Science.gov

Sample records for uasb reactor system

  1. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    PubMed

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage. PMID:22856320

  2. Grey water treatment in UASB reactor at ambient temperature.

    PubMed

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours. PMID:17506435

  3. Full scale UASB reactor performance in the brewery industry.

    PubMed

    Ahn, Y H; Min, K S; Speece, R E

    2001-04-01

    In this paper the 7 year experience of the Oriental Breweries, located in Kumi, Korea utilizing a full-scale upflow anaerobic sludge blanket (UASB) reactor for the anaerobic pretreatment of brewery wastewater is presented. The anaerobic pretreatment system selected has successfully achieved the desired treatment efficiency for the brewery wastewater during that period and it has also continued operation even with low wastewater concentrations (average CODcr 1,400 mg l-1) and lower flow rates than specified by the design parameters. The CODcr removal of the UASB reactor averaged over 80% throughout the entire period, incurring normal running expenses of only $0.20-0.31 m-3 of treated water. In addition a further economical feature of the process was the utilization of the gas digester production as the municipal gas source, reducing total operating expenses around 30 to 45% and costing the plant only $0.1 m-3. Maintenance of good granule production, which is always a key issue in operating UASB systems, was not possible by this installation, however, so frequent expensive reseeding of the reactor was often necessary due to biomass washout. The full scale and lab scale research revealed that underloading can be as detrimental as overloading, due to excessively long retention time in the UASB system for the overall operating period and to excessive pre-acidification and/or incorrect reactor configuration of the completely mixed type. To enhance the sludge granulation, therefore, the installation of a pre-acidification reactor in the UASB system treating easily biodegradable substrates such as brewery wastewater is not necessary because adequate pre-acidification can occur in the equalization tank. PMID:11329809

  4. Coliform and helminth eggs removal in a combined UASB reactor-baffled pond system in Brazil: performance evaluation and mathematical modelling.

    PubMed

    von Sperling, M; Chernicharo, C A L; Soares, A M E; Zerbini, A M

    2002-01-01

    The paper presents the monitoring results of a pilot UASB reactor followed by a baffled polishing pond treating domestic sewage in Brazil. Longitudinal profiles of E coli and helminth eggs along the baffled pond have been undertaken. The experimental results have been compared with von Sperling's model for coliform removal and Ayres' model for helminth eggs removal, and the fitting was considered satisfactory in both cases. The distribution of the helminth species along the system is also presented. PMID:12188551

  5. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    PubMed

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  6. Performance evaluation of a simple wastewater treatment system comprised by UASB reactor, shallow polishing ponds and coarse rock filter.

    PubMed

    von Sperling, Marcos; Oliveira, Carolina Moreira; Andrada, Juliana G B; Godinho, Valéria M; Assunção, Fernando A L; Junior, Wilson R Melo

    2008-01-01

    The work investigates a small full-scale wastewater treatment system comprised by the following units in series: UASB reactor, three polishing ponds and one coarse rock filter. The overall performance of the system is analyzed based on three years of monitoring using physical-chemical and biological parameters. Good organic matter, suspended solids and ammonia removal is achieved, together with excellent coliform removal (5.70 log units). Mean effluent concentrations of the main parameters are: BOD: 39 mg/L; COD: 109 mg/L; SS = 41 mg/L; ammonia: 10 mg/L; E. coli: 540 MPN/100 mL, indicating compliance with many regulations for effluent discharge and reuse. Main algal classes found in the ponds and final effluent were chlorophyta and euglenophyta. The system is completely unmechanized and has a relatively small total hydraulic retention time (less than 13 days), compared with most natural treatment processes. No sludge removal from the ponds and filter has been necessary so far. PMID:18845872

  7. A dual purpose packed-bed reactor for biogas scrubbing and methane-dependent water quality improvement applying to a wastewater treatment system consisting of UASB reactor and trickling filter.

    PubMed

    Tanaka, Yasuo

    2002-08-01

    A wastewater treatment system employing a UASB reactor in temperate regions requires biogas as a heat source for the UASB reactor during low temperature seasons. In this case, removal of H2S in the biogas by means of a scrubber before burning is necessary in order to prevent the boilers from corroding. Heating of the UASB reactor is, however, unnecessary in a warm season, and the scrubber and biogas become useless. Methane-dependent water quality improvement using the scrubber and biogas would be one way to use them efficiently during the warm season. The possible dual-purpose use of a packed-bed reactor was examined, with one of its uses being the scrubbing of biogas during the cold season and the other being the methane-dependent improvement of effluent water quality during the warm season. A bench scale packed-bed filled with plastic latticed-ring media was installed in a livestock wastewater treatment plant consisting of a UASB reactor and a trickling filter for post-treatment. The packed-bed was operated with biogas flowing at a superficial velocity of 0.14-0.39 m h(-1) and the hydraulic loading of trickling filter effluent sprayed onto the media 9.4-26.1 m3 m2 day(-1). H2S in the biogas from the UASB reactor was reduced from 1,200-2,500 ppm to less than 2 ppm by the reactor. Methane-dependent water quality improvement was examined using a laboratory scale reactor to which methane and/or air was supplied from the bottom, while plant effluent was spread from the top of the reactor. When the mixture gas of methane and air (volume ratio 1:3) was added to the reactor, biofilm grew on the surface of the media. Accompanying this growth, ammonium and phosphate in the spread water decreased, probably due to assimilation by the methane-oxidizing bacteria. Though assimilation activity dropped after the accumulation of biomass, it could be reactivated by washing out the excess biomass. Periodical backwash at a rate of more than once a week seemed to efficiently maintain the removal activity. The dark brown color of the wastewater could be also reduced in concert with methane oxidation. It seemed that methane-oxidizing bacteria degraded color-causing compounds. These results suggest that the packed-bed reactor is useful for both H2S purification of biogas and methane-dependent effluent water quality improvement. PMID:12137264

  8. Anaerobic biodegradation of aircraft deicing fluid in UASB reactors.

    PubMed

    Tham, P T Pham thi; Kennedy, K J Kevin J

    2004-05-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions (0.8% 1.6% ADF (6000-12,000mg/L COD), 12-56h HRT, and 18-36gVSS/L) were conducted in continuous mode. The development of four empirical models describing process responses (i.e. COD removal efficiency, biomass-specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time, and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass-specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass-specific acetoclastic activity was improved two-fold from 0.23gCOD/gVSS/d for inoculum to a maximum of 0.55gCOD/gVSS/d during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. The predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate is increased. ADF toxicity effects were evident for 1.6% ADF at medium organic loadings (SOLR above 0.5gCOD/gVSS/d). In contrast, good reactor stability and excellent COD removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73gCOD/gVSS/d). PMID:15159155

  9. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    PubMed

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. PMID:25306229

  10. Performance of very shallow ponds treating effluents from UASB reactors.

    PubMed

    von Sperling, M; Mascarenhas, L C A M

    2005-01-01

    Polishing ponds are units conceived for the post-treatment of the effluents from anaerobic reactors, are designed as maturation ponds, and aim at a further removal of organic matter and a high removal of pathogenic organisms. The paper investigates the performance of four very shallow (H = 0.40 m) polishing ponds in series, with very low detention times (1.4-2.5 days in each pond), treating anaerobic effluent from the city of Belo Horizonte, Brazil. The system was able to achieve excellent results in terms of BOD and E. coli removal, and good results in terms of ammonia removal, allowing compliance with European standards for urban wastewater and WHO guidelines for unrestricted irrigation. The paper presents the values of BOD and E. coli removal coefficients, which were much higher than those found in conventional pond systems. No statistically significant difference was found in the effluent E. coli concentrations from a pond with low depth and low detention time, and another pond in parallel, with double the depth and approximately double the detention time. The results endorse the applicability of the system composed by UASB reactors followed by very shallow ponds in series, with low detention times. PMID:16114667

  11. Effect of temperature on selenium removal from wastewater by UASB reactors.

    PubMed

    Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L

    2016-05-01

    The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. PMID:26938500

  12. Improved nitrogen removal in upflow anaerobic sludge blanket (UASB) reactors by incorporation of Anammox bacteria into the granular sludge.

    PubMed

    Schmidt, J E; Batstone, D J; Angelidaki, I

    2004-01-01

    Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m(-3) reactor day(-1), with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process. PMID:15303725

  13. Anaerobic filter for polishing effluent of UASB reactor treating strong sewage at 23 degrees C.

    PubMed

    Alrajoula, Mohammad; Halalsheh, Maha; Fayyad, Manar

    2009-01-01

    Anaerobic filter (AF) was used for polishing effluent of UASB reactor treating strong sewage at an average water temperature of 23 degrees C. The UASB-AF system was operated with sludge discharge taking place only from the AF reactor. It was hypothesized that better removal of suspended COD (COD(ss)) fraction from the system can be achieved by increasing sludge discharge frequency from the AF reactor. For this purpose, sludge discharge frequencies of once, twice and thrice per day from the AF reactor were investigated. Results showed that average total COD (COD(tot)) removal efficiency of the system increased from 62% when sludge was discharged once per day from the AF reactor up to 67% when sludge was discharged twice and thrice per day. However, the increase in COD(tot) removal was not due to increased removal of COD(ss) fraction; but mainly due to development of an active biomass on the filter media, which increased removal efficiency of soluble COD fraction. The AF reactor had also an evidence of pathogens reduction. The AF reactor achieved 1-2 log reduction in Fecal Coliform counts. PMID:19474492

  14. Performance evaluation of a UASB--activated sludge system treating municipal wastewater.

    PubMed

    von Sperling, M; Freire, V H; Chernicharo, C A

    2001-01-01

    Recent research has indicated the advantages of combining anaerobic and aerobic processes for the treatment of municipal wastewater, especially for warm-climate countries. Although this configuration is seen as an economical alternative, is has not been investigated in sufficient detail on a worldwide basis. This work presents the results of the monitoring of a pilot-scale plant comprising of an UASB reactor followed by an activated sludge system, treating actual municipal wastewater from a large city in Brazil. The plant was intensively monitored and operated for 261 days, divided into five different phases, working with constant and variable inflows. The plant showed good COD removal, with efficiencies ranging from 69% to 84% for the UASB reactor, from 43% to 58% for the activated sludge system only and from 85% to 93% for the overall system. The final effluent suspended solids concentration was very low, with averages ranging from 13 to 18 mg/l in the typical phases of the research. Based on the very good overall performance of the system, it is believed that it is a better alternative for warm-climate countries than the conventional activated sludge system, especially considering the total low hydraulic detention time (4.0 h UASB; 2.8 h aerobic reactor; 1.1 h final clarifier), the savings in energy consumption, the absence of primary sludge and the possibility of thickening and digesting the aerobic excess sludge in the UASB reactor itself. PMID:11443979

  15. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    PubMed

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  16. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    PubMed Central

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  17. Anaerobic treatment of natural tannin extracts in UASB reactors.

    PubMed

    López-Fluza, J; Omil, F; Méndez, R

    2003-01-01

    Tannin extracts are substances commonly used in leather production processes. Since most of the steps of tannery manufacturing processes are carried out in aqueous environments, the presence of these compounds in the wastewaters is important. The aim of this work is to study the feasibility of the anaerobic degradation of three natural tannin extracts in three Upflow Anaerobic Sludge Blanket (UASB) reactors, which were fed with increasing concentrations of two condensed (quebracho and wattle) and one hydrolysable tannin extract (chestnut). Concentrations of applied extracts were 100, 200, 400, 800 and 1,000 mg/l, and 5 g/l of glucose was used as cosubstrate. Reactors were operated during 210 days and their performance was evaluated from the values of total and soluble COD, total and intermediate alkalinity, volatile fatty acids, pH and UV absorption at 280 nm. COD removal efficiencies higher than 85% were achieved in all cases. However, tannin extract removal efficiencies (based on UV-280 nm absorption measurements) were significantly lower, around 20% for condensed extracts and 60% for the hydrolysable one, when the reactors operated with the highest tannin extract concentration. The operation of the reactors was stable, commonly with alkalinity ratios below 0.30. Mass balances carried out indicate that most of the COD removal efficiencies are due to the removal of the readily biodegradable organic matter (glucose), whereas the tannin extracts are hardly anaerobically biodegradable, especially condensed extracts (wattle and quebracho). PMID:14640213

  18. Separation of solids and disinfection for agronomical use of the effluent from a UASB reactor.

    PubMed

    Sundefeld Junior, G C; Piveli, R P; Cutolo, S A; Ferreira Filho, S S; Santos, J G

    2014-01-01

    The present work addresses the preparation of the effluent from a full-scale upflow anaerobic sludge blanket (UASB) reactor for drip irrigation of orange crops. The pilot plant included a lamella plate clarifier followed by a geo-textile blanket filter and a UV disinfection reactor. The clarifier operated with a surface load of 115 m(3)m(-2)d(-1), whereas the filter operated with 10 m(3)m(-2)d(-1). The UV reactor was an open-channel type and the effective dose was approximately 2.8 W h m(-3). The effluent of the UASB reactor received 0.5 mg L(-1) cationic polyelectrolyte before entering the high-rate clarifier. Suspended solids' concentrations and Escherichia coli and helminth egg's densities were monitored throughout the treatment system for 12 months. Results showed that the total suspended solids concentration in the filter effluent was lower than 7 mg L(-1) and helminth density was below 1.0 egg L(-1). The UV disinfection demonstrated the ability to produce a final effluent with E. coli density lower than 10(3)MPN/100 mL (MPN: most probable number) during the entire process. Thus, the World Health Organization standards for unrestricted crop use were met. Agronomic interest parameters were controlled and it was possible to identify the important contribution of treated sewage in terms of the main nutrients. PMID:24434964

  19. Tequila vinasses acidogenesis in a UASB reactor with Clostridium predominance.

    PubMed

    Marino-Marmolejo, E N; Corbalá-Robles, L; Cortez-Aguilar, R C; Contreras-Ramos, S M; Bolaños-Rosales, R E; Davila-Vazquez, G

    2015-01-01

    Tequila vinasses represent an acidic, highly concentrated pollutant effluent generated during the distillation step of Tequila production. Although acidogenesis of Tequila vinasses has been reported for some reactor configurations, a characterization of the bacteria present during this metabolic process is lacking in the literature. Hydraulic retention times (HRT) between 36 and 6 h and organic loading rates (OLR) from 5 to 30 g COD L(-1) d(-1) were assessed in a UASB reactor fed with Tequila vinasses. Results showed that OLR excerted a stronger effect (p ≤ 0.0001) on parameters such as gas production rate, pH, and acidity than HRT. While it was clear that shorter HRT were related to higher volatile fatty acid production levels. Figures above 2 Lgas Lreactor (-1) d(-1) (where "gas" could be a mixture of methane and hydrogen) were attained only with an OLR as high as 30 g COD L(-1) d(-1). Bacterial identification of a sludge sample at the end of the experiment revealed that acid-tolerant microorganisms that remained in the reactor were exclusively affiliated to the Clostridium genera, being the first report of organisms identification for Tequila vinasses acidogenesis. These findings are relevant to the field of biotechnology since acidogenesis of Tequila vinasses using identified and studied microorganism abilities (i.e. Clostridium strains) presents the opportunity of optimizing processes intended for different metabolites production (butanol, volatile fatty acids, hydrogen, solvents). PMID:26301166

  20. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors.

    PubMed

    Batstone, D J; Hernandez, J L A; Schmidt, J E

    2005-08-01

    Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors are often used as test platforms to evaluate full-scale applications. However, for a given volume specific hydraulic loading rate and geometry, the gas and liquid flows increase proportionally with the cube root of volume. In this communication, we demonstrate that a laboratory-scale reactor had plug-flow hydraulics, while a full-scale reactor had mixed flow hydraulics. The laboratory-scale reactor could be modeled using an existing biochemical model, and parameters identified, but because of computational speed with plug-flow hydraulics, mixed systems are instead recommended for parameter identification studies. Because of the scaling issues identified, operational data should not be directly projected from laboratory-scale results to the full-scale design. PMID:15977253

  1. Use of UASB reactors for brackish aquaculture sludge digestion under different conditions.

    PubMed

    Mirzoyan, Natella; Gross, Amit

    2013-05-15

    Treatment and disposal of high volume of salty waste production in recirculating aquaculture systems (RASs) is a major challenge and the sludge is often a source of environmental pollution and salinization of receiving soils and water bodies. Anaerobic digestion is an efficient mean for the treatment of wastes of different origins and might serve a useful tool for the reduction of salty aquaculture discharge load. Use of an upflow anaerobic sludge blanket (UASB) reactor for digestion of brackish aquaculture sludge from RASs under different C:N ratios, temperatures, and hydraulic retention times demonstrated high removal efficiencies of over 92% as volatile solids (VS), 98% as chemical oxygen demand and 81% as total suspended solids in all reactors. Methane production topped 7.1 mL/gVS d and was limited by low C:N ratio but was not influenced by temperature fluctuations. The treated liquid effluent from all reactors was of sufficient quality for reuse in the RAS, leading to significant water recycling and saving rates. UASB may be an attractive solution for brackish sludge management in RASs. PMID:23528783

  2. Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Elmitwalli, Tarek A; Otterpohl, Ralf

    2007-03-01

    Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d). PMID:17276482

  3. Anaerobic thermophilic treatment of cattle manure in UASB reactors.

    PubMed

    Castrilln, L; Vzquez, I; Maran, E; Sastre, H

    2002-08-01

    Cattle manure was characterised after filtration through a 1-mm sieve and subsequently treated in a 9-l volume Upflow Anaerobic Sludge Blanket (UASB) reactor made of transparent PVC at a thermophilic temperature (55 degrees C). Different Hydraulic Retention Times (HRT) (22.5, 16, 10.6, 8.9 and 7.3 days) were employed and organic matter, total solids and metals were determined, as was the production of biogas. After screening, the COD of the manure subjected to anaerobic thermophilic treatment varied between values of 33,382 and 45,513 mgO2 l(-1). The highest percentage of COD removal obtained was 79.7% for an HRT of 22.5 days and there was a fraction refractory to biodegradation of 11%, calculated using Chen & Hashimoto's model. Finally, the results obtained at a thermophilic temperature were compared with those obtained at a mesophilic temperature (obtained in a previous work). The reduction in COD was slightly greater under mesophilic conditions, though the main advantage of thermophilic anaerobic treatment is the faster inactivation of viruses and bacteria. PMID:12363095

  4. Removal efficiency and methanogenic activity profiles in a pilot-scale UASB reactor treating settled sewage at moderate temperatures.

    PubMed

    Seghezzo, L; Guerra, R G; González, S M; Trupiano, A P; Figueroa, M E; Cuevas, C M; Zeeman, G; Lettinga, G

    2002-01-01

    The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6 degrees C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28-0.85 m/h (HRT 3-9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions. PMID:12188552

  5. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses.

    PubMed

    López-López, Alberto; León-Becerril, Elizabeth; Rosales-Contreras, María Elena; Villegas-García, Edgardo

    2015-10-01

    The main problem linked to the stability of upflow anaerobic sludge blanket (UASB) reactors during the treatment of Tequila vinasse is the high acidity and the null alkalinity present in this effluent. This research evaluates the effect of alkalinity and volatile fatty acids (VFAs) concentration on the performance of an UASB reactor with recirculation of the effluent for removing organic matter and biogas production from Tequila vinasses. Recirculation of the effluent reduces the impact of VFAs and organic matter concentration present in the influent, inducing the stability of the reactor. The UASB reactor was operated during 235 days at organic loading rates from 2.5 to 20.0 kg m(-3) d(-1), attaining a removal efficiency of COD greater than 75% with a methane yield of 335 ml CH4 g(-1) COD at SPT, maintaining a ratio of VFAs/Alk ≤ 0.5. Therefore, an optimal ratio of VFAs/Alk was established for the system operating in stable conditions for the treatment of Tequila vinasses. Under these conditions, the alkalinity was recuperated by the system itself, without the addition of external alkalinity. PMID:25827467

  6. Combined treatment of leachate from sanitary landfill and municipal wastewater by UASB reactors.

    PubMed

    Torres, Patricia; Rodríguez, Jenny A; Barba, Luz E; Marmolejo, Luis F; Pizarro, Carlos A

    2009-01-01

    Landfills are among the most affordable and acceptable methods in terms of public health and environmental protection for the final disposal of solid waste. Leachate treatment incorporated into anaerobic domestic wastewater systems could be a viable and efficient alternative which would allow minimizing implementation and operation costs of the landfill, to reduce requirements of chemical inputs such as pH conditioners and phosphorus supply. This study showed the potential of anaerobic treatment in an UASB reactor treating a combination of domestic wastewater and leachate in a 5% volumetric ratio of leachate. Under these conditions the reactor assimilated properly the leachate fraction incorporated. With a HRT of 8 h and a mean volumetric organic load of 2.84 kg m(-3) d(-1) COD removal efficiencies around 70% were obtained, without inhibition problems; however, the necessity of a complementary treatment for improving carbonaceous and nitrogenous organic matter reduction is evident. PMID:19633392

  7. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor.

    PubMed

    Halalsheh, M; Sawajneh, Z; Zu'bi, M; Zeeman, G; Lier, J; Fayyad, M; Lettinga, G

    2005-03-01

    A 96 m3 UASB reactor was operated for 2.5 years under different conditions to assess the feasibility of treating strong sewage (COD(tot) = 1531 mg/l) at ambient temperatures with averages of 18 and 25 degrees C for winter and summer respectively. During the first year, the reactor was operated as a two-stage system at OLRs in the range of 3.6-5.0 kg COD/m3 d for the first stage and 2.9-4.6 kg COD/m3 d for the second stage. The results of the first stage showed average removals of 51% and 60% for COD(tot) and COD(ss) respectively without significant effect of temperature. The second stage reactor was unstable. The temperature affected sludge stabilization. During the second year, the first stage was operated as a single-stage UASB reactor at half of the previous loading rates. The results showed an average removal efficiency of 62% for COD(tot) during summer, while it dropped to 51% during wintertime. However, the effluent suspended solids were stabilized with VSS/TSS ratio around 0.50 all over the year. The sludge in the single-stage reactor was well-stabilized and exerted an excellent settlability. During the last three months of research, sludge was discharged regularly from the single-stage UASB reactor. The results showed no significant improvement in the performance in terms of COD(tot). Based on the results of the experiment, a single-stage UASB reactor operated at relatively long HRT is preferred above two-stage system at the Jordanian conditions. PMID:15501665

  8. Biosorption and biodegradation of pentachlorophenol (PCP) in an upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Ye, Fen-Xia; Li, Ying

    2007-10-01

    In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20-22 h, and PCP loading rate of 200-220 mg l(-1) d(-1), UASB reactor exhibited good performance in treating wastewater which containing 170-180 mg l(-1) PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l(-1) PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization. PMID:17146612

  9. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    PubMed Central

    2012-01-01

    Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984

  10. Long-term monodigestion of crude glycerol in a UASB reactor.

    PubMed

    Hutňan, Miroslav; Kolesárová, Nina; Bodík, Igor; Czölderová, Marianna

    2013-02-01

    The aim of this study was to discuss the experience from long-term operation of a laboratory UASB reactor inoculated with suspended or granulated biomass for the treatment of different kinds of crude glycerol in undiluted or diluted state. The UASB reactor was operated under mesophilic conditions. It was demonstrated that the anaerobic treatment of crude glycerol as the only substrate in the UASB reactor is feasible, although the specific inhibition effects and requirements resulting from the nature and composition of the g-phase have to be considered. Deficient concentrations of nutrients had to be compensated by their supplementation into the digester. Long-term microbiological treatment of undiluted crude glycerol led to the process inhibition due to the accumulation of dissolved inorganic salts. When dosing diluted g-phase previously treated by acidulation, very good removal efficiency of COD, stable biogas production and high share of methane in the biogas were observed at the organic loading rates of up to 12kg/(m(3)d). PMID:23306115

  11. Biomethane production and microbial community response according to influent concentration of molasses wastewater in a UASB reactor.

    PubMed

    Yun, Jeonghee; Lee, Sang Don; Cho, Kyung-Suk

    2016-05-01

    This study aimed to investigate the interaction between methane production performance and active microbial community dynamics at different loading rates by increasing influent substrate concentration. The model system was an upflow anaerobic sludge blanket (UASB) reactor using molasses wastewater. The active microbial community was analyzed using a ribosomal RNA-based approach in order to reflect active members in the UASB system. The methane production rate (MPR) increased with an increase in organic loading rate (OLR) from 3.6 to 5.5 g COD·L(-1)·day(-1) and then it decreased with further OLR addition until 9.7 g COD·L(-1)·day(-1). The UASB reactor achieved a maximum methane production rate of 0.48 L·L(-1)·day(-1) with a chemical oxygen demand (COD) removal efficiency of 91.2 % at an influent molasses concentration of 16 g COD·L(-1) (OLR of 5.5 g COD·L(-1)·day(-1)). In the archaeal community, Methanosarcina was predominant irrespective of loading rate, and the relative abundance of Methanosaeta increased with loading rate. In the bacterial community, Firmicutes and Eubacteriaceae were relatively abundant in the loading conditions tested. The network analysis between operation parameters and microbial community indicated that MPR was positively associated with most methanogenic archaea, including the relatively abundant Methanosarcina and Methanosaeta, except Methanofollis. The most abundant Methanosarcina was negatively associated with Bifidobacterium and Methanosaeta, whereas Methanosaeta was positively associated with Bifidobacterium. PMID:26810080

  12. Performance assessment of different STPs based on UASB followed by aerobic post treatment systems

    PubMed Central

    2014-01-01

    This paper present the experiences gained from the study of ten up flow anaerobic sludge blanket (UASB) based sewage treatment plants (STPs) of different cities of India. Presently 37 UASB based STPs were under operation and about 06 UASB based STPs are under construction and commissioning phase at different towns. The nature of sewage significantly varied at each STP. Two STP were receiving sewage with high sulfate and heavy metals due to the mixing of industrial waste. The treatment performance of all UASB reactors in terms of BOD, COD and TSS were observed between 55 to 70% respectively. The post treatment units down flow hanging sponge (DHS) and Aeration followed by activated sludge process (ASP) at two STPs were performing well and enable to achieve the required disposal standards. Results indicate the effluent quality in terms of BOD and SS were less than 30 and 50 mg/L and well below the discharging standards. PMID:24468307

  13. Removal of E. coli and helminth eggs in UASB: Polishing pond systems in Brazil.

    PubMed

    von Sperling, M; Bastos, R K X; Kato, M T

    2005-01-01

    Ponds following anaerobic reactors, such as Upflow Anaerobic Sludge Blanket (UASB) reactors, have been termed polishing ponds in the literature. The present paper analyses the removal of E. coli and helminth eggs in five UASB-polishing pond systems in Brazil. Since there were ponds in series, the total number of ponds was 10. The ponds had average retention times varying from 2 to 21 days, and depths ranging from 0.40 to 2.00 m. The shallow ponds in series, even with low retention times, were able to produce effluents complying with the coliform WHO guidelines for unrestricted irrigation (< or = 1000 MPN/100 ml). An equation for the coliform decay coefficient was proposed: Kb (dispersed flow) = 0.710H(-0955) (20 degrees C). The equation highlights the inverse relationship between the pond depth and the decay coefficient. All polishing pond systems were able to produce effluents with helminth eggs concentrations predominantly equal to zero, and satisfying the WHO guidelines for unrestricted and restricted irrigation (< or = 1 egg/L, arithmetic mean). The approximate range of helminth eggs removal efficiency was predicted satisfactorily. PMID:16114668

  14. Effects of cationic polymer on performance of UASB reactors treating low strength wastewater.

    PubMed

    Bhunia, Puspendu; Ghangrekar, M M

    2008-01-01

    The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge. PMID:17303411

  15. Modified kinetic-hydraulic UASB reactor model for treatment of wastewater containing biodegradable organic substrates.

    PubMed

    El-Seddik, Mostafa M; Galal, Mona M; Radwan, A G; Abdel-Halim, Hisham S

    2016-01-01

    This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews' kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt. PMID:27054727

  16. Simple wastewater treatment (UASB reactor, shallow polishing ponds, coarse rock filter) allowing compliance with different reuse criteria.

    PubMed

    von Sperling, M; de Andrada, J G B

    2006-01-01

    UASB reactors followed by polishing ponds comprise simple and economic wastewater treatment systems, capable of reaching very high removal efficiencies of pathogenic organisms, leading to the potential use of the effluent for unrestricted irrigation. However, for other types of reuse (urban and industrial), ponds are limited in the sense of producing effluents with high suspended solids (algae) concentrations. The work investigates a system with coarse rock filters for polishing the pond effluent. The overall performance of the system is analyzed, together with the potential for different types of reuse. The excellent results obtained (mean effluent concentrations: BOD: 27 mg/L; SS: 26 mg/L; E. coli: 450 MPN/100 mL) indicate the possibility of unrestricted use of the effluent for agriculture and restricted urban and industrial uses, according to WHO and USEPA. PMID:17302321

  17. Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.

    PubMed

    Atuanya, Ernest I; Aigbirior, Moses

    2002-07-01

    The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera. PMID:12180651

  18. An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates.

    PubMed

    Lew, Beni; Lustig, Irina; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2011-04-01

    To improve the performance of an upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater under temperate climates conditions, the addition of a sludge digester to the process was investigated. With the decrease in temperature, the COD removal decreased from 78% at 28 °C to 42% at 10 °C for the UASB reactor operating alone at a hydraulic retention time of 6 h. The decrease was attributed to low hydrolytic activity at lower temperatures that reduced suspended matter degradation and resulted in solids accumulation in the top of the sludge blanket. Solids removed from the upper part of the UASB sludge were treated in an anaerobic digester. Based on sludge degradation kinetics at 30 °C, a digester of 0.66 l per liter of UASB reactor was design operating at a 3.20 days retention time. Methane produced by the sludge digester is sufficient to maintain the temperature at 30 °C. PMID:21316951

  19. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    PubMed

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. PMID:25600011

  20. Prospects for a self-sustainable sewage treatment system: a case study on full-scale UASB system in India's Yamuna River Basin.

