Science.gov

Sample records for two-dimensional halbach cylinders

  1. Automatic alignment of multiple magnets into Halbach cylinders

    NASA Astrophysics Data System (ADS)

    Chandrana, C. K.; Neal, J. A.; Platts, D.; Morgan, B.; Nath, P.

    2015-05-01

    Halbach cylinders have found various applications for their ability to produce strong and homogenous magnetostatic fields. Contrary to their conventional manual fabrication, we introduce a novel approach to automatically align multiple permanent magnets into a Halbach cylinder. The approach uses the magnetic field distribution from a diametrically magnetized cylindrical magnet to simultaneously align multiple magnets. The extent to which the automatic assembly can approximate a Halbach cylinder was analyzed using 3D Finite Element Modeling. Prototypes were built that demonstrated automatic alignment of eight magnets into Halbach cylinders. Automatic alignment eliminates the complexity of manually aligning Halbach cylinders.

  2. The application of Halbach cylinders to brushless ac servo motors

    SciTech Connect

    Atallah, K.; Howe, D.

    1998-07-01

    Halbach cylinders are applied to brushless ac servo motors. It is shown that a sinusoidal back-emf waveform and a low cogging torque can be achieved without recourse to conventional design features such as distributed windings and/or stator/rotor skew. A technique for imparting a multipole Halbach magnetization distribution on an isotropic permanent magnet cylinder is described, and it is shown that the torque capability of a Halbach ac servo motor can be up to 33% higher than conventional brushless permanent magnet ac motors.

  3. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    NASA Astrophysics Data System (ADS)

    Trevizoli, Paulo V.; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa, Jader R., Jr.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd2Fe14B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap.

  4. Two dimensional exchange NMR experiments of natural porous media with portable Halbach-Magnets

    NASA Astrophysics Data System (ADS)

    Haber, Agnes; Haber-Pohlmeier, Sabina; Casanova, Federico; Blmich, Bernhard

    2010-05-01

    The characterization of pore space and connectivity in soils of different textures is one topic within Cluster A, Partial Project A1. For this purpose low field mobile NMR became a powerful tool following the development of portable NMR sensors for well logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of polymers is obtained, and new opportunities are provided for geophysical investigations [1]. In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time tm [2]. Relaxation-relaxation exchange experiments were performed with saturated and un-saturated soil samples at low and moderately inhomogeneous magnetic field with a simple, portable Halbach-Magnet. By conducting NMR transverse relaxation exchange experiments for several mixing times and inverting the results to 2D T2 distributions (similar to joint probability densities of transverse relaxation times T2) with the help of inverse 2D Laplace Transformation (ILT), we observed characteristic exchange processes: Soils consisting mainly of silt and clay components show predominantly exchange between the smaller pores at mixing times of some milliseconds. In addition, there exists also weaker exchange with the larger pores observable for longer mixing time. In contrast to that fine sand exhibits 2D T2 distributions with no exchange processes which can be interpreted that water molecules move within pores of the same size class. These results will be compared to the exchange behaviour under unsaturated conditions. References: 1. B. Blmich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F. Casanova, Mobile NMR for geophysical analysis and material testing, Petroleum Science 6 (2009) 1-7. 2. K. E. Washburn, P.T. Callaghan, Tracking pore to pore exchange using relaxation exchange spectroscopy, Phys. Rev. Lett. 97 (2006) 175502.

  5. Two-dimensional vortex shedding of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Wen, C.-Y.; Lin, C.-Y.

    2001-03-01

    The Strouhal-Reynolds number relationship for the two-dimensional (2-D) vortex shedding of a circular cylinder at low to medium Reynolds numbers (Re, ranging from 45 to 560) is investigated experimentally. Both horizontal and vertical soap film tunnels are used to set up a truly 2-D experiment. It is found that two separate 3-D instabilities of the natural wake at Re?180 and 260 disappear. The Strouhal-Reynolds number curve is in good agreement with the 2-D computations of Barkley and Henderson [J. Fluid Mech. 322, 215 (1996)]. The 2-D asymptote of 0.2417 of Strouhal number is also approached.

  6. Two-Dimensional Vortex Shedding of a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Wen, C. Y.; Lin, C. Y.

    1998-11-01

    The Strouhal-Reynolds number relationship for the two-dimensional(2-D) vortex shedding of a circular cylinder at low to medium Reynolds numbers (ranging from 45 to 600 based on the diameter of the cylinder) is investigated experimentally. Both horizontal and vertical soap film tunnels are used to set up a truly 2-D experiment. The flow in the soap film is very thin and is a close approximation to 2-D flow. It is found that two separate 3-D instabilities of the nature wake: mode A and mode B disappear. The Strouhal-Reynolds number curve is smoothly climbing up and is in good agreement with the 2-D computations of Barkley and Henderson(1996). The 2-D asymptote of 0.2417 of Strouhal number is also approached.

  7. Analysis and comparison of two two-dimensional Halbach permanent magnet arrays for magnetically levitated planar motor

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Kou, Baoquan; Xing, Feng; Zhang, He

    2014-05-01

    A novel 2-D Halbach permanent magnet array which can be used in magnetically levitated planar motor is proposed in this paper. The air-gap flux density distribution of the novel 2-D Halbach permanent magnet array is solved by the scalar magnetic potential equation. In order to compare with the well-known Halbach magnet array that was used by Jansen et al. [IEEE Trans. Ind. Appl. 44(4), 1108 (2008)], harmonic analysis of the x- and z- component of the air-gap flux density are carried out by Fourier decomposition. Comparison of Bx and Bz between the two 2-D Halbach magnet arrays are made. And it is verified that the performance of the new Halbach magnet array is superior to the existing Halbach magnet arrays, its higher magnetic flux density and lower high-order harmonics will help to improve the performance of the magnetically levitated planar motor.

  8. The efficiency and the demagnetization field of a general Halbach cylinder

    NASA Astrophysics Data System (ADS)

    Bjrk, R.; Smith, A.; Bahl, C. R. H.

    2015-06-01

    The maximum magnetic efficiency of a general multipole Halbach cylinder of order p is found as function of p. The efficiency is shown to decrease for increasing absolute value of p. The optimal ratio between the inner and outer radius, i.e. the ratio resulting in the most efficient design, is also found as function of p and is shown to tend towards smaller and smaller magnet sizes. Finally, the demagnetizing field in a general p-Halbach cylinder is calculated, and it is shown that demagnetization is largest either at cos 2 p? = 1 or cos 2 p? = - 1. For the common case of a p=1 Halbach cylinder the maximum values of the demagnetizing field are either at ? = 0, ? at the outer radius, where the field is always equal to the remanence, or at ? = ? / 2 at the inner radius, where it is the magnitude of the field in the bore. Thus to avoid demagnetization the coercivity of the magnets must be larger than these values.

  9. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  10. INVITED PAPER: The characteristics of the Aeolian tone radiated from two-dimensional cylinders

    NASA Astrophysics Data System (ADS)

    Fujita, Hajime

    2010-02-01

    Aerodynamic sound radiated from cylindrical objects, such as in a pantograph of a train, is a prime noise source in high-speed vehicles. The objective of this paper is to understand the generation mechanism of aerodynamic sound radiated from two-dimensional cylinders. Basic theories for aeroacoustics are reviewed. Three contributions to the field of experimental investigations of the Aeolian tone generation mechanism by the present author are reviewed. The structure of the low-noise wind tunnel and the use of proper model end plate construction to control acoustical and flow fields are discussed in section 3. Experimental investigation on the characteristics of aerodynamic sound radiated from two-dimensional models, such as a circular cylinder, square cylinders with or without rounded corners and a cylinder with modified square cross-section, is discussed in section 4. Experimental investigation of Aeolian tone generation and its relation with surface pressure fluctuation on a circular cylinder at moderate to high Reynolds number flow are discussed in section 5.

  11. On the drag of two-dimensional flow about a circular cylinder

    NASA Astrophysics Data System (ADS)

    Wen, C.-Y.; Yeh, C.-L.; Wang, M.-J.; Lin, C.-Y.

    2004-10-01

    The drag force experienced by a circular cylinder in a two-dimensional (2D) flow is investigated experimentally. Both horizontal and vertical soap film tunnels are used to set up the 2D flow with Reynolds numbers Re ranging from 35 to 560 (based on the diameter of the circular cylinder). Momentum defect measurements are used to obtain the time averaged drag coefficients, via laser Doppler velocimetry. It is found that the drag curve is in good agreement with the 2D computations of Henderson [Phys. Fluids 7, 2102 (1995)]. Two separate three-dimensional instabilities of the natural wake at Re?180 and 260 are not observed in the present data. Flow visualization of the characteristic wake patterns behind a circular cylinder, as Reynolds number increases, is also presented.

  12. Two-dimensional Green's tensor for gyrotropic clusters composed of circular cylinders.

    PubMed

    Asatryan, Ara A; Botten, Lindsay C; Fang, Kejie; Fan, Shanhui; McPhedran, Ross C

    2014-10-01

    The construction of Green's tensor for two-dimensional gyrotropic photonic clusters composed of cylinders with circular cross sections using the semi-analytic multipole method is presented. The high efficiency and accuracy of the method is demonstrated. The developed method is applied to gyrotropic clusters that support topological chiral Hall edge states. The remarkable tolerance of chiral Hall edge modes toward substantial cluster separation is revealed. The transformation of chiral Hall edge states as the cluster separation increases is also presented. The excitation of chiral Hall edge modes for different source orientations is considered. Both gyroelectric and gyromagnetic (ferrite) clusters are treated. PMID:25401258

  13. Transient scattering from two-dimensional dielectric cylinders of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Vechinski, Douglas A.; Rao, Sadasiva M.

    1992-01-01

    In this work, the problem of transient scattering by arbitrary shaped two-dimensional dielectric cylinders is solved using the marching-on-in-time (MOT) technique. The dielectric problem is approached via the surface equivalence principle. A pair of coupled integral equations are derived by enforcing the continuity of the electric and magnetic fields which are solved by using the method of moments. Numerical results are presented for two cross sections, viz. a circle and a square, and compared with inverse discrete Fourier transform (IDFT) techniques. In each case, good agreement is obtained with the IDFT solution.

  14. A numerical study of the motion of a neutrally buoyant cylinder in two dimensional shear flow

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Huang, Shih-Lin; Chen, Shih-Di; Chu, Chin-Chou; Chang, Chien-Cheng

    2012-11-01

    We have investigated the motion of a neutrally buoyant cylinder of circular or elliptic shape in two dimensional shear flow of a Newtonian fluid by direct numerical simulation. The numerical results are validated by comparisons with existing theoretical, experimental and numerical results, including a power law of the normalized angular speed versus the particle Reynolds number. The centerline between two walls is an expected equilibrium position of the cylinder mass center in shear flow. When placing the particle away from the centerline initially, it migrates toward another equilibrium position for higher Reynolds numbers due to the interplay between the slip velocity, the Magnus force, and the wall repulsion force. T-W Pan acknowledges the support by the US NSF and S-L Huang, S-D Chen, C-C Chu, C-C Chang acknowledge the support by the National Science Council of Taiwan, ROC.

  15. Scaling relations for granular flow in quasi-two-dimensional rotating cylinders

    NASA Astrophysics Data System (ADS)

    Orpe, Ashish V.; Khakhar, D. V.

    2001-09-01

    An experimental study of the flow of different materials (steel balls, glass beads, and sand) in quasi-two-dimensional rotating cylinders is carried out using flow visualization. The flow in the rotating cylinder comprises of a thin-flowing surface layer with the remaining particles rotating as a fixed bed. Experimental results indicate that the scaled layer thickness increases with increasing Froude number (Fr=?2R/g, where ? is the angular speed, R is the cylinder radius, and g the acceleration due to gravity) and with increase in size ratio (s=d/R, where d is the particle diameter). The free surface profile, is nearly flat at low Fr and becomes increasingly S shaped with increasing Fr. The layer thickness profiles, which are symmetric at low Fr become skewed at high values of Fr and small s. The dynamic angles of repose for all the materials studied show a near-linear increase with rotational speed (?). Scaling analysis of the experimental data shows that the shape of the scaled surface profiles and the scaled layer thickness profiles are nearly identical when Froude number and size ratio are held constant, for each material. The surface profiles and layer thickness profiles are also found to be nearly independent of the material used. The dynamic angle of repose (?), however, does not scale with Fr and s and depends on the particle properties. The experimental results are compared to continuum models for flow in the layer. The models of Elperin and Vikhansky [Europhys. Lett. 42, 619 (1998)] and Makse [Phys. Rev. Lett. 83, 3186 (1999)] show good agreement at low Fr while that of Khakhar et al. [Phys. Fluids, 9, 31 (1997)] gives good predictions over the entire range of parameters considered. An analysis of the data indicate that the velocity gradient (??) is nearly constant along the layer at low Fr, and the value calculated at the layer midpoint varies as ??0~[g sin(?0-?s)/d cos ?s]1/2 for all the experimental data, where ?s is the static angle of repose and ?0 is the interface angle at the layer midpoint. An extension of ``heap'' models (BCRE, BRdG) is used to predict the interface angle profiles, which are in reasonable agreement with experimental measurements.

  16. Effect of Reynolds Number on the Force and Pressure Distribution Characteristics of a Two-Dimensional Lifting Circular Cylinder

    NASA Technical Reports Server (NTRS)

    Lockwood, Vernard E.; McKinney, Linwood W.

    1960-01-01

    A two-dimensional lifting circular cylinder has been tested over a Mach number range from 0.011 to 0.32 and a Reynolds number range from 135,000 to 1,580,000 to determine the force and pressure distribution characteristics. Two flaps having chords of 0.37 and 6 percent of the cylinder diameter, respectively, and attached normal to the surface were used to generate lift. A third configuration which had 6-percent flaps 1800 apart was also investigated. All flaps were tested through a range of angular positions. The investigation also included tests of a plain cylinder without flaps. The lift coefficient showed a wide variation with Reynolds number for the 6-percent flap mounted on the bottom surface at the 50-percent-diameter station, varying from a low of about 0.2 at a Reynolds number of 165,000 to a high of 1.54 at a Reynolds number of 350,000 and then decreasing almost linearly to a value of 1.0 at a Reynolds number of 1,580,000. The pressure distribution showed that the loss of lift with Reynolds number above the critical was the result of the separation point moving forward on the upper surface. Pressure distributions on a plain cylinder also showed similar trends with respect to the separation point. The variation of drag coefficient with Reynolds number was in direct contrast to the lift coefficient with the minimum drag coefficient of 0.6 occurring at a Reynolds number of 360,000. At this point the lift-drag ratios were a maximum at a value of 2.54. Tests of a flap with a chord of 0.0037 diameter gave a lift coefficient of 0.85 at a Reynolds number of 520,000 with the same lift-drag ratio as the larger flap but the position of the flap for maximum lift was considerably farther forward than on the larger flap. Tests of two 6-percent flaps spaced 180 deg apart showed a change in the sign of the lift developed for angular positions of the flap greater than 132 deg at subcriti- cal Reynolds numbers. These results may find use in application to air- craft using forebody strakes. The drag coefficient developed by the flaps when normal to the relative airstream was approximately equal to that developed by a flat plate in a similar attitude.

  17. String Field Theory of Two-Dimensional QCD on a Cylinder: a Realization of W? Current Algebra

    NASA Astrophysics Data System (ADS)

    Dhar, Avinash; Lakdawala, Porus; Mandal, Gautam; Wadia, Spenta R.

    We consider two-dimensional QCD on a cylinder, where space is a circle of length L. We formulate the theory in terms of gauge-invariant gluon operators and multiple-winding meson (open string) operators. The meson bilocal operators satisfy a W? current algebra. The gluon sector (closed strings) contains purely quantum-mechanical degrees of freedom. The description of this sector in terms of nonrelativistic fermions leads to a W? algebra. The spectrum of excitations of the full theory is therefore organized according to two different algebras: a wedge subalgebra of W? current algebra in the meson sector and a wedge subalgebra of W? algebra in the glueball sector. In the large N limit the theory becomes semiclassical and an effective description for the gluon degrees of freedom can be obtained. We have solved the effective theory of the gluons in the small L limit. We get a glueball spectrum which coincides with the discrete states of the (Euclidean) c=1 string theory. We remark on the implications of these results for (a) QCD at finite temperature and (b) string theory.

  18. A numerical solution of the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders in air

    NASA Technical Reports Server (NTRS)

    Johnston, K. D.; Hendricks, W. L.

    1978-01-01

    Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased.

  19. Lattice-Boltzmann simulation of two-dimensional flow over two vibrating side-by-side circular cylinders.

    PubMed

    Xu, Yousheng; Liu, Yang; Xia, Yong; Wu, Fengmin

    2008-10-01

    A numerical simulation using the multiple relaxation time lattice-Boltzmann method is carried out for the purpose of investigating fluid flow over two vibrating side-by-side circular cylinders and the effect of moving the cylinders on the wake characteristics. As a benchmark problem to assess the validity and efficiency of the model, the calculation was carried out at Reynolds number of 200 and four pitch ratios (T/D , where D is the cylinder diameter while T is the center-to-center spacing between the two cylinders) of 1.2, 1.6, 2.2, and 3.2, respectively. The calculated results indicate that the vibration of the cylinder pair has significant influence on the wake patterns. When the amplitude of vibration is big enough, the vibration locks up the vortex shedding and formation. For each cylinder vibration frequency, there exists a threshold of vibration amplitude for the lock-up phenomenon. With the vibration frequency is increased, the threshold of vibration amplitude decreases. PMID:18999533

  20. On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Williams, J.; Hibberd, S.; Power, H.; Riley, D. S.

    2012-05-01

    Motivated by applications in aero-engines, steady two-dimensional thin-film flow on the inside of a circular cylinder is studied when the film surface is subject to mass and momentum transfer from impacting droplets. Asymptotic analysis is used systematically to identify distinguished limits that incorporate these transfer effects at leading order and to provide a new mathematical model. Applying both analytical and numerical approaches to the model, a set of stable steady, two-dimensional solutions that fit within the rational framework is determined. A number of these solutions feature steep fronts and associated recirculating pools, which are undesirable in an aeroengine since oil may be stripped away from the steep fronts when there is a core flow external to the film, and recirculation may lead to oil degradation. The model, however, provides a means of investigating whether the formation of the steep fronts on the film surface and of internal recirculation pools can be delayed, or inhibited altogether, by designing jets to deliver prescribed distributions of oil droplets or by the judicious siting of oil sinks. Moreover, by studying pathlines, oil-residence times can be predicted and systems optimized.

  1. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  2. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while minimizing it on the opposite side. The advantage of this configuration is that it makes it possible to approach the theoretical maximum force per unit area that could be exerted by a given amount of permanent-magnet material. The configuration is named after physicist Klaus Halbach, who conceived it for use in particle accelerators. Halbach arrays have also been studied for use in magnetic-levitation ("maglev") railroad trains. In a radial Halbach magnetic bearing, the basic Halbach arrangement is modified into a symmetrical arrangement of sector-shaped permanent magnets mounted on the outer cylindrical surface of a drum rotor (see Figure 2). The magnets are oriented to concentrate the magnetic field on their radially outermost surface. The stator coils are mounted in a stator shell surrounding the rotor.

  3. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  4. Pressure Distributions and Wave Drag Due to Two-Dimensional Fabrication-Type Surface Roughness on an Ogive Cylinder at Mach Numbers of 1.61 and 2.01

    NASA Technical Reports Server (NTRS)

    Czarnecki, K. R.; Monta, William J.

    1961-01-01

    An investigation has been made at Mach numbers of 1.61 and 2.01 and over a range of free-stream Reynolds number per foot from about 1.2 x 10(exp 6) to 8.3 x 10(exp 6) to determine the pressure distributions and wave drags due to two-dimensional fabrication-type surface roughness. Ten types of surface roughness, including step, wave, crease, and swept configurations were investigated. The tests were made on an ogive cylinder of fineness ratio 12.2, the roughness elements covering the cylindrical portion of the model. The results indicate that wave drag is the major component of the drag due to roughness at supersonic speeds. The pressure distributions over the roughness elements were generally found to be in good agreement with linearized two-dimensional theory except for regions of the elements affected by boundary-layer separation and shock detachment. There was little or no effect of Reynolds number except on the pressures within the regions influenced by separation or shock detachment. Inasmuch as most of the roughness configurations were affected by flow separation and shock detachment, there was generally an effect of Reynolds number on the roughness wave drag. This wave drag decreased as the free-stream Reynolds number was decreased.

  5. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    PubMed

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

  6. Magnetic field homogeneity perturbations in finite Halbach dipole magnets

    NASA Astrophysics Data System (ADS)

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z) - Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  7. Two dimensional vernier

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  8. An adjustable linear Halbach array

    NASA Astrophysics Data System (ADS)

    Hilton, J. E.; McMurry, S. M.

    2012-07-01

    The linear Halbach array is a well-known planar magnetic structure capable, in the idealized case, of generating a one-sided magnetic field. We show that such a field can be created from an array of uniformly magnetized rods, and rotating these rods in an alternating fashion can smoothly transfer the resultant magnetic field through the plane of the device. We examine an idealized model composed of infinite line dipoles and carry out computational simulations on a realizable device using a magnetic boundary element method. Such an arrangement can be used for an efficient latching device, or to produce a highly tunable field in the space above the device.

  9. Vibration energy harvesting using the Halbach array

    NASA Astrophysics Data System (ADS)

    Zhu, Dibin; Beeby, Steve; Tudor, John; Harris, Nick

    2012-07-01

    This paper studies the feasibility of vibration energy harvesting using a Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field to almost zero on the other side. This arrangement can improve electromagnetic coupling in a limited space. The Halbach array offers an advantage over conventional layouts of magnets in terms of its concentrated magnetic field and low-profile structure, which helps improve the output power of electromagnetic energy harvesters while minimizing their size. Another benefit of the Halbach array is that due to the existence of an almost-zero magnetic field zone, electronic components can be placed close to the energy harvester without any chance of interference, which can potentially reduce the overall size of a self-powered device. The first reported example of a low-profile, planar electromagnetic vibration energy harvester utilizing a Halbach array was built and tested. Results were compared to ones for energy harvesters with conventional magnet layouts. By comparison, it is concluded that although energy harvesters with a Halbach array can have higher magnetic field density, a higher output power requires careful design in order to achieve the maximum magnetic flux gradient.

  10. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  11. Torque Production in a Halbach Machine

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.

    2006-01-01

    The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.

  12. Two-Dimensional IHCP Code

    Energy Science and Technology Software Center (ESTSC)

    1997-11-18

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  13. Instability of a two-dimensional viscous flow in an annulus with permeable walls to two-dimensional perturbations

    NASA Astrophysics Data System (ADS)

    Ilin, Konstantin; Morgulis, Andrey

    2015-04-01

    The stability of a two-dimensional viscous flow in an annulus with permeable walls with respect to small two-dimensional perturbations is studied. The basic steady flow is the most general rotationally invariant solution of the Navier-Stokes equations in which the velocity has both radial and azimuthal components, and the azimuthal velocity profile depends on the radial Reynolds number. It is shown that for a wide range of parameters of the problem, the basic flow is unstable to small two-dimensional perturbations. Neutral curves in the space of parameters of the problem are computed. Calculations show that the stability properties of this flow are determined by the azimuthal velocity at the inner cylinder when the direction of the radial flow is from the inner cylinder to the outer one and by the azimuthal velocity at the outer cylinder when the direction of the radial flow is reversed. This work is a continuation of our previous study of an inviscid instability in flows between rotating porous cylinders [K. Ilin and A. Morgulis, "Instability of an inviscid flow between porous cylinders with radial flow," J. Fluid Mech. 730, 364-378 (2013)].

  14. Two-dimensional material nanophotonics

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian; Wang, Han; Xiao, Di; Dubey, Madan; Ramasubramaniam, Ashwin

    2014-12-01

    Two-dimensional materials exhibit diverse electronic properties, ranging from insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides such as molybdenum disulphide, to semimetallic graphene. In this Review, we first discuss the optical properties and applications of various two-dimensional materials, and then cover two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances. Finally, we present a narrow-bandgap layered material -- black phosphorus -- that serendipitously bridges the energy gap between the zero-bandgap graphene and the relatively large-bandgap transition metal dichalcogenides. The plethora of two-dimensional materials and their heterostructures, together with the array of available approaches for enhancing the light-matter interaction, offers the promise of scientific discoveries and nanophotonics technologies across a wide range of the electromagnetic spectrum.

  15. Two-dimensional Yukawa fluids

    NASA Astrophysics Data System (ADS)

    Gonzalez-Melchor, Minerva; Mendez, Arlette; Alejandre, Jose

    2015-03-01

    When the movement of particles is performed predominantly in two dimensions, the systems can be considered at a good extent as two-dimensional. For instance the lipids in a bilayer, micrometric particles in a quasi-two-dimensional colloidal suspension, colloids in a monolayer deposited on the air-water interface, and DNA complexes trapped at the water surface can be described at a first approach as bidimensional fluids. These systems are important for many applications in surface and colloidal science. In simulations where the explicit interface between liquid and vapor is present, the line tension can be directly computed. In this work we present molecular dynamics results obtained for the liquid/vapor coexistence curve of 2D Yukawa fluids and for the line tension. A comparison with the three-dimensional case is also presented.

  16. Two-dimensional flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  17. Two-dimensional thermofield bosonization

    SciTech Connect

    Amaral, R.L.P.G.

    2005-12-15

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.

  18. Two-Dimensional Vernier Scale

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  19. Two dimensional unstable scar statistics.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  20. Two-Dimensional Potential Flows

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred; Tollmien, W.

    1949-01-01

    Contents include the following: Characteristic differential equations - initial and boundary conditions. Integration of the second characteristic differential equations. Direct application of Meyer's characteristic hodograph table for construction of two-dimensional potential flows. Prandtl-Busemann method. Development of the pressure variation for small deflection angles. Numerical table: relation between deflection, pressure, velocity, mach number and mach angle for isentropic changes of state according to Prandtl-Meyer for air (k = 1.405). References.

  1. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3?m diameter) and small (1?m diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ?. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  2. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 ?m diameter) and small (1 ?m diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ?. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357

  3. Two-dimensional capillary origami

    NASA Astrophysics Data System (ADS)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  4. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  5. Analysis of eddy current losses in cylindrical linear oscillatory actuator with Halbach permanent magnet array mover

    NASA Astrophysics Data System (ADS)

    Ko, Kyoung-Jin; Choi, Ji-Hwan; Jang, Seok-Myeong; Choi, Jang-Young

    2012-04-01

    This paper describes calculations and comparisons of eddy current losses in a cylindrical linear oscillatory actuator with a Halbach array permanent magnet mover for different voltage source waveforms. Using the magnetic vector potential and a two-dimensional cylindrical coordinate system, the paper presents an analytical procedure and obtains solutions for the eddy current losses using the Poynting theorem. To verify the proposed method, the eddy current losses obtained from the analytical solutions are compared with the results of a non-linear finite element method. Moreover, this paper shows that the eddy current losses are more significant when the actuator is driven by a square voltage waveform than when it is driven by a sinusoidal voltage waveform.

  6. Halbach array motor/generators: A novel generalized electric machine

    SciTech Connect

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

    1994-10-28

    In August 1979, Halbach submitted a paper entitled ``Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material.`` In this paper, he presented a novel method of generating multipole magnetic fields using non-intuitive geometrical arrangements of permanent magnets. In subsequent publications, he further defined these concepts. Of particular interest to one of the authors (RFP) was the special magnet array that generated a uniform dipole field. In 1990 Post proposed the construction of an electric machine (a motor/generator) using a dipole field based on Klaus Halbach`s array of permanent magnets. He further proposed that such a system should be employed as an integral part of ``an electromechanical battery`` (EMB), i.e., a modular flywheel system to be used as a device for storing electrical energy, as an alternative to the electrochemical storage battery. This paper reviews Halbach`s theory for the generation of a dipole field using an array of permanent magnet bars, presents a simple analysis of a family of novel ``ironless`` electric machines designed using the dipole Halbach array, and describes the results obtained when they were tested in the laboratory.

  7. Measuring Monotony in Two-Dimensional Samples

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's correlation coefficient for

  8. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  9. Two dimensional mechanism for insect hovering.

    PubMed

    Jane Wang, Z

    2000-09-01

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. PMID:10970501

  10. Electrical contacts to two-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras

    2015-12-01

    The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides.

  11. Efficient Two-Dimensional-FFT Program

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1992-01-01

    Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.

  12. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  13. Development and Testing of a Radial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA John H. Glenn Research Center has developed and tested a revolutionary Radial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Radial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Radial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical applications, manufacturing equipment, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Radial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  14. Development and Testing of an Axial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  15. Halbach array DC motor/generator

    DOEpatents

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  16. Halbach array DC motor/generator

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  17. Superconductivity at the Two-dimensional Limit

    NASA Astrophysics Data System (ADS)

    Shih, Chih-Kang

    2010-03-01

    Superconductivity in the extreme two-dimensional limit is studied on ultra-thin lead (Pb) films down to two atomic layers, where only a single channel of quantum well states exist. Scanning tunneling spectroscopy reveals that local superconducting order remains robust until two atomic layers, where the transition temperature abruptly plunges to lower values depending sensitively on the exact atomic structure of the film. Our result shows that Cooper pairs can still form in the last two dimensional channel of electron states, although their binding are strongly affected by the substrate [1]. In this presentation, I will also discuss this new result in comparison with several recent experimental results on ultra-thin metallic films performed using local STS probes and macroscopic transport measurements.[4pt] [1] ``Superconductivity at the Two-dimensional Limit,'' Shengyong Qin, Jungdae Kim, Qian Niu and Chih-Kang Shih, Science 324, 1314 (2009).

  18. Electrically Charged Two-Dimensional Skyrmions

    NASA Astrophysics Data System (ADS)

    Loginov, A. Yu.

    2015-04-01

    The (2 + 1)-dimensional Skyrme gauge model with a Chern-Simons term is considered. The presence of the Chern-Simons term leads to the result that the Abelian gauge field of the model becomes massive. This, in turn, leads to the existence in the given model of two-dimensional skyrmions carrying magnetic flux and possessing an electric charge and, consequently, nonzero angular momentum. It is shown that the model also admits the existence of two-dimensional skyrmions, whose electrically charged fields rotate with a constant phase frequency. Due to the nontrivial topology of the configurations of the (2 + 1)-dimensional Skyrme gauge model with a Chern-Simons term, the magnetic flux, the electric charge, and the angular momentum of a rotating two-dimensional skyrmion turn out to be interrelated.

  19. Electrical contacts to two-dimensional semiconductors.

    PubMed

    Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras

    2015-12-01

    The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides. PMID:26585088

  20. Crossflow in two-dimensional asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Lee, L. P.

    1975-01-01

    An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.

  1. Superconductivity at the two-dimensional limit.

    PubMed

    Qin, Shengyong; Kim, Jungdae; Niu, Qian; Shih, Chih-Kang

    2009-06-01

    Superconductivity in the extreme two-dimensional limit is studied on ultrathin lead films down to two atomic layers, where only a single channel of quantum well states exists. Scanning tunneling spectroscopy reveals that local superconducting order remains robust until two atomic layers, where the transition temperature abruptly plunges to a lower value, depending sensitively on the exact atomic structure of the film. Our result shows that Cooper pairs can still form in the last two-dimensional channel of electron states, although their binding is strongly affected by the substrate. PMID:19407146

  2. Nitrogenated holey two-dimensional structures

    PubMed Central

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-01-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications. PMID:25744355

  3. Nitrogenated holey two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-03-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96?eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications.

  4. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the

  5. Two-dimensional quantum-reflection traps

    SciTech Connect

    Madronero, Javier; Friedrich, Harald

    2007-06-15

    We study the confining properties of two-dimensional quantum-reflection traps, which are important for the transverse motion in atomic waveguides. For square geometry, the effect of nonseparability of the Schroedinger equation due to the corners is shown to be small. The survival probability due to quantum reflection is very similar for square and circular geometries.

  6. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  7. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial

  8. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  9. New two dimensional compounds: beyond graphene

    NASA Astrophysics Data System (ADS)

    Lebegue, Sebastien

    2015-03-01

    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  10. VLSI Unit for Two-Dimensional Convolutions

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.

    1983-01-01

    Universal logic structure allows same VLSI chip to be used for variety of computational functions required for two dimensional convolutions. Fast polynomial transform technique is extended into tree computational structure composed of two units: fast polynomial transform (FPT) unit and Chinese remainder theorem (CRT) computational unit.

  11. Soap film flows: Statistics of two-dimensional turbulence

    SciTech Connect

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-08-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}

  12. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  13. Magnetization study of two dimensional helium three

    NASA Astrophysics Data System (ADS)

    Guo, Lei

    This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the ZYX that serves as a substrate for the 3He layer. In this region of density, the 3He film acts as a quantum antiferromagnet with disordered ground state (Quantum Spin Liquid). Our experimental results are reported and similar work is reviewed.

  14. Kirigami for Two-Dimensional Electronic Membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold

    2015-03-01

    Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.

  15. Graphane: A two-dimensional hydrocarbon

    NASA Astrophysics Data System (ADS)

    Sofo, Jorge O.; Chaudhari, Ajay S.; Barber, Greg D.

    2007-04-01

    We predict the stability of an extended two-dimensional hydrocarbon on the basis of first-principles total-energy calculations. The compound that we call graphane is a fully saturated hydrocarbon derived from a single graphene sheet with formula CH. All of the carbon atoms are in sp3 hybridization forming a hexagonal network and the hydrogen atoms are bonded to carbon on both sides of the plane in an alternating manner. Graphane is predicted to be stable with a binding energy comparable to other hydrocarbons such as benzene, cyclohexane, and polyethylene. We discuss possible routes for synthesizing graphane and potential applications as a hydrogen storage material and in two-dimensional electronics.

