-12-01

    In Brazil, large-scale land cover changes following extensive deforestations are expected to generate big impacts onto the climate and the environment over this area, with eventually many negative feedbacks on the global scale. Mato Grosso State, located in the central western Brazil, is known to be the Brazilian state with the highest deforestation rate. Land use/land cover (LU/LC) changes have been reported to occur over large areas in this state due to the introduction of large-scale mechanized agriculture, extensive cattle ranching and uncontrolled slash-and-burn cultivation since the 1980s. In this study, we specifically aim at doing more detailed analysis for the causes of deforestation and savannization in this area, with special attention to agriculture and cattle ranching industry at the municipal district level in this state. Using GIS techniques and remotely-sensed NOAA/AVHRR data, we created 5-year Digital Vegetation Model Maps characterizing LU/LC features for every five years during the 1981-2001 periods using the PCA first components of the NOAA/AVHRR multi-spectral data. Our results make it clear that: (1) LU/LC changes among the phases are of the following 3 major types: degradation, recovery or transition; (2) The changes in LU/LC features are concomitant with the advance of cattle ranching and corn production activities toward the northern parts of the state, and with the expansion of soybean production in the central and western Mato Grosso; (3) Most of the agro-pastoral business are found in the southern Mato Grosso where about 46% of the state's deforestation during the 1981-2001 period occurred; (4) Rates of vegetation change are larger over non-inhabited areas (56%), especially in the north, than over the populated zones in the south (42%). Moreover, this work sheds some new light on the patterns of the changes in LU/LC features (deforestation and savannization) for each municipal district of Mato Grosso. In general, the following activities

  2. Effect of land use on greenhouse gas emission in tropical ecosystems

    NASA Astrophysics Data System (ADS)

    Six, Johan

    2017-04-01

    Tropical ecosystems play an important role for the regional and global climate system through the exchange of greenhouse gases and provide important ecosystems services such as carbon sequestration, produce, and biodiversity. Human activities have, however, resulted in intensive transformation of tropical ecosystems impacting the cycling of nutrients, water and carbon underlying the greenhouse gas emissions. At the same time, best-bet agricultural practices can reduce greenhouse gas emission, those directly emitted from the agricultural fields, but also indirectly through less demand on new land and hence forest conservation. Here, I will provide some insights into the main factors affecting the exchange of greenhouse gases from the plot to continental scale through some specific case studies. Experimental data, stable isotopes and modeling results will be presented.

  3. Mapping Deforestation and Land Use in Amazon Rainforest Using SAR-C Imagery

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Soares, Joao Vianei; Alves, Diogenes Salas

    1996-01-01

    Land use changes and deforestation in tropical rainforests are among the major factors affecting the overall function of the global environment. To routinely assess the spatial extend and temporal dynamics of these changes has become an important challenge in several scientific disciplines such as climate and environmental studies. In this paper, the feasibility of using polarimetric spaceborne SAR data in mapping land cover types in the Amazon is studied.

  4. The Columbian Encounter and Land-Use Change.

    ERIC Educational Resources Information Center

    Turner, B. L. II, Butzer, Karl W.

    1992-01-01

    Discusses land use patterns in fifteenth-century Europe and in the Americas and the mutual influence (initiated by Columbus's arrival in the Americas) that led to land use change. Presents a historical perspective and categorization of contemporary global land use changes for the purpose of highlighting associations between past and present global…

  5. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  6. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  7. Long-Term Climate Implications of Persistent Loss of Tropical Peat Carbon Following Land Use Conversion

    NASA Astrophysics Data System (ADS)

    Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.

    2016-12-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.

  8. Assessing Ecological Impacts According to Land Use Change

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  9. El Nino-Induced Tropical Ocean/Land Energy Exchange in MERRA-2 and M2AMIP

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Robertson, Franklin R.

    2017-01-01

    Studies have shown the correlation and connection of surface temperatures across the globe, ocean and land, related to Tropical SSTs especially El Nino. This climate variability greatly influences regional weather and hydroclimate extremes (e.g. drought and flood). In this paper, we evaluate the relationship of temperatures across the tropical oceans and continents in MERRA-2, and also in a newly developed MERRA-2 AMIP ensemble simulation (M2AMIP). M2AMIP uses the same model and spatial resolution as MERRA-2, producing the same output diagnostics over 10 ensemble members. Composite El Nino temperature data are compared with observations to evaluate the land/sea contrast, variations and phase relationship. The temperature variations are related to surface heat fluxes and the atmospheric temperatures and transport, to identify the processes that lead to the lagged redistribution of heat in the tropics and beyond. Discernable cloud, radiation and data assimilation changes accompany the onset of El Nino affecting continental regions through the progression to and following the peak values. While the model represents these variations in general, regional strengths and weaknesses can be identified.

  10. Understanding patterns of land-cover change in the Brazilian Cerrado from 2000 to 2015.

    PubMed

    Espírito-Santo, Mário M; Leite, Marcos E; Silva, Jhonathan O; Barbosa, Rômulo S; Rocha, André M; Anaya, Felisa C; Dupin, Mariana G V

    2016-09-19

    Clearing tropical vegetation impacts biodiversity, the provision of ecosystem services, and thus ultimately human welfare. We quantified changes in land cover from 2000 to 2015 across the Cerrado biome of northern Minas Gerais state, Brazil. We assessed the potential biophysical and socio-economic drivers of the loss of Cerrado, natural regeneration and net cover change at the municipality level. Further, we evaluated correlations between these land change variables and indicators of human welfare. We detected extensive land-cover changes in the study area, with the conversion of 23 446 km(2) and the natural regeneration of 13 926 km(2), resulting in a net loss of 9520 km(2) The annual net loss (-1.2% per year) of the cover of Cerrado is higher than that reported for the whole biome in similar periods. We argue that environmental and economic variables interact to underpin rates of conversion of Cerrado, most severely affecting more humid Cerrado lowlands. While rates of Cerrado regeneration are important for conservation strategies of the remaining biome, their integrity must be investigated given the likelihood of encroachment. Given the high frequency of land abandonment in tropical regions, secondary vegetation is fundamental to maintain biodiversity and ecosystem services. Finally, the impacts of Cerrado conversion on human welfare likely vary from local to regional scales, making it difficult to elaborate land-use policies based solely on socio-economic indicators.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  11. Understanding patterns of land-cover change in the Brazilian Cerrado from 2000 to 2015

    PubMed Central

    Leite, Marcos E.; Silva, Jhonathan O.; Barbosa, Rômulo S.; Rocha, André M.; Anaya, Felisa C.; Dupin, Mariana G. V.

    2016-01-01

    Clearing tropical vegetation impacts biodiversity, the provision of ecosystem services, and thus ultimately human welfare. We quantified changes in land cover from 2000 to 2015 across the Cerrado biome of northern Minas Gerais state, Brazil. We assessed the potential biophysical and socio-economic drivers of the loss of Cerrado, natural regeneration and net cover change at the municipality level. Further, we evaluated correlations between these land change variables and indicators of human welfare. We detected extensive land-cover changes in the study area, with the conversion of 23 446 km2 and the natural regeneration of 13 926 km2, resulting in a net loss of 9520 km2. The annual net loss (−1.2% per year) of the cover of Cerrado is higher than that reported for the whole biome in similar periods. We argue that environmental and economic variables interact to underpin rates of conversion of Cerrado, most severely affecting more humid Cerrado lowlands. While rates of Cerrado regeneration are important for conservation strategies of the remaining biome, their integrity must be investigated given the likelihood of encroachment. Given the high frequency of land abandonment in tropical regions, secondary vegetation is fundamental to maintain biodiversity and ecosystem services. Finally, the impacts of Cerrado conversion on human welfare likely vary from local to regional scales, making it difficult to elaborate land-use policies based solely on socio-economic indicators. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502383

  12. The effects of changing land cover on streamflow simulation in Puerto Rico

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad

    2014-01-01

    This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.

  13. Techniques for land use change detection using Landsat imagery

    NASA Technical Reports Server (NTRS)

    Angelici, G. L.; Bryant, N. A.; Friedman, S. Z.

    1977-01-01

    A variety of procedures were developed for the delineation of areas of land use change using Landsat Multispectral Scanner data and the generation of statistics revealing the nature of the changes involved (i.e., number of acres changed from rural to urban). Techniques of the Image Based Information System were utilized in all stages of the procedure, from logging the Landsat data and registering two frames of imagery, to extracting the changed areas and printing tabulations of land use change in acres. Two alternative methods of delineating land use change are presented while enumerating the steps of the entire process. The Houston, Texas urban area, and the Orlando, Florida urban area, are used as illustrative examples of various procedures.

  14. [Effects of land use changes on soil water conservation in Hainan Island, China].

    PubMed

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  15. Regional and global implications of land-use change and climate change

    NASA Astrophysics Data System (ADS)

    Stauffer, Heidi Lada

    This dissertation has two main components. The first is a longterm regional climate modeling study of the effects of different types of land use changes on Southeast Asian climate under present-day climate conditions and under future projected climate conditions at the end of the 21st Century. The focus of the second component is to estimate daily heat index for projected extreme temperatures at the end of the 21st Century and projecting the number of people affected by those heat conditions. The first component of this study uses a high-resolution regional climate model centered on the Southeast Asian region to compare two land use change scenarios under modern climate and future projected climate conditions. Results from experiments under modern climate conditions indicate that changes in regional climate including widespread surface cooling, increased precipitation, and increased latent heat flux are primarily due to deforestation. As expected from other studies, future climate projections indicate increasing surface temperature and total precipitation. However, the combination of increasing global temperatures and irrigation appears to increase latent heat flux and evapotranspiration, leading to decrease in the surface temperature nearly the same magnitude, increasing both specific humidity and relative humidity. The increasing relative humidity causes low clouds to form, and the net surface solar absorbed flux decreases in response, which further cools the surface. These results imply that deforestation and irrigation have differing complex regional climate responses and the presence of irrigation could mask future surface temperature increases, at least in the short term and reinforce the importance of incorporating land use changes, particularly irrigation, into any studies of future regional climate. The second component of this study uses global daily maximum heat indices derived from future climate future climate simulations for 2098 and projected

  16. Land Use Change and Land Degradation in Southeastern Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  17. Land use change and land degradation in southeastern Mediterranean Spain.

    PubMed

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall "recuperating" trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  18. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    PubMed

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or <1.0) because of the low seasonal variation in soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Potential reciprocal effect between land use / land cover change and climate change

    NASA Astrophysics Data System (ADS)

    Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel

    2016-04-01

    Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also

  20. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  1. Global land-cover and land-use change of the last 6000 years for climate modelling studies: the PAGES LandCover6k initiative and its first achievements

    NASA Astrophysics Data System (ADS)

    Gaillard, Marie-Jose; Morrison, Kathleen; Madella, Marco; Whitehouse, Nicki J.; Pages Landcover6k Sub-Coordinators

    2016-04-01

    The goal of the PAGES LandCover6k initiative is to provide relevant, empirical data on past anthropogenic land-cover change (land-use change) to climate modellers (e.g. the CMIP5 initiative). Land-use change is one of many climate forcings and its effect on climate is still badly understood. Among the effects of land-cover change on climate, the best known are the biogeochemical effects, and in particular the influence on the exchange of CO2 between the land surface and the atmosphere. The biogeophysical effects are less well understood, i.e. the net effect of changes in the albedo and evapotranspiration is complex. Moreover, the net effect of both biogeochemical and biogeophysical processes due to land-use change is still a matter of debate. The LandCover6k working group infers land-use data from fossil pollen records from lake sediments and peat deposits, and from historical archives and archaeological records (including pollen and other palaeoecological records such as wood and plant micro/macroremains). The working group is divided into two activities, i) pollen-based reconstructions of past land cover using pollen-vegetation modelling approaches, and mapping of pollen-based land-cover change using spatial statistics (e.g. Trondman et al., 2015; Pirzimanbein et al., 2014), and ii) upscaling and summarizing historical and archaeological data into maps of major land-use categories linked to quantitative attributes. Studies on pollen productivity of major plant taxa are an essential part of activity i). Pollen productivity estimates are available for a large number of the northern hemisphere, major plant taxa, but are still missing for large parts of the tropics for which research is currently in progress. The results of both activities are then used to revise existing Anthropogenic Land-Cover Change (ALCC) scenarios, the HYDE database (Klein-Goldewijk et al.,) and KK (Kaplan et al.,). Climate modellers (e.g. the CMIP5 initiative) can use the LandCover6k products

  2. Impact of land cover and land use change on runoff characteristics.

    PubMed

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  3. Quantifying the Climate Impacts of Land Use Change (Invited)

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.

    2010-12-01

    Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.

  4. Improving predictions of carbon fluxes in the tropics undre climatic changes using ED2

    NASA Astrophysics Data System (ADS)

    Feng, X.; Uriarte, M.

    2016-12-01

    Tropical forests play a critical role in the exchange of carbon between land and atmosphere, highlighting the urgency of understanding the effects of climate change on these ecosystems. The most optimistic predictions of climate models indicate that global mean temperatures will increase by up to 2 0C with some tropical regions experiencing extreme heat. Drought and heat-induced tree mortality will accelerate the release of carbon to the atmosphere creating a positive feedback that greatly exacerbates global warming. Thus, under a warmer and drier climate, tropical forests may become net sources, rather than sinks, of carbon. Earth system models have not reached a consensus on the magnitude and direction of climate change impacts on tropical forests, calling into question the reliability of their predictions. Thus, there is an immediate need to improve the representation of tropical forests in earth system models to make robust predictions. The goal of our study is to quantify the responses of tropical forests to climate variability and improve the predictive capacity of terrestrial ecosystem models. We have collected species-specific physiological and functional trait data from 144 tree species in a Puerto Rican rainforest to parameterize the Ecosystem Demography model (ED2). The large amount of data generated by this research will lead to better validation and lowering the uncertainty in future model predictions. To best represent the forest landscape in ED2, all the trees have been assigned to three plant functional types (PFTs): early, mid, and late successional species. Trait data for each PFT were synthesized in a Bayesian meta-analytical model and posterior distributions of traits were used to parameterize the ED2 model. Model predictions show that biomass production of late successional PFT (118.89 ton/ha) was consistently higher than mid (71.33 ton/ha) and early (13.21 ton/ha) PFTs. However, mid successional PFT had the highest contributions to NPP for the

  5. Regional, holocene records of the human dimension of global change: sea-level and land-use change in prehistoric Mexico

    NASA Astrophysics Data System (ADS)

    Sluyter, Andrew

    1997-02-01

    Regional, Holocene records hold particular relevance for understanding the reciprocal nature of global environmental change and one of its major human dimensions: "sustainable agriculture", i.e., food production strategies which entail fewer causes of and are less susceptible to environmental change. In an epoch of accelerating anthropogenic transformation, those records reveal the protracted regional causes and consequences of change (often agricultural) in the global system as well as informing models of prehistoric, intensive agriculture which, because of long tenures and high productivities, suggest strategies for sustainable agricultural in the present. This study employs physiographic analysis and the palynological, geochemical record from cores of basin fill to understand the reciprocal relation between environmental and land-use change in the Gulf of Mexico tropical lowland, focusing on a coastal basin sensitive to sea-level change and containing vestiges of prehistoric settlement and wetland agriculture. Fossil pollen reveals that the debut of maize cultivation in the Laguna Catarina watershed dates to ca. 4100 BC, predating the earliest evidence for that cultivar anywhere else in the lowlands of Middle America. Such an early date for a cultivar so central to Neotropical agroecology and environmental change, suggests the urgency of further research in the study region. Moreover, the longest period of continuous agriculture in the basin lasted nearly three millennia (ca. 2400 BC-AD 550) despite eustatic sea-level rise. Geochemical fluxes reveal the reciprocity between land-use and environmental change: slope destabilization, basin aggradation, and eutrophication. The consequent theoretical implications pertain to both applied and basic research. Redeploying ancient agroecologies in dynamic environments necessitates reconstructing the changing operational contexts of putative high productivity and sustainability. Adjusting land use in the face of global

  6. Biodiversity scenarios neglect future land-use changes.

    PubMed

    Titeux, Nicolas; Henle, Klaus; Mihoub, Jean-Baptiste; Regos, Adrián; Geijzendorffer, Ilse R; Cramer, Wolfgang; Verburg, Peter H; Brotons, Lluís

    2016-07-01

    Efficient management of biodiversity requires a forward-looking approach based on scenarios that explore biodiversity changes under future environmental conditions. A number of ecological models have been proposed over the last decades to develop these biodiversity scenarios. Novel modelling approaches with strong theoretical foundation now offer the possibility to integrate key ecological and evolutionary processes that shape species distribution and community structure. Although biodiversity is affected by multiple threats, most studies addressing the effects of future environmental changes on biodiversity focus on a single threat only. We examined the studies published during the last 25 years that developed scenarios to predict future biodiversity changes based on climate, land-use and land-cover change projections. We found that biodiversity scenarios mostly focus on the future impacts of climate change and largely neglect changes in land use and land cover. The emphasis on climate change impacts has increased over time and has now reached a maximum. Yet, the direct destruction and degradation of habitats through land-use and land-cover changes are among the most significant and immediate threats to biodiversity. We argue that the current state of integration between ecological and land system sciences is leading to biased estimation of actual risks and therefore constrains the implementation of forward-looking policy responses to biodiversity decline. We suggest research directions at the crossroads between ecological and environmental sciences to face the challenge of developing interoperable and plausible projections of future environmental changes and to anticipate the full range of their potential impacts on biodiversity. An intergovernmental platform is needed to stimulate such collaborative research efforts and to emphasize the societal and political relevance of taking up this challenge. © 2016 John Wiley & Sons Ltd.

  7. Historical and future perspectives of global soil carbon response to climate and land-use changes

    NASA Astrophysics Data System (ADS)

    Eglin, T.; Ciais, P.; Piao, S. L.; Barre, P.; Bellassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Koven, C.; Reichstein, M.; Smith, P.

    2010-11-01

    ABSTRACT In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901-2000 and the period 2000-2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere. In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

  8. Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land

    DOE PAGES

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; ...

    2018-04-27

    Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less

  9. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  10. Land-use and land-cover change in montane mainland southeast Asia.

    PubMed

    Fox, Jefferson; Vogler, John B

    2005-09-01

    This paper summarizes land-cover and land-use change at eight sites in Thailand, Yunnan (China), Vietnam, Cambodia, and Laos over the last 50 years. Project methodology included incorporating information collected from a combination of semiformal, key informant, and formal household interviews with the development of spatial databases based on aerial photographs, satellite images, topographic maps, and GPS data. Results suggest that land use (e.g. swidden cultivation) and land cover (e.g. secondary vegetation) have remained stable and the minor amount of land-use change that has occurred has been a change from swidden to monocultural cash crops. Results suggest that two forces will increasingly determine land-use systems in this region. First, national land tenure policies-the nationalization of forest lands and efforts to increase control over upland resources by central governments-will provide a push factor making it increasingly difficult for farmers to maintain their traditional swidden land-use practices. Second, market pressures-the commercialization of subsistence resources and the substitution of commercial crops for subsistence crops-will provide a pull factor encouraging farmers to engage in new and different forms of commercial agriculture. These results appear to be robust as they come from eight studies conducted over the last decade. But important questions remain in terms of what research protocols are needed, if any, when linking social science data with remotely sensed data for understanding human-environment interactions.

  11. Land use and land cover change in the North Central Appalachians ecoregion

    USGS Publications Warehouse

    Napton, D.E.; Sohl, Terry L.; Auch, Roger F.; Loveland, Thomas R.

    2003-01-01

    The North Central Appalachians ecoregion, spanning northern Pennsylvania and southern New York, has a long history of land use and land cover change. Turn-of-the-century logging dramatically altered the natural landscape of the ecoregion, but subsequent regeneration returned the ecoregion to a forest dominated condition. To understand contemporary land use and land cover changes, the U.S. Geological Survey with NASA and the U.S. Environmental Protection Agency used a random sample of satellite remotely sensed data for 1973, 1980, 1986, 1992, and 2000 to estimate the rates and assess the primary drivers of change in the North Central Appalachians. The overall change was 6.2%. The 1973-1980 period had the lowest rate of change (1.5%); the highest rate (2.9%) occurred during the 1992-2000 period. The primary conversions were deforestation through harvesting and natural disturbance (i.e., tornados) followed by regeneration, and conversion of forests to mining and urban lands. The primary drivers of the change included changes in access, energy and forest prices, and attitudes toward the environment.

  12. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  13. Carbon dioxide emissions from forestry and peat land using land-use/land-cover changes in North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistyono, N.; Slamet, B.; Wati, R.

    2018-03-01

    Forestry and peat land including land-based is one of the critical sectors in the inventory of CO2 emissions and mitigation efforts of climate change. The present study analyzed the land-use and land-cover changes between 2006 and 2012 in North Sumatra, Indonesia with emphasis to CO2 emissions. The land-use/land-cover consists of twenty-one classes. Redd Abacus software version 1.1.7 was used to measure carbon emission source as well as the predicted 2carbon dioxide emissions from 2006-2024. Results showed that historical emission (2006-2012) in this province, significant increases in the intensive land use namely dry land agriculture (109.65%), paddy field (16.23%) and estate plantation (15.11%). On the other hand, land-cover for forest decreased significantly: secondary dry land forest (7.60%), secondary mangrove forest (9.03%), secondary swamp forest (33.98%), and the largest one in the mixed dry land agriculture (79.96%). The results indicated that North Sumatra province is still a CO2 emitter, and the most important driver of emissions mostly derived from agricultural lands that contributed 2carbon dioxide emissions by 48.8%, changing from forest areas into degraded lands (classified as barren land and shrub) shared 30.6% and estate plantation of 22.4%. Mitigation actions to reduce carbon emissions was proposed such as strengthening the forest land, rehabilitation of degraded area, development and plantation forest, forest protection and forest fire control, and reforestation and conservation activity. These mitigation actions have been simulated to reduce 15% for forestry and 18% for peat land, respectively. This data is likely to contribute to the low emission development in North Sumatra.

  14. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  15. Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015

    NASA Astrophysics Data System (ADS)

    Dupin, Mariana G. V.; Espírito-Santo, Mário M.; Leite, Marcos E.; Silva, Jhonathan O.; Rocha, André M.; Barbosa, Rômulo S.; Anaya, Felisa C.

    2018-03-01

    Tropical Dry Forests (TDFs) have been broadly converted into pastures and crops, with direct consequences to biodiversity, ecosystem services, and social welfare. Such land use and cover changes (LUCC) usually are strongly influenced by government environmental and development policies. The present study aimed at analyzing LUCC in Brazilian TDFs between 2000 and 2015, using the north of Minas Gerais state (128 000 km2) as a case study. We evaluated the potential biophysical and social-economic drivers of TDF loss, natural regeneration and net area change at the county level. Further, we determined the effects of these LUCC variables on socioeconomic indicators. We identified a considerable change in TDF cover, expressed as 9825 km2 of deforestation and 6523 km2 of regeneration, which resulted in a net loss of 3302 km2. The annual rate of TDF cover change was -1.2%, which is extremely high for a vegetation type that is protected as part of the Atlantic Rain Forest biome since 1993. TDF deforestation was directly affected by county area and by the increase in cattle density, and inversely affected by terrain declivity, indicating that land conversion is mostly driven by cattle ranching in flat regions. TDF regeneration was directly affected by county area and inversely affected by the increase in population density and terrain declivity. LUCC variables did not affect welfare indicators, undermining claims from rural sectors that TDF protection would cause a socioeconomic burden for northern Minas Gerais. Our results highlight the importance of naturally regenerating secondary forests to the maintenance of ecosystem integrity and its services, which are frequently neglected in conservation strategies. Hegemonic macroeconomic policies affecting TDFs have been deeply rooted in deforestation for commodities production, and need urgent review because they cause long-term environmental impacts without evidence of welfare gains.

  16. Evaluation of historical land cover, land use, and land-use change emissions in the GCAM integrated assessment model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M.; Kyle, P.; Janetos, A. C.; Zhou, Y.

    2012-12-01

    Integrated Assessment Models (IAMs) are often used as science-based decision-support tools for evaluating the consequences of climate and energy policies, and their use in this framework is likely to increase in the future. However, quantitative evaluation of these models has been somewhat limited for a variety of reasons, including data availability, data quality, and the inherent challenges in projections of societal values and decision-making. In this analysis, we identify and confront methodological challenges involved in evaluating the agriculture and land use component of the Global Change Assessment Model (GCAM). GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. GCAM then calculates both emissions from land-use practices, and long-term changes in carbon stocks in different land uses, thus providing simulation information that can be compared to observed historical data. In this work, we compare GCAM results, both in recent historic and future time periods, to historical data sets. We focus on land use, land cover, land-use change emissions, and albedo.

  17. Contributions of projected land use to global radiative forcing ascribed to local sources

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2013-12-01

    With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas

  18. Image-based change estimation for land cover and land use monitoring

    Treesearch

    Jeremy Webb; C. Kenneth Brewer; Nicholas Daniels; Chris Maderia; Randy Hamilton; Mark Finco; Kevin A. Megown; Andrew J. Lister

    2012-01-01

    The Image-based Change Estimation (ICE) project resulted from the need to provide estimates and information for land cover and land use change over large areas. The procedure uses Forest Inventory and Analysis (FIA) plot locations interpreted using two different dates of imagery from the National Agriculture Imagery Program (NAIP). In order to determine a suitable...

  19. Land use allocation model considering climate change impact

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  20. Monitoring Urban Land Cover/land Use Change in Algiers City Using Landsat Images (1987-2016)

    NASA Astrophysics Data System (ADS)

    Bouchachi, B.; Zhong, Y.

    2017-09-01

    Monitoring the Urban Land Cover/Land Use change detection is important as one of the main driving forces of environmental change because Urbanization is the biggest changes in form of Land, resulting in a decrease in cultivated areas. Using remote sensing ability to solve land resources problems. The purpose of this research is to map the urban areas at different times to monitor and predict possible urban changes, were studied the annual growth urban land during the last 29 years in Algiers City. Improving the productiveness of long-term training in land mapping, were have developed an approach by the following steps: 1) pre-processing for improvement of image characteristics; 2) extract training sample candidates based on the developed methods; and 3) Derive maps and analyzed of Algiers City on an annual basis from 1987 to 2016 using a Supervised Classifier Support Vector Machine (SVMs). Our result shows that the strategy of urban land followed in the region of Algiers City, developed areas mostly were extended to East, West, and South of Central Regions. The urban growth rate is linked with National Office of Statistics data. Future studies are required to understand the impact of urban rapid lands on social, economy and environmental sustainability, it will also close the gap in data of urbanism available, especially on the lack of reliable data, environmental and urban planning for each municipality in Algiers, develop experimental models to predict future land changes with statistically significant confidence.

  1. NASA Land Cover and Land Use Change (LCLUC): an interdisciplinary research program.

    PubMed

    Justice, Chris; Gutman, Garik; Vadrevu, Krishna Prasad

    2015-01-15

    Understanding Land Cover/Land Use Change (LCLUC) in diverse regions of the world and at varied spatial scales is one of the important challenges in global change research. In this article, we provide a brief overview of the NASA LCLUC program, its focus areas, and the importance of satellite remote sensing observations in LCLUC research including future directions. The LCLUC Program was designed to be a cross-cutting theme within NASA's Earth Science program. The program aims to develop and use remote sensing technologies to improve understanding of human interactions with the environment. Since 1997, the NASA LCLUC program has supported nearly 280 research projects on diverse topics such as forest loss and carbon, urban expansion, land abandonment, wetland loss, agricultural land use change and land use change in mountain systems. The NASA LCLUC program emphasizes studies where land-use changes are rapid or where there are significant regional or global LCLUC implications. Over a period of years, the LCLUC program has contributed to large regional science programs such as Land Biosphere-Atmosphere (LBA), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the Monsoon Area Integrated Regional Study (MAIRS). The primary emphasis of the program will remain on using remote sensing datasets for LCLUC research. The program will continue to emphasize integration of physical and social sciences to address regional to global scale issues of LCLUC for the benefit of society. Copyright © 2014. Published by Elsevier Ltd.

  2. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  3. Long-lasting effects of land use history on soil fungal communities in second-growth tropical rain forests.

    PubMed

    Bachelot, Benedicte; Uriarte, María; Zimmerman, Jess K; Thompson, Jill; Leff, Jonathan W; Asiaii, Ava; Koshner, Jenny; McGuire, Krista

    2016-09-01

    Our understanding of the long-lasting effects of human land use on soil fungal communities in tropical forests is limited. Yet, over 70% of all remaining tropical forests are growing in former agricultural or logged areas. We investigated the relationship among land use history, biotic and abiotic factors, and soil fungal community composition and diversity in a second-growth tropical forest in Puerto Rico. We coupled high-throughput DNA sequencing with tree community and environmental data to determine whether land use history had an effect on soil fungal community descriptors. We also investigated the biotic and abiotic factors that underlie such differences and asked whether the relative importance of biotic (tree diversity, basal tree area, and litterfall biomass) and abiotic (soil type, pH, iron, and total carbon, water flow, and canopy openness) factors in structuring soil fungal communities differed according to land use history. We demonstrated long-lasting effects of land use history on soil fungal communities. At our research site, most of the explained variation in soil fungal composition (R 2  = 18.6%), richness (R 2  = 11.4%), and evenness (R 2  = 10%) was associated with edaphic factors. Areas previously subject to both logging and farming had a soil fungal community with lower beta diversity and greater evenness of fungal operational taxonomic units (OTUs) than areas subject to light logging. Yet, fungal richness was similar between the two areas of historical land use. Together, these results suggest that fungal communities in disturbed areas are more homogeneous and diverse than in areas subject to light logging. Edaphic factors were the most strongly correlated with soil fungal composition, especially in areas subject to light logging, where soils are more heterogenous. High functional tree diversity in areas subject to both logging and farming led to stronger correlations between biotic factors and fungal composition than in areas subject

  4. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  5. Does Mexican Land Management Influence US Southwest Rainfall? Effects of Vegetation Seasonality and Land Use Change on Atmospheric Moisture Transport in the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2013-12-01

    Southern Arizona and New Mexico receive 30-50% of their annual rainfall in the summer, as part of the North American Monsoon (NAM). Modeling studies suggest that 15-25% of this rainfall first falls on Mexican land, is transpired by vegetation, and subsequently is transported northward across the border to the US. The main source regions in Mexico lie in the subtropical scrub and tropical deciduous forests in the foothills of the Sierra Madre Occidental, in the states of Sinaloa and Sonora. A key characteristic of these natural ecosystems is their rapid greening at the onset of the monsoon, which maximizes the amount of moisture transpired from the soil into the atmosphere in the days immediately following rainfall. These ecosystems are under threat from a number of human activities, including expansion of rainfed and irrigated agriculture, deforestation for grazing activities and urbanization. These changes in land use result in dramatically different seasonality and magnitude of evapotranspiration. In this study, we examine the differences in spatial and temporal characteristics of evapotranspiration yielded by current and pre-industrial land cover. To this end, we employ the Variable Infiltration Capacity (VIC) land surface model at 1/16 degree resolution, driven by gridded meteorological observations and the MCD15A3 4-day MODIS LAI product, across the NAM region (Arizona, New Mexico, and northern Mexico). We compare the magnitude and timing of land-atmosphere fluxes given by both pre-industrial and current land cover/use, as well as the land cover under several possible alternative land use scenarios. We identify the regions where the largest changes in magnitude and timing of evapotranspiration have occurred, as well as the regions and land use changes that could produce the largest changes in future evapotranspiration under different scenarios. Finally, we explore the consequences these effects have for monsoon moisture transport.

  6. Climate mitigation and the future of tropical landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons

    2010-11-16

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less

  7. Climate change and early human land-use in a biodiversity hotspot, the Afromontane region

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. M.; Sax, D. F.; Early, R.

    2015-12-01

    African ecosystems are at great risk due to climate and land-use change. Paleo-records illustrate that changes in precipitation and temperature have led to dramatic alterations of African vegetation distribution over the Quaternary; however, despite the fact that the link between mankind and the environment has a longer history in the African tropics than anywhere else on earth, very little is known about pre-colonial land-use. Disentangling the influence of each is particularly critical in areas of exceptional biodiversity and endemism, such as the Afromontane forest region. This region is generally considered to be highly sensitive to temperature and thus at risk to future climate change. However, new evidence suggests that some high elevation species may have occupied warmer areas in the past and thus are not strongly limited by temperature and may be at greater risk from intensifying land-use. First, we use species distribution models constructed from modern and paleo-distributions of high elevation forests in order to evaluate differences in the climatic space occupied today compared to the past. We find that although modern Afromontane species ranges occupy very narrow climate conditions, and in particular that most species occur only in cold areas, in the past most species have tolerated warmer conditions. This suggests that many montane tree species are not currently limited by warm temperatures, and that the region has already seen significant reduction in the climate space occupied, possibly from Holocene land-use. Second, to evaluate human impacts on montane populations, we examine paleoecological records from lakes throughout sub-Saharan Africa that capture ecological processes at difference time scales to reconstruct Afromontane forest range changes. Over long time scales, we observe phases of forest expansion in the lowlands associated with climate variability alone where composition varies little from phase to phase but include both modern low and

  8. Land Use and Change

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2004-01-01

    The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

  9. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    NASA Astrophysics Data System (ADS)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  10. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    PubMed

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  11. Recent land-use/land-cover change in the Central California Valley

    USGS Publications Warehouse

    Soulard, Christopher E.; Wilson, Tamara S.

    2013-01-01

    Open access to Landsat satellite data has enabled annual analyses of modern land-use and land-cover change (LULCC) for the Central California Valley ecoregion between 2005 and 2010. Our annual LULCC estimates capture landscape-level responses to water policy changes, climate, and economic instability. From 2005 to 2010, agriculture in the region fluctuated along with regulatory-driven changes in water allocation as well as persistent drought conditions. Grasslands and shrublands declined, while developed lands increased in former agricultural and grassland/shrublands. Development rates stagnated in 2007, coinciding with the onset of the historic foreclosure crisis in California and the global economic downturn. We utilized annual LULCC estimates to generate interval-based LULCC estimates (2000–2005 and 2005–2010) and extend existing 27 year interval-based land change monitoring through 2010. Resulting change data provides insights into the drivers of landscape change in the Central California Valley ecoregion and represents the first, continuous, 37 year mapping effort of its kind.

  12. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia

    NASA Astrophysics Data System (ADS)

    Bristow, Mila; Hutley, Lindsay B.; Beringer, Jason; Livesley, Stephen J.; Edwards, Andrew C.; Arndt, Stefan K.

    2016-11-01

    The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs); however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha-1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to provide a total GHG emission from

  13. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison

    DOE PAGES

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D. A.; ...

    2016-05-02

    Model-based global projections of future land use and land cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socio-economic conditions. We attribute components of uncertainty to input data, modelmore » structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g. boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process as well as improving the allocation mechanisms of LULC change models remain important challenges. Furthermore, current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches and many studies ignore the uncertainty in LULC projections

  14. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D. A.