    PubMed

    Sato, Nobuyuki; Okubo, Tsutomu; Onodera, Takashi; Ohashi, Akiyoshi; Harada, Hideki

    2006-08-01

    The government of India decided to launch a project to implement 16 full-scale Upflow Anaerobic Sludge Blanket (UASB) reactors (with a total capacity of 598,000 m(3)/d) in the Yamuna River basin under its Yamuna Action Plan (YAP). A polishing pond called the Final Polishing Unit (FPU) was utilized for post-treatment. This paper evaluates the sewage treatment efficiency of the combined system of full-scale UASB reactors and polishing ponds under Indian climatic conditions. Results have shown that the effluent from the sewage treatment plants (STPs) investigated failed to comply with applicable discharge standards in terms of BOD, SS, and fecal coliform removal. Therefore, it is proposed that such proper operation and maintenance as removing excess sludge and scum be conducted in order to increase treatment efficiency. Moreover, trained and experienced workers are also required to operate and maintain the systems, along with a scientific approach. PMID:16338055

  1. Heavy metal removal in an UASB-CW system treating municipal wastewater.

    PubMed

    de la Varga, D; Díaz, M A; Ruiz, I; Soto, M

    2013-10-01

    The objective of the present study was to investigate for the first time the long-term removal of heavy metals (HMs) in a combined UASB-CW system treating municipal wastewater. The research was carried out in a field pilot plant constituted for an up-flow anaerobic sludge bed (UASB) digester as a pretreatment, followed by a surface flow constructed wetland (CW) and finally by a subsurface flow CW. While the UASB showed (pseudo) steady state operational conditions and generated a periodical purge of sludge, CWs were characterised by the progressive accumulation and mineralisation of retained solids. This paper analyses the evolution of HM removal from the water stream over time (over a period of 4.7 year of operation) and the accumulation of HMs in UASB sludge and CW sediments at two horizons of 2.7 and 4.0 year of operation. High removal efficiencies were found for some metals in the following order: Sn > Cr > Cu > Pb > Zn > Fe (63-94%). Medium removal efficiencies were registered for Ni (49%), Hg (42%), and Ag (40%), and finally Mn and As showed negative percentage removals. Removal efficiencies of total HMs were higher in UASB and SF units and lower in the last SSF unit. PMID:23942017

  2. Anaerobic degradation of aircraft deicing fluid (ADF) in upflow anaerobic sludge blanket (UASB) reactors and the fate of ADF additives

    NASA Astrophysics Data System (ADS)

    Pham, Thi Tham

    2002-11-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant effects on acidogenesis and methanogenesis at the concentration levels studied. A significant inhibition of acetoclastic activity was observed for NP at 100 mg/L, with acetic acid consumption rate at 38% of that for controls. No evidence for anaerobic degradation of benzotriazole and its derivatives was observed; however, both batch and continuous experiments suggested that anaerobic degradation of NP occurred. Kinetic analysis of operational data obtained for the anaerobic treatment of ADF in UASB reactors indicated that the substrate utilization rate was independent of the reactor biomass concentration. The maximum rate of substrate utilization and the half-velocity constants for ADF treatment were 28.4 g COD/L/d and 648 mg COD/L, respectively. For 1.2% ADF, the biomass yield and endogenous decay coefficients were 0.027 g VSS/g COD and 0.012 d-1 , respectively.

  3. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    PubMed

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (352C) reactor as a control, thermophilic anaerobic digestion (552C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  4. Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge

    PubMed Central

    Wang, Yun-Yan; Tang, Chong-Jian; Chai, Li-Yuan; Xu, Kang-Que; Song, Yu-Xia

    2013-01-01

    The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L·d) and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system. PMID:24455691

  5. Start-up characteristics of a granule-based anammox UASB reactor seeded with anaerobic granular sludge.

    PubMed

    Xiong, Lei; Wang, Yun-Yan; Tang, Chong-Jian; Chai, Li-Yuan; Xu, Kang-Que; Song, Yu-Xia; Ali, Mohammad; Zheng, Ping

    2013-01-01

    The granulation of anammox sludge plays an important role in the high nitrogen removal performance of the anammox reactor. In this study, anaerobic granular sludge was selected as the seeding sludge to start up anammox reactor in order to directly obtain anammox granules. Results showed that the anammox UASB reactor was successfully started up by inoculating anaerobic granular sludge, with substrate capacity of 4435.2 mg/(L · d) and average ammonium and nitrite removal efficiency of 90.36% and 93.29%, respectively. During the start-up course, the granular sludge initially disintegrated and then reaggregated and turned red, suggesting the high anammox performance. Zn-Fe precipitation was observed on the surface of granules during the operation by SEM-EDS, which would impose inhibition to the anammox activity of the granules. Accordingly, it is suggested to relatively reduce the trace metals concentrations, of Fe and Zn in the conventional medium. The findings of this study are expected to be used for a shorter start-up and more stable operation of anammox system. PMID:24455691

  6. Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor.

    PubMed

    Martínez, Claudia M; Celis, Lourdes B; Cervantes, Francisco J

    2013-11-01

    The present study reports a novel treatment concept combining the redox-mediating capacity of immobilized humic substances with the biodegrading activity of anaerobic sludge for the simultaneous removal of two representative pollutants of textile wastewaters (e.g., phenol and Reactive Red 2 (RR2)) in a high-rate anaerobic reactor. The use of immobilized humic substances (1 g total organic carbon (TOC) L(-1), supported on an anion exchange resin) in an upflow anaerobic sludge blanket (UASB) reactor increased the decolorization efficiency of RR2 (~90 %), extent of phenol oxidation (~75 %), and stability as compared to a control UASB reactor operated without immobilized humic substances, which collapsed after 120 days of dye introduction (50-100 mg L(-1)). Increase in the concentration of immobilized humic substances (2 g TOC L(-1)) further enhanced the stability and efficiency of the UASB reactor. Detection of aniline in the effluent as RR2 reduction product confirmed that reduction of RR2 was the major mechanism of dye removal. This is the first demonstration of immobilized humic substances serving as effective redox mediators for the removal of recalcitrant pollutants from wastewater in a high-rate anaerobic bioreactor. The novel treatment concept could also be applicable to remove a wide variety of contaminants susceptible to redox conversion, which are commonly found in different industrial sectors. PMID:24013221

  7. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    PubMed

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429mM NH3-N/L of ammonia, the addition of 25mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143mM NH3-N/L of ammonium chloride in UASB, the addition of 5mM disodium phosphate suppressed ammonia inhibition at 214mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation. PMID:26350145

  8. Effects of bioaugmentation strategies in UASB reactors with a methanogenic consortium for removal of phenolic compounds

    SciTech Connect

    Hajji, K.T.; Lepine, F.; Bisaillon, J.G.; Beaudet, R.; Hawari, J.; Guiot, S.R.

    2000-02-20

    The removal of phenol, ortho- (op) and para- (p-) cresol was studied with two series of UASB reactors using unacclimatized granular sludges bioaugmented with a consortium enriched against these substances. The parameters studied were the amount of inoculum added to the sludges and the method of immobilization of the inoculum. Two methods were used, adsorption to the biomass or encapsulation with calcium alginate beads. In the bioaugmentation by adsorption experiment, and with a 10% inoculum, complete phenol removal was obtained after 36 d, while 178 d were required in the control reactor. For p-cresol, 95% removal was obtained in the bioaugmented reactor on day 48 while 60 d were required to achieve 90% removal in the control reactor. For o-cresol, the removals were only marginally better with the bioaugmented reactors. Tests performed with the reactors biomass under non-limiting substrate concentrations showed that the specific activities of the bioaugmented biomasses were larger than the original biomass for phenol, and p-cresol even after 276 of operations, showing that the inoculum bacteria successfully colonized the sludge granules. Immobilization of the inoculum by encapsulation in calcium alginate beads, was performed with 10% of the inoculum. Results showed that the best activities were obtained when the consortium was encapsulated alone and the beads added to the sludges. This reactor presented excellent activity and the highest removal of the various phenolic compounds a few days after start-up. After 90 d, a high-phenolic compounds removal was still observed, demonstrating the effectiveness of the encapsulation technique for the start-up and maintenance of high-removal activities.

  9. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    PubMed

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions. PMID:25714630

  10. Statistical modeling and optimization of biomass granulation and COD removal in UASB reactors treating low strength wastewaters.

    PubMed

    Bhunia, Puspendu; Ghangrekar, M M

    2008-07-01

    The aim of this work was to study the influence of influent chemical oxygen demand (COD), upflow velocity of wastewater, and cationic polymer additives in inoculum, on biomass granulation and COD removal efficiency in upflow anaerobic sludge blanket (UASB) reactor for treating low strength wastewater. Statistical models were formulated based on these three variables to optimize the biomass granulation and COD removal efficiency in UASB reactors using a two-level, full factorial design. For the thick inoculum used in this study, having suspended solids (SS) >80 g/l and volatile suspended solids (VSS) to SS ratio <0.3, cationic polymer additives in the inoculum showed adverse effect on biomass granulation and COD removal efficiency. It is concluded that for such thick inoculum, granulation can be obtained while treating low strength wastewaters in UASB reactor by selecting proper combination of influent COD and liquid upflow velocity so as to represent the organic loading rate (OLR) greater than 1.0 kg COD/m(3) d. Validation of model predictions for treatment of synthetic wastewater and actual sewage reveals the efficacy of these models for enhancing granulation and COD removal efficiency. PMID:17936620

  11. Energy saving system with high effluent quality for municipal sewage treatment by UASB-DHS.

    PubMed

    Tanaka, H; Takahashi, M; Yoneyama, Y; Syutsubo, K; Kato, K; Nagano, A; Yamaguchi, T; Harada, H

    2012-01-01

    An up-flow anaerobic sludge blanket (UASB) - down-flow hanging sponge (DHS) was applied to Japanese municipal sewage treatment, and its treatability, energy consumption, and sludge production were evaluated. The designed sewage load was 50 m(3)/d. The sewage typically had a chemical oxygen demand (COD) of 402 mg/L, a suspended solids (SS) content of 167 mg/L, and a temperature of 17-29 C. The UASB and DHS exhibited theoretical hydraulic retention times of 9.7 and 2.5 h, respectively. The entire system was operated without temperature control. Operation was started with mesophilic anaerobic digested sludge for the UASB and various sponge media for the DHS. Continuous operational data suggest that although the cellulose decomposition and methanogenic process in the UASB are temperature sensitive, stable operation can be obtained by maintaining a satisfactory sludge volume index and sludge concentration. For the DHS, the cube-type medium G3-2 offers superior filling rates, biological preservation and operational execution. The SS derived from the DHS contaminated the effluent but could be removed by optional sand filtration. A comparison with conventional activated sludge (CAS) treatment confirmed that this system is adequate for municipal sewage treatment, with an estimated energy requirement and excess sludge production approximately 75 and 85% less than those of CAS, respectively. PMID:22828294

  12. Improving solids retention in upflow anaerobic sludge blanket reactors at low temperatures using lamella settlers.

    PubMed

    Halalsheh, Maha M; Muhsen, Hussien H; Shatanawi, Khaldoun M; Field, Jim A

    2010-01-01

    Lamella settlers were used to increase sludge concentration in pilot scale UASB reactors treating concentrated sewage at low temperature. The aim was to increase sludge retention time (SRT) and achieve better digestion in UASB reactors without the need for increasing the hydraulic retention time (HRT). Two modified UASB reactors were used for this purpose. In the first reactor, lamella settlers were installed in the settling zone of the UASB reactor and the reactor was named UASB-ESR1. In the second reactor, lamella settlers were installed underneath the gas liquid separator (GLS) and the reactor was named UASB-ESR2. The sludge concentration, sludge profile, and system performance of each reactor were monitored. The obtained sludge concentrations were 50 and 53 g TS/l for UASB-ESR1 and UASB-ESR2, respectively. The measured concentrations were almost double the concentrations reported for conventional UASB reactors ranging 16-26 g TS/l. The calculated SRT in the modified UASB reactors was 103 days in both reactors. The average total COD (COD(tot)) and suspended COD (COD(ss)) removal efficiencies were 38% and 60%, respectively for the UASB-ESR1. The average COD(tot) and COD(ss) removal efficiencies for the UASB-ESR2 were 41% and 62%, respectively. The modified reactors were considered at the startup period and the performances of the modified systems are expected to significantly improve when arriving at steady state conditions. PMID:20526935

  13. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. PMID:20609515

  14. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants.

    PubMed

    Alvarino, T; Suárez, S; Garrido, M; Lema, J M; Omil, F

    2016-02-01

    An innovative plant configuration based in an UASB reactor coupled to a hybrid aerobic membrane bioreactor designed for sustainable treatment of municipal wastewater at ambient temperatures and low hydraulic retention time was studied in terms of organic micropollutants (OMPs) removal. OMPs removal mechanisms, as well as the potential influence of biomass activity and physical conformation were assessed. Throughout all periods of operation (150 days) high organic matter removals were maintained (>95%) and, regarding OMPs removal, this innovative system has shown to be more efficient than conventional technologies for those OMPs which are prone to be biotransformed under anaerobic conditions. For instance, sulfamethoxazole and trimethoprim have both shown to be biodegradable under anaerobic conditions with similar efficiencies (removal efficiencies above 84%). OMPs main removal mechanism was found to be biotransformation, except in the case of musk fragrances which showed medium sorption onto sludge. OMPs removal was strongly dependent on the efficiency of the primary metabolism (organic matter degradation and nitrification) and the type of biomass. PMID:26386770

  15. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    PubMed

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment. PMID:24777321

  16. Coupling digestion in a pilot-scale UASB reactor and electrochemical oxidation over BDD anode to treat diluted cheese whey.

    PubMed

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-11-01

    The efficiency of the anaerobic treatment of cheese whey (CW) at mesophilic conditions was investigated. In addition, the applicability of electrochemical oxidation as an advanced post-treatment for the complete removal of chemical oxygen demand (COD) from the anaerobically treated cheese whey was evaluated. The diluted cheese whey, having a pH of 6.5 and a total COD of 6 g/L, was first treated in a 600-L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB process, which was operated for 87 days at mesophilic conditions (32 ± 2 °C) at a hydraulic retention time (HRT) of 3 days, led to a COD removal efficiency between 66 and 97 %, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 9 and 18 A and in the presence of NaCl as the supporting electrolyte, complete removal of COD was attained after 3-4 h of reaction. During electrochemical experiments, three groups of organochlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs), and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, alongside free chlorine, are thought to increase the matrix ecotoxicity to Artemia salina. PMID:24793070

  17. Laboratory scale and pilot plant study on treatment of toxic wastewater from the petrochemical industry by UASB reactors.

    PubMed

    Stergar, V; Zagorc-Koncan, J; Zgajnar-Gotvanj, A

    2003-01-01

    This research concentrates on the development of an integrated approach to evaluate the possibility of treating very concentrated (COD = 15-20 g/l) and toxic wastewater (nitro-organic effluent) from the petrochemical industry in UASB reactors. A newly developed method utilising a modified Micro-Oxymax respirometer was used to (1) evaluate the inhibitory effects of varying concentrations of nitro-organic effluent on anaerobic granular sludge and (2) to make the proposal of operational parameters for the start up of the continuous process. Subsequently, the continuous tests were undertaken using laboratory scale upflow anaerobic sludge bed reactors to test gradual adaptation of anaerobic biomass to nitro-organic effluent. Practical application of the experimental results of the laboratory-scale continuous tests was evaluated by running the UASB pilot plant. Acceptable COD removal efficiencies were obtained when nitro-organic effluent was diluted with a readily biodegradable substrate up to 80 vol % of nitro-organic effluent in the inlet. The COD removal was 90% and the methane production rate was 4.5 l/d. Wastewater was detoxified and no acute toxicity of the treated wastewater to the anaerobic biomass was detected. This research indicates that anaerobic digestion of the undiluted nitro-organic effluent was not feasible. However, it is possible to blend the nitro-organic effluent with another effluent stream and co-treat these effluents. PMID:14682575

  18. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.

    PubMed

    Nkemka, Valentine Nkongndem; Murto, Marika

    2013-01-01

    This research evaluated biogas production in batch and UASB reactors from pilot-scale acid catalysed steam pretreated and enzymatic hydrolysed wheat straw. The results showed that the pretreatment was efficient and, a sugar yield of 95% was obtained. The pretreatment improved the methane yield (0.28 m(3)/kg VS(added)) by 57% compared to untreated straw. Treatment of the straw hydrolysate with nutrient supplementation in a UASB reactor resulted in a high methane production rate, 2.70 m(3)/m(3).d at a sustainable OLR of 10.4 kg COD/m(3).d and with a COD reduction of 94%. Alternatively, co-digestion of the straw and seaweed hydrolysates in a UASB reactor also maintained a stable anaerobic process and can thus reduce the cost of nutrients addition. We have shown that biogas production from wheat straw can be competitive by pretreatment, high methane production rate in UASB reactors and also by co-digestion with seaweed hydrolysate. PMID:23196235

  19. Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests.

    PubMed

    Hinken, L; Huber, M; Weichgrebe, D; Rosenwinkel, K-H

    2014-11-01

    A laboratory plant consisting of two UASB reactors was used for the treatment of industrial wastewater from the wheat starch industry. Several load tests were carried out with starch wastewater and the synthetic substrates glucose, acetate, cellulose, butyrate and propionate to observe the impact of changing loads on gas yield and effluent quality. The measurement data sets were used for calibration and validation of the Anaerobic Digestion Model No. 1 (ADM1). For a precise simulation of the detected glucose degradation during load tests with starch wastewater and glucose, it was necessary to incorporate the complete lactic acid fermentation into the ADM1, which contains the formation and degradation of lactate and a non-competitive inhibition function. The modelling results of both reactors based on the modified ADM1 confirm an accurate calculation of the produced gas and the effluent concentrations. Especially, the modelled lactate effluent concentrations for the load cases are similar to the measurements and justified by literature. PMID:25043796

  20. Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions.

    PubMed

    Yetilmezsoy, Kaan; Sakar, Suleyman

    2008-05-01

    A nonlinear modeling study was carried out to evaluate the performance of UASB reactors treating poultry manure wastewater under different organic and hydraulic loading conditions. Two identical pilot scale up-flow anaerobic sludge blanket (UASB) reactors (15.7 L) were run at mesophilic conditions (30-35 degrees C) in a temperature-controlled environment with three hydraulic retention times (theta) of 15.7, 12 and 8.0 days. Imposed volumetric organic loading rates (L(V)) ranged from 0.65 to 4.257 kg COD/(m(3) day). The pH of the feed varied between 6.68 and 7.82. The hydraulic loading rates (L(H)) were controlled between 0.105 and 0.21 m(3)/(m(2)day). The daily biogas production rates ranged between 4.2 and 29.4 L/day. High volumetric COD removal rates (R(V)) ranging from 0.546 to 3.779 kg COD(removed)/(m(3)day) were achieved. On the basis of experimental results, two empirical models having a satisfactory correlation coefficient of about 0.9954 and 0.9416 were developed to predict daily biogas production (Q(g)) and effluent COD concentration (S(e)), respectively. Findings of this modeling study showed that optimal COD removals ranging from 86.3% to 90.6% were predicted with HRTs of 7.9, 9.5, 11.2, 12.6, 13.7 and 14.3 days, and L(V) of 1.27, 1.58, 1.78, 1.99, 2.20 and 2.45 kg COD/(m(3)day) for the corresponding influent substrate concentrations (S(i)) of 10,000, 15,000, 20,000, 25,000, 30,000 and 35,000 mg/L, respectively. PMID:17913349

  1. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    PubMed

    Cervantes, Francisco J; Gmez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on ?-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others. PMID:26002687

  2. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    PubMed

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents. PMID:26868154

  3. A downflow hanging sponge (DHS) reactor for faecal coliform removal from an upflow anaerobic sludge blanket (UASB) effluent.

    PubMed

    Yaya Beas, Rosa Elena; Kujawa-Roeleveld, Katarzyna; van Lier, Jules B; Zeeman, Grietje

    2015-01-01

    This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m(-3) d(-1), 0.53 kgCOD m(-3) d(-1) and 0.24 kgCOD m(-3) d(-1) correspondingly at hydraulic loading rates of 1.92 m3 m(-2) d(-1), 2.97 m3 m(-2) d(-1) and 1.32 m3 m(-2) d(-1), respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops. PMID:26606098

  4. Co-production of hydrogen and methane from herbal medicine wastewater by a combined UASB system with immobilized sludge (H2 production) and UASB system with suspended sludge (CH4 production).

    PubMed

    Sun, Caiyu; Hao, Ping; Qin, Bida; Wang, Bing; Di, Xueying; Li, Yongfeng

    2016-01-01

    An upflow anaerobic sludge bed (UASB) system with sludge immobilized on granular activated carbon was developed for fermentative hydrogen production continuously from herbal medicine wastewater at various organic loading rates (8-40 g chemical oxygen demand (COD) L(-1) d(-1)). The maximum hydrogen production rate reached 10.0 (±0.17) mmol L(-1) hr(-1) at organic loading rate of 24 g COD L(-1) d(-1), which was 19.9% higher than that of suspended sludge system. The effluents of hydrogen fermentation were used for continuous methane production in the subsequent UASB system. At hydraulic retention time of 15 h, the maximum methane production rate of 5.49 (±0.03) mmol L(-1) hr(-1) was obtained. The total energy recovery rate by co-production of hydrogen and methane was evaluated to be 7.26 kJ L(-1) hr(-1). PMID:26744943

  5. Presence of helminth eggs in domestic wastewater and its removal at low temperature UASB reactors in Peruvian highlands.

    PubMed

    Yaya-Beas, Rosa-Elena; Cadillo-La-Torre, Erika-Alejandra; Kujawa-Roeleveld, Katarzyna; van Lier, Jules B; Zeeman, Grietje

    2016-03-01

    This work studied the anaerobic sludge filtration capacity for pathogens reduction in a 29 L and 1.65 m height lab-scale UASB reactor treating domestic wastewater at low temperatures in the city of Puno (Peru). The anaerobic sludge filtration capacity was performed applying upflow velocities of 0.12, 0.14, 0.16, 0.20, 0.27 and 0.41 m/h. Results show that the HE removal varied between 89 and 95% and the most common specie was Ascaris lumbricoides. Faecal coliform and Escherichia coli removal varied in the range of 0.9-2.1 and 0.8-1.6 log10 respectively. Likely related to the low operational temperatures, the total COD removal varied between 37 and 62%. The best performance in terms of removal of HE, total COD and turbidity was obtained at the lowest upflow velocity of 0.12 m/h. In order to meet WHO standards for water reuse a post-treatment unit will be required to polish the effluent. PMID:26748206

  6. Comparison between polishing (maturation) ponds and subsurface flow constructed wetlands (planted and unplanted) for the post-treatment of the effluent from UASB reactors.

    PubMed

    von Sperling, M; Dornelas, F L; Assunção, F A L; de Paoli, A C; Mabub, M O A

    2010-01-01

    This paper presents the results of a comparison of the performance of two treatment systems operating in parallel, with the same influent wastewater. The investigated systems are (i) UASB + three polishing ponds in series + coarse filter (200 population equivalents) and (ii) UASB + subsurface flow constructed wetlands (50 population equivalents). Two wetland units, operating in parallel, were analysed, being one planted (Typha latifolia) and the other unplanted. The systems were located in Belo Horizonte, Brazil. The wetland systems showed to be more efficient in the removal of organic matter and suspended solids, leading to good effluent BOD and COD concentrations and excellent SS concentrations. The planted wetland performed better than the unplanted unit, but the latter was also able to provide a good effluent quality. The polishing pond system was more efficient in the removal of nitrogen (ammonia) and coliforms (E. coli). Land requirements and cost considerations are presented. PMID:20220242

  7. Optimization of linear alkylbenzene sulfonate (LAS) degradation in UASB reactors by varying bioavailability of LAS, hydraulic retention time and specific organic load rate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Sakamoto, Isabel K; Duarte, Iolanda C S; Varesche, Maria B A

    2013-01-01

    Degradation of linear alkylbenzene sulfonate (LAS) in UASB reactors was optimized by varying the bioavailability of LAS based on the concentration of biomass in the system (1.3-16 g TS/L), the hydraulic retention time (HRT), which was operated at 6, 35 or 80 h, and the concentration of co-substrates as specific organic loading rates (SOLR) ranging from 0.03-0.18 g COD/g TVS.d. The highest degradation rate of LAS (76%) was related to the lowest SOLR (0.03 g COD/g TVS.d). Variation of the HRT between 6 and 80 h resulted in degradation rates of LAS ranging from 18% to 55%. Variation in the bioavailability of LAS resulted in discrete changes in the degradation rates (ranging from 37-53%). According to the DGGE profiles, the archaeal communities exhibited greater changes than the bacterial communities, especially in biomass samples that were obtained from the phase separator. The parameters that exhibited more influence on LAS degradation were the SOLR followed by the HRT. PMID:23196232

  8. Sugarcane molasses-based bio-ethanol wastewater treatment by two-phase multi-staged up-flow anaerobic sludge blanket (UASB) combination with up-flow UASB and down-flow hanging sponge.

    PubMed

    Choeisai, P; Jitkam, N; Silapanoraset, K; Yubolsai, C; Yoochatchaval, W; Yamaguchi, T; Onodera, T; Syutsubo, K

    2014-01-01

    This study was designed to evaluate a treatment system for high strength wastewater (vinasse) from a sugarcane molasses-based bio-ethanol plant in Thailand. A laboratory-scale two-phase treatment system composed of a sulfate reducing (SR) tank and multi-staged up-flow anaerobic sludge blanket (MS-UASB) reactor was used as the pre-treatment unit. Conventional UASB and down-flow hanging sponge (DHS) reactors were used as the post-treatment unit. The treatment system was operated for 300 days under ambient temperature conditions (24.6-29.6 °C). The hydraulic retention time (HRT) in each unit was kept at 25 h for the two-phase system and 23 h for the UASB&DHS. The influent concentration was allowed to reach up to 15,000 mg chemical oxygen demand (COD)/L. COD removal efficiency (based on influent COD) of the two-phase MS-UASB and the UASB&DHS was 54.9 and 18.7%, respectively. Due to the effective removal of sulfide in the SR tank, the MS-UASB achieved a high methane conversion ratio of up to 97%. In DHS, nitrification occurred at the outside portion of the sponge media while denitrification occurred at the inside. Consequently, 27% of the total nitrogen (TN) was removed. An amount of 32% of residual nitrogen (28 mgN/L) was in the form of nitrate, a better nitrogen state for fertilizer. PMID:24647181

  9. Co-digestion to support low temperature anaerobic pretreatment of municipal sewage in a UASB-digester.

    PubMed

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Temmink, Hardy; Zeeman, Grietje

    2013-11-01

    The aim of this work was to demonstrate that co-digestion improves soluble sewage COD removal efficiency in treatment of low temperature municipal sewage by a UASB-digester system. A pilot scale UASB-digester system was applied to treat real municipal sewage, and glucose was chosen as a model co-substrate. Co-substrate was added in the sludge digester to produce additional methanogenic biomass, which was continuously recycled to inoculate the UASB reactor. Soluble sewage COD removal efficiency increased from 6 to 23%, which was similar to its biological methane potential (BMP). Specific methanogenic activity of the UASB and of the digester sludge at 15°C tripled to a value respectively of 43 and 39 mg CH4-COD/(g VSS d). Methane production in the UASB reactor increased by more than 90% due to its doubled methanogenic capacity. Therefore, co-digestion is a suitable approach to support a UASB-digester for pretreatment of low temperature municipal sewage. PMID:24080295

  10. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation.

    PubMed

    Niu, Qigui; He, Shilong; Zhang, Yanlong; Ma, Haiyuan; Liu, Yuan; Li, Yu-You

    2016-03-01

    A UASB-anammox reactor was operated for 900days to study its process stability. The negative effects of free ammonia (FA) and free nitrous acid (FNA) were investigated over three separate inhibitions and recoveries. The IC10, IC50 and IC90 (inhibitory concentration/a 10%, 50% and 90% activity loss) of FNA and FA responding to the NH4(+)-N, NO2(-)-N and TN removal efficiency were evaluated. In the 1st inhibition, the average FNA-IC10 observed was 0.67μgL(-1) and the FA-IC10 for TN removal was 4.85mgL(-1). In the 2nd inhibition, an FNA-IC10 of 0.44μgL(-1) and an FA-IC10 of 3.56 were found. In the 3rd inhibition, however, both the FNA-IC10 and FA-IC10 were found to have increased, with values of 0.50μgL(-1) and 4.42mgL(-1), respectively. A clear control region was established for multiple inhibitions and the recoveries, which followed (pH 7.5-8.5, FA below 10mg/100mg NH4(+)-N and an FNA below 0.005mg/100mg NO2(-)-N) for the purpose of optimizing the operation conditions of the UASB-anammox reactor. PMID:26722813

  11. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems.