  16. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  17. Cooperative two-dimensional directed transport

    NASA Astrophysics Data System (ADS)

    Zheng, Zhigang; Chen, Hongbin

    2010-11-01

    A mechanism for the cooperative directed transport in two-dimensional ratchet potentials is proposed. With the aid of mutual couplings among particles, coordinated unidirectional motion along the ratchet direction can be achieved by transforming the energy from the transversal rocking force (periodic or stochastic) to the work in the longitude direction. Analytical predictions on the relation between the current and other parameters for the ac-driven cases are given, which are in good agreement with numerical simulations. Stochastic driving forces can give rise to the resonant directional transport. The effect of the free length, which has been explored in experiments on the motility of bipedal molecular motors, is investigated for both the single- and double-channel cases. The mechanism and results proposed in this letter may both shed light on the collective locomotion of molecular motors and open ways on studies in two-dimensional collaborative ratchet dynamics.

  18. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  19. Two-dimensional ranking of Wikipedia articles

    NASA Astrophysics Data System (ADS)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  20. Fully localized two-dimensional embedded solitons

    SciTech Connect

    Yang Jianke

    2010-11-15

    We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.

  1. Dimers on Two-Dimensional Lattices

    NASA Astrophysics Data System (ADS)

    Wu, F. Y.

    We consider close-packed dimers, or perfect matchings, on two-dimensional regular lattices. We review known results and derive new expressions for the free energy, entropy, and the molecular freedom of dimers for a number of lattices including the simple-quartic, honeycomb, triangular, kagome, 3-12 and its dual, and 4-8 and its dual Union Jack lattices. The occurrence and nature of phase transitions are also elucidated and discussed in each case.

  2. Performance prediction of straight two dimensional diffusers

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1980-01-01

    A method, based on full viscous calculations, is presented to predict performance of straight two dimensional diffusers. The method predicts adequately the experimental pressure recovery data, up to the point of maximum pressure recovery, for small and large inlet boundary layer thicknesses. It is shown that at the point of maximum pressure recovery the streamwise velocity in the very near wall region varies as Z to the 0.22 power, where Z is the distance from the diffuser wall.

  3. Stochastic models of two-dimensional fracture

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Kowalski, J. M.

    1992-06-01

    Two statistical models of (strictly two-dimensional) layer destruction are presented. The first is built as a strict percolation model with an added ``conservation law'' (conservation of mass) as physical constraint. The second allows for damped or limited fracture. Two successive fracture crack thresholds are considered. Percolation (i.e., fracture) probability and cluster distributions are studied by use of numerical simulations. Different fractal dimension, critical exponents for cluster distribution, and universality laws characterize both models.

  4. Experimental Advances in Two-Dimensional Magnetism

    NASA Astrophysics Data System (ADS)

    Drr, W.; Kerkmann, D.; Pescia, D.

    This paper reviews recent experimental advances toward the physical realization of two-dimensional magnetic systems. In particular, it is shown that truly epitaxial ferromagnetic monolayers of 3-d transition metals atop a non-magnetic substrate are within reach of material science. Magnetism in these systems exhibits a rich variety of new phenomena, unknown to our three-dimensional world but in line with our theoretical picture of physcis in two dimensions.

  5. Deeply subrecoil two-dimensional Raman cooling

    SciTech Connect

    Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.

    2004-10-01

    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.

  6. Two-Dimensional Synthetic-Aperture Radiometer

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    2010-01-01

    A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate spatial resolution is most critical and (2) imaging airborne instruments that operate in this wavelength range and have adequate spatial resolution are difficult to build and will be needed in future experiments to validate approaches for remote sensing of soil moisture and ocean salinity. The two-dimensional instrument includes a rectangular array of patch antennas arranged in the form of a cross. The ESTAR uses analog correlation for one dimension, whereas the two-dimensional instrument uses digital correlation. In two dimensions, many more correlation pairs are needed and low-power digital correlators suitable for application in spaceborne remote sensing will help enable this technology. The two-dimensional instrument is dual-polarized and, with modification, capable of operating in a polarimetric mode. A flight test of the instrument took place in June 2003 and it participated in soil moisture experiments during the summers of 2003 and 2004.

  7. Two dimensional thick center vortex model

    NASA Astrophysics Data System (ADS)

    Rafibakhsh, Shahnoosh; Ahmadi, Alireza

    2016-01-01

    The potential between static color source is calculated in the SU (3) gauge group by introducing a two dimensional vortex flux. To generalize the model, the length of the Wilson loop is equal to R oriented along the x axis, and the vortex flux is considered as a function of x and y. The comparison between the generalized model and the original one shows that the intermediate linear regime is increased significantly and better agreement with Casimir scaling is achieved. Furthermore, the model is applied to calculate the potential between baryons.

  8. The two-dimensional connectivity of

    NASA Astrophysics Data System (ADS)

    German, R. M.

    1987-06-01

    Liquid phase sintered materials are characterized by a connected microstructure composed of contacting grains in a solidified matrix phase. Observations on the sintered microstructure are typically performed using two-dimensional cross sections. A computer calculation has been performed to determine the variation in the observed contacts per grain vs the true underlying microstructure connectivity. The results show that the observed coordination depends on both the volume fraction of solid phase and the dihedral angle. The findings of the calculation are favorably compared with observations on Fe-Cu and W-Ni-Fe alloys. In the limiting case, the current calculations approach those found for polycrystalline solids and cell networks.

  9. Anisotropic Two-Dimensional Friedel Oscillations

    SciTech Connect

    Hofmann, P.; Plummer, E.W.; Briner, B.G.; Doering, M.; Rust, H.; Bradshaw, A.M.

    1997-07-01

    Scanning tunneling microscopy at 4K shows highly anisotropic screening charge density oscillations on Be(10{ovr 1}0) in the vicinity of surface defects and steps. The forms of these oscillations, which derive from the Friedel oscillations, can be directly related to the two-dimensional band structure of the surface (two electron pockets at the boundary of the surface Brillouin zone). Simple calculations show that the Friedel oscillations in such a case will contain major contributions from wavelengths which do not correspond to any Fermi wave vector. {copyright} {ital 1997} {ital The American Physical Society}

  10. The Dynamics of Two-Dimensional Foams

    NASA Astrophysics Data System (ADS)

    Chae, Jang Jin

    This dissertation describes research on the structure and dynamics of two-dimensional foams. New experimental results are presented and new algorithms developed to study foam dynamics with particular emphasis on foams that evolve with significant rupture. In the introduction, basic principles and statistical properties of two-dimensional coarsening cellular patterns are reviewed. Theoretical and computational models which have been developed are also discussed. In Chapter 2, experimental results are presented for the relaxation of a two dimensional soap foam in which wall breakage is initiated through gentle warming of the foam cell. Significantly different phenomenology from the relaxation of non-breaking foams is observed. At a critical "break time," which depends on the temperature ramping rate and initial conditions, a large scale mechanical cascade of wall rupture sets in leading to a rapid disintegration of the foam. In Chapter 3, an efficient new algorithm for simulating the evolution of two-dimensional dry soap foams is presented. Our physically based model for the evolution is based on a combination of mass transfer, vertex movement, and edge relaxation. The stochastic nature of topological transitions due to numerical error has been carefully examined. In Chapter 4, simulations of breaking foams by this new algorithm are presented. The separation of vertex and edge movements permits a study of foam evolution that includes wall rupture. This evolution exhibits a sensitive dependence on both the type of breaking "rule" chosen as well as the initial conditions. The topological evolution is characterized in terms of certain "evolution exponents," and we show simulation results that agree with theoretical considerations. In Chapter 5, normal grain growth in anisotropic polycrystals is simulated using a new algorithm developed from the one used to simulate normal foams. The simulation results, without breakage, show a decrease in growth exponents which is due to the reduction in the mean surface energy during evolution. However, including breakage of low angle tilt grain boundaries substantially increases the growth exponents. These simulations highlight the fact that competition between anisotropic effects and boundary breakage can lead to a wide range of possible growth exponents.

  11. Two-dimensional signatures for molecular identification

    NASA Astrophysics Data System (ADS)

    Qazi, Muhammad; Vogt, Thomas; Koley, Goutam

    2008-03-01

    Simultaneous measurements of the conductance and surface work function (SWF) changes on nanostructured graphite layers have been performed to detect several gaseous analyte molecules. It has been observed that the gradient of the SWF versus conductance response plotted for specific analyte molecules is constant irrespective of their concentration or fractional occupancy of surface adsorption sites. The SWF and conductance changes have been found to be uncorrelated for different analyte molecules, resulting in unique gradients that can be used as two-dimensional signatures for molecular identification.

  12. Quasicondensation in Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Te; Anderson, Brandon M.; Boyack, Rufus; Levin, K.

    2015-12-01

    In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS.

  13. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both ? and ? electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  14. Vortices in Two- Dimensional Anisotropic ? Models

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Otsu, H.

    1981-01-01

    We define a topological number and clarify its role played in two-dimensional anisotropic ? models. Non-dissipative metastable states are obtained as counter-examples to which Derrick's theorem cannot be applied. Each metastable state classified by the topological number q turns out to carry |q| vortices and |q| stagnation points for the cases of XY-like anisotropy and to involve |q| antiparallel core spins for those of Ising-like one. The range and strength of vortices are studied in detail for the XY-model obtained from present systems.

  15. Quasicondensation in Two-Dimensional Fermi Gases.

    PubMed

    Wu, Chien-Te; Anderson, Brandon M; Boyack, Rufus; Levin, K

    2015-12-11

    In this paper we follow the analysis and protocols of recent experiments, combined with simple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi gases. A key signature of quasi-condensation, which contains aspects of Berezinskiĭ-Kosterlitz-Thouless behavior, is a strong zero momentum peak in the pair momentum distribution. Importantly, this peak emerges at a reasonably well defined onset temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law decay are compatible with recent experiments throughout the continuum from BEC to BCS. PMID:26705613

  16. Two dimensional mixtures at water surface

    NASA Astrophysics Data System (ADS)

    Choudhuri, Madhumita; Datta, Alokmay

    2013-02-01

    Thiol capped gold nanoparticles (Au NPs) form a simple two dimensional (2D) liquid on water surface but this thin film is unstable under compression. Amphiphilic stearic acid (StA) molecules on water surface, on the other hand, form a complex and more stable 2D liquid. We have initiated a study on a mixture of StA and Au NPs in a monolayer through Surface Pressure (π) - Specific Molecular Area (A) isotherms and Brewster Angle Microscopy (BAM). A mixture of Stearic Acid and Au nanoparticles (10% by weight) produces a monolayer on water surface that acts as a 2D liquid with phases that are completely reversible with negligible hysteresis.

  17. Two-dimensional meniscus in a wedge

    SciTech Connect

    Kagan, M.; Pinczewski, W.V.; Oren, P.E.

    1995-03-15

    This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.

  18. Two-Dimensional Ground Water Transport

    SciTech Connect

    Steidl, Shirley

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturated with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.

  19. Two-dimensional crystallogenesis of transmembrane proteins.

    PubMed

    Mosser, G

    2001-07-01

    Two-dimensional crystallogenesis is a crucial step in the long road that leads to the determination of macromolecules structure via electron crystallography. The necessity of having large and highly ordered samples can hold back the resolution of structural works for a long time, and this, despite improvements made in electron microscopes or image processing. Today, finding good conditions for growing two-dimensional crystals still rely on either "biocrystallo-cooks" or on lucky ones. The present review presents the field by first describing the different crystals that one can encounter and the different crystallisation methods used. Then, the effects of different components (such as protein, lipids, detergent, buffer, and temperature) and the different methods (dialysis, hydrophobic adsorption) are discussed. This discussion is punctuated by correspondences made to the world of three-dimensional crystallogenesis. Finally, a guide for setting up 2D crystallogenesis experiments, built on the discussion mentioned before, is proposed to the reader. More than giving recipes, this review is meant to open up the discussions in this field. PMID:11163725

  20. Two-dimensional phonon transport in graphene.

    PubMed

    Nika, Denis L; Balandin, Alexander A

    2012-06-13

    Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experimentally that transport properties of phonons, i.e. energy dispersion and scattering rates, are substantially different in a quasi-two-dimensional system such as graphene compared to the basal planes in graphite or three-dimensional bulk crystals. The unique nature of two-dimensional phonon transport translates into unusual heat conduction in graphene and related materials. In this review, we outline different theoretical approaches developed for phonon transport in graphene, discuss contributions of the in-plane and cross-plane phonon modes, and provide comparison with available experimental thermal conductivity data. Particular attention is given to analysis of recent results for the phonon thermal conductivity of single-layer graphene and few-layer graphene, and the effects of the strain, defects, and isotopes on phonon transport in these systems. PMID:22562955

  1. Two-dimensional vortices in superconductors

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Halperin, W. P.; Guptasarma, Prasenjit; Hinks, D. G.; Mitrovi?, V. F.; Reyes, A. P.; Kuhns, P. L.

    2007-04-01

    Superconductors have two key characteristics: they expel magnetic field and they conduct electrical current with zero resistance. However, both properties are compromised in high magnetic fields, which can penetrate the material and create a mixed state of quantized vortices. The vortices move in response to an electrical current, dissipating energy and destroying the zero-resistance state. One of the central problems for applications of high-temperature superconductivity is the stabilization of vortices to ensure zero electrical resistance. We find that vortices in the anisotropic superconductor Bi2Sr2CaCu2O8+? (Bi-2212) have a phase transition from a liquid state, which is inherently unstable, to a two-dimensional vortex solid. We show that at high field the transition temperature is independent of magnetic field, as was predicted theoretically for the melting of an ideal two-dimensional vortex lattice. Our results indicate that the stable solid phase can be reached at any field, as may be necessary for applications involving superconducting magnets. The vortex solid is disordered, as suggested by previous studies at lower fields. But its evolution with increasing magnetic field exhibits unexpected threshold behaviour that needs further investigation.

  2. Energy harvesting from electric power lines employing the Halbach arrays

    NASA Astrophysics Data System (ADS)

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Lu, Caijiang; Yang, Aichao

    2013-10-01

    This paper proposes non-invasive energy harvesters to scavenge alternating magnetic field energy from electric power lines. The core body of a non-invasive energy harvester is a linear Halbach array, which is mounted on the free end of a piezoelectric cantilever beam. The Halbach array augments the magnetic flux density on the side of the array where the power line is placed and significantly lowers the magnetic field on the other side. Consequently, the magnetic coupling strength is enhanced and more alternating magnetic field energy from the current-carrying power line is converted into electrical energy. An analytical model is developed and the theoretical results verify the experimental results. A power of 566 ?W across a 196 k? resistor is generated from a single wire, and a power of 897 ?W across a 212 k? resistor is produced from a two-wire power cord carrying opposite currents at 10 A. The harvesters employing Halbach arrays for a single wire and a two-wire power cord, respectively, exhibit 3.9 and 3.2 times higher power densities than those of the harvesters employing conventional layouts of magnets. The proposed devices with strong response to the alternating currents are promising to be applied to electricity end-use environment in electric power systems.

  3. Energy harvesting from electric power lines employing the Halbach arrays.

    PubMed

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Lu, Caijiang; Yang, Aichao

    2013-10-01

    This paper proposes non-invasive energy harvesters to scavenge alternating magnetic field energy from electric power lines. The core body of a non-invasive energy harvester is a linear Halbach array, which is mounted on the free end of a piezoelectric cantilever beam. The Halbach array augments the magnetic flux density on the side of the array where the power line is placed and significantly lowers the magnetic field on the other side. Consequently, the magnetic coupling strength is enhanced and more alternating magnetic field energy from the current-carrying power line is converted into electrical energy. An analytical model is developed and the theoretical results verify the experimental results. A power of 566 ?W across a 196 k? resistor is generated from a single wire, and a power of 897 ?W across a 212 k? resistor is produced from a two-wire power cord carrying opposite currents at 10 A. The harvesters employing Halbach arrays for a single wire and a two-wire power cord, respectively, exhibit 3.9 and 3.2 times higher power densities than those of the harvesters employing conventional layouts of magnets. The proposed devices with strong response to the alternating currents are promising to be applied to electricity end-use environment in electric power systems. PMID:24182155

  4. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  5. Two-dimensional Inductive Position Sensing System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)

    2015-01-01

    A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.

  6. Two-dimensional informative array testing.

    PubMed

    McMahan, Christopher S; Tebbs, Joshua M; Bilder, Christopher R

    2012-09-01

    Array-based group-testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed-form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two-dimensional array testing in a heterogeneous population. We then propose two "informative" array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per-individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project. PMID:22212007

  7. From two-dimensional materials to heterostructures

    NASA Astrophysics Data System (ADS)

    Niu, Tianchao; Li, Ang

    2015-02-01

    Graphene, hexagonal boron nitride, molybdenum disulphide, and layered transition metal dichalcogenides (TMDCs) represent a class of two-dimensional (2D) atomic crystals with unique properties due to reduced dimensionality. Stacking these materials on top of each other in a controlled fashion can create heterostructures with tailored properties that offers another promising approach to design and fabricate novel electronic devices. In this report, we attempt to review this rapidly developing field of hybrid materials. We summarize the fabrication methods for different 2D materials, the layer-by-layer growth of various vertical heterostructures and their electronic properties. Particular interests are given to in-situ stack aforementioned 2D materials in controlled sequences, and the TMDCs heterostructures.

  8. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  9. Phonon hydrodynamics in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-01

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  10. Phonon hydrodynamics in two-dimensional materials.

    PubMed

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-01-01

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane. PMID:25744932

  11. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  12. Rationally synthesized two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Colson, John W.; Dichtel, William R.

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  13. Acidity of two-dimensional zeolites.

    PubMed

    Rybicki, Marcin; Sauer, Joachim

    2015-11-01

    Hybrid quantum mechanics:molecular mechanics (QM/MM) calculations of absolute deprotonation energies are performed with periodic boundary conditions for Brnsted sites of aluminosilicate bilayers with various Al/Si ratios (two-dimensional zeolite). The supercell method is applied and density functional theory is used. Much lower values are obtained (1042, 1069 and 1091 kJ mol(-1) for Al/Si = 1/63, 1/7 and 1/3, respectively) than those for bulk zeolites (1233 kJ mol(-1) for H-chabazite with Al/Si = 1/11). We ascribe the much lower deprotonation energy to the smaller effective dielectric constant (1.6-1.9) of an ultra-thin dielectric in a vacuum compared to that of the corresponding bulk systems (3.0 for H-chabazite), which leads to a better stabilization of the charge created upon deprotonation. PMID:26437870

  14. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (ESTSC)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  15. Two-dimensional Gel Electrophoresis (2DE)

    NASA Astrophysics Data System (ADS)

    K?odzi?ska, Ewa; Buszewski, Bogus?aw

    The chemical compounds, which are present in the environment, increasingly cause bad effects on health. The most serious effects are tumors and various mutations at the cellular level. Such compounds, from the analytical point of view, can serve the function of biomarkers, constituting measurable changes in the organism's cells and biochemical processes occurring therein. The challenge of the twenty-first century is therefore searching for effective and reliable methods of identification of biomarkers as well as understanding bodily functions, which occur in living organisms at the molecular level. The irreplaceable tool for these examinations is proteomics, which includes both quality and quantity analysis of proteins composition, and also makes it possible to learn their functions and expressions. The success of proteomics examinations lies in the usage of innovative analytical techniques, such as electromigration technique, two-dimensional electrophoresis in polyacrylamide gel (2D PAGE), liquid chromatography, together with high resolution mass spectrometry and bio-informatical data analysis. Proteomics joins together a number of techniques used for analysis of hundreds or thousands of proteins. Its main task is not the examination of proteins inside the particular tissue but searching for the differences in the proteins' profile between bad and healthy tissues. These differences can tell us a lot regarding the cause of the sickness as well as its consequences. For instance, using the proteomics analysis it is possible to find relatively fast new biomarkers of tumor diseases, which in the future will be used for both screening and foreseeing the course of illness. In this chapter we focus on two-dimensional electrophoresis because as it seems, it may be of enormous importance when searching for biomarkers of cancer diseases.

  16. Two-dimensional virtual impactors. Final report

    SciTech Connect

    Forney, L.J.; Ravenhall, D.G.

    1980-12-01

    Theoretical predictions using both potential flow analyses and solutions to Navier-Stokes equations are made for the operating characteristics of a two-dimensional virtual impactor. Experiments were performed with 2.5 ..mu..m, uranine tagged, di-octylphthalate (DOP) oil droplets for a wide range of prototype geometries to measure the magnitude of internal losses and to fully characterize the instrument response. The influence of geometry including the throat angle (38/sup 0/ less than or equal to ..beta../sub 0/ less than or equal to 58.2/sup 0/) and normalized void width (0.7 less than or equal to h/w less than or equal to 1.5) on the particle cutoff diameter, efficiency curve steepness and properties of the internal particle loss factor are presented for fixed instrument Reynolds numbers Re = 1540 and bleed flow f = 0.1. The theory, supported by trends in the empirical data, predicts that internal particle losses reduce to zero as the normalized void width increases to h/w = 1.4 +- .1 while the data show a minimum at h/w = 1.6 +- .1. Increasing the void width, however, is shown to substantially reduce the steepness of the particle efficiency curves. Visual observations of the onset of fluid separation for two-dimensional jets impinging upon a void were conducted with a scaled-up water model and correlated with theory. It was found that the limiting void width h/sub lim//w marking the onset of fluid instabilities peaked for an intermediate value of the fluid deflecting plate angle ..beta.. approx. = 80/sup 0/ with larger values of h/sub lim//w corresponding to smaller throat angles ..beta../sub 0/. The limiting void width h/sub lim//w also increased with larger bleed flows into the void. These instabilities may make it difficult to correlate experimental virtual impactor data with theory.

  17. Simplified Calculation Method for Magnetic Flux Density Distribution between Dual Halbach Arrays

    NASA Astrophysics Data System (ADS)

    Morishita, Mimpei; Yokoyama, Shuichi; Okuyama, Ryota

    Many software tools for magnetic field analysis give us distribution of magnetic flux density between Halbach arrays of permanent magnets. However, we need easier calculation tools in an early stage of development. This paper proposes an equivalent magnetic circuit method with high accuracy for field magnets provided with dual Halbach arrays.

  18. Analysis and design of air-cored Halbach array permanent magnet BDCM

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhui; Xu, Yanliang

    2006-11-01

    Aimed at the application of satellite attitude control/energy storage flywheel, outer-rotor air-cored permanent magnet brushless direct current machines (BDCM) with Halbach magnet array and the normal one are analyzed comparatively. A prototyped BDCM with Halbach array is designed and fabricated to verify the analysis and satisfy the performance demand of flywheel system.

  19. Implementations of two-dimensional liquid chromatography

    SciTech Connect

    Guiochon, Georges A; Marchetti, Nicola; Mriziq, Khaled S; Shalliker, R. Andrew

    2008-01-01

    Today scientists must deal with complex samples that either cannot be adequately separated using one-dimensional chromatography or that require an inordinate amount of time for separation. For these cases we need two-dimensional chromatography because it takes far less time to generate a peak capacity n{sub c} twice in a row than to generate a peak capacity n{sub c}{sup 2} once. Liquid chromatography has been carried out successfully on thin layers of adsorbents and along tubes filled with various adsorbents. The first type of separation sorts out the sample components in a physical separation space that is the layer of packing material. The analysis time is the same for all the components of the sample while their migration distance increases with decreasing retention. The resolution between two components having a certain separation factor (a) increases with increasing migration distance, i.e., from the strongly to the weakly retained compounds. In the second type of separation, the sample components are eluted from the column and separated in the time space, their migration distances are all the same while their retention times increase from the unretained to the strongly retained compounds. Separation efficiency varies little with retention, as long as the components are eluted from the column. We call these two types of separation the chromatographic separations in space (LC{sup x}) and the chromatographic separations in time (LC{sup t}), respectively. In principle, there are four ways to combine these two modes and do two-dimensional chromatographic separations, LC{sup t} x LC{sup t}, LC{sup x} x LC{sup t}, LC{sup t} x LC{sup x}, and LC{sup x} x LC{sup x}. We review, discuss and compare the potential performance of these combinations, their advantages, drawbacks, problems, perspectives and results. Currently, column-based combinations (LC{sup t} x LC{sup t}) are the most actively pursued. We suggest that the combination LC{sup x} x LC{sup t} shows exceptional promise because it permits the simultaneous second-dimension separations of all the fractions separated in the first-dimension, thus providing remarkable time saving.

  20. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the increase in accretion grows only linearly with the number of vortices.

  1. FPT Algorithm for Two-Dimensional Cyclic Convolutions

    NASA Technical Reports Server (NTRS)

    Truong, Trieu-Kie; Shao, Howard M.; Pei, D. Y.; Reed, Irving S.

    1987-01-01

    Fast-polynomial-transform (FPT) algorithm computes two-dimensional cyclic convolution of two-dimensional arrays of complex numbers. New algorithm uses cyclic polynomial convolutions of same length. Algorithm regular, modular, and expandable.

  2. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  3. Braid Entropy of Two-Dimensional Turbulence.

    PubMed

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  4. Approach for two-dimensional velocity mapping

    NASA Astrophysics Data System (ADS)

    Abado, Shaddy; Gordeyev, Stanislav; Jumper, Eric

    2013-07-01

    A method for extracting the convection speed and direction of aberrations present in wavefronts due to aero-optical turbulence over the pupil of a turret on the side of an airborne platform is addressed. The method is applied to data from the Airborne Aero-Optics Laboratory (AAOL). Such convection information is useful in designing feed-forward adaptive-optic approaches. The method makes use of a four-beam Malley probe technique derived by constructing a two-dimensional (2-D) local convective velocity-distribution over the beam's aperture. This technique is based on extending the analysis of the Notre-Dame-developed Malley probe. Two wavefront datasets (Azimuth 157 deg and Elevation 40 deg Azimuth 42 deg and Elevation 43 deg) from the AAOL are analyzed using the derived method, the first where the laser propagates through fully-separated flow and the second where the laser propagates through an attached-flow region. Finally, the 2-D proper orthogonal decomposition is applied to one in-flight measured dataset to determine the spatial requirements of deformable mirrors in an adaptive-optics system. The paper concludes with a discussion that points out the usefulness of the 2-D velocity-distributions in characterizing the various flow structures which convect over the aperture.

  5. Braid Entropy of Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-12-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.

  6. Two-dimensional magnetic colloids under shear.

    PubMed

    Mohorič, Tomaž; Dobnikar, Jure; Horbach, Jürgen

    2016-04-01

    Complex rheological properties of soft disordered solids, such as colloidal gels or glasses, inspire a range of novel applications. However, the microscopic mechanisms of their response to mechanical loading are not well understood. Here, we elucidate some aspects of these mechanisms by studying a versatile model system, i.e. two-dimensional superparamagnetic colloids in a precessing magnetic field, whose structure can be tuned from a hexagonal crystal to a disordered gel network by varying the external field opening angle θ. We perform Langevin dynamics simulations subjecting these structures to a constant shear rate and observe three qualitatively different types of material response. In hexagonal crystals (θ = 0°), at a sufficiently low shear rate, plastic flow occurs via successive stress drops at which the stress releases due to the formation of dislocation defects. The gel network at θ = 48°, on the contrary, via bond rearrangement and transient shear banding evolves into a homogeneously stretched network at large strains. The latter structure remains metastable after switching off of the shear. At θ = 50°, the external shear makes the system unstable against phase separation and causes a failure of the network structure leading to the formation of hexagonal close packed clusters interconnected by particle chains. At a microcopic level, our simulations provide insight into some of the mechanisms by which strain localization as well as material failure occur in a simple gel-like network. Furthermore, we demonstrate that new stretched network structures can be generated by the application of shear. PMID:26877059

  7. Two-dimensional Dirac signature of germanene

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Bampoulis, P.; van Houselt, A.; Zandvliet, H. J. W.

    2015-09-01

    The structural and electronic properties of germanene coated Ge2Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 and a buckling of 0.2 . The zigzag edges of germanene are reconstructed and display a 4 periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge2Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.

  8. An atlas of two-dimensional materials.

    PubMed

    Mir, Pere; Audiffred, Martha; Heine, Thomas

    2014-09-21

    The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls. PMID:24825454

  9. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ? x ? 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  10. Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Jonas, David

    2012-02-01

    Sensitive interference detection of the electric field of femtosecond four-wave mixing signals (stimulated photon echoes) at their point of origin in the sample can be used to record two-dimensional (2D) Fourier transform electronic spectra. In direct analogy to 2D nuclear magnetic resonance, 2D Fourier transform spectra have nearly homogeneous linewidths in each frequency dimension and sort the signal spectrum according to the initial excitation frequency. The initial excitation frequency information is stored in a robust population grating, so 2D spectra can be used to study both coherent and incoherent processes, and have revealed coherent aspects of energy transfer processes. Femtosecond 2D spectra also have the advantage of ``freezing out'' vibrational motions as inhomogeneities, raising interesting questions about what kinds of broadening can be rephased in 2D spectra recorded with stimulated photon echo pulse sequences. This talk will focus on coherent aspects of non-adiabatic electronic curve crossing and their manifestation in 2D electronic spectra.

  11. Two-dimensional optical fibre cantilever accelerometer

    NASA Astrophysics Data System (ADS)

    Li, Jun; Sun, J. N.; Miliar, M. M.; Dong, F. Z.; Maier, R. R. J.; Hand, D. P.; MacPherson, W. N.

    2015-09-01

    Focused Ion Beam (FIB) machining has been demonstrated to be capable of fabricating nano and micro scale elements onto optical fibres. In this paper we exploit FIB to fabricate core aligned 45 mirrors at the end of multi-core fibres (MCF). The resulting fibre is used as a component in a two dimensional optical fibre accelerometer. The mirror is produced using a two step process: first a scanning process is used to make a rough cut to define the overall mirror structure. This is followed by a polishing process to create an optical surface finish. The machined 45 mirror can be accurately aligned with optical fibre core, which avoids issues associated with the alignment of external turning mirror components. Proof-of-concept tests demonstrate the use of such a fibre as a two axis acceleration sensor that is interrogated interferometrically. The sensor operated between 0.5g and 4.5g with a cross talk of -24.3dB between axes.

  12. Two-dimensional dirac delta reconsidered

    NASA Astrophysics Data System (ADS)

    Schmeelk, John

    1994-08-01

    Distribution theory continues to be of significant importance in many branches of applied mathematics and especially within the research activities of theoretical and applied physicists. It is the belief of the author that the Dirac delta functional offers enormous impact in fostering advances within distribution theory together with its applications. Whenever one requires an example of a singular, ultra or new generalized function, a version of the Dirac delta satisfies that need. In this paper we have collected several very recent and important results for the Dirac delta and formulated them within a two-dimensional domain. We then go on and graph a three-dimensional version of the result implementing the software, Pro-Matlab. Within many branches of signal analysis the geometrical aspects of a particular mathematical concept are of paramount importance to the user. For example, when one implements a transform as a filter, the geometrical considerations give strong evidence of the utility of the filter for the particular application. We have also included a preliminary beginning for considering wavelet transforms applied to distributions.

  13. Epitaxial growth of two-dimensional stanene.

    PubMed

    Zhu, Feng-feng; Chen, Wei-jiong; Xu, Yong; Gao, Chun-lei; Guan, Dan-dan; Liu, Can-hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect. PMID:26237127

  14. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  15. Dynamics of two-dimensional dipole systems

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan

    2010-09-15

    Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.

  16. Single Molecule Approaches for Two Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Baker, Thomas; Guo, Shajun; Koh, Weon-Kyu; Makarov, Nikolay; Fiddler, Andrew; Robel, Istvan; Klimov, Victor

    2014-03-01

    A variety of two dimensional semiconductor nanostructures have been synthesized recently by a number of different groups. Of these, nanoplatelets made of a single to few layers of material have shown interesting promise due to confinement in only a single direction. The photophysics of these types of structures show large exciton binding energies and narrow emission widths in ensemble measurements. Only a few single molecule experiments have been reported in the literature and we hope to expand the insights that single molecule techniques can provide in the understanding of these new materials. Our group has recently extended our synthetic expertise gained from quantum dots into these 2D nanoplatelets including CdSe, MoS2 and graphene. Time correlated single photon counting experiments at the single molecule level provide information on the homogenous linewidths, quantum yield variations, and fluorescence lifetimes. Furthermore, two photon correlations at zero time delay allow us to confirm the single molecule nature of the emission and potentially determine biexciton quantum yields and lifetimes.

  17. Redox options in two-dimensional electrophoresis.

    PubMed

    Wait, R; Begum, S; Brambilla, D; Carabelli, A M; Conserva, F; Rocco Guerini, A; Eberini, I; Ballerio, R; Gemeiner, M; Miller, I; Gianazza, E

    2005-05-01

    Two-dimensional electrophoresis is usually run on fully reduced samples. Under these conditions even covalently bound oligomers are dissociated and individual polypeptide chains may be fully unfolded by both, urea and SDS, which maximizes the number of resolved components and allows their pI and M(r) to be most accurately evaluated. However, various electrophoretic protocols for protein structure investigation require a combination of steps under varying redox conditions. We review here some of the applications of these procedures. We also present some original data about a few related samples -- serum from four species: Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus -- which we run under fully unreduced and fully reduced conditions as well as with reduction between first and second dimension. We demonstrate that in many cases the unreduced proteins migrate with a better resolution than reduced proteins, mostly in the crowded 'alpha-globulin' area of pI 4.5-6 and M(r) 50-70 kDa. PMID:15744479

  18. Seismic isolation of two dimensional periodic foundations

    SciTech Connect

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  19. Two-dimensional detector of thermal neutrons

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Ganzha, G.; Ilyin, D.; Ivanov, E.; Kovalenko, S.; Krivshich, A.; Nadtochy, A.; Runov, V.