    Model-based global projections of future land use and land cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socio-economic conditions. We attribute components of uncertainty to input data, modelmore » structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g. boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process as well as improving the allocation mechanisms of LULC change models remain important challenges. Furthermore, current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches and many studies ignore the uncertainty in LULC projections

  15. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics

    PubMed Central

    Beng, Kingsly Chuo; Tomlinson, Kyle W.; Shen, Xian Hui; Surget-Groba, Yann; Hughes, Alice C.; Corlett, Richard T.; Slik, J. W. Ferry

    2016-01-01

    Metabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China. A new primer combination and the MiSeq platform were used to amplify and sequence a wide variety of litter arthropods using simulated and real-world communities. Quality filtered reads were clustered into 3,624 MOTUs at ≥97% similarity and the taxonomy of each MOTU was predicted. We compared diversity and compositional differences between forests and plantations (rubber and tea) for all MOTUs and for eight arthropod groups. We obtained ~100% detection rate after in silico sequencing six mock communities with known arthropod composition. Ordination showed that rubber, tea and forest communities formed distinct clusters. α-diversity declined significantly between forests and adjacent plantations for more arthropod groups in rubber than tea, and diversity of order Orthoptera increased significantly in tea. Turnover was higher in forests than plantations, but patterns differed among groups. Metabarcoding is useful for quantifying diversity patterns of arthropods under different land-uses and the MiSeq platform is effective for arthropod metabarcoding in the tropics. PMID:27112993

  16. The role of change data in a land use and land cover map updating program

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1981-01-01

    An assessment of current land use and a process for identifying and measuring change are needed to evaluate trends and problems associated with the use of our Nation's land resources. The U. S. Geological Survey is designing a program to maintain the currency of its land use and land cover maps and digital data base and to provide data on changes in our Nation's land use and land cover. Ways to produce and use change data in a map updating program are being evaluated. A dual role for change data is suggested. For users whose applications require specific polygon data on land use change, showing the locations of all individual category changes and detailed statistical data on these changes can be provided as byproducts of the map-revision process. Such products can be produced quickly and inexpensively either by conventional mapmaking methods or as specialized output from a computerized geographic information system. Secondly, spatial data on land use change are used directly for updating existing maps and statistical data. By incorporating only selected change data, maps and digital data can be updated in an efficient and timely manner without the need for complete and costly detailed remapping and redigitization of polygon data.

  17. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink

    USGS Publications Warehouse

    Shevliakova, Elena; Pacala, Stephen W.; Malyshev, Sergey; Hurtt, George C.; Milly, P.C.D.; Caspersen, John P.; Sentman, Lori T.; Fisk, Justin P.; Wirth, Christian; Crevoisier, Cyril

    2009-01-01

    We have developed a dynamic land model (LM3V) able to simulate ecosystem dynamics and exchanges of water, energy, and CO2 between land and atmosphere. LM3V is specifically designed to address the consequences of land use and land management changes including cropland and pasture dynamics, shifting cultivation, logging, fire, and resulting patterns of secondary regrowth. Here we analyze the behavior of LM3V, forced with the output from the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model AM2, observed precipitation data, and four historic scenarios of land use change for 1700-2000. Our analysis suggests a net terrestrial carbon source due to land use activities from 1.1 to 1.3 GtC/a during the 1990s, where the range is due to the difference in the historic cropland distribution. This magnitude is substantially smaller than previous estimates from other models, largely due to our estimates of a secondary vegetation sink of 0.35 to 0.6 GtC/a in the 1990s and decelerating agricultural land clearing since the 1960s. For the 1990s, our estimates for the pastures' carbon flux vary from a source of 0.37 to a sink of 0.15 GtC/a, and for the croplands our model shows a carbon source of 0.6 to 0.9 GtC/a. Our process-based model suggests a smaller net deforestation source than earlier bookkeeping models because it accounts for decelerated net conversion of primary forest to agriculture and for stronger secondary vegetation regrowth in tropical regions. The overall uncertainty is likely to be higher than the range reported here because of uncertainty in the biomass recovery under changing ambient conditions, including atmospheric CO2 concentration, nutrients availability, and climate. Copyright 2009 by the American Geophysical Union.

  18. Effects of Policy and Technological Change on Land Use

    Treesearch

    Ralph J. Alig; Mary Clare Ahearn

    2004-01-01

    Land use in the United States is dynamic, as discussed in Chapter 2, with millions of acres of Land shifting uses each year. Many of these land-use changes are the result of market forces in an economy affected by modem technology and policy choices. Changes in land use are the result of choices inade by individuals, corporations, nongovernmental organizations, and...

  19. Land use and land cover change in the Greater Yellowstone Ecosystem: 1975-1995

    USGS Publications Warehouse

    Parmenter, A.W.; Hansen, A.; Kennedy, R.E.; Cohen, W.; Langner, U.; Lawrence, R.; Maxwell, B.; Gallant, Alisa; Aspinall, R.

    2003-01-01

    Shifts in the demographic and economic character of the Greater Yellowstone Ecosystem (GYE) are driving patterns of land cover and land use change in the region. Such changes may have important consequences for ecosystem functioning. The objective of this paper is to quantify the trajectories and rates of change in land cover and use across the GYE for the period 1975-1995 using satellite imagery. Spectral and geographic variables were used as inputs to classification tree regression analysis (CART) to find "rules" which defined land use and land cover classes on the landscape. The resulting CART functions were used to map land cover and land use across seven Landsat TM scenes for 1995. We then used a thresholding technique to identify locations that differed in spectral properties between the 1995 and 1985 time periods. These "changed" locations were classified using CART functions derived from spectral and geographic data from 1985. This was similarly done for the year 1975 based on Landsat MSS data. Differences between the 1975, 1985, and 1995 maps were considered change in land cover and use. We calibrated and tested the accuracy of our models using data acquired through manual interpretation of aerial photos. Elevation and vegetative indices derived from the remotely sensed satellite imagery explained the most variance in the land use and land cover classes (-i.e., defined the "rules" most often). Overall accuracies from our study were good, ranging from 94% at the coarsest level of detail to 74% at the finest. The largest changes over the study period were the increases in burned, urban, and mixed conifer-herbaceous classes and decreases in woody deciduous, mixed woody deciduous-herbaceous, and conifer habitats. These changes have important implications for ecological function and biodiversity. The expansion of mixed conifer classes may increase fuel loads and enhance risk to the growing number of rural homes. The reduction of woody deciduous cover types is

  20. Implications of climate and land use change: Chapter 4

    USGS Publications Warehouse

    Hall, Jefferson S.; Murgueitio, Enrique; Calle, Zoraida; Raudsepp-Hearne, Ciara; Stallard, Robert F.; Balvanera, Patricia; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella

    2015-01-01

    This chapter relates ecosystem services to climate change and land use. The bulk of the chapter focuses on ecosystem services and steepland land use in the humid Neotropics – what is lost with land-cover changed, and what is gained with various types of restoration that are sustainable given private ownership. Many case studies are presented later in the white paper. The USGS contribution relates to climate change and the role of extreme weather events in land-use planning.

  1. Polarization in the land distribution, land use and land cover change in the Amazon

    PubMed Central

    D'ANTONA, Alvaro; VANWEY, Leah; LUDEWIGS, Thomas

    2013-01-01

    The objective of this article is to present Polarization of Agrarian Structure as a single, more complete representation than models emphasizing rural exodus and consolidation of land into large agropastoral enterprises of the dynamics of changing land distribution, land use / cover, and thus the rural milieu of Amazonia. Data were collected in 2003 using social surveys on a sample of 587 lots randomly selected from among 5,086 lots on a cadastral map produced in the 1970s. Georeferencing of current property boundaries in the location of these previously demarcated lots allows us to relate sociodemographic and biophysical variables of the surveyed properties to the changes in boundaries that have occurred since the 1970s. As have other authors in other Amazonian regions, we found concentration of land ownership into larger properties. The approach we took, however, showed that changes in the distribution of land ownership is not limited to the appearance of larger properties, those with 200 ha or more; there also exists substantial division of earlier lots into properties with fewer than five hectares, many without any agropastoral use. These two trends are juxtaposed against the decline in establishments with between five and 200 ha. The variation across groups in land use / land cover and population distribution shows the necessity of developing conceptual models, whether from socioeconomic, demographic or environmental perspectives, look beyond a single group of people or properties. PMID:24639597

  2. Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment

    NASA Astrophysics Data System (ADS)

    Jothityangkoon, Chatchai; Hirunteeyakul, Chow; Boonrawd, Kowit; Sivapalan, Murugesu

    2013-05-01

    In the wake of the recent catastrophic floods in Thailand, there is considerable concern about the safety of large dams designed and built some 50 years ago. In this paper a distributed rainfall-runoff model appropriate for extreme flood conditions is used to generate revised estimates of the Probable Maximum Flood (PMF) for the Upper Ping River catchment (area 26,386 km2) in northern Thailand, upstream of location of the large Bhumipol Dam. The model has two components: a continuous water balance model based on a configuration of parameters estimated from climate, soil and vegetation data and a distributed flood routing model based on non-linear storage-discharge relationships of the river network under extreme flood conditions. The model is implemented under several alternative scenarios regarding the Probable Maximum Precipitation (PMP) estimates and is also used to estimate the potential effects of both climate change and land use and land cover changes on the extreme floods. These new estimates are compared against estimates using other hydrological models, including the application of the original prediction methods under current conditions. Model simulations and sensitivity analyses indicate that a reasonable Probable Maximum Flood (PMF) at the dam site is 6311 m3/s, which is only slightly higher than the original design flood of 6000 m3/s. As part of an uncertainty assessment, the estimated PMF is sensitive to the design method, input PMP, land use changes and the floodplain inundation effect. The increase of PMP depth by 5% can cause a 7.5% increase in PMF. Deforestation by 10%, 20%, 30% can result in PMF increases of 3.1%, 6.2%, 9.2%, respectively. The modest increase of the estimated PMF (to just 6311 m3/s) in spite of these changes is due to the factoring of the hydraulic effects of trees and buildings on the floodplain as the flood situation changes from normal floods to extreme floods, when over-bank flows may be the dominant flooding process, leading

  3. Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan

    2015-06-01

    The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow

  4. Incorporating Land-Use Mapping Uncertainty in Remote Sensing Based Calibration of Land-Use Change Models

    NASA Astrophysics Data System (ADS)

    Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.

    2013-05-01

    Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.

  5. The Implications of Future Food Demand on Global Land Use, Land-Use Change Emissions, and Climate

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Wise, M.; Kyle, P.; Luckow, P.; Clarke, L.; Edmonds, J.; Eom, J.; Kim, S.; Moss, R.; Patel, P.

    2011-12-01

    In 2005, cropland accounted for approximately 10% of global land area. The amount of cropland needed in the future depends on a number of factors including global population, dietary preferences, and agricultural crop yields. In this paper, we explore the effect of various assumptions about global food demand and agricultural productivity between now and 2100 on global land use, land-use change emissions, and climate using the GCAM model. GCAM is a global integrated assessment model, linking submodules of the regionally disaggregated, global economy, energy system, agriculture and land-use, terrestrial carbon cycle, oceans and climate. GCAM simulates supply, demand, and prices for energy and agricultural goods from 2005 to 2100 in 5-year increments. In each time period, the model computes the allocation of land across a variety of land cover types in 151 different regions, assuming that farmers maximize profits and that food demand is relatively inelastic. For this analysis, we look at the effect of alternative socioeconomic pathways, crop yield improvement assumptions, and future meat demand scenarios on the demand for agricultural land. The three socioeconomic pathways explore worlds where global population in 2100 ranges from 6 billion people to 14 billion people. The crop yield improvement assumptions range from a world where yields do not improve beyond today's levels to a world with significantly higher crop productivity. The meat demand scenarios range from a vegetarian world to a world where meat is a dominant source of calories in the global diet. For each of these scenarios, we find that sufficient land exists to feed the global economy. However, rates of deforestation, bioenergy potential, land-use change emissions, and climate change differ across the scenarios. Under less favorable scenarios, deforestation rates, land-use change emissions, and the rate of climate change can be adversely affected.

  6. Land Use Changes and the Possible Impacts Over the Water and Energy Balance in the South America

    NASA Astrophysics Data System (ADS)

    do Nascimento, M. G.; Herdies, D. L.

    2011-12-01

    In this work were performed two numerical experiments with the ETA regional model for South America trying to understand what the possible impacts of the land use changes on the water and energy balance, with an emphasis over the La Plata Basin. Thus, the experiments were performed for the period of 10 years, starting at 01/01/1999 until 12/31/2008. The differences between the experiments were the vegetation and land use map used as initial condition. On The control experiment (EXPCTRL) the vegetation and land use map was based on year 2000 and for the second experiment (EXPI) on conditions observed during the year 2008. The new NCEP-CFSR reanalysis were used in simulations as the initial and boundary condition. Since deforestation occurred in the Amazon Basin region affect the components of the water and energy balance in remote locations like the La Plata Basin, considering the transport of moisture between the tropics and subtropics through the Low Level Jets, the aim of this work is to analyze these results. The differences between EXP1 and EXPCTRL were observed in the components of the water and energy balance, for example, in the temperature, evapotranspiration, latent heat and sensible heat fluxes. These changes occurred primarily due to the better representation of land use changes as evidenced by the new map, with improved vegetation characteristics.

  7. Farming the Tropics: Visualizing Landscape Changes Through the Clouds, in the Cloud

    NASA Astrophysics Data System (ADS)

    Kontgis, C.; Brumby, S. P.; Chartrand, R.; Franco, E.; Keisler, R.; Kelton, T.; Mathis, M.; Moody, D.; Raleigh, D.; Rudelis, X.; Skillman, S.; Warren, M. S.

    2016-12-01

    A key component of studying land cover and land use change is analyzing trends in spectral signatures through time. For vegetation, the standard method of doing this involves the normalized difference vegetation index (NDVI) or near infrared signal during a growing season, as both increase while plants grow and decrease during senescence. If temporal resolution were high and clouds did not obstruct landscape views, this approach could work across the globe. However, in tropical regions that are increasingly important for global food production, often there is not enough spectral information to monitor landscape change due to persistent cloud cover. In these instances, synthetic aperture radar (SAR) data provides a useful alternative to shorter wavelength components of the spectrum since its longer wavelengths can penetrate clouds. This analysis uses the cloud-based platform developed by Descartes Labs to explore the utility of Sentinel-1 data in cloudy tropical regions, using the Mekong River Delta in southern Vietnam as a case study. We compare phenological growing patterns derived from Sentinel-1 data with those from Landsat and MODIS imagery, which are the most commonly used sensors to map land cover and land use across the globe. Using these SAR-derived phenology curves, it is possible to monitor landscape changes in near real-time, while also visualizing and quantifying the rates of agricultural intensification. Descartes Labs is a venture-backed remote sensing startup founded in 2014 by a group of scientists from the Los Alamos National Laboratory in New Mexico. Since its inception, the team at Descartes has assembled all available satellite imagery from the USGS Landsat and NASA MODIS programs, and has analyzed over 2.8 quadrillion pixels of satellite imagery. With a focus on food security and climate change, the company has succeeded at estimating United States corn yields earlier and more accurately than USDA estimates. Now, this technology is being

  8. Using Land Surface Phenology to Detect Land Use Change in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Nguyen, L. H.; Henebry, G. M.

    2017-12-01

    The Northern Great Plains of the US have been undergoing many types of land cover / land use change over the past two decades, including expansion of irrigation, conversion of grassland to cropland, biofuels production, urbanization, and fossil fuel mining. Much of the literature on these changes has relied on post-classification change detection based on a limited number of observations per year. Here we demonstrate an approach to characterize land dynamics through land surface phenology (LSP) by synergistic use of image time series at two scales. Our study areas include regions of interest (ROIs) across the Northern Great Plains located within Landsat path overlap zones to boost the number of valid observations (free of clouds or snow) each year. We first compute accumulated growing degree-days (AGDD) from MODIS 8-day composites of land surface temperature (MOD11A2 and MYD11A2). Using Landsat Collection 1 surface reflectance-derived vegetation indices (NDVI, EVI), we then fit at each pixel a downward convex quadratic model linking the vegetation index to each year's progression of AGDD. This quadratic equation exhibits linearity in a mathematical sense; thus, the fitted models can be linearly mixed and unmixed using a set of LSP endmembers (defined by the fitted parameter coefficients of the quadratic model) that represent "pure" land cover types with distinct seasonal patterns found within the region, such as winter wheat, spring wheat, maize, soybean, sunflower, hay/pasture/grassland, developed/built-up, among others. Information about land cover corresponding to each endmember are provided by the NLCD (National Land Cover Dataset) and CDL (Cropland Data Layer). We use linear unmixing to estimate the likely proportion of each LSP endmember within particular areas stratified by latitude. By tracking the proportions over the 2001-2011 period, we can quantify various types of land transitions in the Northern Great Plains.

  9. Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India.

    PubMed

    Nath, Arun Jyoti; Brahma, Biplab; Sileshi, Gudeta W; Das, Ashesh Kumar

    2018-05-15

    Quantifying soil organic carbon (SOC) dynamics is important in understanding changes in soil properties and carbon (C) fluxes. However, SOC measures all C fractions and it is not adequate to distinguish between the active C (AC) and recalcitrant or passive C (PC) fractions. It has been suggested that PC pools are the main drivers of long term soil C sink management. Therefore, the present study was undertaken with the objective of determining whether or not SOC fractions vary with land use changes under a humid tropical climate in the North East India. A chronosequence study was established consisting of natural forest, Imperata cylindrica grassland and 6, 15, 27 and 34yr old rubber (Hevea brasiliensis) plantations to determine changes in the different fractions of SOC and total SOC stock. SOC stocks significantly varied with soil depth in each land use practice. SOC stocks increased from 106Mgha -1 under 6yr to 130Mgha -1 under 34yr old rubber plantations. The SOC stocks under 34yr old plantations were 20% higher than that under I. cylindrica grassland, but 34% lower than SOC stocks recorded under natural forest soil. The proportion of AC pools decreased with increase in plantation age, AC pools being 59% of SOC stock in 6yr old stands and 33% of SOC stocks in 34yr old plantations. In contrast, the proportion of PC pools increased from 41% of SOC stock in 6yr old plantation to 67% of SOC in 34yr old plantation. In the 50-100cm soil depth, the PC pool under 27-34yr old plantations was comparable with that under natural forest but much higher than in I. cylindrica grassland. Therefore, it is concluded that old rubber plantations can play a significant role in long term soil C sink management. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases

  11. [Geo-spectrum characteristics of land use change in Jiangsu Province, China.

    PubMed

    Lyu, Xiao; Shi, Yang Yang; Huang, Xian Jin; Sun, Xiao Fang; Miao, Zhi Wei

    2016-04-22

    This paper studied the spatial-temporal characteristics and rules of land use change in Jiangsu Province using theories and methods of geo-spectrum. Based on the land use data translated from remote sensing images of 1990, 2000 and 2010, we synthesized the geo-spectrum of the mode of arable land use change and that of land use change in two corresponding phases, 1990-2000 and 2000-2010, in Jiangsu using ArcGIS 10.0. The results showed that in the phase of 1990-2000, the major characteristics of land use change were swaps between the geo-spectrum unit of arable land and urban-rural construction land, arable land and water body, and arable land and grassland. Specifically, the patterns of "arable land → urban-rural construction land" and "arable land→ water body" were highly significant. We also found the reduction of arable land area and the concentration of its spatial distribution. In the phase of 2000-2010, the "arable land → urban-rural construction land" pattern was still the most salient characteristic. In addition, the patterns of "grassland → water body" and "urban-rural construction land → water body" became more spatially concentrated and tended to expand. Compared with the previous phase, the area of the land use in the phase of 2000-2010 had been changed expanded and became more scattered. Overall, the geo-spectrum of arable land use change in Jiangsu was mainly shaped by the anaphase change type and partially by the prophase change type, with a tiny influence of the repeated and continuous change.

  12. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities

    NASA Astrophysics Data System (ADS)

    Henders, Sabine; Persson, U. Martin; Kastner, Thomas

    2015-12-01

    Production of commercial agricultural commodities for domestic and foreign markets is increasingly driving land clearing in tropical regions, creating links and feedback effects between geographically separated consumption and production locations. Such teleconnections are commonly studied through calculating consumption footprints and quantifying environmental impacts embodied in trade flows, e.g., virtual water and land, biomass, or greenhouse gas emissions. The extent to which land-use change (LUC) and associated carbon emissions are embodied in the production and export of agricultural commodities has been less studied. Here we quantify tropical deforestation area and carbon emissions from LUC induced by the production and the export of four commodities (beef, soybeans, palm oil, and wood products) in seven countries with high deforestation rates (Argentina, Bolivia, Brazil, Paraguay, Indonesia, Malaysia, and Papua New Guinea). We show that in the period 2000-2011, the production of the four analyzed commodities in our seven case countries was responsible for 40% of total tropical deforestation and resulting carbon losses. Over a third of these impacts was embodied in exports in 2011, up from a fifth in 2000. This trend highlights the growing influence of global markets in deforestation dynamics. Main flows of embodied LUC are Latin American beef and soybean exports to markets in Europe, China, the former Soviet bloc, the Middle East and Northern Africa, whereas embodied emission flows are dominated by Southeast Asian exports of palm oil and wood products to consumers in China, India and the rest of Asia, as well as to the European Union. Our findings illustrate the growing role that global consumers play in tropical LUC trajectories and highlight the need for demand-side policies covering whole supply chains. We also discuss the limitations of such demand-side measures and call for a combination of supply- and demand-side policies to effectively limit tropical

  13. Land use and soil type determine the presence of the pathogen Burkholderia pseudomallei in tropical rivers.

    PubMed

    Ribolzi, Olivier; Rochelle-Newall, Emma; Dittrich, Sabine; Auda, Yves; Newton, Paul N; Rattanavong, Sayaphet; Knappik, Michael; Soulileuth, Bounsamai; Sengtaheuanghoung, Oloth; Dance, David A B; Pierret, Alain

    2016-04-01

    Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity.

  14. Climate Change and Tropical Total Lightning

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  15. Quantitative analysis of agricultural land use change in China

    NASA Astrophysics Data System (ADS)

    Chou, Jieming; Dong, Wenjie; Wang, Shuyu; Fu, Yuqing

    This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal-spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following; During 1949-2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country's eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980. Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China. From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.

  16. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea.

    PubMed

    Burivalova, Zuzana; Towsey, Michael; Boucher, Tim; Truskinger, Anthony; Apelis, Cosmas; Roe, Paul; Game, Edward T

    2018-02-01

    There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  17. Impacts of historic and projected land-cover, land-use, and land-management change on carbon and water fluxes: The Land Use Model Intercomparison Project (LUMIP)

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Lombardozzi, D. L.; Lawrence, P.; Hurtt, G. C.

    2017-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. In the future, land-use activities are likely to intensify to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the broad question of impacts of land-use and land-cover change (LULCC) as well as more detailed science questions to get at process-level attribution, uncertainty, and data requirements in more depth and sophistication than possible in a multi-model context to date. LUMIP is multi-faceted and aims to advance our understanding of land-use change from several perspectives. In particular, LUMIP includes a factorial set of land-only simulations that differ from each other with respect to the specific treatment of land use or land management (e.g., irrigation active or not, crop fertilization active or not, wood harvest on or not), or in terms of prescribed climate. This factorial series of experiments serves several purposes and is designed to provide a detailed assessment of how the specification of land-cover change and land management affects the carbon, water, and energy cycle response to land-use change. The potential analyses that are possible through this set of experiments are vast. For example, comparing a control experiment with all land management active to an experiment with no irrigation allows a multi-model assessment of whether or not the increasing use of irrigation during the 20th century is likely to have significantly altered trends of regional water and energy fluxes (and therefore climate) and/or crop yield and carbon fluxes in agricultural regions. Here, we will present preliminary results from the factorial set of experiments utilizing the Community Land Model (CLM5). The analyses presented here will help guide multi-model analyses once the full set of LUMIP simulations are available.

  18. Land use change affects biogenic silica pool distribution in a subtropical soil toposequence

    NASA Astrophysics Data System (ADS)

    Unzué-Belmonte, Dácil; Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Cornelis, Jean-Thomas; Barão, Lúcia; Minella, Jean; Meire, Patrick; Struyf, Eric

    2017-07-01

    Land use change (deforestation) has several negative consequences for the soil system. It is known to increase erosion rates, which affect the distribution of elements in soils. In this context, the crucial nutrient Si has received little attention, especially in a tropical context. Therefore, we studied the effect of land conversion and erosion intensity on the biogenic silica pools in a subtropical soil in the south of Brazil. Biogenic silica (BSi) was determined using a novel alkaline continuous extraction where Si / Al ratios of the fractions extracted are used to distinguish BSi and other soluble fractions: Si / Al > 5 for the biogenic AlkExSi (alkaline-extractable Si) and Si / Al < 5 for the non-biogenic AlkExSi. Our study shows that deforestation can rapidly (< 50 years) deplete the biogenic AlkExSi pool in soils depending on the slope of the study site (10-53 %), with faster depletion in steeper sites. We show that higher erosion in steeper sites implies increased accumulation of biogenic Si in deposition zones near the bottom of the slope, where rapid burial can cause removal of BSi from biologically active zones. Our study highlights the interaction of erosion strength and land use for BSi redistribution and depletion in a soil toposequence, with implications for basin-scale Si cycling.

  19. Economic valuation of the downstream hydrological effects of land use change: Large hydroelectric reservoirs

    NASA Astrophysics Data System (ADS)

    Aylward, Bruce Allan

    1998-12-01

    Land use change that accompanies economic development and population growth is intended to raise the economic productivity of land. An inevitable by product of this process is the alteration of natural vegetation and downstream hydrological function. This dissertation explores hydrological externalities of land use change in detail, particularly with regard to their economic impact on large hydroelectric reservoirs (LHRs). A review of the linkages between land use, hydrological function and downstream economic activity suggests that on theoretical grounds the net welfare effect of land use change on hydrological function will be indeterminate. Review of the literature suggests that, though the effects of downstream sedimentation will typically be negative, they may often be of little practical significance. The literature on water quantity impacts is sparse at best. This is most surprising in the case of the literature on LHRs where the potentially important and positive effects of increased water yield are typically ignored in favor of simplistic efforts to document the negative effects of reservoir sedimentation. In order to improve the methodological basis for the economic valuation of hydrological externalities, the dissertation considers existing techniques for the evaluation of non-marketed goods and services, clarifying the manner in which they have been and, in the future, may be applied to the topic at hand. A deterministic simulation model is then constructed for the case of LHRs. The model incorporates the effect of changes in water yield, the seasonal pattern of water yield and sedimentation of live and dead storage volumes as they affect reservoir operation and the production of hydroelectricity. The welfare effects of changes in the productivity of the LHR in the short run and changes to the power system expansion plan in the long run are evaluated using the marginal opportunity costs of alternative power sources and power plants, respectively. A case

  20. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  1. Climate impacts of deforestation/land-use changes in Central South America in the PRECIS regional climate model: mean precipitation and temperature response to present and future deforestation scenarios.

    PubMed

    Canziani, Pablo O; Carbajal Benitez, Gerardo

    2012-01-01

    Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961-2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960-2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.

  2. 50,000 years of Environmental Change in West Tropical Africa

    NASA Astrophysics Data System (ADS)

    Gosling, W. D.; Miller, C. S.

    2010-12-01

    Tropical forests provide three vital ‘ecosystem services’ to the Earth, they: i) contain c. 40% of the terrestrial carbon stock, ii) store c. 50% of global biodiversity, and iii) feedback into global climate and carbon cycles. In addition, tropical forests are thought to have been actively absorbing atmospheric carbon dioxide over recent decades and consequently may be mitigating the impact of ongoing human induced global climate change. The services provided by tropical ecosystems are now threatened by human land use practices and projected future climate change. However, due to the complex nature of tropical ecosystems it is unclear how vegetation will respond to changes in global climate conditions. To provide an empirical insight into the response of tropical vegetation to global climate change it is necessary to learn lessons from the past by exploring the fossil record. Lake sediments are the ideal source for fossils to provide evidence of terrestrial vegetation response to past global climate change. The identification of fossil pollen grains trapped within lake sediments is a tried and tested way of establishing past terrestrial vegetation change. Determining the types of plant represented in the fossil pollen record at any particular point in time provides a good indication of the vegetation that surrounded that lake during sediment deposition. In this paper we present a new c. 50,000 year fossil pollen record from Lake Bosumtwi (Ghana; 06o 30’N, 01o 25’ W; c. 100 m above sea level). Lake Bosumtwi is today located within the Guineo-Congolian rainforest close to the ecotone. The seasonal migration of the Inter Tropical Convergence Zone (ITCZ) passes over Bosumtwi and consequently vegetation is likely to be sensitive to any changes in the ITCZ position and the associated monsoon. Sediments recovered from Lake Bosumtwi in 2004 by the Intercontinental Drilling Program provide an opportunity to investigate tropical vegetation response to climate change

  3. Links between land use change and recent dry season droughts in Amazonia

    NASA Astrophysics Data System (ADS)

    Khanna, J.; Medvigy, D.

    2012-12-01

    The Amazon region experienced catastrophic and unusually severe droughts in 2005 and 2010. These two droughts were phenomenologically different from the other, more common, El Niño-related droughts. Whereas El Niño-related droughts mostly affect the eastern and south-eastern parts of the region during the wet season (December-March), the droughts of 2005 and 2010 were most severe during the dry season (June-August) and affected the southern and western parts of the Amazon. A global warming driven mechanism has been suggested for these droughts wherein decreased moisture transport into the basin during the dry season is caused by anomalously high tropical north Atlantic SSTs, which weaken the northern hemisphere Hadley cell. But the facts that dry season droughts have been historically rare in this region and that the 2005 and 2010 droughts were strongest around locations of recent land use change activity suggest that deforestation may be contributing to this inter-annual variability in precipitation. This study addresses this research question by numerically modeling the 2005 and 2010 drought events for two land use scenarios, one of which (Deforested or DEF) represents the current state of land use in the Amazon and the other (Pristine Forest or PRF) represents a scenario of no deforestation. A variable resolution GCM, the Ocean-Land-Atmosphere Model (OLAM), is used to model these events. Land surface processes and soil moisture during the drought period are simulated using the Land Ecosystem Atmosphere Feedback model. The state of land cover in the Amazon in the two drought years is obtained from satellite-based land cover maps. The land grid has a variable resolution ranging from ≈75km in the South American sector to ≈200km elsewhere. This variable-resolution approach helps resolve topographic features and the medium-to-large scale land use patches in the Amazon area. The atmospheric runs are forced by National Oceanic and Atmospheric Administration

  4. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel

    2008-06-01

    Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those

  5. Up-scaling Stream Ecosystem Processes to Predict the Effects of Land Cover Change at a Watershed Scale in the Atlantic Tropical Rainforest.

    NASA Astrophysics Data System (ADS)

    Tromboni, F.; Feijó de Lima, R.; Silva-Júnior, E. F.; Lourenço-Amorim, C.; Zandoná, E.; Moulton, T. P.; Da Silva, B. S.; Silva-Araújo, M.; Thomas, S. A.

    2015-12-01

    Riparian land-cover change (LCC) causes a cascade of subsequent hierarchical effects that propagate through abiotic compartments until reaching the biota, altering stream ecosystem functioning. Due to the movement of water downstream, these lateral effects co-occur with longitudinal influences. We investigated both the lateral and longitudinal effects of deforestation in four streams in the Atlantic tropical rainforest of Brazil. We collected physical-chemical, geomorphic, hydrological data and samples of macroinvertebrates assemblages. We then categorized land cover at different scales (from different riparian and reach buffer sizes to sub and total watershed) using a SPOT-5 satellite image and ArcGIS. We also carried out a series of experiments along the streams to understand: 1) the mechanisms by which LCC affects periphyton and how these changes alter metabolism and nutrient uptake rates; 2) the downstream distance at which periphyton and the associated variables change in the transitions from one riparian category to the other. We used (i) a path analysis to test if our hypothesized land-cover cascade model described our data and (ii) non-linear models to describe the longitudinal effect on each variable. Our results showed that deforestation produced a range of physical changes at different spatial scale, longitudinally altering periphyton taxonomic composition (taxa depending on light), stoichiometry (nutritionally richer with increasing deforestation) and growth rates (greater in deforested). Macroinvertebrate assemblages behaved similarly to chlorophyll a in response to forest loss. Respiration rate increased with deforestation probably due to higher nutrient concentrations but primary production did not increase. Models were used to upscale LCC impacts on ecosystem processes from local scale experiments to landscape and our work has important implications for socio-economic decisions concerning ecosystem management and conservation.

  6. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  7. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further

  8. Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.

    PubMed

    Meneses, B M; Reis, R; Vale, M J; Saraiva, R

    2015-09-15

    To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison.

    PubMed

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D A; Arneth, Almut; Calvin, Katherine; Doelman, Jonathan; Eitelberg, David A; Engström, Kerstin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Meiyappan, Prasanth; Popp, Alexander; Sands, Ronald D; Schaldach, Rüdiger; Schüngel, Jan; Stehfest, Elke; Tabeau, Andrzej; Van Meijl, Hans; Van Vliet, Jasper; Verburg, Peter H

    2016-12-01

    Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC

  10. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Hagensieker, Ron; Roscher, Ribana; Rosentreter, Johannes; Jakimow, Benjamin; Waske, Björn

    2017-12-01

    Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial-temporal variability is a challenging task. We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain. The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.

  11. Land crabs as key drivers in tropical coastal forest recruitment

    USGS Publications Warehouse

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  12. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  13. Cases of Coastal Zone Change and Land Use/Land Cover Change: a learning module that goes beyond the "how" of doing image processing and change detection to asking the "why" about what are the "driving forces" of global change.

    NASA Astrophysics Data System (ADS)

    Ford, R. E.

    2006-12-01

    In 2006 the Loma Linda University ESSE21 Mesoamerican Project (Earth System Science Education for the 21st Century) along with partners such as the University of Redlands and California State University, Pomona, produced an online learning module that is designed to help students learn critical remote sensing skills-- specifically: ecosystem characterization, i.e. doing a supervised or unsupervised classification of satellite imagery in a tropical coastal environment. And, it would teach how to measure land use / land cover change (LULC) over time and then encourage students to use that data to assess the Human Dimensions of Global Change (HDGC). Specific objectives include: 1. Learn where to find remote sensing data and practice downloading, pre-processing, and "cleaning" the data for image analysis. 2. Use Leica-Geosystems ERDAS Imagine or IDRISI Kilimanjaro to analyze and display the data. 3. Do an unsupervised classification of a LANDSAT image of a protected area in Honduras, i.e. Cuero y Salado, Pico Bonito, or Isla del Tigre. 4. Virtually participate in a ground-validation exercise that would allow one to re-classify the image into a supervised classification using the FAO Global Land Cover Network (GLCN) classification system. 5. Learn more about each protected area's landscape, history, livelihood patterns and "sustainability" issues via virtual online tours that provide ground and space photos of different sites. This will help students in identifying potential "training sites" for doing a supervised classification. 6. Study other global, US, Canadian, and European land use/land cover classification systems and compare their advantages and disadvantages over the FAO/GLCN system. 7. Learn to appreciate the advantages and disadvantages of existing LULC classification schemes and adapt them to local-level user needs. 8. Carry out a change detection exercise that shows how land use and/or land cover has changed over time for the protected area of your choice

  14. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  15. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  16. Correlation between land use changes and shoreline changes around THE Nakdong River in Korea using landsat images.

    NASA Astrophysics Data System (ADS)

    Kwon, J. S.; Lim, C.; Baek, S. G.; Shin, S.

    2015-12-01

    Coastal erosion has badly affected the marine environment, as well as the safety of various coastal structures. In order to monitor shoreline changes due to coastal erosion, remote sensing techniques are being utilized. The land-cover map classifies the physical material on the surface of the earth, and it can be utilized in establishing eco-policy and land-use policy. In this study, we analyzed the correlation between land-use changes around the Nakdong River and shoreline changes at Busan Dadaepo Beach adjacent to the river. We produced the land-cover map based on the guidelines published by the Ministry of Environment Korea, using eight Landsat satellite images obtained from 1984 to 2015. To observe land use changes around the Nakdong River, the study site was set to include the surroundings areas of the Busan Dadaepo Beach, the Nakdong River as well as its estuary, and also Busan New Port. For the land-use classification of the study site, we also produced a land-cover map divided into seven categories according to the Ministry of Environment, Korea guidelines and using the most accurate Maximum Likelihood Method (MLM). Land use changes inland, at 500m from the shoreline, were excluded for the correlation analysis between land use changes and shoreline changes. The other categories, except for the water category, were transformed into numerical values and the land-use classifications, using all other categories, were analyzed. Shoreline changes were observed by setting the base-line and three cut-lines. We assumed that longshore bars around the Nakdong River and the shoreline of the Busan Dadaepo Beach are affected. Therefore, we expect that shoreline changes happen due to the influence of barren land, wetlands, built-up areas and deposition. The causes are due to natural factors, such as weather, waves, tide currents, longshore currents, and also artificial factors such as coastal structures, construction, and dredging.