    PubMed

    Luostarinen, Sari; Sanders, Wendy; Kujawa-Roeleveld, Katarzyna; Zeeman, Grietje

    2007-03-01

    The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The results indicated the feasibility of the UASB-septic tank for (pre)treatment of black water at low temperatures with respect to removal of suspended solids and dissolved organic material. Inoculum sludge had little effect on COD(ss) removal, though in the start-up phase some poorly adapted inoculum disintegrated and washed out, thus requiring consideration when designing the process. Removal of COD(dis) was at first negative, but improved as the sludge adapted to low temperature. The UASB-septic tank alone did not comply with Finnish or Dutch treatment requirements and should therefore be considered mainly as a pre-treatment method. However, measuring the requirements as mgCOD l(-1) may not always be the best method, as the volume of the effluent discharged is also an important factor in the final amount of COD entering the receiving water bodies. PMID:16765592

  12. Recovery and biological oxidation of dissolved methane in effluent from UASB treatment of municipal sewage using a two-stage closed downflow hanging sponge system.

    PubMed

    Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi

    2015-03-15

    A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. PMID:25576697

  13. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Chávez P, C; Castillo L, R; Dendooven, L; Escamilla-Silva, E M

    2005-10-01

    Removal of organic material from poultry slaughter wastewater as determined by changes in biological oxygen demand (BOD5) was investigated by adding three different types of inoculum combining cow manure, yeast extract or hydraulic residence time as variables with response vector of reduction of BOD5. In a 3-l reactors, a 95% removal of BOD5 from poultry slaughter wastewater was obtained with organic loading rates up to 31 kg BOD5 m(-3) d(-1) without loss of stability. This 95% removal was obtained between 25 and 39 degrees C with a hydraulic residence time between 3.5 and 4.5 h. The growth of the consortium of micro-organisms in the reactor followed a first-order kinetic with a constant specific growth rate of 0.054 h(-1). It was concluded that an inoculum from cow manure added with nutrients and yeast extract allowed a 95% removal of BOD5 from poultry slaughter wastewater at ambient temperatures within a hydraulic residence time of 4 h, sharply reducing possible environmental hazards. PMID:15936942

  14. The influence of hydraulic residence time on the treatment of cattle manure in UASB reactors.

    PubMed

    Marañón, E; Castrillón, L; Vázquez, I; Sastre, H

    2001-10-01

    Cattle manure from farms in the autonomous community of Asturias, Spain, was characterised and subsequently treated, after filtration through a 1 mm sieve, in upflow anaerobic sludge blanket laboratory reactors. The volume generated per cow and day varied between 50-55 litres (obtained through a survey of 400 farms), the manure being used on Asturian farms up until now as a fertiliser. After screening, the COD of the manure employed varied between 33,000 and 56,000 mgO2 l(-1). The highest percentage of COD removal obtained was 75.5% for a hydraulic residence time of 22.5 days. Gas production varied between values of 0.20-0.39 m3gas kg(-1) COD removed, with a methane content of up to 64%. There was a fraction refractory to biodegradation of 11%. PMID:11954729

  15. Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater.

    PubMed

    Li, Jin; Yu, Lian; Yu, Deshuang; Wang, Dan; Zhang, Peiyu; Ji, Zhongguang

    2014-02-01

    An upflow anaerobic sludge blanket reactor was employed to treat saline sulfate wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time fixed at 16 h. When the salinity was 28 g L(-1), the chemical oxygen demand and sulfate removal efficiencies were 52 and 67 %, respectively. The salinity effect on sulfate removal was less than that on organics removal. The methane productions were 887 and 329 cm(3) L(-1) corresponding to the NaCl concentrations of 12 and 28 g L(-1), respectively. High salinity could stimulate microbes to produce more extracellular polymeric substances (EPSs) and granulation could be performed better. Besides, with the high saline surroundings, a great deal of Na(+) compressed the colloidal electrical double-layer, neutralized the negative charge of the sludge particles and decreased their electrostatic repulsion. The repulsion barrier disappeared and coagulation took place. The maximum size of granules was 5 mm, which resulted from the coupled triggering forces of high EPSs and Na(+) contents. Sulfate-reducing bacteria (SRB) were dominant in the high saline surroundings while the methane-producing archaea dominated in the low saline surroundings. The SRB were affected least by the salinity. PMID:23624725

  16. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C.

    PubMed

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system. PMID:23109575

  17. A side-by-side comparison of two systems of sequencing coupled reactors for anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Poggi-Varaldo, Héctor M; Alzate-Gaviria, Liliana M; Pérez-Hernández, Antonino; Nevarez-Morillón, Virginia G; Rinderknecht-Seijas, Noemí

    2005-06-01

    The objective of this work was to compare the performance of two laboratory-scale, mesophilic systems aiming at the anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW). The first system consisted of two coupled reactors packed with OFMSW (PBR1.1-PBR1.2) and the second system consisted of an upflow anaerobic sludge bed reactor (UASB) coupled to a packed reactor (UASB2.1-PBR2.2). For the start-up phase, both reactors PBR 1.1 and the UASB 2.1 (also called leading reactors) were inoculated with a mixture of non-anaerobic inocula and worked with leachate and effluent full recirculation, respectively. Once a full methanogenic regime was achieved in the leading reactors, their effluents were fed to the fresh-packed reactors PBR1.2 and PBR2.2, respectively. The leading PBR 1.1 reached its full methanogenic regime after 118 days (Tm, time to achieve methanogenesis) whereas the other leading UASB 2.1 reactor reached its full methanogenesis regime after only 34 days. After coupling the leading reactors to the corresponding packed reactors, it was found that both coupled anaerobic systems showed similar performances regarding the degradation of the OFMSW. Removal efficiencies of volatile solids and cellulose and the methane pseudo-yield were 85.95%, 80.88% and 0.109 NL CH4 g(-1) VS(fed) in the PBR-PBR system; and 88.75%, 82.61% and 0.115 NL CH4 g(-1) VS(fed0 in the UASB-PBR system [NL, normalized litre (273 degrees K, 1 ata basis)]. Yet, the second system UASB-PBR system showed a faster overall start-up. PMID:15988946

  18. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal.

    PubMed

    Wang, Wei; Han, Hongjun; Yuan, Min; Li, Huiqiang; Fang, Fang; Wang, Ke

    2011-05-01

    A two-continuous mesophilic (37 2C) UASB system with step-feed was investigated as an attractive optimization strategy for enhancing COD and total phenols removal of the system and improving aerobic biodegradability of real coal gasification wastewater. Through the step-feed period, the maximum removal efficiencies of COD and total phenols reached 55-60% and 58-63% respectively in the system, at an influent flow distribution ratio of 0.2 and influent COD concentration of 2500 mg/L; the corresponding efficiencies were at low levels of 45-50% and 43-50% respectively at total HRT of 48 h during the single-feed period. The maximum specific methanogenic activity and substrate utilization rate were 592 16 mg COD-CH(4)/(g VSS d) and 89 12 mg phenol/(g VSS d) during the step-feed operation. After the anaerobic digestion with step-feed, the aerobic effluent COD concentration decreased from 270 9 to 215 10 mg/L. The results suggested that step-feed enhanced the degradation of refractory organics in the second reactor. PMID:21093254

  19. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    PubMed

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater. PMID:23508162

  20. Preliminary evaluation of the electrochemical and chemical coagulation processes in the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Buzzini, A P; Patrizzi, L J; Motheo, A J; Pires, E C

    2007-12-01

    The main objective of this paper was to perform a preliminary comparative study between chemical and electrochemical coagulation processes, both followed by flocculation and sedimentation of an effluent from an upflow anaerobic sludge blanket (UASB) reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrochemical treatment removed up to 67% (with aluminum electrodes) and 82% (with stainless-steel electrodes) of the remaining chemical oxygen demand (COD) and 84% (stainless steel) and 98% (aluminum) of the color in the wastewater. These efficiencies were achieved with an energy consumption ranging from 14 to 20 Wh l(-1). The coagulation-flocculation treatment with ferric chloride and aluminum sulfate removed up to 87% and 90% of COD and 94% and 98% of color, respectively. The addition of a high molecular weight cationic polymer enhanced both COD and color removal efficiencies. The two post-treatment processes proved to be technically feasible; however the economical feasibility could not be assessed since the experiments were performed with small reactors that could distort scale factors. PMID:17134820

  1. Improving hydrolysis of food waste in a leach bed reactor

    SciTech Connect

    Browne, James D.; Allen, Eoin; Murphy, Jerry D.

    2013-11-15

    Highlights: • This paper assesses leaching of food waste in a two phase digestion system. • Leaching is assessed with and without an upflow anaerobic sludge blanket (UASB). • Without the UASB, low pH reduces hydrolysis, while increased flows increase leaching. • Inclusion of the UASB increases pH to optimal levels and greatly improves leaching. • The optimal conditions are suggested as low flow with connection to the UASB. - Abstract: This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four different operating conditions. The effects of leachate recirculation at a low and high flow rate are examined with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost 60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day with connection to the UASB.

  2. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor.

    PubMed

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor. PMID:27021522

  3. An Exploratory Study on the Pathways of Cr (VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor

    PubMed Central

    Qian, Jin; Wei, Li; Liu, Rulong; Jiang, Feng; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    Electroplating wastewater contains both Cr (VI) and sulfate. So Cr (VI) removal under sulfate-rich condition is quite complicated. This study mainly investigates the pathways for Cr (VI) removal under biological sulfate-reducing condition in the up-flow anaerobic sludge bed (UASB) reactor. Two potential pathways are found for the removal of Cr (VI). The first one is the sulfidogenesis-induced Cr (VI) reduction pathway (for 90% Cr (VI) removal), in which Cr (VI) is reduced by sulfide generated from biological reduction of sulfate. The second one leads to direct reduction of Cr (VI) which is utilized by bacteria as the electron acceptor (for 10% Cr (VI) removal). Batch test results confirmed that sulfide was oxidized to elemental sulfur instead of sulfate during Cr (VI) reduction. The produced extracellular polymeric substances (EPS) provided protection to the microbes, resulting in effective removal of Cr (VI). Sulfate-reducing bacteria (SRB) genera accounted for 11.1% of the total bacterial community; thus they could be the major organisms mediating the sulfidogenesis-induced reduction of Cr (VI). In addition, chromate-utilizing genera (e.g. Microbacterium) were also detected, which were possibly responsible for the direct reduction of Cr (VI) using organics as the electron donor and Cr (VI) as the electron acceptor. PMID:27021522

  4. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge. PMID:27054741

  5. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  6. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  7. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    PubMed

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume. PMID:20390881

  8. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  9. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-01-01

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H(+)-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts. PMID:25322701

  10. Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor

    PubMed Central

    Zhao, Zhiqiang; Zhang, Yaobin; Chen, Shuo; Quan, Xie; Yu, Qilin

    2014-01-01

    A coupling process of anaerobic methanogenesis and electromethanogenesis was proposed to treat high organic load rate (OLR) wastewater. During the start-up stage, acetate removal efficiency of the electric-biological reactor (R1) reached the maximization about 19 percentage points higher than that of the control anaerobic reactor without electrodes (R2), and CH4 production rate of R1 also increased about 24.9% at the same time, while additional electric input was 1/1.17 of the extra obtained energy from methane. Coulombic efficiency and current recorded showed that anodic oxidation contributed a dominant part in degrading acetate when the metabolism of methanogens was low during the start-up stage. Along with prolonging operating time, aceticlastic methanogenesis gradually replaced anodic oxidation to become the main pathway of degrading acetate. When the methanogens were inhibited under the acidic conditions, anodic oxidation began to become the main pathway of acetate decomposition again, which ensured the reactor to maintain a stable performance. FISH analysis confirmed that the electric field imposed could enrich the H2/H+-utilizing methanogens around the cathode to help for reducing the acidity. This study demonstrated that an anaerobic digester with a pair of electrodes inserted to form a coupling system could enhance methanogenesis and reduce adverse impacts. PMID:25322701

  11. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  12. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  13. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218g-VSSg-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. PMID:26773951

  14. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  15. Molecular characterization of anaerobic sulfur-oxidizing microbial communities in up-flow anaerobic sludge blanket reactor treating municipal sewage.

    PubMed

    Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi

    2014-11-01

    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. PMID:24930844

  16. Reactor safety assessment system

    SciTech Connect

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category.

  17. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  18. Screening for potential fermentative hydrogen production from black water and kitchen waste in on-site UASB reactor at 20 degrees C.

    PubMed

    Luostarinen, S; Pakarinen, O; Rintala, J

    2008-06-01

    The potential of black water and a mixture of black water and kitchen waste as substrates for on-site dark fermentative hydrogen production was screened in upflow anaerobic sludge blanket reactors at 20 degrees C. Three different inocula were used with and without heat treatment. With glucose, the highest specific hydrogenogenic activity was 69 ml H2 g volatile solids(-1) d(-1) in batch assays and the highest hydrogen yield 0.44 mol H2 mol glucose(-1) in upflow anaerobic sludge bed reactor. The mixture of black water and kitchen waste degraded readily into volatile fatty acids in the reactors, thus showing potential for hydrogen production. In the conditions applied, however, the highest end product was propionate and no hydrogen was produced. Black water alone apparently contained too little readily soluble carbohydrates for hydrogen producing bacteria, and little VFA and no hydrogen was produced. PMID:18702295

  19. [Microecology of the anaerobic ammonium oxidation reactor].

    PubMed

    Qin, Yu-jie; Zhou, Shao-qi; Zhu, Ming-shi

    2008-06-01

    The microbial community structure and biodiversity in the ANAMMOX system were studied by applying the methods of microtechnic, separation and purification technology of microorganisms, and molecular biotechnology. The ANAMMOX microbial population in an upflow anaerobic sludge blanket (UASB) bioreactor and a UASB-biofilm bioreactor was successfully enriched in the laboratory with inorganic and dark condition. The removal efficiencies of NH4+-N and NO2(-)-N in UASB reactor were 99.99% and 99.9% respectively. For the UASB- biofilm, they were 99.3% and 97.4% respectively in an optimal condition in which the temperature was 30-34 degrees C and the pH was 7-8. In traditional methods of identifying microorganism, the population of bacteria, actinomycete and fungi were researched and the species in the two reactors were basically identical. Most of the microorganisms were anaerobic and anoxic bacteria. The size of the preponderant bacteria was (0.6-0.8) microm x (0.9-1.2) microm from the scanning electron micrographs of sludge cultivated in the two reactors, and the shape was oval. The rate of this preponderant bacteria was above 90%. The result of the denaturing gradient gel electrophoresis(DGGE) and 16S rDNA digested reveals that there was one predominant species and the biodiversity was not high. PMID:18763515

  20. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.

    PubMed

    da Costa, Jocilene Ferreira; Martins, Weber Luiz Pinto; Seidl, Martin; von Sperling, Marcos

    2015-01-01

    The main objective of the work is to characterize the role of plants in a constructed wetland in the removal of nitrogen (N) and phosphorus (P). The experiments were carried out in a full-scale system in the city of Belo Horizonte, Brazil, with two parallel horizontal subsurface-flow constructed wetland units (one planted with Typha latifolia and one unplanted) treating the effluent from a system composed of an upflow anaerobic sludge blanket reactor and a trickling filter (TF). Each wetland unit received a mean flow of approximately 8.5 m³ d⁻¹ (population equivalent around 60 inhabitants each), with a surface hydraulic loading rate 0.12 m³m⁻²d⁻¹. The experiments were conducted from September 2011 to July 2013. Mean effluent concentrations from the wetlands were: (a) planted unit total nitrogen (TN) 22 mg L⁻¹, ammonia-N 19 mg L⁻¹, nitrite-N 0.10 mg L⁻¹, nitrate-N 0.25 mg L⁻¹, P-total 1.31 mg L⁻¹; and (b) unplanted unit TN 24 mg L⁻¹, ammonia-N 20 mg L⁻¹, nitrite-N 0.54 mg mL⁻¹, nitrate-N 0.15 mg L⁻¹, P-total 1.31 mg L⁻¹. The aerial part of the plant contained mean values of 24.1 gN (kg dry matter)⁻¹ and 4.4 gP (kg dry matter)⁻¹, and the plant root zone was composed of 16.5 gN (kg dry matter)⁻¹ and 4.1 gP (kg dry matter)⁻¹. The mean extraction of N by the plant biomass was 726 kgN ha⁻¹y⁻¹, corresponding to 17% of the N load removed. For P, the extraction by the plant biomass was 105 kgP ha⁻¹y⁻¹, corresponding to 9% of the P load removed. These results reinforce the reports that N and P removal due to plant uptake is a minor mechanism in horizontal subsurface-flow constructed wetlands operating under similar loading rates, typical for polishing of sanitary effluent. PMID:25860702

  1. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  2. On-site evaluation of the performance of a full-scale down-flow hanging sponge reactor as a post-treatment process of an up-flow anaerobic sludge blanket reactor for treating sewage in India.

    PubMed

    Okubo, Tsutomu; Onodera, Takashi; Uemura, Shigeki; Yamaguchi, Takashi; Ohashi, Akiyoshi; Harada, Hideki

    2015-10-01

    A down-flow hanging sponge (DHS) reactor is a novel, unaerated, aerobic, biofilm reactor that is used to polish effluent received from an up-flow anaerobic sludge blanket (UASB) reactor for treating municipal sewage. A full-scale DHS reactor was constructed for post-treatment of a full-scale UASB reactor at a municipal sewage treatment plant in India. Performance of the DHS reactor was evaluated with respect to organic removal over 1800 days of continuous operation. The UASB+DHS system consistently produced effluent with chemical oxygen demand (COD), biochemical oxygen demand (BOD), and suspended solids (SS) values of 37, 6.0 and 19 mg L(-1), on average, respectively. The sludge yield of the DHS reactor was estimated to be 0.04 kg SS kg(-1) COD removed or 0.12 kg SS kg(-1) BOD removed, which is considerably lower than other aerobic treatment methods that have been employed for polishing UASB effluent. PMID:26188558

  3. Nuclear reactor sealing system

    DOEpatents

    McEdwards, James A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  4. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  5. Attrition reactor system

    SciTech Connect

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  6. Attrition reactor system

    SciTech Connect

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  7. Alternative biological systems for the treatment of vinasse from wine.

    PubMed

    Vlyssides, A; Barampouti, E M; Mai, S; Stamatoglou, A; Tsimas, E

    2010-01-01

    This work studied alternative treatment schemes for the vinasse wastewater from wine distilleries aiming at overcoming the problems caused by the high nitrogen and sulfur concentrations. A plexiglas laboratory-scale upflow anaerobic sludge blanket (UASB) reactor of 20 L volume that was operated at 45°C and hydraulic retention time 1 d, was included in all the examined systems. System 1 was the conventional UASB reactor, system 2 was the UASB reactor supplemented with iron. System 3 consisted of the UASB reactor supplemented with iron and a CSTR reactor that operated under the following conditions: Diluted Oxygen 1.2 mg/L, Hydraulic Retention Time 1 d, pH 6.7 and Temperature 45°C. System 3 aimed at converting ammonium directly to dinitrogen gas under anaerobic conditions but it needed to be preceeded by a first partial nitrification step. All systems had high COD efficiencies over 75%. Ferrous iron addition apart from enhancing the performance of systems 2 and 3, it was able to retain all sulphur content of the wastewater as ferrous sulfide stripping the biogas from hydrogen sulfide. System 3 also managed to meet its goal, since it achieved an 86% nitrogen reduction. Conclusively, system 3 seems to be a very promising environmental technology for the treatment of distillery and winery byproducts, as well as industrial wastewater with high sulfur and nitrogen content. PMID:21123920

  8. Reactor vessel support system. [LMFBR

    DOEpatents

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  9. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  10. Selected experiences in Chile for the application of UASB technology for vinasse treatment.

    PubMed

    Chamy, R; Pizarro, C; Vivanco, E; Schiappacasse, M C; Jeison, D; Poirrier, P; Ruiz-Filippi, G

    2007-01-01

    One of the research areas is the agricultural use of treated wastewaters, because it represents a unique opportunity to solve the problem of water supply for irrigation and at the same time the disposal of treated water. Anaerobic digestion appears as an interesting alternative, since anaerobically treated wastewaters can be used for irrigation purposes. These considerations are applied to the Chilean pisco industry (a traditional alcoholic drink, prepared by distillation of wine made mainly from Muscatel grapes), where high concentrated wastewaters are produced: vinasses originate as a residue from the distillation operation. Two laboratory reactors fed with wine vinasses, a UASB and an EGSB, were used in order to study the anaerobic treatability of the wastewater. Then, a pilot reactor was built (60 m3 UASB digester) and treated water was used to irrigate eucalyptus trees. Finally a 300 m3 reactor, including biogas treatment for its reuse, was developed. Results showed, both at laboratory and full scale, that anaerobic treatment is suitable for pisco's wastewaters, and also that the nutrient content of treated water can be beneficial for plant growth, reducing the need for fertilizers. Another kind of investigation was carried out in order to study the stability of anaerobic granules and how it can be recovered. UASB and EGSB were fed with low, medium and high load wastewaters, in order to evaluate possible fluctuations in the productive process. From these results, it was possible to propose and to apply recovery techniques to the digesters when they are destabilized. PMID:17849976

  11. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  12. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    PubMed

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kgCOD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process. PMID:27120630

  13. Performance of UASB based sewage treatment plant in India: polishing by diffusers an alternative.

    PubMed

    Walia, R; Kumar, P; Mehrotra, I

    2011-01-01

    In India, recently, upflow anaerobic sludge blanket (UASB) based sewage treatment plants (STPs) have come up in a big way. Sequence adopted: screens- grit chambers- UASB reactors followed by one-day detention ponds (DP). Performance of DPs located at five STPs (27-70 ML/d) was evaluated over a period of one year from July 2004 to July 2005. The installation of these non-algal ponds reduced land requirement, but from treatment point of view it at best offered only removal of solids washed out of the UASB reactor. Total coliform count in the effluent from ponds ranging from 10(6) to 10(9) MPN/100 mL is more than the maximum permissible limit of 10,000 MPN/100 mL. A need has, therefore, been felt to evaluate the possibility of aerating the effluent from UASBR. During aeration, ORP and DO increase, whereas COD and BOD decrease. In a continuous aeration ~50% reduction in COD and nearly 50% increase in DO saturation (DO/DOs) can be achieved by increasing ORP from -100 to 122 mV. Regression equation established between ORP and COD/CODi & DO/DOs may find wide application. PMID:21330714

  14. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Daniels, F.

    1957-10-15

    Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.

  15. Effect of multiwalled carbon nanotubes on UASB microbial consortium.

    PubMed

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2016-03-01

    The continuous rise in production and applications of carbon nanotubes (CNTs) has grown a concern about their fate and toxicity in the environment. After use, these nanomaterials pass through sewage and accumulate in wastewater treatment plants. Since, such plants rely on biological degradation of wastes; their activity may decrease due to the presence of CNTs. This study investigated the effect of multiwalled carbon nanotubes (MWCNTs) on upflow anaerobic sludge blanket (UASB) microbial activity. The toxic effect on microbial viability, extracellular polymeric substances (EPS), volatile fatty acids (VFA), and biogas generation was determined. The reduction in a colony-forming unit (CFU) was 29 and 58 % in 1 and 100 mg/L test samples, respectively, as compared to control. The volatile fatty acids and biogas production was also found reduced. The scanning electron microscopy (SEM) and fluorescent microscopy images confirmed that the MWCNT mediated microbial cell damage. This damage caused the increase in EPS carbohydrate, protein, and DNA concentration. Fourier transform infrared (FTIR) spectroscopy results supported the alterations in sludge EPS due to MWCNT. Our observations offer a new insight to understand the nanotoxic effect of MWCNTs on UASB microflora in a complex environment system. PMID:25824004

  16. SYSTEM FOR UNLOADING REACTORS

    DOEpatents

    Rand, A.C. Jr.

    1961-05-01

    An unloading device for individual vertical fuel channels in a nuclear reactor is shown. The channels are arranged in parallel rows and underneath each is a separate supporting block on which the fuel in the channel rests. The blocks are raounted in contiguous rows on an array of parallel pairs of tracks over the bottom of the reactor. Oblong hollows in the blocks form a continuous passageway through the middle of the row of blocks on each pair of tracks. At the end of each passageway is a horizontal grappling rod with a T- or L extension at the end next to the reactor of a length to permit it to pass through the oblong passageway in one position, but when rotated ninety degrees the head will strike one of the longer sides of the oblong hollow of one of the blocks. The grappling rod is actuated by a controllable reciprocating and rotating device which extends it beyond any individual block desired, rotates it and retracts it far enough to permit the fuel in the vertical channel above the block to fall into a handling tank below the reactor.

  17. Ultrasonic inspection of reactor systems

    SciTech Connect

    Majzlik, E.J. Jr.

    1989-01-01

    The subject of this presentation is ultrasonic inspection of reactor systems. This paper describes two current programs underway at Savannah River Site which provide state-of-the-art ultrasonic inspections of weld heat-affected zones in the primary cooling loop of the Savannah River Site reactors. It also describes the automated remote inspection equipment being developed and employed; briefly describe the procedures being used; and give you a general idea of the future direction of two major programs: Moderator Piping Inspection Program and the Reactor Tank Wall Weld Inspection Program. The objective of these programs is to provide inspection techniques to more fully determine the condition of the reactor primary system and provide data for prediction of maintenance needs and remaining service life. Detection and sizing of intergranular stress corrosion cracking is the focus of these programs.

  18. Reactor refueling containment system

    DOEpatents

    Gillett, James E.; Meuschke, Robert E.

    1995-01-01

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  19. Reactor refueling containment system

    DOEpatents

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  20. Reactor refueling containment system

    SciTech Connect

    Gillett, J.E.; Meuschke, R.E.

    1992-12-31

    This report describes a method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  1. Reactor core isolation cooling system

    DOEpatents

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  2. Reactor core isolation cooling system

    DOEpatents

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  3. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  4. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  5. Upflow anaerobic sludge blanket (UASB) treatment of supernatant of cow manure by thermal pre-treatment.

    PubMed

    Yoneyama, Y; Nishii, A; Nishimoto, M; Yamada, N; Suzuki, T

    2006-01-01

    Upflow anaerobic sludge blanket (UASB) methane fermentation treatment of cow manure that was subjected to screw pressing, thermal treatment and subsequent solid-liquid separation was studied. Conducting batch scale tests at temperatures between 140 and 180 degrees C, the optimal temperature for sludge settling and the color suppression was found to be between 160-170 degrees C. UASB treatment was carried out with a supernatant obtained from the thermal treatment at the optimal conditions (170 degrees C for 30 minutes) and polymer-dosed solid-liquid separation. In the UASB treatment with a COD(Cr) loading of 11.7 kg/m3/d and water temperature of 32.2 degrees C, the COD(Cr) level dropped from 16,360 mg/L in raw water to 3,940 mg/L in treated water (COD(Cr), removal rate of 75.9%), and the methane production rate per COD(Cr) was 0.187 Nm3/kg. Using wastewater thermal-treated at the optimal conditions, also a methane fermentation treatment with a continuously stirred tank reactor (CSTR) was conducted (COD(Cr) in raw water: 38,000 mg/L, hydraulic retention time (HRT): 20 days, 35 degrees C). At the COD(Cr) loading of 1.9 kg/m3/d, the methane production rate per COD(Cr), was 0.153 Nm3/kg. This result shows that UASB treatment using thermal pre-treatment provides a COD(Cr), loading of four times or more and a methane production rate of 1.3 times higher than the CSTR treatment. PMID:17163060

  6. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  7. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds.

    PubMed

    Seghezzo, Lucas; Trupiano, Aníbal P; Liberal, Viviana; Todd, Patrick G; Figueroa, María E; Gutiérrez, Marcelo A; Da Silva Wilches, Ana C; Iribarnegaray, Martín; Guerra, Raquel G; Arena, Angélica; Cuevas, Carlos M; Zeeman, Grietje; Lettinga, Gatze

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand [COD] removal efficiency, low volatile fatty acids concentration in the effluent, alkalinity ratio above 0.7, biogas production above 0.1 Nm3/kg of CODremoved). Removal efficiencies up to 90% were obtained in the anaerobic steps at a hydraulic retention time of 6 + 4 h (80% removal in the first step). Fecal coliform removal in the whole system was 99.9999% (99.94% in anaerobic steps and 99.98% in WSPs). COD balances over UASB reactors are provided. A minimum set of data necessary to build COD balances is proposed. Intermittent sludge washout was detected in the reactors with the COD balances. Sludge washout from single-step UASB reactors should be monitored and minimized in order to ensure constant compliance with discharge standards, especially when no posttreatment is provided. The system combined high COD and fecal coliform removal efficiency with an extremely low effluent concentration, complying with discharge standards, and making it an attractive option for sewage treatment in subtropical regions. PMID:12794292

  8. One- and two-stage upflow anaerobic sludge-bed reactor pretreatment of winery wastewater at 4-10 degreesC.

    PubMed

    Kalyuzhnyi, S V; Gladchenko, M A; Sklyar, V I; Kizimenko, Y S; Shcherbakov, S S

    2001-02-01

    The operating performance of a single and two (in series) laboratory upflow anaerobic sludge-bed (UASB) reactors (2.7-L working volume, recycle ratio varied from 1:1 to 1:18) treating diluted wine vinasse was investigated under psychrophilic conditions (4-10 degreesC). For a single UASB reactor seeded with granular sludge, the average organic loading rates (OLRs) applied were 4.7, 3.7, and 1.7 g of chemical oxygen demand (COD)/(L.d) (hydraulic retention times [HRTs] were about 1 d) at 9-11, 6 to 7, and 4 to 5 degreesC, respectively. The average total COD removal for preacidified vinasse wastewater was about 60% for all the temperature regimes tested. For two UASB reactors in series, the average total COD removal for treatment of non-preacidified wastewater exceeded 70% (the average OLRs for a whole system were 2.2, 1.8, and 1.3 g of COD/[L.d] under HRTs of 2 d at 10, 7, and 4 degreesC, respectively). In situ determinations of kinetic sludge characteristics (apparent Vm and Km) revealed the existence of substantial mass transfer limitations for the soluble substrates inside the reactor sludge bed. Therefore, application of higher recycle ratios is essential for enhancement of UASB pretreatment under psychrophilic conditions. The produced anaerobic effluents were shown to be efficiently posttreated aerobically: final effluent COD concentrations were about 0.1 g/L. Successful operation of the UASB reactors at quite low temperatures (4-10 degreesC) opens some perspectives for application of high-rate anaerobic pretreatment at ambient temperatures. PMID:11297387

  9. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  10. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  11. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  12. A combined upflow anaerobic sludge bed, aerobic, and anoxic fixed-bed reactor system for removing tetramethylammonium hydroxide and nitrogen from light-emitting diode wastewater.