    2007-10-01

    A two-dimensional detector of thermal neutrons has been designed and constructed for neutron diffraction experiments at the St. Petersburg Nuclear Physics Institute. It is based on a multiwire proportional chamber (MWPC) with cathode strip delay line readout and has a sensitive area of 170×300 mm 2 and anode wire spacing is 4 mm. It operates with a gas mixture of 1.5 bar 3He+2 bar CF 4. To improve the gas purity by a few orders of magnitude, a new technology for fabrication of the detector's electrodes has been developed. An intrinsic resolution of 0.6 mm (FWHM) and a differential nonlinearity of ±5% are achieved. It was shown that the detector, whose efficiency is about 60% for 9 Å neutrons, has a resolution of 2.5 mm along the fine axis and about 4 mm for the perpendicular discrete axis. The dependence of the measured pulse height spectra from the applied high voltage and the electric field in the drift regions has been investigated. It turns out that for thermal neutrons the measured spectra are very similar to those obtained with proportional neutron counters filled with 10 bar 3He.

  20. Burgers approximation for two-dimensional flow past an ellipse

    NASA Technical Reports Server (NTRS)

    Dorrepaal, J. M.

    1982-01-01

    A motivation is given for studying Burgers flow and a solution technique is outlined which works equally well for Oseen or Burgers flow past a circular cylinder. The separation behind the cylinder, the drag experienced by the cylinder, and asymptotic behavior far from the cylinder are described. It is shown that the predictions of Burgers flow near the cylinder provide a substantial improvement over those of Oseen flow. Finally, the equations of motion for Burgers flow past an ellipse are formulated and solved.

  1. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798

  2. Fast, comprehensive two-dimensional liquid chromatography.

    PubMed

    Stoll, Dwight R; Li, Xiaoping; Wang, Xiaoli; Carr, Peter W; Porter, Sarah E G; Rutan, Sarah C

    2007-10-19

    The absolute need to improve the separating power of liquid chromatography, especially for multi-constituent biological samples, is becoming increasingly evident. In response, over the past few years, there has been a great deal of interest in the development of two-dimensional liquid chromatography (2DLC). Just as 1DLC is preferred to 1DGC based on its compatibility with biological materials we believe that ultimately 2DLC will be preferred to the much more highly developed 2DGC for such samples. The huge advantage of 2D chromatographic techniques over 1D methods is inherent in the tremendous potential increase in peak capacity (resolving power). This is especially true of comprehensive 2D chromatography wherein it is possible, under ideal conditions, to obtain a total peak capacity equal to the product of the peak capacities of the first and second dimension separations. However, the very long timescale (typically several hours to tens of hours) of comprehensive 2DLC is clearly its chief drawback. Recent advances in the use of higher temperatures to speed up isocratic and gradient elution liquid chromatography have been used to decrease the time needed to do the second dimension LC separation of 2DLC to about 20s for a full gradient elution run. Thus, fast, high temperature LC is becoming a very promising technique. Peak capacities of over 2000 and rates of peak capacity production of nearly 1 peak/s have been achieved. In consequence, many real samples showing more than 200 peaks with signal to noise ratios of better than 10:1 have been run in total times of under 30 min. This report is not intended to be a comprehensive review of 2DLC, but is deliberately focused on the issues involved in doing fast 2DLC by means of elevating the column temperature; however, many issues of broader applicability will be discussed. PMID:17888443

  3. Two-dimensional microfabricated sources for nanoelectrospray.

    PubMed

    Le Gac, Sverine; Arscott, Steve; Cren-Oliv, Ccile; Rolando, Christian

    2003-12-01

    The idea of a novel two-dimensional (2D) nanoelectrospray ionization emitter tip with the shape of a nib is explored here. This novel planar design is studied as an alternative to the needle-like standard emitter tips that suffer from a lack of reproducibility and robustness and from an inherent incompatibility with high-throughput analysis. The composition of the micro-nib sources is analogous to the working of a simple fountain pen, with a liquid reservoir linked to a micro-nib tip from which the sample is electrosprayed via a capillary slot. The micro-nib prototypes described here were fabricated using microtechnology techniques and using the epoxy-based negative photoresist SU-8. The resulting free-standing micro-nib structure was supported by a silicon wafer. We present here two series of such micro-nib sources, the latter series exhibiting improved characteristics such as a 8 micro m source width of the nib tip. They were tested in mass spectrometry experiments on an ion trap mass spectrometer (LCQ Deca XP+, Thermo Finnigan) using standard peptide samples having concentrations down to 1 micro M and with a high voltage (HV) supply around 1 kV for the second series of micro-nib sources. In addition to the stability of the spray, the obtained mass spectra showed the reliability of these sources for peptide analysis; the signal of the spectra was as intense and the signal-to-noise ratio (S/N) as high as that obtained with the use of standard emitter tips. PMID:14696205

  4. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30cm of soft tissue at 80, 100, 120, and 140kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  5. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  6. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Astrophysics Data System (ADS)

    Stremel, Paul M.

    1989-03-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  7. Two-dimensional materials and their prospects in transistor electronics

    NASA Astrophysics Data System (ADS)

    Schwierz, F.; Pezoldt, J.; Granzner, R.

    2015-04-01

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  8. Two-dimensional materials and their prospects in transistor electronics.

    PubMed

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided. PMID:25898786

  9. Experimental studies of the development of quasi-two-dimensional turbulence in stably stratified fluid

    NASA Astrophysics Data System (ADS)

    Yap, C. T.; van Atta, C. W.

    1993-10-01

    Quasi-two-dimensional turbulence was generated by towing an array of vertical cylinders through a tank which was filled with a two-layer stratified fluid. Sugar and Epsom salts were used, to give matching refractive indices for the two layers. The interface between the two layers was seeded with approximately 1000 neutrally buoyant particles. The evolution of this quasi-two-dimensional turbulence was visualized by photographing the fluorescent particles illuminated by a horizontal laser sheet traversing in the vertical direction. The three-dimensional particle velocity was obtained by digitizing the streaks. The evolution of the velocity correlations, length scales, one-dimensional and two-dimensional velocity and vorticity spectra were obtained for N = 5.72 s -1, N = 4.43 s -1, and N = 2.55 s -1 (where N is the Brunt-Visl frequency). The results showed the physical process of inverse energy cascading and the formation of dominant vortical structures under the influence of density stratification. Compared with idealized two-dimensional turbulence, the flow is highly dissipative at high N, as a result of the frictional dissipation between the interface and the unstratified layers.

  10. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (?CN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ?CN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Vortices of Two Dimensional Guiding Center Plasmas.

    NASA Astrophysics Data System (ADS)

    Ting, Antonio Chofai

    A system of two dimensional guiding center plasma in a square conducting boundary is used as a model to study the anomalous transport is magnetically confined plasma. An external gravitational force is introduced to simulate the curvature and gradient of the magnetic field. For finite boundaries, it is a Hamiltonian system with finite phase space and negative temperature states are allowed. The statistical equilibrium states of this system are described by the solutions of a Poisson's equation with self-consistently determined charge density. In the limit of zero gravity, it can be reduced to the sinh-Poisson equation (DEL)('2)u + (lamda)('2)sinh u = 0. Previous numerical efforts have found solutions with vortex structures. A novel method of generating general exact solutions to this nonlinear boundary value problem is presented. These solutions are given by. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). where E(,i)'s are constants and the dependence of (gamma)(,j)'s on x and y are given by a set of coupled first order nonlinear ordinary differential equations. These equations can be linearized to give u(x,y) in terms of Riemann theta functions u(x,y) = 2ln (THETA)(l + 1/2)(THETA)(l) . The phases l evolve linearly in x and y while nonlinear superposition is displayed in the solution u(x,y). The self-consistent Poisson's equation with gravity is studied numerically. Different branches of solutions are obtained and their relations to the zero gravity solutions are discussed. The thermodynamically most favored structure of the system carries the feature of a heavy ion vortex on top of the light electron vortex. Branches of solutions are found to merge into each other as parameters in the equations were smoothly varied. A critical value of gravitational force exists such that below which there is a possibility of hysteresis between different equilibrium states. With the help of the nonzero gravity solutions, we also have a clearer picture of the transition from negative to positive temperature states. Nonuniform positive temperature states with a heavy ion vortex at the bottom of the square boundary are also found when gravity is present.

  12. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals.

    PubMed

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  13. Two-dimensional discrete granular phononic crystal for shear wave control

    NASA Astrophysics Data System (ADS)

    Pichard, H.; Duclos, A.; Groby, J.-P.; Tournat, V.; Gusev, V. E.

    2012-10-01

    The phononic properties of a two-dimensional discrete phononic crystal, made of circular cross-section, infinitely long contacting elastic cylinders arranged on a simple square lattice, are described analytically. The significant interaction between shear and rotational waves is demonstrated in such granular phononic crystals. Controlling these interactions provides an opportunity for shear wave band design in metamaterials. The phononic band structure presents typical features of a square elementary cell of discrete phononic materials and also of continuous (composite) two-dimensional phononic materials with identical elementary cells. The theoretical analysis provides a clear physical explanation for the existence of a zero-group velocity point of the lowest-energy acoustic mode in particular directions of the phononic crystal and demonstrates the birefraction phenomenon.

  14. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  15. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  16. Dynamics of a single ring of vortices in two-dimensional trapped Bose-Einstein condensates

    SciTech Connect

    Kim, Jong-kwan; Fetter, Alexander L.

    2004-10-01

    The dynamics of a ring of vortices in two-dimensional Bose-Einstein condensates (with and without an additional vortex at the center) is studied for (1) a uniform condensate in a rigid cylinder and (2) a nonuniform trapped condensate in the Thomas-Fermi limit. The sequence of ground states (within these single-ring configurations) is determined as a function of the external rotation frequency by comparing the free energy of the various states. For each ground state, the Tkachenko-like excitations and the associated dynamical stability are analyzed.

  17. Quantitative, single shot, two-dimensional spontaneous Raman measurements for fluid mechanics and engine applications

    NASA Astrophysics Data System (ADS)

    Kyritsis, Dimitrios Constantinou

    Spontaneous Raman Scattering was used for quantitative, two-dimensional, single-shot measurements of species concentration in optically accessible confinements and in an experimental single-cylinder internal combustion engine. The study comprised three parts. In the first part, the technique was used for methane concentration measurements in a laminar jet issuing into compressed nitrogen (10 bar, 293 K). The injection Reynolds number was 550. Initial results showed unexpected structures in the acquired concentration profiles. Thus, the steadiness of the laminar flow was confirmed with high speed shadowgraph movies and laser induced fluorescence measurements. Eventually, it was proven that the structures were due to characteristics of the camera system. A technique was then devised for the proper acquisition and processing of data and spatial resolution of 500 mum was achieved. Methane number density equal to 12% of the number density of pure methane (0.247E+26 molecules/msp3) was then measured with a signal-to-noise ratio of approximately 3. The measurements were compared with the results of direct numerical simulation of the flow field. In the second part, measurements in a laminar hydrogen jet were taken. Because of the reduced Raman signal of hydrogen, the incident laser power was increased by installing the pressurized chamber within the laser cavity. This yielded an increase in power by a factor of 2.5. For the measurement of the laser sheet intensity in the laser cavity, insertion of a fluorescent dye cell and Rayleigh scattering were used and evaluated comparatively. The precise location of the waist of the laser sheet was determined by trial and error. The spatial resolution of the measurements was 650 mum and a number density of 0.371E+26 hydrogen molecules/msp3 was measured with a signal-to-noise ratio of 3. The measurements were again compared with results of direct numerical simulation. In the third part, the feasibility of two-dimensional single-shot Spontaneous Raman measurements in an engine cylinder was established. Measurements of methane concentration after direct injection in the cylinder of an experimental single-cylinder engine were taken. The engine was not fired to avoid laser induced incandescence interference. The spatial resolution was limited to 800 mum by the thickness of the laser sheet. Fast mixing of the methane jet was documented but a precise evaluation of the equivalence ratio was beyond the resolution of this first attempt. Finally, existing hardware for data acquisition and algorithms for two dimensional data reduction were reviewed and recommendations were made for the extraction of quantitative information from two-dimensional, single-shot Spontaneous Raman signals which are weak and noisy.

  18. Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems

    NASA Astrophysics Data System (ADS)

    Cheng, Samuel S. M.; Li, Lie-Ming; Chan, C. T.; Zhang, Z. Q.

    1999-02-01

    It has recently been demonstrated that two-dimensional photonic band gaps can be realized in systems comprising of a quasiperiodic arrangement of dielectric cylinders. We show that waveguides crafted out of such photonic ``quasicrystals'' can be used to guide light around sharp corners, just as in the case of periodic photonic band-gap systems, but the quasiperiodic systems tend to be more frequency selective. Because of the absence of translational symmetry, these quasiperiodic photonic band-gap structures also display richer defect properties. Spectral gaps for both the TM and TE polarizations in the same frequency range can be realized in metallodielectric configurations.

  19. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  20. Single step etched two dimensional grating coupler based on the SOI platform.

    PubMed

    Zou, Jinghui; Yu, Yu; Zhang, Xinliang

    2015-12-14

    We design and demonstrate a single step etched two dimensional grating coupler (2D GC) based on the silicon-on-insulator (SOI) platform using subwavelength cylinders. Taking the lag effect into consideration, the 2D GC is manufactured in the same lithography and etching processes with the strip waveguide. The measured coupling loss of the proposed 2D GC is -6.0 dB, which is comparable with conventional shallowly etched 2D GC, realizing a fabrication simplification without performance degradation. PMID:26699038

  1. Control of Spin Wave Band Structure and Propagation in Two-Dimensional Magnonic Crystals

    NASA Astrophysics Data System (ADS)

    Sietsema, Glade; Flatt, Michael E.

    2015-03-01

    We have studied the properties of spin waves in two-dimensional magnonic crystals consisting of a magnetic material arranged in a lattice of cylinders and embedded in a second magnetic material. Dispersion curves, linewidths, and spin wave propagation patterns were obtained from the Landau-Lifshitz-Gilbert equation using the plane wave expansion method. We have examined how these results are affected by various parameters including the shape of the cylinders, the lattice structure, the material properties, and the spin-orbit interaction. Adjusting these values can open or close band gaps and drastically shift the frequency range of the band structure. The spin wave propagation patterns were found to exhibit high directionality dependent on the excitation frequency and can also be modified with the aforementioned parameters. This work was supported in part by DARPA/MESO and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  2. Resonant state expansion applied to two-dimensional open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2013-04-01

    The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as an unperturbed system, and its Green's function is shown to contain a cut in the complex frequency plane, which is included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film, and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for the thin-wire perturbation are shown to reproduce an approximative analytical solution.

  3. Lie algebra contractions on two-dimensional hyperboloid

    SciTech Connect

    Pogosyan, G. S. Yakhno, A.

    2010-03-15

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E{sub 2} and eight on E{sub 1,1}. The text was submitted by the authors in English.

  4. Digital watermarking method using a two-dimensional barcode

    NASA Astrophysics Data System (ADS)

    Jeon, Seong-Goo; Choi, Kyoung-Ho; Park, Chan-Won; Kim, Il-Hwan

    2005-12-01

    This paper proposed a digital watermarking method using a two-dimensional bar code. In general, one-dimensional bar code was just a key that can access detailed information to the host computer database. But a two-dimensional bar code is a new technology capable of holding relatively large amounts of data compared to the conventional one-dimensional bar code. The study used Data Matrix that is the most widely used among the many kinds of two-dimensional bar code. The experimental results show a similarity of the embedded and extracted two-dimensional watermark.

  5. A low frequency vibration energy harvester using dual Halbach array suspended in magnetic springs

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2015-12-01

    An electromagnetic (EM) low frequency vibration energy harvester is newly developed based on dual Halbach array which is suspended in two magnetic springs. Each Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. With the goal of higher power generation in low amplitude and low frequency vibrations, the magnetic structures (both the dual Halbach array and the magnetic springs) were optimized in terms of operating frequency and power density. A prototype was fabricated and tested. It is capable of delivering maximum 1.09mW average power to 44? optimum load at 11Hz resonant frequency and 0.5g acceleration. The prototype device offers 33.4?Wcm-3 average power density which is much higher than recently reported electromagnetic energy harvesters.

  6. Torque analysis and measurements of a permanent magnet type Eddy current brake with a Halbach magnet array based on analytical magnetic field calculations

    NASA Astrophysics Data System (ADS)

    Park, Min-Gyu; Choi, Jang-Young; Shin, Hyeon-Jae; Jang, Seok-Myeong

    2014-05-01

    This paper presents the torque analysis and measurements of a permanent magnet (PM) type eddy current brake (ECB) with a Halbach magnet array based on analytical magnetic field calculations. On the basis of a magnetic vector potential and using a two-dimensional (2D) polar coordinate system, the analytical solution for magnetic flux density, including the eddy current reaction is evaluated. Based on these solutions, the magnetic torque is also determined analytically. A 2D finite element analysis is employed to validate the method used. Practical issues in the analytical study of the PM type ECBs, such as the maximum braking torque, the required rotor speed, and the segment-dependent, are fully discussed. Finally, the braking torque as a function of the rotor speed is measured to verify the results of the analytical study.

  7. Flow mediated interactions between two cylinders at finite Re numbers

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Mimeau, Chloe; Tchieu, Andrew A.; Koumoutsakos, Petros

    2012-04-01

    We present simulations of two interacting moving cylinders immersed in a two-dimensional incompressible, viscous flow. Simulations are performed by coupling a wavelet-adapted, remeshed vortex method with the Brinkman penalization and projection approach. This method is validated on benchmark problems and applied to simulations of a master-slave pair of cylinders. The master cylinder's motion is imposed and the slave cylinder is let free to respond to the flow. We study the relative role of viscous and inertia effects in the cylinders interactions and identify related sharp transitions in the response of the slave. The observed differences in the behavior of cylinders with respect to corresponding potential flow simulations are discussed. In addition, it is observed that in certain situations the finite size of the slave cylinders enhances the transport so that the cylinders are advected more effectively than passive tracers placed, respectively, at the same starting position.

  8. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGESBeta

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore »2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  9. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Tokumoto, T.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of the 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.

  10. Single-sided mobile NMR with a Halbach magnet.

    PubMed

    Chang, Wei-Hao; Chen, Jyh-Horng; Hwang, Lian-Pin

    2006-10-01

    A single-sided mobile NMR apparatus with a small Halbach magnet was constructed for the first time. It is lightweight, compact and exhibits good sensitivity. The weight of the device is only 2 kg, and the NMR signal of the pencil eraser block can be detected in one shot using the device. This study describes the characteristics of this instrument, including the profile of static magnetic flux density, B0, the sensitivity in the depth direction and its effectiveness in one-dimensional profiling. Its usefulness in differentiating soft materials and evaluating the extent of damage of a material is demonstrated based on T2 relaxation data. The moisture absorbance also can be observed from the increase of the echo amplitude of the NMR spin echo signal. PMID:16997080

  11. Experiments on Inductive Magnetic Levitation with a Circular Halbach Array

    NASA Astrophysics Data System (ADS)

    Bean, Ian; Goncz, Doug; Raymer, Austin; Specht, Jason; Zalles, Ricardo; Majewski, Walerian

    2013-03-01

    Using a ring Halbach array, we are investigating a repulsive levitating force and a drag force acting on the magnet from a ring of inductors rotating below the magnet. After measuring induced currents, voltages and magnetic fields in the individual inductors (in the form of short solenoids), we investigated the dependence of lift/drag forces on the speed of relative rotation. The ratio of lift to drag increases with the angular velocity, as expected from a related theory of the induction effects in a linear motion. We are experimenting with the shape and density of inductors, and their material, in an attempt to maximize the lift at a minimal velocity of rotation. Eventually this design could have applications as frictionless bearings or as frictionless gear in a wide range of systems, especially in machinery that cannot be easily accessed.

  12. Beginning Introductory Physics with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable

  13. Terahertz rectification by periodic two-dimensional electron plasma

    SciTech Connect

    Popov, V. V.; Saratov State University, Saratov 410012

    2013-06-24

    The physics of terahertz rectification by periodic two-dimensional electron plasma is discussed. Two different effects yielding terahertz rectification are studied: the plasmonic drag and plasmonic ratchet. Ultrahigh responsivity of terahertz rectification by periodic two-dimensional electron plasma in semiconductor heterostructures and graphene is predicted.

  14. Beginning Introductory Physics with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  15. A two-dimensional Segmented Boundary Algorithm for complex moving solid boundaries in Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khorasanizade, Sh.; Sousa, J. M. M.

    2016-03-01

    A Segmented Boundary Algorithm (SBA) is proposed to deal with complex boundaries and moving bodies in Smoothed Particle Hydrodynamics (SPH). Boundaries are formed in this algorithm with chains of lines obtained from the decomposition of two-dimensional objects, based on simple line geometry. Various two-dimensional, viscous fluid flow cases have been studied here using a truly incompressible SPH method with the aim of assessing the capabilities of the SBA. Firstly, the flow over a stationary circular cylinder in a plane channel was analyzed at steady and unsteady regimes, for a single value of blockage ratio. Subsequently, the flow produced by a moving circular cylinder with a prescribed acceleration inside a plane channel was investigated as well. Next, the simulation of the flow generated by the impulsive start of a flat plate, again inside a plane channel, has been carried out. This was followed by the study of confined sedimentation of an elliptic body subjected to gravity, for various density ratios. The set of test cases was completed with the simulation of periodic flow around a sunflower-shaped object. Extensive comparisons of the results obtained here with published data have demonstrated the accuracy and effectiveness of the proposed algorithms, namely in cases involving complex geometries and moving bodies.

  16. Method of integral equations and an extinction theorem for two-dimensional problems in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Ghiner, A. V.; Surdutovich, G. I.

    1994-07-01

    An approach using the generalized method of integral equations by substitution of the variables in the integral equation is applied to two- and quasi-two-dimensional systems. As a result, the connection between the integral and Maxwell equations as well as an extinction theorem for this case are established. The technique developed may be applied to any composite medium with a columnlike mesostructure. By use of the elementary cylinder radiator (``mesoscopic atom'') concept we reduce the problem of finding the optical properties of such media to the calculation of the susceptibility of a dense two-dimensional gas. The calculated optical anisotropy depends dramatically not only on the concentration but also on the form of the inclusions (mesostructure). Our calculations of the dielectric permittivity tensor for a two-dimensional composite medium with wire mesostructure show excellent agreement with the experimental measurements of the long-wavelength dielectric constants for two orthogonal polarizations in a photonic crystal made of dielectric rods [W. M. Robertson et al., J. Opt. Soc. Am. B 10, 322 (1993)].

  17. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array

    NASA Astrophysics Data System (ADS)

    iguez, J.; Raposo, V.

    2010-05-01

    The design and analysis of a small prototype of a magnetic levitation system at low-speed using a Halbach-type magnet array is presented here. For that purpose, we have arranged a copper rim over a carbon fiber wheel, which is driven by an electric motor in presence of the magnet array, in such a manner that allows performing the experiment readily. The analysis of the system is undertaken under a two-dimensional (2D)-approach which permits computing and extending the study of our model to higher speeds. Our work is completed with a series of experimental measurements of lift and drag forces for different circumstances. Initially, the drag force is significant but after the compensation speed (when both forces balance) it slowly decreases. Conversely, the lift force becomes progressively bigger in such a manner that it attains quickly noteworthy values. We observe that the theoretical compensation speed is always minor than the experimental one and that the measured values for both forces are slightly smaller than the expected, although the main features of the experiment are well matched by our numerical simulation.

  18. Two-dimensional instantons with bosonization and physics of adjoint two-dimensional QCD

    NASA Astrophysics Data System (ADS)

    Smilga, A. V.

    1996-12-01

    We evaluate partition functions ZI in topologically nontrivial (instanton) gauge sectors in the bosonized version of the Schwinger model and in a gauged WZNW model corresponding to two-dimensional QCD (QCD2) with adjoint fermions. We show that the bosonized model is equivalent to the fermion model only if a particular form of the WZNW action with a gauge-invariant integrand is chosen. For the exact correspondence, it is necessary to integrate over the ways the gauge group SU(N)/ZN is embedded into the full O(N2-1) group for the bosonized matter field. For even N, one should also take into account the contributions of both disconnected components in O(N2-1). In that case, ZI~mn0 for small fermion masses where 2n0 coincides with the number of fermion zero modes in a particular instanton background. The Taylor expansion of ZI/mn0 in mass involves only even powers of m, as it should. The physics of adjoint QCD2 is discussed. We argue that, for odd N, the discrete chiral symmetry Z2⊗Z2 present in the action is broken spontaneously down to Z2 and the fermion condensate <λ¯λ>0 is formed. The system undergoes a first order phase transition at Tc=0 so that the condensate is zero at an arbitrary small temperature. It is not yet quite clear what happens for even N>=4.

  19. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    SciTech Connect

    Paul, J.; Dey, P.; Karaiskaj, D.; Tokumoto, T.; Hilton, D. J.; Reno, J. L.

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  20. Dynamics of two-dimensional and quasi-two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Sung, Bong June; Yethiraj, Arun

    2013-06-01

    The dynamic properties of dense two-dimensional (2D) polymer melts are studied using discontinuous molecular dynamics simulations. Both strictly 2D and quasi-2D systems are investigated. The strictly 2D model system consists of a fluid of freely jointed tangent hard disc chains. The translational diffusion coefficient, D, is strongly system size dependent with D ln L where L is the linear dimension of the square simulation cell. The rotational correlation time, ?rot, is, however, independent of system size. The dynamics is consistent with Rouse behavior with D/ln L N-1 and ?rot N2 for all area fractions. Analysis of the intermediate scattering function, Fs(k, t), shows that the dynamics becomes slow for N = 256 and the area fraction of 0.454 and that there might be a glass transition for long polymers at sufficiently high area fractions. The polymer mobility is not correlated with the conformation of the molecules. In the quasi-2D system hard sphere chains are confined between corrugated surfaces so that chains cannot go over each other or into the surfaces. The conformational properties are identical to the 2D case, but D and ?rot are independent of system size. The scaling of D and ?rot with N is similar to that of strictly 2D systems. The simulations suggest that 2D polymers are never entangled and follow Rouse dynamics at all densities.

  1. Two-Dimensional Nanoparticle Supracrystals: A Model System for Two-Dimensional Melting.

    PubMed

    Kim, Jin Young; Kwon, S Joon; Chang, Jae-Byum; Ross, Caroline A; Hatton, T Alan; Stellacci, Francesco

    2016-02-10

    In a Langmuir trough, successive compression cycles can drive a two-dimensional (2D) nanoparticle supracrystal (NPSC) closer to its equilibrium structure. Here, we show a series of equilibrated 2D NPSCs consisting of gold NPs of uniform size, varying solely in the length of their alkanethiol ligands. The ordering of the NPSC is governed by the ligand length, thus providing a model system to investigate the nature of 2D melting in a system of NPs. As the ligand length increases the supracrystal transitions from a crystalline to a liquid-like phase with evidence of a hexatic phase at an intermediate ligand length. The phase change is interpreted as an entropy-driven phenomenon associated with steric constraints between ligand shells. The density of topological defects scales with ligand length, suggesting an equivalence between ligand length and temperature in terms of melting behavior. On the basis of this equivalence, the experimental evidence indicates a two-stage 2D melting of NPSCs. PMID:26756789

  2. Third sound in one and two dimensional modulated structures

    SciTech Connect

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-02-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction.

  3. Two-dimensional Minkowski causal automorphisms and conformal maps

    NASA Astrophysics Data System (ADS)

    Burgos, Juan Manuel

    2013-02-01

    Treating the two-dimensional Minkowski space as a Wick rotated version of the complex plane, we characterize the causal automorphisms in the two-dimensional Minkowski space as the Märzke-Wheeler maps of a certain class of observers. We also characterize the differentiable causal automorphisms of this space as the Minkowski conformal maps whose restriction to the time axis belongs to the class of observers mentioned above. We answer a recently raised question about whether causal automorphisms are characterized by their wave equation. As another application of the theory, we give a proper time formula for accelerated observers which solves the twin paradox in two-dimensional Minkowski spacetime.

  4. Analysis and modeling of the EDS Maglev system based on the Halbach permanent magnet array

    NASA Astrophysics Data System (ADS)

    Han, Qinghua

    Electro-dynamic suspension (EDS) Magnetic levitation (Maglev) with its advantage in maintenance, safety, efficiency, speed, and noise is regarded as a leading candidate for the next generation transportation/space launch assist system. The Halbach array due to its unique magnetic field feature has been widely used in various applications. The EDS system using Halbach arrays leads to the potential EDS system without super-conductor (SC) technology. In this thesis, the Halbach array magnetic field and the dynamics of a novel Halbach array EDS Maglev system were considered. The practical Halbach array magnetic field was analyzed using both a Fourier series approach and the finite element method (FEM). In addition, the optimal Halbach array geometry was derived and analyzed. A novel active magnetic array was introduced and used in the Halbach array EDS Maglev configuration. Furthermore, since the system is self-regulated in lateral, roll, pitch, and yaw directions, the control was simplified and can be implemented electronically. The dynamic stability analysis and simulation results showed that the system is marginally stable and a control mechanism is needed for stability and ride comfort control. The six degree of freedom (DOF) dynamics, and the vehicle's mass center offset effects on those dynamics were investigated with multiple passive and active magnetic forces. The results indicated that the vehicle's mass center offset has a strong effect on the dynamics of the Maglev system due to the uniqueness of the magnetic force and also that the mass center offset can cause Maglev oscillations at the take off stage. In order to guarantee the dynamic stability and ride comfort of the Maglev system, an optimized active damping and a linear quadratic regulator (LQR) control were developed. Finally, the simulation confirmed the effectiveness of the proposed multi-input and multi-output (MIMO) control designs.

  5. Enhancement of polarizabilities of cylinders with cylinder-slab resonances

    PubMed Central

    Xiao, Meng; Huang, Xueqin; Liu, H.; Chan, C. T.

    2015-01-01

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much brighter is actually closely related to the reverse effect known in the literature as cloaking by anomalous resonance which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder. PMID:25641391

  6. Enhancement of polarizabilities of cylinders with cylinder-slab resonances.

    PubMed

    Xiao, Meng; Huang, Xueqin; Liu, H; Chan, C T

    2015-01-01

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much "brighter" is actually closely related to the reverse effect known in the literature as "cloaking by anomalous resonance" which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder. PMID:25641391

  7. Pathway toward large two-dimensional hexagonally patterned colloidal nanosheets in solution.

    PubMed

    Ni, Bo; Huang, Mingjun; Chen, Ziran; Chen, Yingchao; Hsu, Chih-Hao; Li, Yiwen; Pochan, Darrin; Zhang, Wen-Bin; Cheng, Stephen Z D; Dong, Xue-Hui

    2015-02-01

    We report the solution self-assembly of an ABC block terpolymer consisting of a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer tail tethered to a fluorinated polyhedral oligomeric silsesquioxane (FPOSS) cage in 1,4-dioxane/water. With increasing water content, abundant unconventional morphologies, including circular cylinders, two-dimensional hexagonally patterned colloidal nanosheets, and laterally patterned vesicles, are sequentially observed. The formation of toroids is dominated by two competing free energies: the end-cap energy of cylinders and the bending energy to form the circular structures. Incorporating the superhydrophobic FPOSS cages enhances the end-cap energy and promotes toroid formation. Lateral aggregation and fusion of the cylinders results in primitive nanosheets that are stabilized by the thicker rims to partially release the rim-cap energy. Rearrangement of the parallel-aligned FPOSS cylindrical cores generates hexagonally patterned nanosheets. Further increasing the water content induces the formation of vesicles with nanopatterned walls. PMID:25590361

  8. CHARACTERISTICS OF TWO-DIMENSIONAL PARTICLE EDDY DIFFUSION INOFFICE SPACE

    EPA Science Inventory

    The paper discusses the development of a two-dimensional turbulentkinetic energy - dissipation rate (k-epsilon) turbulence model inthe form of vorticity and stream functions. his turbulence modelprovides the distribution of turbulent kinematic viscosity, used tocalculate the effe...

  9. Defect configurations in a two-dimensional classical Wigner crystal

    NASA Astrophysics Data System (ADS)

    Price, R.; Platzman, P. M.

    1991-08-01

    We have calculated using a Monte Carlo algorithm, the configuration and energy of vacancies in a classical two-dimensional Wigner crystal. We find, for our 224-electron system, that asymmetric vacancies have the lowest energies.

  10. A two-dimensional Wigner crystal (Review Article)

    NASA Astrophysics Data System (ADS)

    Monarkha, Yu. P.; Syvokon, V. E.

    2012-12-01

    The current state of theoretical and experimental studies of the Wigner crystallization of a two-dimensional electron gas is reviewed. The Wigner crystal (WC) has first been observed experimentally in a two-dimensional electron system on the surface of liquid helium in 1979. This success was favored by the exceptional purity of the free surface of superfluid liquid and the ability to fairly accurately describe the polaronic deformation phenomena accompanying the crystallization of electrons. Very pure samples of heterostructures (GaAs/GaAlAs) and strong magnetic fields, making easier the localization of electrons in a conducting layer, were necessary in order to observe the Wigner crystallization in semiconductor two-dimensional electron systems This review discusses the basic properties of a two-dimensional WC, common to the both above-mentioned electronic systems, and also major advances in the study of transport properties of WC caused by response of the environment on motion of the electron lattice.

  11. Difficulties that Students Face with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Mihas, P.; Gemousakakis, T.

    2007-01-01

    Some difficulties that students face with two-dimensional motion are addressed. The difficulties addressed are the vectorial representation of velocity, acceleration and force, the force-energy theorem and the understanding of the radius of curvature.

  12. Two-dimensional materials: Not just a phase

    NASA Astrophysics Data System (ADS)

    Phillips, Philip W.

    2016-03-01

    In some two-dimensional materials, there's a puzzling intermediate metallic phase between superconducting and insulating states. Experiments on ultraclean crystalline samples suggest this metallic phase could be bosonic.

  13. Model of a Negatively Curved Two-Dimensional Space.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1995-01-01

    Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)

  14. Near-Surface Geophysics: Two-Dimensional Resistivity

    USGS Multimedia Gallery

    USGS hydrologist conducts a two-dimensional (2D) resistivity survey to investigate and characterize the shallow subsurface. The survey was conducted as part of an applied research effort by the USGS Office of Groundwater Branch of Geophysics in 2006....