  17. Projecting land-use and land cover change in a subtropical urban watershed

    Treesearch

    John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu

    2018-01-01

    Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...

  18. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network

    PubMed Central

    Gardner, Toby A.; Ferreira, Joice; Barlow, Jos; Lees, Alexander C.; Parry, Luke; Vieira, Ima Célia Guimarães; Berenguer, Erika; Abramovay, Ricardo; Aleixo, Alexandre; Andretti, Christian; Aragão, Luiz E. O. C.; Araújo, Ivanei; de Ávila, Williams Souza; Bardgett, Richard D.; Batistella, Mateus; Begotti, Rodrigo Anzolin; Beldini, Troy; de Blas, Driss Ezzine; Braga, Rodrigo Fagundes; Braga, Danielle de Lima; de Brito, Janaína Gomes; de Camargo, Plínio Barbosa; Campos dos Santos, Fabiane; de Oliveira, Vívian Campos; Cordeiro, Amanda Cardoso Nunes; Cardoso, Thiago Moreira; de Carvalho, Déborah Reis; Castelani, Sergio André; Chaul, Júlio Cézar Mário; Cerri, Carlos Eduardo; Costa, Francisco de Assis; da Costa, Carla Daniele Furtado; Coudel, Emilie; Coutinho, Alexandre Camargo; Cunha, Dênis; D'Antona, Álvaro; Dezincourt, Joelma; Dias-Silva, Karina; Durigan, Mariana; Esquerdo, Júlio César Dalla Mora; Feres, José; Ferraz, Silvio Frosini de Barros; Ferreira, Amanda Estefânia de Melo; Fiorini, Ana Carolina; da Silva, Lenise Vargas Flores; Frazão, Fábio Soares; Garrett, Rachel; Gomes, Alessandra dos Santos; Gonçalves, Karoline da Silva; Guerrero, José Benito; Hamada, Neusa; Hughes, Robert M.; Igliori, Danilo Carmago; Jesus, Ederson da Conceição; Juen, Leandro; Junior, Miércio; Junior, José Max Barbosa de Oliveira; Junior, Raimundo Cosme de Oliveira; Junior, Carlos Souza; Kaufmann, Phil; Korasaki, Vanesca; Leal, Cecília Gontijo; Leitão, Rafael; Lima, Natália; Almeida, Maria de Fátima Lopes; Lourival, Reinaldo; Louzada, Júlio; Nally, Ralph Mac; Marchand, Sébastien; Maués, Márcia Motta; Moreira, Fátima M. S.; Morsello, Carla; Moura, Nárgila; Nessimian, Jorge; Nunes, Sâmia; Oliveira, Victor Hugo Fonseca; Pardini, Renata; Pereira, Heloisa Correia; Pompeu, Paulo Santos; Ribas, Carla Rodrigues; Rossetti, Felipe; Schmidt, Fernando Augusto; da Silva, Rodrigo; da Silva, Regina Célia Viana Martins; da Silva, Thiago Fonseca Morello Ramalho; Silveira, Juliana; Siqueira, João Victor; de Carvalho, Teotônio Soares; Solar, Ricardo R. C.; Tancredi, Nicola Savério Holanda; Thomson, James R.; Torres, Patrícia Carignano; Vaz-de-Mello, Fernando Zagury; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Viana, Cecília; Weinhold, Diana; Zanetti, Ronald; Zuanon, Jansen

    2013-01-01

    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far. PMID:23610172

  19. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics

    Treesearch

    J.B. Kauffman; R.F. Hughes; C. Heider

    2009-01-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential...

  20. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  1. Land Use, climate change and BIOdiversity in cultural landscapes (LUBIO): Assessing feedbacks and promoting land-use strategies towards a viable future

    NASA Astrophysics Data System (ADS)

    Dullinger, Iwona; Bohner, Andreas; Dullinger, Stefan; Essl, Franz; Gaube, Veronika; Haberl, Helmut; Mayer, Andreas; Plutzar, Christoph; Remesch, Alexander

    2016-04-01

    Land-use and climate change are important, pervasive drivers of global environmental change and pose major threats to global biodiversity. Research to date has mostly focused either on land-use change or on climate change, but rarely on the interactions between both drivers, even though it is expected that systemic feedbacks between changes in climate and land use will have important effects on biodiversity. In particular, climate change will not only alter the pool of plant and animal species capable of thriving in a specific area, it will also force land owners to reconsider their land use decisions. Such changes in land-use practices may have major additional effects on local and regional species composition and abundance. In LUBIO, we will explore the anticipated systemic feedbacks between (1) climate change, (2) land owner's decisions on land use, (3) land-use change, and (4) changes in biodiversity patterns during the coming decades in a regional context which integrates a broad range of land use practices and intensity gradients. To achieve this goal, an integrated socioecological model will be designed and implemented, consisting of three principal components: (1) an agent based model (ABM) that simulates decisions of important actors, (2) a spatially explicit GIS model that translates these decisions into changes in land cover and land use patterns, and (3) a species distribution model (SDM) that calculates changes in biodiversity patterns following from both changes in climate and the land use decisions as simulated in the ABM. Upon integration of these three components, the coupled socioecological model will be used to generate scenarios of future land-use decisions of landowners under climate change and, eventually, the combined effects of climate and land use changes on biodiversity. Model development of the ABM will be supported by a participatory process intended to collect regional and expert knowledge through a series of expert interviews, a series

  2. Monitoring land use/land cover changes using CORINE land cover data: a case study of Silivri coastal zone in Metropolitan Istanbul.

    PubMed

    Yilmaz, Rüya

    2010-06-01

    The objective of the present study was to assess changes in land use/land cover patterns in the coastal town of Silivri, a part of greater Istanbul administratively. In the assessment, remotely sensed data, in the form of satellite images, and geographic information systems were used. Types of land use/land cover were designated as the percentage of the total area studied. Results calculated from the satellite data for land cover classification were compared successfully with the database Coordination of Information on the Environment (CORINE). This served as a reference to appraise the reliability of the study presented here. The CORINE Program was established by the European Commission to create a harmonized Geographical Information System on the state of the environment in the European Community. Unplanned urbanization is causing land use changes mainly in developing countries such as Turkey. This situation in Turkey is frequently observed in the city of Istanbul. There are only a few studies of land use-land cover changes which provide an integrated assessment of the biophysical and societal causes and consequences of environmental degradation in Istanbul. The research area comprised greater Silivri Town which is situated by the coast of Marmara Sea, and it is located approximately 60 km west of Istanbul. The city of Istanbul is one of the largest metropolises in Europe with ca. 15 million inhabitants. Additionally, greater Silivri is located near the terminal point of the state highway connecting Istanbul with Europe. Measuring of changes occurring in land use would help control future planning of settlements; hence, it is of importance for the Greater Silivri and Silivri Town. Following our evaluations, coastal zone of Silivri was classified into the land use groups of artificial surfaces agricultural areas and forests and seminatural areas with 47.1%, 12.66%, and 22.62%, respectively.

  3. Analyzing the Impacts of Land Use Land Change on Near Shore Coastal Habitat

    NASA Astrophysics Data System (ADS)

    Lehman, R. D.; Ta, E.; Boyle, C.; Alwood, B.

    2017-12-01

    The natural beauty of the United States Virgin Islands (USVI) has continued to attract visitors and residents, which overtime has increased human development and impact. The resulting land use change increases sediment loads and the flow of pollutants into surrounding nearshore environments such as coral reefs, mangroves, and seagrass beds. Compounded with regional climate-related processes such as rising ocean temperatures and acidification, future land-use change poses a formidable threat to coral reefs and other susceptible marine environments. Without a healthy environment, the USVI economy also becomes endangered because it is mainly supported by tourism and recreation. Using Google Earth Engine, we created a tool to composite yearly Landsat 5 TM, Landsat 8 OLI/TIRS and Sentinel-2 MSI images identify changes from 1985 to present day. Using these land cover change maps we then analyzed trends at a watershed scale using hydrological data. We found there is a spatial relationship between development intensity and the health of coral reefs. Our work supports the existing knowledge of the link between land use and coastal ecosystem health.

  4. Land use legacy effects on structure and composition of subtropical dry forests in St. Croix, U.S. Virgin Islands

    Treesearch

    Emily E. Atkinson; Erika Marín-Spiotta

    2015-01-01

    Tropical dry forests are subject to intense human pressure and land change, including conversion to agricultural crops, pasture or agroforestry, and urban encroachment. Decades, and even centuries, of conversion, expansion, regrowth, and changing land-use practices can result in a mosaic of secondary growth patches with different land-use histories. Whereas post-...

  5. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of

  6. Pairing FLUXNET sites to validate model representations of land-use/land-cover change

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Dirmeyer, Paul A.; Guo, Zhichang; Schultz, Natalie M.

    2018-01-01

    Land surface energy and water fluxes play an important role in land-atmosphere interactions, especially for the climatic feedback effects driven by land-use/land-cover change (LULCC). These have long been documented in model-based studies, but the performance of land surface models in representing LULCC-induced responses has not been investigated well. In this study, measurements from proximate paired (open versus forest) flux tower sites are used to represent observed deforestation-induced changes in surface fluxes, which are compared with simulations from the Community Land Model (CLM) and the Noah Multi-Parameterization (Noah-MP) land model. Point-scale simulations suggest the CLM can represent the observed diurnal and seasonal changes in net radiation (Rnet) and ground heat flux (G), but difficulties remain in the energy partitioning between latent (LE) and sensible (H) heat flux. The CLM does not capture the observed decreased daytime LE, and overestimates the increased H during summer. These deficiencies are mainly associated with models' greater biases over forest land-cover types and the parameterization of soil evaporation. Global gridded simulations with the CLM show uncertainties in the estimation of LE and H at the grid level for regional and global simulations. Noah-MP exhibits a similar ability to simulate the surface flux changes, but with larger biases in H, G, and Rnet change during late winter and early spring, which are related to a deficiency in estimating albedo. Differences in meteorological conditions between paired sites is not a factor in these results. Attention needs to be devoted to improving the representation of surface heat flux processes in land models to increase confidence in LULCC simulations.

  7. Impact of Land Use Land Cover Change on East Asian monsoon

    NASA Astrophysics Data System (ADS)

    Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.

    2017-12-01

    Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon

  8. Spatio-temporal Characteristics of Land Use Land Cover Change Driven by Large Scale Land Transactions in Cambodia

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Smith, J. C.; Hijmans, R. J.

    2017-12-01

    Since mid-1990s, the Cambodian government granted nearly 300 `Economic Land Concessions' (ELCs), occupying approximately 2.3 million ha to foreign and domestic organizations (primarily agribusinesses). The majority of Cambodian ELC deals have been issued in areas of both relatively low population density and low agricultural productivity, dominated by smallholder production. These regions often contain highly biodiverse areas, thereby increasing the ecological cost associated with land clearing for extractive purposes. These large-scale land transactions have also resulted in substantial and rapid changes in land-use patterns and agriculture practices by smallholder farmers. In this study, we investigated the spatio-temporal characteristics of land use change associated with large-scale land transactions across Cambodia using multi-temporal multi-reolution remote sensing data. We identified major regions of deforestation during the last two decades using Landsat archive, global forest change data (2000-2014) and georeferenced database of ELC deals. We then mapped the deforestation and land clearing within ELC boundaries as well as areas bordering or near ELCs to quantify the impact of ELCs on local communities. Using time-series from MODIS Vegetation Indices products for the study period, we also estimated the time period over which any particular ELC deal initiated its proposed activity. We found evidence of similar patterns of land use change outside the boundaries of ELC deals which may be associated with i) illegal land encroachments by ELCs and/or ii) new agricultural practices adopted by local farmers near ELC boundaries. We also detected significant time gaps between ELC deal granting dates and initiation of land clearing for ELC purposes. Interestingly, we also found that not all designated areas for ELCs were put into effect indicating the possible proliferation of speculative land deals. This study demonstrates the potential of remote sensing techniques

  9. Large-scale changes in community composition: determining land use and climate change signals.

    PubMed

    Kampichler, Christian; van Turnhout, Chris A M; Devictor, Vincent; van der Jeugd, Henk P

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.

  10. Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.

    2015-10-01

    Andean headwater catchments are an important source of freshwater for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes in these catchments. In this paper, we assess change in streamflow based on long time series of hydrometeorological data (1974-2008) and land cover reconstructions (1963-2009) in the Pangor catchment (282 km2) located in the tropical Andes. Three main land cover change trajectories can be distinguished during the period 1963-2009: (1) expansion of agricultural land by an area equal to 14 % of the catchment area (or 39 km2) in 46 years' time, (2) deforestation of native forests by 11 % (or -31 km2) corresponding to a mean rate of 67 ha yr-1, and (3) afforestation with exotic species in recent years by about 5 % (or 15 km2). Over the time period 1963-2009, about 50 % of the 64 km2 of native forests was cleared and converted to agricultural land. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow, which exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term change in precipitation but very likely result from anthropogenic disturbances associated with land cover change.

  11. Large-Scale Changes in Community Composition: Determining Land Use and Climate Change Signals

    PubMed Central

    Kampichler, Christian; van Turnhout, Chris A. M.; Devictor, Vincent; van der Jeugd, Henk P.

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact—land use and climate change—are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant. PMID:22523579

  12. Global land-use change hidden behind nickel consumption.

    PubMed

    Nakajima, Kenichi; Nansai, Keisuke; Matsubae, Kazuyo; Tomita, Makoto; Takayanagi, Wataru; Nagasaka, Tetsuya

    2017-05-15

    Economic growth is associated with a rapid rise in the use of natural resources within the economy, and has potential environmental impacts at local and/or global scales. In today's globalized economy, each country has indirect flows supporting its economic activities, and natural resource consumption through supply chains influences environmental impacts far removed from the place of consumption. One way to control environmental impacts associated with consumption of natural resources is to identify the consumption of natural resources and the associated environmental impacts through the global supply chain. In this study, we used a global link input-output model (GLIO, a hybrid multiregional input-output model) to detect the linkages between national nickel consumption and mining-associated global land-use changes. We focused on nickel, whose global demand has risen rapidly in recent years, as a case study. The estimated area of land-use change around the world caused by nickel mining in 2005 was 1.9km 2 , and that induced by Japanese final demand for nickel was 0.38km 2 . Our modeling also revealed that the areas of greatest land-use change associated with nickel mining were concentrated in only a few countries and regions far removed from the place of consumption. For example, 57.7% of the world's land-use changes caused by nickel mining were concentrated in five countries in 2005: Australia, 13.7%; Russia, 12.9%; Indonesia, 12.5%; New Caledonia, 10.4%; and Colombia, 8.2%. The mining-associated land-use change induced by Japanese final demand accounted for 19.5% of the total area affected by land-use change caused by nickel mining. The top three countries accounted for 70.6% (Indonesia: 47.0%, New Caledonia: 16.0%, and Australia: 7.7%), and the top five accounted for 82.4% (the Philippines: 7.5%, and Canada: 4.3%, in addition to the top three countries and regions). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Biophysical effects on temperature and precipitation due to land cover change

    NASA Astrophysics Data System (ADS)

    Perugini, Lucia; Caporaso, Luca; Marconi, Sergio; Cescatti, Alessandro; Quesada, Benjamin; de Noblet-Ducoudré, Nathalie; House, Johanna I.; Arneth, Almut

    2017-05-01

    Anthropogenic land cover changes (LCC) affect regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. This change in surface energy budget may exacerbate or counteract biogeochemical greenhouse gas effects of LCC, with a large body of emerging assessments being produced, sometimes apparently contradictory. We reviewed the existing scientific literature with the objective to provide an overview of the state-of-the-knowledge of the biophysical LCC climate effects, in support of the assessment of mitigation/adaptation land policies. Out of the published studies that were analyzed, 28 papers fulfilled the eligibility criteria, providing surface air temperature and/or precipitation change with respect to LCC regionally and/or globally. We provide a synthesis of the signal, magnitude and uncertainty of temperature and precipitation changes in response to LCC biophysical effects by climate region (boreal/temperate/tropical) and by key land cover transitions. Model results indicate that a modification of biophysical processes at the land surface has a strong regional climate effect, and non-negligible global impact on temperature. Simulations experiments of large-scale (i.e. complete) regional deforestation lead to a mean reduction in precipitation in all regions, while air surface temperature increases in the tropics and decreases in boreal regions. The net global climate effects of regional deforestation are less certain. There is an overall consensus in the model experiments that the average global biophysical climate response to complete global deforestation is atmospheric cooling and drying. Observed estimates of temperature change following deforestation indicate a smaller effect than model-based regional estimates in boreal regions, comparable results in the tropics, and contrasting results in temperate regions. Regional/local biophysical effects following LCC are important for

  14. Isoprene emissions over Asia 1979-2012 : impact of climate and land use changes

    NASA Astrophysics Data System (ADS)

    Stavrakou, Trissevgeni; Müller, Jean-Francois; Bauwens, Maite; Guenther, Alex; De Smedt, Isabelle; Van Roozendael, Michel

    2014-05-01

    Due to the scarcity of observational contraints and the rapidly changing environment in East and Southeast Asia, isoprene emissions predicted by models are expected to bear substantial uncertainties. This study aims at improving upon current bottom-up estimates, and investigate the temporal evolution of isoprene fluxes in Asia over 1979-2012. For that, we use the MEGAN model and incorporate (i) changes in land use, including the rapid expansion of oil palms, (ii) meteorological variability, (iii) long-term changes in solar radiation constrained by surface network measurements, and (iv) recent experimental evidence that South Asian forests are much weaker isoprene emitters than previously assumed. These effects lead to a significant reduction of the total isoprene fluxes over the studied domain compared to the standard simulation. The bottom-up emissions are evaluated using satellite-based emission estimates derived from inverse modelling constrained by GOME-2/MetOp-A formaldehyde columns through 2007-2012. The top-down estimates support our assumptions and confirm the lower isoprene emission rate in tropical forests of Indonesia and Malaysia.

  15. Monitoring Spatiotemporal Changes of Heat Island in Babol City due to Land Use Changes

    NASA Astrophysics Data System (ADS)

    Alavi Panah, S. K.; Kiavarz Mogaddam, M.; Karimi Firozjaei, M.

    2017-09-01

    Urban heat island is one of the most vital environmental risks in urban areas. The advent of remote sensing technology provides better visibility due to the integrated view, low-cost, fast and effective way to study and monitor environmental and humanistic changes. The aim of this study is a spatiotemporal evaluation of land use changes and the heat island in the time period of 1985-2015 for the studied area in the city of Babol. For this purpose, multi-temporal Landsat images were used in this study. For calculating the land surface temperature (LST), single-channel and maximum likelihood algorithms were used, to classify Images. Therefore, land use changes and LST were examined, and thereby the relationship between land-use changes was analyzed with the normalized LST. By using the average and standard deviation of normalized thermal images, the area was divided into five temperature categories, inter alia, very low, low, medium, high and very high and then, the heat island changes in the studied time period were investigated. The results indicate that land use changes for built-up lands increased by 92%, and a noticeable decrease was observed for agricultural lands. The Built-up land changes trend has direct relation with the trend of normalized surface temperature changes. Low and very low-temperature categories which follow a decreasing trend, are related to lands far away from the city. Also, high and very high-temperature categories whose areas increase annually, are adjacent to the city center and exit ways of the town. The results emphasize on the importance of attention of urban planners and managers to the urban heat island as an environmental risk.

  16. Climate change and tropical marine agriculture.

    PubMed

    Crabbe, M James C

    2009-01-01

    The coral reef ecosystem forms part of a 'seascape' that includes land-based ecosystems such as mangroves and forests, and ideally should form a complete system for conservation and management. Aquaculture, including artisanal fishing for fish and invertebrates, shrimp farming, and seaweed farming, is a major part of the farming and gleaning practices of many tropical communities, particularly on small islands, and depends upon the integrity of the reefs. Climate change is making major impacts on these communities, not least through global warming and high CO(2) concentrations. Corals grow within very narrow limits of temperature, provide livelihoods for millions of people in tropical areas, and are under serious threat from a variety of environmental and climate extremes. Corals survive and grow through a symbiotic relationship with photosynthetic algae: zooxanthellae. Such systems apply highly co-operative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. This review will discuss research on how climate influences reef ecosystems, and how science can lead to conservation actions, with benefits for the human populations reliant on the reefs for their survival.

  17. Land-use change and infectious disease in West Africa

    NASA Astrophysics Data System (ADS)

    Thomson, M. C.; Ericksen, P. J.; Mohamed, A. Ben; Connor, S. J.

    Land-use change has been associated with changes in the dynamics of infectious disease in West Africa. Here we describe the complex interactions of land-use change with three diseases (both vector- and non-vector-borne) of considerable public health significance in this region, namely, malaria and irrigation; epidemic meningitis and land degradation; onchocerciasis and deforestation. We highlight the confounding effect of climate variability, which acts as a driver of both land-use change and human health. We conclude, as have others, that the scale of observation always matters, and complex and dynamic feedbacks among social-ecological systems are not easily teased apart. We suggest that in order to establish the causal chain of interactions between land-use change and human health outcomes two approaches are necessary. The first is to have a thorough understanding of the aetiology of disease and the specific mechanisms by which land-use and climate variability affect the transmission of pathogens. This is achieved by focused, detailed studies encompassing a wide range of potential drivers, which are inevitably small scale and often cover short time periods. The second consists of large-scale studies of statistical associations between transmission indices or health outcomes and environmental variables stratified by known ecological or socio-economic confounders, and sufficient in size to overcome local biases in results. Such research activities need to be designed to inform each other if we are to develop predictive models for monitoring these diseases and to develop integrated programs for human health and sustainable land use.

  18. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Giri, Chandra

    2015-05-01

    Land cover is an important variable for many studies involving the Earth surface, such as climate, food security, hydrology, soil erosion, atmospheric quality, conservation biology, and plant functioning. Land cover not only changes with human caused land use changes, but also changes with nature. Therefore, the state of land cover is highly dynamic. In winter snow shields underneath various other land cover types in higher latitudes. Floods may persist for a long period in a year over low land areas in the tropical and subtropical regions. Forest maybe burnt or clear cut in a few days and changes to bare land. Within several months, the coverage of crops may vary from bare land to nearly 100% crops and then back to bare land following harvest. The highly dynamic nature of land cover creates a challenge in mapping and monitoring which remains to be adequately addressed. As economic globalization continues to intensify, there is an increasing trend of land cover/land use change, environmental pollution, land degradation, biodiversity loss at the global scale, timely and reliable information on global land cover and its changes is urgently needed to mitigate the negative impact of global environment change.

  19. Climate mitigation and the future of tropical landscapes.

    PubMed

    Thomson, Allison M; Calvin, Katherine V; Chini, Louise P; Hurtt, George; Edmonds, James A; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A; Janetos, Anthony C

    2010-11-16

    Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.

  20. Climate Impacts of Deforestation/Land-Use Changes in Central South America in the PRECIS Regional Climate Model: Mean Precipitation and Temperature Response to Present and Future Deforestation Scenarios

    PubMed Central

    Canziani, Pablo O.; Carbajal Benitez, Gerardo

    2012-01-01

    Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961–2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960–2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia. PMID:22645487

  1. Are deep-sea ecosystems surrounding Madagascar threatened by land-use or climate change?

    NASA Astrophysics Data System (ADS)

    Fontanier, Christophe; Mamo, Briony; Toucanne, Samuel; Bayon, Germain; Schmidt, Sabine; Deflandre, Bruno; Dennielou, Bernard; Jouet, Gwenael; Garnier, Eline; Sakai, Saburo; Lamas, Ruth Martinez; Duros, Pauline; Toyofuku, Takashi; Salé, Aurélien; Belleney, Déborah; Bichon, Sabrina; Boissier, Audrey; Chéron, Sandrine; Pitel, Mathilde; Roubi, Angélique; Rovere, Mickaël; Grémare, Antoine; Dupré, Stéphanie; Jorry, Stéphan J.

    2018-01-01

    In this short communication, we present a multidisciplinary study of sedimentary records collected from a deep-sea interfluve proximal to the mouths of major northwestern Madagascan rivers. For the last 60 years, the seafloor has been repeatedly disturbed by the deposition of organic rich, tropical, terrestrial sediments causing marked reductions in benthic biodiversity. Increased soil erosion due to local land-use, deforestation and intensifying tropical cyclones are potential causes for this sedimentary budget and biodiversity shift. Our marine sedimentary records indicate that until now, these conditions have not occurred within the region for at least 20,000 years.

  2. Integrated Assessment and the Relation Between Land-Use Change and Climate Change

    DOE R&D Accomplishments Database

    Dale, V. H.

    1994-10-07

    Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.

  3. Committed climate change due to historical land use and management: the concept

    NASA Astrophysics Data System (ADS)

    Freibauer, Annette; Dolman, Han; Don, Axel; Poeplau, Christopher

    2013-04-01

    A significant fraction of the European land surface has changed its land use over the last 50 years. Management practices have changed in the same period in most land use systems. These changes have affected the carbon and greenhouse gas (GHG) balance of the European land surface. Land use intensity, defined here loosely as the degree to which humans interfere with the land, strongly affects GHG emissions. Land use and land management changes suggest that the variability of the carbon balance and of GHG emissions of cultivated land areas in Europe is much more driven by land use history and management than driven by climate. Importantly changes in land use and its management have implications for future GHG emissions, and therefore present a committed climate change, defined as inevitable future additional climate change induced by past human activity. It is one of the key goals of the large-scale integrating research project "GHG-Europe - Greenhouse gas management in European land use systems" to quantify the committed climate change due to legacy effects by land use and management. The project is funded by the European Commission in the 7th framework programme (Grant agreement no.: 244122). This poster will present the conceptual approach taken to reach this goal. (1) First of all we need to proof that at site, or regional level the management effects are larger than climate effects on carbon balance and GHG emissions. Observations from managed sites and regions will serve as empirical basis. Attribution experiments with models based on process understanding are run on managed sites and regions will serve to demonstrate that the observed patterns of the carbon balance and GHG emissions can only be reproduced when land use and management are included as drivers. (2) The legacy of land use changes will be quantified by combining spatially explicit time series of land use changes with response functions of carbon pools. This will allow to separate short-term and

  4. Scenarios of land use change for agriculture: the role of Land Evaluation in improving model simulation

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Santini, M.; Dettori, G.; Muresu, P.; Spano, D.; Duce, P.

    2009-12-01

    Integrated scenarios of future climate and land use represent a useful input for impact studies about global changes. In particular, improving future land use simulations is essential for the agricultural sector, which is influenced by both biogeophysical constraints and human needs. Often land use change models are mainly based on statistical relationships between known land use distribution and biophysical or socio-economic factors, neglecting the necessary consideration of physical constraints that interact in making lands more or less capable for agriculture and suitable for supporting specific crops. In this study, a well developed land use change model (CLUE@CMCC) was suited for the Mediterranean basin case study, focusing on croplands. Several climate scenarios and future demands for croplands were combined to drive the model, while the same climate scenarios were used to more reliably allocate crops in the most suitable areas on the basis of Land Evaluation techniques. The probability for each map unit to sustain a specific crop, usually related to location characteristics, elasticity to conversion and competition among land use types, now includes specific crop-favoring location characteristics. Results, besides improving the consistency of the land use change model to allocate land for the future, can have the main feedback to suggest feasibility or reasonable thresholds to adjust land use demands during dynamic simulations.

  5. Spatial and temporal land cover changes in Terminos Lagoon Reserve, Mexico.

    PubMed

    Soto-Galera, Ernesto; Piera, Jaume; López, Pilar

    2010-06-01

    Terminos Lagoon ecosystem is the largest fluvial-lagoon estuarine system in the country and one of the most important reserves of coastal flora and fauna in Mexico. Since the seventies, part of the main infrastructure for country's oil extraction is located in this area. Its high biodiversity has motivated different type of studies including deforestation processes and land use planning. In this work we used satellite image analysis to determine land cover changes in the area from 1974 to 2001. Our results indicate that tropical forest and mangroves presented the most extensive losses in its coverage. In contrast, urban areas and induced grassland increased considerably. In 2001 more than half of the ecosystem area showed changes from its original land cover, and a third part of it was deteriorated. The main causes of deforestation were both the increase in grassland and the growth of urban areas. However, deforestation was attenuated by natural reforestation and plant canopy recovery. We conclude that the introduction of cattle and urban development were the main causes for the land cover changes; however, the oil industry activity located in the ecosystem, has promoted indirectly to urban growth and rancher boom.

  6. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    PubMed

    Alig, Ralph J; Butler, Brett J

    2004-04-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest is a crucial disturbance affecting planted pine area, as other forest types are converted to planted pine after harvest. Conversely, however, many harvested pine plantations revert to other forest types, mainly due to passive regeneration behavior on nonindustrial private timberlands. We model land use and land cover changes as a basis for projecting future changes in planted pine area, to aid policy analysts concerned with mitigation activities for global climate change. Projections are prepared in two stages. Projected land use changes include deforestation due to pressures to develop rural land as the human population expands, which is a larger area than that converted from other rural lands (e.g., agriculture) to forestry. In the second stage, transitions among forest types are projected on land allocated to forestry. We consider reforestation, influences of timber harvest, and natural succession and disturbance processes. Baseline projections indicate a net increase of about 5.6 million ha in planted pine area in the South over the next 50 years, with a notable increase in sequestered carbon. Additional opportunities to expand pine plantation area warrant study of landowner behavior to aid in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change and attain other goals.

  7. The impact of land use change on the energy and water fluxes between atmosphere and tropical vegetation in Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Falk, U.; Ibrom, A.; Kreilein, H.; Oltchev, A.; Gravenhorst, G.

    2003-12-01

    The conversion of tropical rain forest to agriculturally used land is a widespread process throughout Indonesia. Besides the effects on the biological diversity and the hydrological functions of a forest, this also has an impact on the turbulent exchange processes between vegetation and atmosphere, the radiative properties of the surface and therefore on atmospheric boundary layer and local climate. Within the framework of the project STORMA "Stability of rain forest margins" (SFB 552, University Goettingen, financed by the German Research Foundation), the energy and water fluxes above one of the major land use types, a Cacao plantation, were investigated using the Eddy-Covariance method. Simultaneously meteorological measurements of the variables wind speed and velocity, temperature, humidity, rainfall, soil heat flux and the components of the radiation budget were performed, in order to complete the energy balance and investigate the dependencies of the turbulent exchange processes on the atmospheric boundary conditions. The measurements are being compared to a SVAT model, providing the heat flux into the vegetation. Energy balance closure is used as a means to check the quality of the measured fluxes. The comparison to measurements above undisturbed rain forest by means of the ratio of sensible to latent heat flux, the Bowen ratio, indicates a significantly different boundary layer regime of the atmosphere above the Cacao.

  8. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  9. Coupling Cellular Automata Land Use Change with Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2017-12-01

    There has been extensive research on LUC modeling with broad applications to simulating urban growth and changing demographic patterns across multiple scales. The importance of land conversion is a critical issue in watershed scale studies and is generally not treated in most watershed modeling approaches. In this study we apply spatially explicit hydrologic and landuse change models and the Conestoga Watershed in Lancaster County, Pennsylvania. The Penn State Integrated Hydrologic Model (PIHM) partitions the water balance in space and time over the urban catchment, the coupled Cellular Automata Land Use Change model (CALUC) dynamically simulates the evolution of land use classes based on physical measures associated with population change and land use demand factors. The CALUC model is based on iteratively applying discrete rules to each individual spatial cell. The essence the CA modeling involves calculation of the Transition Potential (TP) for conversion of a grid cell from one land use class to another. This potential includes five factors: random perturbation, suitability, accessibility, neighborhood effect, inertia effects and zonal factors. In spite of simplicity, this CALUC model has been shown to be very effective for simulating LUC leading to the emergence of complex spatial patterns. The components of TP are derived from present land use data for landuse reanalysis and for realistic future land use scenarios. For the CALUC we use early-settlement (circa 1790) initial land class values and final or present-day (2010) land classes to calibrate the model. CALUC- PIHM dynamically simulates the hydrologic response of conversion from pre-settlement to present landuse. The simulations highlight the capability and value of dynamic coupling of catchment hydrology with land use change over long time periods. Analysis of the simulation uses various metrics such as the distributed water balance, flow duration curves, etc. to show how deforestation, urbanization and

  10. The relative importance among anthropogenic forcings of land use/land cover change in affecting temperature extremes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Dirmeyer, Paul A.

    2018-05-01

    Land use/land cover change (LULCC) exerts significant influence on regional climate extremes, but its relative importance compared with other anthropogenic climate forcings has not been thoroughly investigated. This study compares land use forcing with other forcing agents in explaining the simulated historical temperature extreme changes since preindustrial times in the CESM-Last Millennium Ensemble (LME) project. CESM-LME suggests that the land use forcing has caused an overall cooling in both warm and cold extremes, and has significantly decreased diurnal temperature range (DTR). Due to the competing effects of the GHG and aerosol forcings, the spatial pattern of changes in 1850-2005 climatology of temperature extremes in CESM-LME can be largely explained by the land use forcing, especially for hot extremes and DTR. The dominance of land use forcing is particularly evident over Europe, eastern China, and the central and eastern US. Temporally, the land-use cooling is relatively stable throughout the historical period, while the warming of temperature extremes is mainly influenced by the enhanced GHG forcing, which has gradually dampened the local dominance of the land use effects. Results from the suite of CMIP5 experiments partially agree with the local dominance of the land use forcing in CESM-LME, but inter-model discrepancies exist in the distribution and sign of the LULCC-induced temperature changes. Our results underline the overall importance of LULCC in historical temperature extreme changes, implying land use forcing should be highlighted in future climate projections.