    PubMed

    Lin, Han-Lin; Chen, Sheng-Kun; Huang, Yu-Wen; Chen, Wei-Cheng; Chien, Wei-Cheng; Cheng, Sheng-Shung

    2016-06-01

    A laboratory study using a combined upflow anaerobic sludge bed (UASB) and aerobic and anoxic fixed-bed reactor system was undertaken to explore its capability for removing tetramethylammonium hydroxide (TMAH) and nitrogen from light-emitting diode wastewater. When the organic loading rate was maintained at 0.26-0.65 kg TMAH m(-3 )d(-1), the UASB reactor removed 70-100% of TMAH through methanogenesis. When the [Formula: see text] -N loading rate was maintained at 0.73-1.4 kg [Formula: see text]-N m(-3 )d(-1), the aerobic reactor oxidized 31-59% of [Formula: see text]-N to [Formula: see text]-N through nitritation. When the nitrogen loading rate was maintained at 0.42-0.75 kg N m(-3 )d(-1), the anoxic reactor removed 27-63% of nitrogen through anammox. The performance data of the combined reactor system agreed well with the stoichiometric relationships of methanogenesis, nitritation, and anammox. The batch studies showed that a higher initial TMAH concentration of up to 2520 mg L(-1) gave a higher methanogenic activity of up to 16 mL CH4 g(-1) VSS d(-1). An increase in the initial TMAH concentration of up to 500 mg L(-1) gradually decreased the activity of ammonia-oxidizing bacteria; whereas an increase in the initial TMAH concentration of up to 47 mg L(-1) imposed a marked inhibiting effect on the activity of anammox bacteria. PMID:26583577

  13. Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors

    PubMed Central

    Zacarias Sylvestre, Silvia Helena; Lux Hoppe, Estevam Guilherme; de Oliveira, Roberto Alves

    2014-01-01

    The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 105 and 109 MPN (100 mL)−1, while helminth eggs ranged from 0.86 to 9.27 eggs g−1 TS. PMID:24812560

  14. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  15. Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor.

    PubMed

    Colussi, I; Cortesi, A; Della Vedova, L; Gallo, V; Robles, F K Cano

    2009-12-01

    The effectiveness of operating an industrial UASB reactor, treating wastewater from the beer industry, with flows containing heavy metals was evaluated. A pilot-scale UASB reactor, already used to simulate the industrial reactor, was unsuccessfully employed. An easy start-up was obtained arranging it as an EGSB reactor. Considerations about this modification are reported. The effects of Cu(II), Ni(II) and Cr(III) ions on the anaerobic activity were analyzed by measurements of methane production rate and COD removal. The employed biomass was the sludge of the industrial UASB reactor, while a solution of ethanol and sodium acetate with COD of 3000 mg/L and a heavy metal concentration of 50 mg/L were continuously fed. Experimental results proved higher biomass sensitivity for copper and much slighter for nickel and chromium. Moreover, copper inhibition has been demonstrated to be less significant if a metal-free feed was provided to the system before copper addition. PMID:19679466

  16. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.

    PubMed

    Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R

    2014-11-15

    Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses. PMID:25129566

  17. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance.

    PubMed

    Liu, Yin; Zhang, Kaisong; Bakke, Rune; Li, Chunming; Liu, Haining

    2013-09-01

    It is postulated that up-flow anaerobic sludge blanket (UASB) reactor efficiency can be enhanced by a membrane immersed in the reactor to operate it as an anaerobic membrane bioreactor (AnMBR) for low-strength wastewater treatment. This postulate was tested by comparing the performance with and without a hollow fiber microfiltration membrane module immersed in UASB reactors operated at two specific organic loading rates (SOLR). Results showed that membrane filtration enhanced process performance and stability, with over 90% total organic carbon (TOC) removal consistently achieved. More than 91% of the TOC removal was achieved by suspended biomass, while less than 6% was removed by membrane filtration and digestion in the membrane attached biofilm during stable AnMBRs operation. Although the membrane and its biofilm played an important role in initial stage of the high SOLR test, linear increased TOC removal by bulk sludge mainly accounted for the enhanced process performance, implying that membrane led to enhanced biological activity of the suspended sludge. The high retention of active fine sludge particles in suspension was the main reason for this significant improvement of performance and biological activity, which led to decreased SOLR with time to a theoretical optimal level around 2  g COD/g MLVSS·d and the establishment of a microbial community dominated by Methanothrix-like microbes. It was concluded that UASB process performance can be enhanced by transforming such to AnMBR operation when the loading rate is too high for sufficient sludge retention, and/or when the effluent water quality demands are especially stringent. PMID:23578587

  18. Automatically scramming nuclear reactor system

    DOEpatents

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2004-10-12

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  19. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E. (Greensburg, PA); Katz, Leonoard R. (Pittsburgh, PA); Nath, Raymond J. (Murrysville, PA); Blaushild, Ronald M. (Export, PA); Tatch, Michael D. (Randolph, NJ); Kordalski, Frank J. (White Oak, PA); Wykstra, Donald T. (Pittsburgh, PA); Kavalkovich, William M. (Monroeville, PA)

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  20. Psychrophilic one- and two-step systems for pre-treatment of winery waste water.

    PubMed

    Kalyuzhnyi, S V; Gladchenko, M A; Sklyar, V I; Kizimenko, Y S; Shcherbakov, S S

    2001-01-01

    The operation performance of a single and two (in series) laboratory UASB reactors (working volume of 2.7 l, recycle ratio varied from 1:1 to 1:18) treating diluted wine vinasse was investigated under psychrophilic conditions (4-10 degrees C). For a single UASB reactor seeded with granular sludge, the average organic loading rates (OLR) applied were 4.7, 3.7 and 1.7 g COD/l/d (hydraulic retention times (HRTs) were around 1 d) at 9-11, 6-7 and 4-5 degrees C, respectively. The average total COD removal for preacidified vinasse wastewater was around 60% for all the temperature regimes tested. For two UASB reactors in series, the average total COD removal for treatment of non-preacidified wastewater exceeded 70% (the average OLRs for a whole system were 2.2, 1.8 and 1.3 g COD/l/d under HRTs of 2 days at 10, 7 and 4 degrees C, respectively). In situ determinations of kinetic sludge characteristics (Vm and Km) revealed the existence of substantial mass-transfer limitations for the soluble substrates inside the reactor sludge bed. Therefore an application of higher recycle rations is essential for enhancement of UASB pre-treatment under psychrophilic conditions. The produced anaerobic effluents were shown to be efficiently post-treated aerobically--final effluent COD concentrations were around 0.1 g/l. PMID:11579923

  1. Effect of reactor configuration on performance during anaerobic treatment of low strength wastewater.

    PubMed

    Das, Suprotim; Chaudhari, Sanjeev

    2015-01-01

    The efficiency of the up-flow anaerobic sludge blanket (UASB) reactor is quite low for the treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. LSW may be treated efficiently by providing adequate mixing in the UASB reactor when gas production is low, and sufficient mixing can be achieved by modifying reactor geometry. Hence, modifying UASB reactor geometry for enhanced mixing and evaluating its performance for the treatment of LSWs would be a worthwhile effort. In the present study, UASB reactor configuration was modified by providing a vertical baffle along the height to promote mixing of reactor contents, and is termed as modified UASB (MUASB). The performance of an on-site pilot-scale MUASB reactor was evaluated for 375 days under ambient condition for the treatment of municipal sewage as LSW and compared with that of the conventional UASB and hybrid UASB (HUASB) reactors. The MUASB reactor showed better performance in terms of chemical oxygen demand (COD) removal efficiency as compared with UASB and HUASB reactors during this study. At 4 h hydraulic retention time, the total COD removal efficiency of UASB and HUASB reactors was 53.7% and 61%, respectively, which were much lower than the total COD removal efficiency of the MUASB reactor (72.7%). The better performance observed in the MUASB reactor is possibly due to improved mixing. Depth-wise analysis of reactor liquid showed that better mixing in the MUASB reactor enhances the contact of wastewater with biomass, which contributes to the improved treatment efficiency. It seems that MUASB holds promise for LSW treatment. PMID:25751650

  2. Study on hydrogen production with hysteresis in UASB.

    PubMed

    Huang, G H; Hsu, S F; Liang, T M; Huang, Y H

    2004-02-01

    This paper uses a 10-l UASB (upflow anaerobic sludge blanket) bench-scale reactor to treat the esterification wastewater of a polyethylene terephthalate manufacturing plant. Two organic loading rates are used to evaluate the effect on H2 production of temperature gradually step-down and step-up in the range of 11-25 degrees C. Experimental results show that H2 production is positively related to temperature. H2 production increases with temperature at the higher organic loading rate (4.5 kg COD m(-3)d(-1)). However, the H2 produced does not go back to its original concentration but rather follows a hysteresis curve. This hysteresis also occurs in the corresponding concentrations of COD, acetate, propionate and butyrate. As in the H2 profiles, these parameter curves return clockwise during the temperature step-up. At the lower organic loading rate (2.2 kg COD m(-3)d(-1)), no obvious hysteresis is observed for H2 curve. The pattern of other parameters, except for the propionate, returns counterclockwise resulting in the hysteresis phenomena. PMID:14637338

  3. Fast breeder reactor protection system

    DOEpatents

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  4. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  5. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor.

    PubMed

    Tawfik, A; El-Gohary, F; Temmink, H

    2010-02-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for COD(total); 51-73% for COD(colloidal) and 20-55% for COD(soluble) was found at a total HRT of 5-10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of COD(total), COD(colloidal) and COD(soluble) increased up to 92, 89 and 80%, respectively. However, the removal efficiency of COD(suspended) in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of COD(suspended) was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m(-2) day(-1). The removal efficiency was decreased by a value of 34 and 43% at a higher OLR's of 7.4 and 17.8 g COD m(-2) day(-1), respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 x 10(4) MPN per 100 ml at a HRT of 13.3 h, 4.9 x 10(5) MPN per 100 ml at a HRT of 10 h and 9.4 x 10(5) MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log(10) reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB-MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB-MBBR system for sewage treatment is recommended at a total HRT of 13.3 h. PMID:19404682

  6. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  7. Biological sulphide removal from anaerobically treated domestic sewage: reactor performance and microbial community dynamics.

    PubMed

    Garcia, Graziella Patrício Pereira; Diniz, Renata Côrtes Oliveira; Bicalho, Sarah Kinaip; Franco, Vitor Araujo de Souza; Gontijo, Eider Max de Oliveira; Toscano, Rodrigo Argolo; Canhestro, Kenia Oliveira; Santos, Merly Rita Dos; Carmo, Ana Luiza Rodrigues Dias; Lobato, Livia Cristina S; Brandt, Emanuel Manfred F; Chernicharo, Carlos A L; Calabria de Araujo, Juliana

    2015-09-01

    We developed a biological sulphide oxidation system and evaluated two reactors (shaped similar to the settler compartment of an up-flow anaerobic sludge blanket [UASB] reactor) with different support materials for biomass retention: polypropylene rings and polyurethane foam. The start-up reaction was achieved using microorganisms naturally occurring on the open surface of UASB reactors treating domestic wastewater. Sulphide removal efficiencies of 65% and 90% were achieved with hydraulic retention times (HRTs) of 24 and 12 h, respectively, in both reactors. However, a higher amount of elemental sulphur was formed and accumulated in the biomass from reactor 1 (20 mg S(0) g(-1) VTS) than in that from reactor 2 (2.9 mg S(0) g(-1) VTS) with an HRT of 24 h. Denaturing gradient gel electrophoresis (DGGE) results revealed that the the pink and green biomass that developed in both reactors comprised a diverse bacterial community and had sequences related to phototrophic green and purple-sulphur bacteria such as Chlorobium sp., Chloronema giganteum, and Chromatiaceae. DGGE band patterns also demonstrated that bacterial community was dynamic over time within the same reactor and that different support materials selected for distinct bacterial communities. Taken together, these results indicated that sulphide concentrations of 1-6 mg L(-1) could be efficiently removed from the effluent of a pilot-scale UASB reactor in two sulphide biological oxidation reactors at HRTs of 12 and 24 h, showing the potential for sulphur recovery from anaerobically treated domestic wastewater. PMID:25737383

  8. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  9. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  10. UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent.

    PubMed

    Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2012-07-30

    The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C. PMID:22466006

  11. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  12. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  13. The 5-kwe reactor thermoelectric system summary

    NASA Technical Reports Server (NTRS)

    Vanosdol, J. H. (Editor)

    1973-01-01

    Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

  14. Advanced light water reactor requirements document: Chapter 3, Reactor coolant system and reactor non-safety auxiliary systems

    SciTech Connect

    Not Available

    1987-06-01

    The purpose of this chapter of the Advanced Light Water Reactor (ALWR) Plant Requirements Document is to establish utility requirements for the design of the Reactor Coolant System and the Reactor Non-safety Auxiliary Systems of Advanced LWR plants consistent with the objectives and principles of the ALWR program. The scope of this chapter covers the reactor coolant system and reactor non-safety auxiliary systems for Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Non-safety auxiliaries include systems which are required for normal operation of the plant but are not required to operate for accident mitigation or to bring the plant to a safe shutdown condition. For PWRs, the reactor coolant system, steam generator system, chemical and volume control system and boron recycle system are included. For BWRs, the reactor coolant system and reactor water cleanup system are included. The chapter also includes requirements for the above systems which are common to BWRs and PWRs and requirements for process sampling for BWRs and PWRs.

  15. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  16. TREAT Reactor Control and Protection System

    SciTech Connect

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab.

  17. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M. (San Jose, CA); Brummond, Willian A (Livermore, CA); Peterson, Leslie F. (Danville, CA)

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  18. EFFECT OF STARCH ADDITION ON THE PERFORMANCE AND SLUDGE CHARACTERIZATION OF UASB PROCESS TREATING METHANOLIC WASTEWATER

    NASA Astrophysics Data System (ADS)

    Yan, Feng; Kobayashi, Takuro; Takahashi, Shintaro; Li, Yu-You; Omura, Tatsuo

    A mesophilic(35℃) UASB reactor treating synthetic wastewater containing methanol with addition of starch was continuously operated for over 430 days by changing the organic loading rate from 2.5 to 120kg-COD/m3.d. The microbial community structure of the granules was analyzed with the molecular tools and its metabolic characteristics were evaluated using specific methanogenic activity tests. The process was successfully operated with over 98% soluble COD removal efficiency at VLR 30kg-COD/m3.d for approximately 300 days, and granulation satisfactory proceeded. The results of cloning and fluorescence in situ hybridization analysis suggest that groups related the genus Methanomethylovorans and the genus Methanosaeta were predominant in the reactor although only the genus Methanomethylovorans was predominant in the reactor treating methanolic wastewater in the previous study. Abundance of the granules over 0.5 mm in diameter in the reactor treating methanolic wastewater with addition of starch was 3 times larger than that in the reactor treating methanolic wastewater. Specific methanogenic activity tests in this study indicate that the methanol-methane pathway and the methanol-H2/CO2-methane pathway were predominant, and however, there was a certain level of activity for acetate-methane pathway unlike the reactor treating methanolic wastewater. These results suggest addition of starch might be responsible for diversifying the microbial community and encouraging the granulation.

  19. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H. (Rancho Santa Fe, CA)

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  20. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  1. Thermionic reactor electric propulsion system requirements.

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Sawyer, C. D.; Schaupp, R. W.

    1972-01-01

    Results of mission analysis, system analysis and mission engineering studies to find a single nuclear electric propulsion (NEP) system which would be applicable for a broad range of unmanned outer planet missions. The NEP system studied uses an in-core nuclear thermionic reactor as the electric power source and mercury bombardment ion engines for propulsion. Many requirements, which are imposed on the NEP system by the mission, were determined from the studies in the process of trying to find a single NEP system for many missions. It is concluded that a single thermionic reactor NEP system could be useful for a broad range of unmanned outer planet missions. The thermionic reactor NEP system should have a power level in the range from 70 to 120 kWe, a system specific weight of approximately 30 kg/kWe, and a full power output capability of 20,000 hr.

  2. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  3. Scanning tunneling microscope assembly, reactor, and system

    DOEpatents

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  4. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  5. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  6. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    PubMed Central

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjr

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and ?max) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  7. Evaluation of a novel integrated bioreactor--AOS system for treating oil-containing restaurant wastewater on site in Hong Kong.

    PubMed

    Wang, L; Zhou, Q; Chua, H

    2005-01-01

    AOS system is an anaerobic digestion reactor (A-section, UASB or UBF), oxidation degradation reactor (O-section, aerobic biofilm reactor), and physical sedimentation tank (S-section) 3-in-1 integrated reactor. The compact bioreactor was applied to treat oil-containing restaurant's wastewater on site in Hong Kong. The treatment efficiency was observed at different HRT. Experimental results indicated that the AOS system for treating oil-containing restaurant wastewater on site was feasible when HRT at 0.6 days above. During the running period, the net sludge generation rate of the AOS system was only about 0.08-0.09 g g(-1)removed COD, and the utmost COD specific volumetric removal rate (SVRR) of the system reached 2.77 gL(-1) d(-1). The utmost specific biomass substrate utilization rate (SBSUR) of COD in O-section and A-section reached 1.22 d(-1) and 0.128 d(-1), respectively. In addition, the experiment results showed that the AOS system with a filter in UASB (that is UBF's AOS system) could bear much more great HLR comparing with UASB's AOS and was more efficient for treating oil-containing restaurant's wastewater on site. PMID:15663313

  8. Control system for a small fission reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Saiveau, James G.

    1986-01-01

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.

  9. Reactor dip tube cooling system

    SciTech Connect

    Den Bleyker, A.L.

    1991-02-19

    This patent describes a gasification reactor for combusting a carbonaceous fuel mixture to produce a hot effluent stream. It comprises: an elongated shell, means forming a combustion chamber in the shell, a burner in the shell interconnected with a means for supplying a pressurized carbonaceous fuel and combustion supporting gas to discharge a mixture of the fuel and combustion support gas into combustion chamber, and produce a hot effluent stream therein means forming a quench chamber in the shell holding a liquid bath, effluent guide means communicated with the combustion chamber for conducting the hot effluent stream.

  10. UASB reactor effluent disinfection by ozone and chlorine.

    PubMed

    Ribeiro da Silva, Gustavo Henrique; Bruning, Harry; Gerrity, Daniel; Daniel, Luiz Antonio

    2015-01-01

    This research studied the sequential ozone and chlorine process with respect to, the inactivation of indicator bacteria and the formation of ozone disinfection byproducts in sanitary wastewater effluent. The applied ozone doses were 5, 8 and 10 mg.O3.L(-1), followed by chlorine doses of 10, 20 and 30 mg.L(-1), respectively. After the sequential ozone/chlorine process, the mean reduction in chemical oxygen demand ranged from 9 to 37%. Total coliform inactivation ranged from 1.59 to 3.73 log10, and E. coli was always <1 CFU 100 mL(-1). Ozonation resulted in the formation of aldehydes, which were not significantly impacted by the subsequent chlorine dose (P ≤ 0.05). PMID:26301847

  11. Anaerobic on-site treatment of black water and dairy parlour wastewater in UASB-septic tanks at low temperatures.

    PubMed

    Luostarinen, Sari A; Rintala, Jukka A

    2005-01-01

    Anaerobic on-site treatment of synthetic black water (BW) and dairy parlour wastewater (DPWW) was studied in two-phased upflow anaerobic sludge blanket (UASB)-septic tanks at low temperatures (10-20 degrees C). At all temperatures, total chemical oxygen demand (COD(t)) removal was above 90% with BW and above 80% with DPWW and removal of total suspended solids (TSS) above 90% with both wastewaters. Moreover, dissolved COD (COD(dis)) removal was approx. 70% with both wastewaters indicating good biological activity of the sludges. With BW, a single-phased reactor was found sufficient for good COD removals, while with DPWW, a two-phased process was required. Temperature optimum of reactor sludges was still 35 degrees C after long (398d) operation. Most of the nutrients from BW were removed with TSS, while with DPWW nutrient removal was low. In conclusion, UASB-septic tank was found feasible for (pre)treatment of BW and DPWW at low temperatures. PMID:15644252

  12. Control system for a small fission reactor

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  13. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  14. Transients in reactors for power systems compensation

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the surge arrester operation during the MSCDN energisation, which causes steep voltage change at the reactor terminal. (ii) Second, the nonuniform voltage distribution, resulting in high stresses across the top inter-turn windings. (iii) Third, the rapid rate-of-change of voltage in the assumed worst-case reactor winding location. This is accompanied by a high dielectric current through the inter-turn winding insulation..

  15. Dynamic Impregnator Reactor System (Poster)

    SciTech Connect

    Not Available

    2012-09-01

    IBRF poster developed for the IBRF showcase. Describes the multifarious system designed for complex feedstock impregnation and processing. IBRF feedstock system has several unit operations combined into one robust system that provides for flexible and staged process configurations, such as spraying, soaking, low-severity pretreatment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation.

  16. The Secure, Transportable, Autonomous Reactor System

    SciTech Connect

    Brown, N.W.; Hassberger, J.A.; Smith, C.; Carelli, M.; Greenspan, E.; Peddicord, K.L.; Stroh, K.; Wade, D.C.; Hill, R.N.

    1999-05-27

    The Secure, Transportable, Autonomous Reactor (STAR) system is a development architecture for implementing a small nuclear power system, specifically aimed at meeting the growing energy needs of much of the developing world. It simultaneously provides very high standards for safety, proliferation resistance, ease and economy of installation, operation, and ultimate disposition. The STAR system accomplishes these objectives through a combination of modular design, factory manufacture, long lifetime without refueling, autonomous control, and high reliability.

  17. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  18. NON-CORROSIVE REACTOR FUEL SYSTEM

    DOEpatents

    Herrick, C.C.

    1962-08-14

    A non-corrosive nuclear reactor fuel system was developed utilizing a molten plutonium-- iron alloy fuel having about 2 at.% carbon and contained in a tantalum vessel. This carbon reacts with the interior surface of the tantalum vessel to form a plutonium resistant self-healing tantalum carbide film. (AEC)

  19. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    2004-07-01

    This factsheet describes a research project whose goal is to design, fabricate, evaluate, and optimize a laboratory-scale microchannel reactor/heat exchanger system with thin-film or particulate catalysts for hydrogenation of o-nitroanisole and other nitro aromatic compounds, under moderate temperature and pressure.

  20. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity. PMID:17788102

  1. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  2. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  3. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  4. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  5. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance criteria for reactor coolant system venting... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high point vents for the reactor coolant system, for the reactor vessel head, and for other systems...

  6. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Helmick, H. H.; Schwenk, F. C.

    1978-01-01

    The Los Alamos Scientific Laboratory is participating in a NASA-sponsored program to demonstrate the feasibility of a gaseous uranium fueled reactor. The work is aimed at acquiring experimental and theoretical information for the design of a prototype plasma core reactor which will test heat removal by optical radiation. The basic goal of this work is for space applications, however, other NASA-sponsored work suggests several attractive applications to help meet earth-bound energy needs. Such potential benefits are: small critical mass, on-site fuel processing, high fuel burnup, low fission fragment inventory in reactor core, high temperature for process heat, optical radiation for photochemistry and space power transmission, and high temperature for advanced propulsion systems.

  7. Gaseous fuel reactor systems for aerospace applications

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schwenk, F. C.

    1977-01-01

    Research on the gaseous fuel nuclear rocket concept continues under the programs of the U.S. National Aeronautics and Space Administration (NASA) Office for Aeronautics and Space Technology and now includes work related to power applications in space and on earth. In a cavity reactor test series, initial experiments confirmed the low critical mass determined from reactor physics calculations. Recent work with flowing UF6 fuel indicates stable operation at increased power levels. Preliminary design and experimental verification of test hardware for high-temperature experiments have been accomplished. Research on energy extraction from fissioning gases has resulted in lasers energized by fission fragments. Combined experimental results and studies indicate that gaseous-fuel reactor systems have significant potential for providing nuclear fission power in space and on earth.

  8. Control system studies for thermionic reactors

    NASA Technical Reports Server (NTRS)

    Hermsen, R. J.; Gronroos, H. G.

    1978-01-01

    In core thermionic reactor concepts are of interest for space missions that require electrical power in the range of a few tens of kilowatts up to several megawatts. The physical principle involved--thermionic direct conversion of heat to electricity at net efficiencies up to 15 percent--offers potential advantages when compared to other nuclear powerplant concepts. However, the integration of the thermionic diode electrode structure with high-temperature nuclear fuel materials presents new design problems and new reactor physical constraints. Among the topics that must be investigated are those associated with the control system. The results of analytical and simulation studies of thermionic reactor control performed at the Jet Propulsion Laboratory are discussed.

  9. Reactor control rod timing system. [LMFBR

    DOEpatents

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  10. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  11. Fault-tolerant reactor protection system

    DOEpatents

    Gaubatz, D.C.

    1997-04-15

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service. 16 figs.

  12. Fault-tolerant reactor protection system

    DOEpatents

    Gaubatz, Donald C.

    1997-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service.

  13. The development of the reactor management system

    SciTech Connect

    Otsuka, T.; Kawamura, A.; Netsu, N.; Niki, K.; Sakamoto, Y.; Sekimizu, K.; Yanaoisawa, A.

    1982-11-01

    The Reactor Management System (RMS), an on-line system with a minicomputer, has been in operation at a boiling water reactor (BWR) nuclear power plant since 1977. The objectives of this system are to perform detailed monitoring and prediction of the core status and to make reactor operation more efficient, simpler, and easier. One of the features of the system is that the RMS utilizes process computer calculated data (such as power distribution and exposure distribution in the core) transferred through the data link, as well as the plant data (such as local power range monitor readings and control rod positions) transferred through the process input/output system. Based on operational experience at the BWR plant, calculation models have been improved to achieve higher accuracy, and new functions have been added to fulfill the operator's demands. The system has now become a useful tool for the operator. For instance, the power level prediction function has become essential for plant operation at the control rod pattern change.

  14. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  15. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  16. Anaerobic digestion of ice-cream wastewater: A comparison of single and two-phase reactor systems

    SciTech Connect

    Borja, R.; Banks, C.J.

    1995-03-01

    The anaerobic digestion of ice-cream wastewater, a complex substrate which includes milk proteins, carbohydrates, and lipids, has received little attention. Work using an aerobic contact system showed that at a 7.5-d hydraulic retention time (HRT), with an organic loading rate of 1.7 g COD/Ld and influent TSS (total suspended solids) of 5870 mg/L, the effluent COD was 628 mg/L, BOD was 91 mg/L and TSS was 674. Anaerobic filters have also been used at organic loadings of 6 kg COD/m{sup 3}d applied at a HRT of 0.42 day, with COD removals of 80%. Goodwing showed that this waste was capable of being treated by the UASB process with granulation commencing after 60-70 days, and gas production ranging between 0.73 and 0.93 L CH{sub 4}/g COD removed with loading rates between 0.7 and 3.0 g TOC/Ld. Two-phase anaerobic digestion is an innovative fermentation mode that has recently received increased attention. The kinetically dissimilar fermentation phases, hydrolysis-acidification and acetogenesis-methanation are operated in two separate reactors; the first of which is maintained at a very short HRT. The effluent from the first, acid-forming, phase is used as the substrate for the methane-phase reactor which has a longer HRT or cell immobilization. The aim of this work was to compare the methane production capability and performance of a single-phase upflow fixed bed reactor with a two-phase digestion system. The two-phase digestion system consists of a completely mixed reactor for the acidogenic reaction and an upflow fixed bed reactor for the methanogenic reaction. Because of the high lipid content and COD of ice cream wastewater off site disposal has proved to be both expensive and poses problems to the receiving effluent treatment plant. For this reason the potential for a rapid anaerobic stabilization of the waste, with energy recovery in the form of methane gas, has been investigated in an attempt to minimize plant size and maximize gas production. 9 refs., 2 tabs.

  17. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  18. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  19. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  20. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  1. Integral reactor system and method for fuel cells

    DOEpatents

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  2. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  3. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  4. Upgraded safety system of the Ford nuclear reactor

    SciTech Connect

    Burn, R.R.

    1995-12-31

    The 1950s-vintage, tube-driven composite safety amplifier system in the Ford nuclear reactor was replaced in the early 1980s by a solid-state system obtained from the Lawrence Livermore Laboratories reactor when it shut down. That system served the reactor until 1994, when it was upgraded with one-for-one replacement modules purchased from General Atomics with funds provided by the U.S. Department of Energy`s research reactor instrumentation upgrade program.

  5. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  6. Colliding Beam Fusion Reactor Space Propulsion System

    NASA Astrophysics Data System (ADS)

    Cheung, A.; Binderbauer, M.; Liu, F.; Qerushi, A.; Rostoker, N.; Wessel, F. J.