  15. Spin-imbalanced quasi-two-dimensional Fermi gases.

    PubMed

    Ong, W; Cheng, Chingyun; Arakelyan, I; Thomas, J E

    2015-03-20

    We measure the density profiles for a Fermi gas of (6)Li containing N(1) spin-up atoms and N(2) spin-down atoms, confined in a quasi-two-dimensional geometry. The spatial profiles are measured as a function of spin imbalance N(2)/N(1) and interaction strength, which is controlled by means of a collisional (Feshbach) resonance. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a true two-dimensional system. We find that the data for normal-fluid mixtures are reasonably well fit by a simple two-dimensional polaron model of the free energy. Not predicted by the model is a phase transition to a spin-balanced central core, which is observed above a critical value of N(2)/N(1). Our observations provide important benchmarks for predictions of the phase structure of quasi-two-dimensional Fermi gases. PMID:25839246

  16. String & Sticky Tape Experiments: Two-Dimensional Collisions Using Pendulums.

    ERIC Educational Resources Information Center

    Edge, R. D.

    1989-01-01

    Introduces a method for two-dimensional kinematics measurements by hanging marbles with long strings. Describes experimental procedures for conservation of momentum and obtaining the coefficient of restitution. Provides diagrams and mathematical expressions for the activities. (YP)

  17. Vibrational Anharmonicities Revealed by Coherent Two-Dimensional Infrared Spectroscopy

    SciTech Connect

    Golonzka, O.; Khalil, M.; Demirdo''ven, N.; Tokmakoff, A.

    2001-03-05

    Two-dimensional infrared photon echo spectroscopy has been used to describe the anharmonic nuclear potential of two coupled molecular vibrations. The two-dimensional spectrum shows diagonal and off-diagonal features, each composed of two peaks. The splitting between these peaks is directly related to the anharmonicity, while the relative amplitude of the diagonal and off-diagonal features describes the projection angle between interacting dipoles.

  18. Supercurrent reversal in two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zyuzin, Alexander; Alidoust, Mohammad; Klinovaja, Jelena; Loss, Daniel

    2015-11-01

    We calculate a supercurrent across a two-dimensional topological insulator subjected to an external magnetic field. When the edge states of a narrow two-dimensional topological insulator are hybridized, an external magnetic field can close the hybridization gap, thus driving a quantum phase transition from insulator to semimetal states of the topological insulator. We find a sign reversal of the supercurrent at the quantum phase transition revealing intrinsic properties of topological insulators via the Josephson effect.

  19. Two-dimensional hydrodynamic model of St. Lucie Estuary

    SciTech Connect

    Hu, G.G.

    1999-07-01

    A two-dimensional hydrodynamic model of St. Lucie Estuary was developed to assess the impact of drainage canal discharge and storm water runoff. Water surface elevation, two-dimensional velocity field and salinity are collected during 1998--1998 ENSO episode. The data sets cover an eight months period that includes both wet ad dry weather conditions. The model has been applied to St. Lucie Estuary salinity study. It will also provide flow fields to a water quality model.

  20. Observation of two-dimensional exciton-phonon quasibound states

    NASA Astrophysics Data System (ADS)

    Pelekanos, N. T.; Haas, H.; Magnea, N.; Belitsky, V. I.; Cantarero, A.

    1997-10-01

    We demonstrate the existence of robust exciton-phonon quasibound states (EPQBS) in a two-dimensional semiconductor system, resulting from the binding of the e1h1 and e1h2 heavy-hole quantum-well excitons with an LO phonon. We show that increasing quantum confinement drastically weakens these two-dimensional EPQBS. A theoretical model including phonon confinement accounts qualitatively for our results.

  1. Light evolution in arbitrary two-dimensional waveguide arrays

    SciTech Connect

    Szameit, Alexander; Pertsch, Thomas; Dreisow, Felix; Nolte, Stefan; Tuennermann, Andreas; Peschel, Ulf; Lederer, Falk

    2007-05-15

    We introduce an analytical formula for the dynamics of light propagation in a two-dimensional waveguide lattice including diagonal coupling. A superposition of infinite arrays created by imaginary sources is used to derive an expression for boundary reflections. It is shown analytically that for large propagation distances the propagating field reaches uniformity. Furthermore, periodic field recovery is studied and discrete anomalous refraction and diffraction are investigated in arbitrary two-dimensional lattices.

  2. Nicked-sleeve interface for two-dimensional capillary electrophoresis

    PubMed Central

    Flaherty, Ryan J.; Huge, Bonnie J.; Bruce, Spencer M.; Dada, Oluwatosin O.; Dovichi, Norman J.

    2013-01-01

    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface. PMID:23702824

  3. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a 5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (?1 T), size (?2000 cm3), and number of elements (?36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ?5), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  4. A Hybrid Approach To Tandem Cylinder Noise

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  5. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  6. An Investigation of Two-Dimensional CAD Generated Models with Body Decoupled Cartesian Grids for DSMC

    SciTech Connect

    OTAHAL,THOMAS J.; GALLIS,MICHAIL A.; BARTEL,TIMOTHY J.

    2000-06-27

    This paper presents an investigation of a technique for using two-dimensional bodies composed of simple polygons with a body decoupled uniform Cmtesian grid in the Direct Simulation Monte Carlo method (DSMC). The method employs an automated grid pre-processing scheme beginning form a CAD geometry definition file, and is based on polygon triangulation using a trapezoid algorithm. A particle-body intersection time comparison is presented between the Icarus DSMC code using a body-fitted structured grid and using a structured body-decoupled Cartesian grid with both linear and logarithmic search techniques. A comparison of neutral flow over a cylinder is presented using the structured body fitted grid and the Cartesian body de-coupled grid.

  7. Computation of unsteady two-dimensional separated flow using hybrid mesh techniques

    NASA Astrophysics Data System (ADS)

    Dolan, P. S.; Graham, J. M. R.; Young, J. A.

    This paper presents computed results from two hybrid numerical methods which solve the two-dimensional Navier-Stokes equations for unsteady incompressible flow. The first method combines a finite element method for the flow in the inner region around the body with a discrete vortex method to represent the outer flow further away. The second method uses a viscous vortex-in-cell method for both inner and outer regions, but superimposes a fine body fitted mesh for the inner region onto a regular mesh to represent the outer region. Both methods have been used to compute the vortex streets which form behind bluff bodies, in the first case a circular cylinder and in the second a triangular vortex shedder in a duct.

  8. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-10-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  9. Two-dimensional alignment of imogolite on a solid surface.

    PubMed

    Park, Sungjin; Lee, Yunha; Kim, Bumjung; Lee, Jisun; Jeong, Youngdo; Noh, Jaegeun; Takahara, Atsushi; Sohn, Daewon

    2007-07-28

    Surface modified imogolite fiber, hydrated aluminium silicate that has the shape of a rigid hollow cylinder, was aligned with consistent nano spacing and was visualized by scanning tunneling microscopy. PMID:17622430

  10. Dynamical class of a two-dimensional plasmonic Dirac system.

    PubMed

    Silva, Érica de Mello

    2015-10-01

    A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass. PMID:26565207

  11. Dynamical class of a two-dimensional plasmonic Dirac system

    NASA Astrophysics Data System (ADS)

    Silva, rica de Mello

    2015-10-01

    A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.

  12. Complexity and efficient approximability of two dimensional periodically specified problems

    SciTech Connect

    Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.

    1996-09-01

    The authors consider the two dimensional periodic specifications: a method to specify succinctly objects with highly regular repetitive structure. These specifications arise naturally when processing engineering designs including VLSI designs. These specifications can specify objects whose sizes are exponentially larger than the sizes of the specification themselves. Consequently solving a periodically specified problem by explicitly expanding the instance is prohibitively expensive in terms of computational resources. This leads one to investigate the complexity and efficient approximability of solving graph theoretic and combinatorial problems when instances are specified using two dimensional periodic specifications. They prove the following results: (1) several classical NP-hard optimization problems become NEXPTIME-hard, when instances are specified using two dimensional periodic specifications; (2) in contrast, several of these NEXPTIME-hard problems have polynomial time approximation algorithms with guaranteed worst case performance.

  13. Two-dimensional magic Ag nanopucks on Pb quantum islands

    NASA Astrophysics Data System (ADS)

    Chiu, Y. P.; Huang, L. W.; Wei, C. M.; Chang, C. S.; Tsong, Tien T.

    2006-03-01

    Periodic patterns of electronic origin found on Pb quantum islands can be employed as the templates to grow self-organized nanopucks of various materials. Owing to a strong interaction existing between Ag and the template, nearly perfect two-dimensional arrays of Ag nanopucks can be grown from 70 K to 150K. Not only is the notable site-selected feature of Ag nanopucks observed on Pb islands but their size distribution also registers a remarkable abundance variation. Those nanopucks with significantly enhanced intensity are denoted as two dimensional magic Ag nanoclusters. Detailed calculations based on ab initio density functional theory have been made to illuminate how the size and shape effects related to electronic confinement influence the formation of two-dimensional metal nanostructures. Furthermore, when the Ag nanopuck grows to a certain size, the geometrical effect takes hold from the electronic effect as the major attribute, which drive the Ag nanopucks towards well defined hexagonal crystalline structures.

  14. Two dimensional convolute integers for machine vision and image recognition

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  15. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  16. A two-dimensional spin liquid in quantum kagome ice.

    PubMed

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-01-01

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials. PMID:26096331

  17. Hamiltonian formalism of two-dimensional Vlasov kinetic equation

    PubMed Central

    Pavlov, Maxim V.

    2014-01-01

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional RussoSmereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D.J.Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the RussoSmereka kinetic model is constructed. Simple hydrodynamic reductions are presented. PMID:25484603

  18. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  19. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  20. Magnet Guideways for Superconducting Maglevs: Comparison Between Halbach-Type and Conventional Arrangements of Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Del-Valle, Nuria; Sanchez, Alvaro; Navau, Carles; Chen, Du-Xing

    2011-01-01

    The characteristics of the permanent magnets composing the guideway in superconducting magnetic levitation devices are very important for their performance in terms of levitation force and stability. From a model based on minimizing the magnetic energy in the superconductor and considering realistic parameters of actual maglev devices, we calculate the levitation and guidance forces and stability arising from both conventional arrangements and recently proposed Halbach-like arrangements. When a comparison is carefully made under similar conditions, we conclude that not always complicated arrangements based on Halbach arrays bring significant improvements with respect to some simpler arrangements that also provide large force. These results may help improving the design of actual maglev devices.

  1. Two-dimensional photoelastic stress analysis of traumatized incisor.

    PubMed

    Topbasi, B; Gunday, M; Bas, M; Turkmen, C

    2001-01-01

    In this study, stress of traumatized incisor and the effect of stress on tooth and alveolar bone was studied with two-dimensional photoelasticity. Two homogeneous two-dimensional maxillary central incisor models were prepared. Loads were applied to the labial side of incisal edge and middle third of the crown at angles of 45 degrees and 90 degrees. It was observed that stress was increased on teeth and alveolar bone when load was applied 90 degrees on labial side of incisal edge. PMID:11445918

  2. Equilibrium state of a trapped two-dimensional Bose gas

    SciTech Connect

    Rath, Steffen P.; Yefsah, Tarik; Guenter, Kenneth J.; Cheneau, Marc; Desbuquois, Remi; Dalibard, Jean; Holzmann, Markus; Krauth, Werner

    2010-07-15

    We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional {sup 87}Rb Bose gas and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in situ measurements and quantum Monte Carlo simulations, which we attribute to a nonlinear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time of flight, taking advantage of their self-similarity in a two-dimensional expansion.

  3. A multiprocessor architecture for two-dimensional digital filters

    SciTech Connect

    Kim, J.H.; Alexander, W.E.

    1987-07-01

    In this paper, a generic computational primitive is developed for the implementation of any arbitrary order one-dimensional or two-dimensional FIR or IIR digital filter. This computational primitive can form the basis for a single chip processor for one-dimensional and two-dimensional digital signal processing. A multiprocessor architecture for real-time implementation of spatial domain filters is developed with each processing unit in the network implementing the computational primitive. This multiprocessor system has a simple control scheme, a simple interconnection network, a very high efficiency, and low data transfers and storage requirements. Thus, it avoids the bottlenecks associated with traditional parallel computers and multiprocessor systems.

  4. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    PubMed

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results. PMID:12443375

  5. New two dimensional position sensitive proportional detectors using charge division

    NASA Astrophysics Data System (ADS)

    Luther, G. G.; Cowan, P. L.; Henins, A.; Brennan, S.

    1986-05-01

    Several two dimensional position sensitive proportional counters have been built. The cathodes can encode the position of the event in one or two dimensions using capacitative charge division techniques; a backgammon configuration encodes in one dimension with anode encoding of the second dimension, or a new cathode pattern can be used to encode in two dimensions. Details of the construction and performance are given.

  6. Adiabatic single scan two-dimensional NMR spectrocopy.

    PubMed

    Pelupessy, Philippe

    2003-10-01

    New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020

  7. Microdiffraction applications utilizing a two-dimensional proportional detector.

    SciTech Connect

    Tissot, Ralph George, Jr.

    2003-02-01

    Two-dimensional proportional detectors with their faster data collection, large dynamic range, and more available information than point or linear proportional detectors make them ideal for microdiffraction analysis. The unique capabilities of these detectors coupled with a rotating anode source, capillary optics, and a variety of accessories allow for a wide range of applications.

  8. Two-dimensional superstrings and the supersymmetric matrix model

    NASA Astrophysics Data System (ADS)

    McGreevy, John; Murthy, Sameer; Verlinde, Herman

    2004-04-01

    We present evidence that the supersymmetric matrix model of Marinari and Parisi represents the world-line theory of N unstable D-particles in type II superstring theory in two dimensions. This identification suggests that the matrix model gives a holographic description of superstrings in a two-dimensional black hole geometry.

  9. Two-dimensional acceptance angles of a proustite upconverter

    NASA Astrophysics Data System (ADS)

    Koyanagi, K.; Mishima, T.; Sakuraba, I.; Hirayama, H.

    1983-01-01

    Two-dimensional acceptance angles of a proustite upconverter pumped by a Nd:YAG laser have been measured and compared with theoretical results for several phase-match conditions. A seven degree acceptance angle of infrared upconversion is obtained for a 9.4 mm long proustite crystal under a tangential phase-match condition. The experimental and theoretical results agree reasonably well.

  10. Exact two-dimensional superconformal R symmetry and c extremization.

    PubMed

    Benini, Francesco; Bobev, Nikolay

    2013-02-01

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals. PMID:23432232

  11. Two-dimensional optimization of free electron laser designs

    DOEpatents

    Prosnitz, Donald (Walnut Creek, CA); Haas, Roger A. (Pleasanton, CA)

    1985-01-01

    Off-axis, two-dimensional designs for free electron lasers that maintain correspondence of a light beam with a "synchronous electron" at an optimal transverse radius r>0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  12. Two-dimensional optimization of free-electron-laser designs

    DOEpatents

    Prosnitz, D.; Haas, R.A.

    1982-05-04

    Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.

  13. Two-dimensional Manifold with Point-like Defects

    NASA Astrophysics Data System (ADS)

    Gani, V. A.; Dmitriev, A. E.; Rubin, S. G.

    We study a class of two-dimensional compact extra spaces isomorphic to the sphere S 2 in the framework of multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  14. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    ERIC Educational Resources Information Center

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  15. Interior design of a two-dimensional semiclassical black hole

    SciTech Connect

    Levanony, Dana; Ori, Amos

    2009-10-15

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  16. FLOW AND DISPERSION OF POLLUTANTS WITHIN TWO-DIMENSIONAL VALLEYS

    EPA Science Inventory

    Wind-tunnel experiments and a theoretical model concerning the flow structure and pollutant diffusion over two-dimensional valleys of varying aspect ratio are described and compared. hree model valleys were used, having small, medium, and steep slopes. Measurements of mean and tu...

  17. Two-Dimensional Fourier Transform Applied to Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    Santa Maria, Odilyn L.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary, but possibly harmonizable. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to show helicopter noise as harmonizable. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  18. Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise

    NASA Technical Reports Server (NTRS)

    SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.

    1999-01-01

    A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.

  19. Two-dimensional generalized harmonic oscillators and their Darboux partners

    NASA Astrophysics Data System (ADS)

    Schulze-Halberg, Axel

    2011-12-01

    We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky-Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form.

  20. Two-dimensional vortex motion and 'negative temperatures.'

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1972-01-01

    Explanation of the novel phenomenon, tentatively identified as the 'ergodic boundary' in a space of initial conditions for turbulent flow, suggested by the recent numerical integration of the two-dimensional Navier-Stokes equations at high Reynolds numbers reported by Deem and Zabusky (1971). The proposed explanation is presented in terms of negative temperatures for a point vortex model.

  1. Sound waves in two-dimensional ducts with sinusoidal walls

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  2. Two-Dimensional Diverging Shocks in a Nonuniform Medium

    SciTech Connect

    Roy A. Axford

    1998-08-01

    An analytic solution is derived from the time evolution of a two- dimensional diverging shock in r - z geometry. The shock propagates through a condensed medium characterized by a Mie-Gruneisen equation of state with a nonzero density gradient in the axial direction.

  3. Two-Dimensional Grids About Airfoils and Other Shapes

    NASA Technical Reports Server (NTRS)

    Sorenson, R.

    1982-01-01

    GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.

  4. Toward the Accurate Simulation of Two-Dimensional Electronic Spectra

    NASA Astrophysics Data System (ADS)

    Giussani, Angelo; Nenov, Artur; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Two-dimensional pump-probe electronic spectroscopy is a powerful technique able to provide both high spectral and temporal resolution, allowing the analysis of ultrafast complex reactions occurring via complementary pathways by the identification of decay-specific fingerprints. [1-2] The understanding of the origin of the experimentally recorded signals in a two-dimensional electronic spectrum requires the characterization of the electronic states involved in the electronic transitions photoinduced by the pump/probe pulses in the experiment. Such a goal constitutes a considerable computational challenge, since up to 100 states need to be described, for which state-of-the-art methods as RASSCF and RASPT2 have to be wisely employed. [3] With the present contribution, the main features and potentialities of two-dimensional electronic spectroscopy are presented, together with the machinery in continuous development in our groups in order to compute two-dimensional electronic spectra. The results obtained using different level of theory and simulations are shown, bringing as examples the computed two-dimensional electronic spectra for some specific cases studied. [2-4] [1] Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M, Int. J. Quantum Chem., 2014, 114, 85 [2] Nenov A, Segarra-Martí J, Giussani A, Conti I, Rivalta I, Dumont E, Jaiswal V K, Altavilla S, Mukamel S, Garavelli M, Faraday Discuss. 2015, DOI: 10.1039/C4FD00175C [3] Nenov A, Giussani A, Segarra-Martí J, Jaiswal V K, Rivalta I, Cerullo G, Mukamel S, Garavelli M, J. Chem. Phys. submitted [4] Nenov A, Giussani A, Fingerhut B P, Rivalta I, Dumont E, Mukamel S, Garavelli M, Phys. Chem. Chem. Phys. Submitted [5] Krebs N, Pugliesi I, Hauer J, Riedle E, New J. Phys., 2013,15, 08501

  5. The art and science of magnet design: Selected notes of Klaus Halbach. Volume 2

    SciTech Connect

    1995-02-01

    This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach`s interest and ability that have long been an inspiration to his many friends and colleagues. As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly--some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As the authors converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation. The notes are organized under five categories which reflect their primary content: Beam Position Monitors, (bpm), Current Sheet Electron Magnets (csem), Magnet Theory, (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time.

  6. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage

    NASA Astrophysics Data System (ADS)

    Choi, Young-Man; Lee, Moon G.; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  7. Investigation on the properties of omnidirectional photonic band gaps in two-dimensional plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang

    2016-01-01

    The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.

  8. COMPARING TECHNIQUES FOR COMPARATIVE PROTEOMICS: TWO-DIMENSIONAL GEL ELECTROPHORESIS AND TWO-DIMENSIONAL LIQUID CHROMATOGRAPHY SEPARATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accepted method for comparing bacterial proteomes has traditionally been two-dimensional (2D) gel electrophoresis. However, in recent years, new procedures for protein separation have been introduced. One of these new procedures utilizes column-based liquid chromatography separation. The tech...

  9. Nonreciprocal self-collimation in two-dimensional gyromagnetic photonic crystals and its applications in signal separation

    NASA Astrophysics Data System (ADS)

    Li, Qing-bo; Li, Zhen; Zhou, Ping; Wu, Rui-xin

    2015-11-01

    We investigate self-collimated electromagnetic waves in two-dimensional gyromagnetic photonic crystals (GPCs) fabricated by semi-cylinder rods. The nonreciprocal self-collimation transmission is found by means of band structure and equi-frequency contour (EFC) calculations. Progressively tilting flat EFC by optimizing the structure of GPC, we show that nonreciprocal spatial wavelength division can be achieved without any corrugations inside the structure. Further, the frequency range for the nonreciprocal spatial wavelength division can be flexibly manipulated by the external static magnetic field.

  10. Application of the Analogy Between Water Flow with a Free Surface and Two-Dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Butterly, Jack G

    1947-01-01

    The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  11. Application of the Analogy Between Water Flow with a Free Surface and Two-dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Bitterly, Jack G

    1947-01-01

    The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  12. Coulomb problem on single- and double-wall cylinders

    NASA Astrophysics Data System (ADS)

    Deinega, Alexei; Voronova, Nina; Lozovik, Yurii

    2012-06-01

    In this paper we calculate the energies of ground and excited states of two opposite charge carriers confined on a single- or double-wall cylindrical surface. A nontrivial dependence of excited state energies on cylinder radius value (for the case of a single-wall cylinder) is found, and the explanation of this behavior is based on symmetry properties of the corresponding wavefunctions. The crossover from a one-dimensional problem to a two-dimensional one with increase of the radius value is discussed in detail. For the double-wall cylinder, we obtain and analyze the dependence of ground state energy on interwall distance and ratio between particle masses.

  13. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    SciTech Connect

    E.J. Valeo; G.J. Kramer; R. Nazikian

    2001-07-05

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed.

  14. On comparing helioseismic two-dimensional inversion methods

    NASA Technical Reports Server (NTRS)

    Schou, J.; Christensen-Dalsgaard, J.; Thompson, M. J.

    1994-01-01

    We consider inversion techniques for investigating the structure and dynamics of the solar interior as functions of radius and latitude. In particular, we look at the problem of inferring the radial and latitudinal dependence of the Sun's internal rotation, using a fully two-dimensional least-squares inversion algorithm. Concepts such as averaging kernels, measures of resolution, and trade-off curves, which have previously been used in the one-dimensional case, are generalized to facilitate a comparison of two-dimensional methods. We investigate the weighting given to different modes and discuss the implications of this for observational strategies. As an illustration we use a mode set whose properties are similar to those expected for data from the GONG network.

  15. Adaptive rezoner in a two-dimensional Lagrangian hydrodynamic code

    SciTech Connect

    Pyun, J.J.; Saltzman, J.S.; Scannapieco, A.J.; Carroll, D.

    1985-01-01

    In an effort to increase spatial resolution without adding additional meshes, an adaptive mesh was incorporated into a two-dimensional Lagrangian hydrodynamics code along with two-dimensional flux corrected (FCT) remapper. The adaptive mesh automatically generates a mesh based on smoothness and orthogonality, and at the same time also tracks physical conditions of interest by focusing mesh points in regions that exhibit those conditions; this is done by defining a weighting function associated with the physical conditions to be tracked. The FCT remapper calculates the net transportive fluxes based on a weighted average of two fluxes computed by a low-order scheme and a high-order scheme. This averaging procedure produces solutions which are conservative and nondiffusive, and maintains positivity. 10 refs., 12 figs.

  16. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space. PMID:26430982

  17. Vortex annihilation and inverse cascades in two dimensional superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Chesler, Paul M.

    2015-03-01

    The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.

  18. Two-Dimensional Attosecond Electron Wave-Packet Interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.

  19. Two-dimensional attosecond electron wave-packet interferometry.

    PubMed

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry. PMID:25978229

  20. Object tracking based on two-dimensional PCA

    NASA Astrophysics Data System (ADS)

    Xu, Fuyuan; Gu, Guohua; Kong, Xiaofang; Wang, Pengcheng; Ren, Kan

    2016-01-01

    In this paper, we present a novel object tracking method based on two-dimensional PCA. The low quality of images and the changes of the object appearance are very challenging for the object tracking. The representation of the training features is usually used to solve these challenges. Two-dimensional PCA (2DPCA) based on the image covariance matrix is constructed directly using the original image matrices. An appearance model is presented and its likelihood estimation has been established based on 2DPCA representation in this paper. Compared with the state-of-the-art methods, our method has higher reliability and real-time property. The performances of the proposed tracking method are quantitatively and qualitatively shown in experiments.

  1. On two-dimensional flows of compressible fluids

    NASA Technical Reports Server (NTRS)

    Bergman, Stefan

    1945-01-01

    This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.

  2. Two-dimensional electronic spectroscopy of an excitonically coupled dimer

    NASA Astrophysics Data System (ADS)

    Kjellberg, Pr; Brggemann, Ben; Pullerits, Tnu

    2006-07-01

    The two-dimensional three-pulse photon echo signals from a dimer system are investigated in detail. A perturbative approach is used to calculate the response of the system via a numerical propagation of the density matrix in exciton state representation. Exciton vibrational coupling is modeled by Redfield relaxation theory. The main goal of this paper is to dissect the two-dimensional spectrum of the dimer to give better understanding of how the dynamics influence the spectral features. We will show how different Liouville pathways lead to the appearance/disappearance of diagonal and cross peaks. The inclusion of a Gaussian shaped electric field will be contrasted to the use of delta-pulses in the impulsive limit. The impulsive limit is found to be a satisfactory approximation at long population times, while at shorter times, in the pulse-overlap region, more realistic electric fields are called for.

  3. Evaluation of non-separable two-dimensional

    NASA Astrophysics Data System (ADS)

    Lopez, Vicente; Uzer, T.

    In the treatment of reactive collisions by approximate methods such as the Distorted Wave Born Approximation, two-dimensional non-separable integrals are frequently encountered. In this article, we introduce the use of a two-dimensional canonical integral, the hyperbolic umbilic canonical diffraction function, on a model problem which leads to non-separable twodimensional Franck-Condon integrals. The identification of the parameters of the canonical function in terms of the physical parameters of the model is immediate in this case, and we find that the use of this function reproduces numerical quadrature results accurately with substantial savings in computing time. Extensions of the procedure to more general problems, anticipated by Child and Shapiro, are also discussed.

  4. Preliminary results on two-dimensional interferometry of HL Tau

    NASA Astrophysics Data System (ADS)

    Tollestrup, Eric V.; Harvey, Paul M.

    1989-10-01

    Preliminary two-dimensional speckle interferometry results of HL Tau were found to be qualitatively similar to those found with one-dimensional slit scanning techniques; results consist of a resolved component (approximately 0.7 arcsec in size) and an unresolved component. Researchers are currently reducing the rest of the data (taken on three different telescopes and at three different wavelengths) and are also exploring other high resolution methods like the shift and add technique and selecting only the very best images for processing. The availability of even better two-dimensional arrays within the next couple of years promises to make speckle interferometry and other high resolution techniques very powerful and exiting tools for probing a variety of objects in the subarcsec regime.

  5. Preliminary results on two-dimensional interferometry of HL Tau

    NASA Technical Reports Server (NTRS)

    Tollestrup, Eric V.; Harvey, Paul M.

    1989-01-01

    Preliminary two-dimensional speckle interferometry results of HL Tau were found to be qualitatively similar to those found with one-dimensional slit scanning techniques; results consist of a resolved component (approximately 0.7 arcsec in size) and an unresolved component. Researchers are currently reducing the rest of the data (taken on three different telescopes and at three different wavelengths) and are also exploring other high resolution methods like the shift and add technique and selecting only the very best images for processing. The availability of even better two-dimensional arrays within the next couple of years promises to make speckle interferometry and other high resolution techniques very powerful and exiting tools for probing a variety of objects in the subarcsec regime.

  6. Unshielded fetal magnetocardiography system using two-dimensional gradiometers

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Kandori, Akihiko; Kumagai, Yukio; Ohnuma, Mitsuru; Ishiyama, Akihiko; Ishii, Tetsuko; Nakamura, Yoshiyuki; Horigome, Hitoshi; Chiba, Toshio

    2008-03-01

    We developed a fetal magnetocardiography (fMCG) system that uses a pair of two-dimensional gradiometers to achieve high signal-to-noise ratio. The gradiometer, which is based on a low-Tc superconducting quantum interference device, detects the gradient of a magnetic field in two orthogonal directions. Gradiometer position is easy to adjust by operating the gantry to drive the cryostat in both the swinging and axial directions. As a result, a fMCG waveform for 25weeks' gestation was measured under an unshielded environment in real time. Moreover, the P and T waves for 25 and 34weeks' gestation, respectively, were obtained by averaging. These results indicate that this two-dimensional gradiometer is one of the most promising techniques for measuring fetal heart rate and diagnosing fetal arrhythmia.

  7. Some applications of two-dimensional stress transfer analyses

    SciTech Connect

    Hsueh, C.H.

    1998-03-23

    Two-dimensional stress transfer analyses are performed for the following system: a long central plate bonded on opposite sides along its length to two short plates and subjected to tensile loading at its ends. The load transfers from the long plate to the short plate through the interfacial shear stress. The system represents the unit cell of platelet-reinforced composites, in which parallel matrix cracks are uniformly spaced and are bridged by the platelet, in a two-dimensional sense. Analytical solutions for the crack opening displacement, the additional displacement of the composite due to the presence of cracks, and stress intensity factor at the crack tip are derived. Letting the long plate and the short plates have the same mechanical properties, the analytical solutions are compared to the existing numerical solutions for tensile loading of both a double edge notch strip and a semi-infinite plane with parallel edge cracks.

  8. Two dimensional time dependent Riemann solvers for neutron transport.

    SciTech Connect

    Brunner, Thomas A.; Holloway, James Paul

    2004-12-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem.

  9. Two-dimensional time dependent Riemann solvers for neutron transport

    SciTech Connect

    Brunner, Thomas A. . E-mail: tabrunn@sandia.gov; Holloway, James Paul

    2005-11-20

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P{sub 1} equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem.

  10. A two-dimensional dam-break flood plain model

    USGS Publications Warehouse

    Hromadka, T.V., II; Berenbrock, C.E.; Freckleton, J.R.; Guymon, G.L.

    1985-01-01

    A simple two-dimensional dam-break model is developed for flood plain study purposes. Both a finite difference grid and an irregular triangle element integrated finite difference formulation are presented. The governing flow equations are approximately solved as a diffusion model coupled to the equation of continuity. Application of the model to a hypothetical dam-break study indicates that the approach can be used to predict a two-dimensional dam-break flood plain over a broad, flat plain more accurately than a one-dimensional model, especially when the flow can break-out of the main channel and then return to the channel at other downstream reaches. ?? 1985.

  11. Two-dimensional Gram-Charlier reconstruction of velocity correlations

    NASA Astrophysics Data System (ADS)

    Sullivan, P.; Pollard, A.; Delville, J.; Bonnet, J. P.

    1996-10-01

    The two-point statistics obtained in a two-dimensional mixing layer and a three-dimensional wall jet are reconstructed from the summation of Hermite Polynomials. The use of Hermite Polynomials allows the rigorous and progressive decomposition of the statistical field into separate components, Gaussian and non-Gaussian. The influence of individual terms can then be investigated. Two different schemes are used: a one-dimensional temporal reconstruction of data from both experiments, which is capable of providing excellent agreement with the measurements, and a two-dimensional scheme with the mixing layer data, which captures spatial and temporal characteristics of the velocity cross-correlation. It is demonstrated that the technique can also recover information that may be lost or missing between two measuring points thereby providing a complementary method to linear stochastic estimation.

  12. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption.

    PubMed

    Aubck, Gerald; Consani, Cristina; van Mourik, Frank; Chergui, Majed

    2012-06-15

    We present a broadband two-dimensional transient absorption setup for the UV around 300 nm with a time resolution of 150 fs. A narrowband, frequency tunable pump pulse and a broadband probe pulse are generated from the output of a noncollinear optical parametric amplifier operated at 20 kHz repetition rate and combined in a spectrally resolved transient absorption experiment. The high repetition rate and low noise of the setup allow us to acquire high quality two-dimensional data as a function of time delay with an unsurpassed frequency window of 10,000 and 8000??cm(-1) along the probe and pump axis, respectively. The performance of the setup is demonstrated on 2,5-Diphenyloxazol dissolved in cyclohexane. PMID:22739900

  13. Numerical analysis of a two-dimensional nonsteady detonations

    NASA Technical Reports Server (NTRS)

    Taki, S.; Fujiwara, T.

    1976-01-01

    In the present work a system of two-dimensional nonsteady hydrodynamic and chemical kinetic equations was numerically integrated for an exothermic system. Assumed two-step reaction model simulates practically an oxyhydrogen mixture. The calculation starts from a plane Chapman-Jouguet detonation as an initial condition. Two-dimensional disturbances are generated by artificially placing nonuniformities ahead of the detonation front. Regardless of the difference of the given initial disturbances, a fixed number of triple shock waves were produced for a fixed combination of mixture model and geometry when the transition period was over. This shows that for a given detonation tube geometry any exothermic system has its own characteristic multidimensional structure. The obtained number of triple shock waves contained in the detonation front was in agreement with existing experimental observations under the same condition.

  14. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  15. Asymmetrical two-dimensional magnetic lattices for ultracold atoms

    SciTech Connect

    Abdelrahman, A.; Vasiliev, M.; Alameh, K.; Hannaford, P.