  11. Integrating research on ecohydrology and land use change with land use management

    NASA Astrophysics Data System (ADS)

    Bass, Brad; Byers, Ralph E.; Lister, Nina-Marie

    1998-10-01

    One objective of the International Geosphere-Biosphere Programme is to provide a scientific basis for sustainable development policies. Land use change and ecohydrology are important components of this scientific basis, but predicting change is difficult because of the scale and complexity of the interactions between non-linear ecohydrological and socio-economic processes at different spatial and temporal scales. A systems framework, the Ecosystem Approach, has been developed to conceptualize these interactions for the purpose of providing information for sustainable development policy. The Ecosystem Approach combines the dynamics of the Holling figure-eight model - a conceptual model of dynamics that stresses discontinuous change and destruction as an internal property of the system - and the properties of self-organizing systems with the socio political aspects of decision making.The Ecosystem Approach highlights the problems of managing change in complex systems when that change may involve unpredictable shifts to a different attractor. Although there are methods available to detect the occurrence of such shifts, both detection and modelling are complicated by the presence of semi-stable attractors. When a model or an ecosystem is on a semi-stable attractor, it may appear to remain stable for an extended period prior to changing as a consequence of inherent instabilities. When the shift to a new attractor occurs, it is quite sudden and unpredictable. A technical discussion on prediction under conditions of semi-stability and chaos is included because it enhances our understanding of the role of surprise in ecosystems, as well as the utility of simulation models.The principles of the Ecosystem Approach are derived from the theoretical discussion and an example of a land use policy in the Huron Natural Area in south-western Ontario. These principles provide a clear role for scientific research, and particularly simulation modelling, within the larger context of

  12. Climate and air quality impacts of altered BVOC fluxes from land cover change in Southeast Asia 1990 - 2010

    NASA Astrophysics Data System (ADS)

    Harper, Kandice; Yue, Xu; Unger, Nadine

    2016-04-01

    Large-scale transformation of the natural rainforests of Southeast Asia in recent decades, driven primarily by logging and agroforestry activities, including rapid expansion of plantations of high-isoprene-emitting oil palm (Elaeis guineensis) trees at the expense of comparatively low-emitting natural dipterocarp rainforests, may have altered the prevailing regime of biogenic volatile organic compound (BVOC) fluxes from this tropical region. Chemical processing of isoprene in the atmosphere impacts the magnitude and distribution of several short-lived climate forcers, including ozone and secondary organic aerosols. Consequently, modification of the fluxes of isoprene and other BVOCs from vegetation serves as a mechanism by which tropical land cover change impacts both air quality and climate. We apply satellite-derived snapshots of land cover for the period 1990 - 2010 to the NASA ModelE2-Yale Interactive Terrestrial Biosphere (ModelE2-YIBs) global carbon-chemistry-climate model to quantify the impact of Southeast Asian land cover change on atmospheric chemical composition and climate driven by changes in isoprene emission. NASA ModelE2-YIBs features a fully interactive land carbon cycle and includes a BVOC emission algorithm which energetically couples isoprene production to photosynthesis. The time-slice simulations are nudged with large-scale winds from the GMAO reanalysis dataset and are forced with monthly anthropogenic and biomass burning reactive air pollution emissions from the MACCity emissions inventory. Relative to the year 1990, regional isoprene emissions in 2010 increased by 2.6 TgC/yr from the expansion of Southeast Asian oil palm plantations and decreased by 0.7 TgC/yr from the loss of regional dipterocarp rainforest. Considering only the impact of land-cover-change-induced isoprene emission changes in Southeast Asia over this period, we calculate a spatially heterogeneous impact on regional seasonal surface-level ozone concentrations (minimum: -1

  13. Analyzing historical land use changes using a Historical Land Use Reconstruction Model: a case study in Zhenlai County, northeastern China

    PubMed Central

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui; Xing, Xiaoshi; de Sherbinin, Alex

    2017-01-01

    Historical land use information is essential to understanding the impact of anthropogenic modification of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a lack of spatial explicitness, complete thematic details and the conversion types for historical land use changes, the majority of historical land use reconstructions do not sufficiently meet the requirements for an adequate model. Considering these shortcomings, we explored the possibility of constructing a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then a three-map comparison method was adopted to validate the projected reconstruction map. The reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. The largest land use/cover type in the study area was determined to be grassland, followed by arable land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land use changes among the three maps were as a result of inconsistencies in the classification of land-use categories during the study period, rather than as a result of the simulation model. PMID:28134342

  14. Land use and land cover data changes in Indian Ocean Islands: Case study of Unguja in Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Faki, Asha; Raina, Suresh

    2017-04-01

    Land use and land cover changes will continue to affect resilient human communities and ecosystems as a result of climate change. However, an assessment of land use and land cover changes over time in Indian Ocean Islands is less documented. The land use/cover data changes over 10 years at smaller geographical scale across Unguja Island in Zanzibar were analyzed. Downscaling of the data was obtained from SERVIR through partnership with Kenya-based Regional Centre for Mapping of Resources for Development (RCMRD) database (http://www.servirglobal.net), and clipped down in ArcMap (Version 10.1) to Unguja Island. SERVIR and RCMRD Land Cover Dataset are mainly 30 m multispectral images include Landsat TM and ETM+Multispectral Images. Landscape ecology Statistics tool (LecoS) was used to analysis the land use and land cover changes. The data provide information on the status of the land use and land cover changes along the Unguja Island in Zanzibar. The data is of great significance to the future research on global change.

  15. Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Kathleen A.; Janetos, Anthony C.; Van Vuuren, Detlef

    2010-11-15

    This special issue has highlighted recent and innovative methods and results that integrate observations and AQ3 modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated Assessment modeling communities recognize the importance of an accurate representation of land use and land-cover change to understand and quantify the interactions and feedbacks with the climate and socio-economic systems, respectively. To date, cooperation between these communities has been limited. Based on common interests, this work discusses research priorities in representing land use and land-cover change for improvedmore » collaboration across modelling, observing and measurement communities. Major research topics in land use and land-cover change are those that help us better understand (1) the interaction of land use and land cover with the climate system (e.g. carbon cycle feedbacks), (2) the provision of goods and ecosystem services by terrestrial (natural and anthropogenic) land-cover types (e.g. food production), (3) land use and management decisions and (4) opportunities and limitations for managing climate change (for both mitigation and adaptation strategies).« less

  16. Changes in land use and housing on resource lands in Washington state, 1976–2006

    Treesearch

    Andrew N. Gray; David L. Azuma; Gary J. Lettman; Joel L. Thompson; Neil McKay

    2013-01-01

    Changes in human land use patterns have wide-ranging social, economic and ecological implications. How urban and residential areas develop to accommodate population increase can have varying effects on forest and agricultural production from resource lands. Estimates of the amount and type of land use change differ substantially with definitions and analytical methods...

  17. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    PubMed

    Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  18. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot

    PubMed Central

    Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark

    2015-01-01

    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241

  19. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia.

    PubMed

    Itoh, Masayuki; Okimoto, Yosuke; Hirano, Takashi; Kusin, Kitso

    2017-12-31

    The increasing frequency of fire due to drainage of tropical peatland has become a major environmental problem in Southeast Asia. To clarify the effects of changes in land use on carbon dioxide emissions, we measured oxidative peat decomposition (PD) at different stages of disturbance at three sites in Central Kalimantan, Indonesia: an undrained peat swamp forest (UF), a heavily drained peat swamp forest (DF), and a drained and burned ex-forest (DB). PD exhibited seasonality, being less in the wet season and greater in the dry season. From February 2014 to December 2015, mean PD (±SE) were 1.90±0.19, 2.30±0.33, and 1.97±0.25μmolm -2 s -1 at UF, DF, and DB, respectively. The groundwater level (GWL) was a major controlling factor of PD at all sites. At UF and DF, PD and GWL showed significant quadratic relationships. At DB, PD and GWL showed significant positive and negative relationships during the dry and wet seasons, respectively. Using these relationships, we estimated annual PD from GWL data for 2014 and 2015 as 698 and 745gCm -2 yr -1 at UF (mean GWL: -0.23 and -0.39m), 775 and 825gCm -2 yr -1 at DF (-0.55 and -0.59m), and 646 and 748gCm -2 yr -1 at DB (-0.22 and -0.62m), respectively. The annual PD was significantly higher in DF than in UF or DB, in both years. Despite the very dry conditions, the annual PD values at these sites were much lower than those reported for tropical peat at plantations (e.g., oil palm, rubber, and acacia). The differences in the relationship between PD and GWL indicate that separate estimations are required for each type of land. Moreover, our results suggest that PD can be enhanced by drainage both in forests and at burned sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Monitoring conservation effectiveness in a global biodiversity hotspot: the contribution of land cover change assessment.

    PubMed

    Joseph, Shijo; Blackburn, George Alan; Gharai, Biswadip; Sudhakar, S; Thomas, A P; Murthy, M S R

    2009-11-01

    Tropical forests, which play critical roles in global biogeochemical cycles, radiation budgets and biodiversity, have undergone rapid changes in land cover in the last few decades. This study examines the complex process of land cover change in the biodiversity hotspot of Western Ghats, India, specifically investigating the effects of conservation measures within the Indira Gandhi Wildlife Sanctuary. Current vegetation patterns were mapped using an IRS P6 LISS III image and this was used together with Landsat MSS data from 1973 to map land cover transitions. Two major and divergent trends were observed. A dominant degradational trend can be attributed to agricultural expansion and infrastructure development while a successional trend, resulting from protection of the area, showed the resilience of the system after prolonged disturbances. The sanctuary appears susceptible to continuing disturbances under the current management regime but at lower rates than in surrounding unprotected areas. The study demonstrates that remotely sensed land cover assessments can have important contributions to monitoring land management strategies, understanding processes underpinning land use changes and helping to inform future conservation strategies.

  1. Climate and land-use change in wetlands: A dedication

    USGS Publications Warehouse

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  2. Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model

    USGS Publications Warehouse

    Kerr, Suzi; Liu, Shu-Guang; Pfaff, Alexander S.P.; Hughes, R. Flint

    2003-01-01

    Policy enabling tropical forests to approach their potential contribution to global-climate-change mitigation requires forecasts of land use and carbon storage on a large scale over long periods. In this paper, we present an integrated modeling methodology that addresses these needs. We model the dynamics of the human land-use system and of C pools contained in each ecosystem, as well as their interactions. The model is national scale, and is currently applied in a preliminary way to Costa Rica using data spanning a period of over 50 years. It combines an ecological process model, parameterized using field and other data, with an economic model, estimated using historical data to ensure a close link to actual behavior. These two models are linked so that ecological conditions affect land-use choices and vice versa. The integrated model predicts land use and its consequences for C storage for policy scenarios. These predictions can be used to create baselines, reward sequestration, and estimate the value in both environmental and economic terms of including C sequestration in tropical forests as part of the efforts to mitigate global climate change. The model can also be used to assess the benefits from costly activities to increase accuracy and thus reduce errors and their societal costs.

  3. The effects of land use change and precipitation change on direct runoff in Wei River watershed, China.

    PubMed

    Dong, Leihua; Xiong, Lihua; Lall, Upmanu; Wang, Jiwu

    2015-01-01

    The principles and degrees to which land use change and climate change affect direct runoff generation are distinctive. In this paper, based on the MODIS data of land use in 1992 and 2003, the impacts of land use and climate change are explored using the Soil Conservation Service Curve Number (SCS-CN) method under two defined scenarios. In the first scenario, the precipitation is assumed to be constant, and thus the consequence of land use change could be evaluated. In the second scenario, the condition of land use is assumed to be constant, so the influence only induced by climate change could be assessed. Combining the conclusions of two scenarios, the effects of land use and climate change on direct runoff volume can be separated. At last, it is concluded: for the study basin, the land use types which have the greatest effect on direct runoff generation are agricultural land and water body. For the big sub basins, the effect of land use change is generally larger than that of climate change; for middle and small sub basins, most of them suffer more from land use change than from climate change.

  4. Assessment of landscape change associated with tropical cyclone phenomena in Baja California Sur, Mexico, using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Genaro

    Baja California Sur (Mexico), as well as mainland Mexico, is affected by tropical cyclone storms, which originate in the eastern north Pacific. Historical records show that Baja has been damaged by intense summer storms. An arid to semiarid climate characterizes the study area, where precipitation mainly occurs during the summer and winter seasons. Natural and anthropogenic changes have impacted the landscape of southern Baja. The present research documents the effects of tropical storms over the southern region of Baja California for a period of approximately twenty-six years. The goal of the research is to demonstrate how remote sensing can be used to detect the important effects of tropical storms including: (a) evaluation of change detection algorithms, and (b) delineating changes to the landscape including coastal modification, fluvial erosion and deposition, vegetation change, river avulsion using change detection algorithms. Digital image processing methods with temporal Landsat satellite remotely sensed data from the North America Landscape Characterization archive (NALC), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) images were used to document the landscape change. Two image processing methods were tested including Image differencing (ID), and Principal Component Analysis (PCA). Landscape changes identified with the NALC archive and TM images showed that the major changes included a rapid change of land use in the towns of San Jose del Cabo and Cabo San Lucas between 1973 and 1986. The features detected using the algorithms included flood deposits within the channels of active streams, erosion banks, and new channels caused by channel avulsion. Despite the 19 year period covered by the NALC data and approximately 10 year intervals between acquisition dates, there were changed features that could be identified in the images. The TM images showed that flooding from Hurricane Isis (1998) produced new large deposits within the stream channels

  5. Horizontal and vertical species turnover in tropical birds in habitats with differing land use.

    PubMed

    Sreekar, Rachakonda; Corlett, Richard T; Dayananda, Salindra; Goodale, Uromi Manage; Kilpatrick, Adam; Kotagama, Sarath W; Koh, Lian Pin; Goodale, Eben

    2017-05-01

    Large tracts of tropical rainforests are being converted into intensive agricultural lands. Such anthropogenic disturbances are known to reduce species turnover across horizontal distances. But it is not known if they can also reduce species turnover across vertical distances (elevation), which have steeper climatic differences. We measured turnover in birds across horizontal and vertical sampling transects in three land-use types of Sri Lanka: protected forest, reserve buffer and intensive-agriculture, from 90 to 2100 m a.s.l. Bird turnover rates across horizontal distances were similar across all habitats, and much less than vertical turnover rates. Vertical turnover rates were not similar across habitats. Forest had higher turnover rates than the other two habitats for all bird species. Buffer and intensive-agriculture had similar turnover rates, even though buffer habitats were situated at the forest edge. Therefore, our results demonstrate the crucial importance of conserving primary forest across the full elevational range available. © 2017 The Author(s).

  6. Land cover change of watersheds in Southern Guam from 1973 to 2001.

    PubMed

    Wen, Yuming; Khosrowpanah, Shahram; Heitz, Leroy

    2011-08-01

    Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.

  7. An analysis of effect of land use change on river flow variability

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang

    2018-02-01

    Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.

  8. PROJECTING LAND USE AND LAND COVER CHANGE FOR THE MID-ATLANTIC INTEGRATED ASSESSMENT (INTERNAL GRANT)

    EPA Science Inventory



    Land use change is arguably the primary driver that will impact ecological resources in the U.S. during the next 50 years. This task is developing methods to analyze potential land use changes that result from changes in human population growth, economics, public works, a...

  9. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China.

    PubMed

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun

    2012-11-01

    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH(4) (+)-N and NO(3) (-)-N. However, soil IN pools were dominated by NH(4) (+)-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH(4) (+)-N concentration and decreases NO(3) (-)-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH(4) (+)-N and NO(3) (-)-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH(4) (+)-N and NO(3) (-)-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH(4) (+)-N were measured at the upper slopes of all sites, but NO(3) (-)-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH(4) (+)-N and NO(3) (-)-N concentrations. Options for improved soil management in plantations are discussed.

  10. Land use/land cover change and implications for ecosystems services in the Likangala River Catchment, Malawi

    NASA Astrophysics Data System (ADS)

    Pullanikkatil, Deepa; Palamuleni, Lobina G.; Ruhiiga, Tabukeli M.

    2016-06-01

    Likangala River catchment in Zomba District of Southern Malawi is important for water resources, agriculture and provides many ecosystem services. Provisioning ecosystem services accrued by the populations within the catchment include water, fish, medicinal plants and timber among others. In spite of its importance, the River catchment is under threat from anthropogenic activities and land use change. This paper studies land uses and land cover change in the catchment and how the changes have impacted on the ecosystem services. Landsat 5 and 8 images (1984, 1994, 2005 and 2013) were used to map land cover change and subsequent inventorying of provisioning ecosystem services. Participatory Geographic Information Systems and Focus group discussions were conducted to identify provisioning ecosystems services that communities benefit from the catchment and indicate these on the map. Post classification comparisons indicate that since 1984, there has been a decline in woodlands from 135.3 km2 in 1984 to 15.5 km2 in 2013 while urban areas increased from 9.8 km2 to 23.8 km2 in 2013. Communities indicated that provisioning ecosystems services such as forest products, wild animals and fruits and medicinal plants have been declining over the years. In addition, evidence of catchment degradation through waste disposal, illegal sand mining, deforestation and farming on marginal lands were observed. Population growth, urbanization and demand for agricultural lands have contributed to this land use and land cover change. The study suggests addressing catchment degradation through integrated method where an ecosystems approach is used. Thus, both the proximate and underlying driving factors of land-use and land cover change need to be addressed in order to sustainably reduce ecosystem degradation.

  11. Facilitating smallholder tree farming in fragmented tropical landscapes: Challenges and potentials for sustainable land management.

    PubMed

    Rahman, Syed Ajijur; Sunderland, Terry; Roshetko, James M; Healey, John Robert

    2017-08-01

    Under changing land use in tropical Asia, there is evidence of forest product diversification through implementation of tree-based farming by smallholders. This paper assesses in two locations, West Java, Indonesia and eastern Bangladesh, current land use conditions from the perspective of smallholder farmers, the factors that facilitate their adoption of tree farming, and the potential of landscape-scale approaches to foster sustainable land management. Data were collected through rapid rural appraisals, focus group discussions, field observations, semi-structured interviews of farm households and key informant interviews of state agricultural officers. Land at both study sites is typically fragmented due to conversion of forest to agriculture and community settlement. Local land use challenges are associated with pressures of population increase, poverty, deforestation, shortage of forest products, lack of community-scale management, weak tenure, underdeveloped markets, government decision-making with insufficient involvement of local people, and poor extension services. Despite these challenges, smallholder tree farming is found to be successful from farmers' perspectives. However, constraints of local food crop cultivation traditions, insecure land tenure, lack of capital, lack of knowledge, lack of technical assistance, and perceived risk of investing in land due to local conflict (in Bangladesh) limit farmers' willingness to adopt this land use alternative. Overcoming these barriers to adoption will require management at a landscape scale, including elements of both segregation and integration of land uses, supported by competent government policies and local communities having sufficiently high social capital. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Land use change and carbon stock dynamics in Sub-Saharan Africa - Case study of Western Africa - Ghana

    NASA Astrophysics Data System (ADS)

    Grieco, E.; Chiti, T.; Valentini, R.

    2012-04-01

    Among different regions of the world, Africa and particularly sub-Saharan Africa (SSA) has contributed less than any other to the greenhouse gas emissions, but it is also the region most vulnerable and the least well equipped to the consequences. In SSA the role of land use change in controlling CO2 emissions may be more critical than in any other regions and perhaps the most uncertain component of the global carbon cycle. The most typical example of incomplete estimates will arise from the lack of reliable data for carbon pools. Three factors account for much of the rest of the uncertainty: (1) initial stocks of carbon in ecosystems affected by land-use change, (2) per hectare changes in carbon stocks in response to different types of land-use change, and (3) legacy effects; that is, the time it takes for carbon stocks to equilibrate following a change in land use. Considering the source of uncertainty and the lack of field data for SSA, the study has been located in Ghana (Jomoro district, Western Region) where forest is the only source of wood for domestic uses and deforestation annual rate was 2.2% for the period 2005-2010. This study analyze the above mentioned gaps by assessing: 1) initial carbon stocks (tropical rain forest), 2) per hectare changes in carbon stocks as consequence of deforestation followed by six different main land uses [tree plantations (rubber, coconut, cocoa, oil palm, mixed plantations) and a secondary forest], 3) dynamics of soil carbon stocks through the time considering chronosequences. When accounting changes in carbon stocks in the UNFCCC framework, it is required to consider 5 carbon pools that are: aboveground biomass, belowground biomass, litter, dead wood and soil. Within REDD+ mechanism it is clear that only aboveground pool has to be always considered, belowground biomass is recommended and the others are facultative. Evidence from official UNFCCC reports suggests that only a very small fraction of developing countries

  13. Photometric characterization of the Chang'e-3 landing site using LROC NAC images

    NASA Astrophysics Data System (ADS)

    Clegg-Watkins, R. N.; Jolliff, B. L.; Boyd, A.; Robinson, M. S.; Wagner, R.; Stopar, J. D.; Plescia, J. B.; Speyerer, E. J.

    2016-07-01

    China's robotic Chang'e-3 spacecraft, carrying the Yutu rover, touched down in Mare Imbrium on the lunar surface on 14 December 2013. The Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) imaged the site both before and after landing. Multi-temporal NAC images taken before and after the landing, phase-ratio images made from NAC images taken after the landing, and Hapke photometric techniques were used to evaluate surface changes caused by the disturbance of regolith at the landing site (blast zone) by the descent engines of the Chang'e-3 spacecraft. The reflectance of the landing site increased by 10 ± 1% (from I/F = 0.040 to 0.044 at 30° phase angle) as a result of the landing, a value similar to reflectance increases estimated for the Apollo, Luna, and Surveyor landing sites. The spatial extent of the disturbed area at the Chang'e-3 landing site, 2530 m2, also falls close to what is predicted on the basis of correlations between lander mass, thrust, and blast zone areas for the historic landed missions. A multi-temporal ratio image of the Chang'e-3 landing site reveals a main blast zone (slightly elongate in the N-S direction; ∼75 m across N-S and ∼43 m across in the E-W direction) and an extended diffuse, irregular halo that is less reflective than the main blast zone (extending ∼40-50 m in the N-S direction and ∼10-15 m in the E-W direction beyond the main blast zone). The N-S elongation of the blast zone likely resulted from maneuvering during hazard avoidance just prior to landing. The phase-ratio image reveals that the blast zone is less backscattering than surrounding undisturbed areas. The similarities in magnitude of increased reflectance between the Chang'e-3 landing site and the Surveyor, Apollo, and Luna landing sites suggest that lunar soil reflectance changes caused by interaction with rocket exhaust are not significantly altered over a period of 40-50 years. The reflectance changes are independent of regolith composition

  14. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico

    Treesearch

    A. C. Gellis; NO-VALUE

    2013-01-01

    The significant characteristics controlling the variability in storm-generated suspended-sediment loads and concentrations were analyzed for four basins of differing land use (forest, pasture, cropland, and urbanizing) in humid-tropical Puerto Rico. Statistical analysis involved stepwise regression on factor scores. The explanatory variables were attributes of flow,...

  15. Forty years of land use and land ownership change in central Sierra Nevada oak woodlands

    Treesearch

    Matt Wacker; David Saah; Louise Fortmann

    2002-01-01

    The vast majority of California’s oak woodlands are privately owned, and, therefore, highly susceptible to changes in land use and ownership as well as land fragmentation. This is particularly true in the Central Sierra Nevada, where significant changes in land use have occurred during the past 40 years. Perhaps no location illustrates this trend better than the...

  16. Modelling land-atmosphere interactions in tropical African wetlands

    NASA Astrophysics Data System (ADS)

    Dadson, S.

    2012-04-01

    Wetlands interact with the climate system in two ways. First, the availability of water at the land surface introduces important feedbacks on climate via surface fluxes of energy and water [1]. Over wet surfaces, high daytime evaporation rates and suppressed sensible heat fluxes induce a shallower, moister planetary boundary layer, which affects atmospheric instability and favours the initiation of new storms [2]. Second, wetlands form a key link between the hydrological and carbon cycles, via anoxic degradation of organic matter to release methane (CH4). Wetlands are the largest, but least well quantified, single source of CH4, with recent emission estimates ranging from 105-278 Tg yr-1, ~75% of which comes from the tropics [3]. Although the emissions of methane from boreal wetlands and lakes are less than those from tropical wetlands [3], their size and remoteness pose significant challenges to the quantification of their feedbacks to regional and global climate. In this paper, I present a summary of recent work on modelling hydrological and biogeochemical aspects of wetland formation and the associated land-atmosphere feedbacks in African and boreal environments. We have added an overbank inundation model to the Joint UK Land Environment Simulator (JULES). Sub-grid topographic data were used to derive a two-parameter frequency distribution of inundated areas. Our predictions of inundated area are in good agreement with observed estimates of the extent of inundation obtained using satellite infrared and microwave remote sensing [4,5]. The model predicts significant evaporative losses from the inundated region accounting for doubling of the total land-atmosphere water flux during periods of greatest flooding. I also present new parameterisations of methane generation from wetlands. 1. Koster, R.D., et al., 2004, Science, 305(5687): 1138-40. 2. Taylor, C.M., 2010, Geophys. Res. Lett., 37: L05406. 3. US EPA, 2010, Methane and Nitrous Oxide Emissions From Natural

  17. The role of land use/land cover dependent preferential flow paths in hydrologic response of steep and seasonal tropical catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ogden, F. L.; Zhu, J.

    2017-12-01

    The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.

  18. Estimating The Effect of Biofuel on Land Cover Change Using Multi-Year Modis Land Cover Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Bhaduri, Budhendra L

    2010-01-01

    There has been a growing debate on the effects of the increase in demands of biofuels on land use land cover (LULC) change with apprehension in some quarters that the growing demand for bioenergy as a clean fuel will result in widespread direct and indirect LULC change. However estimating both direct and indirect LULC change is challenging and will require development of accurate high frequency, high resolution (temporal and spatial) land use land cover data as well as new LULC models which can be used to locate, quantify and predict these changes. To assess whether the demand for biofuel hasmore » caused significant LULC we used MODIS land cover data (MCD12Q1) from 2001 to 2008 along with cropland data layer (CDL) to estimate cropland and grassland changes in United States for the years 2002-2008 as well as its correlation with biofuel growth.« less

  19. Land change monitoring, assessment, and projection (LCMAP) revolutionizes land cover and land change research

    USGS Publications Warehouse

    Young, Steven

    2017-05-02

    When nature and humanity change Earth’s landscapes - through flood or fire, public policy, natural resources management, or economic development - the results are often dramatic and lasting.Wildfires can reshape ecosystems. Hurricanes with names like Sandy or Katrina will howl for days while altering the landscape for years. One growing season in the evolution of drought-resistant genetics can transform semiarid landscapes into farm fields.In the past, valuable land cover maps created for understanding the effects of those events - whether changes in wildlife habitat, water-quality impacts, or the role land use and land cover play in affecting weather and climate - came out at best every 5 to 7 years. Those high quality, high resolution maps were good, but users always craved more: even higher quality data, additional land cover and land change variables, more detailed legends, and most importantly, more frequent land change information.Now a bold new initiative called Land Change Monitoring, Assessment, and Projection (LCMAP) promises to fulfill that demand.Developed at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, LCMAP provides definitive, timely information on how, why, and where the planet is changing. LCMAP’s continuous monitoring process can detect changes as they happen every day that Landsat satellites acquire clear observations. The result will be to place near real-time information in the hands of land and resource managers who need to understand the effects these changes have on landscapes.

  20. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    PubMed

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  1. Land-use changes in Illinois, USA: The influence of landscape attributes on current and historic land use

    Treesearch

    Louis R. Iverson; Louis R. Iverson

    1988-01-01

    The Illinois Geographic Information System was used to compare the soil and landscape attributes of the State with its historic vegetation, current land use, and patterns of land-use change over the past 160 years. Patch structural characteristics among land types in four geographic zones were also compared. The assessment of patch characteristics revealed a highly...

  2. Connectivity and distant drivers of land change: A case study of land use, land cover, and livelihood changes in Quang Tri, Vietnam

    NASA Astrophysics Data System (ADS)

    Rounds, Eric

    The urban lowland areas of Vietnam have been at the forefront of economic liberalization over the last 30 years, while the more remote mountainous areas of the country have lagged behind. Upland areas in the Northern and Central portions of Vietnam in particular remain largely impoverished and disconnected from broader national and regional markets. To address this economic inequality in the uplands, recent economic development efforts such as the East-West Economic Corridor (EWEC) have aimed at expanding road infrastructure to remote areas in Central Vietnam. This study examines the impact of road expansion in the EWEC on a single village in Quang Tri, Vietnam. It draws from social economic data gathered during fieldwork and a historical land cover analysis to address how land use, land cover, and livelihoods have changed in recent decades. Moreover, the paper discusses the distal and proximate drivers of these changes. Findings show that the improved road connectivity provided by new roads has facilitated the transmission of distant market-related drivers into the study area, and that these drivers have fostered significant changes in land use, land cover, and livelihoods.

  3. Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in a global dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, Chao; Ciais, Philippe; Li, Wei

    2018-02-01

    Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both

  4. Exploring dust emission responses to land cover change using an ecological land classification

    NASA Astrophysics Data System (ADS)

    Galloza, Magda S.; Webb, Nicholas P.; Bleiweiss, Max P.; Winters, Craig; Herrick, Jeffrey E.; Ayers, Eldon

    2018-06-01

    Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of land cover change on wind erosion. We apply a dust emission model over a rangeland study area in the northern Chihuahuan Desert, New Mexico, USA, and evaluate spatiotemporal patterns of modelled horizontal sediment mass flux and dust emission in the context of ecological sites and their vegetation states; representing a diversity of land cover types. Our results demonstrate how the impacts of land cover change on dust emission can be quantified, compared across land cover classes, and interpreted in the context of an ecological model that encapsulates land management intensity and change. Results also reveal the importance of established weaknesses in the dust model soil characterisation and drag partition scheme, which appeared generally insensitive to the impacts of land cover change. New models that address these weaknesses, coupled with ecological site concepts and field measurements across land cover types, could significantly reduce assessment uncertainties and provide opportunities for identifying land management options.

  5. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.

    PubMed

    Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G

    2016-11-01

    Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability. © 2016 John Wiley & Sons Ltd.

  6. Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations

    NASA Astrophysics Data System (ADS)

    Lark, Tyler J.; Mueller, Richard M.; Johnson, David M.; Gibbs, Holly K.

    2017-10-01

    Monitoring agricultural land is important for understanding and managing food production, environmental conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer (CDL), an annual satellite imagery-derived land cover map, has been increasingly used for this application since complete coverage of the conterminous United States became available in 2008. However, the CDL is designed and produced with the intent of mapping annual land cover rather than tracking changes over time, and as a result certain precautions are needed in multi-year change analyses to minimize error and misapplication. We highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of recommended good practices and general guidelines for CDL-based land change estimation. We also characterize a problematic issue of crop area underestimation bias within the CDL that needs to be accounted for and corrected when calculating changes to crop and cropland areas. When used appropriately and in conjunction with related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By explicitly discussing the methods and techniques for post-classification measurement of land-cover and land-use change using the CDL, we aim to further stimulate the discourse and continued development of suitable methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly applicable to additional remotely-sensed land cover datasets including the National Land Cover Database (NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover products, and other regional, national, and global land cover classification maps.

  7. [Land use pattern and its dynamic changes in Amur tiger distribution region].

    PubMed

    Li, Zhong-wen; Wu, Jian-guo; Kou, Xiao-jun; Tian, Yu; Wang, Tian-ming; Mu, Pu; Ge, Jian-ping

    2009-03-01

    Land use and land cover change has been the primary cause for the habitat loss and fragmentation in the distribution region of Amur tiger (Panthera tigris altaica). Based on the spatiotemporal changes of land use and land cover in the distribution region, as well as their effects on the population dynamics of Amur tiger, this paper analyzed the development process and its characteristics of the main land use types (agricultural land, forest land, and construction land) in this region, with the land use change history being divided chronically into three distinctive periods, i.e., ancient times (prior to 1860), modern times (1860-1949), and contemporary times (after 1949). The results showed that the sporadic land use in ancient times had no significant effects on the survival of Amur tiger, while the extensive and intensive land use after the 1860s was mainly responsible for the decrease of Amur tiger population and its living space. Since 1949, the Amur tiger distribution region has been divided into two parts, i.e., Northeast China and Russia Far East. The differences in land use pattern, policy, and intensity between these two parts led to different survival status of Amur tiger. The key driving forces for the land use change in Amur tiger distribution region were human population increase, policy change, and increased productivity.

  8. Modelling of land use change in Indramayu District, West Java Province

    NASA Astrophysics Data System (ADS)

    Handayani, L. D. W.; Tejaningrum, M. A.; Damrah, F.

    2017-01-01

    Indramayu District into a strategic area for a stopover and overseas from East Java area because Indramayu District passed the north coast main lane, which is the first as the economic lifeblood of the Java Island. Indramayu District is part of mainstream economic Java pathways so that physical development of the area and population density as well as community activities grew by leaps and bounds. Growth acceleration raised the level of land use change. Land use change and population activities in coastal area would reduce the carrying capacity and impact on environmental quality. This research aim to analyse landuse change of years 2000 and 2011 in Indramayu District. Using this land use change map, we can predict the condition of landuse change of year 2022 in Indramayu District. Cellular Automata Markov (Markov CA) Method is used to create a spatial model of land use changes. The results of this study are predictive of land use in 2022 and the suitability with Spatial Plan (RTRW). A settlement increase predicted to continue in the future the designation of the land according to the spatial plan should be maintained.

  9. Modeling the effect of terraces on land degradation in tropical upland agricultural area

    NASA Astrophysics Data System (ADS)

    Christanto, N.; Shrestha, D. P.; Jetten, V. G.; Setiawan, A.

    2012-04-01

    Java, the most populated Island in Indonesia, in the pas view decades suffer land degradation do to extreme weather, population pressure and landuse/cover change. The study area, Serayu sub-catchment, as part of Serayu catchment is one of the representative example of Indonesia region facing land use change and land degradation problem. The study attempted to simulate the effect of terraces on land degradation (Soil erosion and landslide hazard) in Serayu sub-catchment using deterministic modeling by means of PCRaster® simulation. The effect of the terraces on tropical upland agricultural area is less studied. This paper will discuss about the effect of terraces on land degradation assessment. Detail Dem is extremely difficult to obtain in developing country like Indonesia. Therefore, an artificial DEM which give an impression of the terraces was built. Topographical maps, Ikonos Image and average of height distribution based on field measurement were used to build the artificial DEM. The result is used in STARWARS model as an input. In combine with Erosion model and PROBSTAB, soil erosion and landslide hazard were quantified. The models were run in two different environment based on the: 1) normal DEM 2.) Artificial DEM (with terraces impression). The result is compared. The result shows that the models run in an artificial DEM give a significant increase on the probability of failure by 20.5%. In the other hand, the erosion rate has fall by 11.32% as compared to the normal DEM. The result of hydrological sensitivity analysis shows that soil depth was the most sensitive parameter. For the slope stability modeling, the most sensitive parameter was slope followed by friction angle and cohesion. The erosion modeling, the model was sensitive to the vegetation cover, soil erodibility followed by BD and KSat. Model validations were applied to assess the accuracy of the models. However, the results of dynamic modeling are ideal for land degradation assessment. Dynamic

  10. Changes in land use, forest fragmentation, and policy responses.

    Treesearch

    Ralph J. Alig; David J. Lewis; Jennifer J. Swenson

    2005-01-01

    Land-use conversion is a primary determinant of environmental change in terrestrial ecosystems. Projections are for more than 50 million acres of U.S. forest to be converted to developed uses (e.g., parking lots) over the next 50 years (Alig et al. 2004, Alig and Plantinga 2004), as the population grows by more than 120 million people. Land use change can lead to...

  11. Land Use Change Around Nature Reserves: Implications for Sustaining Biodiversity

    NASA Astrophysics Data System (ADS)

    Hansen, A. J.; Defries, R.; Curran, L.; Liu, J.; Reid, R.; Turner, B.

    2004-12-01

    The effects of land use change outside of reserves on biodiversity within reserves is not well studied. This paper draws on research from Yellowstone, East Africa, Yucatan, Borneo, and Wolong, China to examine land use effects on nature reserves. Objectives are: quantify rates of change in land use around reserves; examine consequences for biodiversity within the context of specific ecological mechanisms; and draw implications for regional management. Within each of the study regions, semi-natural habitats around nature reserves have been converted to agricultural, rural residential, or urban land uses. Rates vary from 0.2-0.4 %/yr in Yucatan, to 9.5 %/yr in Borneo. Such land use changes may be important because nature reserves are often parts of larger ecosystems that are defined by flows in energy, materials, and organisms. Land use outside of reserves may disrupt these flows and alter biodiversity within reserves. Ecological mechanisms that connect biodiversity to these land use changes include habitat size, ecological flows, crucial habitats, and edge effects. For example, the effective size of the East African study area has been reduced by 45% by human activities. Based on the species area relationship, this reduction in habitat area will lead to a loss of 14% of bird and mammal species. A major conclusion is that the viability of nature reserves can best be ensured by managing them in the context of the surrounding region. Knowledge of the ecological mechanisms by which land use influences nature reserves provides design criteria for this regional management.

  12. LAND-COVER CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    Monitoring the locations and distributions of land-cover changes is important for establishing linkages between policy decisions, regulatory actions and subsequent land-use activities. Past studies incorporating two-date change detection using Landsat data have tended to be perfo...

  13. Land-Cover Change Detection Using Multi-Temporal MODIS NDVI Imagery

    EPA Science Inventory

    Monitoring the locations and distributions of land-cover change is important for establishing linkages between policy decisions, regulatory actions and subsequent land-use activities. Past studies incorporating two-date change detection using Landsat data have tended to be perfor...

  14. Changes in Nitrogen Tropical Deposition Driven by Biomass Burning and Industrialization

    NASA Astrophysics Data System (ADS)

    Lara, L. B.; Holland, E. A.; Artaxo, P.; Martinelli, L.