    2004-02-01

    The Colliding Beam Fusion Reactor Space Propulsion System, CBFR-SPS, is an aneutronic, magnetic-field-reversed configuration, fueled by an energetic-ion mixture of hydrogen and boron11 (H-B11). Particle confinement and transport in the CBFR-SPS are classical, hence the system is scaleable. Fusion products are helium ions, α-particles, expelled axially out of the system. α-particles flowing in one direction are decelerated and their energy recovered to ``power'' the system; particles expelled in the opposite direction provide thrust. Since the fusion products are charged particles, the system does not require the use of a massive-radiation shield. This paper describes a 100 MW CBFR-SPS design, including estimates for the propulsion-system parameters and masses. Specific emphasis is placed on the design of a closed-cycle, Brayton-heat engine, consisting of heat-exchangers, turbo-alternator, compressor, and finned radiators.

  7. The Liquid Annular Reactor System (LARS) propulsion

    NASA Technical Reports Server (NTRS)

    Powell, James; Ludewig, Hans; Horn, Frederick; Lenard, Roger

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5).

  8. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  9. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  10. Nuclear reactor insulation and preheat system

    DOEpatents

    Wampole, Nevin C.

    1978-01-01

    An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

  11. Systems analysis of the CANDU 3 Reactor

    SciTech Connect

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H.

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  12. Advanced thermionic reactor systems design code

    SciTech Connect

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C. )

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance.

  13. EURATOM Research Framework Programme on Reactor Systems

    SciTech Connect

    Deffrennes, Marc; Hugon, Michel; Manolatos, Panagiotis; Van Goethem, Georges; Webster, Simon

    2006-07-01

    The activities of the European Commission (EC) in the field of nuclear energy are governed by the Treaty establishing the European Atomic Energy Community (EURATOM). The research activities of the European Union (EU) are designed as multi-annual Framework Programmes (FP). The EURATOM 6. Framework Programme (EURATOM FP -6), covering the period 2002-2006, is funded with a budget of 1, 230 million Euros and managed by the European Commission. Beyond the general strategic goal of the EURATOM Framework Programmes to help exploit the potential of nuclear energy, in a safe and sustainable manner, FP -6 is designed to contribute also to the development of the 'European Research Area' (ERA), a concept described in the Commission's Communication COM(2000)6, of January 2000. Moreover EURATOM FP-6 contributes to the creation of the conditions for sharing the same nuclear safety culture throughout the EU-25 and the Candidate Countries, fostering the acceptance of nuclear power as an element of the energy mix. This paper gives an overview of the research activities undertaken through EURATOM FP-6 in the area of Reactor Systems, covering the safety of present reactors, the development of future safe reactors, and the needs in terms of research infrastructures and education and training. The actions under FP-6 are presented in their continuity of actions under FP-5. The perspectives under FP -7 are also provided. Other parts of the EURATOM FP, covering Waste Handling and Radiation Protection, as well as Fusion Energy, are not detailed in this paper. (authors)

  14. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  15. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  16. Development of a system model for advanced small modular reactors.

    SciTech Connect

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  17. Integrated systems analysis of the PIUS reactor

    SciTech Connect

    Fullwood, F.; Kroeger, P.; Higgins, J.

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  18. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  19. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  20. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  1. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  2. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials mechanical properties and corrosion resistance, as well as component mock-up tests on technology loops to validate potential applications while accounting for mechanical design rules and manufacturing processes. The selection, assessment and validation of materials necessitate a large number of experiments, involving rare and expensive facilities such as research reactors, hot laboratories or corrosion loops. The modelling and the codification of the behaviour of materials will always involve the use of such technological experiments, but it is of utmost importance to develop also a predictive material science. Finally, the paper stresses the benefit of prospects of multilateral collaboration to join skills and share efforts of R&D to achieve in the nuclear field breakthroughs on materials that have already been achieved over the past decades in other industry sectors (aeronautics, metallurgy, chemistry, etc.).

  3. Performance requirements of the advanced neutron source reactor protection system

    SciTech Connect

    March-Leuba, J.; Battle, R.E.

    1995-04-01

    Research reactors often have protection-systems performance requirements very different from those of commercial reactors. This paper discusses the special characteristics of the Advanced Neutron Source (ANS) reactor that control these requirements, and it presents some calculations used to quantify this performance.

  4. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  5. Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)

    SciTech Connect

    Basu, S.K.

    1996-11-01

    Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

  6. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  7. Auxiliary reactor for a hydrocarbon reforming system

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  8. Disk conversion system for NERVA reactor

    NASA Astrophysics Data System (ADS)

    Bernard, Fran E.; Holman, Robert R.; Jackson, William D.; Maxwell, Craig R.; Seikel, George R.

    A study aimed at establishing the basis for the design of a cesium seeded hydrogen magnetohydrodynamic (MHD) disk generator is presented. The combination of the MHD generator of the disk type with a NERVA reactor yields an advanced power system particularly suited to space applications. It is capable of producing up to gigawatt pulses and multimegawatt continuous operation. Results on the generator performance are described in terms of a stability factor which is related to cesium seeded hydrogen plasma behavior. It is shown that a high performance power system can be defined using the results obtained with cesium seeded noble gases for the case of hydrogen as the working fluid in a disk MHD generator. Recommendations on establishing plasma properties and generator performance for both space and terrestrial applications are presented.

  9. Nuclear safety calculations for heatpipe power system reactors

    NASA Astrophysics Data System (ADS)

    Poston, David I.

    2002-01-01

    Misperceptions continue to exist about the safety of space nuclear systems-both with reactors and radioisotope systems. Frequently engineers do not bother to sufficiently explain the risk, because it is obvious to them that the risks are inconsequential and that their time can be spent in more productive ways. This paper attempts to quantify some of the nuclear risks associated with two space reactor concepts. The paper does not perform a detailed risk assessment; it merely provides information and data that serves as evidence that the risk to personnel and the public are minimal. The reactor concepts evaluated are Heatpipe Power System (HPS) reactors-the HOMER-15, a Mars surface reactor, and the SAFE-400, a space power reactor. The study concludes that these reactors do not pose any credible risk to personnel or the public. .

  10. Fate of coliforms and pathogenic parasite in four full-scale sewage treatment systems in India.

    PubMed

    Tyagi, Vinay Kumar; Sahoo, B K; Khursheed, Anwar; Kazmi, A A; Ahmad, Z; Chopra, A K

    2011-10-01

    The occurrence and removal of fecal indicators (total coliforms (TC), fecal coliforms (FC), fecal streptococci (FS)) and pathogens (helminthes eggs) were studied in various municipal wastewater treatment processes (UASB + FPU, ASP, EA, WSP). The reductions in TC and FC concentrations were usually between 2.0 and 2.5 log units in up-flow anaerobic sludge blanket reactor incorporated with final polishing unit (UASB + FPU). Almost similar reduction was observed in activated sludge process system (ASP) and waste stabilization ponds system (WSP), while it was log 3.0 in extended aeration system (EA). UASB + FPU and WSP systems were observed more efficient to reduce helminthes eggs at almost 100%, whereas only 97% removal was observed in case of ASP and EA system. In addition to monitoring of indicator organisms, turbidity, suspended solids (SS), and biochemical oxygen demand (BOD) were used as indirect measure of the potential presence of microorganisms. Interrelationship of BOD, SS, and turbidity with fecal indicator bacteria concentration in influent and effluent manifest that improvement of the microbiological quality of wastewater is strongly linked to the removal of BOD and SS. PMID:21136285

  11. REACTOR - a Concept for establishing a System-of-Systems

    NASA Astrophysics Data System (ADS)

    Haener, Rainer; Hammitzsch, Martin; Wächter, Joachim

    2014-05-01

    REACTOR is a working title for activities implementing reliable, emergent, adaptive, and concurrent collaboration on the basis of transactional object repositories. It aims at establishing federations of autonomous yet interoperable systems (Systems-of-Systems), which are able to expose emergent behaviour. Following the principles of event-driven service-oriented architectures (SOA 2.0), REACTOR enables adaptive re-organisation by dynamic delegation of responsibilities and novel yet coherent monitoring strategies by combining information from different domains. Thus it allows collaborative decision-processes across system, discipline, and administrative boundaries. Interoperability is based on two approaches that implement interconnection and communication between existing heterogeneous infrastructures and information systems: Coordinated (orchestration-based) communication and publish/subscribe (choreography-based) communication. Choreography-based communication ensures the autonomy of the participating systems to the highest possible degree but requires the implementation of adapters, which provide functional access to information (publishing/consuming events) via a Message Oriented Middleware (MOM). Any interconnection of the systems (composition of service and message cascades) is established on the basis of global conversations that are enacted by choreographies specifying the expected behaviour of the participating systems with respect to agreed Service Level Agreements (SLA) required by e.g. national authorities. The specification of conversations, maintained in commonly available repositories also enables the utilisation of systems for purposes (evolving) other than initially intended. Orchestration-based communication additionally requires a central component that controls the information transfer via service requests or event processing and also takes responsibility of managing business processes. Commonly available transactional object repositories are well suited to establish brokers, which mediate metadata and semantic information about the resources of all involved systems. This concept has been developed within the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) on the basis of semantic registries describing all facets of events and services utilisable for crisis management systems. The implementation utilises an operative infrastructure including an Enterprise Service Bus (ESB), adapters to proprietary sensor systems, a workflow engine, and a broker-based MOM. It also applies current technologies like actor-based frameworks for highly concurrent, distributed, and fault tolerant event-driven applications. Therefore REACTOR implementations are well suited to be hosted in a cloud that provides Infrastructure as a Service (IaaS). To provide low entry barriers for legacy and future systems, REACTOR adapts the principles of Design by Contract (DbC) as well as standardised and common information models like the Sensor Web Enablement (SWE) or the JavaScript Object Notation for geographic features (GeoJSON). REACTOR has been applied exemplarily within two different scenarios, Natural Crisis Management and Industrial Subsurface Development.

  12. Proceedings of a Symposium on Advanced Compact Reactor Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reactor system technologies suitable for a variety of aerospace and terrestrial applications are considered. Technologies, safety and regulatory considerations, potential applications, and research and development opportunities are covered.

  13. High Efficiency Thermoelectrics in NEP Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Ghamaty, Saeid; Elsner, Norbert B.

    2003-01-01

    Thermoelectric space reactor power systems that utilize Multi-Layer Quantum Well (MLQW) technology are presented and discussed in the context of Nuclear Electric Propulsion (NEP). Quantum wells are one of the recent developments in low-dimensional thermoelectric materials that show a factor of 2.5 increase in the thermoelectric figure of merit. This breakthrough in converter performance promises higher efficiency power generating devices. The MLQW under development at Hi-Z Technology, Inc., applied to space systems provides the design flexibility traditionally available with thermoelectric conversion in reactor power systems with higher performance. The reactor concept evaluated is the Heatpipe Power System (HPS) reactor.

  14. Continuous treatment of the insensitive munitions compound N-methyl-p-nitro aniline (MNA) in an upflow anaerobic sludge blanket (UASB) bioreactor.

    PubMed

    Olivares, Christopher I; Wang, Junqin; Luna, Carlos D Silva; Field, Jim A; Abrell, Leif; Sierra-Alvarez, Reyes

    2016-02-01

    N-methyl-p-nitroaniline (MNA) is an ingredient of insensitive munitions (IM) compounds that serves as a plasticizer and helps reduce unwanted detonations. As its use becomes widespread, MNA waste streams will be generated, necessitating viable treatment options. We studied MNA biodegradation and its inhibition potential to a representative anaerobic microbial population in wastewater treatment, methanogens. Anaerobic biodegradation and toxicity assays were performed and an up-flow anaerobic sludge blanket reactor (UASB) was operated to test continuous degradation of MNA. MNA was transformed almost stoichiometrically to N-methyl-p-phenylenediamine (MPD). MPD was not mineralized; however, it was readily autoxidized and polymerized extensively upon aeration at pH = 9. In the UASB reactor, MNA was fully degraded up to a loading rate of 297.5 μM MNA d(-1). Regarding toxicity, MNA was very inhibitory to acetoclastic methanogens (IC50 = 103 μM) whereas MPD was much less toxic, causing only 13.9% inhibition at the highest concentration tested (1025 μM). The results taken as a whole indicate that anaerobic sludge can transform MNA to MPD continuously, and that the transformation decreases the cytotoxicity of the parent pollutant. MPD can be removed through extensive polymerization. These insights could help define efficient treatment options for waste streams polluted with MNA. PMID:26454121

  15. A case study of coupling upflow anaerobic sludge blanket (UASB) and ANITA™ Mox process to treat high-strength landfill leachate.

    PubMed

    Lu, Ting; George, Biju; Zhao, Hong; Liu, Wenjun

    2016-01-01

    A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m(3)·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m(2)·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m(2)·d). PMID:26877051

  16. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  17. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  18. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  19. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    PubMed

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined. PMID:21764417

  20. Colliding beam fusion reactor space propulsion system

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 106-109 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, Isp~106 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameter×10-meters length, magnetic field ~7 Tesla, ion beam current ~10 A, and fuels of either D-He3,P-B11,P-Li6,D-Li6, etc. .

  1. Tanden Mirror Reactor Systems Code (TMRSC)

    SciTech Connect

    Reid, R.L.; Rothe, K.E.; Barrett, R.J.

    1985-01-01

    This paper describes a computer code developed to model a tandem mirror reactor. This is the first tandem mirror reactor model to couple the highly linked physics, magnetics, and neutronic analysis into a single code. Results from this code for two sensitivity studies are included in this paper. These studies are designed (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power and (2) to determine the impact of reactor power level on cost.

  2. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  3. Reactor noise analysis applications in NPP I and C systems

    SciTech Connect

    Gloeckler, O.

    2006-07-01

    Reactor noise analysis techniques are used in many NPPs on a routine basis as 'inspection tools' to get information on the dynamics of reactor processes and their instrumentation in a passive, non-intrusive way. The paper discusses some of the tasks and requirements an NPP has to take to implement and to use the full advantages of reactor noise analysis techniques. Typical signal noise analysis applications developed for the monitoring of the reactor shutdown system and control system instrumentation of the Candu units of Ontario Power Generation and Bruce Power are also presented. (authors)

  4. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  5. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    SciTech Connect

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-20

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  6. Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies

    NASA Astrophysics Data System (ADS)

    Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.

    2006-01-01

    A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.

  7. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  8. Computer optimization of reactor-thermoelectric space power systems

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Finnegan, P. M.; Fishbach, L. H.

    1973-01-01

    A computer simulation and optimization code that has been developed for nuclear space power systems is described. The results of using this code to analyze two reactor-thermoelectric systems are presented.

  9. Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor.

    PubMed

    Wang, Yujia; Hu, Xiaomin; Jiang, Binhui; Song, Zhenhui; Ma, Yongguang

    2016-04-01

    In order to provide the comprehensive insight into the key microbial groups in anaerobic ammonium oxidation (anammox) process, high-throughput sequencing analysis has been used for the investigation of the bacterial communities of a lab-scale upflow anaerobic sludge bed (UASB) anammox bioreactor. Results revealed that 109 operational taxonomic units (OTUs; out of 14,820 reads) were identified and a domination of anammox bacteria of Candidatus Kuenenia stuttgartiensis (OTU474, 35.42 %), along with heterotrophs of Limnobacter sp. MED105 (OTU951, 14.98 %), Anerolinea thermophila UNI-1 (OTU465 and OTU833, 6.60 and 3.93 %), Azoarcus sp. B72 (OTU26, 9.47 %), and Ignavibacterium sp. JCM 16511 (OTU459, 8.33 %) were detected. Metabolic pathway analysis showed that Candidatus K. stuttgartiensis encountered gene defect in synthesizing a series of metabolic cofactors for growth, implying that K. stuttgartiensis is auxotrophic. Coincidentally, the other dominant species severally showed complete metabolic pathways with full set gene encoding to corresponding cofactors presented in the surrounding environment. Furthermore, it was likely that the survival of heterotrophs in the autotrophic system indicates the existence of a symbiotic and mutual relationship in anammox system. PMID:26739990

  10. Thermionic switched self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M. (San Jose, CA); Shires, Charles D. (San Jose, CA); Brummond, William A. (Livermore, CA)

    1989-01-01

    A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

  11. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

  12. Monitoring circuit for reactor safety systems

    DOEpatents

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  13. Intermittent vs continuous operation of upflow anaerobic sludge bed reactors for dairy wastewater and related microbial changes.

    PubMed

    Nadais, H; Capela, I; Arroja, L

    2006-01-01

    This work compares continuous vs intermittent UASB reactors inoculated with flocculent sludge for the treatment of dairy effluents. The effects of effluent recirculation on the performance of intermittent reactors were assessed as well as the differences in specific methanogenic activity (SMA) with different substrates for the biomass from continuous and intermittent UASB reactors. Compared to the continuous operation the intermittent operation resulted in higher methanization of the removed COD (64-78% and 65-88%, respectively) whilst the effluent recirculation presented beneficial effects when applied during the stabilization period and was clearly detrimental when applied during the feed period of the intermittent operation. The SMA tests showed that the intermittent operation causes a shift in the microbial populations towards a better adaptation for the degradation of complex substrates confirmed by the meaningfull contribution of methane production through a pathway other than acetoclastic methanogenesis observed in the biomass taken from intermittent UASB reactors. PMID:16939090

  14. SP-100 Program: space reactor system and subsystem investigations

    SciTech Connect

    Harty, R.B.

    1983-09-30

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.

  15. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  16. High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments.

    PubMed

    García-Solares, Selene Montserrat; Ordaz, Alberto; Monroy-Hermosillo, Oscar; Jan-Roblero, Janet; Guerrero-Barajas, Claudia

    2014-12-01

    Sulfidogenesis in reactors is mostly achieved through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. In this work, an upflow anaerobic sludge blanket (UASB) reactor operated under sulfate-reducing conditions was inoculated with hydrothermal vent sediments to carry out sulfate reduction using volatile fatty acids (VFAs) as substrate and chemical oxygen demand (COD)/SO4 (-2) ratios between 0.49 and 0.64. After a short period of adaptation, a robust non-granular sludge was capable of achieving high sulfate reduction efficiencies while avoiding competence with methanogens and toxicity to the microorganisms due to high sulfide concentration. The highest sulfide concentration (2,552 mg/L) was obtained with acetate/butyrate, and sulfate reduction efficiencies were up to 98 %. A mixture of acetate/butyrate, which produced a higher yielding of HS(-), was preferred over acetate/propionate/butyrate since the consumption of COD was minimized during the process. Sludge was analyzed, and some of the microorganisms identified in the sludge belong to the genera Desulfobacterium, Marinobacter, and Clostridium. The tolerance of the sludge to sulfide may be attributed to the syntrophy among these microorganisms, some of which have been reported to tolerate high concentrations of sulfide. To the best of our knowledge, this is the first report on the analysis of the direct utilization of hydrothermal vent sediments as an alternate source of sludge for sulfate reduction under high sulfide concentrations. PMID:25234397

  17. Metrology/viewing system for next generation fusion reactors

    SciTech Connect

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-02-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system.

  18. Microprocessor tester for the treat upgrade reactor trip system

    SciTech Connect

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.

  19. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  20. Digital, remote control system for a 2-MW research reactor

    SciTech Connect

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  1. Modeling Reactor Coolant Systems Thermal-Hydraulic Transients

    Energy Science and Technology Software Center (ESTSC)

    1999-10-05

    RELAP5/MOD3.2* is used to model reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transients without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal-hydraulic systems. Control system and secondary system components are included to allow modeling of themore » plant controls, turbines, condensers, and secondary feedwater systems.« less

  2. Autonomous Control of Space Reactor Systems

    SciTech Connect

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  3. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  4. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  5. A high energy neutral beam system for reactors

    SciTech Connect

    Anderson, O.A.; Chan, C.F.; Cooper, W.S.; Leung, K.N.; Lietzke, A.F.; Kim, C.H.; Kunkel, W.B.; Kwan, J.W.; Purgalis, P.; Schlachter, A.S.

    1988-09-01

    High energy neutral beams provide a promising method of heating and driving current in steady-state tokamak fusion reactors. As an example, we have made a conceptual design of a neutral beam system for current drive on the International Thermonuclear Experimental Reactor (ITER). The system, based on electrostatic acceleration of D/sup /minus// ions, can deliver up to 100 MW of 1.6 MeV D/sup 0/ neutrals through three ports. Radiation protection is provided by locating sensitive beamline components 35 to 50 m from the reactor. In an application to a 3300 MW power reactor, a system delivering 120 MW of 2-2.4 MeV deuterium beams assisted by 21 MW of lower hybrid wave power drives 25 MA and provides an adequate plasma power gain (Q = 24) for a commercial fusion power plant. 8 refs., 1 fig., 2 tabs.

  6. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  7. Gas-cooled reactor power systems for space

    SciTech Connect

    Walter, C.E.

    1987-01-01

    In this paper the characteristics of six designs for power levels of 2, 10, and 20 MWe for operating times of 1 and 7 y are described. The operating conditions for these arbitrary designs were chosen to minimize system specific mass. The designs are based on recent work which benefits from earlier analyses of nuclear space power systems conducted at our Laboratory. Both gas- and liquid-cooled reactors had been considered. Pitts and Walter (1970) reported on the results of a detailed study of a 10-MWe lithium-cooled reactor in a potassium Rankine system. Unpublished results (1966) of a computer analysis provide details of an argon-cooled reactor in an argon Brayton system. The gas-cooled reactor design was based on extensive development work on the 500-MWth reactor for the nuclear ramjet (Pluto) as described by Walter (1964). The designs discussed here draw heavily on the Pluto project experience, which culminated in a successful full-power ground test as reported by Reynolds (1964). At higher power levels gas-cooled reactors coupled with Brayton systems with advanced radiator designs become attractive.

  8. Reference Reactor Module for the Affordable Fission Surface Power System

    SciTech Connect

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-21

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures <1000 K). The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. This paper describes the reference AFSPS reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based, UO{sub 2}-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important 'affordability' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk.

  9. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  10. Small space reactor power systems for unmanned solar system exploration missions

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  11. Fuel systems for compact fast space reactors

    SciTech Connect

    Cox, C.M.; Dutt, D.S.; Karnesky, R.A.

    1983-12-01

    About 200 refractory metal clad ceramic fuel pins have been irradiated in thermal reactors under the 1200 K to 1550 K cladding temperature conditions of primary relevance to space reactors. This paper reviews performance with respect to fissile atom density, operating temperatures, fuel swelling, fission gas release, fuel-cladding compatibility, and consequences of failure. It was concluded that UO/sub 2/ and UN fuels show approximately equal performance potential and that UC fuel has lesser potential. W/Re alloys have performed quite well as cladding materials, and Ta, Nb, and Mo/Re alloys, in conjunction with W diffusion barriers, show good promise. Significant issues to be addressed in the future include high burnup swelling of UN, effects of UO/sub 2/-Li coolant reaction in the event of fuel pin failure, and development of an irradiation performance data base with prototypically configured fuel pins irradiated in a fast neutron flux.

  12. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  13. CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM

    SciTech Connect

    John Darrell Bess

    2009-06-01

    It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into subcritical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith utilizing the regolith not just for shielding but as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity although its effects are less than the more dominant factors of subunit emplacement.

  14. Architecture of the ETR (experimental test reactor) systems code

    SciTech Connect

    Reid, R.L.; Galambos, J.D.

    1987-01-01

    TETRA, a tokamak systems code capable of modeling experimental test reactors (ETRs), was developed in a joint effort by participants of the fusion community. The first version of this code was constructed to model devices similar to the Tokamak Ignition/Burn Engineering Reactor (TIBER) in configuration and design. A major feature of this code is its ability to perform optimization studies. Future work will include broadening the scope of the code, particularly in the area of materials selection, to more accurately simulate tokamak configurations such as the Next European Torus (NET) and the Fusion Engineering Reactor (FER). 18 refs., 2 figs., 4 tabs.

  15. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  16. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-01

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  17. Deployment history and design considerations for space reactor power systems

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2009-05-01

    The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's "BUK" power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ˜800 km orbit. The US' SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90-96 wt%) and operated at a reactor exit temperature of 833-973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO 2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (˜0.5 kW e and ˜1 year for SNAP-10A, <3.0 kW e and <6 months for BUK, and ˜5.5 kW e and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ˜4.5 months, were boosted into ˜800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000-3000 km orbits would generate significantly more power of 10's to 100's kW e for 5-10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.

  18. Partial characterization of the polluting load of swine wastewater treated with an integrated biodigestion system.

    PubMed

    Ferreira, Fernanda L A; de Lucas, Jorge; do Amaral, Luiz A

    2003-11-01

    The stabilization of swine wastewaters from swine confined housing by the combination of a upflow anaerobic sludge blanket (UASB) reactor and waste stabilization ponds is a viable alternative to minimize the environmental impact caused by inadequate disposal of swine wastewaters. In the present study, the polluting load of pre-decanted swine wastewater treated with a series of two 0.705 m(3) UASB reactors and then in parallel in aerated and non-aerated stabilization tanks was investigated from January to July, 2000. Physicochemical and microbiological analyses were made adopting standard methods (Standard Methods for Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC, 1995). COD values decreased as the wastewater ran through the integrated biodigestion system dropping from about 3492+/-511-4094 mgl(-1)+/-481 to 124+/-52-490 mgl(-1)+/-230, while nitrate and nitrite levels increased in stabilization tanks, ranging respectively from 4+/-0 to 20 mgl(-1)+/-3 and 3+/-1 to 11 mgl(-1)+/-24. Although the removal of Escherichia coli was more than 97%+/-6, the effluents of the treatment system still contained unacceptable levels of E. coli (1.6 x 10(3)-1.2 x 10(6) 100 ml(-1)) according to WHO guidelines for use of wastewater in agriculture and aquaculture. These results indicate the necessity of changes on operational characteristics of the treatment system such as an increase of the hydraulic retention time in UASB reactors or in stabilization tanks. PMID:12895552

  19. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  20. Thermal Stress Calculations for Heatpipe-Cooled Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Kapernick, Richard J.; Guffee, Ray M.

    2003-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module includes a single heatpipe surrounded by 3-6 clad fuel pins. As part of this development effort, a partial array of a candidate heatpipe-cooled reactor is to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. The partial array comprises 19 3-pin modules, which are powered by resistance heaters. This paper describes the analyses that were performed in support of this test program, to assess thermal and structural performance and to specify the test conditions needed to simulate reactor operating conditions.

  1. Simulation of the modified K reactor supplementary safety system

    SciTech Connect

    Paik, I.K.; Canas, L.R. ); Peterson, P.F. )

    1991-01-01

    The supplementary safety system (SSS) of the K reactor provides a second line of defense to shut down the reactor if the safety and control rods fail to scram. The SSS was originally designed to inject a neutron poison solution (ink) into the reactor tank via spargers. Recently, concerns arose that the ink inventory might run out before the ink front returned to the moderator during a loss-of-ac-power transient in which the coolant pumps coast down. Thus, a new system has been added to inject additional ink through the pump suctions so that ink will arrive in the core before depletion of the sparger ink. The MODFLOW code was developed to calculate the moderator flow distribution in Savannah River site (SRS) reactors, including the effects of inertia and stratification from buoyancy forces.

  2. Preliminary design concepts for the advanced neutron source reactor systems

    SciTech Connect

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor.

  3. Efficient regulation of elemental sulfur recovery through optimizing working height of upflow anaerobic sludge blanket reactor during denitrifying sulfide removal process.

    PubMed

    Huang, Cong; Li, Zhi-Ling; Chen, Fan; Liu, Qian; Zhao, You-Kang; Gao, Ling-Fang; Chen, Chuan; Zhou, Ji-Zhong; Wang, Ai-Jie

    2016-01-01

    In this study, two lab-scale UASB reactors were established to testify S(0) recovery efficiency, and one of which (M-UASB) was improved from the previous T-UASB by shortening reactor height once S(2-) over oxidation was observed. After the height was shortened from 60 to 30cm, S(0) recovery rate was improved from 7.4% to 78.8%, and while, complete removal of acetate, nitrate and S(2-) was simultaneously maintained. Meanwhile, bacterial community distribution was homogenous throughout the reactor, with denitrifying sulfide oxidization bacteria predominant, such as Thauera and Azoarcus spp., indicating the optimized condition for S(0) recovery. The effective control of working height/volume in reactors plays important roles for the efficient regulation of S(0) recovery during DSR process. PMID:26497112

  4. Reference reactor module for NASA's lunar surface fission power system

    SciTech Connect

    Poston, David I; Kapernick, Richard J; Dixon, David D; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  5. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  6. Modeling and simulation of CANDU reactor and its regulating system

    NASA Astrophysics Data System (ADS)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different phenomena related to the transfer of the energy from the core. The main function of the reactor regulating system is to control the power of the reactor. This is achieved by using a set of detectors. reactivity devices. and digital control algorithms. Three main reactivity devices that are activated during short-term or intermediate-term transients are modeled in this thesis. The main elements of the digital control system are implemented in accordance to the program specifications for the actual control system in CANDU reactors. The simulation results are validated against requirements of the reactor regulating system. actual plant data. and pre-validated data from other computer codes. The validation process shows that the simulation results can be trusted in making engineering decisions regarding the reactor regulating system and prediction of the system performance in response to upset conditions or disturbances. KEYWORDS: CANDU reactors. reactor regulating system. nodal model. spatial kinetics. reactivity devices. simulation.

  7. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  8. Pressurized reactor system and a method of operating the same

    DOEpatents

    Isaksson, J.M.

    1996-06-18

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

  9. Pressurized reactor system and a method of operating the same

    DOEpatents

    Isaksson, Juhani M.

    1996-01-01

    A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.