    2010-07-15

    A simple method for implementing an asymmetrical two-dimensional magnetic lattice is proposed. The asymmetrical two-dimensional magnetic lattice is created by periodically distributing nonzero magnetic minima across the surface of a magnetic thin film, where the magnetic patterns are formed by milling nxn square holes on the surface of the film. The method is proposed for trapping and confining quantum degenerate gases, such as Bose-Einstein condensates and ultracold Fermi gases, prepared in low-magnetic-field-seeking states. Analytical expressions and numerical simulation results of the magnetic local minima are shown where we analyze the effect of changing the magnetic lattice parameters, such as the separation of the holes, the hole size, and external bias magnetic fields, to maintain and locate the nonzero local minima at a suitable distance above the film surface to avoid the effect of Majorana spin flips and the Casimir-Polder potential.

  16. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  17. Two-dimensional Fibonacci spiral optical thermal ratchets

    NASA Astrophysics Data System (ADS)

    Xiao, Ke; Grier, David

    2011-03-01

    A novel two-dimensional optical thermal ratchet has been implemented with holographic optical trapping arrays structured as the ``Fibonacci spiral'' for diffusing colloidal particles. Periodically rotating the optical trapping array by an angle in a three-step cycle yields a two-dimensional time-varying optical landscape that acts either as (1) a deterministic pump when traps are closely dispersed in space, whose induced radial and azimuthal fluxes can be quantitatively mapped out according to the geometry of Fibonacci spiral, or else as (2) an optical thermal ratchet when traps are widely dispersed, whose transport property depends on the competition between the temporal evolution in optical landscapes and Brownian particles' diffusivity. The Fibonacci ratchet displays independent flux reversals in both the radial and azimuthal directions as a function of the cycle frequency and the inter-trap separation.

  18. The stability of a two-dimensional rising bubble

    SciTech Connect

    Nie, Q.; Tanveer, S.

    1995-06-01

    The stability of an inviscid two-dimensional bubble subject to two-dimensional disturbances is considered and the bubbles are found to be linearly stable for all Weber numbers, for which a steady solution is known. Certain aspects of the nonlinear initial value problem are also studied. An initial condition that consists of a superposition of a suitable symmetric eigenmode (of the linear stability operator) on a steady state is found to result in pinching of the bubble neck as it tends to oscillate about the steady state. An estimate of the threshold amplitude of such a disturbance needed to cause breakup of a large aspect ratio bubble is obtained. The presence of gravity appears to inhibit this pinching process.

  19. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ji, Yanfeng; Pan, Chengbin; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Hui, Fei; Shi, Yuanyuan; Larcher, Luca; Wu, Ernest; Lanza, Mario

    2016-01-01

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO2, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  20. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  1. Self-propelled two dimensional polymer multilayer plate micromotors.

    PubMed

    Gai, Meiyu; Frueh, Johannes; Hu, Narisu; Si, Tieyan; Sukhorukov, Gleb B; He, Qiang

    2016-02-01

    This communication sheds light on the production method and motion patterns of autonomous moving bubble propelled two dimensional micro-plate motors. The plate motors are produced by the well-known layer-by-layer self-assembly process in combination with micro-contact printing. The motion analysis covers instances of oscillating bubble development on one or more nucleation sites, which influence the motion speed and direction. PMID:26780851

  2. Spirals and Skyrmions in two dimensional oxide heterostructures.

    PubMed

    Li, Xiaopeng; Liu, W Vincent; Balents, Leon

    2014-02-14

    We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations. PMID:24580706

  3. Two-dimensional correlation spectroscopy in polymer study

    PubMed Central

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  4. Exact analytic flux distributions for two-dimensional solar concentrators.

    PubMed

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers. PMID:23842256

  5. In vivo two-dimensional NMR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraft, Robert A.

    1999-10-01

    The poor resolution of in-vivo one- dimensional nuclear magnetic resonance spectroscopy (NMR) has limited its clinical potential. Currently, only the large singlet methyl resonances arising from N-acetyl aspartate (NAA), choline, and creatine are quantitated in a clinical setting. Other metabolites such as myo- inositol, glutamine, glutamate, lactate, and ?- amino butyric acid (GABA) are of clinical interest but quantitation is difficult due to the overlapping resonances and limited spectral resolution. To improve the spectral resolution and distinguish between overlapping resonances, a series of two- dimensional chemical shift correlation spectroscopy experiments were developed for a 1.5 Tesla clinical imaging magnet. Two-dimensional methods are attractive for in vivo spectroscopy due to their ability to unravel overlapping resonances with the second dimension, simplifying the interpretation and quantitation of low field NMR spectra. Two-dimensional experiments acquired with mix-mode line shape negate the advantages of the second dimension. For this reason, a new experiment, REVOLT, was developed to achieve absorptive mode line shape in both dimensions. Absorptive mode experiments were compared to mixed mode experiments with respect to sensitivity, resolution, and water suppression. Detailed theoretical and experimental calculations of the optimum spin lock and radio frequency power deposition were performed. Two-dimensional spectra were acquired from human bone marrow and human brain tissue. The human brain tissue spectra clearly reveal correlations among the coupled spins of NAA, glutamine, glutamate, lactate, GABA, aspartate and myo-inositol obtained from a single experiment of 23 minutes from a volume of 59 mL. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  6. Microwave response of a two-dimensional electron stripe

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. A.; Savostianova, N. A.

    2005-01-01

    Electromagnetic response of a finite-width two-dimensional electron stripe is theoretically studied. It is shown that retardation and radiative effects substantially modify the absorption spectrum of the system at microwave frequencies, leading to a nontrivial zigzag behavior of the magnetoplasmon-polariton modes in magnetic fields, similar to that recently observed by

    Kukushkin et al. [Phys. Rev. Lett. 90, 156801 (2003)]
    .

  7. Thermodynamic Studies of Two-Dimensional Correlated Electron Systems

    NASA Astrophysics Data System (ADS)

    Pudalov, V. M.; Kuntsevich, A. Yu.; Burmistrov, I. S.; Reznikov, M.

    2015-11-01

    This paper describes recent developments in experimental techniques for thermodynamic measurements. Particularly, we focus on the derivatives of the chemical potential with respect to magnetic field and temperature. The former enables to determine the spin magnetization per electron and the latter the entropy per electron. We briefly describe recent results obtained with these techniques and their impact on the current understanding of the still challenging problem of the ground state(s) of strongly correlated two-dimensional electron systems.

  8. Two-dimensional heat conducting simulation of plasma armatures

    SciTech Connect

    Huerta, M.A.; Boynton, G. . Dept. of Physics)

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature.

  9. Scaling relations in two-dimensional relativistic hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan; Lehner, Luis; Oz, Yaron

    2015-12-01

    We derive exact scaling relations for two-dimensional relativistic hydrodynamic turbulence in the inertial range of scales. We consider both the energy cascade towards large scales and the enstrophy cascade towards small scales. We illustrate these relations by numerical simulations of turbulent weakly compressible flows. Intriguingly, the fluid-gravity correspondence implies that the gravitational field in black hole/black brane spacetimes with anti-de Sitter asymptotics should exhibit similar scaling relations.

  10. Lekner summation for two-dimensional magnetic dipolar interaction energy

    NASA Astrophysics Data System (ADS)

    Tang, Ke; Zhang, Huaiwu; Zhong, Zhiyong

    2006-02-01

    The Lekner method for calculation of dipolar interaction energy in periodically replicated simulation cells is extended to two-dimensional array systems of nanoparticles with point dipoles. The dipolar interaction energy is expressed by rapidly converging series of modified Bessel functions. We emphasize that the self-energy must be included in simulations of the 2D dipolar coupling systems and derive two simple formulas to evaluate the self-energy.

  11. Dirac Points in Two-Dimensional Inverse Opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2013-10-01

    The electron energy states and energy bands are calculated for a two-dimensional inverse opal structure. Assume that the opal structure is closed-packed circles, the inverse opal has the honeycomb lattice. The honeycomb lattice in two dimensions has a Dirac point. Its properties can be manipulated by altering the structure of the inverse opal: the radius of the circle, and the small gap between circles.

  12. Two-dimensional color-code quantum computation

    SciTech Connect

    Fowler, Austin G.

    2011-04-15

    We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.

  13. Streamwise computation of two-dimensional incompressible potential flows

    NASA Astrophysics Data System (ADS)

    Greywall, M. S.

    1985-06-01

    In the novel approach presented for the calculation of two-dimensional plane and axisymmetric incompressible potential flows, the dependent variables are the streamwise velocity values along a set of chosen streamlines, together with the coordinates of these streamlines in the cross-stream plane. The method therefore generates the streamline pattern for a given flow directly, rendering it especially suitable for the computation of flows through complex configurations.

  14. Suspended two-dimensional electron and hole gases

    SciTech Connect

    Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.

    2013-12-04

    We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.

  15. Equations for the design of two-dimensional supersonic nozzles

    NASA Technical Reports Server (NTRS)

    Pinkel, I Irving

    1948-01-01

    Equations are presented for obtaining the wall coordinates of two-dimensional supersonic nozzles. The equations are based on the application of the method of characteristics to irrotational flow of perfect gases in channels. Curves and tables are included for obtaining the parameters required by the equations for the wall coordinates. A brief discussion of characteristics as applied to nozzle design is given to assist in understanding and using the nozzle-design method of this report. A sample design is shown.

  16. One- and Two-Dimensional Refocused INADEQUATE NMR Experiments

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Mcdowell, C. A.

    We describe details of the refocused INADEQUATE method, which yields in-phase J doublets from 13C- 13C spin pairs in natural-abundance samples. The procedure for obtaining two-dimensional pure-absorptive INADEQUATE spectra is explained. This is used to determine J coupling constants with high accuracy because of higher spectral resolution than that obtained in magnitude-mode spectra. The method has been demonstrated using hexanoic acid and hexadecanoic acid as test samples.

  17. Complex impedance of a two-dimensional Josephson junction array

    NASA Astrophysics Data System (ADS)

    Jonsson, Anna; Minnhagen, Petter

    1997-02-01

    Simulations on the two-dimensional XY model are performed. The results are compared to experiments on a Josephson junction array for the case of a triangular lattice well below the Kosterlitz-Thouless temperature in a weak perpendicular magnetic field. Comparisons between experiments, existing theories and the simulations suggest that the characteristic features of the complex impedance seen in the experiments are due to vortex correlations induced by the presence of vortices with opposite vorticity.

  18. Itinerant ferromagnetism in a two-dimensional atomic gas

    SciTech Connect

    Conduit, G. J.

    2010-10-15

    Motivated by the first experimental evidence of ferromagnetic behavior in a three-dimensional ultracold atomic gas, we explore the possibility of itinerant ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we develop a formalism that demonstrates how quantum fluctuations drive the ferromagnetic reconstruction first order, and consider the consequences of an imposed population imbalance. Secondly, we adapt this formalism to elucidate the key experimental signatures of ferromagnetism in a realistic trapped geometry.

  19. Origin of nanoscale potential fluctuations in two-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Landrock, S.; Jiang, Y.; Wu, K. H.; Wang, E. G.; Urban, K.; Ebert, Ph.

    2009-08-01

    We demonstrate a direct atomically resolved visualization and quantification of the impact of inhomogeneities in the dopant distribution on the nanoscale potential fluctuations in a two-dimensional semiconducting ?3 ?3 Ga overlayer on Si(111) using scanning tunneling microscopy. By a quantitative analysis, two regimes of the potential at nanometer scale are found, which arise from the local distribution of charge carriers in the bands and from electron-electron interactions.

  20. Coherent transfer by adiabatic passage in two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2014-09-01

    Coherent tunneling by adiabatic passage (CTAP) is a well-established technique for robust spatial transport of quantum particles in linear chains. Here we introduce two exactly-solvable models where the CTAP protocol can be extended to two-dimensional lattice geometries. Such bi-dimensional lattice models are synthesized from time-dependent second-quantization Hamiltonians, in which the bosonic field operators evolve adiabatically like in an ordinary three-level CTAP scheme thus ensuring adiabatic passage in Fock space.

  1. H? sensing properties of two-dimensional zinc oxide nanostructures.

    PubMed

    Tonezzer, Matteo; Iannotta, Salvatore

    2014-05-01

    In this work we have grown particular zinc oxide two-dimensional nanostructures which are essentially a series of hexagonal very thin sheets. The hexagonal wurtzite crystal structure gives them their peculiar shape, whose dimensions are few microns wide, with a thickness in the order of 25 nm. Such kind of nanostructure, grown by thermal oxidation of evaporated metallic zinc on a silica substrate, has been used to fabricate conductometric gas sensors, investigated then for hydrogen gas detection. The "depletion layer sensing mechanism" is clarified, explaining how the geometrical factors of one- and two-dimensional nanostructures affect their sensing parameters. The comparison with one-dimensional ZnO nanowires based structures shows that two-dimensional nanostructures are ideal for gas sensing, due to their tiny thickness, which is comparable to the depletion-layer thickness, and their large cross-section, which increases the base current, thus lowering the limit of detection. The response to H? has been found good even to sub-ppm concentrations, with response and recovery times shorter than 18s in the whole range of H? concentrations investigated (500 ppb-10 ppm). The limit of detection has been found around 200 ppb for H? gas even at relatively low working temperature (175 C). PMID:24720984

  2. Two-dimensional map for impact oscillator with drift

    NASA Astrophysics Data System (ADS)

    Pavlovskaia, Ekaterina; Wiercigroch, Marian; Grebogi, Celso

    2004-09-01

    An impact oscillator with drift is considered. The model accounts for viscoelastic impacts and is capable of mimicking the dynamics of progressive motion, which is important in many applications. To simplify the analysis of this system, a transformation decoupling the original coordinates is introduced. As a result, the bounded oscillations are separated from the drift motion. To study the bounded dynamics, a two-dimensional analytical map is developed and analyzed. In general, the dynamic state of the system is fully described by four variables: time τ , relative displacement p and velocity y of the mass, and relative displacement q of the slider top. However, this number can be reduced to two if the beginning of the progression phase is being monitored. The lower and upper bounds of the map domain are approximated. A graphical method of iteration of the two-dimensional map, similar to the cobweb method used in the one-dimensional case, is proposed. The results of numerical iterations of this two-dimensional map are presented, and a comparison is given between bifurcation diagrams calculated for this map and for the original system of differential equations.

  3. Two-dimensional map for impact oscillator with drift.

    PubMed

    Pavlovskaia, Ekaterina; Wiercigroch, Marian; Grebogi, Celso

    2004-09-01

    An impact oscillator with drift is considered. The model accounts for viscoelastic impacts and is capable of mimicking the dynamics of progressive motion, which is important in many applications. To simplify the analysis of this system, a transformation decoupling the original coordinates is introduced. As a result, the bounded oscillations are separated from the drift motion. To study the bounded dynamics, a two-dimensional analytical map is developed and analyzed. In general, the dynamic state of the system is fully described by four variables: time tau , relative displacement p and velocity y of the mass, and relative displacement q of the slider top. However, this number can be reduced to two if the beginning of the progression phase is being monitored. The lower and upper bounds of the map domain are approximated. A graphical method of iteration of the two-dimensional map, similar to the cobweb method used in the one-dimensional case, is proposed. The results of numerical iterations of this two-dimensional map are presented, and a comparison is given between bifurcation diagrams calculated for this map and for the original system of differential equations. PMID:15524606

  4. Two-dimensional DNA fingerprinting of human individuals

    SciTech Connect

    Uitterlinden, A.G.; Slagboom, P.E.; Knook, D.L.; Vijg, J. )

    1989-04-01

    The limiting factor in the presently available techniques for the detection of DNA sequence variation in the human genome is the low resolution of Southern blot analysis. To increase the analytical power of this technique, the authors applied size fractionation of genomic DNA restriction fragments in conjunction with their sequence-dependent separation in denaturing gradient gels; the two-dimensional separation patterns obtained were subsequently transferred to nylon membranes. Hybridization analysis using minisatellite core sequences as probes resulted in two-dimensional genomic DNA fingerprints with a resolution of up to 625 separated spots per probe per human individual; by conventional Southern blot analysis, only 20-30 bands can be resolved. Using the two-dimensional DNA fingerprinting technique, they demonstrate in a small human pedigree the simultaneous transmission of 37 polymorphic fragments (out of 365 spots) for probe 33.15 and 105 polymorphic fragments (out of 625 spots) for probe 33.6. In addition, a mutation was detected in this pedigree by probe 33.6. They anticipate that this method will be of great use in studies aimed at (i) measuring human mutation frequencies, (ii) associating genetic variation with disease, (iii) analyzing genomic instability in relation to cancer and aging, and (iv) linkage analysis and mapping of disease genes.

  5. Active control of a two-dimensional periodic structure

    NASA Astrophysics Data System (ADS)

    Kim, Youngjoon; Baz, Amr M.

    2004-07-01

    Conventional passive periodic structures exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic structures only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands." In this paper, the emphasis is placed on actively controlling the spectral width and location of the pass and stop bands in two-dimensional periodic structures depending on the direction of wave propagation. In this paper, an idealized periodic structure is considered which consists of a two-dimensional array of masses that are coupled by sets of active and passive springs with the active springs distributed in a periodic manner. The unique filtering characteristics of the active periodic structure are demonstrated by evaluating the phase constant surfaces and directivity plots, and verified by computing the response to point harmonic loading and modal density. The presented examples demonstrate the feasibility of tuning the spectral width and location of the pass and stop bands according to the nature of the external excitation. This unique directional behavior makes the application of the two-dimensional periodic structures as directional mechanical filters potentially attractive for various applications such as panels with active periodic stiffeners for effective vibration isolation and acoustic stealth.

  6. Two-dimensional potential double layers and discrete auroras

    NASA Technical Reports Server (NTRS)

    Kan, J. R.; Lee, L. C.; Akasofu, S.-I.

    1979-01-01

    This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.

  7. Strongly correlated two-dimensional plasma explored from entropy measurements.

    PubMed

    Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S

    2015-01-01

    Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems. PMID:26099565

  8. Automated Processing of Two-Dimensional Correlation Spectra

    NASA Astrophysics Data System (ADS)

    Sengstschmid, Helmut; Sterk, Heinz; Freeman, Ray

    1998-04-01

    An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap.

  9. a Two-Dimensional Radiative-Convective Climate Model.

    NASA Astrophysics Data System (ADS)

    Kiehl, Jeffrey Theodore

    A two-dimensional radiative-convective climate model has been developed, which includes meridional heat transport, surface albedo feedback and lapse rate feedback. The radiative part of the model is based upon the one-dimensional radiative-convective model of Ramanathan (1976). The two -dimensional model is designed to calculate a mean annual zonally averaged temperature profile for a symmetric model earth. The two-dimensional model calculates the vertical temperature profile for six latitudinal belts of 15(DEGREES) width. These six belts serve as a basis set from which the temperature at any latitude can be calculated. The heat transport is parameterized in terms of a diffuse transport mechanism. The surface albedo feedback for latitudes above 45(DEGREES)N is derived from seasonal data for the present atmosphere. The lapse rate feedback is based upon the suggestions for Stone and Carlson (1979). Three climatic studies have been carried out with the model: increased CO(,2), variation of the solar constant, and variation of cloud amount and height. These studies suggest that the lapse rate parameterization of Stone and Carlson (1979) is extremely sensitive to climatic perturbations. The model proves to be very stable to variations in the solar constant when lapse rate feedback is removed. A great advantage to this model is its flexibility. The model is also computationally efficient compared to the three-dimensional models. Because of the flexibility and computational efficiency, this model can serve as a useful tool in studying the importance of various atmospheric processes.

  10. Number of states of two-dimensional critical string theory

    SciTech Connect

    Banks, T.; Susskind, L.

    1996-07-01

    We discuss string theory vacua which have the wrong number of spacetime dimensions, and give a crude argument that vacua with more than four large dimensions are improbable. We then turn to two-dimensional vacua, which naively appear to violate Bekenstein{close_quote}s entropy principle. A classical analysis shows that the naive perturbative counting of states is unjustified. All excited states of the system have strong coupling singularities which prevent us from concluding that they really exist. A speculative interpretation of the classical solutions suggests only a finite number of states will be found in regions bounded by a finite area. We also argue that the vacuum degeneracy of two-dimensional classical string theory is removed in quantum mechanics. The system appears to be in a Kosterlitz-Thouless phase. This leads to the conclusion that it is also improbable to have only two large spacetime dimensions in string theory. However, we note that, unlike our argument for high dimensions, our conclusions about the ground state have neglected two-dimensional quantum gravitational effects, and are at best incomplete. {copyright} {ital 1996 The American Physical Society.}

  11. Procedures for two-dimensional electrophoresis of proteins

    SciTech Connect

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  12. Numerical procedure to determine geometric view factors for surfaces occluded by cylinders

    NASA Technical Reports Server (NTRS)

    Sawyer, P. L.

    1978-01-01

    A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.

  13. Quick release engine cylinder

    DOEpatents

    Sunnarborg, Duane A. (1123 Lucille St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  14. Biological and environmental interactions of emerging two-dimensional nanomaterials.

    PubMed

    Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert

    2016-03-14

    Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057

  15. The Cylinder and Semicylinder in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Bingham, Harry J.; Weimer, David K..; Griffith, Wayland

    1952-01-01

    In studying the diffraction of shock waves around various two-dimensional obstacles we have observed that flow separation and the formation of vortices contributes in an important way to transient loading of the obstacle. The cases of a cylinder and semicylinder are especially interesting because the breakaway point is not clearly defined as it is for objects having sharp corners. Accordingly a number of experiments have been made in the shock tube to observe the influence of Reynolds number and Mach number on the transient flow patterns about a cylinder and about a semicylinder mounted on a smooth plane. Some differences might be anticipated since the plane would impose a symmetry on the flow and produce a viscous boundary layer for which there is no counterpart with the cylinder. In the course of these experiments it was noted that a condition of steady subsonic flow about both the cylinder and semicylinder was approached. Thus a comparison with von Karrnan's theoretical calculation of the drag on a cylinder, from certain characteristics of its wake or "vortex street", was undertaken.

  16. Ejection fraction determination without planimetry by two-dimensional echocardiography: a new method

    SciTech Connect

    Baran, A.O.; Rogal, G.J.; Nanda, N.C.

    1983-06-01

    A new method for determining ejection fraction by two-dimensional echocardiography was assessed in 60 patients undergoing angiography. In method A, the left ventricular minor axis was measured at the midventricular cavity level in end-systole and end-diastole using the apical four chamber view in the 60 patients. The left ventricular major axis was also measured from the left ventricular apex to the base of the mitral valve at end-systole and end-diastole. The ejection fraction was determined using a modified cylinder-ellipse algorithm. In method B, measurements of the left ventricular minor axis were made in 40 consecutive patients, at the upper, middle and lower thirds of the left ventricular cavity at end-systole and end-diastole of the same cardiac cycle and left ventricular major axis was measured as in method A. With use of the same algorithm, three regional ejection fractions were determined and averaged to yield the total ejection fraction. The two echocardiographic methods were compared with single plane cineangiography in all patients and with gated nuclear scanning in 14 patients. Reproducibility was assessed by interobserver comparison. Correlation was determined in all patients and then separately for those with echocardiographic wall motion abnormalities. This method directly measures fractional shortening of left ventricular major axis and ejection fraction values are not arbitrarily modified by type of wall motion abnormality. With this method, accurate measurement of ejection fraction can be made by two-dimensional echocardiography without planimetry. In the absence of echocardiographic wall motion abnormalities, a very simple method A suffices. If wall motion abnormalities are present, the regional ejection fraction method B provides excellent results.

  17. Dynamic correlations in a classical two-dimensional Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Wysin, G. M.; Bishop, A. R.

    1990-07-01

    A Monte Carlo molecular-dynamics calculation of the dynamic structure function S(q,?) for the classical two-dimensional isotropic Heisenberg antiferromagnet is presented. For wave vectors near the antiferromagnetic Bragg point, S(q,?) is well described by a product of Lorentzians representing damped spin waves. For adequately low temperatures, the dependence of the spin-wave frequency and damping on wave vector and temperature are consistent with a dynamic scaling description of Chakravarty, Halperin, and Nelson. Even for higher temperatures a scaling description is quite well satisfied, but with a modified scaling frequency.

  18. Correction-to-scaling exponent for two-dimensional percolation

    SciTech Connect

    Ziff, Robert M.

    2011-02-15

    We show that the correction-to-scaling exponents in two-dimensional percolation are bounded by {Omega}{<=}72/91, {omega}=D{Omega}{<=}3/2, and {Delta}{sub 1}={nu}{omega}{<=}2, based upon Cardy's result for the crossing probability on an annulus. The upper bounds are consistent with many previous measurements of site percolation on square and triangular lattices and new measurements for bond percolation, suggesting that they are exact. They also agree with exponents for hulls proposed recently by Aharony and Asikainen, based upon results of den Nijs. A corrections scaling form evidently applicable to site percolation is also found.

  19. Electrostatic properties of two-dimensional WSe2 nanostructures

    NASA Astrophysics Data System (ADS)

    Hao, Guolin; Kou, Liangzhi; Lu, Donglin; Peng, Jie; Li, Jin; Tang, Chao; Zhong, Jianxin

    2016-01-01

    Recently, two-dimensional transition metal dichalcogenides have intrigued much attention due to their promising applications in optoelectronics. The electrostatic property investigation of WSe2 nanostructures is essential for device application. Here, the interlayer screening effects of WSe2 nanoplates with different thicknesses were investigated by measuring surface potential employing Kelvin probe force microscopy. Simultaneously, charges can be injected into WSe2 nanoplate by means of conducting atomic force microscopy to tune the electrostatic properties of WSe2 nanostructures. Our experimental results have some important implications for improving performance of WSe2-based optoelectronic devices through interface or surface engineering.

  20. Ostwald ripening of faceted two-dimensional islands

    NASA Astrophysics Data System (ADS)

    Kaganer, V. M.; Braun, W.; Sabelfeld, K. K.

    2007-08-01

    We study Ostwald ripening of two-dimensional adatom and advacancy islands on a crystal surface by means of kinetic Monte Carlo simulations. At large bond energies, the islands are square shaped, which qualitatively changes the coarsening kinetics. The Gibbs-Thomson chemical potential is violated: the coarsening proceeds through a sequence of magic sizes corresponding to square or rectangular islands. The coarsening becomes attachment limited, the asymptotic law is reached only after a very long transient time. The unusual coarsening kinetics obtained in the Monte Carlo simulations is well described by the Becker-Dring equations of nucleation kinetics. These equations can be applied to a wide range of coarsening problems.

  1. Two-dimensional laminar incompressible separated flow past airfoils

    NASA Technical Reports Server (NTRS)

    Plotkin, A.

    1973-01-01

    A method is proposed to treat the problem of steady, two-dimensional, laminar, incompressible high Reynolds number separated flow past thin airfoils. An integral form of the boundary layer equations with interaction is used and the interaction between the inviscid and viscous flow fields is provided for by use of a thin-airfoil integral. Documentation of the attempts at obtaining a solution is presented. A survey of the current state-of-the-art of problems involving viscous-inviscid interactions in flow fields with separation is given.

  2. Two-dimensional Fourier transform of scaled Dirac delta curves.

    PubMed

    Guizar-Sicairos, Manuel; Gutirrez-Vega, Julio C

    2004-09-01

    We obtain a Fourier transform scaling relation to find analytically, numerically, or experimentally the spectrum of an arbitrary scaled two-dimensional Dirac delta curve from the spectrum of the nonscaled curve. An amplitude factor is derived and given explicitly in terms of the scaling factors and the angle of the forward tangent at each point of the curve about the positive x axis. With the scaling relation we determine the spectrum of an elliptic curve by a circular geometry instead of an elliptical one. The generalization to N-dimensional Dirac delta curves is also included. PMID:15384434

  3. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis

    PubMed Central

    2014-01-01

    Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559

  4. Structure determination of two-dimensional adenine crystals on graphite

    NASA Astrophysics Data System (ADS)

    Freund, J. E.; Edelwirth, M.; Krautbel, P.; Heckl, W. M.

    1997-02-01

    Two-dimensional molecular-packing structure and monolayer preparation of adenine adsorbates on the graphite (0001) surface have been studied using scanning tunneling microscopy, low-energy electron diffraction, and thermal-desorption spectroscopy. By combining real-space images and diffraction data a close-packed hydrogen-bonded network of adenine dimers is proposed, containing two dimers in a unit cell with the symmetry group p2gg. The energy-minimized molecular arrangement could be determined by force field calculations. Adenine adsorbate layers were prepared by sublimation in UHV.

  5. Numerical calculations of two dimensional, unsteady transonic flows with circulation

    NASA Technical Reports Server (NTRS)

    Beam, R. M.; Warming, R. F.

    1974-01-01

    The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

  6. Symmetry and topology of two-dimensional noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Samokhin, K. V.

    2015-11-01

    We present a detailed study of the gap symmetry and the quasiparticle wave function topology in two-dimensional superconductors without inversion center. The strong spin-orbit coupling of electrons with the crystal lattice makes it necessary to describe superconductivity in terms of one or more nondegenerate bands characterized by helicity. We develop a topological classification of the superconducting states using the integer-valued Maurer-Cartan invariants and the Bogoliubov Wilson loops, and also calculate the spectrum of fermionic boundary modes.

  7. Carbon dioxide separation with a two-dimensional polymer membrane.

    PubMed

    Schrier, Joshua

    2012-07-25

    Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications. PMID:22734516

  8. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  9. Magnus force in discrete and continuous two-dimensional superfluids

    SciTech Connect

    Gecse, Z.; Khlebnikov, S.

    2005-08-01

    Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays.

  10. Terahertz plasmons in coupled two-dimensional semiconductor resonators

    NASA Astrophysics Data System (ADS)

    Sydoruk, O.; Wu, J. B.; Mayorov, A.; Wood, C. D.; Mistry, D. K.; Cunningham, J. E.

    2015-11-01

    Advances in theory are needed to match recent progress in measurements of coupled semiconductor resonators supporting terahertz plasmons. Here, we present a field-based model of plasmonic resonators that comprise gated and ungated two-dimensional electron systems. The model is compared to experimental measurements of a representative system, in which the interaction between the gated and ungated modes leads to a rich spectrum of hybridized resonances. A theoretical framework is thus established for the analysis and design of gated low-dimensional systems used as plasmonic resonators, underlining their potential application in the manipulation of terahertz frequency range signals.

  11. Efficient Bragg diffraction in thin semiconductor two-dimensional gratings.

    PubMed

    He, Q; Zaquine, I; Andr, R; Roosen, G; Frey, R

    2008-12-01

    Highly improved diffraction properties are demonstrated in a two-dimensional [2D] grating consisting of a transmission grating optically recorded in a semiconductor one-dimensional photonic crystal (1D-PC). Near unity internal diffraction efficiency, high wavelength selectivity, and Bragg diffraction regime operation are demonstrated when the read beam is set at Bragg incidence on the transmission grating while its wavelength corresponds to the band edge of the 3 microm thick 1D-PC. When the 2D grating is grown on a Bragg mirror, a single diffracted beam is obtained, which makes the device promising for optical signal processing. PMID:19037455

  12. Negative-refraction imaging with two-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Ke, Manzhu; Liu, Zhengyou; Qiu, Chunyin; Wang, Wengang; Shi, Jing; Wen, Weijia; Sheng, Ping

    2005-08-01

    We report negative refraction imaging for acoustic waves in a two-dimensional phononic crystal. The sample consists of a triangular array of steel rods immersed in water. Both the observed negative refraction behavior and imaging effect are in excellent agreement with numerical simulations by the multiple scattering theory method. The existence of nearly circular dispersion surfaces for the phonic crystal sample means that the negative refraction is well defined for all angles of incidence, and very robust in its realization and application to focusing and imaging.

  13. Phonon dispersion in hypersonic two-dimensional phononic crystal membranes

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Sledzinska, M.; Alzina, F.; Gomis-Bresco, J.; Reparaz, J. S.; Wagner, M. R.; Sotomayor Torres, C. M.

    2015-02-01

    We investigate experimentally and theoretically the acoustic phonon propagation in two-dimensional phononic crystal membranes. Solid-air and solid-solid phononic crystals were made of square lattices of holes and Au pillars in and on 250 nm thick single crystalline Si membrane, respectively. The hypersonic phonon dispersion was investigated using Brillouin light scattering. Volume reduction (holes) or mass loading (pillars) accompanied with second-order periodicity and local resonances are shown to significantly modify the propagation of thermally activated GHz phonons. We use numerical modeling based on the finite element method to analyze the experimental results and determine polarization, symmetry, or three-dimensional localization of observed modes.

  14. Thermoelectric transport in a two-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Chin, Cheng

    2014-05-01

    We demonstrate a new scheme to extract particle and energy flow induced by temperature gradients; equivalent to ``thermoelectricity'' in electronic materials. From in situ images, we analyze the density and energy redistribution of two-dimensional Bose gases in the presence of three-body inelastic collisions. We determine the thermopower and the Lorenz number, both showing interesting behavior in the quantum degenerate regime. Thermopower changes sign suggesting the emergence of superfluid counterflow; the Lorenz number approaches zero, contrasting with the Wiedermann-Franz law. This work is supported by NSF Grant No. PHY-0747907, and ARO-MURI Grant No. 63834-PH-MUR.

  15. Blind deconvolution of two-dimensional complex data

    SciTech Connect

    Ghiglia, D.C.; Romero, L.A.

    1994-01-01

    Inspired by the work of Lane and Bates on automatic multidimensional deconvolution, the authors have developed a systematic approach and an operational code for performing the deconvolution of multiply-convolved two-dimensional complex data sets in the absence of noise. They explain, in some detail, the major algorithmic steps, where noise or numerical errors can cause problems, their approach in dealing with numerical rounding errors, and where special noise-mitigating techniques can be used toward making blind deconvolution practical. Several examples of deconvolved imagery are presented, and future research directions are noted.