    2003-12-01

    Until few years ago, N deposition studies and the consequences for ecosystems were focused on North Hemisphere, where most of the modern N deposition occurs. Nowadays, the pattern of N deposition has changed over the globe, calling attention to other geographical areas, including tropical regions which were the important pre-industrially(Matson et al., 1999). Substantial increases of NOx and SO2 emissions have been observed in Asia and in some regions of the tropics due to the rapid industrialization, urbanization, and deforestation (Ayers et al., 2000; Lara et al., 2001). Nevertheless,little information is available for developing regions of tropical and sub-tropical areas, where land-use changes are intense and followed by rapid urbanization, associated with a large industrial expansion. Such information is relevant, since recent estimates show that in a near future more than half of N inputs related to energy consumption in the Earth will take place in tropical and subtropical regions (Galloway et al., 1994). In addition, tropical terrestrial and aquatic systems appear to function differently from temperate systems, where N limitation is more severe than in the tropics (Matson et al, 1999). Conclusions based only in studies conducted in temperate regions may not be valid for tropical and sub-tropical regions. In the tropics the annual nitrogen wet deposition range from 2 to 10 kg N/ha/yr (Williams et al., 1997; Lara et al., 2001; IGAC 2003), according to the land cover. Brazil is largely tropical. It is considered a developing country, where developed areas with large urban centers, a large number of industries, and a high-technology agricultural system coexists with developing areas with low-technology and frontier-type agricultural systems and remote regions such as Amazon Basin. These anthropogenic activities are increasing the N wet deposition from an annual rate of 3.0 kg N/ha/yr in remote areas to an annual rate of 5.6 kg N/ha/yr in disturbed regions. If

  15. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon

    PubMed Central

    Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes – forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates. PMID:24127130

  16. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh.

    PubMed

    Rahman, M Tauhid Ur; Tabassum, Faheemah; Rasheduzzaman, Md; Saba, Humayra; Sarkar, Lina; Ferdous, Jannatul; Uddin, Syed Zia; Zahedul Islam, A Z M

    2017-10-17

    Change analysis of land use and land cover (LULC) is a technique to study the environmental degradation and to control the unplanned development. Analysis of the past changing trend of LULC along with modeling future LULC provides a combined opportunity to evaluate and guide the present and future land use policy. The southwest coastal region of Bangladesh, especially Assasuni Upazila of Satkhira District, is the most vulnerable to natural disasters and has faced notable changes in its LULC due to the combined effects of natural and anthropogenic causes. The objectives of this study are to illustrate the temporal dynamics of LULC change in Assasuni Upazila over the last 27 years (i.e., between 1989 and 2015) and also to predict future land use change using CA-ANN (cellular automata and artificial neural network) model for the year 2028. Temporal dynamics of LULC change was analyzed, employing supervised classification of multi-temporal Landsat images. Then, prediction of future LULC was carried out by CA-ANN model using MOLUSCE plugin of QGIS. The analysis of LULC change revealed that the LULC of Assasuni had changed notably during 1989 to 2015. "Bare lands" decreased by 21% being occupied by other land uses, especially by "shrimp farms." Shrimp farm area increased by 25.9% during this period, indicating a major occupational transformation from agriculture to shrimp aquaculture in the study area during the period under study. Reduction in "settlement" area revealed the trend of migration from the Upazila. The predicted LULC for the year 2028 showed that reduction in bare land area would continue and 1595.97 ha bare land would transform into shrimp farm during 2015 to 2028. Also, the impacts of the changing LULC on the livelihood of local people and migration status of the Upazila were analyzed from the data collected through focus group discussions and questionnaire surveys. The analysis revealed that the changing LULC and the occupational shift from paddy

  17. Interactions between land use change and carbon cycle feedbacks: Land Use and Carbon Cycle Feedbacks

    DOE PAGES

    Mahowald, Natalie M.; Randerson, James T.; Lindsay, Keith; ...

    2017-01-23

    We explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300 by using the Community Earth System Model, . Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and anmore » indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO 2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.« less

  18. Interactions between land use change and carbon cycle feedbacks: Land Use and Carbon Cycle Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie M.; Randerson, James T.; Lindsay, Keith

    We explore the role of human land use and land cover change (LULCC) in modifying the terrestrial carbon budget in simulations forced by Representative Concentration Pathway 8.5, extended to year 2300 by using the Community Earth System Model, . Overall, conversion of land (e.g., from forest to croplands via deforestation) results in a model-estimated, cumulative carbon loss of 490 Pg C between 1850 and 2300, larger than the 230 Pg C loss of carbon caused by climate change over this same interval. The LULCC carbon loss is a combination of a direct loss at the time of conversion and anmore » indirect loss from the reduction of potential terrestrial carbon sinks. Approximately 40% of the carbon loss associated with LULCC in the simulations arises from direct human modification of the land surface; the remaining 60% is an indirect consequence of the loss of potential natural carbon sinks. Because of the multicentury carbon cycle legacy of current land use decisions, a globally averaged amplification factor of 2.6 must be applied to 2015 land use carbon losses to adjust for indirect effects. This estimate is 30% higher when considering the carbon cycle evolution after 2100. Most of the terrestrial uptake of anthropogenic carbon in the model occurs from the influence of rising atmospheric CO 2 on photosynthesis in trees, and thus, model-projected carbon feedbacks are especially sensitive to deforestation.« less

  19. Climate change - Agricultural land use - Food security

    NASA Astrophysics Data System (ADS)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  20. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  1. Spatial Modeling of Agricultural Land-Use Change at Global Scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.

    2013-12-01

    Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic

  2. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    NASA Astrophysics Data System (ADS)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  3. Current land cover in the tropics and its potential for sequestering carbon

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Unruh, J. D.; Lefebvre, P. A.

    1993-06-01

    Emissions of carbon dioxide and other greenhouse gases from human activity are increasing the concentrations of these gases in the atmosphere. The Earth is expected to warm as a result, with consequences that are potentially highly disruptive to human societies. Reductions in the use of fossil fuels and in rates of deforestation worldwide will reduce emissions of CO2, but atmospheric concentrations will continue to increase unless emissions are reduced by more than 60% (about 4.5 billion tons of carbon annually). Reforestation seems to offer one of the few means for reducing the atmospheric concentration of CO2 over periods as short as human generations. We report here an approach for evaluating the potential for reforestation to help stabilize or even reduce the concentration of CO2 in the atmosphere. Reforestation is defined broadly to include tree plantations, natural regrowth of secondary forests, and the practice of agroforestry. Our premise is that human use of the land has generally reduced woody biomass and that such lands have a potential for reaccumulating carbon if appropriately managed. We used published ground studies together with global vegetation index data from the NOAA 7 satellite to estimate current land cover in tropical regions. Then, superimposing this map of current land cover over maps depicting the distribution of vegetation cover prior to human disturbance, we obtained an estimate of about 3200 X 106 ha in the tropics (almost 60% of the total land area considered) where woody biomass had been decreased, and where carbon might again be sequestered. We calculated the amount of carbon that could be withdrawn from the atmosphere and stored in woody biomass if several management options were implemented. Biomass accumulations were determined from forestry statistics. Application of the data on biomass to the areas suitable for accumulation of carbon yielded an estimate of potential accumulation of 160-170 Pg carbon, an amount equivalent to the

  4. Land use mapping and change detection using ERTS imagery in Montgomery County, Alabama

    NASA Technical Reports Server (NTRS)

    Wilms, R. P.

    1973-01-01

    The feasibility of using remotely sensed data from ERTS-1 for mapping land use and detecting land use change was investigated. Land use information was gathered from 1964 air photo mosaics and from 1972 ERTS data. The 1964 data provided the basis for comparison with ERTS-1 imagery. From this comparison, urban sprawl was quite evident for the city of Montgomery. A significant trend from forestland to agricultural was also discovered. The development of main traffic arteries between 1964 and 1972 was a vital factor in the development of some of the urban centers. Even though certain problems in interpreting and correlating land use data from ERTS imagery were encountered, it has been demonstrated that remotely sensed data from ERTS is useful for inventorying land use and detecting land use change.

  5. Targeting land-use change for nitratenitrogen load reductions in an agricultural watershed

    USGS Publications Warehouse

    Jha, M.K.; Schilling, K.E.; Gassman, Philip W.; Wolter, C.F.

    2010-01-01

    The research was conducted as part of the USDA's Conservation Effects Assessment Project. The objective of the project was to evaluate the environmental effects of land-use changes, with a focus on understanding how the spatial distribution throughout a watershed influences their effectiveness.The Soil and Water AssessmentTool (SWAT) water quality model was applied to the Squaw Creek watershed, which covers 4,730 ha (11,683 ac) of prime agriculture land in southern Iowa. The model was calibrated (2000 to 2004) and validated (1996 to 1999) for overall watershed hydrology and for streamflow and nitrate loadings at the watershed outlet on an annual and monthly basis. Four scenarios for land-use change were evaluated including one scenario consistent with recent land-use changes and three scenarios focused on land-use change on highly erodible land areas, upper basin areas, and floodplain areas. Results for the Squaw Creek watershed suggested that nitrate losses were sensitive to land-use change. If land-use patterns were restored to 1990 conditions, nitrate loads may be reduced 7% to 47% in the watershed and subbasins, whereas converting row crops to grass in highly erodible land, upper basin, and floodplain areas would reduce nitrate loads by 47%, 16%, and 8%, respectively. These SWAT model simulations can provide guidance on how to begin targeting land-use change for nitrate load reductions in agricultural watersheds.

  6. Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Lopulisa, C.; Imran, A. M.; Baja, S.

    2018-05-01

    Intensive cropping in the tropical region always becomes one of important driving forces of soil degradation. The primary aim of this study is to analyze the states and the dynamics of soil physicochemical properties to evaluate soil degradation in the tropical region a high rainfall on agricultural areas in South Sulawesi. A number of soil characteristics were analyzed for physical and chemical properties, and clay minerals with X-ray diffractometer. The degree of soil degradation is determined using Wischmeier and Smith equation. This study reveals that mean annual precipitation in 1979-2016 ranged from 1853.15 to 2981.30 mm/year. For land used for paddy field, palm oil, cacao and coffee plantation, the texture dominated with silt loam-clay loam, cation exchange capacity was 18.63-26.32 cmol+ kg-1, 0.98-2.91% of C-organic, 32-55% of base saturation, 0.1-3.5 cm h-1 of permeability, soil clay minerals were montmorillonite-kaolinite-halloysite, and the index erodibility was 0.3-0.5. Land used for mixed plants and shrubs, the texture dominated with silt loam-sandy clay loam, cation exchange capacity was 18.63-27.12 cmol+ kg-1, 1.09-2.89% of C-organic, 32-55% of base saturation, 0.2-4.9 cm/h of permeability, soil clay minerals were kaolinite-halloysite, and index erodibility was 0.1-0.3. Land use for cultivated in the high intensity of rainfall has changed the physicochemical properties of soils, but cultivated in monoculture has at some degree increased soil erodibility.

  7. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    USGS Publications Warehouse

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land

  8. Environmental Controls on Multi-Scale Soil Nutrient Variability in the Tropics: the Importance of Land-Cover Change

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.

    2003-12-01

    The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as

  9. Weighing the relative potential impacts of climate change and land-use change on an endangered bird

    EPA Science Inventory

    Climate change and land-use change are projected to be two of the greatest drivers of biodiversity loss over the coming century. Land-use change, particularly the conversion of more natural lands to agriculture or residential or commercial development has resulted in extensive h...

  10. Exploring the Interactions between Land Use, Climate Change and Carbon Cycle using Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ray, R. L.; Fares, A.; He, Y.; Awal, R.; Risch, E.

    2017-12-01

    Most climate change impacts are linked to terrestrial vegetation productivity, carbon stocks and land use change. Changes in land use and climate drive the dynamics of terrestrial carbon cycle. These carbon cycle dynamics operate at different spatial and temporal scales. Quantification of the spatial and temporal variability of carbon flux has been challenging because land-atmosphere-carbon exchange is influenced by many factors, including but not limited to, land use change and climate change and variability. The study of terrestrial carbon cycle, mainly gross primary product (GPP), net ecosystem exchange (NEE), soil organic carbon (SOC) and ecosystem respiration (Re) and their interactions with land use and climate change, are critical to understanding the terrestrial ecosystem. The main objective of this study was to examine the interactions among land use, climate change and terrestrial carbon cycling in the state of Texas using satellite measurements. We studied GPP, NEE, Re and SOC distributions for five selected major land covers and all ten climate zones in Texas using Soil Moisture Active Passive (SMAP) carbon products. SMAP Carbon products (Res=9 km) were compared with observed CO2 flux data measured at EC flux site on Prairie View A&M University Research Farm. Results showed the same land cover in different climate zones has significantly different carbon sequestration potentials. For example, cropland of the humid climate zone has higher (-228 g C/m2) carbon sequestration potentials than the semiarid climate zone (-36 g C/m2). Also, shrub land in the humid zone and in the semiarid zone showed high (-120 g C/m2) and low (-36 g C/m2) potentials of carbon sequestration, respectively, in the state. Overall, the analyses indicate CO2 storage and exchange respond differently to various land covers, and environments due to differences in water availability, root distribution and soil properties.

  11. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    NASA Astrophysics Data System (ADS)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  12. Cost, drivers and action against land degradation through land use and cover change in Russia

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Strokov, Anton; Johnson, Timothy; Mirzabaev, Alisher

    2016-04-01

    The natural conditions and socio-economic factors determine the structure and the principles of land use in Russia. The increasing degradation of land resources in many parts of Russia manifested in numerous forms such as desertification, soil erosion, secondary salinization, water-logging and overgrazing. The major drivers of degradation include: climatic change, unsustainable agricultural practices, industrial and mining activities, expansion of crop production to fragile and marginal areas, inadequate maintenance of irrigation and drainage networks. Several methods for estimating Total Economic Value of land-use and land-cover change were used: 1) the cost of production per hectare (only provisional services were included); 2) the value of ecosystem services provided by Costanza et al, 1997; 3) coefficients of basic transfer and contingent approaches based on Tianhong et al, 2008 and Xie et al, 2003, who interviewed 200 ecologists to give a value of ecosystem services of different land types in China; 4) coefficients on a basic transfer and contingent approaches based on author's interview of 20 experts in Lomonosov Moscow State University. In general, the estimation of the prices for action and inaction in addressing the degradation and improvement of the land resources on a national scale (the Federal districts) with an emphasis on the period of economic reforms from 1990-2009 in Russia, where the area of arable lands decreased by 25% showed that the total land use/cover dynamic changes are about 130 mln ha, and the total annual costs of land degradation due to land-use change only, are about 189 bln USD in 2009 as compared with 2001, e.g. about 23.6 bln USD annually, or about 2% of Russia's Gross Domestic Product in 2010. The costs of action against land degradation are lower than the costs of inaction in Russia by 5-6 times over the 30 year horizon. Almost 92% of the costs of action are made up of the opportunity costs of action. The study was performed with

  13. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Zurqani, Hamdi A.; Post, Christopher J.; Mikhailova, Elena A.; Schlautman, Mark A.; Sharp, Julia L.

    2018-07-01

    Climate and land use/cover change are among the most pervasive issues facing the Southeastern United States, including the Savannah River basin in South Carolina and Georgia. Land use directly affects the natural environment across the Savannah River basin and it is important to analyze these impacts. The objectives of this study are to: 1) determine the classes and the distribution of land cover in the Savannah River basin; 2) identify the spatial and the temporal change of the land cover that occurs as a consequence of land use change in the area; and 3) discuss the potential effects of land use change in the Savannah River basin. The land cover maps were produced using random forest supervised classification at four time periods for a total of thirteen common land cover classes with overall accuracy assessments of 79.18% (1999), 79.41% (2005), 76.04% (2009), and 76.11% (2015). The major land use change observed was due to the deforestation and reforestation of forest areas during the entire study period. The change detection results using the normalized difference vegetation index (NDVI) indicated that the proportion areas of the deforestation were 5.93% (1999-2005), 4.63% (2005-2009), and 3.76% (2009-2015), while the proportion areas of the reforestation were 1.57% (1999-2005), 0.44% (2005-2009), and 1.53% (2009-2015). These results not only indicate land use change, but also demonstrate the advantage of utilizing Google Earth Engine and the public archive database in its platform to track and monitor this change over time.

  14. Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery

    PubMed Central

    Mtui, Devolent T.; Lepczyk, Christopher A.; Chen, Qi; Miura, Tomoaki; Cox, Linda J.

    2017-01-01

    Landscape change in and around protected areas is of concern worldwide given the potential impacts of such change on biodiversity. Given such impacts, we sought to understand the extent of changes in different land-cover types at two protected areas, Tarangire and Katavi National Parks in Tanzania, over the past 27 years. Using Maximum Likelihood classification procedures we derived eight land-cover classes from Landsat TM and ETM+ images, including: woody savannah, savannah, grassland, open and closed shrubland, swamp and water, and bare land. We determined the extent and direction of changes for all land-cover classes using a post-classification comparison technique. The results show declines in woody savannah and increases in barren land and swamps inside and outside Tarangire National Park and increases in woody savannah and savannah, and declines of shrubland and grassland inside and outside Katavi National Park. The decrease of woody savannah was partially due to its conversion into grassland and barren land, possibly caused by human encroachment by cultivation and livestock. Based upon these changes, we recommend management actions to prevent detrimental effects on wildlife populations. PMID:28957397

  15. No signs of soil organic matter accumulation and of changes in nutrient (N-P) limitation during tropical secondary forest succession in the wet tropics of Southwest Costa Rica

    NASA Astrophysics Data System (ADS)

    Wanek, Wolfgang; Oberdorfer, Sarah; Oberleitner, Florian; Hietz, Peter; Dullinger, Stefan; Zehetner, Franz

    2017-04-01

    Secondary forests comprise large tracts of the tropical land area, due to ongoing changes in land-use, including selective logging and agricultural land abandonment. Recent meta-analyses demonstrated that temperature and precipitation are key drivers of forest ecosystem recovery, particularly of soil organic carbon (SOC) build-up, where losses of SOC after deforestation and cultivation (and its recovery after abandonment) were largest in the wet tropical lowlands. However, wet lowland tropical chronosequences are strongly underrepresented (<10% of all data with MAP >4000 mm) and the large variance in this group may be explained by soil type and soil nutrients. Moreover strong effects of (and changes in) nutrient limitation, with an intermittent change from P to N limitation of plant production in young tropical secondary forests, have been identified in a few studies. For this study we established a tropical secondary forest chronosequence, identifying old pastures (>40 years), young to old secondary forests (1-55 years) and old-growth forests based on aerial photographs and satellite images dating from the 1960s to the 2010s in SW Costa Rica, a region where mean annual temperature is 27°C and mean annual precipitation between 5000 and 6000 mm. Soil samples were taken incrementally to 45 cm depth, sieved and soils and roots collected and analysed. Bulk density decreased and SOC content increased from pastures to secondary forests and old-growth forests, with the net effect on soil C stocks (between 63 and 92 Mg ha-1 (0-45 cm)) being neutral. SOC stocks were generally high, due to high fine root densities and associated high root inputs to mineral soils in pastures and forests. SOC showed relatively slow turnover times, based on root and soil delta13C values, with turnover times of 120 and 210 years in topsoils and subsoils, indicating strong stabilization of SOM due to mineral binding and high aggregate stability (>80%). At the same time we found no change in soil

  16. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.

    2017-12-01

    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  17. Are the impacts of land use on warming underestimated in climate policy?

    NASA Astrophysics Data System (ADS)

    Mahowald, Natalie M.; Ward, Daniel S.; Doney, Scott C.; Hess, Peter G.; Randerson, James T.

    2017-09-01

    While carbon dioxide emissions from energy use must be the primary target of climate change mitigation efforts, land use and land cover change (LULCC) also represent an important source of climate forcing. In this study we compute time series of global surface temperature change separately for LULCC and non-LULCC sources (primarily fossil fuel burning), and show that because of the extra warming associated with the co-emission of methane and nitrous oxide with LULCC carbon dioxide emissions, and a co-emission of cooling aerosols with non-LULCC emissions of carbon dioxide, the linear relationship between cumulative carbon dioxide emissions and temperature has a two-fold higher slope for LULCC than for non-LULCC activities. Moreover, projections used in the Intergovernmental Panel on Climate Change (IPCC) for the rate of tropical land conversion in the future are relatively low compared to contemporary observations, suggesting that the future projections of land conversion used in the IPCC may underestimate potential impacts of LULCC. By including a ‘business as usual’ future LULCC scenario for tropical deforestation, we find that even if all non-LULCC emissions are switched off in 2015, it is likely that 1.5 °C of warming relative to the preindustrial era will occur by 2100. Thus, policies to reduce LULCC emissions must remain a high priority if we are to achieve the low to medium temperature change targets proposed as a part of the Paris Agreement. Future studies using integrated assessment models and other climate simulations should include more realistic deforestation rates and the integration of policy that would reduce LULCC emissions.

  18. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change.

    PubMed Central

    Chambers, Jeffrey Q; Silver, Whendee L

    2004-01-01

    Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are

  19. Ecoregional differences in late-20th-century land-use and land-cover change in the U.S. northern great plains

    USGS Publications Warehouse

    Auch, Roger F.; Sayler, K. L.; Napton, D.E.; Taylor, Janis L.; Brooks, M.S.

    2011-01-01

    Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level 111 ecoregions located in the U.S. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey's Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/ shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes

  20. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  1. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  2. Does reading scenarios of future land use changes affect willingness to participate in land use planning?

    Treesearch

    Michelle L. Johnson; Kathleen P. Bell; Mario F. Teisl

    2016-01-01

    Scenarios of future outcomes often provide context for policy decisions and can be a form of science communication, translating complex and uncertain relationships into stories for a broader audience. We conducted a survey experiment (n = 270) to test the effects of reading land use change scenarios on willingness to participate in land use planning activities. In the...

  3. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics.

    PubMed

    Kauffman, J Boone; Hughes, R Flint; Heider, Chris

    2009-07-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate

  4. Land Use/land Cover Changes in Semi-Arid Mountain Landscape in Southern India: a Geoinformatics Based Markov Chain Approach

    NASA Astrophysics Data System (ADS)

    Rahaman, S. A.; Aruchamy, S.; Balasubramani, K.; Jegankumar, R.

    2017-05-01

    Nowadays land use/ land cover in mountain landscape is in critical condition; it leads to high risky and uncertain environments. These areas are facing multiple stresses including degradation of land resources; vagaries of climate and depletion of water resources continuously affect land use practices and livelihoods. To understand the Land use/Land cover (Lu/Lc) changes in a semi-arid mountain landscape, Kallar watershed of Bhavani basin, in southern India has been chosen. Most of the hilly part in the study area covers with forest, plantation, orchards and vegetables and which are highly affected by severe soil erosion, landslide, frequent rainfall failures and associated drought. The foothill regions are mainly utilized for agriculture practices; due to water scarcity and meagre income, the productive agriculture lands are converted into settlement plots and wasteland. Hence, land use/land cover change deduction; a stochastic processed based method is indispensable for future prediction. For identification of land use/land cover, and vegetation changes, Landsat TM, ETM (1995, 2005) and IRS P6- LISS IV (2015) images were used. Through CAMarkov chain analysis, Lu/Lc changes in past three decades (1995, 2005, and 2015) were identified and projected for (2020 and 2025); Normalized Difference Vegetation Index (NDVI) were used to find the vegetation changes. The result shows that, maximum changes occur in the plantation and slight changes found in forest cover in the hilly terrain. In foothill areas, agriculture lands were decreased while wastelands and settlement plots were increased. The outcome of the results helps to farmer and policy makers to draw optimal lands use planning and better management strategies for sustainable development of natural resources.

  5. Consequences of land use cover change and precipitation regimes on water quality in a tropical landscape: the case of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Piffer, P.; Reverberi Tambosi, L.; Uriarte, M.

    2017-12-01

    One of the most pressing challenges faced by modern societies is ensuring a sufficient supply of water considering the ever-growing conflict between environmental conservation and expansion of agricultural and urban frontiers worldwide. Land use cover change have marked effects on natural landscapes, putting key watershed ecosystem services in jeopardy. We investigated the consequences of land use cover change and precipitation regimes on water quality in the state of São Paulo, Brazil, a landscape that underwent major changes in past century. Water quality data collected bi-monthly between 2000 and 2014 from 229 water monitoring stations was analyzed together with 2011 land use cover maps. We focused on six water quality metrics (dissolved oxygen, total nitrogen, total phosphorus, turbidity, total dissolved solids and fecal coliforms) and used generalized linear mixed models to analyze the data. Models were built at two scales, the entire watershed and a 60 meters riparian buffer along the river network. Models accounted for 46-67% of the variance in water quality metrics and, apart from dissolved oxygen, which reflected land cover composition in riparian buffers, all metrics responded to land use at the watershed scale. Highly urbanized areas had low dissolved oxygen and high fecal coliforms, dissolved solids, phosphorus and nitrogen levels in streams. Pasture was associated with increases in turbidity, while sugarcane plantations significantly increased nitrogen concentrations. Watersheds with high forest cover had greater dissolved oxygen and lower turbidity. Silviculture plantations had little impact on water quality. Precipitation decreased dissolved oxygen and was associated with higher levels of turbidity, fecal coliforms and phosphorus. Results indicate that conversion of forest cover to other land uses had negative impacts on water quality in the study area, highlighting the need for landscape restoration to improve watersheds ecosystem services.

  6. A two-fold increase of carbon cycle sensitivity to tropical temperature variations.

    PubMed

    Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping

    2014-02-13

    Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.

  7. Tropical forests and global change: filling knowledge gaps.

    PubMed

    Zuidema, Pieter A; Baker, Patrick J; Groenendijk, Peter; Schippers, Peter; van der Sleen, Peter; Vlam, Mart; Sterck, Frank

    2013-08-01

    Tropical forests will experience major changes in environmental conditions this century. Understanding their responses to such changes is crucial to predicting global carbon cycling. Important knowledge gaps exist: the causes of recent changes in tropical forest dynamics remain unclear and the responses of entire tropical trees to environmental changes are poorly understood. In this Opinion article, we argue that filling these knowledge gaps requires a new research strategy, one that focuses on trees instead of leaves or communities, on long-term instead of short-term changes, and on understanding mechanisms instead of documenting changes. We propose the use of tree-ring analyses, stable-isotope analyses, manipulative field experiments, and well-validated simulation models to improve predictions of forest responses to global change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Land cover change mapping using MODIS time series to improve emissions inventories

    NASA Astrophysics Data System (ADS)

    López-Saldaña, Gerardo; Quaife, Tristan; Clifford, Debbie

    2016-04-01

    MELODIES is an FP7 funded project to develop innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. Understanding and quantifying land surface changes is necessary for estimating greenhouse gas and ammonia emissions, and for meeting air quality limits and targets. More sophisticated inventories methodologies for at least key emission source are needed due to policy-driven air quality directives. Quantifying land cover changes on an annual basis requires greater spatial and temporal disaggregation of input data. The main aim of this study is to develop a methodology for using Earth Observations (EO) to identify annual land surface changes that will improve emissions inventories from agriculture and land use/land use change and forestry (LULUCF) in the UK. First goal is to find the best sets of input features that describe accurately the surface dynamics. In order to identify annual and inter-annual land surface changes, a times series of surface reflectance was used to capture seasonal variability. Daily surface reflectance images from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 500m resolution were used to invert a Bidirectional Reflectance Distribution Function (BRDF) model to create the seamless time series. Given the limited number of cloud-free observations, a BRDF climatology was used to constrain the model inversion and where no high-scientific quality observations were available at all, as a gap filler. The Land Cover Map 2007 (LC2007) produced by the Centre for Ecology & Hydrology (CEH) was used for training and testing purposes. A land cover product was created for 2003 to 2015 and a bayesian approach was created to identified land cover changes. We will present the results of the time series development and the first exercises when creating the land cover and land cover changes products.

  9. Land use change monitoring in Maryland using a probabilistic sample and rapid photointerpretation

    Treesearch

    Tonya Lister; Andrew Lister; Eunice Alexander

    2014-01-01

    The U.S. state of Maryland needs to monitor land use change in order to address land management objectives. This paper presents a change detection method that, through automation and standard geographic information system (GIS) techniques, facilitates the estimation of landscape change via photointerpretation. Using the protocols developed, we show a net loss of forest...

  10. A global slowdown of tropical-cyclone translation speed.

    PubMed

    Kossin, James P

    2018-06-01

    As the Earth's atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation 1-8 . Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures 10-12 . The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949-2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the 'stall' of Hurricane Harvey 13-15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over

  11. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  12. Weighing the relative potential impacts of climate change and land-use change on an endangered bird.

    PubMed

    Bancroft, Betsy A; Lawler, Joshua J; Schumaker, Nathan H

    2016-07-01

    Climate change and land-use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land-use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual-based model to explore the effects of land-use change and climate change on a population of the endangered Red-cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land-use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate-driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ-GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land-use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor-quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side.

  13. The place character as land use change determinant in Deli Serdang

    NASA Astrophysics Data System (ADS)

    Lindarto, D.; Sirojuzilam; Badaruddin; Aulia, DN

    2018-03-01

    The Mebidangro concept of development (Medan, Binjai, Deli Serdang, Karo) in Sumatera Utara creating peri urban area in region hinterland Medan city especially in Tembung village, Percut Sei Tuan District. This peri urban area is a conjunction of several rural-urban activities that forming a friendly atmosphere. The dynamic of population structure shows occurrence the sprawl of land use change condition. In the site of the urban region showing the unique performance that built the place character. The aim of the study is to uncover the place character as one of land use change determinant factors. The study conducted with quantitative approach intended at obtaining variables which describing several factors forming land use change. Descriptive approach give an idea, justification, and fact-finding with correct interpretation. Data collected through a purposive sampling of 320 respondents who stay and built the building and land between 2010 till 2014. With overlay figure/ground technique, scoring analysis, descriptive quantitative and SEM (Structural Equational Models) gained a result that urban heritage (p=0,008) potentially as one of the main land use change driving factors besides accessibility (p=0,039), infrastructure (p=0,010), social-economic (p=0,038) in fact topographic factor (p=0,663) was inversely potentially. The implication of the findings is required intensive attention toward the form of place character (mosque, the quarter, district activity, peri urban edges city and railway) as determinant factors of land use change considering forming the identity of the rapid change in land use transformation.

  14. Research on Land Use Changes in Panjin City Basing on Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Ding, Hua; Li, Ru Ren; Shuang Sun, Li; Wang, Xin; Liu, Yu Mei

    2018-05-01

    Taking Landsat remote sensing image as the main data source, the research on land use changes in Panjin City in 2005 to 2015 is made with the support of remote sensing platform and GIS platform in this paper; the range of land use changes and change rate are analyzed through the classification of remote sensing image; the dynamic analysis on land changes is made with the help of transfer matrix of land use type; the quantitative calculation on all kinds of dynamic change features of land changes is made by utilizing mathematical model; and the analysis on driving factors of land changes of image is made at last. The research results show that, in recent ten years, the area of cultivated land in Panjin City decreased, the area of vegetation increased, and meanwhile the area of road increased drastically, the settlement place decreased than ever, and water area changed slightly.

  15. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun

    2018-02-01

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.

  16. Population, conservation, and land use change in Honduras

    Treesearch

    Max J. Pfeffer; John W. Schlelhas; Stephen D. DeGloria; Jorge Gomez

    2005-01-01

    This paper examines the role of population density on land use allocation and change. We are especially interested in the management of fallow areas that have come under increasing pressure given restrictions imposed by the creation of protected areas like national parks. It is argued that these restrictions to reduce deforestation create a relative scarcity of land,...

  17. Sustainable Land Management and Adult Education: Issues for the Stakeholders of Australia's Tropical Savannas.

    ERIC Educational Resources Information Center

    Benson, Rebecca

    1998-01-01

    Sustainable land management is an important consideration for stakeholders in Australia's tropical savannas. Land-management-education providers must deal with issues of access and the impact of values and perceptions on behavior. Adult educators must take on the role of negotiating attitudes and beliefs among stakeholders. (SK)

  18. Using Landsat Thematic Mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran

    NASA Astrophysics Data System (ADS)

    Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa

    2016-11-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and

  19. Collaborative development of land use change scenarios for analysing hydro-meteorological risk

    NASA Astrophysics Data System (ADS)

    Malek, Žiga; Glade, Thomas

    2015-04-01

    Simulating future land use changes remains a difficult task, due to uncontrollable and uncertain driving forces of change. Scenario development emerged as a tool to address these limitations. Scenarios offer the exploration of possible futures and environmental consequences, and enable the analysis of possible decisions. Therefore, there is increasing interest of both decision makers and researchers to apply scenarios when studying future land use changes and their consequences. The uncertainties related to generating land use change scenarios are among others defined by the accuracy of data, identification and quantification of driving forces, and the relation between expected future changes and the corresponding spatial pattern. To address the issue of data and intangible driving forces, several studies have applied collaborative, participatory techniques when developing future scenarios. The involvement of stakeholders can lead to incorporating a broader spectrum of professional values and experience. Moreover, stakeholders can help to provide missing data, improve detail, uncover mistakes, and offer alternatives. Thus, collaborative scenarios can be considered as more reliable and relevant. Collaborative scenario development has been applied to study a variety of issues in environmental sciences on different spatial and temporal scales. Still, these participatory approaches are rarely spatially explicit, making them difficult to apply when analysing changes to hydro-meteorological risk on a local scale. Spatial explicitness is needed to identify potentially critical areas of land use change, leading to locations where the risk might increase. In order to allocate collaboratively developed scenarios of land change, we combined participatory modeling with geosimulation in a multi-step scenario generation framework. We propose a framework able to develop scenarios that are plausible, can overcome data inaccessibility, address intangible and external driving forces

  20. Society's choices: land use changes, forest fragmentation, and conservation.

    Treesearch

    Jonathan Thompson

    2006-01-01

    Changing patterns of land use are at the heart of many environmental concerns regarding U.S. forest lands. Of all the human impacts to forests, development is one of the most significant because of the severity and permanency of the change. Concern about the effects of development on America’s forests has risen sharply since the 1990s, when the conversion of forest...

  1. Tropical climate and vegetation changes during Heinrich Event 1: comparing climate model output to pollen-based vegetation reconstructions with emphasis on the region around the tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Handiani, D.; Paul, A.; Dupont, L.

    2011-06-01

    Abrupt climate changes associated with Heinrich Event 1 (HE1) about 18 to 15 thousand years before present (ka BP) strongly affected climate and vegetation patterns not only in the Northern Hemisphere, but also in tropical regions in the South Atlantic Ocean. We used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era (PI), the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). The HE1-like simulation with a glacial climate background produced sea surface temperature patterns and enhanced interhemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. It allowed us to investigate the vegetation changes that result from a transition to a drier climate as predicted for northern tropical Africa due to a southward shift of the Intertropical Convergence Zone (ITCZ). We found that a cooling of the Northern Hemisphere caused a southward shift of those plant-functional types (PFTs) in Northern Tropical Africa that are indicative of an increased desertification, and a retreat of broadleaf forests in Western Africa and Northern South America. We used the PFTs generated by the model to calculate mega-biomes to allow for a direct comparison between paleodata and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well to the modern and LGM sites of the BIOME6000 (v.4.2) reconstruction, except that our present-day simulation predicted the dominance of grassland in Southern Europe and our LGM simulation simulated more forest cover in tropical and sub-tropical South America. The mega-biomes from the HE1 simulation with glacial background climate were in agreement with paleovegetation data from land and ocean proxies in West, Central, and Northern Tropical Africa as

  2. Tropical Rainfall Variability on Interannual-to-Interdecadal/Longer-Time Scales Derived from the GPCP Monthly Product

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.; Huffman, George J.; Curtis, Scott

    2006-01-01

    Global and large regional rainfall variations and possible long-term changes are examined using the 26-year (1979-2004) GPCP monthly dataset (Adler et al., 2003). Our emphasis is to discriminate among variations due to ENSO, volcanic events, and possible long-term climate changes in the tropics. Although the global linear change of precipitation in the data set is near zero during the time period, an increase in tropical rainfall is noted, with a weaker decrease over northern hemisphere middle latitudes. Focusing on the tropics (25degS-25degN), the data set indicates an upward trend (0.06 mm/day/decade) and a downward trend (-0.02 mm/day/decade) over tropical ocean and land, respectively. This corresponds to an about 4.9% increase (ocean) and 1.6% decrease (land) during the entire 26-year time period. Techniques are applied to isolate and quantify variations due to ENSO and two major volcanic eruptions (El Chichon, March 1982; Pinatubo, June 1991) in order to examine longer time-scale changes. The ENSO events generally do not impact the tropical total rainfall, but, of course, induce significant anomalies with opposite signs over tropical land and ocean. The impact of the two volcanic eruptions is estimated to be about a 5% reduction in tropical rainfall over both land and ocean. A modified data set (with ENSO and volcano effects removed) retains the same approximate linear change slopes, but with reduced variance, thereby increasing the confidence levels associated with the long-term rainfall changes in the tropics 2

  3. Land use/land cover change and their effects on landscape patterns in the Yanqi Basin, Xinjiang (China).

    PubMed

    Wang, Shuixian; Wang, Shengli

    2013-12-01

    Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.