  10. NEUTRONIC REACTOR COUNTER METHOD AND SYSTEM

    DOEpatents

    Graham, C.B.; Spiewak, I.

    1960-05-31

    An improved method is given for controlling the rate of fission in circulating-fuel neutronic reactors in which the fuel is a homogeneous liquid containing fissionable material and a neutron moderator. A change in the rate of flssion is effected by preferentially retaining apart from the circulating fuel a variable amount of either fissionable material or moderator, thereby varying the concentration of fissionable material in the fuel. In the case of an aqueous fuel solution a portion of the water may be continuously vaporized from the circulating solution and the amount of condensate, or condensate plus make-up water, returned to the solution is varied to control the fission rate.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect

    Lawrence, J.D.

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  13. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Woodard, T L; Nevin, K P; Lovley, D R

    2015-09-01

    Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness. PMID:25989089

  14. System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor

    SciTech Connect

    Lee, H.H.; Abdul-Hamid, S.; Klein, A.C.

    1996-07-01

    In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses {approximately}80 W(electric).

  15. Westinghouse Reactor Protection System Unavailability, 1984--1995

    SciTech Connect

    Eide, Steven Arvid; Calley, Michael Brennan; Gentillon, Cynthia Ann; Wierman, Thomas Edward; Rasmuson, D.; Marksberry, D.

    1999-08-01

    An analysis was performed of the safety-related performance of the reactor protection system (RPS) at U. S. Westinghouse commercial reactors during the period 1984 through 1995. RPS operational data were collected from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on a fault tree model of the system. Results were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

  16. General Electric Reactor Protection System Unavailability, 1984--1995

    SciTech Connect

    Eide, Steven Arvid; Calley, Michael Brennan; Gentillon, Cynthia Ann; Wierman, Thomas Edward; Hamzehee, H.; Rasmuson, D.

    1999-08-01

    An analysis was performed of the safety-related performance of the reactor protection system (RPS) at U. S. General Electric commercial reactors during the period 1984 through 1995. RPS operational data were collected from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on a fault tree model of the system. Results were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

  17. General Electric Reactor Protection System Unavailability, 1984-1995

    SciTech Connect

    C. D. Gentillon; D. Rasmuson; H. Hamzehee; M. B. Calley; S. A. Eide; T. Wierman

    1999-08-01

    An analysis was performed of the safety-related performance of the reactor protection system (RPS) at U.S. General Electric commercial reactors during the period 1984 through 1995. RPS operational data were collected from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on a fault tree model of the system. Results were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

  18. Westinghouse Reactor Protection System Unavailability, 1984-1995

    SciTech Connect

    C. D. Gentillon; D. Marksberry; D. Rasmuson; M. B. Calley; S. A. Eide; T. Wierman

    1999-08-01

    An analysis was performed of the safety-related performance of the reactor protection system (RPS) at U.S. Westinghouse commercial reactors during the period 1984 through 1995. RPS operational data were collected from the Nuclear Plant Reliability Data System and Licensee Event Reports. A risk-based analysis was performed on the data to estimate the observed unavailability of the RPS, based on a fault tree model of the system. Results were compared with existing unavailability estimates from Individual Plant Examinations and other reports.

  19. Different Mechanisms for Establishing Liquid Walls in Advanced Reactor Systems

    NASA Astrophysics Data System (ADS)

    Hançerlioğullari, Aybaba; Cini, Mesut

    2013-04-01

    The APEX study is investigating the use of free flowing liquid surfaces to form the inner surface of the chamber around a fusion plasma. In this study the modeling of APEX hybrid reactor produced by using ARIES-RS hybrid reactor technology, was performed by using the Monte Carlo code and ENF/B-V-VI nuclear data. The most important feature of APEX hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity, good power transformation productivity the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. Around the fusion chamber, molten salt Li2BeF4 and natural lithium were used as cooling materials. The result of the study indicated that fissile material production UF4 and ThF4 heavy metal salt increased nearly at the same percentage.

  20. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-12

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  1. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  2. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  3. Method and reactor system for rapid kill gas injection to gas phase polymerization reactors

    SciTech Connect

    Cook, J.E.; Hagerty, R.O.; Jacob, F.W.

    1987-05-19

    This patent describes a method of terminating, under emergency conditions, an olefin polymerization reaction conducted in the presence of a transition metal-based catalyst system in a substantially vertical gas phase reactor comprising a reactants inlet at the first end thereof and a venting means at the second end thereof to maintain the temperature of the reaction below the sintering temperature of the polymer. The method comprises opening the venting means and injecting an amount of a kill gas into the reaction medium in the reactor sufficient to terminate the reaction.

  4. STORS: BATTELLE-NORTHWEST'S SLUDGE TO OIL REACTOR SYSTEM

    EPA Science Inventory

    A continuous primary sewage sludge thermochemical conversion system was designed, built, and operated for over 100 hr during 1984 at Battelle-Northwest. This was designated as the STORS (Sludge-to-Oil-Reactor System), because the major product was a burnable oil. Starting with 20...

  5. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  6. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, D.C.

    1996-12-17

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.

  7. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, Donald C.

    1996-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.

  8. Small reactor power systems for manned planetary surface bases

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  9. Core barrel support system for nuclear reactors

    SciTech Connect

    Veronesi, L.; Tower, S.N.

    1988-07-12

    A nuclear reactor is described having a pressure vessel and a core barrel having a bottom core support plate situated within the pressure vessel, the core support plate engaged about the periphery thereof by engagement means, which have a recess therein for engagement with a key. The core support plate has apertures therethrough one of which communicates with each recess of the engagement means, wherein a circular wall is provided in the core support plate about the apertures; and a key insertable into and positioned in the apertures in a secure relationship. The key having a lower section thereof of a rectangular cross-section which extends into the recess of the engagement means. The apertures of the core support plate being alignable with the engagement means of the pressure vessel and the keys being securable in the apertures of the core support plate and the recess of the engagement means from above the core support plate.

  10. Analysis of reactor trips originating in balance of plant systems

    SciTech Connect

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W. )

    1990-09-01

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.

  11. Reactor Controllability of 3-Region-Core Molten Salt Reactor System - A Study on Load Following Capability

    SciTech Connect

    Takahisa Yamamoto; Koshi Mitachi; Masatoshi Nishio

    2006-07-01

    The Molten Salt Reactor (MSR) systems are liquid-fueled reactors that can be used for actinide burning, production of electricity, production of hydrogen, and production of fissile fuels (breeding). Thorium (Th) and uranium-233 ({sup 233}U) are fertile and fissile of the MSR systems, and dissolved in a high-temperature molten fluoride salt (fuel salt) with a very high boiling temperature (up to 1650 K), that is both the reactor nuclear fuel and the coolant. The MSR system is one of the six advanced reactor concepts identified by the Generation IV International Forum (GIF) as a candidate for cooperative development. In the MSR system, fuel salt flows through a fuel duct constructed around a reactor core and fuel channel of a graphite moderator accompanied by fission reaction and heat generation, and flows out to an external-loop system consisted of a heat exchanger and a circulation pump. Due to the motion of fuel salt, delayed neutron precursors that are one of the source of neutron production make to change their position between the fission reaction and neutron emission events and decay even occur in the external loop system. Hence the reactivity and effective delayed neutron precursor fraction of the MSR system are lower than those of solid fuel reactor systems such as Boiling Water Reactors (BWRs) and Pressurised Water Reactor (PWRs). Since all of the presently operating nuclear power reactors utilize solid fuel, little attention had been paid to the MSR analysis of the reactivity loss and reactor characteristics change caused by the fuel salt circulation. Sides et al. and Shimazu et al. developed MSR analytical models based on the point reactor kinetics model to consider the effect of fuel salt flow. Their models represented a reactor as having six zones for fuel salt and three zones for the graphite moderator. Since their models employed the point reactor kinetics model and the rough temperature approximation, their results were not sufficiently accurate to consider the effect of fuel salt flow. (authors)

  12. System Study: Reactor Core Isolation Cooling 1998–2012

    SciTech Connect

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  13. Dynamic analysis of gas-core reactor system

    NASA Technical Reports Server (NTRS)

    Turner, K. H., Jr.

    1973-01-01

    A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.

  14. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    SciTech Connect

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

    2005-09-27

    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  15. Fate of pharmaceuticals in full-scale source separated sanitation system.

    PubMed

    Butkovskyi, A; Hernandez Leal, L; Rijnaarts, H H M; Zeeman, G

    2015-11-15

    Removal of 14 pharmaceuticals and 3 of their transformation products was studied in a full-scale source separated sanitation system with separate collection and treatment of black water and grey water. Black water is treated in an up-flow anaerobic sludge blanket (UASB) reactor followed by oxygen-limited autotrophic nitrification-denitrification in a rotating biological contactor and struvite precipitation. Grey water is treated in an aerobic activated sludge process. Concentration of 10 pharmaceuticals and 2 transformation products in black water ranged between low μg/l to low mg/l. Additionally, 5 pharmaceuticals were also present in grey water in low μg/l range. Pharmaceutical influent loads were distributed over two streams, i.e. diclofenac was present for 70% in grey water, while the other compounds were predominantly associated to black water. Removal in the UASB reactor fed with black water exceeded 70% for 9 pharmaceuticals out of the 12 detected, with only two pharmaceuticals removed by sorption to sludge. Ibuprofen and the transformation product of naproxen, desmethylnaproxen, were removed in the rotating biological contactor. In contrast, only paracetamol removal exceeded 90% in the grey water treatment system while removal of other 7 pharmaceuticals was below 40% or even negative. The efficiency of pharmaceutical removal in the source separated sanitation system was compared with removal in the conventional sewage treatment plants. Furthermore, effluent concentrations of black water and grey water treatment systems were compared with predicted no-effect concentrations to assess toxicity of the effluent. Concentrations of diclofenac, ibuprofen and oxazepam in both effluents were higher than predicted no-effect concentrations, indicating the necessity of post-treatment. Ciprofloxacin, metoprolol and propranolol were found in UASB sludge in μg/g range, while pharmaceutical concentrations in struvite did not exceed the detection limits. PMID:26364222

  16. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)

  17. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  18. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  19. 10 CFR 50.46a - Acceptance criteria for reactor coolant system venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... criteria for reactor coolant system venting systems. Each nuclear power reactor must be provided with high... operated from the control room. (b) The design of the vents and associated controls, instruments and power... ensure that: (1) The vents will perform their safety functions; and (2) There would not be inadvertent...

  20. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  1. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    SciTech Connect

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.; Hickey, Robert; Zhang, Weiwen; Brockman, Fred J.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes were PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.

  2. A microprocessor tester for the treat upgrade reactor trip system

    SciTech Connect

    Lenkszus, F.R.; Bucher, R.G.

    1985-02-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.

  3. Modification of the Core Cooling System of TRIGA 2000 Reactor

    NASA Astrophysics Data System (ADS)

    Umar, Efrizon; Fiantini, Rosalina

    2010-06-01

    To accomplish safety requirements, a set of actions has to be performed following the recommendations of the IAEA safety series 35 applied to research reactor. Such actions are considered in modernization of the old system, improving the core cooling system and safety evaluations. Due to the complexity of the process and the difficulty in putting the apparatus in the reactor core, analytical and experimental study on the determination of flow and temperature distribution in the whole coolant channel are difficult to be done. In the present work, a numerical study of flow and temperature distribution in the coolant channel of TRIGA 2000 has been carried out using CFD package. For this study, simulations were carried out on 3-D tested model. The model consists of the reactor tank, thermal and thermalizing column, reflector, rotary specimen rack, chimney, fuel element, primary pipe, diffuser, beam tube and a part of the core are constructed by 1.50 million unstructured tetrahedral cell elements. The results show that for the initial condition (116 fuel elements in the core) and for the inlet temperature of 24°C and the primary velocity of 5.6 m/s, there no boiling phenomena occur in the coolant channel. Due to this result, it is now possible to improve the core cooling system of TRIGA 2000 reactor. Meanwhile, forced flow from the diffuser system only affected the flow pattern in the outside of chimney and put on a small effect to the fluid flow's velocity in the inside of chimney.

  4. Space-reactor electric systems: subsystem technology assessment

    SciTech Connect

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-03-29

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

  5. Fault detection system for Argentine Research Reactor instrumentation

    NASA Astrophysics Data System (ADS)

    Polenta, Héctor P.; Bernard, John A.; Ray, Asok

    1993-01-01

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  6. Fault detection system for Argentine Research Reactor instrumentation

    SciTech Connect

    Polenta, H.P. ); Bernard, J.A. ); Ray, A. )

    1993-01-20

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  7. Operation of staged membrane oxidation reactor systems

    DOEpatents

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  8. Expert systems for fault diagnosis in nuclear reactor control

    NASA Astrophysics Data System (ADS)

    Jalel, N. A.; Nicholson, H.

    1990-11-01

    An expert system for accident analysis and fault diagnosis for the Loss Of Fluid Test (LOFT) reactor, a small scale pressurized water reactor, was developed for a personal computer. The knowledge of the system is presented using a production rule approach with a backward chaining inference engine. The data base of the system includes simulated dependent state variables of the LOFT reactor model. Another system is designed to assist the operator in choosing the appropriate cooling mode and to diagnose the fault in the selected cooling system. The response tree, which is used to provide the link between a list of very specific accident sequences and a set of generic emergency procedures which help the operator in monitoring system status, and to differentiate between different accident sequences and select the correct procedures, is used to build the system knowledge base. Both systems are written in TURBO PROLOG language and can be run on an IBM PC compatible with 640k RAM, 40 Mbyte hard disk and color graphics.

  9. A gas-cooled reactor surface power system

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  10. A gas-cooled reactor surface power system

    SciTech Connect

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-22

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  11. A Gas-Cooled Reactor Surface Power System

    SciTech Connect

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  12. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal.

    PubMed

    He, Ruo; Liu, Xin-Wen; Zhang, Zhi-Jian; Shen, Dong-Sheng

    2007-09-01

    A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition. PMID:17071082

  13. Ultra-reliable computer systems: an integrated approach for application in reactor safety systems

    SciTech Connect

    Chisholm, G.H.

    1985-01-01

    Improvements in operation and maintenance of nuclear reactors can be realized with the application of computers in the reactor control systems. In the context of this paper a reactor control system encompasses the control aspects of the Reactor Safety System (RSS). Equipment qualification for application in reactor safety systems requires a rigorous demonstration of reliability. For the purpose of this paper, the reliability demonstration will be divided into two categories. These categories are demonstrations of compliance with respect to (a) environmental; and (b) functional design constrains. This paper presents an approach for the determination of computer-based RSS respective to functional design constraints only. It is herein postulated that the design for compliance with environmental design constraints is a reasonably definitive problem and within the realm of available technology. The demonstration of compliance with design constraints respective to functionality, as described herein, is an extension of available technology and requires development.

  14. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  15. Compact nuclear power systems based on particle bed reactors

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Steinberg, M.; Takahashi, H.

    1986-01-01

    Compact, low cost nuclear power systems with an extremely low radioactive inventory are described. These systems use the Particle Bed Reactor (PBR), in which HTGR particle fuel is contained in packed beds that are changed daily. The small diameter particle fuel (500 ..mu..m) is directly cooled utilizing the large heat transfer area available (7.8 m/sup 2//liter), thus allowing high bed power densities (MW/liter).

  16. A simple fuzzy simulation model for nuclear reactor system dynamics

    SciTech Connect

    Matsuoka, H. )

    1991-05-01

    This paper presents a simple image model, the package flow model, for fuzzy simulation of nuclear reactor system dynamics. By using this model, fuzzy inference rules and their membership functions are easily obtained. The system dynamics can be approximately simulated by fuzzy inference. The method and some examples are described. The advantages of this model are intuitive understandability, flexible modification, and simplicity. Furthermore, high-speed calculation and high reliability can be realized by using fuzzy computing hardware in the near future.

  17. Neutral-beam systems for magnetic-fusion reactors

    SciTech Connect

    Fink, J. H.

    1981-08-10

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated.

  18. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  19. A passive automated personnel accountability system for reactor emergency preparedness

    SciTech Connect

    Zimmerman, R.O.; DeLisle, G.V.; Hickey, E.E.

    1988-04-01

    In 1985 a project was undertaken at the N Reactor on the Hanford Site to develop an automated personnel accountability system to ensure accountability of all personnel within 30 minutes of a site evacuation. The decision to develop such a system was made after a full-scale evacuation drill showed that the manual accountability system in use at the time was inadequate to meet the 30-minute requirement. Accountability systems at commercial nuclear power plants were evaluated, but found to be unsuitable because they were not passive, that is, they required action on part of the user for the system to work. Approximately 2500 people could be required to evacuate the 100-N Area. Therefore, a card key system or badge exchange system was judged not to be feasible. A passive accountability system was desired for N Reactor to allow personnel to enter and leave the site in a more timely manner. To meet the need for an automated accountability system at N Reactor, a special Evacuation Accountability System (EVACS) was designed and developed. The EVACS system has three basic components: the transponder, a credit card-sized device worn with the security badge; portal monitors, which are electronically activated by the transponder; and a computer information system that contains the personnel data base. Each person wearing a transponder is accounted for automatically by walking through a portal. In this paper, a description of the hardware and software will be presented, together with problems encountered and lessons learned while adapting an existing technology to this particular use. The system is currently installed and requires acceptance testing before becoming operational.

  20. D-He-3 spherical torus fusion reactor system study

    NASA Astrophysics Data System (ADS)

    Macon, William A., Jr.

    1992-04-01

    This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.

  1. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Leung, J. K. C.; Leung, K. Y.; Lin, Y. C.; Luk, K. B.; Pun, C. S. J.

    2016-02-01

    We developed a highly sensitive, reliable and portable automatic system (H3) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m3. This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  2. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  3. Development of a core follow calculational system for research reactors

    SciTech Connect

    Mueller, E.Z.; Ball, G.; Joubert, W.R.

    1994-12-31

    Over the last few years a comprehensive PWR and MTR core analysis code system based on modern reactor physics methods has been under development by the Atomic Energy Corporation of South Africa. This system, known as OSCAR-3, will incorporate a customized graphical user interface and data management system to ensure user-friendliness and good quality control. The system has now reached the stage of development where it can be used for practical MTR core analyses. This paper describes the current capabilities of the components of the OSCAR-3 package, their integration within the package, and outlines future developments.

  4. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor operating temperature data from the spouted bed monitoring system are used to determine the bed operating regime and monitor the particle characteristics. Tests have been conducted to determine the sensitivity of the monitoring system to the different operating regimes of the spouted particle bed. The pressure transducer signal response was monitored over a range of particle sizes and gas flow rates while holding bed height constant. During initial testing, the bed monitoring system successfully identified the spouting regime as well as when particles became interlocked and spouting ceased. The particle characterization capabilities of the bed monitoring system are currently being tested and refined. A feedback control module for the bed monitoring system is currently under development. The feedback control module will correlate changes in the bed response to changes in the particle characteristics and bed spouting regime resulting from the coating and/or conversion process. The feedback control module will then adjust the gas composition, gas flow rate, and run duration accordingly to maintain the bed in the desired spouting regime and produce optimally coated/converted particles.

  5. Hydrogen monitoring systems in reactor safety assessment

    SciTech Connect

    Lai, W.

    1981-03-01

    Results are presented of a survey of proven monitoring devices for detecting hydrogen. Of the proven devices, the commercially available hydrogen monitors were evaluated for use in the containment vessel of a nuclear power plant during a post-postulated accident period. Available monitoring devices use detectors that can be grouped into the following five classes - combustion, solid state, electrochemical, thermal conductivity, and absorption. None of the available sensors is designed for direct exposure to the postulated environment which contains hydrogen, air, steam (which could be at high temperature), and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change when exposed to the post-postulated accident period. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of an experimental study to assess apparant deficiencies of commercial monitoring devices is recommended; avoidance of direct exposure of the detector may lead to the earlier development of useful systems. Also recommended is an analytical-experimental effort to determine the optimum detector array for monitoring in the secondary containment vessel. 55 refs., 7 figs., 3 tabs.

  6. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  7. Monitoring nuclear reactor systems using neural networks and fuzzy logic

    SciTech Connect

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E.; Mullens, J.A. |

    1991-12-01

    A new approach is presented that demonstrates the potential of trained artificial neural networks (ANNs) as generators of membership functions for the purpose of monitoring nuclear reactor systems. ANN`s provide a complex-to-simple mapping of reactor parameters in a process analogous to that of measurement. Through such ``virtual measurements`` the value of parameters with operational significance, e.g., control-valve-disk-position, valve-line-up or performance can be determined. In the methodology presented the output of a virtual measuring device is a set of membership functions which independently represent different states of the system. Utilizing a fuzzy logic representation offers the advantage of describing the state of the system in a condensed form, developed through linguistic descriptions and convenient for application in monitoring, diagnostics and generally control algorithms. The developed methodology is applied to the problem of measuring the disk position of the secondary flow control valve of an experimental reactor using data obtained during a start-up. The enhanced noise tolerance of the methodology is clearly demonstrated as well as a method for selecting the actual output. The results suggest that it is possible to construct virtual measuring devices through artificial neural networks mapping dynamic time series to a set of membership functions and thus enhance the capability of monitoring systems. 8 refs., 11 figs., 1 tab.

  8. Modeling and performance of the MHTGR (Modular High-Temperature Gas-Cooled Reactor) reactor cavity cooling system

    SciTech Connect

    Conklin, J.C. )

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab.

  9. PWR full-reactor coolant system decontamination

    SciTech Connect

    Aspden, R.G.; Pessall, N.; Grand, T.F. )

    1992-01-01

    The overall objective of the current program is to identify and address all aspects of full system decontamination with the purpose of qualifying at least one process for PWR use. The objective of the current study is to provide baseline data on the performance of materials on the primary side after exposure to one cycle of the LOMI fault testing. This data supplements prior information obtained after exposure to three cycles of LOMI testing. The technical significance of this excursion will be determined in a subsequent task. The general corrosion characteristics of over 39 materials were evaluated for some combinations of material, type of specimen (coupon and creviced coupons), and loop velocity (0, 5, 20 and 150 ft/sec). At velocities of less than or equal to 20 ft/sec, sixteen types of specimens were employed to evaluate localized corrosion and stress corrosion cracking. Specimens were examined after one cycle. Also included in this exposure were specimens added to provide more information on the effect of LOMI fault exposure one: (1) surface roughening of Stellite 156; (2) crevice corrosion of chromium plated 304 stainless steel with the open end gap increased from 3 to {approximately} 9 mils; (3) susceptibility of Inconel X-750 (HTH) to subsequent stress corrosion cracking, (4) loss of chromium plate from threads of 304 stainless steel bolts torqued into stainless steel collars; (5) crack initiation in an Alloy 600 tube known to be susceptible to primary water stress corrosion cracking; and (6) surface alternation of stressed Inconel X-750 springs with the spring temper.

  10. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  11. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  12. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  13. Post impact behavior of mobile reactor core containment systems

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Parker, W. G.; Vanbibber, L. E.

    1972-01-01

    The reactor core containment vessel temperatures after impact, and the design variables that affect the post impact survival of the system are analyzed. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partially burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense outward and condense on cooler surfaces, resulting in a moving heat source. A computer program entitled Executive Subroutines for Afterheat Temperature Analysis (ESATA) was written to consider this complex heat transfer analysis. Seven cases were calculated of a reactor power system capable of delivering up to 300 MW of thermal power to a nuclear airplane.

  14. Systems and methods for dismantling a nuclear reactor

    SciTech Connect

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  15. Designing visual displays and system models for safe reactor operations

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  16. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Jang, H. I.; Choi, W. Q.; Choi, Y.; Jang, J. S.; Jeon, E. J.; Joo, K. K.; Kim, B. R.; Kim, H. S.; Kim, J. Y.; Kim, S. B.; Kim, S. Y.; Kim, W.; Kim, Y. D.; Ko, Y. J.; Lee, J. K.; Lim, I. T.; Pac, M. Y.; Park, I. G.; Park, J. S.; Park, R. G.; Seo, H. K.; Seo, S. H.; Shin, C. D.; Siyeon, K.; Yeo, I. S.; Yu, I.

    2016-02-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  17. Real-time, multitasking control system for reactor inspection robots

    SciTech Connect

    Byrne, T.J.; Jenkins, J.B.; Lewis, W.I.; Park, L.R.; Reeves, G.E.

    1988-01-01

    The Equipment Engineering Division of the Department of Energy's Savannah River Laboratory in Aiken, South Carolina has developed a remote system to perform ultrasonic (UT) and eddy current (ET) wall weld inspections inside the nuclear reactors at the site. The basic components of the inspection system include an inspection robot and control hardware, a supervisory computer, and ultrasonic and eddy current data collection and analysis computers. The ultrasonic and eddy current systems are responsible for driving the transducers, and digitizing, displaying, and storing the information. 7 figs.

  18. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  19. Effect of influent COD/SO4(2-) ratios on UASB treatment of a synthetic sulfate-containing wastewater.

    PubMed

    Hu, Yong; Jing, Zhaoqian; Sudo, Yuta; Niu, Qigui; Du, Jingru; Wu, Jiang; Li, Yu-You

    2015-07-01

    The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios. PMID:25747303

  20. Thermal stress calculations for heatpipe-cooled reactor power systems

    NASA Astrophysics Data System (ADS)

    Kapernick, Richard J.; Guffee, Ray M.

    2002-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source. .

  1. THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.

    SciTech Connect

    Kapernick, R. J.; Guffee, R. M.

    2001-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

  2. Approach to developing reliable space reactor power systems

    NASA Astrophysics Data System (ADS)

    Mondt, Jack F.; Shinbrot, Charles H.

    During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top-down systems approach which includes a point design based on a detailed technical specification of a 100-kW power system. The SP-100 system requirements implicitly recognize the challenge of achieving a high system reliability for a ten-year lifetime, while at the same time using technologies that require very significant development efforts. A low-cost method for assessing reliability, based on an understanding of fundamental failure mechanisms and design margins for specific failure mechanisms, is being developed as part of the SP-100 Program.

  3. Safety characteristics of a suspended-pellet fission reactor system

    NASA Astrophysics Data System (ADS)

    Kingdon, David Ross

    A new fission reactor system with passive safety characteristics to eliminate the occurrence of loss-of-coolant accidents, reduce reactivity excursion effects, and which also provides for closure of the nuclear fuel cycle through on-site spent fuel management is examined. The concept uses multi-coated fuel pellets which are suspended by an upward moving coolant in vertical columns of the reactor core and electro-refining elemental separation to remove selected fission products prior to actinide recycling. The possibility of fuel melt following a loss-of-coolant is avoided as a decrease in coolant flow results in the removal of fuel from the core through the action of gravity alone. Average fluid velocities in the columns which are necessary to suspend the pellets are calculated and found to be consistent with the necessary heat extraction to yield ˜1--10 Wth per column. The total output power of such suspended pellet-type reactors is compared to the power necessary to provide the suspending fluid flow, yielding favourable ratios of ˜102--103. The reduction of reactivity excursion tendencies is envisaged through an ablative layer of material in the pellets which sublimates at temperatures above normal operating conditions. In the event of a power or temperature increase the particles fragment and thereby change their hydrodynamic drag characteristics, thus leading to fuel removal from the core by elutriation. Comparison of nuclear-to-thermal response times and elutriation rates for limiting power transients indicate that the present design assists in reactivity excursion mitigation. Closure of the nuclear fuel cycle is attained through a spent fuel management strategy which requires only on-site storage of a fraction of the fission products produced during reactor operation. Electro-refining separation of selected fission products combined with complete actinide recycling yields no isolation of plutonium or highly enriched uranium during the procedure. The out-of-core waste stream has a significantly reduced radioactivity, volume and lifetime compared to the once-through waste management strategy and thus provides an alternative to long-term geological disposal of fission reactor wastes. The Pellet Suspension Reactor concept possesses some unique operating characteristics and, additionally, is shown to be similar to conventional fission reactors in terms of common performance features.

  4. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    PubMed Central

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  5. Enabling autonomous control for space reactor power systems

    SciTech Connect

    Wood, R. T.

    2006-07-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective functional architecture that can support SRPS control for an extended deep space mission. The desirable characteristics of autonomous control include intelligence, robustness, optimization, flexibility, and adaptability. The degree of autonomy that is necessary for a given mission will depend on resource constraints, performance goals, operational complexity, technological capabilities, and mission risk considerations. The prospective architectural framework employs a hierarchical structure to integrate needed control, diagnostic, and decision functions and thus enable autonomy. (authors)

  6. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  7. A small, 1400 K, reactor for Brayton space power systems.

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    An investigation was conducted to determine minimum dimensions and minimum weight obtainable in a design for a reactor using uranium-233 nitride or plutonium-239 nitride as fuel. Such a reactor had been considered by Krasner et al. (1971). Present space power status is discussed, together with questions of reactor design and power distribution in the reactor. The characteristics of various reactor types are compared, giving attention also to a zirconium hydride reactor.

  8. Autonomous Control Capabilities for Space Reactor Power Systems

    SciTech Connect

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-04

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  9. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  10. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with advanced supercritical-water power cycles. The current design activities build upon a series of small-scale efforts over the past decade to evaluate and describe the features and technology variants of FHRs. Key prior concept evaluation reports include the SmAHTR preconceptual design report,1 the PB-AHTR preconceptual design, and the series of early phase AHTR evaluations performed from 2004 to 2006. This report provides a power plant-focused description of the current state of the AHTR. The report includes descriptions and sizes of the major heat transport and power generation components. Component configuration and sizing are based upon early phase AHTR plant thermal hydraulic models. The report also provides a top-down AHTR comparative economic analysis. A commercially available advanced supercritical water-based power cycle was selected as the baseline AHTR power generation cycle both due to its superior performance and to enable more realistic economic analysis. The AHTR system design, however, has several remaining gaps, and the plant cost estimates consequently have substantial remaining uncertainty. For example, the enriched lithium required for the primary coolant cannot currently be produced on the required scale at reasonable cost, and the necessary core structural ceramics do not currently exist in a nuclear power qualified form. The report begins with an overview of the current, early phase, design of the AHTR plant. Only a limited amount of information is included about the core and vessel as the core design and refueling options are the subject of a companion report. The general layout of an AHTR system and site showing the relationship of the major facilities is then provided. Next is a comparative evaluation of the AHTR anticipated performance and costs. Finally, the major system design efforts necessary to bring the AHTR design to a pre-conceptual level are then presented.