  16. Two-dimensional manifolds with metrics of revolution

    SciTech Connect

    Sabitov, I Kh

    2000-10-31

    This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in R{sup 3} other than a sphere and a torus (moreover, in the smoothness class C{sup {infinity}} such surfaces, understood in a certain generalized sense, exist in any topological class)

  17. Two-Dimensional Simulations of Thin-Silicon Solar Cells

    SciTech Connect

    Wang, T. H.; Page, M. R.; Ciszek, T. F.

    2002-08-01

    Quantitative analysis or numeric simulation on a cross-section of silicon devices offers many insights into understanding material problems and their effects on device performances as well as device structure optimizations. Such two-dimensional simulations on semiconductor devices are standard design practices and are routinely done with expensive software packages. The availability of less expensive software tools nowadays, such as MicroTec(R) for 2D modeling of semiconductor devices, affords us a more detailed examination of polycrystalline thin-silicon materials and solar cells.

  18. SOLVING THE TWO-DIMENSIONAL DIFFUSION FLOW MODEL.

    USGS Publications Warehouse

    Hromadka, T.V., II; Lai, Chintu

    1985-01-01

    A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion equation. To investigate its capability, the numerical model using the diffusion approach is applied to a hypothetical failure problem of a regional water reservoir. The model is based on an explicit, integrated finite-difference scheme, and the floodplain is simulated by a popular home computer which supports 64K FORTRAN. Though simple, the 2-D model can simulate some interesting flooding effects that a 1-D full dynamic model cannot.

  19. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195

  20. Transfer-matrix analysis of a two-dimensional quasicrystal

    SciTech Connect

    Widom, M.; Deng, D. P.; Henley, C. L.

    1989-07-17

    We investigate the quasicrystalline state of a two-dimensional binary alloy in a discrete tiling approximation. Through transfer-matrix calculations we determine the configurational entropy over a range of concentrations. We find that the entropy density is maximized by a state with tenfold symmetry at the quasicrystal concentration. Derivatives of the entropy density at its maximum yield values for the phason elastic constants. Our results confirm the existence of quasi-long-range translational order in equilibrium quasicrystalline alloys and lend support to the random-tiling model of quasicrystals.

  1. Aharonov-Bohm detection of two-dimensional magnetostatic cloaks

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, Constantinos A.; Askarpour, Amir Nader; Alù, Andrea

    2015-12-01

    Two-dimensional magnetostatic cloaks, even when perfectly designed to mitigate the magnetic field disturbance of a scatterer, may be still detectable with Aharonov-Bohm (AB) measurements, and therefore may affect quantum interactions and experiments with elongated objects. We explore a multilayered cylindrical cloak whose permeability profile is tailored to nullify the magnetic-flux perturbation of the system, neutralizing its effect on AB measurements, and simultaneously optimally suppress the overall scattering. In this way, our improved magnetostatic cloak combines substantial mitigation of the magnetostatic scattering response with zero detectability by AB experiments.

  2. Exciton-polariton gap solitons in two-dimensional lattices.

    PubMed

    Cerda-Mndez, E A; Sarkar, D; Krizhanovskii, D N; Gavrilov, S S; Biermann, K; Skolnick, M S; Santos, P V

    2013-10-01

    We report on the two-dimensional gap-soliton nature of exciton-polariton macroscopic coherent phases (PMCP) in a square lattice with a tunable amplitude. The resonantly excited PMCP forms close to the negative mass M point of the lattice band structure with energy within the lattice band gap and its wave function localized within a few lattice periods. The PMCPs are well described as gap solitons resulting from the interplay between repulsive polariton-polariton interactions and effective attractive forces due to the negative mass. The solitonic nature accounts for the reduction of the PMCP coherence length and optical excitation threshold with increasing lattice amplitude. PMID:24138259

  3. Aerodynamics of two-dimensional slotted bluff bodies

    SciTech Connect

    Takahashi, F.; Higuchi, H.

    1988-04-30

    Aerodynamic characteristics of two-dimensional, slotted bluff bodies were experimentally investigated. Flow visualizations, base pressure measurements, mean velocity vector measurements, and drag force measurements were conducted to analyze effects of spacing ratio (i.e., porosity), curvature, and vent. Low porosity model configurations produced stable near-wake patterns with enhanced vortex sheddings of overall wake formations. Model curvature reduced drag forces and weakened the vortex sheddings. Stabilizing effect of curvature on the near-wake patterns was also found. A vent combined with large model curvature was found to control drag force effectively, as well as suppressing vortex sheddings. 10 refs., 52 figs., 1 tab.

  4. On Two-Dimensional Sonic-Subsonic Flow

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Dafermos, Constantine M.; Slemrod, Marshall; Wang, Dehua

    2007-05-01

    A compensated compactness framework is established for sonic-subsonic approximate solutions to the two-dimensional Euler equations for steady irrotational flows that may contain stagnation points. Only crude estimates are required for establishing compactness. It follows that the set of subsonic irrotational solutions to the Euler equations is compact; thus flows with sonic points over an obstacle, such as an airfoil, may be realized as limits of sequences of strictly subsonic flows. Furthermore, sonic-subsonic flows may be constructed from approximate solutions. The compactness framework is then extended to self-similar solutions of the Euler equations for unsteady irrotational flows.

  5. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  6. Two-dimensional dynamics of relativistic solitons in cold plasmas

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Laedke, E. W.; Spatschek, K. H.

    2008-07-01

    The two-dimensional dynamics of solitons appearing during relativistic laser-plasma interaction is investigated. The analysis starts from known soliton models in one space-dimension (1D). Some of the soliton solutions are already unstable in 1D, and all suffer from transverse instability in two dimensions (2D). The most unstable modes are calculated. They give a hint to the 2D structures which appear because of transversal effects. The linear stability considerations are supplemented by full 2D nonlinear simulations.

  7. LETTER: Morphology of two-dimensional fracture surfaces

    NASA Astrophysics Data System (ADS)

    Alava, Mikko J.; Nukala, Phani K. V. V.; Zapperi, Stefano

    2006-10-01

    We consider the morphology of two-dimensional cracks observed in experimental results obtained from paper samples and compare these results with the numerical simulations of the random fuse model (RFM). We demonstrate that the data obey multiscaling at small scales but cross over to self-affine scaling at larger scales. Next, we show that the roughness exponent of the random fuse model is recovered by a simpler model that produces a connected crack, while a directed crack yields a different result, close to a random walk. We discuss the multiscaling behaviour of all these models.

  8. A fractal transition in the two dimensional shear layer

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Martel, Carlos

    1990-01-01

    The dependence of product generation with the Peclet and Reynolds number in a numerically simulated, reacting, two dimensional, temporally growing mixing layer is used to compute the fractal dimension of passive scalar interfaces. A transition from a low dimension of 4/3 to a higher one of 5/3 is identified and shown to be associated to the kinematic distortion on the flow field during the first pairing interaction. It is suggested that the structures responsible for this transition are non-deterministic, non-random, inhomogeneous fractals. Only the large scales are involved. No further transition is found for Reynolds numbers up to 20,000.

  9. Phase transition in a two-dimensional Heisenberg model.

    PubMed

    Blöte, Henk W J; Guo, Wenan; Hilhorst, Henk J

    2002-01-28

    We investigate the two-dimensional classical Heisenberg model with a nonlinear nearest-neighbor interaction V(s,s') = 2K[(1+s x s')/2]p. The analogous nonlinear interaction for the XY model was introduced by Domany, Schick, and Swendsen, who find that for large p the Kosterlitz-Thouless transition is preempted by a first-order transition. Here we show that, whereas the standard (p = 1) Heisenberg model has no phase transition, for large enough p a first-order transition appears. Both phases have only short-range order, but with a correlation length that jumps at the transition. PMID:11801163

  10. Enstrophy Transfers Study in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick; Bruneau, Charles-Henri

    Two-dimensional turbulence admits two different ranges of scales: a direct enstrophy cascade from the injection scale to the small scales and an inverse energy cascade at large scales. It has already been shown in previous papers that vortical structures are responsible for the transfers of energy upscale while filamentary structures are responsible for the forward transfer of the enstrophy. Here we introduce an original wavelet-based new mathematical tool, the interaction function, for studying the space localization of the enstrophy fluxes. It is based on twodimensional orthogonal wavelet decompositions of the two terms involved in the transport term in the Navier-Stokes equations.

  11. Two-dimensional structure of auroral poleward boundary intensifications

    NASA Astrophysics Data System (ADS)

    Zesta, E.; Donovan, E.; Lyons, L.; Enno, G.; Murphree, J. S.; Cogger, L.

    2002-11-01

    We investigate the two-dimensional structure of auroral poleward boundary intensifications (PBIs). PBIs are a nightside auroral intensification that has been studied primarily with ground-based meridian scanning photometers (MSPs). They have a signature that in the MSP data, appears as an increase in intensity at or near the magnetic separatrix and is often seen to extend equatorward. They are also associated with fast flows in the tail and are thus important to the dynamics of the plasma sheet. MSP data provide information about the temporal evolution of the aurora in one spatial dimension, in this case roughly along a magnetic meridian. This paper is motivated by a desire to determine the physics of PBIs that is revealed by their two-dimensional structure. To do this, we have identified a number of PBI events in the CANOPUS Rankin Inlet and Gillam MSPs that occurred at times when high-resolution, two-dimensional images of the aurora over the same region were also available. The two-dimensional images used in this study were obtained by the Freja UV imager, from October 1992 to January 1993, and by the CANOPUS Gillam all-sky imager during the winter viewing season of 1996-1997. We find that PBIs, as observed by the MSPs, are either equatorward extending or non-equatorward extending. Equatorward extending PBIs are either north-south aligned structures or east-west arcs propagating mostly equatorward, but we were not able to determine without doubt which type is the most prevalent. We suggest that equatorward extending PBIs may be the auroral footprint of two major modes of energy transfer in the plasma sheet: multiple, narrow, earthward fast-flow channels in the plasma sheet and sequences of azimuthally broad and primarily earthward propagating phase fronts initiating near the separatrix. Nonequatorward extending PBIs are found to mostly be a series of multiple bead-like intensifications along the poleward boundary of the aurora zone. Such PBIs may be evidence for shear instabilities at the separatrix boundary on the flanks of the magnetotail.

  12. Two-dimensional noncommutative quantum mechanics with the central potential

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang

    2016-03-01

    Quantum mechanics in a noncommutative plane with both space noncommutativity and momentum noncommutativity is considered. For a general two-dimensional central field, we show that the theory can be perturbatively solved for large values of the space noncommutative parameter (θ) when the momentum noncommutative parameter (θ¯) is proportional to ℏ2/θ. We obtain the expressions for the eigenstates and eigenvalues. We also discuss the more general noncommutative algebra which have the nonvanishing commutator for [x̂i,p̂j] for different i, j.

  13. Quantum control in two-dimensional Fourier-transform spectroscopy

    SciTech Connect

    Lim, Jongseok; Lee, Han-gyeol; Lee, Sangkyung; Ahn, Jaewook

    2011-07-15

    We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum interference involved in two-photon interexcited-state transitions of a V-type quantum system. In experiments performed with atomic rubidium, quantum control for the enhancement and reduction of the 5P{sub 1/2}{yields} 5P{sub 3/2} transition was successfully tested in which the engineered transitions were distinguishably extracted in the presence of dominant one-photon transitions.

  14. Synthesis of two-dimensional materials for beyond graphene devices

    NASA Astrophysics Data System (ADS)

    Zhang, Kehao; Eichfeld, Sarah; Leach, Jacob; Metzger, Bob; Lin, Yu-Chuan; Evans, Keith; Robinson, Joshua A.

    2015-05-01

    In this paper, we present an overview of the currently employed techniques to synthesize two-dimensional materials, focusing on MoS2 and WSe2, and summarize the progress reported to-date. Here we discuss the importance of controlling reactor geometries to improve film uniformity and quality for MoS2 through a combination of modeling and experimental design. In addition, development of processes scalable to provide wafer scale uniformity is explored using synthesis of WSe2 via metal-organic chemical vapor deposition. Finally, we discuss the impact of each of these processes for TMD synthesis on epitaxial graphene.

  15. Surface effects in semiconductor two-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Pilozzi, Laura; Tomassini, N.; Schiumarini, D.; D'Andrea, A.

    2003-07-01

    The optical response of a thick slab of a two-dimensional photonic crystal, obtained by taking a rectangular dielectric grating as the elementary building block, is computed and compared with the dispersion curve of the bulk. The role of the bulk and the surface waves of the system on the optical transmittivity is discussed. The "mirror effect", computed by two of the present authors in self-sustained rectangular dielectric gratings, due to the interplay among traveling, evanescent and guided waves, is recovered and it seems to endure also in the semi-infinite photonic crystal.

  16. Hydrometeor classification from two-dimensional video disdrometer data

    NASA Astrophysics Data System (ADS)

    Grazioli, J.; Tuia, D.; Monhart, S.; Schneebeli, M.; Raupach, T.; Berne, A.

    2014-09-01

    The first hydrometeor classification technique based on two-dimensional video disdrometer (2DVD) data is presented. The method provides an estimate of the dominant hydrometeor type falling over time intervals of 60 s during precipitation, using the statistical behavior of a set of particle descriptors as input, calculated for each particle image. The employed supervised algorithm is a support vector machine (SVM), trained over 60 s precipitation time steps labeled by visual inspection. In this way, eight dominant hydrometeor classes can be discriminated. The algorithm achieved high classification performances, with median overall accuracies (Cohen's K) of 90% (0.88), and with accuracies higher than 84% for each hydrometeor class.

  17. Two-dimensional unsteady lift problems in supersonic flight

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1949-01-01

    The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.

  18. Inviscid dynamics of two-dimensional shear layers

    NASA Astrophysics Data System (ADS)

    Chien, Kuei-Yuan; Ferguson, Ralph E.; Kuhl, Allen L.; Glaz, Harland M.; Colella, Philip

    1991-06-01

    The dynamics of unconfined, spatially developing shear layers is studied by numerical solutions of the time-dependent Euler equations using a second-order Godunov scheme. Effects of density and velocity variations between the two streams of the shear layer are studied and color graphics is used to show more clearly the entrainment process of the surrounding streams. The calculations demonstrated that the evolution of the mean flow was dominated by two-dimensional, inviscid effects. The rms fluctuating velocity and density profiles were found to be in good agreement with the measurements of Oster and Wygnanski and of Konrad, except for the peak value of the v-prime profile.

  19. Stable corrugated state of the two-dimensional electron gas

    SciTech Connect

    Mendez-Moreno, R.M. Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico, Distrito Federal ); Moreno, M. Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico, Distrito Federal ); Ortiz, M.A. )

    1991-08-15

    A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a modulated set of trial wave functions within the deformable jellium model. The results for high metallic densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a paramagnetic corrugated state for values of {ital r}{sub {ital s}}{approx}6.5 is predicted. At lower densities {ital r}{sub {ital s}}{approx}30, a second transition to a corrugated ferromagnetic phase is suggested.

  20. Two-dimensional correlation of time-resolved infrared spectra

    NASA Astrophysics Data System (ADS)

    Alawi, Sadeq Mahdi K.

    2000-03-01

    Application of two-Dimensional (2-D) correlation on time-resolved spectra of dispersive instruments with 10 percent of noise or more produced poor contrast results in both the synchronous and disrelational spectra. To overcome this problem, singular value decomposition (SVD) may be used to determine the principal components in the original data set. All temporal components that show random fluctuations around zero, with variances below the noise level can be ignored. 2-D correlation analysis on the data after removing noise produced consistent results.

  1. General relativity as a two-dimensional CFT

    NASA Astrophysics Data System (ADS)

    Adamo, Tim

    2015-11-01

    The tree-level scattering amplitudes of general relativity (GR) encode the full nonlinearity of the Einstein field equations. Yet remarkably compact expressions for these amplitudes have been found which seem unrelated to a perturbative expansion of the Einstein-Hilbert action. This suggests an entirely different description of GR which makes this on-shell simplicity manifest. Taking our cue from the tree-level amplitudes, we discuss how such a description can be found. The result is a formulation of GR in terms of a solvable two-dimensional conformal field theory (CFT), with the Einstein equations emerging as quantum consistency conditions.

  2. A Two-Dimensional Compressible Gas Flow Code

    Energy Science and Technology Software Center (ESTSC)

    1995-03-17

    F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicabilitymore » of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.« less

  3. Resonance lineshapes in two-dimensional Fourier transform spectroscopy.

    PubMed

    Siemens, Mark E; Moody, Galan; Li, Hebin; Bristow, Alan D; Cundiff, Steven T

    2010-08-16

    We derive an analytical form for resonance lineshapes in two-dimensional (2D) Fourier transform spectroscopy. Our starting point is the solution of the optical Bloch equations for a two-level system in the 2D time domain. Application of the projection-slice theorem of 2D Fourier transforms reveals the form of diagonal and cross-diagonal slices in the 2D frequency data for arbitrary inhomogeneity. The results are applied in quantitative measurements of homogeneous and inhomogeneous broadening of multiple resonances in experimental data. PMID:20721156

  4. Multiphoton excitation in spin split two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Gumber, Sukirti; Kumar, Manoj; Jha, Pradip Kumar; Mohan, Man

    2015-12-01

    The terahertz radiation induced multiphoton excitation processes have been studied in a two dimensional electron gas where the mixing of spin-up and spin-down states of neighbouring Landau levels by Rashba spin orbit interaction results in two new, unequally spaced energy branches. The multiphoton transitions between different quasi-spin branches of electron gas are found to be dominant over transitions involving the states from the same branch. It has been observed that enhancement and power-broadening of absorption spectrum can be effectively tuned by strength and frequency of the laser field as well as the spin-orbit coupling.

  5. Investigation of Membrane Peptides by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanco, Emily Ann; Zanni, Martin T.

    2009-06-01

    Two-dimensional infrared spectroscopy (2D IR) is a useful tool for studying the structure of membrane peptides. Isotope labeling individual amino acids with 13C=18O decouples the isotope labeled amide I from the other amide I modes in the peptide. Work has been done on both the M2 ion channel and ovispirin antimicrobial peptide, studying the diagonal linewidths of the isotope labeled amide I. The diagonal linewidth of the isotope labeled amide I gives information about the local environment of that residue, which in turn gives structural information about the membrane peptide.

  6. High order hybrid numerical simulations of two dimensional detonation waves

    NASA Technical Reports Server (NTRS)

    Cai, Wei

    1993-01-01

    In order to study multi-dimensional unstable detonation waves, a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves was developed. The numerical algorithm uses a multi-domain approach so different numerical techniques can be applied for different components of detonation waves. The detonation waves are assumed to undergo an irreversible, unimolecular reaction A yields B. Several cases of unstable two dimensional detonation waves are simulated and detailed transverse wave interactions are documented. The numerical results show the importance of resolving the detonation front without excessive numerical viscosity in order to obtain the correct cellular patterns.

  7. Nonlinear Cascades in Two-Dimensional Turbulent Magnetoconvection

    SciTech Connect

    Skandera, Dan; Mueller, Wolf-Christian

    2009-06-05

    The dynamics of spectral transport in two-dimensional turbulent convection of electrically conducting fluids is studied by means of direct numerical simulations in the frame of the magnetohydrodynamic Boussinesq approximation. The system performs quasioscillations between two different regimes of small-scale turbulence: one dominated by nonlinear magnetohydrodynamic interactions; the other governed by buoyancy forces. The self-excited change of turbulent states is reported here for the first time. The process is controlled by the ideal invariant cross helicity, H{sup C}=SdSv{center_dot}b. The observations are explained by the interplay of convective driving with the nonlinear spectral transfer of total magnetohydrodynamic energy and cross helicity.

  8. Wake-induced bending of two-dimensional plasma crystals

    SciTech Connect

    Rcker, T. B. Ivlev, A. V. Zhdanov, S. K.; Morfill, G. E.; Coudel, L.

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  9. Memory device for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also included

  10. Creating arbitrary arrays of two-dimensional topological defects.

    PubMed

    Murray, Bryce S; Pelcovits, Robert A; Rosenblatt, Charles

    2014-11-01

    An atomic force microscope was used to scribe a polyimide-coated substrate with complex patterns that serve as an alignment template for a nematic liquid crystal. By employing a sufficiently large density of scribe lines, two-dimensional topological defect arrays of arbitrary defect strength were patterned on the substrate. When used as the master surface of a liquid crystal cell, in which the opposing slave surface is treated for planar degenerate alignment, the liquid crystal adopts the pattern's alignment with a disclination line emanating at the defect core on one surface and terminating at the other surface. PMID:25493804

  11. Operational manual for two-dimensional transonic code TSFOIL

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1978-01-01

    This code solves the two-dimensional, transonic, small-disturbance equations for flow past lifting airfoils in both free air and various wind-tunnel environments by using a variant of the finite-difference method. A description of the theoretical and numerical basis of the code is provided, together with complete operating instructions and sample cases for the general user. In addition, a programmer's manual is also presented to assist the user interested in modifying the code. Included in the programmer's manual are a dictionary of subroutine variables in common and a detailed description of each subroutine.

  12. Two-dimensional homogeneous isotropic fluid turbulence with polymer additives.

    PubMed

    Gupta, Anupam; Perlekar, Prasad; Pandit, Rahul

    2015-03-01

    We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse- and forward-cascade rgimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments. PMID:25871208

  13. Optimized two-dimensional S sub n transport (BISTRO)

    SciTech Connect

    Palmiotti, G.; Salvatores, M. ); Gho, C. . Dept. de Prospectiva y Estudios Especiales); Rieunier, J.M. )

    1990-01-01

    This paper reports on an S{sub n} two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code.

  14. Highly directional thermal emission from two-dimensional silicon structures.

    PubMed

    Ribaudo, Troy; Peters, David W; Ellis, A Robert; Davids, Paul S; Shaner, Eric A

    2013-03-25

    We simulate, fabricate, and characterize near perfectly absorbing two-dimensional grating structures in the thermal infrared using heavily doped silicon (HdSi) that supports long wave infrared surface plasmon polaritons (LWIR SPP's). The devices were designed and optimized using both finite difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) simulation techniques to satisfy stringent requirements for thermal management applications requiring high thermal radiation absorption over a narrow angular range and low visible radiation absorption over a broad angular range. After optimization and fabrication, characterization was performed using reflection spectroscopy and normal incidence emissivity measurements. Excellent agreement between simulation and experiment was obtained. PMID:23546065

  15. Local relaxation and maximum entropy in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Servidio, S.; Wan, M.; Matthaeus, W. H.; Carbone, V.

    2010-12-01

    The phenomenon of vortex merging in two-dimensional hydrodynamics has been investigated through direct numerical simulations. The fast and local processes that occur during the turbulent relaxation of a randomly initialized system in periodic geometry have been examined. The analysis reveals that many of the coherent structures can be described by a local principle of maximization of entropy. The validity of this entropy principle has been further confirmed by time-dependent statistics using a contour-tracking technique. Implications for the description of persistent coherent vortices commonly observed in nature are suggested, including growing evidence for the wide applicability of maximum entropy-based relaxation principles.

  16. Two-dimensional particle displacement tracking in particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    A new particle imaging velocimetry data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system, has been constructed and tested. The new particle displacement tracking (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images is time-coded into a single image and then processed to track particle displacements and determine two-dimensional velocity vectors. Use of the PDT technique in a counterrotating vortex flow produced over 1100 velocity vectors in 110 s when processed on an 80386 PC.

  17. Condensate fraction of a two-dimensional attractive Fermi gas

    SciTech Connect

    Salasnich, Luca

    2007-07-15

    We investigate the Bose-Einstein condensation of fermionic pairs in a two-dimensional uniform two-component Fermi superfluid obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. By using the mean-field extended Bardeen-Cooper-Schrieffer theory, we analyze, as a function of the bound-state energy, the off-diagonal long-range order in the crossover from the Bardeen-Cooper-Schrieffer state of weakly bound Cooper pairs to the Bose-Einstein condensate of strongly-bound molecular dimers.

  18. Photon-assisted vortex depairing in two-dimensional superconductors

    SciTech Connect

    Kadin, A.M. ); Leung, M.; Smith, A.D. )

    1990-12-17

    We propose a novel quantum detection mechanism for photon absorption in a two-dimensional superconductor that exhibits a vortex-unbinding transition. Well below the transition, absorption of a single photon of energy hf can result in the creation of a vortex-antivortex pair, which can be broken apart in an applied current, thus transferring a single flux quantum {Phi}{sub 0} across the film. This results in a quantum-limited voltage responsivity {Phi}{sub 0}/{ital hf}=1/2{ital ef}, and may account for some reports of enhanced nonbolometric detection of infrared radiation in thin granular superconducting films.

  19. Two-dimensional creep analysis of structural adhesive joints

    NASA Astrophysics Data System (ADS)

    Su, N.; Mackie, R. I.

    1993-01-01

    A two-dimensional finite element program was developed to study the creep behavior of bonded joints for two structural adhesives. The program used multiaxial viscoplasticity theory, and modelled creep by reducing the yield stress to zero. The necessary parameters for the finite element model were obtained from creep tests on beam specimens of the bulk adhesives. The results showed that creep led to a more even distribution of the stresses with the peak normal and shear stresses being reduced. However, the shear strain showed a large increase. The former effect could be beneficial in terms of joint strength, but the latter effect would be detrimental.

  20. Three-Particle Complexes in Two-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Ganchev, Bogdan; Drummond, Neil; Aleiner, Igor; Fal'ko, Vladimir

    2015-03-01

    We evaluate binding energies of trions X, excitons bound by a donor or acceptor charge XD (A ) , and overcharged acceptors or donors in two-dimensional atomic crystals by mapping the three-body problem in two dimensions onto one particle in a three-dimensional potential treatable by a purposely developed boundary-matching-matrix method. We find that in monolayers of transition metal dichalcogenides the dissociation energy of X is typically much larger than that of localized exciton complexes, so that trions are more resilient to heating, despite the fact that their recombination line in optics is less redshifted from the exciton line than the line of XD (A ) .

  1. Mean flow generation in rotating anelastic two-dimensional convection

    NASA Astrophysics Data System (ADS)

    Currie, Laura K.; Tobias, Steven M.

    2016-01-01

    We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are twofold: first, we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Second, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.

  2. Fresnel coefficients of a two-dimensional atomic crystal

    NASA Astrophysics Data System (ADS)

    Merano, Michele

    2016-01-01

    In general the experiments on the linear optical properties of a single-layer two-dimensional atomic crystal are interpreted by modeling it as a homogeneous slab with an effective thickness. Here I fit the most remarkable experiments in graphene optics by using the Fresnel coefficients, fixing both the surface susceptibility and the surface conductivity of graphene. It is shown that the Fresnel coefficients and the slab model are not equivalent. Experiments indicate that the Fresnel coefficients are able to simulate the overall experiments here analyzed, while the slab model fails to predict absorption and the phase of the reflected light.

  3. Two-dimensional approach to relativistic positioning systems

    SciTech Connect

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-04-15

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.

  4. Bubble breakup in two-dimensional Stokes flow

    SciTech Connect

    Tanveer, S.; Vasconcelos, G.L. )

    1994-11-21

    A new class of exact solutions is reported for an evolving bubble in a two-dimensional slow viscous flow. It is observed that for an expanding bubble the interface grows smoother with time, whereas the contracting-bubble solutions display a tendency to form sharp corners ( near cusps'') for small values of surface tension. In the latter case, we also obtain analytic solutions that describe bubble breakup: For a large class of initial shapes, the interface will eventually develop a thin neck'' whose width goes to zero before the bubble is completely removed from the liquid.

  5. Numerical study of two-dimensional freezing in an annulus

    SciTech Connect

    Sablani, S.S.; Venkateshan, S.P.; Sastri, V.M.K. )

    1990-07-01

    An evaluation is made of the results of a numerical study on two-dimensional freezing in an annulus made up of an initially superheated phase-change medium. Numerical results are used to deduce a relation between the nondimensional discharge time and the other parameters. The velocity of the freeze front decreases with time because of the increase of interface area as the freezing proceeds radially outward, followed by a marginal decrease in the freezing rate due to the presence of the adiabatic surface; sensible cooling then occurs only where the freeze front has already reached the adiabatic surface. 6 refs.

  6. Spin conductivity of the two-dimensional ferroquadrupolar Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-02-01

    We use the SU(3) Schwinger's boson theory to study the spin transport in the S=1 two-dimensional ferroquadrupolar Heisenberg model in the square lattice. We calculate the spin conductivity σ(ω) and analyzed the behavior of the AC and DC spin conductivities. The model presents a bilinear and biquadratic exchange interactions. Our results show that the system is an ideal spin conductor for T > 0, because Drude's weight DS (which represents the DC conductivity) is non zero for T > 0 and the AC conductivity given by σreg(ω) tends to the infinity when ω → 0 which also correspond to the DC limit.

  7. Drift modes of a quasi-two-dimensional current sheet

    SciTech Connect

    Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M.

    2012-03-15

    Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.

  8. Optimum high temperature strength of two-dimensional nanocomposites

    SciTech Connect

    Moncls, M. A.; Molina-Aldaregua, J. M.; Polcar, T.; Llorca, J.

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  9. Femtosecond phase-coherent two-dimensional spectroscopy.

    PubMed

    Tian, Peifang; Keusters, Dorine; Suzaki, Yoshifumi; Warren, Warren S

    2003-06-01

    Femtosecond phase-coherent two-dimensional (2D) spectroscopy has been experimentally demonstrated as the direct optical analog of 2D nuclear magnetic resonance. An acousto-optic pulse shaper created a collinear three-pulse sequence with well-controlled and variable interpulse delays and phases,which interacted with a model atomic system of rubidium vapor. The desired nonlinear polarization was selected by phase cycling (coadding experimental results obtained with different interpulse phases). This method may enhance our ability to probe the femtosecond structural dynamics of macromolecules. PMID:12791987

  10. Antiferromagnetic Spinor Condensates in a Two-Dimensional Optical Lattice.

    PubMed

    Zhao, L; Jiang, J; Tang, T; Webb, M; Liu, Y

    2015-06-01

    We experimentally demonstrate that spin dynamics and the phase diagram of spinor condensates can be conveniently tuned by a two-dimensional optical lattice. Spin population oscillations and a lattice-tuned separatrix in phase space are observed in every lattice where a substantial superfluid fraction exists. In a sufficiently deep lattice, we observe a phase transition from a longitudinal polar phase to a broken-axisymmetry phase in steady states of lattice-confined spinor condensates. The steady states are found to depend sigmoidally on the lattice depth and exponentially on the magnetic field. We also introduce a phenomenological model that semiquantitatively describes our data without adjustable parameters. PMID:26196625

  11. A Experimental Study of the Development of Quasi Two-Dimensional Turbulence in a Stably Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Yap, Chee Tiong

    Turbulence was generated by towing an array of vertical cylinders through a tank which was filled with a two-layer stratified fluid. Sugar and epsom salt were used for matching the refractive indices of the two layers. Approximately one thousand neutrally buoyant particles were seeded at the interface between the two layers. The evolution of this quasi-two-dimensional turbulence was visualized by photographing the fluoroscent particles illuminated by a horizontal laser sheet traversing in the vertical direction. The three dimensional particle velocity was obtained by digitizing the streaks. The evolution of the velocity correlations, length scales, one-dimensional and two-dimensional velocity and vorticity spectra were obtained for N = 5.72sec ^{-1}, N = 4.43sec^ {-1} and N = 2.55sec^{ -1}. The results showed the physical process of inverse energy cascading and the formation of dominant vortical structures under the influence of density stratification. However, compared with the idealized two-dimensional turbulence, the flow is highly dissipative at high N due to the frictional dissipation in between the interface and the unstratified layers. The power law obtained by plotting the number of vortices against time is compared with the result from recent numerical simulations.

  12. Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2016-02-01

    Almost a decade ago, transformation optics established a geometrical perspective to describe the interaction of light with structured matter, enhancing our understanding and control of light. However, despite their huge technological relevance in applications such as optical circuitry, optical detection, and actuation, guided electromagnetic waves along dielectric waveguides have not yet benefited from the flexibility and conceptual simplicity of transformation optics. Indeed, transformation optics inherently imposes metamaterials not only inside the waveguide's core but also in the surrounding substrate and cladding. Here we restore the two-dimensional nature of guided electromagnetic waves by introducing a thickness variation on an anisotropic dielectric core according to alternative two-dimensional equivalence relations. Our waveguides require metamaterials only inside the core with the additional advantage that the metamaterials need not be magnetic and, hence, our purely dielectric waveguides are low loss. We verify the versatility of our theory with full wave simulations of three crucial functionalities: beam bending, beam splitting, and lensing. Our method opens up the toolbox of transformation optics to a plethora of waveguide-based devices.

  13. Two-dimensional phased array probe shape corrections

    NASA Astrophysics Data System (ADS)

    Lupien, Vincent; Cancre, Fabrice; Lacroix, Benolt; Miller, Ted; Selman, John; Kinney, Andy; Duffy, Tim; Herzog, Pamela G.

    2002-05-01

    The availability of non-destructive testing hardware capable of controlling large numbers of elements has made possible forays into two-dimensional ultrasonic arrays. Here, we explore two such arrays. The first is a conical matrix array for three-dimensional imaging of fastener holes in aircraft wing structures, and the second is an annular-sectorial array with a compound radius of curvature for the inspection of aircraft engine grade billets. In both prototypes, significant departures of the true shape of the probe face from its ideal value are observed. Since the shape aberrations are many wavelengths in magnitude, it is impossible to arrive at the desired beam profile using the beamforming parameters for the ideal probe shape. We detail our approach for correcting the beamforming process. It is based on a combination of parametric representations of probe shape families and experimental measurements with specially designed targets. While exposing current limitations in the probe manufacturing process, our results demonstrate that complicated probe malformations of many wavelengths in magnitude can easily be corrected and that the spatially disjoint nature of two-dimensional arrays becomes an opportunity for such corrections.