  4. Analysis of North Atlantic tropical cyclone intensify change using data mining

    NASA Astrophysics Data System (ADS)

    Tang, Jiang

    Scheme (SHIPS) covering the period of 1982-2003 and the Apriori-based association rule mining algorithm were used to study the associations of underlying geophysical characteristics with the intensity change of tropical cyclones. The data have been stratified into 6 TC categories from tropical depression to category 4 hurricanes based on their strength. The result showed that the persistence of intensity change in the past and the strength of vertical shear in the environment are the most prevalent factors for all of the 6 TC categories. Hyper-edge searching had found 3 sets of parameters which showed strong intramural binds. Most of the parameters used in SHIPS model have a consistent "I-W" relation over different TC categories, indicating a consistent function of those parameters in TC development. However, the "I-W" relations of the relative momentum flux and the meridional motion change from tropical storm stage to hurricane stage, indicating a change in the role of those two parameters in TC development. Because rapid intensification (RI) is a major source of errors when predicting hurricane intensity, the association rule mining algorithm was performed on RI versus non-RI tropical cyclone cases using the same SHIPS dataset. The results had been compared with those from the traditional statistical analysis conducted by Kaplan and DeMaria (2003). The rapid intensification rule with 5 RI conditions proposed by the traditional statistical analysis was found by the association rule mining in this study as well. However, further analysis showed that the 5 RI conditions can be replaced by another association rule using fewer conditions but with a higher RI probability (RIP). This means that the rule with all 5 constraints found by Kaplan and DeMaria is not optimal, and the association rule mining technique can find a rule with fewer constraints yet fits more RI cases. The further analysis with the highest RIPs over different numbers of conditions has demonstrated that the

  5. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Treesearch

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  6. What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vittorio, Alan V.; Kyle, Page; Collins, William D.

    Understanding potential impacts of climate change is complicated by spatially mismatched land representations between gridded datasets and models, and land use models with larger regions defined by geopolitical and/or biophysical criteria. Here in this study, we quantify the sensitivity of Global Change Assessment Model (GCAM) outputs to the delineation of Agro-Ecological Zones (AEZs), which are normally based on historical (1961–1990) climate. We reconstruct GCAM's land regions using projected (2071–2100) climate, and find large differences in estimated future land use that correspond with differences in agricultural commodity prices and production volumes. Importantly, historically delineated AEZs experience spatially heterogeneous climate impacts overmore » time, and do not necessarily provide more homogenous initial land productivity than projected AEZs. Finally, we conclude that non-climatic criteria for land use region delineation are likely preferable for modeling land use change in the context of climate change, and that uncertainty associated with land delineation needs to be quantified.« less

  7. What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?

    DOE PAGES

    Di Vittorio, Alan V.; Kyle, Page; Collins, William D.

    2016-09-03

    Understanding potential impacts of climate change is complicated by spatially mismatched land representations between gridded datasets and models, and land use models with larger regions defined by geopolitical and/or biophysical criteria. Here in this study, we quantify the sensitivity of Global Change Assessment Model (GCAM) outputs to the delineation of Agro-Ecological Zones (AEZs), which are normally based on historical (1961–1990) climate. We reconstruct GCAM's land regions using projected (2071–2100) climate, and find large differences in estimated future land use that correspond with differences in agricultural commodity prices and production volumes. Importantly, historically delineated AEZs experience spatially heterogeneous climate impacts overmore » time, and do not necessarily provide more homogenous initial land productivity than projected AEZs. Finally, we conclude that non-climatic criteria for land use region delineation are likely preferable for modeling land use change in the context of climate change, and that uncertainty associated with land delineation needs to be quantified.« less

  8. A design for a sustained assessment of climate forcings and feedbacks on land use land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul

    2014-01-01

    Land use and land cover change (LULCC) significantly influences the climate system. Hence, to prepare the nation for future climate change and variability, a sustained assessment of LULCC and its climatic impacts needs to be undertaken. To address this objective, not only do we need to determine contemporary trends in land use and land cover that affect, or are affected by, weather and climate but also identify sectors and regions that are most affected by weather and climate variability. Moreover, it is critical that we recognize land cover and regions that are most vulnerable to climate change and how end-use practices are adapting to climate change. This paper identifies a series of steps that need to be undertaken to address these key items. In addition, national-scale institutional capabilities are identified and discussed. Included in the discussions are challenges and opportunities for collaboration among these institutions for a sustained assessment.

  9. Land use/land cover change geo-informative Tupu of Nujiang River in Northwest Yunnan Province

    NASA Astrophysics Data System (ADS)

    Wang, Jin-liang; Yang, Yue-yuan; Huang, You-ju; Fu, Lei; Rao, Qing

    2008-10-01

    Land Use/Land Cover Change (LUCC) is the core components of global change researches. It is significant for understanding regional ecological environment and LUCC mechanism of large scale to develop the study of LUCC of regional level. Nujiang River is the upper reaches of a big river in the South Asia--Salween River. Nujiang River is a typical mountainous river which is 3200 kilometer long and its basin area is 32.5 × 105 square kilometer. It locates in the core of "Three Parallel Rivers" World Natural Heritage. It is one of international biodiversity conservation center of the world, the ecological fragile zone and key ecological construction area, as well as a remote undeveloped area with high diversity ethnic. With the rapidly development of society and economy, the land use and land cover changed in a great degree. The function of ecosystem has being degraded in some areas which will not only impact on the ecological construction of local area, but also on the ecological safety of lower reaches -- Salween River. Therefore it is necessary to carry out the research of LUCC of Nujiang River. Based on the theory and methods of geo-information Tupu, the "Spatial Pattern" and "Change Process" of land use of middle reach in Nujiang River from 1974 to 2004 had been studied in quantification and integration, so as to provide a case study in local area and mesoscale in time. Supported by the remote sensing and GIS technology, LUCC Tupu of 1974-2004 had been built and the characteristics of LUCC have been analyzed quantificationally. The results showed that the built-up land (Included in this category are cities, towns, villages, strip developments along highways, transportation, power, and communications facilities, and areas such as those occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may, in some instances, be isolated from urban areas), agriculture land, shrubbery land, meadow & grassland, difficultly/unused land

  10. Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change

    NASA Astrophysics Data System (ADS)

    Mu, J. E.; McCarl, B.

    2011-12-01

    Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation

  11. Characterizing land use change in multidisciplinary landscape-level analyses.

    Treesearch

    Jeffrey D. Kline

    2003-01-01

    Economists increasingly face opportunities to collaborate with ecologists on landscape-level analyses of socioeconomic and ecological processes. This often calls for developing empirical models to project land use change as input into ecological models. Providing ecologists with the land use information they desire can present many challenges regarding data, modeling,...

  12. The role of land use changes in the distribution of shallow landslides.

    PubMed

    Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia

    2017-01-01

    The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in

  13. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  14. Climate change, allergy and asthma, and the role of tropical forests.

    PubMed

    D'Amato, Gennaro; Vitale, Carolina; Rosario, Nelson; Neto, Herberto Josè Chong; Chong-Silva, Deborah Carla; Mendonça, Francisco; Perini, Josè; Landgraf, Loraine; Solé, Dirceu; Sánchez-Borges, Mario; Ansotegui, Ignacio; D'Amato, Maria

    2017-01-01

    Tropical forests cover less than 10 per cent of all land area (1.8 × 107 km 2 ) and over half of the tropical-forest area (1.1 × 107 Km 2 ) is represented by humid tropical forests (also called tropical rainforests). The Amazon basin contains the largest rainforest on Earth, almost 5.8 million km 2 , and occupies about 40% of South America; more than 60% of the basin is located in Brazil and the rest in Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. Over the past decade the positive role of tropical rainforests in capturing large amounts of atmospheric carbon dioxide (CO 2 ) has been demonstrated. In response to the increase in atmospheric CO 2 concentration, tropical forests act as a global carbon sink. Accumulation of carbon in the tropical terrestrial biosphere strongly contributes to slowing the rate of increase of CO 2 into the atmosphere, thus resulting in the reduction of greenhouse gas effect. Tropical rainforests have been estimated to account for 32-36% of terrestrial Net Primary Productivity (NPP) that is the difference between total forest photosynthesis and plant respiration. Tropical rainforests have been acting as a strong carbon sink in this way for decades. However, over the past years, increased concentrations of greenhouse gases, and especially CO 2 , in the atmosphere have significantly affected the net carbon balance of tropical rainforests, and have warmed the planet substantially driving climate changes through more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods. The role of tropical forests in mitigating climate change is therefore critical. Over the past 30 years almost 600,000 km 2 have been deforested in Brazil alone due to the rapid development of Amazonia, this is the reason why currently the region is one of the 'hotspots' of global environmental change on the planet. Deforestation represents the second largest

  15. Assessing Conservation Values: Biodiversity and Endemicity in Tropical Land Use Systems

    PubMed Central

    Waltert, Matthias; Bobo, Kadiri Serge; Kaupa, Stefanie; Montoya, Marcela Leija; Nsanyi, Moses Sainge; Fermon, Heleen

    2011-01-01

    Despite an increasing amount of data on the effects of tropical land use on continental forest fauna and flora, it is debatable whether the choice of the indicator variables allows for a proper evaluation of the role of modified habitats in mitigating the global biodiversity crisis. While many single-taxon studies have highlighted that species with narrow geographic ranges especially suffer from habitat modification, there is no multi-taxa study available which consistently focuses on geographic range composition of the studied indicator groups. We compiled geographic range data for 180 bird, 119 butterfly, 204 tree and 219 understorey plant species sampled along a gradient of habitat modification ranging from near-primary forest through young secondary forest and agroforestry systems to annual crops in the southwestern lowlands of Cameroon. We found very similar patterns of declining species richness with increasing habitat modification between taxon-specific groups of similar geographic range categories. At the 8 km2 spatial level, estimated richness of endemic species declined in all groups by 21% (birds) to 91% (trees) from forests to annual crops, while estimated richness of widespread species increased by +101% (trees) to +275% (understorey plants), or remained stable (- 2%, butterflies). Even traditional agroforestry systems lost estimated endemic species richness by - 18% (birds) to - 90% (understorey plants). Endemic species richness of one taxon explained between 37% and 57% of others (positive correlations) and taxon-specific richness in widespread species explained up to 76% of variation in richness of endemic species (negative correlations). The key implication of this study is that the range size aspect is fundamental in assessments of conservation value via species inventory data from modified habitats. The study also suggests that even ecologically friendly agricultural matrices may be of much lower value for tropical conservation than indicated by

  16. Scenarios of the spatiotemporal variability of precipitation for West Africa on the continental to local scale including ghg forcing and land use change

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Born, K.; Brücher, T.; Fink, A.; Ludwig, P.; Paeth, H.; Kerschgens, M.

    2009-04-01

    In the present study the influence of SST variability and land use change on the spatiotemporal rainfall variability in West Africa is investigated. The research is embedded in multidisciplinary Project IMPETUS (An integrated approach to the efficient management of scarce water resources in West Africa), which develops various decision support systems for local stakeholders to mitigate the impacts of the ongoing and projected climate change. There is increasing evidence that in some regions, particularly in the tropics, land use changes may play an equally or even more important role in future climate change compared with enhanced greenhouse conditions. Particularly, tropical Africa appears to be a paradigm for the prominent link between land surface conditions and changes in the hydrological cycle and energy budget. Recently, complex scenarios of future land cover changes are elaborated and combined with radiative forcing according to the IPCC scenarios A1B and B1. Based on these more realistic scenarios, ensemble simulations with the regional climate model REMO are carried out, nested in global ECHAM5 simulations between 1960 and 2050 (IMPETUS model chain). The results reveal some remarkable changes in near-surface climate. In a broad band between the Guinean coast and 15°N as well as in the Congo basin annual precipitation is decreasing by 100 to 500 mm until the middle of the 21st century. At the same time, near-surface temperature increases by 2 to 5 K. The warming rate is much more pronounced in tropical Africa than in northern Africa and southern Europe, where greenhouse-gas concentrations are equally rising, and basically reflects the pattern of enhanced land degradation. The large-scale monsoon circulation and the occurrence of extreme events are affected as well. Differences between the A1B and B1 ensembles are small. By means of the high resolution models of the IMPETUS model chain (LM and FOOT3DK) the effect of interactions between the Earth's surface

  17. Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics

    NASA Astrophysics Data System (ADS)

    van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.

    2013-04-01

    In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.

  18. Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land

    NASA Astrophysics Data System (ADS)

    Hirsch, Annette L.; Guillod, Benoit P.; Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon

    2018-03-01

    The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land-use change (LUC). Land-based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI-Land: the half a degree additional warming, prognosis, and projected impacts—land-use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI-Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low-emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

  19. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  20. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE PAGES

    Li, Xia; Mitra, Chandana; Dong, Li; ...

    2017-02-02

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  1. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Mitra, Chandana; Dong, Li

    In order to explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Our results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under themore » urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. Our study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.« less

  2. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Mitra, Chandana; Dong, Li

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, butmore » expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region. (C) 2017 Elsevier Ltd. All rights reserved.« less

  3. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  4. Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios

    PubMed Central

    Reside, April E; VanDerWal, Jeremy; Kutt, Alex S

    2012-01-01

    Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of

  5. Protecting Future Biodiversity via Re-allocation of Future Land-use Change Patterns

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Jantz, S.; Brooks, T.; Leon, C.; Waldhoff, S.; Edmonds, J.

    2013-12-01

    Future scenarios, such as the Representative Concentration Pathways (RCPs), are typically designed to meet a radiative forcing target while also producing enough food and energy for a growing population. In the assessment process, impacts of these scenarios for other important variables such as biodiversity loss are considered 'downstream', after the future climate has been simulated within Earth System Models. However, the direct land-use impacts associated with future scenarios often have as much impact on these issues as the changing climate; in addition, many different patterns of land-use can result in the same radiative forcing target. In the case of biodiversity loss, one of the greatest contributors to species extinction is the loss of habitat such as primary forest, which is a direct result of land-use change decisions. By considering issues such as the preservation of future biodiversity 'up-front' in the scenario process, we can design a scenario that not only meets a radiative forcing target and feeds a growing planet, but also preserves as much habitat as possible through careful spatial allocation of future land-use change. Our Global Land-use Model (GLM) is used to provide 'harmonized' land-use data for the RCP process. GLM preserves as much information as possible from the Integrated Assessment Models (IAMs) while spatially allocating regional IAM land-use change data, ensuring a continuous transition from historical to future land-use states, and producing annual, gridded (0.5°×0.5°), fractional land-use states and all associated transitions. In this presentation we will present results from new GLM simulations in which land-use change decisions are constrained to meet the mutual goals of protecting important eco-regions (e.g. biodiversity hotspots) from future land-use change, providing enough food and fiber for a growing planet, and remaining consistent with the radiative forcing targets of the future scenarios. Trade-offs between agricultural

  6. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties.

    PubMed

    Spurgeon, David J; Keith, Aidan M; Schmidt, Olaf; Lammertsma, Dennis R; Faber, Jack H

    2013-12-01

    Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow.

  7. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  8. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    USGS Publications Warehouse

    Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; Peters, Debra P.C.; Quinton, J.N.; Riginos, C.; Shaver, P.L.; Steinaker, D.; Twomlow, S.

    2012-01-01

    Rapidly increasing demand for food, fiber, and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, including many marginal lands with low resistance and resilience to degradation. Sustaining the productivity of these lands requires careful land use planning and innovative management systems. Historically, this responsibility has been left to agronomists and others with expertise in crop production. In this article, we argue that the revolutionary land use changes necessary to support national and global food security potentially make rangeland science more relevant now than ever. Maintaining and increasing relevance will require a revolutionary change in range science from a discipline that focuses on a particular land use or land cover to one that addresses the challenge of managing all lands that, at one time, were considered to be marginal for crop production. We propose four strategies to increase the relevance of rangeland science to global land management: 1) expand our awareness and understanding of local to global economic, social, and technological trends in order to anticipate and identify drivers and patterns of conversion; 2) emphasize empirical studies and modeling that anticipate the biophysical (ecosystem services) and societal consequences of large-scale changes in land cover and use; 3) significantly increase communication and collaboration with the disciplines and sectors of society currently responsible for managing the new land uses; and 4) develop and adopt a dynamic and flexible resilience-based land classification system and data-supported conceptual models (e.g., state-and-transition models) that represent all lands, regardless of use and the consequences of land conversion to various uses instead of changes in state or condition that are

  9. Simulating tropical carbon stocks and fluxes in a changing world using an individual-based forest model.

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Huth, Andreas

    2014-05-01

    Large areas of tropical forests are disturbed due to climate change and human influence. Experts estimate that the last remaining rainforests could be destroyed in less than 100 years with strong consequences for both developing and industrial countries. Using a modelling approach we analyse how disturbances modify carbon stocks and carbon fluxes of African rainforests. In this study we use the process-based, individual-oriented forest model FORMIND. The main processes of this model are tree growth, mortality, regeneration and competition. The study regions are tropical rainforests in the Kilimanjaro region and Madagascar. Modelling above and below ground carbon stocks, we analyze the impact of disturbances and climate change on forest dynamics and forest carbon stocks. Droughts and fire events change the structure of tropical rainforests. Human influence like logging intensify this effect. With the presented results we could establish new allometric relationships between forest variables and above ground carbon stocks in tropical regions. Using remote sensing techniques, these relationships would offer the possibility for a global monitoring of the above ground carbon stored in the vegetation.

  10. Integrating global socio-economic influences into a regional land use change model for China

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  11. Potential population-level effects of land-use change and climate change

    EPA Science Inventory

    Climate change and land-use change are poised to be two fo the largest drivers of biological changeover the next century. We explored the potential effects of these two forces on a population of Red-cockaded Woodpeckers (Picoides borealis) at Fort Benning in Georgia, USA. We us...

  12. Assisted recovery of degraded tropical lands: plantation forests and ecosystem stability

    Treesearch

    John A. Parrotta

    1993-01-01

    Plantations of multipurpose tree species can play a critical role in restoring productivity, ecosystem stability, and biological diversity to degraded tropical lands. The present study, conducted at a coastal pasture site in Puerto Rico, compares 4.5-year-old plantation stands of Albizia lebbek (L.) Benth. plantation stands and adjacent control...

  13. Attributing land-use change carbon emissions to exported biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikku, Laura, E-mail: laura.saikku@helsinki.fi; Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi; Pingoud, Kim, E-mail: kim.pingoud@vtt.fi

    2012-11-15

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The mostmore » important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.« less

  14. Projected land-use change impacts on ecosystem services in the United States.

    PubMed

    Lawler, Joshua J; Lewis, David J; Nelson, Erik; Plantinga, Andrew J; Polasky, Stephen; Withey, John C; Helmers, David P; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C

    2014-05-20

    Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.

  15. Projected land-use change impacts on ecosystem services in the United States

    PubMed Central

    Lawler, Joshua J.; Lewis, David J.; Nelson, Erik; Plantinga, Andrew J.; Polasky, Stephen; Withey, John C.; Helmers, David P.; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C.

    2014-01-01

    Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision. PMID:24799685

  16. Adapting the Biome-BGC Model to New Zealand Pastoral Agriculture: Climate Change and Land-Use Change

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.

    2011-12-01

    We have adapted the Biome-BGC model to make climate change and land-use scenario estimates of New Zealand's pasture production in 2020 and 2050, with comparison to a 2005 baseline. We take an integrated modelling approach with the aim of enabling the model's use for policy assessments across broadly related issues such as climate change mitigation and adaptation, land-use change, and greenhouse gas projections. The Biome-BGC model is a biogeochemical model that simulates carbon, water, and nitrogen cycles in terrestrial ecosystems. We introduce two new 'ecosystems', sheep/beef and dairy pasture, within the existing structure of the Biome-BGC model and calibrate its ecophysiological parameters against pasture clipping data from diverse sites around New Zealand to form a baseline estimate of total New Zealand pasture production. Using downscaled AR4 climate projections, we construct mid- and upper-range climate change scenarios in 2020 and 2050. We produce land-use change scenarios in the same years by combining the Biome-BGC model with the Land Use in Rural New Zealand (LURNZ) model. The LURNZ model uses econometric approaches to predict future land-use change driven by changes in net profits driven by expected pricing, including the introduction of an emission trading system. We estimate the relative change in national pasture production from our 2005 baseline levels for both sheep/beef and dairy systems under each scenario.

  17. China's Land-Use Changes during the Past 300 Years: A Historical Perspective.

    PubMed

    Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C; Cui, Xuefeng

    2016-08-25

    Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s-1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability.

  18. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil.

    PubMed

    Persson, U Martin; Henders, Sabine; Cederberg, Christel

    2014-11-01

    The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land-use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land-use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land-use change carbon footprints in 2010 to be 66 tCO2 /t meat (carcass weight) for Brazilian beef, 0.89 tCO2 /t for Brazilian soybeans, and 7.5 tCO2 /t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land-use change. It is argued that with an increasing commercialization and globalization of the drivers of land-use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land-use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible. © 2014 John Wiley & Sons Ltd.

  19. Land-use change, deforestation, and peasant farm systems: A case study of Mexico's Southern Yucatan Peninsular Region

    NASA Astrophysics Data System (ADS)

    Vance, Colin James

    This dissertation develops spatially explicit econometric models by linking Thematic Mapper (TM) satellite imagery with household survey data to test behavioral propositions of semi-subsistence farmers in the Southern Yucatan Peninsular Region (SYPR) of Mexico. Covering 22,000 km2, this agricultural frontier contains one of the largest and oldest expanses of tropical forests in the Americas outside of Amazonia. Over the past 30 years, the SYPR has undergone significant land-use change largely owing to the construction of a highway through the region's center in 1967. These landscape dynamics are modeled by exploiting a spatial database linking a time series of TM imagery with socio-economic and geo-referenced land-use data collected from a random sample of 188 farm households. The dissertation moves beyond the existing literature on deforestation in three principal respects. Theoretically, the study develops a non-separable model of land-use that relaxes the assumption of profit maximization almost exclusively invoked in studies of the deforestation issue. The model is derived from a utility-maximizing framework that explicitly incorporates the interdependency of the household's production and consumption choices as these affect the allocation of resources. Methodologically, the study assembles a spatial database that couples satellite imagery with household-level socio-economic data. The field survey protocol recorded geo-referenced land-use data through the use of a geographic positioning system and the creation of sketch maps detailing the location of different uses observed within individual plots. Empirically, the study estimates spatially explicit econometric models of land-use change using switching regressions and duration analysis. A distinguishing feature of these models is that they link the dependent and independent variables at the level of the decision unit, the land manager, thereby capturing spatial and temporal heterogeneity that is otherwise

  20. A preliminary investigation of forest carbon changes associated with land-use change in northern New England

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2009-01-01

    Maine (ME), New Hampshire (NH), and Vermont (VT) are three of the four most heavily forested states in the United States. In these states, we examined how land-use change, at the Anderson Level I classification, affected regional forest carbon using the 30-m Multi-Resolution Land Characteristics Consortium 1992/2001 Retrofit Land Cover Change product coupled with...

  1. Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery

    PubMed Central

    Fan, Fenglei; Weng, Qihao; Wang, Yunpeng

    2007-01-01

    Land use and land cover change is a major issue in global environment change, and is especially significant in rapidly developing regions in the world. With its economic development, population growth, and urbanization, Guangzhou, a major metropolitan in South China, have experienced a dramatic land use and land cover (LULC) change over the past 30 years. Fast LULC change have resulted in degradation of its ecosystems and affected adversely the environment. It is urgently needed to monitor its LULC changes and to analyses the consequences of these changes in order to provide information for policymakers to support sustainable development. This study employed two Landsat TM/ETM+ images in the dry season to detect LULC patterns in 1998 and 2003, and to examine LULC changes during the period from 1998 to 2003. The type, rate, and pattern of the changes among five counties of Guangzhou Municipality were analyzed in details by post-classification method. LULC conversion matrix was produced for each county in order to explore and explain the urban expansion and cropland loss, the most significant types of LULC change. Land use conversion matrixes of five counties were discussed respectively in order to explore and explain the inherence of land use change. The results showed that urban expansion in these five counties kept an even rate of increase, while substantial amount of cropland vanished during the period. It is also noted that the conversion between cropland and orchard land was intensive. Forest land became the main source of new croplands.

  2. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson

    2018-03-01

    The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.

    It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.

  3. Dynamics of land - use change in urban area in West Jakarta

    NASA Astrophysics Data System (ADS)

    Pangaribowo, R. L.

    2018-01-01

    This aim to research is to know how land use change in West Jakarta period 2000 - 2010. The research method used is descriptive method with a quantitative approach. Data analysis was done by using the result of research instrument to find out the driving of land change and to know the change of was analyzed using GIS (Geographic Information System) in Arc View GIS 3.3 program and Quantitative Analysis Model Location Quotient (LQ) and Shift-Share Analysis (SSA) In this study. The research instrument used in the analysis was observation and documentation. Based on the analysis conducted, the results of research on land use change in West Jakarta in the period of 10 years from 2000 until 2010 is caused by several aspects that are related to each other, namely political, economic, demographic, and cultural aspects. The land use change occurred in the area which decreased by minus 367,79 hectares (2.87%), the open space area decreased by minus 103.36 hectares (0.8%), the built up area increased by 201.13 hectares (1.57%), and the settlement area was 27.14 hectares (0.21%).

  4. The impact of land-use change from forest to oil palm on soil greenhouse gas and volatile organic compound fluxes in Malaysian Borneo

    NASA Astrophysics Data System (ADS)

    Drewer, Julia; Leduning, Melissa; Kerdraon-Byrne, Deirdre; Sayer, Emma; Sentien, Justin; Skiba, Ute

    2017-04-01

    Monocultures of oil palm have expanded in SE Asia, and more recently also in Africa and South America, frequently replacing tropical forests. The limited data available clearly show that this conversion is associated with a potentially large greenhouse gas (GHG) burden. The physical process of land-use change, such is felling, drainage and ploughing can significantly increase emissions of N2O and soil CO2 respiration and decrease CH4 oxidation rates in the short term; and in the long-term regular nitrogen applications will impact in particular soil N2O fluxes. Little is known about volatile organic compound (VOC) fluxes from soil and litter in tropical forests and their speciation or about the links between GHG and VOC fluxes. VOC emissions are important as they directly and indirectly influence the concentrations and lifetimes of air pollutants and GHGs. For example, oxidation of VOCs generate tropospheric ozone which is also a potent GHG. Within ecosystems, monoterpenes can mediate plant-microbe and plant- interactions and protect photosynthesis during abiotic stress. However, little is known about monoterpene composition in the tropics - a widely recognized major global source of terpenoids to the atmosphere. These knowledge gaps make it difficult for developing countries in the tropics, especially SE Asia, to develop effective mitigation strategies. Current understanding of soil GHG fluxes associated with land-use change from forest to oil palm is not sufficient to provide reliable estimates of their carbon footprints and sustainability or advice on GHG mitigation strategies. To provide the necessary data we have installed a total of 56 flux chambers in logged forests, forest fragments and mature and young oil palm plantations as well as riparian zones within the SAFE landscape in SE Sabah (Stability of Altered Forest Ecosystems; http://www.safeproject.net). Soil respiration rates, N2O, CH4 and VOC fluxes together with soil moisture, pH, mineral and total C and

  5. Monitoring and modeling land-use change in the Pearl River Delta, China, using satellite imagery and socioeconomic data

    NASA Astrophysics Data System (ADS)

    Seto, Karen Ching-Yee

    Over the last two decades, rapid rates of economic growth in the People's Republic of China have converted large areas of natural ecosystems and agricultural lands to urban uses. The size and rate of these land-use changes may affect local and regional climate, biogeochemistry, and food supply. To assess these impacts, both the amount of land converted and its relation to socioeconomic drivers must be determined. This research combines satellite remote sensing, which is used to monitor land conversion, with socioeconomic data to model the economic and demographic drivers of land-use change in the Pearl River Delta of Southern China. This research modifies existing techniques and develops new methods to assess the type, amount, and timing of land-use change from annual Landsat Thematic Mapper (TM) images from 1988 to 1996. During this period, most of the land-use change is conversion of agricultural land to urban areas. Results indicate that urban areas, increased by over 300% between 1988 and 1996. Field assessments confirm these results and indicate that the land-use change map is highly accurate at 93.5%. To use these data as inputs to statistical models, the year of land conversion derived from satellite imagery must be unbiased. A new method that uses time series techniques identifies the date at which land-use changes occur from a sequential series of TM images. The accuracy and bias of the dates of change identified compare favorably to a more conventional remote sensing change detection technique and may have the additional advantages of reducing efforts required to assemble training data and to correct for atmospheric effects. Data on the quantity of land-use change and the timing of these changes are used in conjunction with socioeconomic data to estimate statistical models that identify and quantify the demographic and economic changes on two types of land conversion: urbanization of agricultural land and urbanization of natural vegetation. Results

  6. Ecohydrological consequences of vegetation interactions within the critical zone in the tropical Andes: multi-scale assessment of vegetation change consequences

    NASA Astrophysics Data System (ADS)

    Villegas, J. C.; Salazar, J. F.; Arias, P. A.; León, J. D.

    2017-12-01

    Land cover transformation is currently one of the most important challenges in tropical South America. These transformations occur both because of climate-related ecological perturbations, as well as in response to ongoing socio-economic processes. A fundamental difference between those two drivers is the spatial and temporal scale at which they operate. However, when considered in a larger context, both drivers affect the ability of ecosystems to provide fundamental services to society. In this work, we use a multi-scale approach to identify key-mechanisms through which land cover transformation significantly affects ecological, hydrological and ecoclimatological dynamics, potentially leading to loss of societally-critical regulation services. We propose a suite of examples spanning multiple spatial and temporal scales that illustrate the effects of land cover trnasformations in ecological, hydrological, biogeochemical and climatic functions in tropical South America. These examples highlight important global-change-effects management challenges, as well as the need to consider the feedbacks and interactions between multi-scale processes.

  7. [Effects of land use change on landscape pattern vulnerability in Yinchuan Basin, Northwest China].

    PubMed

    Ren, Zhi-yuan; Zhang, Han

    2016-01-01

    Landscape pattern vulnerability reflects the instability and sensitivity of ecological system to external disturbances and helps to understand the status and trend of ecological environment. This paper used landscape sensitivity index and landscape adaptability index to construct the landscape pattern vulnerability index of Yinchuan Basin, and got the distribution of the landscape pattern vulnerability in 2001 and 2013. Our study explored the effect of the land use degree composite index, the integrated land use dynamic degree, the importance index of land use change and various types of land transfer on landscape pattern vulnerability. Results showed that the land use degree composite index was mainly caused by the increase of the arable land, forest and the construction land. The higher proportion of the arable land or forest, the lower the vulnerability was, and the construction land had the opposite effect. With the increase of integrated land use dynamic degree, the construction land significantly increased the vulnerability, followed by grassland, and the forest significantly decreased the vulnerability, followed by the arable land. As the importance index of land use change increasing, the arable land could significantly decrease the vulnerability, followed by the forest, the grassland had a weaker trend with no obvious pattern, and the construction land significantly increased the vulnerability. When the arable land, forest and the grassland were the maintypes of land use transfer, the increasing proportion of the construction land increased the vulnerability. When the construction land was the main type of land use transfer, the grassland and forest improved the vulnerability and the arable land had the opposite effect. Changes in the number of land use types influenced the spatial structure of land use to a certain extent, which could offer a reference on using and developing the land resources scientifically. The ternary diagram could reflect the impact

  8. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data

    USGS Publications Warehouse

    Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian

    2003-01-01

    We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.

  9. Disturbance Hydrology in the Tropics: The Galápagos Islands as a Case Study

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Schmitt, S.; Percy, M.; Hu, J.; Singha, K.; Mirus, B. B.

    2015-12-01

    Tropical Latin America has shown the largest acceleration in land use change in recent decades. It is well established that changes in vegetation cover can lead to changes in water demand, evapotranspiration, and eventually soil textural characteristics. Given the projected changes in the intensity and distribution of rainfall in tropical regions in the coming decades, it is critical to characterize how changes in land use change across different climatic zones may fundamentally reshape water availability and storage, soil composition and associated hydraulic properties, and overall watershed hydrologic behavior. This study evaluates the role of anthropogenic disturbance on hydrological processes across different climatic zones in the tropics. We focus specifically on San Cristobal Island, the second most populated island of the iconic Galapagos archipelago, which is currently undergoing severe anthropogenic transformation. The island contains a spectrum of climates, ranging from very humid to arid, and has seen a dramatic increase in tourism and an increase in the permanent population of greater than 1000% in the last 40 years. Over 70% of the landscape of San Cristobal has been altered by land use change and invasive species. Our study identifies the complex interactions among hydrological, geological, economic, and social variables that tropical island systems will face in the years ahead, and the role and effects of a dynamic hydrologic cycle across multiple scales.

  10. Consideration of land-use and land-cover changes in the projection of climate extremes over North America by the end of the twenty-first century

    NASA Astrophysics Data System (ADS)

    Alexandru, Adelina

    2018-03-01

    Changes in the essential climate extremes indices and surface variables for the end of the twenty-first century are assessed in this study based on two transient climate change simulations, with and without land-use and land-cover changes (LULCC), but identical atmospheric forcing. The two simulations are performed with the 5th generation of the Canadian Regional Climate Model (CRCM5) driven by the Canadian Earth System Model for the (2006-2100)-Representative Concentration Pathway 4.5 (RCP4.5) scenario. For the simulation with LULCC, land-cover data sets are taken from the global change assessment model (GCAM) representing the RCP4.5 scenario for the period 2006-2100. LULCC in RCP4.5 scenario suggest significant reduction in cultivated land (e.g. Canadian Prairies and Mississippi basin) due to afforestation. CRCM5 climate projections imply a general warming by the end of the twenty-first century, especially over the northern regions in winter. CRCM5 projects more warm spell-days per year over most areas of the continent, and implicitly more summer days and tropical nights at the expense of cold-spell, frost and ice days whose number is projected to decrease by up to 40% by the end of the twenty-first century with respect to the baseline period 1971-2000. Most land areas north of 45°N, in all seasons, as well as the southeastern United States in summer, exhibit increases in mean precipitation under the RCP4.5 scenario. In contrast, central parts of the continent in summer and much of Mexico in all seasons show reduced precipitation. In addition, large areas of North America exhibit changes of 10 to 40% (depending on the season and geographical location) in the number of heavy precipitation days. Results also suggest that the biogeophysical effects of LULCC on climate, assessed through differences between the two simulations, lead to warmer regional climates, especially in winter. The investigation of processes leading to this response shows high sensitivity of the

  11. The biogeophysical climatic impacts of anthropogenic land use change during the Holocene

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Singarayer, J. S.; Valdes, P. J.; Kaplan, J. O.; Branch, N. P.

    2015-10-01

    The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1000 year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results indicate that in regions of early land disturbance such as Europe and S.E. Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. Large-scale precipitation features such as the Indian monsoon, the intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies

  12. Simulated response of water quality in public supply wells to land use change

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.; Burow, K. R.; Kauffman, L. J.; Eberts, S. M.; BöHlke, J. K.; Gurdak, J. J.

    2008-07-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.