  11. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOEpatents

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  12. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  13. Ongoing Development of a Series Bosch Reactor System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan; Mansell, Matt; DuMez, Sam; Thomas, John; Cooper, Charlie; Long, David

    2013-01-01

    Future manned missions to deep space or planetary surfaces will undoubtedly require highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian and Lunar regolith simulant for the carbon deposition step.

  14. Ongoing Development of a Series Bosch Reactor System

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B; Mansell, J. Matthew; Stanley, Christine; Edmunson, Jennifer; DuMez, Samuel J.; Chen, Kevin

    2013-01-01

    Future manned missions to deep space or planetary surfaces will undoubtedly incorporate highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian regolith simulant for the carbon formation step.

  15. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.

    PubMed

    Lenz, Markus; Hullebusch, Eric D Van; Hommes, Gregor; Corvini, Philippe F X; Lens, Piet N L

    2008-04-01

    This paper evaluates the use of upflow anaerobic sludge bed (UASB) bioreactors (30 degrees C, pH=7.0) to remove selenium oxyanions from contaminated waters (790 microg Se L(-1)) under methanogenic and sulfate-reducing conditions using lactate as electron donor. One UASB reactor received sulfate at different sulfate to selenate ratios, while another UASB was operated under methanogenic conditions for 132 days without sulfate in the influent. The selenate effluent concentrations in the sulfate-reducing and methanogenic reactor were 24 and 8 microg Se L(-1), corresponding to removal efficiencies of 97% and 99%, respectively. X-ray diffraction (XRD) analysis and sequential extractions showed that selenium was mainly retained as elemental selenium in the biomass. However, the total dissolved selenium effluent concentrations amounted to 73 and 80 microg Se L(-1), respectively, suggesting that selenate was partly converted to another selenium compound, most likely colloidally dispersed Se(0) nanoparticles. Possible intermediates of selenium reduction (selenite, dimethylselenide, dimethyldiselenide, H(2)Se) could not be detected. Sulfate reducers removed selenate at molar excess of sulfate to selenate (up to a factor of 2600) and elevated dissolved sulfide concentrations (up to 168 mg L(-1)), but selenium removal efficiencies were limited by the applied sulfate-loading rate. In the methanogenic bioreactor, selenate and dissolved selenium removal were independent of the sulfate load, but inhibited by sulfide (101 mg L(-1)). The selenium removal efficiency of the methanogenic UASB abruptly improved after 58 days of operation, suggesting that a specialized selenium-converting population developed in the reactor. This paper demonstrates that both sulfate-reducing and methanogenic UASB reactors can be applied to remove selenate from contaminated natural waters and anthropogenic waste streams, e.g. agricultural drainage waters, acid mine drainage and flue gas desulfurization bleeds. PMID:18177686

  16. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  17. System for fuel rod removal from a reactor module

    DOEpatents

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  18. High temperature measurement system devised for Claus reactors

    SciTech Connect

    Wadi, I. )

    1989-11-01

    High temperatures encountered in Claus sulfur recovery unit reaction furnaces can be measured accurately and reliably by using a special arrangement of two thermocouples and two optical pyrometers at two locations in the Claus reaction furnace. The measurement system was developed as a result of investigations and trials done on the Claus sulfur recovery unit at a Ruwais refinery. From those investigations, some general recommendations on thermo-couple types and installations for Claus reactor applications were determined. The author presents those recommendations, and the details on the special temperature measurement system considered to provide the best accuracy and reliability.

  19. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  20. Nuclear safety as applied to space power reactor systems

    NASA Astrophysics Data System (ADS)

    Cummings, Garth E.

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, designing in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored.

  1. Refueling system for the gas-cooled fast breeder reactor

    SciTech Connect

    Hawke, B.C.

    1980-05-01

    Criteria specifically related to the handling of Gas-Cooled Fast Breeder Reactor (GCFR) fuel are briefly reviewed, and the most significant requirements with which the refueling system must comply are discussed. Each component of the refueling system is identified, and a functional description of the fuel handling machine is presented. An illustrated operating sequence describing the various functions involved in a typical refueling cycle is presented. The design status of components and subsystems selected for conceptual development is reviewed, and anticipated refueling time frames are given.

  2. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  3. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  4. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  5. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGESBeta

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  6. Aging study of boiling water reactor high pressure injection systems

    SciTech Connect

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  7. High-Temperature Engineering Test Reactor door valve monitor system

    SciTech Connect

    Menlove, H.O.; Abhold, M.E.; Beddingfield, D.H.; Kroncke, K.E.; Baca, J.; Nakagawa, S.

    1998-06-01

    This manual describes the detector design features, performance, and operating characteristics of the High-Temperature Engineering Test Reactor (HTTR) Door Valve Monitor System spent-fuel monitor. The HTTR Door Valve Monitor System (HDVM) is installed in the HTTR door valve to provide unattended monitoring data for the transfer of spent fuel through the door valve on the top of the reactor. The system includes a pair of detectors to provide direction of travel and redundancy. The fission product gamma rays are measured using ion chambers (ICs) and the curium neutrons are measured using shielded {sup 3}He detectors. There are two ICs and one {sup 3}He tube inside each detector package. Gamma-ray and neutron detector (GRAND) electronics supply power to the ICs and {sup 3}He tubes, and the data are collected in the GRAND and the Field Works computer. The system is designed to operate unattended with data pickup by the inspectors on a 90-day period. This manual gives the performance and calibration procedures.

  8. Parametric systems analysis of the Modular Stellarator Reactor (MSR)

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.; Bathke, C. G.

    1982-05-01

    The close coupling in the stellarator/torsatron/heliotron (S/T/H) between coil design, magnetics topology, and plasma performance complicates the reactor assessment more so than for most magnetic confinement systems. To provide an additional degree of resolution of this problem for the Modular Stellarator Reactor (MSR), a parametric systems model was applied. This model reduces key issues associated with plasma performance, first wall/blanket/shield (FW/B/S), and coil design to a simple relationship between beta, system geometry, and a number of indicators of overall plant performance. The results are used to guide more detailed, multidimensional plasma, magnetics, and coil design efforts towards technically and economically viable operating regimes. It is shown that beta values 0.08 may be needed if the MSR approach is to be substantially competitive with other approaches to magnetic fusion in terms of system power density, mass utilization, and cost for total power output around 4.0 GWt; lower powers will require even higher betas.

  9. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    PubMed Central

    Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S

    2005-01-01

    This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390

  10. Screening reactor steam/water piping systems for water hammer

    SciTech Connect

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.

  11. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  12. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    NASA Astrophysics Data System (ADS)

    Bartram, B. W.; Dougherty, D. K.

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations.

  13. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  14. A neutron tomographic system developed at the Rome research reactor

    NASA Astrophysics Data System (ADS)

    Chirco, P.; Partemi, P.; Zanarini, M.; Baldazzi, G.; Guidi, G.; Querzola, E.; Rossi, M.; Scannavini, M. G.; Casali, F.; Garagnani, A.; Rosa, R.; Festinesi, A.

    1994-12-01

    A third-generation neutron tomographic system, mainly used for nondestructive evaluation on small hydrogenated samples, has been recently set up at the ENEA TRIGA RC II research reactor in Rome, Italy. This reactor operates at a nominal power of 1 MW and produces a thermal beam of about 2 × 10 5 cm -2 s -1 with a collimation ratio L/D of about 30. The object to be examined is viewed by a Thomson CSF neutron image intensifier coupled to a cooled CCD (Charge Coupled Device) camera equipped with a sensitive array of 192 × 165 pixels, each acting as an equivalent elementary neutron detector. The entire set of projections (usually 120) needed for the examination is acquired in about 90 min, as the system operates in a rotate-only configuration with parallel beam. The reconstruction software used is a development of the Donner Package for Reconstruction Tomography, specifically modified in order to deal with third-generation algorithms using the projection images produced by the CCD camera. At present, the total reconstruction time to obtain the full set of 165 slices of 192 × 192 pixels each is about 60 min on a standard Solbourne SPARC 4 multi-user workstation.

  15. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  16. Expert system driven fuzzy control application to power reactors

    SciTech Connect

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-12-31

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.

  17. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  18. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  19. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  20. FAFTRCS: an experiment in computerized reactor safety systems

    SciTech Connect

    Chisholm, G.H.

    1985-01-01

    Nuclear Power Plant availability and reliability could be improved by the integration of computers into the control environment. However, computer-based systems are historically viewed as being unreliable. This places a burden upon the designer to demonstrate adequate reliability and availability for the computer. The complexity associated with computers coupled with the manual nature of these demonstrations results in a high cost which typically has been justified for critical applications only. This paper investigates a methodology for automating this process and discusses a project which intends to apply this methodology to design verification and validation for a control system which will be installed and tested in an actual reactor control environment. 7 refs., 4 figs., 1 tab.

  1. Estimates of methane loss and energy recovery potential in anaerobic reactors treating domestic wastewater.

    PubMed

    Lobato, L C S; Chernicharo, C A L; Souza, C L

    2012-01-01

    This work aimed at developing a mathematical model that could estimate more precisely the fraction of chemical oxygen demand (COD) recovered as methane in the biogas and which, effectively, represented the potential for energy recovery in upflow anaerobic sludge blanket (UASB) reactors treating domestic wastewater. The model sought to include all routes of conversion and losses in the reactor, including the portion of COD used for the reduction of sulfates and the loss of methane in the residual gas and dissolved in the effluent. Results from the production of biogas in small- and large-scale UASB reactors were used to validate the model. The results showed that the model allowed a more realistic estimate of biogas production and of its energy potential. PMID:23109594

  2. Supervisory Control System Architecture for Advanced Small Modular Reactors

    SciTech Connect

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L; Kisner, Roger A; Melin, Alexander M; Muhlheim, Michael David; Rao, Nageswara S; Wood, Richard Thomas

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  3. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  4. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  5. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

  6. Ultrasonic processing of dairy systems in large scale reactors.

    PubMed

    Zisu, Bogdan; Bhaskaracharya, Raman; Kentish, Sandra; Ashokkumar, Muthupandian

    2010-08-01

    High intensity low frequency ultrasound was used to process dairy ingredients to improve functional properties. Based on a number of lab-scale experiments, several experimental parameters were optimised for processing large volumes of whey and casein-based dairy systems in pilot scale ultrasonic reactors. A continuous sonication process at 20 kHz capable of delivering up to 4 kW of power with a flow-through reactor design was used to treat dairy ingredients at flow rates ranging from 200 to 6000 mL/min. Dairy ingredients treated by ultrasound included reconstituted whey protein concentrate (WPC), whey protein and milk protein retentates and calcium caseinate. The sonication of solutions with a contact time of less than 1 min and up to 2.4 min led to a significant reduction in the viscosity of materials containing 18% to 54% (w/w) solids. The viscosity of aqueous dairy ingredients treated with ultrasound was reduced by between 6% and 50% depending greatly on the composition, processing history, acoustic power and contact time. A notable improvement in the gel strength of sonicated and heat coagulated dairy systems was also observed. When sonication was combined with a pre-heat treatment of 80 degrees C for 1 min or 85 degrees C for 30s, the heat stability of the dairy ingredients containing whey proteins was significantly improved. The effect of sonication was attributed mainly to physical forces generated through acoustic cavitation as supported by particle size reduction in response to sonication. As a result, the gelling properties and heat stability aspects of sonicated dairy ingredients were maintained after spray drying and reconstitution. Overall, the sonication procedure for processing dairy systems may be used to improve process efficiency, improve throughput and develop value added ingredients with the potential to deliver economical benefits to the dairy industry. PMID:19948420

  7. Safety depressurization system for Korean next generation reactor

    SciTech Connect

    Kwon, Young Min; Lim, Hong Sik; Song, Jin Ho

    1997-12-01

    Korean Next Generation Reactor (KNGR) adopted an advanced design feature of safety depressurization system (SDS) to rapidly depressurize the primary system in case of beyond design basis events. Two design approaches are considered for the SDS design. The use of bleed valves similar to those of ABB-CE`s System80+ is design option 1, while in the design option 2 the French Sebim valve is considered to provide combined function of overpressure protection and rapid depressurization. In this paper thermal hydraulic analyses using a best-estimate version of CEFLASH-4AS/REM are performed for total loss of feedwater (TLOFW) event to investigate the feasibility of those two design options. For each design option various feed and bleed (F&B) procedures are investigated for TLOFW event. For the design option 1 the required bleed capacity is determined from the CEFLASH-4AS/REM simulation according to the EPRI Advanced Light Water Reactor (ALWR) requirements. The minimum analytical bleed area to prevent core uncovery is determined as 0.028 ft{sup 2} per bleed path. The analysis results demonstrate that the TLOFW event can be mitigated in a proper manner with sufficient margin by using design option 1. For the design option 2 the operator action times for initiating the F&B are investigated by varying the number of Sebim valves and high pressure safety injection (HPSI) pumps. If operator opens two out of three Sebim valves in conjunction with four HPSI pumps before hot leg saturation condition, the decay heat removal and core inventory make-up function can be successfully accomplished. The results of present investigation demonstrate that the two design options are both feasible. 10 refs., 12 figs., 2 tabs.

  8. Start-up of the completely autotrophic nitrogen removal process using low activity anammox inoculum to treat low strength UASB effluent.

    PubMed

    Malamis, S; Katsou, E; Frison, N; Di Fabio, S; Noutsopoulos, C; Fatone, F

    2013-11-01

    The start-up of the completely autotrophic nitrogen removal process was examined in a sequencing batch reactor (SBR) using low activity anoxic ammonium oxidation (anammox) inoculum. The SBR received effluent from an upflow anaerobic sludge blanket (UASB) that treated low strength wastewater. The volumetric nitrogen loading rate (vNLR) was first 0.24 ± 0.11 kg Nm(-3)d(-1) and then reduced to 0.10 ± 0.02 kg Nm(-3)d(-1). The average specific anammox activity was 2.27 ± 1.31 mg N (gVSS h)(-1), at 30°C representing an increase of 161% compared to the inoculum. The decrease in vNLR did not significantly affect anammox activity, but resulted in a decrease of denitrifying heterotrophic activity to very low levels after the first 30 days owing to the decrease of organic loading rate (OLR). Fluorescence in situ hybridization (FISH) analysis confirmed the stable presence of anammox bacteria in biomass. Numerous filamentous microorganisms were present, several of which were in a state of endogenous respiration. PMID:24077156

  9. Lunar Regolith Simulant Feed System for a Hydrogen Reduction Reactor System

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, Ivan I., III

    2009-01-01

    One of the goals of In-Situ Resource Utilization (ISRU) on the moon is to produce oxygen from the lunar regolith which is present in the form of Ilmenite (FeTi03) and other compounds. A reliable and attainable method of extracting some of the oxygen from the lunar regolith is to use the hydrogen reduction process in a hot reactor to create water vapor which is then condensed and electrolyzed to obtain oxygen for use as a consumable. One challenge for a production system is to reliably acquire the regolith with an excavator hauler mobility platform and then introduce it into the reactor inlet tube which is raised from the surface and above the reactor itself. After the reaction, the hot regolith (-1000 C) must be expelled from the reactor for disposal by the excavator hauler mobility system. In addition, the reactor regolith inlet and outlet tubes must be sealed by valves during the reaction in order to allow collection of the water vapor by the chemical processing sub-system. These valves must be able to handle abrasive regolith passing through them as well as the heat conduction from the hot reactor. In 2008, NASA has designed and field tested a hydrogen reduction system called ROxygen in order to demonstrate the feasibility of extracting oxygen from lunar regolith. The field test was performed with volcanic ash known as Tephra on Mauna Kea volcano on the Big Island of Hawai'i. The tephra has similar properties to lunar regolith, so that it is regarded as a good simulant for the hydrogen reduction process. This paper will discuss the design, fabrication, operation, test results and lessons learned with the ROxygen regolith feed system as tested on Mauna Kea in November 2008.

  10. 77 FR 15812 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... COMMISSION Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors AGENCY: Nuclear...-1265, ``Initial Test Program of Condensate and Feedwater Systems for Light- Water Reactors.'' DG-1265... plant startup, and power ascension tests for the condensate and feedwater systems in all types of...

  11. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  12. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This means that a sudden increase in the easily degradable organics will result in increased acid production with subsequent accumulation of acids. This inhibits the methanogenesis step. Acclimatization of the microorganisms to a substrate has been reported to take more than five weeks. Sufficiently acclimated bacteria have shown greater stability towards stress-inducing events such as hydraulic overloads, fluctuations in temperature, fluctuations in volatile acid and ammonia concentrations etc. Several environmental factors can affect anaerobic digestion, by altering the parameters such as specific growth rate, decay rate, gas production, substrate utilization, start-up and response to changes in input. It has long been recognized that an anaerobic process is in many ways ideal for wastewater treatment and has following merits: A high degree of waste stabilization A low production of excess A low nutrient requirements No oxygen requirement Production of methane gas Anaerobic microorganisms, especially methanogens have a slow growth rate. At lower HRTs, the possibility of washout of biomass is more prominent. This makes it difficult to maintain the effective number of useful microorganisms in the system. To maintain the population of anaerobes, large reactor volumes or higher HRTs are required. This may ultimately provide longer SRTs upto 20 days for high rate systems. Thus, provision of larger reactor volumes or higher HRTs ultimately lead to higher capital cost. Among notable disadvantages, it has low synthesis/reaction rate hence long start up periods and difficulty in recovery from upset conditions. Special attention is, therefore, warranted towards, controlling the factors that affect process adversely; important among them being environmental factors such as temperature, pH and concentration of toxic substances. The conventional anaerobic treatment process consists of a reactor containing waste and biological solids (bacteria) responsible for the digestion process. Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed by Lettinga and his co-workers in Holland in the early 1970's. The key to the process was the discovery that anaerobic sludge inherently has superior flocculation and settling characteristics, provided the physical and chemical conditions for sludge flocculation are favorable. When these conditions are met, a high solids retention time (at high HRT loadings) can be achieved, with separation of the gas from the sludge solids. The UASB reactor is one of the reactor types with high loading capacity. It differs from other processes by the simplicity of its design. UASB process is a combination of physical & biological processes. The main feature of physical process is separation of solids and gases from the liquid and that of biological process is degradation of decomposable organic matter under anaerobic conditions. No separate settler with sludge return pump is required, as in the anaerobic contact process. There is no loss of reactor volume through filter or carrier material, as in the case with the anaerobic filter and fixed film reactor types, and there is no need for high rate effluent recirculation and concomitant pumping energy, as in the case with fluidized bed reactor. Anaerobic sludge inherently possesses good settling properties, provided the sludge is not exposed to heavy mechanical agitation. For this reason mechanical mixing is generally omitted in UASB-reactors. At high organic loading rates, the biogas production guarantees sufficient contact between substrate and biomass. Regarding the dynamic behaviour of the water phase UASB reactor approaches the completely mixed reactor. For achieving the required sufficient contact between sludge and wastewater, the UASB-system relies on the agitation brought about by the natural gas production and on an even feed inlet distribution at the bottom of the reactor. (ABSTRACT TRUNCATED) PMID:12397675

  13. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  14. Cryogenic system component development for fusion experimental reactor at JAERI

    SciTech Connect

    Kato, T.; Kamiya, S.; Tada, E.; Hiyama, T.; Kawano, K.; Shimamoto, S.

    1986-11-01

    A supercritical helium (SHE) circulation pump, a jet pump, and a cold compressor were designed and manufactured as the first step of cryogenic component development for a large-scale cryogenic system which is required for the Fusion Experimental Reactor (FER). The SHE circulation pump achieved 320-g/s flow rate with an 0.88-MPa pressure head at 4.6 K, making it the biggest cold pump in the world. The jet pump's mass flow ratio was about 1.0 with an 0.07-MPa pressure head at about 10 K. The cold compressor was successfully operated with an inlet vapor pressure of 0.053 MPa (3.7 K), and outlet pressure of 0.12 MPa, and a mass flow rate of 60 g/s. The designs and test results are described in this paper.

  15. Post impact behavior of mobile reactor core containment systems.

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Parker, W. G.; Van Bibber, L. E.

    1972-01-01

    In the future, nuclear assemblies containing fission products will be transported at high speeds. An example is a reactor supplying power to a large subsonic airplane. In this case an accident can occur resulting in a ground impact at speeds up to 1000 ft/sec. This paper analyzes the containment vessel temperatures after impact and attempts to understand the design variables that affect the post impact survival of the system. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partial-burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense on cooler surfaces, resulting in a moving heat source.

  16. Design considerations for ITER (International Thermonuclear Experimental Reactor) magnet systems

    SciTech Connect

    Henning, C.D.; Miller, J.R.

    1988-10-09

    The International Thermonuclear Experimental Reactor (ITER) is now completing a definition phase as a beginning of a three-year design effort. Preliminary parameters for the superconducting magnet system have been established to guide further and more detailed design work. Radiation tolerance of the superconductors and insulators has been of prime importance, since it sets requirements for the neutron-shield dimension and sensitively influences reactor size. The major levels of mechanical stress in the structure appear in the cases of the inboard legs of the toroidal-field (TF) coils. The cases of the poloidal-field (PF) coils must be made thin or segmented to minimize eddy current heating during inductive plasma operation. As a result, the winding packs of both the TF and PF coils includes significant fractions of steel. The TF winding pack provides support against in-plane separating loads but offers little support against out-of-plane loads, unless shear-bonding of the conductors can be maintained. The removal of heat due to nuclear and ac loads has not been a fundamental limit to design, but certainly has non-negligible economic consequences. We present here preliminary ITER magnetic systems design parameters taken from trade studies, designs, and analyses performed by the Home Teams of the four ITER participants, by the ITER Magnet Design Unit in Garching, and by other participants at workshops organized by the Magnet Design Unit. The work presented here reflects the efforts of many, but the responsibility for the opinions expressed is the authors'. 4 refs., 3 figs., 4 tabs.

  17. IAEA coordinated research activities on materials for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Zeman, A.; Inozemtsev, V.; Kamendje, R.; Beatty, R. L.

    2013-11-01

    After the recent accident at the Fukushima Daiichi Nuclear Power Plant, public resentment towards nuclear energy is very high; however it is also important to emphasise that for other facilities the safety record has been remarkably good when compared to those of other new or conventional energy technologies. In addition to clear safety improvements new systems will have increased thermal efficiency, maximised fuel use, and reduced nuclear waste production. In order to initiate commercial deployment of power reactors, small scale demonstrations of such new systems are urgently needed. This will help to develop, test and qualify new structural materials with improved properties with respect to radiation, corrosion, thermal and other degradation processes. To solve all challenges related to the performance parameters of such materials, internationally driven efforts must focus on research, targeted testing, and final selection of appropriate materials. This is recognised as a key milestone in successful demonstration and future deployment of newly designed nuclear reactors. Because of clear synergies between fusion and fission research and development communities have been identified, closer cooperation of research groups has been stimulated. Although some operational conditions are expected to change, many basic features will remain similar. In addition to the material science effort, new experimental facilities are being developed for the study of high-radiation damage effects on the microstructure of candidate materials prior to their qualification. During last 5 years, the International Atomic Energy Agency (IAEA) launched several coordinated research activities in this specific, but very important field. This paper gives a summary of on-going IAEA activities related to the development and characterisation of structural and plasma facing materials for nuclear energy.

  18. Development of toroid-type HTS DC reactor series for HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  19. DEMO reactor design using the new modular system code SYCOMORE

    NASA Astrophysics Data System (ADS)

    Reux, C.; Di Gallo, L.; Imbeaux, F.; Artaud, J.-F.; Bernardi, P.; Bucalossi, J.; Ciraolo, G.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Saoutic, B.; Zani, L.; Contributors, ITM-TF

    2015-07-01

    A demonstration power plant (DEMO) will be the next step for fusion energy following ITER. Some of the key design questions can be addressed by simulations using system codes. System codes aim to model the whole plant with all its subsystems and identify the impact of their interactions on the design choices. The SYCOMORE code is a modular system code developed to address key questions relevant to tokamak fusion reactor design. SYCOMORE is being developed within the European Integrated Tokamak Modelling framework and provides a global view (technology and physics) of the plant. It includes modules to address plasma physics, divertor physics, breeding blankets, shield design, magnet design and the power balance of plant. The code is coupled to an optimization framework which allows one to specify figures of merit and constraints to obtain optimized designs. Examples of pulsed and steady-state DEMO designs obtained using SYCOMORE are presented. Sensitivity to design assumptions is also studied, showing that the operational domain around working points can be narrow for some cases.

  20. Laser in vessel-viewing system for nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Bartolini, Luciano; Bordone, Andrea; Coletti, Alberto; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Lupini, S.; Neri, Carlo; Poggi, Claudio; Riva, Marco; Semeraro, Luigi; Talarico, Carlo

    2000-11-01

    An amplitude modulated laser radar has been developed by ENEA (Italian Agency for New Technologies, Energy and Environment) for periodic in-vessel inspection in large fusion machines. Its overall optical design has been developed taking into account the extremely high radiation levels and operating temperatures foreseen in large European fusion machines such as JET (Joint European Torus) and ITER (International Thermo- nuclear Experimental Reactor). The viewing system is based on a transceiving optical radar using a RF modulated single mode 840 nm wavelength laser beam. The sounding beam is transmitted through a coherent optical fiber and a focusing optic to the inner part of the nuclear reactor vessel by a stainless steel probe on the tip of which a suitable scanning silica prism steers the laser beam along a linear raster spanning a -90 degree(s) to +60 degree(s) in elevation and 360 degree(s) in azimuth for a complete mapping of the vessel itself. All the electronics, including the laser source, avalanche photodiode and all the active components are located outside the bioshield, while passive components (receiving optics, transmitting collimator, fiber optics), located in the torus hall, are made of fused silica so that the overall laser radar is radiation resistant. The signal is acquired, the raster lines being synchronized with the aid of optical encoders linked to the scanning prism, thus yielding a TV like image. Preliminary results have been obtained scanning large sceneries including several real targets having different backscattering properties, colors and surface reflectivity ranging over several decades to simulate the expected dynamic range of the video signals incoming from the vessel.

  1. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    SciTech Connect

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  2. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    SciTech Connect

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

  3. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  4. Hanging core support system for a nuclear reactor. [LMFBR

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  5. Shielding considerations for advanced space nuclear reactor systems

    SciTech Connect

    Angelo, J.P. Jr.; Buden, D.

    1982-01-01

    To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

  6. Incorporating ''fuzzy'' data and logical relations in the design of expert systems for nuclear reactors

    SciTech Connect

    Guth, M.A.S.

    1987-01-01

    This paper applies the method of assigning probability in Dempster-Shafer Theory (DST) to the components of rule-based expert systems used in the control of nuclear reactors. Probabilities are assigned to premises, consequences, and rules themselves. This paper considers how uncertainty can propagate through a system of Boolean equations, such as fault trees or expert systems. The probability masses assigned to primary initiating events in the expert system can be derived from observing a nuclear reactor in operation or based on engineering knowledge of the reactor parts. Use of DST mass assignments offers greater flexibility to the construction of expert systems.

  7. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    SciTech Connect

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs. (TEM)

  8. Design and shakedown of an inclined liquid fluid-bed reactor system

    SciTech Connect

    Johnson, L.A. Jr.; Cha, Chang Yul

    1987-09-01

    This report describes the design and shakedown testing of an inclined liquid fluid-bed reactor system. The system is being developed for processing tar sand with a recycle oil pyrolysis and extraction process to produce a high yield of specialty products. Also reported are the results of cold-flow model tests, which were used to assist in the design of the reactor system. Shakedown tests showed the potential of the process to recover the majority of the bitumen from Asphalt Ridge tar sand and also provided data for the future modifications to improve the reactor performance. Recommendations based on shakedown test results are made for improvements in the tar sand feed, product collection, and disparger components of the reactor system to permit better reactor control and operation. 2 refs., 4 figs.

  9. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  10. A computer program for engineering simulations of space reactor system performance

    SciTech Connect

    Dobranich, D. )

    1992-01-01

    Nuclear thermal propulsion systems are envisioned as a fast and efficient form of transportation for the exploration of space. The short transit time afforded by nuclear rockets is especially attractive for a manned mission to Mars. Several nuclear reactor concepts have been proposed for such a system, including prismatic reactors and particle-bed reactors. These concepts have their merits but need to be evalauted in the context of system performance. SAFSIM (system analysis flow simulator) is an engineering computer program that allows the fluid mechanic, heat transfer, and reactor dynamic simulation of the entire propulsion system. The motivation for SAFSIM is the desire to have a tool to provide quick and inexpensive engineering performance simulations of complicated systems. The simulations are intended to provide a first-look understanding of the systems transient behavior under operational and off-normal conditions.

  11. Liquid metal systems development: reactor vessel support structure evaluation

    SciTech Connect

    McEdwards, J.A.

    1981-01-01

    Results of an evaluation of support structures for the reactor vessel are reported. The U ring, box ring, integral ring, tee ring and tangential beam supports were investigated. The U ring is the recommended vessel support structure configuration.