  14. Prediction of a new two-dimensional metallic carbon allotrope.

    PubMed

    Wang, Xin-Quan; Li, Han-Dong; Wang, Jian-Tao

    2013-02-14

    By means of the first-principles calculations, we predict a new metallic two-dimensional carbon allotrope named net W with Cmmm (D(2h)(19)) symmetry. This new carbon phase consists of squares C(4), hexagons C(6), and octagons C(8), its dynamical stability is validated based on phonon-mode analysis and it is energetically more favored over previously proposed two-dimensional carbon forms such as net C, planar C(4), biphenylene, graphyne, and the recently prepared graphdiyne. On the other hand, we find that net W possesses strong metallicity due to its rather large density of states across the Fermi level contributed by the carbon p(z) orbital. Through first-principles molecular dynamics simulations, we theoretically demonstrate that selective dehydrogenation of the parallel-laid narrowest angular polycyclic aromatic hydrocarbons (4-AGNRs) would lead to a spontaneous interconversion to such a net W carbon phase, the possible synthetic routes are also addressed. Of particular interest, semiconductivity could be introduced when a net W carbon sheet is cut into ribbons of certain widths. Our work shows that the net W carbon sheet and its nanoribbons have great potential for future nanoelectronics. PMID:23264961

  15. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  16. Comprehensive two-dimensional gas chromatography with pattern modulation.

    PubMed

    Seeley, John V; Seeley, Stacy K

    2015-11-20

    Comprehensive two-dimensional gas chromatography (GCGC) modulators normally transfer primary column effluent to the head of the secondary column as a series of sharp pulses. Such pulses are produced with time-varying temperature gradients in thermal modulation or with time-varying flow patterns in flow modulation. Thermal modulators produce narrow peaks at optimal flow rates, but require large amounts of consumables or a highly engineered heating/cooling system. Flow modulators involve simpler hardware and no additional consumables. However, flow modulators require a large increase in secondary column flow or transfer only a small portion of the primary effluent to the secondary column. This study examines a new method of producing GCGC separations with a flow modulator. Instead of injecting narrow pulses, the modulator transfers primary effluent to the secondary column in the form of an intricate injection pattern. The detector signal is deconvoluted and converted to a two-dimensional chromatogram. The high duty cycle of the technique (>50%) leads to deconvoluted peaks with twenty times greater intensity than those produced by conventional modulation with a Deans switch modulator. Pattern modulation can be produced without requiring elevated carrier flows. This study evaluates the efficacy of pattern modulation GCGC by analyzing a standard mixture of 43 oxygenated organic compounds and an E85 fuel sample. PMID:26278359

  17. Spectral measurements of two-dimensional color images

    NASA Astrophysics Data System (ADS)

    Hauta-Kasari, Markku; Miyazawa, Kanae; Toyooka, Satoru; Parkkinen, Jussi P. S.

    1999-05-01

    In this work we propose a prototype of the spectral vision system, which can be used to measure a color spectrum and two- dimensional spectral images. We first designed a low- dimensional broad band color filter set with a constraint of positive spectral values by the unsupervised neural network. Then we constructed a compact size optical setup for the spectral synthesizer, which can be used to synthesize the light corresponding to the spectral characteristics of the color filter. In the optical setup we implemented the color filters by the use of the liquid crystal spatial light modulator (LCSLM). In our experiments we illuminated a sample of a real world scene by the synthesized lights and detected the intensity images of the filtering process by the CCD- camera. The intensity images correspond to the optically calculated inner products between the color filters and a sample. The data obtained from the filtering process is only a few monochrome images and therefore convenient for storing and transmitting spectral images. From the detected inner products we reconstructed the sample's color spectra by the use of inverse matrix. We present experimental results of measuring a single color spectrum and two-dimensional spectral images.

  18. Two-dimensional acoustic metamaterial structure for potential image processing

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Han, Yu; Li, Ying; Pai, Frank

    2015-12-01

    This paper presents modeling, analysis techniques and experiment of for two-Dimensional Acoustic metamaterial Structure for filtering acoustic waves. For a unit cell of an infinite two-Dimensional Acoustic metamaterial Structure, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed acoustic metamaterial structure is based on the concept of conventional mechanical vibration absorbers. It uses the incoming wave in the structure to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic metamaterial structure consisting of lumped mass and elastic membrane is fabricated in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic metamaterial structure do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic metamaterial structure can be used for absorption of low-frequency waves. Hence this special structure can be used in filtering the waves, and the potential using can increase the ultrasonic imaging quality.

  19. Unpacking of a Crumpled Wire from Two-Dimensional Cavities.

    PubMed

    Sobral, Thiago A; Gomes, Marcelo A F; Machado, Núbia R; Brito, Valdemiro P

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon. PMID:26047315

  20. Two dimensional modeling of waste combustion in a kiln

    SciTech Connect

    Jang, D.S.; Acharya, S. )

    1988-01-01

    A two dimensional model has been developed to model the incineration characteristics in a kiln. The specific configuration considered is a rotary kiln with two off-axis burners, one above the centerline and the other below it. In the two dimensional model the burners and the kiln are considered to be planar. The upper burner feed consists of carbon tetrachloride, methane and oxygen, while the lower burner feed is made up of methane and oxygen. Results are obtained both with and without a solid waste bed. The effect of the solid bed is incorporated through an empirically specified bed volatile release rate. The effect of kiln rotation is neglected. The governing conservation equations are solved by a control volume based finite difference procedure. The results are qualitatively compared with the measurements in a three dimensional kiln operating under similar conditions as the one in this study. In particular strong stratification of temperature and species concentration at the kiln exit is noted. This is validated by similar experimental observations.

  1. Scaling and self-similarity in two-dimensional hydrodynamics.

    PubMed

    Ercan, Ali; Kavvas, M Levent

    2015-07-01

    The conditions under which depth-averaged two-dimensional (2D) hydrodynamic equations system as an initial-boundary value problem (IBVP) becomes self-similar are investigated by utilizing one-parameter Lie group of point scaling transformations. Self-similarity conditions due to the 2D k-ε turbulence model are also investigated. The self-similarity conditions for the depth-averaged 2D hydrodynamics are found for the flow variables including the time, the longitudinal length, the transverse length, the water depth, the flow velocities in x- and y-directions, the bed shear stresses in x- and y-directions, the bed shear velocity, the Manning's roughness coefficient, the kinematic viscosity of the fluid, the eddy viscosity, the turbulent kinetic energy, the turbulent dissipation, and the production and the source terms in the k-ε model. By the numerical simulations, it is shown that the IBVP of depth-averaged 2D hydrodynamic flow process in a prototype domain can be self-similar with that of a scaled domain. In fact, by changing the scaling parameter and the scaling exponents of the length dimensions, one can obtain several different scaled domains. The proposed scaling relations obtained by the Lie group scaling approach may provide additional spatial, temporal, and economical flexibility in setting up physical hydraulic models in which two-dimensional flow components are important. PMID:26232977

  2. Geometry of a two-dimensional quantum gravity: Numerical study

    NASA Astrophysics Data System (ADS)

    Agishtein, M. E.; Migdal, A. A.

    1991-02-01

    A two-dimensional quantum gravity is simulated by means of the dynamical triangulation model. The size of the lattice was up to hundred thousand triangles. Massively parallel simulations and recursive sampling were implemented independently and produced similar results. Wherever the analytical predictions existed, our results confirmed them. The cascade process of baby universes formulation la Coleman-Hawking scenario in a two-dimensional case has been observed. We observed that there is a simple universal inclusive probability for a baby universe to appear. This anomalous branching of surfaces led to a rapid growth of the integral curvature inside a circle. The volume of a disk in the internal metric has been proven to grow faster than any power of radius. The scaling prediction for the mean square extent given by the Liouville theory has been confirmed. However, the naive expectation for the average Liouville lagrangian is about 1 order of magnitude different from the results. This apparently points out to some flaws in the current definition of a Liouville model.

  3. Quantitative prediction for two-dimensional bacterial genomic displays

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-Francois; Kingsburry, Christine; Lafay, Bndicte; Slater, Gary W.

    2006-03-01

    Two-dimensional bacterial genomic display (2DBGD) is a simple technique that allows one to directly compare complete genomes of closely related bacteria. It consists of two phases. First, polyacrylamide gel electrophoresis (PAGE) is used to separate the DNA fragments resulting from the restriction of the genome by appropriate enzymes according to their size. Then, temperature gradient gel electrophoresis (TGGE) is used in the second dimension to separate the fragments according to their sequence composition. After these two steps, the whole bacterial genome is displayed as clouds of spots on a two-dimensional surface. 2DBGD has been successfully used to distinguish between strains of bacterial species. Unfortunately, this empirical technique remains highly qualitative. We have developed a model to predict the location of DNA spots, as a function of the DNA sequence, the gel electrophoresis and TGGE conditions and the nature of the restriction enzymes used. This model can be used to easily optimize the procedure for the type of bacteria being analyzed.

  4. Two-dimensional gravity with a dynamical aether

    SciTech Connect

    Eling, Christopher; Jacobson, Ted

    2006-10-15

    We investigate the two-dimensional behavior of gravity coupled to a dynamical unit timelike vector field, i.e. ''Einstein-aether theory.'' The classical solutions of this theory in two dimensions depend on one coupling constant. When this coupling is positive the only solutions are (i) flat spacetime with constant aether (ii) de Sitter or anti-de Sitter spacetimes with a uniformly accelerated unit vector invariant under a two-dimensional subgroup of SO(2,1) generated by a boost and a null rotation, and (iii) a nonconstant curvature spacetime that has no Killing symmetries and contains singularities. In this case the sign of the curvature is determined by whether the coupling is less or greater than one. When instead the coupling is negative only solutions (i) and (iii) are present. This classical study of the behavior of Einstein-aether theory in 1+1 dimensions may provide a starting point for further investigations into semiclassical and fully quantum toy models of quantum gravity with a dynamical preferred frame.

  5. Nonlocal transport in a hybrid two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Sun, Qing-feng

    2014-02-01

    We study nonlocal resistance in an H-shaped two-dimensional HgTe/CdTe quantum well consisting of an injector and a detector, both of which can be tuned in the quantum spin Hall or metallic spin Hall regime. Because of strong spin-orbit interaction, there always exists the spin Hall effect and nonlocal resistance in the HgTe/CdTe quantum well. We find that when both the detector and the injector are in the quantum spin Hall regime, the nonlocal resistance is quantized at 0.25he2, which is robust against weak disorder scattering and small magnetic field. When the detector or injector is beyond this regime, the nonlocal resistance decreases rapidly and will be strongly suppressed by disorder and magnetic field. In the presence of a strong magnetic field, the quantum spin Hall regime will be switched into the quantum Hall regime, and the nonlocal resistance will disappear. The nonlocal signal and its various manifestations in different hybrid regimes originate from the special band structure of the HgTe/CdTe quantum well, and they can be considered as the fingerprint of the helical quantum spin Hall edge states in a two-dimensional topological insulator.

  6. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGESBeta

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  7. Tunneling spectroscopy of two-dimensional lateral tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Pei-Hsun

    Studies of quantum transport of electrons have become increasingly important as the dimensions of electronic devices approach the de Broglie wave length of electrons. In this thesis, we explore the tunneling characteristics of junctions specially designed to couple two co-planer two-dimensional electron systems through a thin potential barrier. We are able to probe the energy-dependent relaxation of electrons through tunneling spectroscopy and determine the correlation effects across the tunnel barrier. In the absence of external magnetic field, the suppression in the low-bias tunneling conductance indicates a pseudogap in the tunneling density of states as a result of Coulomb interaction between the two-dimensional electrons. In the quantum Hall regime, the conductance spectrum is dominated by the tunneling between two counterpropagating one-dimensional edge states across the junction which are coupled into a Luttinger liquid due to their strong correlation. Momentum conservation in the magneto-tunneling leads to observation of both the spin and charge excitations which separate from each other due to the interactions near the tunnel barrier. The correlation of the edge states is further investigated in junctions with a narrow opening present in the barrier. The drastically different conductance spectrum demonstrates a clear transition of the zero-bias conductance from the enhancement in the integer quantum Hall regime to the suppression in the fractional regime, where the tunneling exhibits power-law behavior related to the Luttinger liquid properties.

  8. A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.

    2002-01-01

    The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear Bicharacteristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for two-dimensional model problems on uniform grids, and the Finite Difference Time Domain (FDTD) algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has less phase velocity error.

  9. Two-dimensional gas of massless Dirac fermions in graphene.

    PubMed

    Novoselov, K S; Geim, A K; Morozov, S V; Jiang, D; Katsnelson, M I; Grigorieva, I V; Dubonos, S V; Firsov, A A

    2005-11-10

    Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrdinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment. PMID:16281030

  10. Flexoelectricity in two-dimensional crystalline and biological membranes.

    PubMed

    Ahmadpoor, Fatemeh; Sharma, Pradeep

    2015-10-01

    The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes-whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others. PMID:26399878

  11. Matrix decompositions of two-dimensional nuclear magnetic resonance spectra.

    PubMed

    Havel, T F; Najfeld, I; Yang, J X

    1994-08-16

    Two-dimensional NMR spectra are rectangular arrays of real numbers, which are commonly regarded as digitized images to be analyzed visually. If one treats them instead as mathematical matrices, linear algebra techniques can also be used to extract valuable information from them. This matrix approach is greatly facilitated by means of a physically significant decomposition of these spectra into a product of matrices--namely, S = PAPT. Here, P denotes a matrix whose columns contain the digitized contours of each individual peak or multiple in the one-dimensional spectrum, PT is its transpose, and A is an interaction matrix specific to the experiment in question. The practical applications of this decomposition are considered in detail for two important types of two-dimensional NMR spectra, double quantum-filtered correlated spectroscopy and nuclear Overhauser effect spectroscopy, both in the weak-coupling approximation. The elements of A are the signed intensities of the cross-peaks in a double quantum-filtered correlated spectrum, or the integrated cross-peak intensities in the case of a nuclear Overhauser effect spectrum. This decomposition not only permits these spectra to be efficiently simulated but also permits the corresponding inverse problems to be given an elegant mathematical formulation to which standard numerical methods are applicable. Finally, the extension of this decomposition to the case of strong coupling is given. PMID:8058742

  12. Unpacking of a Crumpled Wire from Two-Dimensional Cavities

    PubMed Central

    Sobral, Thiago A.; Gomes, Marcelo A. F.; Machado, Núbia R.; Brito, Valdemiro P.

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon. PMID:26047315

  13. Flexoelectricity in two-dimensional crystalline and biological membranes

    NASA Astrophysics Data System (ADS)

    Ahmadpoor, Fatemeh; Sharma, Pradeep

    2015-10-01

    The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes--whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.

  14. Electronic transport in two-dimensional high dielectric constant nanosystems

    SciTech Connect

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  15. Electronic transport in two-dimensional high dielectric constant nanosystems

    NASA Astrophysics Data System (ADS)

    Ortuo, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  16. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis.

    PubMed

    Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A

    2015-09-01

    A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%). PMID:26171657

  17. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  18. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

    NASA Astrophysics Data System (ADS)

    Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

    2015-12-01

    This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

  19. Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation

    NASA Astrophysics Data System (ADS)

    Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.

    2012-12-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same foam into a two-dimensional porous medium consisting of cylinders that have been positioned randomly between the two plates of the Hele-Shaw cell described above. Intermittent flow and non-stationarity of the velocity field are observed under permanent controlled inlet flow. Flow channeling is also different from what would be expected for a Newtonian fluid, which allows a different part of the pore population to be visited. Foam flow in a two-dimensional porous medium;

  20. Intensity distribution of strong magnetic fields created by opposing linear Halbach assemblies of permanent magnets

    NASA Astrophysics Data System (ADS)

    eulka, Vclav; Pitora, Jaromr; Les?k, Michal; Straka, Pavel; Ciprian, Dalibor; Foukal, Jaroslav

    2013-11-01

    The work is devoted to the geometrical configuration of permanent magnets on the basis of opposing geometrically linear assemblies (e.g. Halbach arrays) for the generation of strong magnetic fields, which have been theoretically modeled and experimentally verified. The implementation of these opposing assemblies using NdFeB magnets of a total weight of 3.75 kg provided a value of magnetic induction in the middle of an air gap of a width of 20 mm that was higher by 56% in comparison with the simplest possible design. When the air gap width was 3 mm, the induction reached a value of 2.16 T, which represents an increase of more than 100%. Simultaneously, however, unlike in the simplest possible parallel configuration, opposing Halbach assemblies have shown, in the middle of an air gap, a significant decrease of the magnetic induction values when passing from the middle of the assemblies in the direction parallel to the x-axis.

  1. SCAPS, a two-dimensional ion detector for mass spectrometer

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40, 82-85. [2] Takayanagi et al. (1999) Proc. 1999 IEEE workshop on Charge-Coupled Devices and Advanced Image Sensors, 159-162. [3] Kunihiro et al. (2001) Nucl. Instrum. Methods Phys. Res. Sec. A 470, 512-519. [4] Nagashima et al. (2001) Surface Interface Anal. 31, 131-137. [5] Takayanagi et al. (2003) IEEE Trans. Electron Dev. 50, 70- 76. [6] Sakamoto and Yurimoto (2006) Surface Interface Anal. 38, 1760-1762. [7] Yamamoto et al. (2010) Surface Interface Anal. 42, 1603-1605. [8] Sakamoto et al. (2012) Jpn. J. Appl. Phys. 51, 076701. [9] Yurimoto et al. (2003) Appl. Surf. Sci. 203-204, 793-797. [10] Nagashima et al. (2004) Nature 428, 921-924. [11] Kunihiro et al. (2005) Geochim. Cosmochim. Acta 69, 763-773. [12] Nakamura et al. (2005) Geology 33, 829-832. [13] Sakamoto et al. (2007) Science 317, 231-233. [14] Greenwood et al. (2008) Geophys. Res. Lett., 35, L05203. [15] Greenwood et al. (2011) Nature Geoscience 4, 79-82. [16] Park et al. (2012) Meteorit. Planet. Sci. 47, 2070-2083. [17] Hashiguchi et al. (2013) Geochim. Cosmochim. Acta. 122, 306-323.

  2. A novel linear and rotary Halbach permanent magnet actuator with two degrees-of-freedom

    NASA Astrophysics Data System (ADS)

    Jin, Ping; Fang, Shuhua; Lin, Heyun; Wang, Xianbin; Zhou, Shigui

    2012-04-01

    This paper presents a novel linear and rotary Halbach permanent magnet actuator, which is capable of two degrees-of-freedom movements. The magnetic field distributions of the actuator are analytically analyzed using the magnetic scalar potential, where its tubular mover is transferred into a planar one by using a magnetic field curvature factor. The linear cogging force and rotary cogging torque and the stator flux-linkage of the actuator are subsequently predicted validated by the three-dimensional finite element method.

  3. Comparison of Halbach magnetized brushless motors equipped with air-cored and iron-cored rotors

    NASA Astrophysics Data System (ADS)

    Xia, Z. P.; Zhu, Z. Q.; Jewell, G. W.; Howe, D.

    2003-05-01

    The performance of Halbach magnetized brushless motors equipped with air-cored and iron-cored rotors is investigated theoretically and experimentally. It is shown that an optimal combination of magnet thickness and pole number exists for maximum air-gap flux density. By employing a rotor back iron, the air-gap field and hence the output torque can be enhanced significantly if the ratio of the radial thickness of the magnet to the pole pitch is small.

  4. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1?m. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  5. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    TOXLINE Toxicology Bibliographic Information

    Babinec P; Krafcík A; Babincová M; Rosenecker J

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  6. Optical properties of two-dimensional metamaterial photonic crystals

    SciTech Connect

    Mejía-Salazar, J. R.

    2013-12-14

    In the present work, we theoretically study a 2D photonic crystal (PC) comprised by double negative (DNG) metamaterial cylinders, showing that such a system presents a superior light-matter interaction when compared with their single negative (SNG) plasmonic PC counterparts, suggesting a route to enhance the performance of sensors and photovoltaic cells. On the other hand, we have observed that depending on the frequency, the mode symmetry resembles either the case of SNG electric (SNG-E) or SNG magnetic (SNG-M) PC, suggesting that either the electric or magnetic character of the DNG metamaterial dominates in each case.

  7. Experimental investigation of two-dimensional antiferromagnetic systems

    NASA Astrophysics Data System (ADS)

    Woodward, Frank Matthew

    Quantum fluctuations have a profound effect on the bulk properties of magnetic systems, particularly in low spatial dimension. For example, 1D chains with half integral spins have a gapless excitation spectrum while whole integer spin chains have a (Haldane) gap. The quantum critical behavior of the S = 1/2 2D system is thought to be the origin of high TC superconductivity. Molecular magnets are engineered materials where spin, interaction strength, or dimensionality can be tuned for experimental exploration of magnetism. A conscious effort was made to pick chemical motifs known to generate a quasi two dimensional Heisenberg system and attempt to exploit these motifs by designing classes of compounds based upon them. Creating many similar systems and observing changes in magnetism as a result in changes of chemical structure provides for the development of a phenomenological model of magnetostructural correlations which can then be verified by calculation. This dissertation discusses two distinct classes of antiferromagnetic systems, each based upon entirely different chemical motifs, both exhibiting the desired two dimensional Heisenberg antiferromagnetic behavior. One class is based upon copper tetrabromide: (5gammaAP)2CuBr4 where 5gammaAP = 2-amino-5-gamma-pyridinium with gamma = chloro, bromo, or methyl substituents. These materials are shown, by bulk magnetization and calorimetry studies to possess an exchange strength on the order of J ? -7 to -9 K and ordering temperatures in the range of TN ? 3.5 to 5 K. In the ordered state, these materials are shown to possesses a weak 3D exchange interaction, and exhibit a spin-flop transition to long range order in the magnetism. The other class under investigation is based upon copper pyrazine: Cu(pz) 2(ClO4)2, Cu(pz)2(BF6) 2, and [Cu(pz)2(NO3)](PF6). By bulk magnetic measurements of powder and single crystal samples they are shown to be a very good approximation of the 2D QHAF model. The two dimensional magnetic exchange, J, ranges from -10 K to -20 K while the observed magnetic ordering temperatures, TN range from 4.1 K to 3 K. The nature of the ordering transition in these materials, unlike the copper bromides, has yet to be determined and is fertile ground for further research.

  8. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that can benefit from this algorithm, including optics, image-processing, signal-processing, and engineering applications.

  9. Crossovers from two-dimensional Ising to two-dimensional Heisenberg and to one-dimensional Ising

    NASA Astrophysics Data System (ADS)

    Hatta, Ichiro

    1982-11-01

    In two-dimensional Ising (2dI) to one-dimensional Ising (1dI) crossover, from the exact solution at the 1dI limit the critical amplitude of heat capacity with logarithmic divergence goes to zero; however, the critical amplitude of magnetization and the scale factor of inverse correlation length with the 2dI critical exponents become infinity. This behavior at the 1dI limit is extremely anomalous. On the other hand, in 2dI to two-dimensional Heisenberg (2dH) crossover from the experiment it is clear that at the 2dH limit every critical amplitude with the 2dI critical exponents reasonably goes to zero. In support of this behavior two-scale-factor universality works satisfactorily. To explain these results consistently, so-called Stanley-Kaplan's asymptotic temperature (TSK) has a very important significance. Using TSK, we can clearly indicate that the 2dI-to-2dH crossover takes place with two steps, strong universality region and weak universality region.

  10. Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Ren, Jun; Fu, HuiXia; Ding, ZiJing; Li, Hui; Meng, Sheng

    2015-10-01

    We predict a series of new two-dimensional (2D) inorganic materials made of silicon and carbon elements (2D Si x C1- x ) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D Si x C1- x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 eV as the ratio x changes in 2D Si x C1- x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D Si x C1- x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D Si x C1- x have profound implications in nanoelectronic and photovoltaic device applications.

  11. Local diamagnetic susceptibility of quasi-two-dimensional graphite

    SciTech Connect

    Nikolaev, E. G.; Kotosonov, A. S.; Shalashugina, E. A.; Troyanovskii, A. M.; Tsebro, V. I.

    2013-08-15

    A sample of quasi-two-dimensional graphite (QTDG) whose magnetic properties are described within the Dirac fermion model is investigated by the nuclear magnetic resonance (NMR) and scanning tunneling microscopy (STM) techniques. The broad spectrum of the sample points to a large dispersion of crystallite sizes in this system, which is also confirmed by STM data. It is established that the local diamagnetic susceptibility may substantially exceed the average value over the sample and reaches an abnormally high value of -1.3 Multiplication-Sign 10{sup -4} emu/g at T = 4.2 K, which is greater than the corresponding value of highly oriented graphite by a factor of four.

  12. Flat Chern band in a two-dimensional organometallic framework.

    PubMed

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology. PMID:23521279

  13. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band, namely the flat chern band (FCB), has recently been proposed, in which carriers experience strong Coulomb interaction as well as topological frustration that in together spawn unprecedented topological strongly-correlated electronic states, such as high-temperature fractional quantum hall state. Despite the proposal of several theoretical lattice models, however, it remains a doubt whether such a ``romance of flatland'' could exist in a real material. Here, we present a first-principles design to realize a nearly FCB right around the Fermi level in a two-dimensional (2D) Indium-Phenylene Organometallic Framework (IPOF). Our design in addition provides a general strategy to synthesize topologically nontrivial materials in virtue of organic chemistry and nanotechnology. Supported by DOE-BES and ARL

  14. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  15. A distributed system for two-dimensional gel analysis.

    PubMed

    Monardo, P J; Boutell, T; Garrels, J I; Latter, G I

    1994-04-01

    The Quest II system is a new two-dimensional (2D) gel analysis software system for the construction and analysis of 2D gel protein databases. A new architectural approach to 2D gel software systems has been utilized. This architecture is based on a tightly coupled client/server model. There are three layers to the system architecture: (i) a database layer consisting of three database servers, (ii) a compute layer consisting of three compute servers and (iii) an extensible user interface layer currently consisting of user interface tools for linearization and merging of scanned images, the segmentation and detection of protein spots on the images, matching, editing, and analysis of gels. The ability to store and retrieve the large volume of spot data inherent in 2D gel analysis while utilizing database technology is demonstrated. PMID:8019861

  16. Magnetism in the Disordered Two-Dimensional Kondo-Necklace

    NASA Astrophysics Data System (ADS)

    Brenig, Wolfram

    We analyze the effects of site-dilution disorder on the thermodynamic properties of the two-dimensional Kondo necklace using finite-temperature stochastic series expansion. Results will be discussed for the dependence on dilution concentration, temperature, and Kondo exchange-coupling strength of the uniform susceptibility, the staggered structure factor, and the Chakravarty-Halperin-Nelson ratio. Dilution is shown to induce effective free-spin clusters in the gapped phase of the clean system with a low-temperature Curie constant renormalized below 1/4. Furthermore, dilution is demonstrated to suppress the quantum critical point of the clean system and to generate antiferromagnetic order in the quantum disordered phase of the clean system, i.e. order-from-disorder.

  17. Magnetism in the Disordered Two-Dimensional Kondo-Necklace

    NASA Astrophysics Data System (ADS)

    Brenig, Wolfram

    2007-09-01

    We analyze the effects of site-dilution disorder on the thermodynamic properties of the two-dimensional Kondo necklace using finite-temperature stochastic series expansion. Results will be discussed for the dependence on dilution concentration, temperature, and Kondo exchange-coupling strength of the uniform susceptibility, the staggered structure factor, and the Chakravarty-Halperin-Nelson ratio. Dilution is shown to induce effective free-spin clusters in the gapped phase of the clean system with a low-temperature Curie constant renormalized below 1/4. Furthermore, dilution is demonstrated to suppress the quantum critical point of the clean system and to generate antiferromagnetic order in the quantum disordered phase of the clean system, i.e. order-from-disorder.

  18. Mixing and sorting of bidisperse two-dimensional bubbles.

    PubMed

    Teixeira, P I C; Graner, F; Fortes, M A

    2002-10-01

    We have examined a number of candidates for the minimum-surface-energy arrangement of two-dimensional clusters composed of N bubbles of area 1 and N bubbles of area lambda (lambda< or =1). These include hexagonal bubbles sorted into two monodisperse honeycomb tilings, and various mixed periodic tilings with at most four bubbles per unit cell. We identify, as a function of lambda, the minimal configuration for N-->infinity. For finite N, the energy of the external (i.e., cluster-gas) boundary and that of the interface between honeycombs in "phase-separated" clusters have to be taken into account. We estimate these contributions and find the lowest total energy configuration for each pair (N, lambda). As lambda is varied, this alternates between a circular cluster of one of the mixed tilings, and "partial wetting" of the monodisperse honeycomb of bubble area 1 by the monodisperse honeycomb of bubble area lambda. PMID:15015114

  19. Universal Conductance Fluctuation in Two-Dimensional Topological Insulators

    PubMed Central

    Choe, Duk-Hyun; Chang, K. J.

    2015-01-01

    Despite considerable interest in two-dimensional (2D) topological insulators (TIs), a fundamental question still remains open how mesoscopic conductance fluctuations in 2D TIs are affected by spin-orbit interaction (SOI). Here, we investigate the effect of SOI on the universal conductance fluctuation (UCF) in disordered 2D TIs. Although 2D TI exhibits UCF like any metallic systems, the amplitude of these fluctuations is distinguished from that of conventional spin-orbit coupled 2D materials. Especially, in 2D systems with mirror symmetry, spin-flip scattering is forbidden even in the presence of strong intrinsic SOI, hence increasing the amplitude of the UCF by a factor of compared with extrinsic SOI that breaks mirror symmetry. We propose an easy way to experimentally observe the existence of such spin-flip scattering in 2D materials. Our findings provide a key to understanding the emergence of a new universal behavior in 2D TIs. PMID:26055574

  20. Nonlinear compressional waves in a two-dimensional Yukawa lattice.

    PubMed

    Avinash, K; Zhu, P; Nosenko, V; Goree, J

    2003-10-01

    A modified Korteweg-de Vries (KdV) equation is obtained for studying the propagation of nonlinear compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-dimensional (2D) lattice. Assuming a Yukawa potential, we use this method to model compressional wave propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and preventing the emergence of a soliton. PMID:14683049

  1. Microwave near-field imaging of two-dimensional semiconductors.

    PubMed

    Berweger, Samuel; Weber, Joel C; John, Jimmy; Velazquez, Jesus M; Pieterick, Adam; Sanford, Norman A; Davydov, Albert V; Brunschwig, Bruce; Lewis, Nathan S; Wallis, Thomas M; Kabos, Pavel

    2015-02-11

    Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS2 and n- and p-doped WSe2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects. PMID:25625509

  2. Dispersion-free continuum two-dimensional electronic spectrometer

    PubMed Central

    Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.

    2015-01-01

    Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470

  3. Two-dimensional electromagnetic cloaks with arbitrary geometries.

    PubMed

    Li, Chao; Li, Fang

    2008-08-18

    Transformation optics opens an exciting gateway to design electromagnetic "invisibility" cloaks with anisotropic and inhomogeneous medium. In this paper, we establish a generalized transformation procedure to highly improve the flexibilities for the design of two-dimensional (2D) cloaks. The general expressions for the complex medium parameters are developed, which can be readily applied to design 2D cloaks with arbitrary geometries. An example of 2D cloak with irregular cross section is designed and studied by full-wave simulations. The Huygens' Principle is applied to quantitatively evaluate its unusual electromagnetic behaviors. All the theoretical and numerical results verify the effectiveness of the proposed approach. The generalization in this Paper makes a great step forward for the flexible design of electromagnetic cloaks with arbitrary shapes. PMID:18711580

  4. Stabilization of flux states on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Hasegawa, Y.; Hatsugai, Y.; Kohmoto, M.; Montambaux, G.

    1990-05-01

    The total energy of two-dimensional electrons in a uniform magnetic field is systematically calculated for the square lattice, the triangular lattice, and the honeycomb lattice for various ratios of transfer integrals. It has many cusps as a function of the magnetic field at which the Fermi energy jumps across a gap. For a fixed electron density, the lowest energy with respect to the magnetic field (including the zero-field case) is realized when the magnetic field gives one flux unit per electron in agreement with the proposal of Hasegawa, Lederer, Rice, and Wiegmann [Phys. Rev. Lett. 63, 907 (1989)]. The density of states is calculated analytically for the square lattice. The anyon lattice gas, which obeys fractional statistics, is discussed. In the mean-field treatment of the flux, the boson gas has the lowest energy.

  5. Dynamics of a Two-Dimensional System of Quantum Dipoles

    SciTech Connect

    Mazzanti, F.; Astrakharchik, G. E.; Boronat, J.; Zillich, R. E.

    2009-03-20

    A detailed microscopic analysis of the dynamic structure function S(k,{omega}) of a two-dimensional Bose system of dipoles polarized along the direction perpendicular to the plane is presented and discussed. Starting from ground-state quantities obtained using a quantum diffusion Monte Carlo algorithm, the density-density response is evaluated in the context of the correlated basis functions (CBF) theory. CBF predicts a sharp peak and a multiexcitation component at higher energies produced by the decay of excitations. We discuss the structure of the phonon-roton peak and show that the Feynman and Bogoliubov predictions depart from the CBF result already at low densities. We finally discuss the emergence of a roton in the spectrum, but find the roton energy not low enough to make the system unstable under density fluctuations up to the highest density considered that is close to the freezing point.

  6. Stopping power of two-dimensional spin quantum electron gases

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Jiang, Wei; Yi, Lin

    2015-04-01

    Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.

  7. Extended quantum jump description of vibronic two-dimensional spectroscopy.

    PubMed

    Albert, Julian; Falge, Mirjam; Ke, Martin; Wehner, Johannes G; Zhang, Pan-Pan; Eisfeld, Alexander; Engel, Volker

    2015-06-01

    We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic method and provides an efficient method for the calculation of the 2D-spectra. PMID:26049460

  8. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  9. Magnetophonon oscillations in quasi-two-dimensional quantum wells

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, P.