  13. Climate change and future land use in the United States: an economic approach

    Treesearch

    David Haim; Ralph J. Alig; Andrew J. Plantinga; Brent Sohngen

    2011-01-01

    An econometric land-use model is used to project regional and national land-use changes in the United States under two IPCC emissions scenarios. The key driver of land-use change in the model is county-level measures of net returns to five major land uses. The net returns are modified for the IPCC scenarios according to assumed trends in population and income and...

  14. Climatology (communication arising): rural land-use change and climate.

    PubMed

    Trenberth, Kevin E

    2004-01-15

    Kalnay and Cai claim that urbanization and land-use change have a major effect on the climate in the United States. They used surface temperatures obtained from NCEP/NCAR 50-year reanalyses (NNR) and their difference compared with observed station surface temperatures as the basis for their conclusions, on the grounds that the NNR did not include these anthropogenic effects. However, we note that the NNR also overlooked other factors, such as known changes in clouds and in surface moisture, which are more likely to explain Kalnay and Cai's findings. Although urban heat-island effects are real in cities, direct estimates of the effects of rural land-use change indicate a cooling rather than a warming influence that is due to a greater reflection of sunlight.

  15. Climatology (communication arising): Rural land-use change and climate

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.

    2004-01-01

    Kalnay and Cai claim that urbanization and land-use change have a major effect on the climate in the United States. They used surface temperatures obtained from NCEP/NCAR 50-year reanalyses (NNR) and their difference compared with observed station surface temperatures as the basis for their conclusions, on the grounds that the NNR did not include these anthropogenic effects. However, we note that the NNR also overlooked other factors, such as known changes in clouds and in surface moisture, which are more likely to explain Kalnay and Cai's findings. Although urban heat-island effects are real in cities, direct estimates of the effects of rural land-use change indicate a cooling rather than a warming influence that is due to a greater reflection of sunlight.

  16. Effect of land-use change on soil organic carbon stocks in the Eastern Usambara Mountain (Tanzania)

    NASA Astrophysics Data System (ADS)

    Kirsten, Maximilian; Kaaya, Abel; Klinger, Thomas; Feger, Karl-Heinz

    2014-05-01

    A soil organic carbon (SOC) inventory, covering 10 sites with 5 different land-use systems (primary forest, secondary forest, tea plantation, home garden, and cropland) was conducted in the tropical monsoonal Eastern Usambara Mountains (EUM), NE Tanzania. At all sites the environmental factors such as climate and parent material, for soil formation (gneiss), as well as elevation and slope position are highly comparable. The evergreen submontane primary rain forest, which still exists in vast areas in the EUM and the well-known land-use history there provide nearly optimal conditions for the assessment of land-use change effects on soil properties, notably the SOC stocks. We collected horizon-wise samples from soil pit profiles. In addition, samples from fixed depth-intervals were taken from 8 augering points located systematically around each soil pit. The sampling scheme yielded a unique set of soil information (pedological, chemical, and physical) that favours a reliable assessment of SOC stocks and future analytical work on SOM quality and binding mechanisms. The investigated soils are characterized by high clay contents, which increase with depth. Soil pH varies between 3.5 and 5.4 over all land-use systems and horizons, higher pH values could be detected for the agricultural systems in the topsoil, the differences between agricultural and forest systems decrease in the subsoil. The potential cation exchange capacity is in most cases < 24 cmolc kg-1, furthermore the base saturation is always < 50 % in the subsoil. Thus, based on that analytical data all soils can be classified as Acrisols revealing the high comparability of the investigated sites. This is an excellent prerequisite for the 'false chronosequence' approach applied. Organic carbon (C) stocks in the soils from the investigated land-use systems cover a wide range between 17.1 and 24.2 kg m-2 (0-100 cm). Variability is even high in the subset of the 3 primary forests. Statistically significant

  17. Rubber and Land-Cover Land-Use Change in Mainland Southeast Asia

    NASA Astrophysics Data System (ADS)

    Fox, J. M.; Hurni, K.

    2017-12-01

    Over the past half century, the five countries of Mainland Southeast Asia (MSEA) - Cambodia, Laos, Myanmar, Thailand, and Vietnam - have witnessed major shifts from predominantly subsistence agrarian economies to increasingly commercialized agriculture. Major drivers of change include policy initiatives that fostered regional economic integration and promoted among other changes rapid expansion of boom-crop plantations. Among the many types of commercial boom crops promoted and grown in MSEA are numerous tree-based products such as rubber, coffee, tree species for pulp and paper (particularly eucalyptus and acacia), cashews, and fruits such as oranges, lychees, and longans. The project proposal hypothesized that most (but not all) tree crops replaced swidden cultivation fields and hence are not necessarily accompanied by deforestation. We used MODIS EVI and SWIR time-series from 2001-2014 to classify changes in tree cover across MSEA; a total of 6849 sample points were used to train the classifier (75%) and verification (25%). The classification consists of 24 classes and 17 classes represent tree crops. Project results suggest that 4.4 m ha of rubber have been planted since 2003; 50% of rubber is planted on former evergreen forest land, 18% on deciduous forest land, and 32% on low vegetation area (former crop lands, bushes, scrub). Tree crops occupy about 8% of the landscape (half of that is rubber). Due to the differences in their political and economic histories these countries display different LCLUCs. In northern Laos, smallholder rubber plantations dominate and shifting cultivation is common in the upland. In southern Laos, large-scale plantations of rubber, coffee, eucalyptus, and sugarcane are widespread. In Thailand, vast areas are covered by annual agriculture; fruit trees and rubber are the prevailing tree crops and are mostly planted by smallholders. In Cambodia, large-scale rubber plantations have expanded in recent years on forest lands; smallholder

  18. A Generalized Deforestation and Land-Use Change Scenario Generator for Use in Climate Modelling Studies

    PubMed Central

    Tompkins, Adrian Mark; Caporaso, Luca; Biondi, Riccardo; Bell, Jean Pierre

    2015-01-01

    A new deforestation and land-use change scenario generator model (FOREST-SAGE) is presented that is designed to interface directly with dynamic vegetation models used in latest generation earth system models. The model requires a regional-scale scenario for aggregate land-use change that may be time-dependent, provided by observational studies or by regional land-use change/economic models for future projections. These land-use categories of the observations/economic model are first translated into equivalent plant function types used by the particular vegetation model, and then FOREST-SAGE disaggregates the regional-scale scenario to the local grid-scale of the earth system model using a set of risk-rules based on factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. These rules presently focus on the conversion of forest to agriculture and pasture use, but could be generalized to other land use change conversions. After introducing the model, an evaluation of its performance is shown for the land-cover changes that have occurred in the Central African Basin from 2001–2010 using retrievals from MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the use of the local-scale risk factors enables FOREST-SAGE to improve land use change patterns considerably relative to benchmark scenarios used in the latest Coupled Model Intercomparison Project integrations. The uncertainty to the various risk factors is investigated using an ensemble of investigations, and it is shown that the model is sensitive to the population density, forest fragmentation and reforestation factors specified. PMID:26394392

  19. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria.

    PubMed

    Arowolo, Aisha Olushola; Deng, Xiangzheng; Olatunji, Olusanya Abiodun; Obayelu, Abiodun Elijah

    2018-09-15

    Increasing human activities worldwide have significantly altered the natural ecosystems and consequently, the services they provide. This is no exception in Nigeria, where land-use/land-cover has undergone a series of dramatic changes over the years mainly due to the ever-growing large population. However, estimating the impact of such changes on a wide range of ecosystem services is seldom attempted. Thus, on the basis of GlobeLand30 land-cover maps for 2000 and 2010 and using the value transfer methodology, we evaluated changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. The results showed that over the 10-year period, cultivated land sprawl over the forests and savannahs was predominant, and occurred mainly in the northern region of the country. During this period, we calculated an increase in the total ecosystem services value (ESV) in Nigeria from 665.93 billion (2007 US$) in 2000 to 667.44 billion (2007 US$) in 2010, 97.38% of which was contributed by cultivated land. The value of provisioning services increased while regulation, support, recreation and culture services decreased, amongst which, water regulation (-11.01%), gas regulation (-7.13%), cultural (-4.84%) and climate regulation (-4.3%) ecosystem functions are estimated as the most impacted. The increase in the total ESV in Nigeria associated with the huge increase in ecosystem services due to cultivated land expansion may make land-use changes (i.e. the ever-increasing agricultural expansion in Nigeria) appear economically profitable. However, continuous loss of services such as climate and water regulation that are largely provided by the natural ecosystems can result in huge economic losses that may exceed the apparent gains from cultivated land development. Therefore, we advocate that the conservation of the natural ecosystem should be a priority in future land-use management in Nigeria, a country highly vulnerable to climate change and incessantly

  20. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    NASA Astrophysics Data System (ADS)

    Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K.; Arndt, S. K.

    2011-09-01

    Savanna ecosystems are subject to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicated sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5-7 and 25-30 yr ago, respectively) in the Douglas Daly region of northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m-2 h-1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m-2 h-1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha-1 yr-1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha-1 yr-1) and young pasture (20.0 t CO2-C ha-1 yr-1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ~70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.

  1. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    NASA Astrophysics Data System (ADS)

    Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K.; Arndt, S. K.

    2012-01-01

    Savanna ecosystems are subjected to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicate sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5-7 and 25-30 yr ago, respectively) in the Douglas Daly region of Northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m-2 h-1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m-2 h-1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha-1 yr-1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha-1 yr-1) and young pasture (20.0 t CO2-C ha-1 yr-1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ∼ 70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.

  2. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960-2005.

    PubMed

    Dewan, Ashraf M; Yamaguchi, Yasushi

    2009-03-01

    This paper illustrates the result of land use/cover change in Dhaka Metropolitan of Bangladesh using topographic maps and multi-temporal remotely sensed data from 1960 to 2005. The Maximum likelihood supervised classification technique was used to extract information from satellite data, and post-classification change detection method was employed to detect and monitor land use/cover change. Derived land use/cover maps were further validated by using high resolution images such as SPOT, IRS, IKONOS and field data. The overall accuracy of land cover change maps, generated from Landsat and IRS-1D data, ranged from 85% to 90%. The analysis indicated that the urban expansion of Dhaka Metropolitan resulted in the considerable reduction of wetlands, cultivated land, vegetation and water bodies. The maps showed that between 1960 and 2005 built-up areas increased approximately 15,924 ha, while agricultural land decreased 7,614 ha, vegetation decreased 2,336 ha, wetland/lowland decreased 6,385 ha, and water bodies decreased about 864 ha. The amount of urban land increased from 11% (in 1960) to 344% in 2005. Similarly, the growth of landfill/bare soils category was about 256% in the same period. Much of the city's rapid growth in population has been accommodated in informal settlements with little attempt being made to limit the risk of environmental impairments. The study quantified the patterns of land use/cover change for the last 45 years for Dhaka Metropolitan that forms valuable resources for urban planners and decision makers to devise sustainable land use and environmental planning.

  3. Projecting optimal land-use and -management strategies under population growth and climate change using a coupled ecosystem & land use model framework

    NASA Astrophysics Data System (ADS)

    Rabin, Sam; Alexander, Peter; Anthoni, Peter; Henry, Roslyn; Huntingford, Chris; Pugh, Thomas; Rounsevell, Mark; Arneth, Almut

    2017-04-01

    A major question facing humanity is how well agricultural production systems will be able to feed the world in a future of rapid climate change, population growth, and demand shifts—all while minimizing our impact on the natural world. Global modeling has frequently been used to investigate certain aspects of this question, but in order to properly address the challenge, no one part of the human-environmental system can be assessed in isolation. It is especially critical that the effect on agricultural yields of changing temperature and precipitation regimes (including seasonal timing and frequency and intensity of extreme events), as well as rising atmospheric carbon dioxide levels, be taken into account when planning for future food security. Coupled modeling efforts, where changes in various parts of the Earth system are allowed to feed back onto one another, represent a powerful strategy in this regard. This presentation describes the structure and initial results of an effort to couple a biologically-representative vegetation and crop production simulator, LPJ-GUESS, with the climate emulator IMOGEN and the land-use model PLUMv2. With IMOGEN providing detailed future weather simulations, LPJ-GUESS simulates natural vegetation as well as cropland and pasture/rangeland; the simulated exchange of greenhouse gases between the land and atmosphere feeds back into IMOGEN's predictions. LPJ-GUESS also produces potential vegetation yields for irrigated vs. rainfed crops under three levels of nitrogen fertilizer addition. PLUMv2 combines these potential yields with endogenous demand and agricultural commodity price to calculate an optimal set of land use distributions and management strategies across the world for the next five years of simulation, based on socio-economic scenario data. These land uses are then fed back into LPJ-GUESS, and the cycle of climate, greenhouse gas emissions, crop yields, and land-use change continues. The globally gridded nature of the

  4. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa.

    PubMed

    Aleman, Julie C; Blarquez, Olivier; Staver, Carla A

    2016-09-01

    Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub-Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R(2)  = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century. © 2016 John Wiley & Sons Ltd.

  5. Climate simulation of the twenty-first century with interactive land-use changes

    NASA Astrophysics Data System (ADS)

    Voldoire, Aurore; Eickhout, Bas; Schaeffer, Michiel; Royer, Jean-François; Chauvin, Fabrice

    2007-08-01

    To include land-use dynamics in a general circulation model (GCM), the physical system has to be linked to a system that represents socio-economy. This issue is addressed by coupling an integrated assessment model, IMAGE2.2, to an ocean atmosphere GCM, CNRM-CM3. In the new system, IMAGE2.2 provides CNRM-CM3 with all the external forcings that are scenario dependent: greenhouse gas (GHGs) concentrations, sulfate aerosols charge and land cover. Conversely, the GCM gives IMAGE changes in mean temperature and precipitation. With this new system, we have run an adapted scenario of the IPCC SRES scenario family. We have chosen a single scenario with maximum land-use changes (SRES A2), to illustrate some important feedback issues. Even in this two-way coupled model set-up, land use in this scenario is mainly driven by demographic and agricultural practices, which overpowers a potential influence of climate feedbacks on land-use patterns. This suggests that for scenarios in which socio-economically driven land-use change is very large, land-use changes can be incorporated in GCM simulations as a one-way driving force, without taking into account climate feedbacks. The dynamics of natural vegetation is more closely linked to climate but the time-scale of changes is of the order of a century. Thus, the coupling between natural vegetation and climate could generate important feedbacks but these effects are relevant mainly for multi-centennial simulations.

  6. Effect of Technology Driven Agricultural Land Use Change on Regional Hydroclimate

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Sines, T. R.; Groisman, P. Y.; Gelder, B. K.

    2017-12-01

    During the mid-20th century motorized equipment replaced work animals in the central U.S. This led to a 95% decrease in farmland for producing oats, which had mostly been used as feed for horses. Much of this land was converted to more profitable crops such as soybeans and maize. The same period also saw a strong shift of the central U.S. precipitation intensity spectrum toward heavier events. Was this a coincidence, or is there a causal relationship? We investigate possible connections between this technology-driven land use change and regional hydroclimate by performing multi-decadal simulations over the central U.S. using the WRF-ARW regional climate model coupled with the Community Land Model (CLM 4.5). Cropland planted in maize, soybean, winter wheat, small grains (which includes oats and spring wheat), and other C3 and C4 crops were reconstructed on a decade by decade basis from 1940-2010 using county-level crop data. These crop distributions were used as land surface boundary conditions for two multi-decadal regional climate simulations, one with 1940s land use and another with modern (circa 2010) land use. Modern land use produced a shift in the simulated daily precipitation intensity spectrum toward heavy events, with higher frequencies of heavy precipitation amounts and lower frequencies of light amounts compared to 1940s land use. The results suggest that replacement of work animals by mechanized transport led to land use changes that produced about 10-30% of the observed trend toward more intense precipitation over the central United States. We therefore recommend that policy- and technology-driven changes in crop type be taken into account when projecting future climate and water resources.

  7. Operational monitoring of land-cover change using multitemporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation

  8. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    PubMed

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  9. Land use changes assessment using spatial data: Case study in Cong river basin - Thai Nguyen City - Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu

    Land use changes are being interested in most countries, especially in developing countries. Because land use changes always impacts on sustainable development not only in a region or a country but also in whole the world. Viet Nam is a developing country, in the last 10 years, land uses have rapidly changed in most provinces. Many of agriculture areas, forest areas have changed for various purposes as urban sprawl, establishing new industrial parks, public areas, mining and other land uses relate to human activities or economic function associated with a specific piece of land. Beside efficiencies of economic and society, then environment issues have been threatening serious pollution, are from land use changes. Remote sensing images application on studying land use changes, has been done in many countries around the world, and has brought high efficiencies. However, this application is still very new and limited in Viet Nam due to lacking of materials, tools, experts of remote sensing. This study used spatial data as Landsat TM images, SPOT5 images and land use planning maps to rapidly assess on happenings of land uses in the period 2000 -2010 in Cong river basin (Thai Nguyen City, Viet Nam), and to forecast the changes of land uses in the period 2010 - 2020. The results had a good accuracy and to be important references for authorities, policy makers in local land use.

  10. REGIONAL AND GLOBAL PATTERNS OF POPULATION, LAND USE AND LAND COVER CHANGE: AN OVERVIEW OF STRESSORS AND IMPACTS

    EPA Science Inventory

    This paper provides an overview of land use and land cover (LULC) change and regional to global patterns of that change and responses. Human activities now dominate the Earth's global ecosystem and LULC change is one of the most pervasive and influential activities. LULC change a...

  11. Future fire emissions associated with projected land use change in Indonesia

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  12. Carbon Flux to the Atmosphere from Land-Use Changes 1850-2005 (NDP-050)

    DOE Data Explorer

    Houghton, Robert [Woods Hole Research Center, Falmouth, MA (United States)

    2008-01-01

    The methods and data sources used to derive this time series of flux estimates are described in Houghton (1999, 2003), Houghton and Hackler (1995), and Houghton et al. (1983). In summary, this database provides estimates of regional and global net carbon fluxes, on a year-by-year basis from 1850 through 2005, resulting from changes in land use (such as harvesting of forest products and clearing for agriculture), taking into account not only the initial removal and oxidation of the carbon in the vegetation, but also subsequent regrowth and changes in soil carbon. The net flux of carbon to the atmosphere from changes in land use from 1850 to 2005 was modeled as a function of documented land-use change and changes in aboveground and belowground carbon following changes in land use.

  13. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  14. Understanding the Relationship between Social Change and Its Impacts: The Experience of Rural Land Use Change in South-Eastern Australia

    ERIC Educational Resources Information Center

    Williams, Kathryn J. H.; Schirmer, Jacki

    2012-01-01

    This study investigated socio-economic impacts of land use change, giving explicit attention to the relationships between independently observed land use change and associated socio-economic changes, perceived land use change and socio-economic change, attributed cause of change, and experienced impacts of change. Using a case study region in…

  15. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods

    USGS Publications Warehouse

    Xian, George; Homer, Collin G.; Fry, Joyce

    2009-01-01

    The recent release of the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001, which represents the nation's land cover status based on a nominal date of 2001, is widely used as a baseline for national land cover conditions. To enable the updating of this land cover information in a consistent and continuous manner, a prototype method was developed to update land cover by an individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season in 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, land cover classifications at the full NLCD resolution for 2006 areas of change were completed by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain several metropolitan areas including Seattle, Washington; San Diego, California; Sioux Falls, South Dakota; Jackson, Mississippi; and Manchester, New Hampshire. Results from the five study areas show that the vast majority of land cover change was captured and updated with overall land cover classification accuracies of 78.32%, 87.5%, 88.57%, 78.36%, and 83.33% for these areas. The method optimizes mapping efficiency and has the potential to provide users a flexible method to generate updated land cover at national and regional scales by using NLCD 2001 as the baseline.

  16. Land-Use and Land-Cover Change around Mobile Bay, Alabama from 1974-2008

    NASA Technical Reports Server (NTRS)

    Ellis, Jean; Spruce, Joseph P.; Swann, Roberta; Smooth, James C.

    2009-01-01

    This document summarizes the major findings of a Gulf of Mexico Application Pilot project led by NASA Stennis Space Center (SSC) in conjunction with a regional collaboration network of the Gulf of Mexico Alliance (GOMA). NASA researchers processed and analyzed multi-temporal Landsat data to assess land-use and land-cover (LULC) changes in the coastal counties of Mobile and Baldwin, AL between 1974 and 2008. Our goal was to create satellite-based LULC data products using methods that could be transferable to other coastal areas of concern within the Gulf of Mexico. The Mobile Bay National Estuary Program (MBNEP) is the primary end-user, however, several other state and local groups may benefit from the project s data products that will be available through NOAA-NCDDC s Regional Ecosystem Data Management program. Mobile Bay is a critical ecologic and economic region in the Gulf of Mexico and to the entire country. Mobile Bay was designated as an estuary of national significance in 1996. This estuary receives the fourth largest freshwater inflow in the United States. It provides vital nursery habitat for commercially and recreationally important fish species. It has exceptional aquatic and terrestrial bio-diversity, however, its estuary health is influenced by changing LULC patterns, such as urbanization. Mobile and Baldwin counties have experienced a population growth of 1.1% and 20.5% from 2000-2006. Urban expansion and population growth are likely to accelerate with the construction and operation of the ThyssenKrupp steel mill in the northeast portion of Mobile County. Land-use and land-cover change can negatively impact Gulf coast water quality and ecological resources. The conversion of forest to urban cover types impacts the carbon cycle and increases the freshwater and sediment in coastal waters. Increased freshwater runoff decreases salinity and increases the turbidity of coastal waters, thus impacting the growth potential of submerged aquatic vegetation (SAV

  17. Primary forests are irreplaceable for sustaining tropical biodiversity.

    PubMed

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-09-14

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.

  18. Estimation of gross land-use change and its uncertainty using a Bayesian data assimilation approach

    NASA Astrophysics Data System (ADS)

    Levy, Peter; van Oijen, Marcel; Buys, Gwen; Tomlinson, Sam

    2018-03-01

    We present a method for estimating land-use change using a Bayesian data assimilation approach. The approach provides a general framework for combining multiple disparate data sources with a simple model. This allows us to constrain estimates of gross land-use change with reliable national-scale census data, whilst retaining the detailed information available from several other sources. Eight different data sources, with three different data structures, were combined in our posterior estimate of land use and land-use change, and other data sources could easily be added in future. The tendency for observations to underestimate gross land-use change is accounted for by allowing for a skewed distribution in the likelihood function. The data structure produced has high temporal and spatial resolution, and is appropriate for dynamic process-based modelling. Uncertainty is propagated appropriately into the output, so we have a full posterior distribution of output and parameters. The data are available in the widely used netCDF file format from http://eidc.ceh.ac.uk/.

  19. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics.

    PubMed

    Singh, Ashutosh Kumar; Rai, Apurva; Pandey, Vivek; Singh, Nandita

    2017-05-01

    Glomalin related soil protein (GRSP) is a hydrophobic glycoprotein that is significant for soil organic carbon (SOC) persistence and sequestration, owing to its large contribution to SOC pool and long turnover time. However, the contribution of GRSP to dissolve OC (DOC) leach from soil is not yet comprehensively explored, though it could have implication in understanding SOC dynamics. We, therefore, aim to measure the contribution of GRSP to DOC, in a range of land uses and climatic seasons in the dry tropical ecosystem. Our results demonstrated that a significant proportion of GRSP (water soluble GRSP; WS-GRSP) leached with DOC (7.9-21.9 mg kg -1 ), which accounts for 0.2-0.23% of soils total GRSP (T-GRSP). Forest exhibited significantly higher WS-GRSP and DOC leaching than fallow and agriculture. WS-GRSP and DOC accumulations were higher in the dry season (summer and winter) than in rainy. The extent of seasonal variations was higher in forest than in other two land uses, indicating the role of vegetation and biological activity in soil dissolve organic matter (DOM) dynamics. The regression analysis among WS-GRSP, T-GRSP, DOC and SOC prove that the accumulations and leaching of GRSP and other soil OM (SOM) depend on similar factors. The ratio of WS-GRSP-C to DOC was higher in agriculture soil than in forest and fallow, likely a consequence of altered soil chemistry, and organic matter quantity and quality due to soil management practices. Multivariate analysis reflects a strong linkage among GRSP and SOC storage and leaching, soil nutrients (nitrogen and phosphorus) and other important soil properties (pH and bulk density), suggesting that improving GRSP and other SOM status is an urgent need for the both SOC sequestration and soil health in dry tropical agro-ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Planting Jatropha curcas on Constrained Land: Emission and Effects from Land Use Change

    PubMed Central

    Firdaus, M. S.; Husni, M. H. A.

    2012-01-01

    A study was carried out to assess carbon emission and carbon loss caused from land use change (LUC) of converting a wasteland into a Jatropha curcas plantation. The study was conducted for 12 months at a newly established Jatropha curcas plantation in Port Dickson, Malaysia. Assessments of soil carbon dioxide (CO2) flux, changes of soil total carbon and plant biomass loss and growth were made on the wasteland and on the established plantation to determine the effects of land preparation (i.e., tilling) and removal of the wasteland's native vegetation. Overall soil CO2 flux showed no significant difference (P < 0.05) between the two plots while no significant changes (P < 0.05) on soil total carbon at both plots were detected. It took 1.5 years for the growth of Jatropha curcas to recover the biomass carbon stock lost during land conversion. As far as the present study is concerned, converting wasteland to Jatropha curcas showed no adverse effects on the loss of carbon from soil and biomass and did not exacerbate soil respiration. PMID:22545018

  1. The Biogeophysical Climatic Impacts of Anthropogenic Land Use Change during the Holocene

    NASA Astrophysics Data System (ADS)

    Smith, Clare; Singarayer, Joy; Valdes, Paul; Kaplan, Jed; Branch, Nicholas

    2016-04-01

    The first agricultural societies were established around 10ka BP and had spread across much of Europe and southern Asia by 5.5ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011*) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1,000 year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results indicate that in regions of early land disturbance such as Europe and S.E. Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7ka BP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-3ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. Large-scale precipitation features such as the Indian monsoon, the intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies

  2. Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, Dale A.

    2003-01-01

    Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

  3. National climate assessment technical report on the impacts of climate and land use and land cover change

    Treesearch

    Thomas Loveland; Rezaul Mahmood; Toral Patel-Weynand; Krista Karstensen; Kari Beckendorf; Norman Bliss; Andrew Carleton

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature...

  4. High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem.

    PubMed

    Gavito, Mayra E; Pérez-Castillo, Daniel; González-Monterrubio, César F; Vieyra-Hernández, Teresa; Martínez-Trujillo, Miguel

    2008-12-01

    We conducted this study to explore limitations for the establishment of mycorrhizal associations in disturbed areas of the tropical dry ecosystem in the Chamela region of Jalisco, Mexico. Specifically, we: (1) assessed the diversity and composition of arbuscular mycorrhizal fungal (AMF) communities through spore morphospecies identification in three common land uses (primary forest, secondary forest, and pasture), (2) tested the inoculum potential of the AMF communities and the effect of water stress on the establishment of mycorrhizal associations in seedlings of various plant species, and (3) explored the importance of AMF community composition on early seedling development. Soil and root samples were taken from 15 random points in each of three plots established in two primary forests, two 26-year-old secondary forests, and two 26-year-old pastures. We expected that because of soil degradation and management, pastures would have the lowest and primary forests the highest AMF species richness. We found evidence for changes in AMF species composition due to land use and for higher morphospecies richness in primary forests than in secondary forests and pastures. We expected also that water stress limited plant and mycorrhizal development and that plants and AMF communities from secondary forests and pastures would be less affected by (better adapted to) water stress than those from the primary forest. We found that although all plant species showed biomass reductions under water stress, only some of the plant species had lower mycorrhizal development under water stress, and this was regardless of the AMF community inoculated. The third hypothesis was that plant species common to all land use types would respond similarly to all AMF communities, whereas plant species found mainly in one land use type would grow better when inoculated with the AMF community of that specific land use type. All plant species were however equally responsive to the three AMF communities

  5. Sensitivity of South American tropical climate to Last Glacial Maximum boundary conditions: focus on teleconnections with tropics and extratropics (Invited)

    NASA Astrophysics Data System (ADS)

    Khodri, M.; Kageyama, M.; Roche, D. M.

    2009-12-01

    Proxy data over tropical latitudes for the Last Glacial Maximum (LGM) has been interpreted as a southward shift of the Inter Tropical Convergence Zone (ITCZ) and so far linked to a mechanism analogous to the modern day “meridional-mode” in the Atlantic Ocean. Here we have explored alternative mechanisms, related to the direct impact of the LGM global changes in the dry static stability on tropical moist deep convection. We have used a coupled ocean-atmosphere model capable of capturing the thermodynamical structure of the atmosphere and the tropical component of the Hadley and Walker circulations. In each experiment, we have applied either all the LGM forcings, or the individual contributions of greenhouse gases (GHG) concentrations, ice sheet topography and/or albedo to explore the hydrological response over tropical latitudes with a focus on South America. The dominant forcing for the LGM tropical temperature and precipitation changes is found to be due to the reduced GHG, through the direct effect of reduced radiative heating (Clausius-Clapeyron relationship). The LGM GHG is also responsible for increased extra-tropical static stability which strengthens the Hadley Cell. Stronger subsidence over northern tropics then produces an amplification of the northern tropics drying initially due to the direct cooling effect. The land ice sheet is also able to promote the Hadley cell feedback mostly via the topographic effect on the extra-tropical dry static stability and on the position of the subtropical jets. Our results therefore suggest that the communication between the extratropics and the tropics is tighter during LGM and does not necessarily rely on the “meridional-mode” mechanism. The Hadley cell response is constrained by the requirement that diabatic heating in the tropics balances cooling in subtropics. We show that such extratropics-tropics dependence is stronger at the LGM because of the stronger perturbation of northern extra tropical thermal and

  6. Disease emergence from global climate and land use change.

    PubMed

    Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K

    2008-11-01

    Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.

  7. The influences of CO2 fertilization and land use change on the total aboveground biomass in Amazonian tropical forest

    NASA Astrophysics Data System (ADS)

    Castanho, A. D.; Zhang, K.; Coe, M. T.; Costa, M. H.; Moorcroft, P. R.

    2012-12-01

    Field observations from undisturbed old-growth Amazonian forest plots have recently reported on the temporal variation of many of the physical and chemical characteristics such as: physiological properties of leaves, above ground live biomass, above ground productivity, mortality and turnover rates. However, although this variation has been measured, it is still not well understood what mechanisms control the observed temporal variability. The observed changes in time are believed to be a result of a combination of increasing atmospheric CO2 concentration, climate variability, recovery from natural disturbance (drought, wind blow, flood), and increase of nutrient availability. The time and spatial variability of the fertilization effect of CO2 on above ground biomass will be explored in more detail in this work. A precise understanding of the CO2 effect on the vegetation is essential for an accurate prediction of the future response of the forest to climate change. To address this issue we simultaneously explore the effects of climate variability, historical CO2 and land-use change on total biomass and productivity using two different Dynamic Global Vegetation Models (DGVM). We use the Integrated Biosphere Simulator (IBIS) and the Ecosystem Demography Model 2.1 (ED2.1). Using land use changes database from 1700 - 2008 we reconstruct the total carbon balance in the Amazonian forest in space and time and present how the models predict the forest as carbon sink or source and explore why the model and field data diverge from each other. From 1970 to 2005 the Amazonian forest has been exposed to an increase of approximately 50 ppm in the atmospheric CO2 concentration. Preliminary analyses with the IBIS and ED2.1 dynamic vegetation model shows the CO2 fertilization effect could account for an increase in above ground biomass of 0.03 and 0.04 kg-C/m2/yr on average for the Amazon basin, respectively. The annual biomass change varies temporally and spatially from about 0

  8. The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality.

    PubMed

    Pyle, J A; Warwick, N J; Harris, N R P; Abas, Mohd Radzi; Archibald, A T; Ashfold, M J; Ashworth, K; Barkley, Michael P; Carver, G D; Chance, K; Dorsey, J R; Fowler, D; Gonzi, S; Gostlow, B; Hewitt, C N; Kurosu, T P; Lee, J D; Langford, S B; Mills, G; Moller, S; MacKenzie, A R; Manning, A J; Misztal, P; Nadzir, Mohd Shahrul Mohd; Nemitz, E; Newton, H M; O'Brien, L M; Ong, Simon; Oram, D; Palmer, P I; Peng, Leong Kok; Phang, Siew Moi; Pike, R; Pugh, T A M; Rahman, Noorsaadah Abdul; Robinson, A D; Sentian, J; Samah, Azizan Abu; Skiba, U; Ung, Huan Eng; Yong, Sei Eng; Young, P J

    2011-11-27

    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.

  9. The impact of local surface changes in Borneo on atmospheric composition at wider spatial scales: coastal processes, land-use change and air quality

    PubMed Central

    Pyle, J. A.; Warwick, N. J.; Harris, N. R. P.; Abas, Mohd Radzi; Archibald, A. T.; Ashfold, M. J.; Ashworth, K.; Barkley, Michael P.; Carver, G. D.; Chance, K.; Dorsey, J. R.; Fowler, D.; Gonzi, S.; Gostlow, B.; Hewitt, C. N.; Kurosu, T. P.; Lee, J. D.; Langford, S. B.; Mills, G.; Moller, S.; MacKenzie, A. R.; Manning, A. J.; Misztal, P.; Nadzir, Mohd Shahrul Mohd; Nemitz, E.; Newton, H. M.; O'Brien, L. M.; Ong, Simon; Oram, D.; Palmer, P. I.; Peng, Leong Kok; Phang, Siew Moi; Pike, R.; Pugh, T. A. M.; Rahman, Noorsaadah Abdul; Robinson, A. D.; Sentian, J.; Samah, Azizan Abu; Skiba, U.; Ung, Huan Eng; Yong, Sei Eng; Young, P. J.

    2011-01-01

    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NOx emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere. PMID:22006963

  10. Disentangling the driving mechanism of streamflow trends using runoff senstivity to land use and climate change.

    NASA Astrophysics Data System (ADS)

    Silverman, N. L.; Moore, J. N.; Maneta, M. P.

    2014-12-01

    The majority of watersheds within the United States have been disturbed by anthropogenic land use change. On top of this, there is strong evidence of (historic and projected) climatic changes that affect earth's hydrologic cycle. Streamflow measurements integrate the effects of land use and climate change on watershed hydrology. Therefore, when temporal trends are present, teasing out the cause is challenging due to the overlying climate and land use signals. In this study, we develop an analytical framework for distinguishing trends in streamflow that are driven by climate change from those that are driven by land use change. This framework is based on the theory that during wetter years runoff is affected more by changes in climate than during drier years. Whereas, the inverse is true for land use change. During wetter years runoff is affected less by land use change than during drier years. This difference can be seen in the quantile regression of the 75th and 25th percentile annual stream flows which represent wetter and drier years, respectively. This creates a defining characteristic in how these two forcing mechanisms manifest within the streamflow record. We empirically test this framework and show that the sensitivity of runoff to climate and land use change is uniquely dependent on the spatiotemporal water and energy limitations of a catchment. Finally we apply the framework using 1,566 watersheds across the contiguous United States. We use gages from the United States Geological Survey (USGS) National Water Information System (NWIS) network. The gages are selected because they have continuous and complete data from the years 1950 to 2009 and represent watersheds which are characterized by a range of disturbances. Our results show that the driving mechanisms of streamflow change across the U.S. are regionally coherent and correspond with land management activities and climate zones. This methodology provides a simple means of classifying watershed to

  11. Land use change and terrestrial carbon stocks in Senegal

    USGS Publications Warehouse

    Woomer, P.L.; Tieszen, L.L.; Tappan, G.; Toure, A.; Sall, M.