  12. System Requirements Document for the Molten Salt Reactor Experiment

    SciTech Connect

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  13. Interaction of the control system with core nuclear design for fast spectrum space power reactors

    NASA Astrophysics Data System (ADS)

    Lell, R. M.; Hanan, N. A.

    The reactor control system and operating strategy are essential factors in assessing reactor reliability and safety. The control system and its mode of operation also exert major influences on mechanical design of core components and all aspects of nuclear design. This is especially true of reactors for space power applications because of the imposed requirements regarding compactness, minimum mass, and long term operational reliability without external intervention or maintenance. Generic features of the interaction between nuclear design and reactor control system design for fast spectrum space power reactors are outlined. Several basic control concepts were analyzed. These included ex-core control drums, in-core control rods, burnable poisons, dispersed poisons in the core, and movable fuel segments or regions. Cross sections for calculations were generated with MC sup 2 -2, and neutronics calculations were performed with the VIM Monte Carlo code, ONEDANT, and DIF3D.

  14. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  15. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Technical Reports Server (NTRS)

    Harty, Richard B.; Durand, Richard E.; Mason, Lee S.

    1991-01-01

    An integration study was performed by coupling an SP-100 reactor to either a Brayton or Stirling power conversion subsystem. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power-conversion redundancy. This study resulted in selecting three operating engines and one standby unit. Integratiaon-design studies indicated that either the Brayton or Stirling power conversion subsystem could be integrated with the SP-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to offset the Stirling integration advantage. From a performance consideration, the Brayton had a 9-percent mass advantage and the Stirling a 50-percent radiator-area advantage.

  16. APPLICATIONS ANALYSIS REPORT: ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE REACTOR SYSTEM

    EPA Science Inventory

    This report details the Superfund Innovative Technology Evaluation of Eco Logic International's gas-phase chemical reduction process, with an emphasis on their Reactor System. he Eco Logic process employees a high temperature reactor filled with hydrogen gas as the means to destr...

  17. Improvement of Algorithms for Pressure Maintenance Systems in Drum-Separators of RBMK-1000 Reactors

    SciTech Connect

    Aleksakov, A. N. Yankovskiy, K. I.; Dunaev, V. I.; Kushbasov, A. N.

    2015-05-15

    The main tasks and challenges for pressure regulation in the drum-separators of RBMK-1000 reactors are described. New approaches to constructing algorithms for pressure control in drum-separators by electro-hydraulic turbine control systems are discussed. Results are provided from tests of the operation of modernized pressure regulators during fast transients with reductions in reactor power.

  18. Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System

    SciTech Connect

    Brown, L.C.

    1983-04-01

    GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

  19. A small, 1400 deg Kelvin, reactor for Brayton space power systems

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Mayo, W.

    1972-01-01

    A preliminary cost estimate for a small reactor in Brayton space power systems with (u-233)n or (pu-239)n as the fuel in the T-111 fuel elements totaled to about four million dollars; considered is a 22.8 in. diameter reactor with 247 fuel elements.

  20. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  1. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    NASA Astrophysics Data System (ADS)

    Rohanda, Anis; Waris, Abdul

    2015-04-01

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on 16O(n,p)16N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  2. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    SciTech Connect

    Rohanda, Anis; Waris, Abdul

    2015-04-16

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on {sup 16}O(n,p){sup 16}N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  3. Sliding mode control of the space nuclear reactor system TOPAZ II

    SciTech Connect

    Shtessel, Y.B.; Wyant, F.J.

    1996-03-01

    The Automatic Control System (ACS) of the space nuclear reactor power system TOPAZ II that generates electricity from nuclear heat using in-core thermionic converters is considered. Sliding Mode Control Technique was applied to the reactor system controller design in order to provide the robust high accuracy following of a neutron (thermal) power reference profile in a start up regime and a payload electric power (current) reference profile following in an operation regime. Extensive simulations of the TOPAZ II reactor system with the designed sliding mode controllers showed improved accuracy and robustness of the reactor system performances in a start up regime and in an electric power supply regime as well. {copyright} {ital 1996 American Institute of Physics.}

  4. Seismic evaluation of safety systems at the Savannah River reactors

    SciTech Connect

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.M.; Ketcham, D.R.

    1989-12-31

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry`s electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table testing which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its ``Generic Safety Evaluation Report`` approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the United States and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluating program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology.

  5. Hanging core support system for a nuclear reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Pan, Yen-Cheng; Saiveau, James G.; Seidensticker, Ralph W.

    1987-01-01

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.

  6. Physical modelling of the composting environment: A review. Part 1: Reactor systems

    SciTech Connect

    Mason, I.G. . E-mail: ian.mason@canterbury.ac.nz; Milke, M.W.

    2005-07-01

    In this paper, laboratory- and pilot-scale reactors used for investigation of the composting process are described and their characteristics and application reviewed. Reactor types were categorised by the present authors as fixed-temperature, self-heating, controlled temperature difference and controlled heat flux, depending upon the means of management of heat flux through vessel walls. The review indicated that fixed-temperature reactors have significant applications in studying reaction rates and other phenomena, but may self-heat to higher temperatures during the process. Self-heating laboratory-scale reactors, although inexpensive and uncomplicated, were shown to typically suffer from disproportionately large losses through the walls, even with substantial insulation present. At pilot scale, however, even moderately insulated self-heating reactors are able to reproduce wall losses similar to those reported for full-scale systems, and a simple technique for estimation of insulation requirements for self-heating reactors is presented. In contrast, controlled temperature difference and controlled heat flux laboratory reactors can provide spatial temperature differentials similar to those in full-scale systems, and can simulate full-scale wall losses. Surface area to volume ratios, a significant factor in terms of heat loss through vessel walls, were estimated by the present authors at 5.0-88.0 m{sup 2}/m{sup 3} for experimental composting reactors and 0.4-3.8 m{sup 2}/m{sup 3} for full-scale systems. Non-thermodynamic factors such as compression, sidewall airflow effects, channelling and mixing may affect simulation performance and are discussed. Further work to investigate wall effects in composting reactors, to obtain more data on horizontal temperature profiles and rates of biological heat production, to incorporate compressive effects into experimental reactors and to investigate experimental systems employing natural ventilation is suggested.

  7. Physical modelling of the composting environment: a review. Part 1: Reactor systems.

    PubMed

    Mason, I G; Milke, M W

    2005-01-01

    In this paper, laboratory- and pilot-scale reactors used for investigation of the composting process are described and their characteristics and application reviewed. Reactor types were categorised by the present authors as fixed-temperature, self-heating, controlled temperature difference and controlled heat flux, depending upon the means of management of heat flux through vessel walls. The review indicated that fixed-temperature reactors have significant applications in studying reaction rates and other phenomena, but may self-heat to higher temperatures during the process. Self-heating laboratory-scale reactors, although inexpensive and uncomplicated, were shown to typically suffer from disproportionately large losses through the walls, even with substantial insulation present. At pilot scale, however, even moderately insulated self-heating reactors are able to reproduce wall losses similar to those reported for full-scale systems, and a simple technique for estimation of insulation requirements for self-heating reactors is presented. In contrast, controlled temperature difference and controlled heat flux laboratory reactors can provide spatial temperature differentials similar to those in full-scale systems, and can simulate full-scale wall losses. Surface area to volume ratios, a significant factor in terms of heat loss through vessel walls, were estimated by the present authors at 5.0-88.0m(2)/m(3) for experimental composting reactors and 0.4-3.8m(2)/m(3) for full-scale systems. Non-thermodynamic factors such as compression, sidewall airflow effects, channelling and mixing may affect simulation performance and are discussed. Further work to investigate wall effects in composting reactors, to obtain more data on horizontal temperature profiles and rates of biological heat production, to incorporate compressive effects into experimental reactors and to investigate experimental systems employing natural ventilation is suggested. PMID:15925758

  8. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary system relate to flows within the reactor vessel during severe events and the resulting temperature profiles (temperature and duration) for major components. Critical components include the fuel, reactor vessel, primary piping, and the primary-to-intermediate heat exchangers (P-IHXs). The major AHTR power system loops are shown in Fig. 3. The intermediate heat transfer system is a group of three pumped salt loops that transports the energy produced in the primary system to the power conversion system. Two dynamic system models are used to analyze the AHTR. A Matlab/Simulink-based model initiated in 2011 has been updated to reflect the evolving design parameters related to the heat flows associated with the reactor vessel. The Matlab model utilizes simplified flow assumptions within the vessel and incorporates an empirical representation of the Direct Reactor Auxiliary Cooling System (DRACS). A Dymola/Modelica model incorporates a more sophisticated representation of primary coolant flow and a physics-based representation of the three-loop DRACS thermal hydraulics. This model is not currently operating in a fully integrated mode. The Matlab model serves as a prototype and provides verification for the Dymola model, and its use will be phased out as the Dymola model nears completion. The heat exchangers in the system are sized using spreadsheet-based, steady-state calculations. The detail features of the heat exchangers are programmed into the dynamic models, and the overall dimensions are used to generate realistic plant designs. For the modeling cases where the emphasis is on understanding responses within the intermediate and primary systems, the power conversion system may be modeled as a simple boundary condition at the intermediate-to-power conversion system heat exchangers.

  9. Nuclear reactor descriptions for space power systems analysis

    NASA Technical Reports Server (NTRS)

    Mccauley, E. W.; Brown, N. J.

    1972-01-01

    For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.

  10. Sodium leak detection system for liquid metal cooled nuclear reactors

    DOEpatents

    Modarres, Dariush

    1991-01-01

    A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.

  11. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  12. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  13. RADCAL-based reactor vessel monitoring system for inadequate core cooling determination

    SciTech Connect

    Bell, D.L.; Garber, F.W.; Hedrick, R.A.; LeVert, F.E.; Oakley, R.C.; Pannell, G.L.; Smith, R.D.; Waring, J.P.

    1985-02-01

    Technology for Energy Corporation, Scandpower, Incorporated, and Arkansas Power and Light Company have developed jointly a system for monitoring the coolant status within a reactor vessel during loss-of-coolant accidents. The sensor portion of the system is based on a heated thermocouple probe called Radcal and is used to monitor coolant inventory and temperature above the reactor core and heat transfer conditions and shutdown power within the core. The Radcal was originally developed and tested in reactor as a local fuel power instrument by a group of eight U.S. and European utilities and had 400 sensor years of excellent performance experience at the time the vessel monitoring system development began. Extensive testing during simulated loss-of-coolant accidents has demonstrated the ability of the Radcal probe to track coolant conditions under a wide range of simulated small break accidents. The first installation of this system will be at the Arkansas Power and Light Company's ANO Unit 2 reactor.

  14. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  15. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  16. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  17. Common-Cause Failure Analysis for Reactor Protection System Reliability Studies

    SciTech Connect

    Gentillon, C.; Rasmuson, D.; Eide, S.; Wierman, T.

    1999-08-01

    Analyses were performed of the safety-related performance of the reactor protection system (RPS) at U.S. Westinghouse and General Electric commercial reactors during the period 1984 through 1995. RPS operational data from these reactors were collected from the Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Reports (LER). The common-cause failure (CCF) modeling in the fault trees developed for these studies and the analysis and use of common-cause failure data were sophisticated, state-of-the-art efforts. The overall CCF effort helped to test and expand the limits of the U.S. Nuclear Regulatory Commission's CCF methodology.

  18. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  19. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... COMMISSION Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors AGENCY... Treatment of Non-Safety Systems (RTNSS) for Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES:...

  20. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment.

    PubMed

    Qiu, Guanglei; Song, Yong-Hui; Zeng, Ping; Duan, Liang; Xiao, Shuhu

    2013-08-01

    Biodegradation of berberine antibiotic was investigated in upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process. After 118days of operation, 99.0%, 98.0% and 98.0% overall removals of berberine, COD and NH4(+)-N were achieved, respectively. The detailed composition of the established bacterial communities was studied by using 16S rDNA clone library. Totally, 400 clones were retrieved and grouped into 186 operational taxonomic units (OTUs). UASB was dominated by Firmicutes and Bacteroidetes, while Proteobacteria, especially Alpha- and Beta-proteobacteria were prevalent in the MBRs. Clostridium, Eubacterium and Synergistes in the UASB, as well as Hydrogenophaga, Azoarcus, Sphingomonas, Stenotrophomonas, Shinella and Alcaligenes in the MBRs were identified as potential functional species in biodegradation of berberine and/or its metabolites. The bacterial community compositions in two MBRs were significantly discrepant. However, the identical functions of the functional species ensured the comparable pollutant removal performances in two bioreactors. PMID:23735790

  1. Radionuclide inventories for short run-time space nuclear reactor systems

    NASA Astrophysics Data System (ADS)

    Coats, Richard L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  2. Radionuclide inventories for short run-time space nuclear reactor systems

    NASA Astrophysics Data System (ADS)

    Coats, R. L.

    1992-10-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  3. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  4. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  5. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  6. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept.

    PubMed

    Kujawa-Roeleveld, K; Fernandes, T; Wiryawan, Y; Tawfik, A; Visser, M; Zeeman, G

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of organic matter and nutrients from all waste(water)streams generated from different human activities. Anaerobic digestion of concentrated black water is a core technology in the DESAR concept. The applicability of the UASB septic tank for treatment of concentrated black water was investigated under two different temperatures, 15 and 25 degrees C. The removal of total COD was dependent on the operational temperature and attained 61 and 74% respectively. A high removal of the suspended COD of 88 and 94% respectively was measured. Effluent nutrients were mainly in the soluble form. Precipitation of phosphate was observed. Effective sludge/water separation, long HRT and higher operational temperature contributed to a reduction of E. coli. Based on standards there is little risk of contamination with heavy metals when treated effluent is to be applied in agriculture as fertiliser. PMID:16180443

  7. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes.

    PubMed

    Okuma, Hirokazu; Watanabe, Etsuo

    2002-05-01

    A double reactor system for the determination of fish and shellfish freshness using the freshness indicator, K-value (K=[(HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx)]x100), was developed, where ATP, ADP, AMP, IMP, HxR and Hx are adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, inosine monophosphate, inosine and hypoxanthine, respectively. The system consisted of a pair of enzyme reactors with an oxygen electrode positioned close to the respective reactor. The enzyme reactor (I) was packed with nucleoside phosphorylase and xanthine oxidase immobilized simultaneously on chitosan beads (immobilized enzyme A). Similarly, the enzyme reactor (II) was packed with immobilized enzyme A and immobilized enzyme B (co-immobilized alkaline phosphatase and adenosine deaminase). Moreover, this reactor consisted of two layers, the enzyme A and enzyme B (1:1). A good correlation was obtained between K values, which were determination by the proposed system and by the HPLC method. One assay could be completed within 5 min. The signal for the determination of K value of fish and shellfish was reproducible within 2.3%. The long-term stability of the enzyme reactors was evaluated at 30 degrees C for 28 days. PMID:11888726

  8. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    SciTech Connect

    Sweeney, F.J. ); Carroll, D.G. ); Chen, C. ); Crane, C.; Dalton, R. ); Taylor, J.R. ); Tosunoglu, S. )

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS.

  9. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems

    NASA Technical Reports Server (NTRS)

    Harty, Richard B.; Durand, Richard E.

    1993-01-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage.

  10. Compact, high-power nuclear reactor systems based on small diameter particulate fuel

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Botts, T. E.

    Two compact, high-power nuclear reactor concepts are discussed. Both are gas-cooled cavity-type reactors which utilize particulate fuel of the type now used in HTGR reactors. Unshielded reactor volumes are on the order of one cubic meter. The Fixed Bed Reactor operating temperature is limited to 2500 K and the output power to 250 MW(e). In the Rotating Bed Reactor fuel is held within a rotating porous metal drum as a rotating fluidized bed. Rotating Bed Reactor outlet temperatures up to 3000 K and output power levels up to 1000 MW(e) are achievable. Both reactors can be brought up from stand by to full power in times on the order of a few seconds, due primarily to the short thermal time constant for the fuel particles. Turbine and MHD Brayton are the power conversion cycles of choice. Open cycle operation is generally favored for applications operating at less than 1000 sec of equivalent integrated full power. At power levels above 1 MW(e), the liquid droplet radiator is the favored means of heat rejection. Power system specific power levels of 10 kW(e)/kg (not including shield) appears to be quite feasible.

  11. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES to absorb the decay heat of the reactor fuel while cooling the PAHTR after an emergency shutdown. The simulated reactivity insertion accident assessment determined the maximum allowable reactivity insertion to the PAHTR as a function of shutdown response times.

  12. Analysis of a microbial community associated with polychlorinated biphenyl degradation in anaerobic batch reactors.

    PubMed

    Gomes, B C; Adorno, M A T; Okada, D Y; Delforno, T P; Lima Gomes, P C F; Sakamoto, I K; Varesche, M B A

    2014-11-01

    The degradation of polychlorinated biphenyls (PCBs) was investigated under fermentative-methanogenic conditions for up to 60 days in the presence of anaerobic biomass from a full-scale UASB reactor. The low methane yields in the PCBs-spiked batch reactors suggested that the biomass had an inhibitory effect on the methanogenic community. Reactors containing PCBs and co-substrates (ethanol/sodium formate) exhibited substantial PCB reductions from 0.7 to 0.2 mg mL(-1). For the Bacteria domain, the PCBs-spiked reactors were grouped with the PCB-free reactors with a similarity of 55 %, which suggested the selection of a specific population in the presence of PCBs. Three genera of bacteria were found exclusively in the PCB-spiked reactors and were identified using pyrosequencing analysis, Sedimentibacter, Tissierela and Fusibacter. Interestingly, the Sedimentibacter, which was previously correlated with the reductive dechlorination of PCBs, had the highest relative abundance in the RCS-PCB (7.4 %) and RCS-PCB-PF (12.4 %) reactors. Thus, the anaerobic sludge from the UASB reactor contains bacteria from the Firmicutes phylum that are capable of degrading PCBs. PMID:25104219

  13. Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations

    SciTech Connect

    Heckle, Wm. Lloyd; Bolian, Tricia W.

    2006-07-01

    As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

  14. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  15. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  16. Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems

    SciTech Connect

    Bailey, W.J.; Berting, F.M.

    1990-12-01

    Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

  17. Sodium coolant purification systems for a nuclear power station equipped with a BN-1200 reactor

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Kovalev, Yu. P.; Kalyakin, S. G.; Kozlov, F. A.; Kumaev, V. Ya.; Kondrat'ev, A. S.; Matyukhin, V. V.; Pirogov, E. P.; Sergeev, G. P.; Sorokin, A. P.; Torbenkova, I. Yu.

    2013-05-01

    Both traditional coolant purification methods (by means of traps and sorbents for removing cesium), the use of which supported successful operation of nuclear power installations equipped with fast-neutron reactors with a sodium coolant, and the possibility of removing oxygen from sodium through the use of hot traps are analyzed in substantiating the purification system for a nuclear power station equipped with a BN-1200 reactor. It is shown that a cold trap built into the reactor vessel must be a mandatory component of the reactor plant primary coolant circuit's purification system. The use of hot traps allows oxygen to be removed from the sodium coolant down to permissible concentrations when the nuclear power station operates in its rated mode. The main lines of works aimed at improving the performance characteristics of cold traps are suggested based on the results of performed investigations.

  18. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOEpatents

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  19. Fast Reactor with Indirect Cycle System of Supercritical CO{sub 2} Gas Turbine Plant

    SciTech Connect

    Makoto, Mito; Naoki, Yoshioka; Yoshiyuki, Ohkubo; Nobuyoshi, Tsuzuki; Yasuyoshi, Kato

    2006-07-01

    An attractive power generation system using supercritical carbon dioxide (C0{sub 2}) gas turbine{sup 1} has been studied because of high cycle thermal efficiency and potential compactness of the Balance Of Plant equipment due to the small-sized turbo machinery system. This paper deals with an indirect cycle system with a sodium-cooled reactor eliminating intermediate cooling system, and design study of reactor core, reactor structures, sodium-C0{sub 2} heat exchangers and arrangement of BOP equipment has been carried out. As a result of comparison with the conventional FBR system of steam turbine, a fast reactor with indirect cycle system of supercritical C0{sub 2} gas turbine is confirmed that it has a potential of decreasing the number of control rods, simplifying reactor cooling system, reducing construction cost and improving safety characteristics. Furthermore, a methodology of safety evaluation of sodium-C0{sub 2} reaction on the tube rupture event has been developed. The temperature of sodium-C0{sub 2} reaction has been preliminary evaluated under the adiabatic and equilibrium conditions. The temperature characteristics of neighboring tubes within a sodium-C0{sub 2} reaction jet have been studied and the mission time preventing the overheating tube rupture has been estimated. (authors)

  20. Post-treatment of anaerobic reactor effluent using coagulation/oxidation followed by double filtration.

    PubMed

    Cavallini, Grasiele Soares; de Sousa Vidal, Carlos Magno; de Souza, Jeanette Beber; de Campos, Sandro Xavier

    2016-04-01

    This study evaluates the efficacy of a sanitary sewage treatment system, proposing post-treatment of the effluent generated by the upflow anaerobic sludge blanket UASB reactor, through a Fenton coagulation/oxidation ((ferric chloride (FC) or ferrous sulfate (FS) and peracetic acid (PAA)), followed by a double filtration system, composed of a gravel ascending drainage filter and a sand descending filter. Following the assessment of treatability, the system efficiency was evaluated using physicochemical and microbiological parameters. In all treatments performed in the pilot unit, total suspended solids (TSS) were completely removed, leading to a decrease in turbidity greater than 90 % and close to 100 % removal of total phosphorous. In the FC and PAA combination, the effluent was oxygenated prior to filtration, enabling a more significant removal of biochemical oxygen demand (BOD), which characterizes aerobic degradation even in a quick sand filter. The treatments carried out in the presence of the PAA oxidizing agent showed a more significant bleaching of the effluent. Concerning the microbiological parameters, the simultaneous use of PAA and FC contributed to the partial inactivation of the assessed microorganisms. A 65 % recovery of the effluent was obtained with the proposed treatment system, considering the volume employed in filter backwashing. PMID:26611629

  1. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    SciTech Connect

    Reyna, D.; Bernstein, A.; Lund, J.; Kiff, S.; Cabrera-Palmer, B.; Bowden, N. S.; Dazeley, S.; Keefer, G.

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. (authors)

  2. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  3. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  4. Preliminary design of reactor power systems for the manned space base.

    NASA Technical Reports Server (NTRS)

    Mckhann, G. G.; Coggi, J. V.; Diamond, S. D.

    1972-01-01

    The results of design integration studies of uranium-zirconium hydride (UZr-Hx) reactor power systems for the NASA space base study program are presented. The power conversion systems investigated include the Brayton cycle, the organic Rankine cycle, the SNAP-8 mercury Rankine cycle, and thermoelectric (PbTe). The proposed space base has a 10-year life and requires 100 kWe of power. Two 50-kWe power systems with a nominal replacement life of 5 years are utilized. Parametric design data such as life, weight, radiator area, reactor outlet-temperature, reactor thermal power, and power conversion system efficiency are presented and used for the design and integration of the system with the space base.

  5. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    SciTech Connect

    George, J.A.

    1991-09-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  6. Destruction of chlorobenzene and carbon tetrachloride in a two-stage molten salt oxidation reactor system.

    PubMed

    Yang, Hee-Chul; Cho, Yong-Jun; Eun, Hee-Chul; Kim, Eung-Ho

    2008-08-01

    Molten salt oxidation (MSO) is one of the promising alternative destruction technologies for chlorinated organics, because it is capable of trapping chlorine during organic destruction. This study investigated the characteristics of a two-stage MSO reactor system for the destruction of CCl(4) and C(6)H(5)Cl. Investigated parameters were the MSO reactor temperature (from 1023 K to 1223 K) and the excess oxidizing air feed rate (50% and 100%). The destruction of chlorinated solvents is substantial in the Li(2)CO(3)-Na(2)CO(3) eutectic molten salt, irrespective of the tested condition. However, further oxidation of CO, which is found to be the major destruction product, is not substantial due to the limited temperature and gas residence time in the MSO reactor. Increases in the reactor temperature as well as those in the oxidizing air feed rate consistently lead to decreased emissions of carbon monoxide. No significant influence of the MSO reactor operating condition on the chlorine capturing efficiency was found. Over 99.95% and 99.997% of the chlorine was captured in the hot MSO reactors during the C(6)H(5)Cl and CCl(4) destructions, respectively. This result suggests a relatively low potential of the MSO system in the recombination of chlorinated organics, when compared to a conventional incineration system. PMID:18501405

  7. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGESBeta

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  8. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.

  9. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  10. Update on Small Modular Reactors Dynamic System Modeling Tool Web Application

    SciTech Connect

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Batteh, John J; Tiller, Michael M.

    2015-01-01

    Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.

  11. Fault-tree analysis of the EBR-II reactor shutdown system

    SciTech Connect

    Kamal, S.A.; Hill, D.J. )

    1991-01-01

    As part of level I Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), detailed fault trees for the reactor shutdown system are developed. Two classes of transient events that are of particular importance to EBR-II operation and require reactor shutdown are loss of flow (LOF) and transient over power (TOP). Normally in these events, detection channels would automatically open a number of contacts in two redundant shutdown strings. The paper gives the probabilities of scram failure in case of an LOF or TOP. Fault-tree analysis of the EBR-II shutdown system has provided not only a systematic process for calculating the probabilities of system failures but also a useful means for understanding the system and how its components interact during transient events that require shutdown.

  12. Nuclear reactor system study for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Palmer, R. G.; Lundberg, L. B.; Keddy, E. S.; Koenig, D. R.

    1982-01-01

    Reactor shielding, safety studies, and heat pipe development work are described. Monte Carlo calculations of gamma and neutron shield configurations show that substantial weight penalties are incurred if exposure at 25 m to neutrons and gammas must be limited to 10 to the 12th power nvt and 10 to the 6th power rad, instead of the 10 to the 13th power nvt and 10 to the 7th power rad values used earlier. For a 1.6 MW sub t reactor, the required shield weight increases from 400 to 815 kg. Water immersion critically calculations were extended to study the effect of water in fuel void spaces as well as in the core heat pipes. These show that the insertion into the core of eight blades of B4C with a mass totaling 2.5 kg will guarantee subcriticality. The design, fabrication procedure, and testing of a 4m long molybdenum/lithium heat pipe are described. It appears that an excess of oxygen in the wick prevented the attainment of expected performance capability.

  13. A prototype expert system for the monitoring of defected nuclear fuel elements in Canada deuterium uranium reactors

    SciTech Connect

    Lewis, B.J.; Green, R.J. ); Che, C.W.T. )

    1992-06-01

    This paper reports on a prototype expert system for fuel failure monitoring in Canada deuterium uranium (CANDU) power reactors. Based on a coolant activity analysis, the system is able to provide information in an operating reactor on the number of fuel failures, the average defect size, and the amount of tramp uranium deposited on the in-core surfaces of the primary heat transport system. The fission product release model used in the system is based on results from an in-reactor experimental program at Chalk River Nuclear Laboratories. The expert system is validated against fuel failure data from a number of CANDU power reactors.

  14. The development of an on-line ERM system for the research reactors in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hee Reyoung; Lee, Wanno; Kim, Eun Han; Choi, Geun Sik; Lee, Chang Woo

    2007-08-01

    A real-time on-line environmental radiation monitoring (ERM) system for the research reactor sites of Daejeon and Seoul is established. In the Daejeon site, a radio communication method with a radiofrequency of 468.8 MHz is used between the main computer and the six posts inside the Daejeon research reactor site. A general telephone communication method by a dial modem is applied between the main computer and a comparison point with one post outside the Daejeon research reactor site. In the Seoul site, a null modem communication method is employed between a sub-computer and the three posts inside the Seoul research reactor site, and a high-speed communication network such as ADSL is used between the sub-computer in the Seoul site and the main computer in the Daejeon site. Consequently, the real-time data from a total of 10 places is displayed on-line on a screen and it is statistically treated.

  15. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    PubMed

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor. PMID:24617061

  16. Heat-retarding closure system for pressure relief openings of partitions, in nuclear reactor buildings

    SciTech Connect

    Fricker, W.-P.; Bauche, H.; Gollasch, B.; Scholz, M.

    1985-01-22

    Heat retarding closure system for partitions having pressure relief openings formed therein especially in nuclear reactor buildings where main coolant nozzles of a reactor pressure vessel penetrate a biological shield, including lightweight construction closure elements having a side facing the reactor and anchors for holding the closure elements, the closure elements being pushable out of the anchors by an overpressure in a given pressure difference direction on the reactor side, and an outer sealing blowout skin, the closure elements being in the form of heat-retarding cassette inserts having a front surface with a peripheral shearing edge formed thereon resting against the blowout skin, and the blowout skin having a given thickness in the given pressure difference direction enabling the cassette insert to shear off the blowout skin and be pushed out of the anchors when a given pressure difference is at least reached.

  17. Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system

    SciTech Connect

    Zhao, H.; Zhang, H.; Zou, L.; Sun, X.

    2012-07-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power density and therefore the reactor power can be significantly increased, without losing the passive heat removal feature. This paper introduces the concept of using DRACS to enhance VHTR passive safety and economics. Three design options with different cooling pipe locations are discussed. Analysis results from a lumped volume based model and CFD simulations are presented. (authors)

  18. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  19. Behavior of 241Am in fast reactor systems - a safeguards perspective

    SciTech Connect

    Beddingfield, David H; Lafleur, Adrienne M

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of {sup 241}Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased ({alpha},n) production in oxide fuels from the {sup 241}Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of {sup 241}Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of {sup 241}Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of {sup 241}Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  20. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)