    1986-06-01

    The transverse dc electrical conductivity of a quasi-two-dimensional quantum well, in the presence of a magnetic field normal to the barriers of the well, is evaluated for electron-phonon interaction. For optical and polar optical phonons the conductivity oscillates as a function of the magnetic field with resonances occurring when P?0=?L, where ?0,?L are the cyclotron and phonon frequencies, respectively, and where P is an integer. For elastic scattering with acoustical and piezoelectrical phonons, at low temperatures, resonances are expected when P??0=?F-?0, where ?F is the Fermi level and ?0 the lowest subband energy in the direction of the magnetic field. The dependence of the evaluated conductivities, inverse scattering rates, and Landau-level widths on the magnetic field, the thickness of the well, and the temperature is shown explicitly. The results obtained here are in accordance with those available in the literature.

  10. Electron excitations in two-dimensional buckled honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Yu-Huang; Lin, Min-Fa

    2015-03-01

    The two-dimensional buckled honeycomb lattices system exhibits the rich Coulomb excitation spectra, being dominated by the free carrier density, band structure, and transferred momentum (q). There are two kinds of plasmon peaks in the energy loss spectra, calculated from the random phase approximation. They are, respectively, revealed at low and middle frequencies. The former, which arises from the free carriers, belongs to acoustic mode. It's frequency depends on ?{ q} at long wavelength limit. On the other hand, the latter is due to all the ?-electronic collective excitations is an optical mode. Whether such plasmon can service is mainly determined by q. The frequencies and intensities of plasmon modes are very different among graphene, silicene, germanene, and Tin. Thanks the Ministry of Science and Technology of Taiwan (ROC) for funding support.

  11. Investigation of Turbulent Flow in a Two-Dimensional Channel

    NASA Technical Reports Server (NTRS)

    Laufer, John

    1951-01-01

    A detailed exploration of the field of mean and fluctuating quantities in a two-dimensional turbulent channel flow is presented. The measurements were repeated at three Reynolds numbers, 12,300, 30,800, and 61,600, based on the half width of the channel and the maximum mean velocity. A channel of 5-inch width and 12:1 aspect ratio was used for the investigation. Mean-speed and axial-fluctuation measurements were made well within the laminar sublayer. The semitheoretical predictions concerning the extent of the laminar sublayer were confirmed. The distribution of the velocity fluctuations in the direction of mean flow u' shows that the influence of the viscosity extends farther from the wall than indicated by the mean velocity profile, the region of influence being approximately four times as wide.

  12. Two dimensional fractional projectile motion in a resisting medium

    NASA Astrophysics Data System (ADS)

    Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  13. Two dimensional fractional projectile motion in a resisting medium

    NASA Astrophysics Data System (ADS)

    Rosales, Juan J.; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds ( sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  14. Viscosity and surface drag in quasi-two-dimensional flows

    NASA Astrophysics Data System (ADS)

    Titmus, Edward C.; Kirn, Adrian T.; Fontana, Paul W.

    2010-03-01

    Seattle University -- The effects of kinematic viscosity and surface drag are both significant factors in many experimental and natural quasi-two-dimensional (Q-2D) flows. These effects, however, are difficult to distinguish from one another. In a Q-2D experiment involving soap films in a circular Couette cell, we demonstrate precise independent measurement of both kinematic viscosity and surface drag as a function of film thickness using decay rates of vortices of varying scales. As theoretically expected, we have found both the kinematic viscosity and the surface drag to depend inversely on film thickness. This result allows quantitative experimentation in the realm of stability theory in basic Q-2D flows.

  15. Extended quantum jump description of vibronic two-dimensional spectroscopy

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Ke, Martin; Wehner, Johannes G.; Engel, Volker; Zhang, Pan-Pan; Eisfeld, Alexander

    2015-06-07

    We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic method and provides an efficient method for the calculation of the 2D-spectra.

  16. Two-dimensional exchange 35Cl NQR spectroscopy of hexachloroethane

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Mariusz; Sinyavsky, Nicolay; Bluemich, Bernhard

    2005-05-01

    Two-dimensional exchange 35Cl NQR spectroscopy for studies of the CCl 3-group reorientation processes in hexachloroethane has been applied. It has been demonstrated that 2D NQR exchange spectroscopy is appropriate for quantitative studies of exchange processes in molecular crystals containing quadrupole nuclei. The method is of particular value for the detection of exchange networks in systems with many sites. Thus, detailed information on the exchange pathways within a network of structural isomers in hexachloroethane can be deduced and a proper assignment of the NQR lines can be made. Temperature dependence of the exchange rate was studied. The mixing dynamics by exchange and the expected cross-peak intensities have been derived. The very good agreement of the experimental results with theoretical predictions confirms the validity of the motion model.

  17. Two-dimensional microelectrophoresis in supported lipid bilayers

    PubMed Central

    Stelzle, M.; Miehlich, R.; Sackmann, E.

    1992-01-01

    We report the application of supported bilayers for two-dimensional microelectrophoresis. This method allows the lateral separation and accumulation of charged amphiphilic molecular probes in bilayers by application of an electric field parallel to the bilayer surface. Diffusion coefficient and mobility of the fluorescent probes are determined by observation of the fluorescence recovery after photobleaching (pattern bleaching). The diffusion coefficients and the mobilities of oppositely charged fluorescent probes in one bilayer can be determined independently from a single measurement. By analysis of the motion of charged and uncharged probes in one membrane one can distinguish between the motion caused by the electric field acting on the charge of individual probes and that caused by frictional forces due to electroosmosis. ImagesFIGURE 1FIGURE 2FIGURE 3FIGURE 6FIGURE 8 PMID:19431856

  18. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    SciTech Connect

    Donato, S.; Servidio, S.; Carbone, V.; Dmitruk, P.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.

    2012-09-15

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  19. Illusion of extent evoked by closed two-dimensional shapes.

    PubMed

    Bulatov, Aleksandr; Bulatova, Natalija; Loginovich, Yelena; Surkys, Tadas

    2015-04-01

    In the present study, we have tested the applicability of the computational model of centroid extraction to account for the data collected in experiments with stimuli comprising of closed two-dimensional shapes. The outlined or uniformly filled pie-shaped circular sectors (contextual distractors) were arranged according to the Brentano pattern, and three different stimulus parameters (either the radius or the central angle or the tilt angle of the sectors) were used as independent variables in different series of experiments. It was demonstrated that the model calculations adequately predict the variations of illusion magnitude shown by all the subjects for all independent variables and that there is no significant difference between the data obtained for stimuli with the outlined and uniformly filled distractors. A good correspondence between the computational and experimental data provides convincing evidence in support of the "centroid" explanation of illusions of extent of the Mller-Lyer type. PMID:25359505

  20. Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range.

    PubMed

    West, Brantley A; Moran, Andrew M

    2012-09-20

    Coherent two-dimensional (2D) spectroscopies conducted at visible and infrared wavelengths are having a transformative impact on the understanding of numerous processes in condensed phases. The extension of 2D spectroscopy to the ultraviolet spectral range (2DUV) must contend with several challenges, including the attainment of adequate laser bandwidth, interferometric phase stability, and the suppression of undesired nonlinearities in the sample medium. Solutions to these problems are motivated by the study of a wide range of biological systems whose lowest-frequency electronic resonances are found in the UV. The development of 2DUV spectroscopy also makes possible the attainment of new insights into elementary chemical reaction dynamics (e.g., electrocyclic ring opening in cycloalkenes). Substantial progress has been made in both the implementation and application of 2DUV spectroscopy in the past several years. In this Perspective, we discuss 2DUV methodology, review recent applications, and speculate on what the future will hold. PMID:26295877

  1. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    SciTech Connect

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-11-15

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  2. Turbulent Two-Dimensional Magnetohydrodynamics and Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Rahimi Tabar, M. R.; Rouhani, S.

    1996-03-01

    We show that an infinite number of non-unitary minimal models may describe two dimensional turbulent magnetohydrodynamics (MHD), both in the presence and absence of the Alf 'ven effect. We argue that the existence of a critical dynamical index results in the Alf 'ven effect or equivalently the equipartition of energy. We show that there are an infinite number of conserved quantities in 2D-MHDturbulent systems both in the limit of vanishing the viscocities and in force free case. In the force free case, using the non-unitary minimal modelM2, 7we derive the correlation functions for the velocity stream function and magnetic flux function. Generalising this simple model we find the exponents of the energy spectrum in the inertial range for a class of conformal field theories.

  3. Turbulent two-dimensional magnetohydrodynamics and conformal field theory

    SciTech Connect

    Rahimi Tabar, M.R.; Rouhani, S.

    1996-03-01

    We show that an infinite number of non-unitary minimal models may describe two dimensional turbulent magnetohydrodynamics (MHD), both in the presence and absence of the Alf{close_quote}ven effect. We argue that the existence of a critical dynamical index results in the Alf{close_quote}ven effect or equivalently the equipartition of energy. We show that there are an infinite number of conserved quantities in 2{ital D}{endash}{ital MHD} turbulent systems both in the limit of vanishing the viscocities and in force free case. In the force free case, using the non-unitary minimal model {ital M}{sub 2,7} we derive the correlation functions for the velocity stream function and magnetic flux function. Generalizing this simple model we find the exponents of the energy spectrum in the inertial range for a class of conformal field theories. Copyright {copyright} 1996 Academic Press, Inc.

  4. Two-dimensional angular transmission characterization of CPV modules.

    PubMed

    Herrero, R; Domínguez, C; Askins, S; Antón, I; Sala, G

    2010-11-01

    This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement. PMID:21165081

  5. Topological Hofstadter insulators in a two-dimensional quasicrystal

    NASA Astrophysics Data System (ADS)

    Tran, Duc-Thanh; Dauphin, Alexandre; Goldman, Nathan; Gaspard, Pierre

    2015-02-01

    We investigate the properties of a two-dimensional quasicrystal in the presence of a uniform magnetic field. In this configuration, the density of states (DOS) displays a Hofstadter-butterfly-like structure when it is represented as a function of the magnetic flux per tile. We show that the low-DOS regions of the energy spectrum are associated with chiral edge states, in direct analogy with the Chern insulators realized with periodic lattices. We establish the topological nature of the edge states by computing the topological Chern number associated with the bulk of the quasicrystal. This topological characterization of the nonperiodic lattice is achieved through a local (real-space) topological marker. This work opens a route for the exploration of topological-insulating materials in a wide range of nonperiodic lattice systems, including photonic crystals and cold atoms in optical lattices.

  6. Two-dimensional photonic quasicrystal flat lens with three scatterers

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Fan, Zhigang

    2014-07-01

    A two-dimensional (2-D) photonic quasicrystal (PQC) flat lens with three scatterers is proposed, and its focusing characteristics for a point source are analyzed for the case of a continuously changing scatterer radius. The results show that a super-lens can be formed by three scatterers, and there is a threshold for scatterer radius. The focusing characteristics of the flat lens within the focusing radius are changed with regularity. It is reported for the first time that best image quality and the stability of perfect imaging in this 2-D PQC flat lens with three scatterers are superior to those in 2-D PQC or periodic photonic crystal flat lenses with multiple scatterers.

  7. Studying biomacromolecules with two-dimensional infrared spectroscopy.

    PubMed

    Hill, Rachel E; Hunt, Neil T; Hirst, Jonathan D

    2013-01-01

    Two-dimensional infrared (2DIR) spectroscopy is a rapidly developing nonlinear spectroscopy, which allows access to greater structural detail than traditional vibrational spectroscopies. The ability to gain extra structural insight is particularly relevant to the study of biomacromolecules, whose Fourier transform infrared (FTIR) spectra are often congested, due to the large number of vibrations. The subpicosecond timescale of the spectroscopy gives the opportunity to follow the fluctuations of a molecule in the time domain. Theoretical and experimental techniques are well developed for 2DIR, and they have already given insight into some of the fundamental aspects of the structure and dynamics of proteins and nucleic acids. This chapter reviews some of these recent studies and showcases the potential of the method. PMID:24018321

  8. Two-dimensional modeling of nickel electrodeposition in LIGA microfabrication.

    SciTech Connect

    Evans, Gregory Herbert; Chen, Ken Shuang

    2003-07-01

    Two-dimensional processes of nickel electrodeposition in LIGA microfabrication were modeled using the finite-element method and a fully coupled implicit solution scheme via Newtons technique. Species concentrations, electrolyte potential, flow field, and positions of the moving deposition surfaces were computed by solving the species-mass, charge, and momentum conservation equations as well as pseudo-solid mesh-motion equations that employ an arbitrary Lagrangian-Eulerian (ALE) formulation. Coupling this ALE approach with repeated re-meshing and re-mapping makes it possible to track the entire transient deposition processes from start of deposition until the trenches are filled, thus enabling the computation of local current densities that influence the microstructure and functional/mechanical properties of the deposit.

  9. Two-dimensional refractive index patterns with crystalline symmetry

    NASA Astrophysics Data System (ADS)

    Draude, A.; Franke, H.; Lessard, R. A.

    2005-04-01

    Photosensitive samples of poly-methylmethacrylate containing about 10% residual monomer and the photo-initiator Cp2TiCl2 have been prepared. In a two-beam configuration the formation of a volume phase grating was photo-initiated, and, while the first grating was still growing, a second one was recorded after turning the sample by an arbitrary angle ?. As a result, two-dimensional gratings with the symmetry of a monoclinic crystal (a1 ? a2, ? ? 90) were obtained and stabilized by a simple heat treatment. In a diffraction experiment the lattice constants and the amplitudes ?nI and ?nII of the overlapping gratings forming the crystal pattern could be deduced from its diffraction pattern and all the diffracted beams were assigned to their Miller indices (h, k).

  10. Lift generation by a two-dimensional symmetric flapping wing

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji; Ota, Keigo; Suzuki, Kosuke

    2010-11-01

    Two-dimensional symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method. In the method we can treat the moving boundary problem efficiently on the Cartesian grid. First, we investigate the effect of the Reynolds number on flows around symmetric flapping wings under no-gravity field and find that at high Reynolds numbers asymmetric vortices are appeared and the time-averaged lift force is induced on the wings, while at low Reynolds numbers only symmetric vortices are appeared around the wings and no lift force is induced. Also, the effect of the initial position of the wings on the lift force is investigated. Secondly, we carry out free flight simulations under gravity field for various Reynolds and Froude numbers and find the region where upward flights are possible.

  11. Statistical properties of freely decaying two-dimensional hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. N.; Kuznetsov, E. A.; Sereshchenko, E. V.

    2013-02-01

    Statistical characteristics of freely decaying two-dimensional hydrodynamic turbulence at high Reynolds numbers are numerically studied. In particular, numerical experiments (with resolution up to 8192 × 8192) provide a Kraichnan-type turbulence spectrum E k ˜ k -3. By means of spatial filtration, it is found that the main contribution to the spectrum comes from sharp vorticity gradients in the form of quasi-shocks. Such quasi-singularities are responsible for a strong angular dependence of the spectrum owing to well-localized (in terms of the angle) jets with minor and/or large overlapping. In each jet, the spectrum decreases as k -3. The behavior of the third-order structure function accurately agrees with the Kraichnan direct cascade concept corresponding to a constant enstrophy flux. It is shown that the power law exponents ξ n for higher structure functions grow with n more slowly than the linear dependence, thus indicating turbulence intermittency.

  12. Two Dimensional Physical Chemistry Model of the Io Plasma Torus

    NASA Astrophysics Data System (ADS)

    Copper, M.; Delamere, P. A.; Steffl, A. J.

    2014-12-01

    The Io plasma torus can be characterized by sinusoidal longitudinal (system III and system IV modulation) variations and radial variations. Using the two dimensional model we will explore the sensitivity of radial and azimuthal variations in density, temperature, and composition. Model input parameters include radial transport, hot electron abundance, and iogenic neutral source rate. We will demonstrate how events, such as changes in neutral source due to volcanic eruption on Io, can effect the torus composition in the equatorial plane. These results will be paired with Cassini UVIS data to show what events can cause observed torus changes. In addition to explaining observed trends, the sensitivity study will allow us to predict possible future observations (from the EXCEED mission) and their causes.

  13. Anisotropic electronic conduction in stacked two-dimensional titanium carbide

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Zhang, Hui; Wang, Jiemin; Li, Zhaojin; Hu, Minmin; Tan, Jun; Hou, Pengxiang; Li, Feng; Wang, Xiaohui

    2015-11-01

    Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2T2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons contributing most to the conduction. The conduction is also significantly anisotropic due to the fact that the effective masses of carriers including electrons and holes are remarkably direction-dependent. Such an anisotropic electronic conduction is evidenced by the I‑V curves of an individual Ti3C2T2 particulate, which demonstrates that the in-plane electrical conduction is at least one order of magnitude higher than that vertical to the basal plane.

  14. Unsteady Shear Disturbances Within a Two Dimensional Stratified Flow

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1992-01-01

    The origin and evolution of shear disturbances within a stratified, inviscid, incompressible flow are investigated numerically by a Clebsch/Weber decomposition based scheme. In contrast to homogeneous flows, within which vorticity can be redistributed but not generated, the presence of a density stratification can render an otherwise irrotational flow vortical. In this work, a kinematic decomposition of the unsteady Euler equations separates the unsteady velocity field into rotational and irrotational components. The subsequent evolution of these components is used to study the influence various velocity disturbances have on both stratified and homogeneous flows. In particular, the flow within a two-dimensional channel is used to investigate the evolution of rotational disturbances, generated or convected, downstream from an unsteady inflow condition. Contrasting simulations of both stratified and homogeneous flows are used to distinguish between redistributed inflow vorticity and that which is generated by a density stratification.

  15. Two-dimensional electrophoresis of proteins secreted from articular cartilage.

    PubMed

    Hermansson, Monika; Saklatvala, Jeremy; Wait, Robin

    2007-01-01

    Two-dimensional electrophoresis (2DE) is a powerful method for separation of complex mixtures of proteins. The standard procedure is not, however, well suited to analysis of articular cartilage, which contains high concentrations of proteoglycans, the polyanionic glycosaminoglycan chains of which interfere with isoelectric focusing. We have developed a method for selective removal of proteoglycans by precipitation with cetylpyridinium chloride, after which the residual cartilage proteins are amenable to conventional 2DE analysis. Using this method, reproducible 2D-patterns can be obtained from proteins secreted by articular cartilage. The separated proteins may then be visualized by metabolic radiolabeling and silver staining, digested in gel with trypsin, and identified by tandem mass spectrometry. PMID:17983159

  16. Global geometry of two-dimensional charged black holes

    SciTech Connect

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2006-06-15

    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation.

  17. Two-dimensional Supramolecular Structures by Hydrogen and Halogen Interactions

    NASA Astrophysics Data System (ADS)

    Keon Yoon, Jong; Kim, Howon; Huem Jeon, Jeong; Kahng, Se-Jong

    2010-03-01

    Supramolecualr ordering has been actively studied due to it's possible applications to the fabrication processes of nano-electronic devices. Van der Waals interaction and hydrogen bonding are frequently studied mechanisms for various molecular structures based on non-uniform charge distributions. Halogen atoms in molecules can have electrostatic interactions with similar strength. Big halogen atoms have strong non-uniform charge distributions. To study molecular orderings formed by hydrogen and halogen interactions, we chose a molecular system containing oxygen, hydrogen, and bromine atoms, a bromo-quinone. A two-dimensional molecular network was studied on Au(111) using a low-temperature scanning tunneling microscope. Bromo-quinone molecules form self-assembled square grids having windmill structures. Their molecular orderings, chiral structures, and defects are explained in terms of hydrogen and halogen interactions.

  18. A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Liang, Wenli Z.; Diamond, P. H.

    1993-01-01

    The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.

  19. Two-dimensional electronic spectroscopy with birefringent wedges.

    PubMed

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-01

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria. PMID:25554272

  20. A ballistic two-dimensional-electron-gas Andreev interferometer

    SciTech Connect

    Amado, M. Fornieri, A.; Sorba, L.; Giazotto, F.; Biasiol, G.

    2014-06-16

    We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-local entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.

  1. Large-scale intermittency in two-dimensional driven turbulence.

    PubMed

    Jun, Yonggun; Wu, X L

    2005-09-01

    It is generally believed that two-dimensional turbulence is immune to intermittency possibly due to the absence of vortex stretching. However, in turbulence created in a freely suspended soap film by electromagnetic forcing, it is found that intermittency is not insignificant. We draw this conclusion based on the measured velocity structure function Sp(l) (identical to ) proportional to l(zeta(p)) on scales l greater than the energy injection scale l(inj) . The scaling exponent zeta(p) vs p deviates from the expected linear relation and shows intermittent behavior comparable to that observed in fully developed three-dimensional turbulence in wind tunnels. Our measurements demonstrate that intermittency can be accounted for by the nonuniform distribution of saddle points in the flow. PMID:16241505

  2. Two-dimensional topological insulator edge state backscattering by dephasing

    NASA Astrophysics Data System (ADS)

    Essert, Sven; Krueckl, Viktor; Richter, Klaus

    2015-11-01

    To understand the seemingly absent temperature dependence in the conductance of two-dimensional topological insulator edge states, we perform a numerical study which identifies the quantitative influence of the combined effect of dephasing and elastic scattering in charge puddles close to the edges. We show that this mechanism may be responsible for the experimental signatures in HgTe/CdTe quantum wells if the puddles in the samples are large and weakly coupled to the sample edges. We propose experiments on artificial puddles which allow one to verify this hypothesis and to extract the real dephasing time scale using our predictions. In addition, we present a method to include the effect of dephasing in wave-packet-time-evolution algorithms.

  3. Electromagnetic two-dimensional analysis of trapped-ion eigenmodes

    SciTech Connect

    Kim, D.; Rewoldt, G.

    1984-11-01

    A two-dimensional electromagnetic analysis of the trapped-ion instability for the tokamak case with ..beta.. not equal to 0 has been made, based on previous work in the electrostatic limit. The quasineutrality condition and the component of Ampere's law along the equilibrium magnetic field are solved for the perturbed electrostatic potential and the component of the perturbed vector potential along the equilibrium magnetic field. The general integro-differential equations are converted into a matrix eigenvalue-eigenfunction problem by expanding in cubic B-spline finite elements in the minor radius and in Fourier harmonics in the poloidal angle. A model MHD equilibrium with circular, concentric magnetic surfaces and large aspect ratio is used which is consistent with our assemption that B << 1. The effect on the trapped-ion mode of including these electromagnetic extensions to the calculation is considered, and the temperature (and ..beta..) scaling of the mode frequency is shown and discussed.

  4. Two-dimensional colloidal mixtures in magnetic and gravitational fields

    NASA Astrophysics Data System (ADS)

    Löwen, H.; Horn, T.; Neuhaus, T.; ten Hagen, B.

    2013-11-01

    This mini-review is concerned with two-dimensional colloidal mixtures exposed to various kinds of external fields. By a magnetic field perpendicular to the plane, dipole moments are induced in paramagnetic particles which give rise to repulsive interactions leading to complex crystalline alloys in the composition-asymmetry diagram. A quench in the magnetic field induces complex crystal nucleation scenarios. If exposed to a gravitational field, these mixtures exhibit a brazil-nut effect and show a boundary layering which is explained in terms of a depletion bubble picture. The latter persists for time-dependent gravity ("colloidal shaking"). Finally, we summarize crystallization effects when the second species is frozen in a disordered matrix which provides obstacles for the crystallizing component.

  5. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  6. Evolution of triangles in a two-dimensional turbulent flow

    NASA Astrophysics Data System (ADS)

    Castiglione, Patrizia; Pumir, Alain

    2001-11-01

    As a turbulent flow advects a swarm of Lagrangian markers, the mutual separation between particles grows, and the shape of the swarm gets distorted. By following three points in an experimental turbulent two-dimensional flow with a k-5/3 spectrum, we investigate the geometry of triangles, in a statistical sense. Two well-characterized shape distributions are identified. At long times when the average size of the triangles is larger than the integral scale, the distribution of shapes is Gaussian. When the size of the triangle is in the inertial range and grows as t3/2 (Richardson's law), a plausibly self-similar, non-Gaussian probability distribution is observed, where very elongated triangles have a much larger probability than in the Gaussian regime. These results are discussed, and, in the latter case, compared with the predictions of a stochastic model recently introduced [A. Pumir et al., Phys. Rev. Lett. 85, 5324 (2000)].

  7. Two-dimensional fruit ripeness estimation using thermal imaging

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2013-06-01

    Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.

  8. Asymmetric two-dimensional jet efflux from a channel

    NASA Technical Reports Server (NTRS)

    Martin, C. S.

    1977-01-01

    Irrotational flow of two-dimensional jets from a channel is treated without direct use of a logarithmic hodograph plane. An analytical approach is introduced for solving the general problem of two jets issuing from a channel with three end plates. Numerical values of the contraction coefficient and the angle of jet deflection are obtained for the special case where the two jets are located symmetrically and all the end plates are in line. Limiting cases of the resulting single-jet problem are the symmetric and asymmetric configurations solved by von Mises (1917). Results for the asymmetric case improve upon the theoretical values reported by von Mises and compare favorably with existing experimental data.

  9. Efficient solutions of two-dimensional incompressible steady viscous flows

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Napolitano, M.

    1986-01-01

    A simple, efficient, and robust numerical technique is provided for solving two dimensional incompressible steady viscous flows at moderate to high Reynolds numbers. The proposed approach employs an incremental multigrid method and an extrapolation procedure based on minimum residual concepts to accelerate the convergence rate of a robust block-line-Gauss-Seidel solver for the vorticity-stream function Navier-Stokes equations. Results are presented for the driven cavity flow problem using uniform and nonuniform grids and for the flow past a backward facing step in a channel. For this second problem, mesh refinement and Richardson extrapolation are used to obtain useful benchmark solutions in the full range of Reynolds numbers at which steady laminar flow is established.

  10. Two-dimensional infrared spectroscopy of neat ice Ih.

    PubMed

    Shi, Liang; Skinner, J L; Jansen, Thomas L C

    2016-02-01

    The assignment of the distinct peaks observed in the OH stretch lineshape of ice Ih is controversial. Recent two-dimensional infrared spectroscopic measurements provided new data. The spectra are, however, challenging to interpret and here we provide simulations that help overcome experimental issues as thermal signals and finite pulse duration. We find good agreement with experiment and the difference between H2O and D2O ices is well accounted for. The overall dynamics is demonstrated to be faster than observed for the corresponding liquid water. We find that excitonic cross peaks exist between the dominant exciton peaks. This leads us to conclude that the cross peaks arise due to the formation of delocalized exciton states, which have essentially no directional correlation between their transition dipoles as opposed to what is commonly seen, for example, in isolated water, where the transition dipoles of the eigenstates are perpendicular to each other. PMID:26765972

  11. Analysis of cancellation exponents in two-dimensional Vlasov turbulence

    SciTech Connect

    De Vita, G.; Valentini, F.; Servidio, S.; Primavera, L.; Carbone, V.; Veltri, P.; Sorriso-Valvo, L.

    2014-07-15

    Statistical properties of plasma turbulence are investigated by means of two-dimensional Vlasov simulations. In particular, a classical technique called signed measure is used to characterize the scaling behavior and the topology of sign-oscillating structures in simulations of the hybrid Vlasov-Maxwell model. Exploring different turbulence regimes, varying both the plasma ? and the level of fluctuations, it is observed that Vlasov turbulence manifests two ranges with different exponents, the transition being observed near the ion skin depth. These results, which may have applications to both laboratory and astrophysical systems, further confirm the singular nature of small scale fluctuations in a plasma, mainly classified as intermittent, narrow, and intense current sheets.

  12. Two-dimensional mixed convection along a flat plate

    NASA Astrophysics Data System (ADS)

    Yao, L. S.

    The development of vortex instability in two-dimensional mixed convection along a flat plate is studied, theoretically. It is shown that the forced convection along the horizontal plate is limited by the Reynolds number and Grashof numbers of the flow, respectively. The mixed convection solution to the Navier-Stokes boundary layer for a vertical plate are also equations valid in the case of a horizontal plate when Gr approaches infinity. The forced convection effect cannot be obtained by solving the mixed-convection boundary layer equations alone. Also, it is shown that the generally recognized value Gr/Re exp 5/2 is not the governing parameter for a mixed-convection flow along a flat plate. The limits on the flow parameters may be used to estimate the heat transfer rate and pumping power of more complex flow geometries in combustion flames, solar collectors, and nuclear reactors.

  13. Domain engineering of physical vapor deposited two-dimensional materials

    SciTech Connect

    Alam, Tarek; Wang, Baoming; Pulavarthy, Raghu; Haque, M. A.; Muratore, Christopher; Glavin, Nicholas; Roy, Ajit K.; Voevodin, Andrey A.

    2014-11-24

    Physical vapor deposited two-dimensional (2D) materials span larger areas compared to exfoliated flakes, but suffer from very small grain or domain sizes. In this letter, we fabricate freestanding molybdenum disulfide (MoS{sub 2}) and amorphous boron nitride (BN) specimens to expose both surfaces. We performed in situ heating in a transmission electron microscope to observe the domain restructuring in real time. The freestanding MoS{sub 2} specimens showed up to 100× increase in domain size, while the amorphous BN transformed in to polycrystalline hexagonal BN (h-BN) at temperatures around 600 °C much lower than the 850–1000 °C range cited in the literature.

  14. Water adsorption on two-dimensional silica films

    NASA Astrophysics Data System (ADS)

    Nayakasinghe, M. T.; Chakradhar, A.; Sivapragasam, N.; Burghaus, U.

    2016-02-01

    In the meanwhile several inorganic low-dimensional crystals (analog to the prototypical organic graphene) are known. A technological important example is two-dimensional (2D) silica films (silicatene); their molecular structure is well described in the literature. However, much less is known about the surface chemistry. We present experimental data to characterize water adsorption on silicatene using several known synthesis procedures. The wettability of the 2D films did in our study depend on details of the film preparation. Therefore, the hydrophobicity could be used as a simple diagnostics tool to verify the quality of silicatene films. In addition, wettability of the precursors to silicatene namely Mo(112), and O-Mo(112) were characterized.

  15. Two-dimensional electron cyclotron emission imaging diagnostic for TEXTOR

    SciTech Connect

    Wang, J.; Domier, C.W.; Xia, Z.G.; Liang, Y.; Luhmann, N.C. Jr.; Park, H.; Munsat, T.; Mazzucato, E.; Pol, M.J. van de; Classen, I.G.J.; Donne, A.J.H.

    2004-10-01

    A two-dimensional electron cyclotron emission imaging (ECEI) diagnostic has been developed in which broad bandwidth radiation is collected by a vertically aligned mixer array and separated by frequency band. Using a 16 element array, and an 8 band receiver attached to each array element, time-resolved 16x8 images of electron temperature profiles and fluctuations of the TEXTOR plasma are acquired with vertical and horizontal channel spacings of 11 and 8 mm, and spot sizes of 13 and 9 mm, respectively. The system is wideband tunable from 95 to 130 GHz, and the focus location may be shifted horizontally via translation of one of the optical imaging elements. System design and laboratory testing details of the ECE Imaging optics and multichannel wideband electronics are presented, together with TEXTOR plasma data.

  16. Hysteresis dispersion scaling of a two-dimensional ferroelectric model

    NASA Astrophysics Data System (ADS)

    Wang, L.-F.; Liu, J.-M.

    2005-09-01

    The ferroelectric hysteresis dispersion of a two-dimensional ferroelectric model lattice in an ac electric field of amplitude E0 and frequency ? over a wide range, respectively, is calculated by Monte Carlo simulation based on the Ginzburg-Landau theory on tetragonal-type ferroelectric phase transitions. Given a fixed field amplitude E0, the hysteresis dispersion as a function of field frequency ? shows a single-peaked pattern, which predicts the existence of a characteristic time responsible for domain switching in an external electric field. The scaling analysis demonstrates that given different field amplitudes E0, the hysteresis dispersions can be scaled and the characteristic time depends inversely on the field amplitude E0 over a wide range of E0, but the large deviation occurs as E0 is very small or extremely large.

  17. Kinetic theory of a two-dimensional magnetized plasma.

    NASA Technical Reports Server (NTRS)

    Vahala, G.; Montgomery, D.

    1971-01-01

    Several features of the equilibrium and nonequilibrium statistical mechanics of a two-dimensional plasma in a uniform dc magnetic field are investigated. The charges are assumed to interact only through electrostatic potentials. The problem is considered both with and without the guiding-center approximation. With the guiding-center approximation, an appropriate Liouville equation and BBGKY hierarchy predict no approach to thermal equilibrium for the spatially uniform case. For the spatially nonuniform situation, a guiding-center Vlasov equation is discussed and solved in special cases. For the nonequilibrium, nonguiding-center case, a Boltzmann equation, and a Fokker-Planck equation are derived in the appropriate limits. The latter is more tractable than the former, and can be shown to obey conservation laws and an H-theorem, but contains a divergent integral which must be cut off on physical grounds. Several unsolved problems are posed.

  18. Soliton nanoantennas in two-dimensional arrays of quantum dots.

    PubMed

    Gligorić, G; Maluckov, A; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A

    2015-06-10

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools. PMID:25985396

  19. Soliton nanoantennas in two-dimensional arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.

    2015-06-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  20. Two-Dimensional Quantum Model of a Nanotransistor

    NASA Technical Reports Server (NTRS)

    Govindan, T. R.; Biegel, B.; Svizhenko, A.; Anantram, M. P.

    2009-01-01

    A mathematical model, and software to implement the model, have been devised to enable numerical simulation of the transport of electric charge in, and the resulting electrical performance characteristics of, a nanotransistor [in particular, a metal oxide/semiconductor field-effect transistor (MOSFET) having a channel length of the order of tens of nanometers] in which the overall device geometry, including the doping profiles and the injection of charge from the source, gate, and drain contacts, are approximated as being two-dimensional. The model and software constitute a computational framework for quantitatively exploring such device-physics issues as those of source-drain and gate leakage currents, drain-induced barrier lowering, and threshold voltage shift due to quantization. The model and software can also be used as means of studying the accuracy of quantum corrections to other semiclassical models.