    2004-01-01

    Environmental degradation resulting from long-term drought and land use change has affected terrestrial carbon (C) stocks within Africa's Sahel. We estimated Senegal's terrestrial carbon stocks in 1965, 1985, and 2000 using an inventory procedure involving satellite images revealing historical land use change, and recent field measurements of standing carbon stocks occurring in soil and plants. Senegal was divided into eight ecological zones containing 11 land uses. In 2000, savannas, cultivated lands, forests, and steppes were the four largest land uses in Senegal, occupying 70, 22, 2.7, and 2.3 percent of Senegal's 199,823 km2. System C stocks ranged from 9 t C ha−1 in degraded savannas in the north, to 113 t C ha−1 in the remnant forests of the Senegal River Valley. This approach resulted in estimated total C stocks of 1019 and 727 MT C between 1965 and 2000, respectively, indicating a loss of 292 MT C over 35 years. The proportion of C residing in biomass decreased with time, from 55 percent in 1965 to 38 percent in 2000. Calculated terrestrial C flux for 1993 was −7.5 MT C year−1 and had declined by 17 percent over the previous 18 years. Most of the terrestrial C flux in 1993 was attributed to biomass C reduction. Human disturbance accounted for only 22 percent of biomass C loss in 1993, suggesting that the effects of long-term Sahelian drought continue to play an overriding role in ecosystem change. Some carbon mitigation strategies for Senegal were investigated, including potential C sequestration levels. Opportunities for C mitigation exist but are constrained by available knowledge and access to resources.

  12. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover

    PubMed Central

    Paul, Supantha; Ghosh, Subimal; Oglesby, Robert; Pathak, Amey; Chandrasekharan, Anita; Ramsankaran, RAAJ

    2016-01-01

    Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis data for the years 2000–2010 as a boundary condition and with LULC data from 1987 and 2005. The differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to crop land, though the magnitude of such conversion is uncertain because of the coarse resolution of satellite images and use of differential sources and methods for data extraction. We performed a sensitivity analysis to understand the impacts of large-scale deforestation in India on monsoon precipitation and found such impacts are similar to the observed changes in terms of spatial patterns and magnitude. We found that deforestation results in weakening of the ISMR because of the decrease in evapotranspiration and subsequent decrease in the recycled component of precipitation. PMID:27553384

  13. Assessment of economic and water quality impacts of land use change using a simple bioeconomic model.

    PubMed

    Bhattarai, Gandhi; Srivastava, Puneet; Marzen, Luke; Hite, Diane; Hatch, Upton

    2008-07-01

    The objective of this study is to assess the economic and water quality impact of land use change in a small watershed in the Wiregrass region of Alabama. The study compares changes in water quality and revenue from agricultural and timber production due to changes in land use between years 1992 and 2001. The study was completed in two stages. In the first stage, a biophysical model was used to estimate the effect of land use change on nitrogen and phosphorus runoff and sediment deposition in the main channel; in the second stage, farm enterprise budgeting tools were used to estimate the economic returns for the changes in land use condition. Both biophysical and economic results are discussed, and a case for complex optimization to develop a decision support system is presented.

  14. Land use/ land cover and ecosystem functions change in the grassland restoration program areas in China from 2000 to 2010

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fan, J.

    2015-12-01

    The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 g

  15. Holocene Biomass Burning, Environmental Change, and Human Land Use in the Southern Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Wahl, D.

    2013-12-01

    For several decades scholars have studied the dynamic relationship between the prehispanic Maya and their environment in order to test hypotheses that environmental change played a role in the abandonment of the Maya lowlands. Fire was inherent in Maya land use practices, arguably the primary tool used to alter the landscape and extract resources. Opening of forest for agriculture, building, and extraction/production of construction material necessitated burning. The extensive production of lime plaster for architectural and domestic use demanded harvesting and burning of vast quantities of green wood. While we understand the fundamental role of fire in Maya land use, there are very few records of prehispanic biomass burning from the Maya lowlands. Consequently, only a limited understanding exists of both natural fire regimes and patterns of anthropogenic burning in the tropical dry forests of Central America. Here we report two new well-dated, high-resolution records of biomass burning based on analysis of fossil charcoal recovered from lacustrine sediment cores, extending from the early Holocene to the present. The study sites, Lagos Paixban and Puerto Arturo are located in the southern Maya lowlands in modern northern Peten, Guatemala. Macroscopic charcoal data are presented along with previously published proxy data from the sites, and interpreted in the context of existing regional and local paleoenvironmental and archeological records. Results show that frequent fires occurred in the closed canopy forests of the region since at least the early mid-Holocene (~9000 BP), prior to occupation by sedentary agriculturalists. Following the arrival of sedentary agriculture at around 4600 BP, the system transitioned from climate controlled to anthropogenic control. During the Maya period, changes in fire regime are muted and do not appear to be driven by changes in climate conditions. Low charcoal influx and fire frequency in the Preclassic period suggest that land use

  16. Simulated response of water quality in public supply wells to land use change

    USGS Publications Warehouse

    McMahon, P.B.; Burow, K.R.; Kauffman, L.J.; Eberts, S.M.; Böhlke, J.K.; Gurdak, J.J.

    2008-01-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short‐circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.Citing Literature

  17. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  18. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is

  19. Effect of dry spells and soil cracking on runoff generation in a semiarid micro watershed under land use change

    NASA Astrophysics Data System (ADS)

    dos Santos, Julio Cesar Neves; de Andrade, Eunice Maia; Guerreiro, Maria João Simas; Medeiros, Pedro Henrique Augusto; de Queiroz Palácio, Helba Araújo; de Araújo Neto, José Ribeiro

    2016-10-01

    Soil and water resources effective management and planning in a river basin rely on understanding of runoff generation processes, yield, and their relations to rainfall. This study analyzes the effects of antecedent soil moisture in an expansive soil and the influence of dry spells on soil cracking, runoff generation and yield in a semiarid tropical region in Brazil subject to land use change. Data were collected from 2009 to 2013 in a 2.8 ha watershed, totaling 179 natural rainfall events. In the first year of study (2009), the watershed maintained a typical dry tropical forest cover (arboreal-shrub Caatinga cover). Before the beginning of the second year of study, gamba grass (Andropogon gayanus Kunth) was cultivated after slash and burn of native vegetation. Gamba grass land use was maintained for the rest of the monitoring period. The occurrence of dry spells and the formation of cracks in the Vertisol soil were the most important factors controlling flow generation. Dry spells promoted crack formation in the expansive soil, which acted as preferential flow paths leading to high initial abstractions: average conditions for runoff to be generated included soil moisture content above 20%, rainfall above 70 mm, I30max above 60 mm h-1 and five continuous dry days at the most. The change of vegetation cover in the second year of study did not alter significantly the overall conditions for runoff initiation, showing similar cumulative flow vs. rainfall response, implying that soil conditions, such as humidity and cracks, best explain the flow generation process on the semiarid micro-scale watershed with Vertisol soil.

  20. Simulating the hydrological impacts of inter-annual and seasonal variability in land use land cover change on streamflow

    NASA Astrophysics Data System (ADS)

    Taxak, A. K.; Ojha, C. S. P.

    2017-12-01

    Land use and land cover (LULC) changes within a watershed are recognised as an important factor affecting hydrological processes and water resources. LULC changes continuously not only in long term but also on the inter-annual and season level. Changes in LULC affects the interception, storage and moisture. A widely used approach in rainfall-runoff modelling through Land surface models (LSM)/ hydrological models is to keep LULC same throughout the model running period. In long term simulations where land use change take place during the run period, using a single LULC does not represent a true picture of ground conditions could result in stationarity of model responses. The present work presents a case study in which changes in LULC are incorporated by using multiple LULC layers. LULC for the study period were created using imageries from Landsat series, Sentinal, EO-1 ALI. Distributed, physically based Variable Infiltration Capacity (VIC) model was modified to allow inclusion of LULC as a time varying variable just like climate. The Narayani basin was simulated with LULC, leaf area index (LAI), albedo and climate data for 1992-2015. The results showed that the model simulation with varied parametrization approach has a large improvement over the conventional fixed parametrization approach in terms of long-term water balance. The proposed modelling approach could improve hydrological modelling for applications like land cover change studies, water budget studies etc.

  1. Land cover characterization and mapping of continental southeast Asia using multi-resolution satellite sensor data

    USGS Publications Warehouse

    Giri, Chandra; Defourny, Pierre; Shrestha, Surendra

    2003-01-01

    Land use/land cover change, particularly that of tropical deforestation and forest degradation, has been occurring at an unprecedented rate and scale in Southeast Asia. The rapid rate of economic development, demographics and poverty are believed to be the underlying forces responsible for the change. Accurate and up-to-date information to support the above statement is, however, not available. The available data, if any, are outdated and are not comparable for various technical reasons. Time series analysis of land cover change and the identification of the driving forces responsible for these changes are needed for the sustainable management of natural resources and also for projecting future land cover trajectories. We analysed the multi-temporal and multi-seasonal NOAA Advanced Very High Resolution Radiometer (AVHRR) satellite data of 1985/86 and 1992 to (1) prepare historical land cover maps and (2) to identify areas undergoing major land cover transformations (called ‘hot spots’). The identified ‘hot spot’ areas were investigated in detail using high-resolution satellite sensor data such as Landsat and SPOT supplemented by intensive field surveys. Shifting cultivation, intensification of agricultural activities and change of cropping patterns, and conversion of forest to agricultural land were found to be the principal reasons for land use/land cover change in the Oudomxay province of Lao PDR, the Mekong Delta of Vietnam and the Loei province of Thailand, respectively. Moreover, typical land use/land cover change patterns of the ‘hot spot’ areas were also examined. In addition, we developed an operational methodology for land use/land cover change analysis at the national level with the help of national remote sensing institutions.

  2. ALOS PALSAR Applications in the Tropics and Subtropics: Characterisation, Mapping and Detecting Change in Forests and Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Carreiras, Joao; Proisy, Christophe; Buniting, Peter

    2008-11-01

    Research undertaken as part of the Japanese Space Exploration Agency (JAXA) Principal Investigator (PI) and Kyoto and Carbon (K&C) programs has focused on the regional characterization (growth stage as a function of biomass and structure) and mapping of forests across northern Australia and mangroves (including wetlands) in selected tropical regions (northern Australia, Belize, French Guiana and Brazil) using Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) data, either singularly or in conjunction with other remote sensing (e.g., optical) data. Comparison against existing baseline datasets has allowed these data to be used for detecting change in these tropical and subtropical regions. Regional products (e.g., forest growth stage, mangrove/wetland extent and change) generated from the K&C dual polarimetric strip data are anticipated to benefit conservation of these ecosystems and allow better assessments of carbon stocks and changes in these as a function of natural and anthropogenic drivers, thereby supporting key international conventions.

  3. Land-use and land-cover change in three corn belt ecoregions: Similarities and differences

    USGS Publications Warehouse

    Auch, Roger F.; Laingen, Chris R.; Drummond, Mark A.; Sayler, Kristi L.; Reker, Ryan R.; Bouchard, Michelle A.; Danielson, Jeffrey J.

    2013-01-01

    Land use categorical changes, though not as numerous as one might suspect, vary by type within the three designated ecozones of the Corn Belt with the westernmost zone showing the most temporary change vis-a-vis the more permanent changes taking place in the eastern and central zones.

  4. Multiscale Spatial Assessment of Determinant Factors of Land Use Change: Study at Urban Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2017-12-01

    Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.

  5. The need for simultaneous evaluation of ecosystem services and land use change

    USGS Publications Warehouse

    Euliss, Ned H.; Smith, Loren M.; Liu, Shu-Guang; Feng, Min; Mushet, David M.; Auch, Roger F.; Loveland, Thomas R.

    2010-01-01

    We are living in a period of massive global change. This rate of change may be almost without precedent in geologic history (1). Even the most remote areas of the planet are influenced by human activities. Modern landscapes have been highly modified to accommodate a growing human population that the United Nations has forecast to peak at 9.1 billion by 2050. Over this past century, reliance on services from ecosystems has increased significantly and, over past decades, sustainability of our modern, intensively managed ecosystems has been a topic of serious international concern (1). Numerous papers addressing a particular land-use change effect on specific ecosystem services have recently been published. For example, there is currently great interest in increasing biofuel production to achieve energy inde- pendence goals and recent papers have independently focused attention on impacts of land-use change on single ecosystem services such as carbon sequestration (2) and many others (e.g., water availability, biodiversity, pollination). However, land-use change clearly affects myriad ecosystem services simultaneously. Hence, a broader perspective and context is needed to evaluate and understand interrelated affects on multiple ecosystem services, especially as we strive for the goal of sustainably managing global ecosystems. Similarly, land uses affect ecosystem services synergistically; single land-use evaluations may be misleading because the overall impact on an ecosystem is not evaluated. A more holistic approach would provide a means and framework to characterize how land-use change affects provisioning of goods and services of complete ecosystems.

  6. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?

    NASA Astrophysics Data System (ADS)

    Roberts, W. H. G.; Valdes, P. J.; Singarayer, J. S.

    2017-06-01

    Recent theoretical advances in the relationship between heat transport and the position of the Intertropical Convergence Zone (ITCZ) present an elegant framework through which to interpret past changes in tropical precipitation patterns. Using a very large ensemble of climate model simulations, we investigate whether it is possible to use this framework to interpret changes in the position of the ITCZ in response to glacial and interglacial boundary conditions. We find that the centroid of tropical precipitation, which represents the evolution of precipitation in the whole tropics, is best correlated with heat transport changes. We find that the response of the annual mean ITCZ to glacial and interglacial boundary conditions is quite different to the response of the climatological annual cycle of the ITCZ to the seasonal cycle of insolation. We show that the reason for this is that while the Hadley Circulation plays a dominant role in transporting heat over the seasonal cycle, in the annual mean response to forcing, the Hadley Circulation is not dominant. When we look regionally, rather than at the zonal mean, we find that local precipitation is poorly related either to the zonal mean ITCZ or to meridional heat transport. We demonstrate that precipitation is spatially highly variable even when the zonal mean ITCZ is in the same location. This suggests only limited use for heat transport in explaining local precipitation records; thus, there is limited scope for using heat transport changes to explain individual paleoprecipitation records.

  7. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  8. Trends and driving mechanism of land-use change in metropolitan areas of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Chen, Feng-gui; Zhang, Hong-ou; Wang, Juan; Wu, Qi-tao

    2008-10-01

    Taking Pearl River Delta for an example this study focuses on the trends and the driving mechanism of land-use changes in metropolises, in order to achieve the fundamental objectives of LUCC study increasing the awareness on dynamics of global land-use and land-cover changes, and improving the ability of forecasting LUCC. By analyzing the land-use change in Pearl River Delta from 1996 to 2006, it is found that the differences among internal space are notable. By establishing time-sequence-curve with SPSS software, it is shown that trends of land-use change are very clear. With factor analysis on land-use change, the study summarizes four factors of driving mechanism, including factors of economic development level, regional industrial structure, demographic and agricultural structure adjustment, which impact land change in Pearl River Delta to a different extent.

  9. Using the FORE-SCE model to project land-cover change in the southeastern United States

    USGS Publications Warehouse

    Sohl, Terry; Sayler, Kristi L.

    2008-01-01

    A wide variety of ecological applications require spatially explicit current and projected land-use and land-cover data. The southeastern United States has experienced massive land-use change since European settlement and continues to experience extremely high rates of forest cutting, significant urban development, and changes in agricultural land use. Forest-cover patterns and structure are projected to change dramatically in the southeastern United States in the next 50 years due to population growth and demand for wood products [Wear, D.N., Greis, J.G. (Eds.), 2002. Southern Forest Resource Assessment. General Technical Report SRS-53. U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, 635 pp]. Along with our climate partners, we are examining the potential effects of southeastern U.S. land-cover change on regional climate. The U.S. Geological Survey (USGS) Land Cover Trends project is analyzing contemporary (1973-2000) land-cover change in the conterminous United States, providing ecoregion-by-ecoregion estimates of the rates of change, descriptive transition matrices, and changes in landscape metrics. The FORecasting SCEnarios of future land-cover (FORE-SCE) model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land-cover change through 2050 for the southeastern United States. Prescriptions for future proportions of land cover for this application were provided by ecoregion-based extrapolations of historical change. Logistic regression was used to develop relationships between suspected drivers of land-cover change and land cover, resulting in the development of probability-of-occurrence surfaces for each unique land-cover type. Forest stand age was initially established with Forest Inventory and Analysis (FIA) data and tracked through model iterations. The spatial allocation procedure placed patches of new land cover on the landscape until the scenario

  10. Facilitating climate-change-induced range shifts across continental land-use barriers.

    PubMed

    Robillard, Cassandra M; Coristine, Laura E; Soares, Rosana N; Kerr, Jeremy T

    2015-12-01

    Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near-continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species' abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern-era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi-continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use. © 2015 Society for Conservation Biology.

  11. Sensitivity of MODIS evapotranspiration algorithm (MOD16) to the acuracy of meteorological data and land use and land cover parameterization

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson; Santini Adamatti, Daniela

    2017-04-01

    MODIS evapotranspiration (MOD16) is currently available with 1 km of spatial resolution over 109.03 Million km2 of vegetated land surface areas and this information is widely used to evaluate the linkages between hydrological, energy and carbon cycles. The algorithm is driven by meteorological reanalysis data and MODIS remotely-sensed data, which include land use and land cover classification (MCD12Q1), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) (MOD15A2) and albedo (MOD43b3). For calibration and parameterization, the algorithm uses a Biome Property Look-up Table (BPLUT) based on MCD12Q1 land cover classification. Several studies evaluated MOD16 accuracy using evapotranspiration measurements and water balance analysis, showing that this product can reproduce global evapotranspiration effectively under a variety climate condition, from local to wide-basin scale, with uncertainties up to 25%. In this study, we evaluated the sensitivity of MOD16 algorithm to land use and land cover parameterization and to meteorological data. Considering that MCD12Q1 has an accuracy between 70 and 85% at continental scale, we changed land cover parametererization to understand the influence of land use and land cover classification on MOD16 evapotranspiration estimations. Knowing that meteorological reanalysis data also have uncertainties (mostly related to the coarse spatial resolution), we compared MOD16 evapotranspiration driven by observed meteorological data to those driven by the reanalysis data. Our analysis were carried in South America, with evapotranspiration and meteorological measurements from the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) at 8 different sites, including tropical rainforest, tropical dry forest, selective logged forest, seasonal flooded forest and pasture/agriculture. Our results indicate that land use and land cover classification has a strong influence on MOD16 algorithm. The use of

  12. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    PubMed

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  13. Land surface phenological responses to land use and climate variation in a changing Central Asia

    NASA Astrophysics Data System (ADS)

    Kariyeva, Jahan

    During the last few decades Central Asia has experienced widespread changes in land cover and land use following the socio-economic and institutional transformations of the region catalyzed by the USSR collapse in 1991. The decade-long drought events and steadily increasing temperature regimes in the region came on top of these institutional transformations, affecting the long term and landscape scale vegetation responses. This research is based on the need to better understand the potential ecological and policy implications of climate variation and land use practices in the contexts of landscape-scale changes dynamics and variability patterns of land surface phenology responses in Central Asia. The land surface phenology responses -- the spatio-temporal dynamics of terrestrial vegetation derived from the remotely sensed data -- provide measurements linked to the timing of vegetation growth cycles (e.g., start of growing season) and total vegetation productivity over the growing season, which are used as a proxy for the assessment of effects of variations in environmental settings. Local and regional scale assessment of the before and after the USSR collapse vegetation response patterns in the natural and agricultural systems of the Central Asian drylands was conducted to characterize newly emerging links (since 1991) between coupled human and natural systems, e.g., socio-economic and policy drivers of altered land and water use and distribution patterns. Spatio-temporal patterns of bioclimatic responses were examined to determine how phenology is associated with temperature and precipitation in different land use types, including rainfed and irrigated agricultural types. Phenological models were developed to examine relationship between environmental drivers and effect of their altitudinal and latitudinal gradients on the broad-scale vegetation response patterns in non-cropland ecosystems of the desert, steppe, and mountainous regional landscapes of Central Asia

  14. Wetlands: Crop freezes and land-use change in Florida

    USGS Publications Warehouse

    Marshall, C.H.; Pielke, R.A.; Steyaert, L.T.

    2003-01-01

    South Florida experienced a significant change in land usage during the twentieth century, including the conversion of natural wetlands into agricultural land for the cultivation of winter vegetable, sugar cane and citrus crops. This movement of agriculture from more northerly areas was intended partly to escape the risk of damaging winter freezes. Here we present evidence from a case study using a coupled atmosphere and land-surface computer-modelling system that suggests that the draining of wetlands may have inadvertently increased the frequency and severity of agriculturally damaging freezes in the south of Florida.

  15. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    NASA Astrophysics Data System (ADS)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  16. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  17. Land-use and Land-cover Change from 1974 to 2008 around Mobile Bay

    NASA Technical Reports Server (NTRS)

    Ellis, Jean; Spruce, Joseph; Smoot, James; Hilbert, Kent; Swann, Roberta

    2008-01-01

    This project is a Gulf of Mexico Application Pilot in which NASA Stennis Space Center (SSC) is working within a regional collaboration network of the Gulf of Mexico Alliance. NASA researchers, with support from the NASA SSC Applied Science Program Steering Committee, employed multi-temporal Landsat data to assess land-use and land-cover (LULC) changes in the coastal counties of Mobile and Baldwin, AL, between 1974 and 2008. A multi-decadal time-series, coastal LULC product unique to NASA SSC was produced. The geographic extent and nature of change was quantified for the open water, barren, upland herbaceous, non-woody wetland, upland forest, woody wetland, and urban landscapes. The National Oceanic and Atmospheric Administration (NOAA) National Coastal Development Data Center (NCDDC) will assist with the transition of the final product to the operational end user, which primarily is the Mobile Bay National Estuary Program (MBNEP). We found substantial LULC change over the 34-year study period, much more than is evident when the change occurring in the last years. Between 1974 and 2008, the upland forest landscape lost almost 6% of the total acreage, while urban land cover increased by slightly more than 3%. With exception to open water, upland forest is the dominant landscape, accounting for about 25-30% of the total area.

  18. China’s Land-Use Changes during the Past 300 Years: A Historical Perspective

    PubMed Central

    Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C.; Cui, Xuefeng

    2016-01-01

    Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s–1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability. PMID:27571087

  19. Indirect land-use changes can overcome carbon savings from biofuels in Brazil.

    PubMed

    Lapola, David M; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A

    2010-02-23

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 10(9) liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km(2) by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil's biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil.

  20. Indirect land-use changes can overcome carbon savings from biofuels in Brazil

    PubMed Central

    Lapola, David M.; Schaldach, Ruediger; Alcamo, Joseph; Bondeau, Alberte; Koch, Jennifer; Koelking, Christina; Priess, Joerg A.

    2010-01-01

    The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 109 liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km2 by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil’s biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil. PMID:20142492

  1. Assessment of land use and land cover change using spatiotemporal analysis of landscape: case study in south of Tehran.

    PubMed

    Sabr, Abutaleb; Moeinaddini, Mazaher; Azarnivand, Hossein; Guinot, Benjamin

    2016-12-01

    In the recent years, dust storms originating from local abandoned agricultural lands have increasingly impacted Tehran and Karaj air quality. Designing and implementing mitigation plans are necessary to study land use/land cover change (LUCC). Land use/cover classification is particularly relevant in arid areas. This study aimed to map land use/cover by pixel- and object-based image classification methods, analyse landscape fragmentation and determine the effects of two different classification methods on landscape metrics. The same sets of ground data were used for both classification methods. Because accuracy of classification plays a key role in better understanding LUCC, both methods were employed. Land use/cover maps of the southwest area of Tehran city for the years 1985, 2000 and 2014 were obtained from Landsat digital images and classified into three categories: built-up, agricultural and barren lands. The results of our LUCC analysis showed that the most important changes in built-up agricultural land categories were observed in zone B (Shahriar, Robat Karim and Eslamshahr) between 1985 and 2014. The landscape metrics obtained for all categories pictured high landscape fragmentation in the study area. Despite no significant difference was evidenced between the two classification methods, the object-based classification led to an overall higher accuracy than using the pixel-based classification. In particular, the accuracy of the built-up category showed a marked increase. In addition, both methods showed similar trends in fragmentation metrics. One of the reasons is that the object-based classification is able to identify buildings, impervious surface and roads in dense urban areas, which produced more accurate maps.

  2. Land Use Change Increases Streamflow Across the Arc of Deforestation in Brazil

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Lopes, A. V.; Cohn, A.; Larsen, L. G.; Thompson, S. E.

    2018-04-01

    Nearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional- and time-averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin-scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow-reducing effects of climate change in this region.

  3. Multiscale mapping of species diversity under changed land use using imaging spectroscopy.

    PubMed

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-07-01

    Land use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57% and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land use, and the lowest values were calculated for the agricultural land use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land use. The suggested framework of this study succeeded in quantifying land use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land use, especially under increasing environmental changes. © 2017 by the Ecological Society of America.

  4. Corn ethanol production, food exports, and indirect land use change.

    PubMed

    Wallington, T J; Anderson, J E; Mueller, S A; Kolinski Morris, E; Winkler, S L; Ginder, J M; Nielsen, O J

    2012-06-05

    The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.

  5. Improving predictions of the effects of extreme events, land use, and climate change on the hydrology of watersheds in the Philippines

    NASA Astrophysics Data System (ADS)

    Benavidez, Rubianca; Jackson, Bethanna; Maxwell, Deborah; Paringit, Enrico

    2016-05-01

    Due to its location within the typhoon belt, the Philippines is vulnerable to tropical cyclones that can cause destructive floods. Climate change is likely to exacerbate these risks through increases in tropical cyclone frequency and intensity. To protect populations and infrastructure, disaster risk management in the Philippines focuses on real-time flood forecasting and structural measures such as dikes and retaining walls. Real-time flood forecasting in the Philippines mostly utilises two models from the Hydrologic Engineering Center (HEC): the Hydrologic Modeling System (HMS) for watershed modelling, and the River Analysis System (RAS) for inundation modelling. This research focuses on using non-structural measures for flood mitigation, such as changing land use management or watershed rehabilitation. This is being done by parameterising and applying the Land Utilisation and Capability Indicator (LUCI) model to the Cagayan de Oro watershed (1400 km2) in southern Philippines. The LUCI model is capable of identifying areas providing ecosystem services such as flood mitigation and agricultural productivity, and analysing trade-offs between services. It can also assess whether management interventions could enhance or degrade ecosystem services at fine spatial scales. The LUCI model was used to identify areas within the watershed that are providing flood mitigating services and areas that would benefit from management interventions. For the preliminary comparison, LUCI and HEC-HMS were run under the same scenario: baseline land use and the extreme rainfall event of Typhoon Bopha. The hydrographs from both models were then input to HEC-RAS to produce inundation maps. The novelty of this research is two-fold: (1) this type of ecosystem service modelling has not been carried out in the Cagayan de Oro watershed; and (2) this is the first application of the LUCI model in the Philippines. Since this research is still ongoing, the results presented in this paper are

  6. PRESENTATION ON--LAND-COVER CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    Monitoring the locations and distributions of land-cover changes is important for establishing linkages between policy decisions, regulatory actions and subsequent landuse activities. Past efforts incorporating two-date change detection using moderate resolution data (e.g., Lands...

  7. Study on temporal and spatial variations of urban land use based on land change data

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang

    2009-10-01

    With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.

  8. Using indigenous knowledge to link hyper-temporal land cover mapping with land use in the Venezuelan Amazon: "The Forest Pulse".

    PubMed

    Olivero, Jesús; Ferri, Francisco; Acevedo, Pelayo; Lobo, Jorge M; Fa, John E; Farfán, Miguel Á; Romero, David; Real, Raimundo

    2016-12-01

    Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing

  9. The Trajectories and Impacts of Land Use and Land Cover Change: A Global Synthesis

    NASA Astrophysics Data System (ADS)

    Mustard, J. F.; Fisher, T. R.; Prince, S. D.; Soja, A. J.; Elmore, A. J.

    2001-12-01

    We have summarized the trajectories of land cover and land use change (LCLUC) and the resulting impacts through a synthesis of results from studies encompassing a wide range of environments. While the specific changes and impacts are in some ways unique to each environment, we have nevertheless identified some general principles that seem to apply across all regions. The LCLUC trajectory of a particular landscape under influence by human actions begins with the transition from conditions dominated by natural vegetation to a frontier state. Land use activities in a frontier state are centered primarily around resource extraction and development of infrastructure such as roads or ports. Under the proper conditions (e.g. soils, climate), the frontier state gives way to an agricultural landscape by further conversion of natural vegetation to agriculture and management of cleared land for agriculture. The maximum extent of this conversion is a function of local biophysical and socio-economic factors. For example conversion of arid lands may be limited by water availability, access to capital for development of water resources and access to markets for the products. Given the appropriate conditions (e.g. economic and social policy, generation of wealth), LCLUC evolves as large settlements and industrialization develop in concert with high land prices and agricultural intensification. In some cases (e.g., New England, Appalachia), economic conditions (e.g., better land for agriculture elsewhere) may result in reversion of agriculture to natural vegetation. The last stage in LCLUC is conversion of agriculture to residential and suburban environments (e.g., Baltimore/Washington corridor). Examination of global land cover indicates that every stage is currently present, with areas like the Eastern United States and Western Europe as examples of regions having experienced all stages, while parts of the Amazon basin, Siberia, and Africa are moving through the frontier

  10. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    PubMed

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  11. Can Treeline Shift in Tropical Africa be Used As Proxy to Study Climate Change?

    NASA Astrophysics Data System (ADS)

    Jacob, M.; Frankl, A.; De Ridder, M.; Guyassa, E.; Beeckman, H.; Nyssen, J.

    2014-12-01

    The important ecosystem services of the vulnerable high altitude forests of the tropical African highlands are under increasing environmental and human pressure. The afro-alpine treeline forms an apparent and temperature-responsive vegetation boundary and is therefore potentially valuable as a proxy of climate change in the tropics. However, a review of the current literature about treeline dynamics in tropical Africa indicates that climate change did not cause rising treelines, due to high human pressure and growing human population densities. On average the treeline is depressed below its climatic limit by 400 ± 300 meter, but regional differences are high and there are still many uncertainties. A multidisciplinary study of treeline dynamics is conducted in the north Ethiopian highlands. The Erica arborea L. treeline is studied over a century, using satellite imagery, aerial photographs, repeat photography and dendroclimatology. Repeat photography is proven a unique tool for the identification of treeline dynamics on the long-term. Results in the Simen Mts. indicate a treeline rise of more than 100 meters since the early 20th century. In contrast, historical satellite and aerial imagery indicate that there has been strong deforestation since the last 30 years and a significant (p<0.05) but small rise of the treeline elevation of 11 ± 4 vertical meters in Lib Amba Mt. Dendroclimatological results indicate a weak but significant (p<0.05) correlation between tree ring width and interannual precipitation patterns. However, since treelines in the African tropical mountains are strongly disturbed by human and livestock pressure, they cannot directly be used as a proxy for climate change.

  12. Sixty-Seven Years of Land-Use Change in Southern Costa Rica.

    PubMed

    Zahawi, Rakan A; Duran, Guillermo; Kormann, Urs

    2015-01-01

    Habitat loss and fragmentation of forests are among the biggest threats to biodiversity and associated ecosystem services in tropical landscapes. We use the vicinity of the Las Cruces Biological Station in southern Costa Rica as a regional case study to document seven decades of land-use change in one of the most intensively studied sites in the Neotropics. Though the premontane wet forest was largely intact in 1947, a wave of immigration in 1952 initiated rapid changes over a short period. Overall forest cover was reduced during each time interval analyzed (1947-1960, 1960-1980, 1980-1997, 1997-2014), although the vast majority of forest loss (>90%) occurred during the first two time intervals (1947-1960, 1960-1980) with an annual deforestation rate of 2.14% and 3.86%, respectively. The rate dropped to <2% thereafter and has been offset by forest recovery in fallow areas more recently, but overall forest cover has continued to decline. Approximately 27.9% of the study area is forested currently. Concomitantly, the region shifted from a single contiguous forest to a series of progressively smaller forest fragments with each successive survey. A strong reduction in the amount of core habitat was paralleled by an increased proportion of edge habitat, due to the irregular shape of many forest fragments. Structural connectivity, however, remains high, with an expansive network of >100 km of linear strips of vegetation within a 3 km radius of the station, which may facilitate landscape-level movement for some species. Despite the extent of forest loss, a substantial number of regional landscape-level studies over the past two decades have demonstrated the persistence of many groups of organisms such as birds and mammals. Nonetheless, the continued decline in the quantity and quality of remaining habitat (~30% of remaining forest is secondary), as well as the threat of an extinction debt (or time lag in species loss), may result in the extirpation of additional species

  13. Sixty-Seven Years of Land-Use Change in Southern Costa Rica

    PubMed Central

    Zahawi, Rakan A.; Duran, Guillermo; Kormann, Urs

    2015-01-01

    Habitat loss and fragmentation of forests are among the biggest threats to biodiversity and associated ecosystem services in tropical landscapes. We use the vicinity of the Las Cruces Biological Station in southern Costa Rica as a regional case study to document seven decades of land-use change in one of the most intensively studied sites in the Neotropics. Though the premontane wet forest was largely intact in 1947, a wave of immigration in 1952 initiated rapid changes over a short period. Overall forest cover was reduced during each time interval analyzed (1947–1960, 1960–1980, 1980–1997, 1997–2014), although the vast majority of forest loss (>90%) occurred during the first two time intervals (1947–1960, 1960–1980) with an annual deforestation rate of 2.14% and 3.86%, respectively. The rate dropped to <2% thereafter and has been offset by forest recovery in fallow areas more recently, but overall forest cover has continued to decline. Approximately 27.9% of the study area is forested currently. Concomitantly, the region shifted from a single contiguous forest to a series of progressively smaller forest fragments with each successive survey. A strong reduction in the amount of core habitat was paralleled by an increased proportion of edge habitat, due to the irregular shape of many forest fragments. Structural connectivity, however, remains high, with an expansive network of >100 km of linear strips of vegetation within a 3 km radius of the station, which may facilitate landscape-level movement for some species. Despite the extent of forest loss, a substantial number of regional landscape-level studies over the past two decades have demonstrated the persistence of many groups of organisms such as birds and mammals. Nonetheless, the continued decline in the quantity and quality of remaining habitat (~30% of remaining forest is secondary), as well as the threat of an extinction debt (or time lag in species loss), may result in the extirpation of

  14. Modeling green infrastructure land use changes on future air ...

    EPA Pesticide Factsheets

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  15. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  16. Climatic and land-use driven change of runoff throughout Sweden

    NASA Astrophysics Data System (ADS)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  17. Land cover and land use changes in the oil and gas regions of Northwestern Siberia under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Yu, Qin; Epstein, Howard E.; Engstrom, Ryan; Shiklomanov, Nikolay; Strelestskiy, Dmitry

    2015-12-01

    Northwestern Siberia has been undergoing a range of land cover and land use changes associated with climate change, animal husbandry and development of mineral resources, particularly oil and gas. The changes caused by climate and oil/gas development Southeast of the city of Nadym were investigated using multi-temporal and multi-spatial remotely sensed images. Comparison between high spatial resolution imagery acquired in 1968 and 2006 indicates that 8.9% of the study area experienced an increase in vegetation cover (e.g. establishment of new saplings, extent of vegetated cover) in response to climate warming while 10.8% of the area showed a decrease in vegetation cover due to oil and gas development and logging activities. Waterlogging along linear structures and vehicle tracks was found near the oil and gas development site, while in natural landscapes the drying of thermokarst lakes is evident due to warming caused permafrost degradation. A Landsat time series dataset was used to document the spatial and temporal dynamics of these ecosystems in response to climate change and disturbances. The impacts of land use on surface vegetation, radiative, and hydrological properties were evaluated using Landsat image-derived biophysical indices. The spatial and temporal analyses suggest that the direct impacts associated with infrastructure development were mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance and can have significant implications for changes in permafrost dynamics and surface energy budgets at landscape and regional scales.

  18. Does surface roughness dominate biophysical forcing of land use and land cover change in the eastern United States?

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.

    2016-12-01

    Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.

  19. Detecting Anthropogenic and Climate Change Induced Land Cover and Land Use Change in the Vicinity of an Oil/gas Facility in Northwestern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.

    2015-12-01

    Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.

  20. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality